
Network Security

Course notes

Version 2013.1

2

Contents

1 Email Security 1
1.1 Motivation and requirements . 1
1.2 Solutions . 2

1.2.1 Email confidentiality . 2
1.2.2 Authentication & Integrity . 4

1.3 The bootstrapping problem for trust . 5
1.4 Implementations . 5

1.4.1 PGP . 6

2 Security Protocols 7
2.1 Motivation . 7

2.1.1 A hierarchy of building blocks . 7
2.1.2 Security requirements . 7
2.1.3 Assumptions . 8
2.1.4 What goes wrong . 8
2.1.5 Security misconceptions . 8

3 Web Security 11
3.1 Web Security . 11

3.1.1 Introduction . 11
3.1.2 Cross-site scripting (XSS) . 12
3.1.3 Injection flaws . 13
3.1.4 Cross-site request forgery (CSRF) . 14
3.1.5 Information leakage . 14
3.1.6 Phishing attacks . 15
3.1.7 Browsers compromising privacy . 15
3.1.8 Predictable Resource Location (PRL) . 15
3.1.9 Sources . 15

3

Contents 4

i Contents

These are the lecture notes of Prof. Dr. Mauw as used in his classes. These notes are meant to
be informal and are only distributed to indicate the topics treated during class. Students can
download these notes for personal use only. It is not allowed to distribute these lecture notes
outside the University of Luxembourg, e.g. by publishing them on the Internet.

Contents ii

Chapter 1

Email Security

1.1 Motivation and requirements

It is easy to spoof and intercept email. Regular mail transmission over the Internet is in many
ways vulnerable, e.g.

• Eavesdropping.

• Blocking.

• Replay.

• Content modification (by outsider, recipient).

• Message spoofing.

• Origin modification.

• Destination modification.

• Denial of message transmission/reception.

• Everybody can set up an email account (e.g. GrandDukeJean@yahoo.com).

Background.

• Email evolved on the ARPANET (1970s).

• Based on a store-and-forward protocol (i.e. email is not directly sent to the addressee, but
passes through several intermediate nodes that temporarily store the email, possibly verify
its consistency and forward the email to the next hop).

• Security was not a design requirement.

• Using SMTP (Simple Mail Transfer Protocol, 1982).

• Original e-mail features:

– Address included in the message’s body.
Email did not rely exclusively on lower level protocols to say where the message must
go.

– Text only.
Email messages must contain readable text, not raw binary data.

1

1.2. Solutions 2

– Accept from anywhere.
Any delivery service or individual is allowed to submit messages that go into users’
email boxes.

– No acknowledgment.

Requirements for secure Email

• Message Confidentiality: Only intended receiver can read email.

• Sender Authenticity: The mail originates from the claimed sender.

• Message Integrity: Email cannot be altered. What the receiver sees is what was sent.

• Non-repudiation: Sender cannot deny having sent the email, receiver cannot deny having
received the email.

• Protect receiver from malware embedded in email.

• Protect against the sending of unsolicited bulk messages (spam).

Security controls

• Confidentiality: Encryption

• Authenticity: Digital Signatures, (Public key crypto + Hash functions)

• Integrity: Digital Signatures, (Public key crypto + Hash functions)

• Non-repudiation: Digital signatures, “evidence of origin” (EOO), “evidence of receipt”
(EOR).

• Malware: Virus scanners, email scanners.

• Spam: spam filters.

1.2 Solutions

We want to send an authenticated, encrypted email. How do we achieve this? Do we encrypt first,
then sign, or vice versa? What about compression?

Possible schemes:

• Asymmetric/public key: Diffie-Hellman (ElGamal), ECC (Elliptic Curve Cryptosystem,
ElGamal), RSA

• Symmetric/secret key: AES, IDEA, 3-DES, DES, Blowfish

• Compressions: zip, gzip, bzip, lzh.

• Cryptographic Hash Function: SHA-1, SHA-256, MD5.

1.2.1 Email confidentiality

First solution for email encryption. Encrypt message with symmetric encryption algorithm,
send to friend. Problem: Both need to exchange keys in advance.

3 Chapter 1. Email Security

A B
m m

{m}k {m}k

sym-encrypt (k)

send

sym-decrypt (k)

Second solution for email encryption. Encrypt message with asymmetric encryption algo-
rithm, send to friend. Problem: Computationally very expensive.

A B
m m

{m}pk(B) {m}pk(B)

asym-encrypt (pk(B))

send

asym-decrypt (sk(B))

Actual solution for email encryption.

• Encryption:

1. Generate message m.

2. Generate random secret key k.

3. Compress message using a compression algorithm z.

4. Symmetrically encrypt message m with key k.

5. Asymmetrically encrypt key k with recipient’s public key pk(B).

6. Send send encrypted key concatenated with encrypted message.

Given email message m, random symmetric key k we send: ({k}pk(B), {z(m)}k)

• Decryption

1. Receive encrypted email.

2. Asymmetrically decrypt k with recipient’s private key sk(B).

3. Symmetrically decrypt message with key k.

4. Uncompress message with uncompression algorithm z−1

1.2. Solutions 4

A B
k m m

z(m) z(m)

{z(m)}k {z(m)}k k

({k}pk(B), {z(m)}k) ({k}pk(B), {z(m)}k)

compress (z)

sym-encrypt (k)asym-encrypt (pk(B))

send

asym-decrypt (sk(B))

sym-decrypt (k)

uncompress (z−1)

Compression. When does it make sense to compress a message? Consider that compression
removes redundancy from a message, thus raises the entropy of a message. Encryption raises the
entropy of a message, too.

1.2.2 Authentication & Integrity

Does encryption already provide authentication and integrity protection? – NO!
Reasons:

1. With public key encryption, everyone can encrypt a message, thus sender not authenticated.

2. In some encryption algorithms, changes can be made without invalidating the encryption.

3. Messages can be replayed.

Solution: sign the messages.

Naive Method for Signatures. Encrypt message using private key. Problems: Highly ineffi-
cient, not integrity protected.

A B
m m

{m}sk(A) {m}sk(A)

sign (sk(A))

send

verify (pk(A))

Actual Method for Digital Signatures.

• Signature:

1. Generate message m.

2. Compute cryptographic hash code of message. (Typically 128 (MD5), 160 (SHA-1), or
256 (SHA-256) bits.)

3. Asymmetrically encrypt the hashvalue with sender’s private key sk(A).

4. Send signed hash concatenated with message.

5 Chapter 1. Email Security

• Verification

1. Receive signed hashvalue and message.

2. Decrypt signed hashvalue with sender’s public key pk(A).

3. Compare this with calculated hash of received message.

A B
m accept/reject

h(m) h(m) h(m)

(m, {h(m)}sk(A)) (m, {h(m)}sk(A))

hash (h)

sign (sk(A))

send

hash (h) asym-decrypt (pk(A))

compare

1.3 The bootstrapping problem for trust

Remark that

• we need authentication because we don’t trust the channel,

• we need to exchange keys (via a channel) to achieve authentication.

So should we send our keys over the untrusted channel?
No, that’s obviously a bad idea (spoofing, modifications, etc.).

How to exchange keys in a trusted way?
This is called the bootstrapping problem: we can’t trust the channel without keys, and we cannot
trust the channel to deliver the keys correctly. The solution: use another channel!

All people who wish to communicate meet in real life. They

1. prove to each other that they really are who they claim to be (e.g. show passport), and then
2. ask the other to sign their public key.

Now if later they send a signed email, the other can verify the signature on the email, and can
verify that he/she decided to trust the key.

Note that a similar argument may be made for confidentiality: how do you know who owns
the decryption key to a particular public key PK? Again, no way to start this trust (i.e., to
“bootstrap”) via the untrusted channel – so use a different channel.

1.4 Implementations

• PGP = Pretty Good Privacy (Phil Zimmermann, 1991, originally designed as a human rights
tool)

• S/MIME = Secure / Multipurpose Internet Mail Extensions, 1995)

1.4. Implementations 6

1.4.1 PGP

(Similar to GPG = GNU Privacy Guard,1997)
Zimmermann’s goals:

• Select best available crypto algorithms.

• Integrate in general purpose, os/processor-independent tool.

• Tool and sources freely available.

Exporting strong crypto from the USA was illegal, but Zimmermann found a back door: ex-
porting books was allowed. Therefore he published the source code in a book and developed
excellent OCR (Optical Character Recognition) software, which he also put into the book. The
OCR software could be used to read the book and translate it automatically into (verified) code.

What we have described is essentially how GPG / PGP work. In particular, GPG / PGP use
the following cryptographic algorithms:

Public key cryptosystems ElGamal, DSA, RSA

Symmetric key cryptosystems AES, 3DES, Blowfish, Twofish, CAST5

Hash functions MD5, SHA-1, RIPE-MD-160, MD2, TIGER

Compression functions ZIP, ZLIB

Email Compatibility Radix 64 conversion (MIME base64)

Key management for PGP. A user can have several (pk, sk) key pairs. How to determine which
key is used by the sender?

• Every key pair has a (hopefully) unique KeyID, consisting of the least significant 64 bits of
the public key. This keyID is sent along with the message.

• Every user has one (or more) UserID’s. This is typically the user’s e-mail address.

Each user maintains:

• Private key-ring to store his own key pairs (KeyID, pk, {sk}h(p), UserID), where h(p) is the
hash of his passphrase.

• Public key-ring to store other users’ public keys (KeyID, pk, UserID).

Where to obtain the other users’ public keys?
Website, e-mail, key server, . . .
Problem: fake/compromised keys give an attacker the opportunity to

• fake signatures

• read encrypted messages

Therefore, one normally verifies the public key (or rather its fingerprint) via a trusted channel.
Trust in someone else’s key is not a yes/no question. For instance, you obtain A’s key from B.
You trust B, but you know that he is a bit sloppy sometimes.

Therefore, we add a key legitimacy field to every key in the public key ring. This field contains
the level of trust. This level can be unknown, untrusted, marginally trusted, completely trusted.

Further, we add a signature of the public key. This expresses that the signer trusts this public
key. We also add a signature trust field to express our trust in the signer.

This allows to specify your own trust policies, e.g. You completely trust someone’s public key

if it is signed by someone you completely trust or by three people you trust marginally.

Possible further topics: key signing parties and key revocation.

Chapter 2

Security Protocols

2.1 Motivation

“Security protocols are three-line programs that people still manage to get wrong.”

— Roger Needham.

A protocol is a set of interaction rules designed to guarantee functionality. A security protocol
is a set of interaction rules designed to guarantee specific security properties as well as intended
functionality.

2.1.1 A hierarchy of building blocks

Levels Examples Sample attacks

Implementation Web browser, OSI protocol stack Buffer overflows, weak random numbers
Systems Voting, Road pricing, Mobile Internet Social engineering, burning ballot
Security Protocols IPV4, Password-based authentication Man-in-the-middle, replay attack
Cryptography ElGamal, AES Collision attack on hash functions
Mathematics Number theory, Fields Non-strong primes

2.1.2 Security requirements

A number of security requirements that protocols may need to satisfy:

• Confidentiality (keeping messages secret).

• Authentication (proving identity).

• Integrity (keeping messages uncorrupted).

• Privacy (not learning information about someone).

• Unlinkability (not being able to link two events together).

• Non-repudiation (not being able to deny having taken an action).

In this chapter we take a close look at confidentiality, authentication, unlinkability and non-
repudiation.

7

2.1. Motivation 8

2.1.3 Assumptions

We study security protocols in isolation from the other levels (crypto, system, implementation).
This gives the advantage of separation of concerns. Thereto, we assume that the crypto-level
provides cryptographic primitives, like hashing and signing, which are perfect, the perfect cryp-

tography assumption. The implementation of the cryptographic primitives then can be considered
as a black box, and we can use idealized abstractions of these primitives, the black-box approach.
We will denote the hashing of a message m with hash function h simply by h(m) and assume that
it satisfies the required properties, like collision resistance. Symmetric encryption of a message m

with key k will be denoted by {m}k. Asymmetric encryption with a’s public key will be denoted
by {m}pk(a).

2.1.4 What goes wrong

Security protocols are hard to get right. Sources of errors include:

• Insecure protocols.

• Incorrect cryptographic primitives.

• Bad implementations.

• Changed assumptions on environment.

2.1.5 Security misconceptions

Some misconceptions with respect to security:

• “Our application is secure because we are using the most up-to-date cryptographic algo-
rithms.”

• “We keep our communication protocol secret, so nobody will ever be able to attack it and
we don’t have to worry about security of the protocol.”

• “My engineers looked at the protocol for a while and could not find errors, so we can safely
use it.”

• “Now that we have finished the design and specification of our system, we can start adding
security features.”

• “In order to be sure, we apply double encryption.”

• “We have found this security protocol in literature, so we can safely embed it in our system.”

Cryptography is like a lock. No matter how good a lock is, if it is used incorrectly, it doesn’t
protect (see Figure 2.1.5).

9 Chapter 2. Security Protocols

Figure 2.1: Cryptography is like a lock (photo by C.J.F. Cremers)

2.1. Motivation 10

Chapter 3

Web Security

3.1 Web Security

3.1.1 Introduction

[1] Today’s web applications are often vulnerable to attacks. There are several reasons why many
web applications contain vulnerabilities. Programmers are generally not aware of good security
practices, security is hard to get right, security is inconvenient. Moreover, there is no direct
return on investment on secure applications. There is also the predominant thinking that one web
applications vulnerability does not have the capability of inflicting major damage.

Table 3.1 gives a non-exhaustive overview of today’s web vulnerabilities. Web vulnerabilities
can be classified by the victim (either a remote system, or a local system) and the target (either
data, or a complete system).

It may not come as a surprise that web vulnerabilities cannot be prevented completely. How-
ever, one must be aware of the mistakes and vulnerabilities that are present, and adapt his web
applications to minimize the chance that they are compromised.

The subsequent sections present common web vulnerabilities in today’s web applications. The
common divisor of these vulnerabilities is that they rely on input from the attacker that is executed.
Therefore, a web application should always sanitize input provided by the user.

To understand why input validation is necessary, it is essential to understand the communica-
tion between a browser and a remote server. The communication starts by the browser issuing an
HTTP GET command to the server:

GET /members/sasa/fun/ HTTP/1.1

Host: satoss.uni.lu

The server then responds with:

Table 3.1: Classification of web vulnerabilities
Data Computer System

Remote SQL injection Apache Buffer Overf.
System

Resp.-splitting Email attachments,
Local XSS, Phishing WMF/TIFF Vulner.
Computer cookie pois. Trojans, Malware

CSRF

11

3.1. Web Security 12

HTTP/1.1 200 OK

Date: Thu, 24 Nov 2011 10:39:33 GMT

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny13 with Suhosin-Patch

mod_ssl/2.2.9 OpenSSL/0.9.8g

Last-Modified: Wed, 04 Feb 2009 14:25:25 GMT

ETag: "57840-7f-462188f043f40"

Accept-Ranges: bytes

Content-Length: 127

Content-Type: text/html

<HTML>

<HEAD><TITLE>Demo Website</TITLE></HEAD>

<BODY onload=’alert("Printer on Fire!");’>

<H1>Hello World</H1>

</BODY></HTML>

The response is interpreted by the browser in three steps:

1. The browser reads the header:

HTTP/1.1 200 OK

Date: Thu, 24 Nov 2011 10:39:33 GMT

Server: Apache/2.2.9 (Debian) PHP/5.2.6-1+lenny13 with Suhosin-Patch

mod_ssl/2.2.9 OpenSSL/0.9.8g

Last-Modified: Wed, 04 Feb 2009 14:25:25 GMT

ETag: "57840-7f-462188f043f40"

Accept-Ranges: bytes

Content-Length: 127

Content-Type: text/html

2. The browser reads and displays the HTML code:

<HTML>

<HEAD><TITLE>Demo Website</TITLE></HEAD>

<BODY onload=’alert("Printer on Fire!");’>

<H1>Hello World</H1>

</BODY></HTML>

3. The browser interprets and executes scripts in the content:

alert("Printer on Fire!");

3.1.2 Cross-site scripting (XSS)

Cross site scripting allows attackers to execute scripts in the user’s browser. This may result
in hijacked user sessions, defaced web sites, hostile content in web sites, phishing attacks, and
hostile browser take-overs. The malicious script is usually JavaScript, but may be any scripting
language that is interpreted by the victim’s browser. Cross site scripting flaws occur whenever an
application takes data that originates from the user and does not validate the user input.

The attacks are usually implemented in JavaScript, which is a powerful scripting language.
Using JavaScript allows attackers to manipulate any aspect of a rendered page, such as adding a
login box which forwards credentials to a hostile site. Another possibility is to perform a phishing
attack on the user (see Section 3.1.6). The evolution of JavaScript malware, finding its way into
more and more attackers toolboxes, has made finding and fixing this vulnerability more vital than
ever.

13 Chapter 3. Web Security

XSS attacks can be protected against by validation of all incoming data (“whitelist validation”)
and appropriate encoding of all output data. Validation allows the detection of attacks, and
encoding prevents any successful script injection from running in the browser.

3.1.3 Injection flaws

Injection flaws are common in web applications. There are many types of injections, for instance
SQL, LDAP, XPath, XSLT, XML, and OS Command injections. Injection flaws occur when user-
supplied data is passed to an interpreter as part of a command or query. The most common type of
injection flaw allows for SQL injection. Structured Query Language (SQL), is a computer language
designed for the retrieval and management of data in relational database management systems,
database schema creation and modification, and database object access control management.

A typical SQL query looks like

SELECT field FROM table WHERE condition;

For instance, if we have a table of all students and their grades, we might want to issue the
following command

SELECT student FROM allstudents WHERE grade < 10;

to list all those students whose grade is below 10.
A classic way to verify a username and password provided by a user is to search the database

for that username/password. If the database returns a non-empty set, the user has provided a
valid pair, and passes authentication. A common way to do this is to access the database from a
PHP script using the following code:

$sql = "SELECT * FROM table WHERE username = ’" . $user . "’

AND password=’" . $password . "’;";

$result = mysql_query($sql);

A simple SQL injection that would allow access to the website could be to provide admin as
username and anypassword’ OR ’1’=’1 as password. Giving such values would result in the
following SQL query being executed:

$sql = "SELECT *

FROM table

WHERE username = ’admin’

AND password=’anypassword’ OR ’1’=’1’;

The latter part of the injection (’ OR ’1’=’1) ensures that the WHERE-clause is always
satisfied. This would allow the attacker to pass the authentication mechanism and login to the
system without knowing a valid username/password combination.

Although passing the authentication scheme is undesired, much more damage can be done by
exploiting the fact SQL queries can be composed using a semicolon ;. For instance, the following
input for password to the above query would add a user “Ton” to the database with password
“12345”.

anypassword’ OR ’1’=’1’; INSERT INTO table VALUES (’Ton’,’12345’);--

Since the values of $user and $password are entirely under the control of the attacker, any
malicious input can be passed on to the database.

Any application that allows users to input data which is subsequently passed on to another
system is potentially vulnerable to injection flaws. The main solution to this problem is to sanitize
the data (for instance by disallowing certain characters in user input), before passing it on to
another system.

3.1. Web Security 14

SQL Injection has been at the center of some of the largest credit card and identity theft
incidents. Today’s backend website databases store highly sensitive information, making them a
natural, attractive target for malicious hackers. Names, addresses, phone numbers, passwords,
birth dates, intellectual property, trade secrets, encryption keys and often much more could be
vulnerable to theft. With a few well-placed quotes, semi-colons and commands entire databases
could fall into the wrong hands.

3.1.4 Cross-site request forgery (CSRF)

Cross-site request forgery is not a new attack, but it is gaining in popularity. A CSRF-attack
forces a logged-on browser to send a request to any web site of the attacker’s choosing, which
then performs the chosen action on behalf of the victim. The attack works by including a link
into a web page that accesses another web site to which the user has logged in. The attack allows
attackers to make an HTTP request to e.g. the victim’s bank, blog, or web mail. The following
tag in any web page viewed by the victim will generate a request to the web page that logs out
the user:

If an online bank allowed its application to process requests without explicitly verifying the
user’s credentials, the following code asks for a transfer of funds:

<img src="http://www.example.com/transfer.php?toIBAN=123

&toBIC=456&amount=500">

Although XSS flaws are not required for CSRF attacks to work, any web site that is vulnerable
to XSS attacks is also vulnerable to CSRF attacks. When building defense against CSRF attacks,
eliminating XSS vulnerabilities in a web site is essential, since such flaws can be used to get around
CSRF defense mechanisms.

The only protection against CSRF attacks is that applications do not rely on credentials that
are automatically submitted without the user’s knowledge.

3.1.5 Information leakage

Applications can unintentionally leak information about their configuration, internal working, or
violate privacy through a variety of application problems. Examples of such information are de-
veloper comments, user information, internal IP addresses, source code, software version numbers.
While information leakage itself does not have to be a problem, the information may be used by
an attacker to launch, or even automate more powerful attacks. Examples of information leakage:

• Detailed error handling such as failed SQL statements, or other debugging information.

• Functions that display different results based on different inputs. For example a failed login
should display the same message (e.g. "login failed") irrelevant of whether username,
password, or both were incorrect.

15 Chapter 3. Web Security

3.1.6 Phishing attacks

Phishing is an attempt to criminally and fraudulently acquire sensitive information by masquerad-
ing as a trustworthy entity in an electronic communication. The first phishing technique was de-
scribed in detail in 1987. Phishing was first applied on a large scale in the early 90s. While early
phishing attempts were targeted at large groups of users, recent phishing attempts are becoming
more and more targeted at individuals using additional information of the user that is attacked.

In a phishing attempt, the attacker tries to spoof a legitimate web site, with the aim of obtaining
data the victim would normally supply to the original web site. This data could be usernames
and passwords or credit card information.

The first part of a phishing attack is to fool the user into visiting a malicious web site. Common
techniques are to make the anchor text for a link appear to be valid, while the link actually
goes to the malicious web site. Another common technique is to use misspelled URL’s, the use
of subdomains (e.g. http://www.bcee.lu.com or http://www.bcee.com.lu when the attacker
possesses resp. the domains lu.com or com.lu), or the use of IP addresses instead of URL’s.
Another, more dangerous attack involves poisoning the DNS cache of the user. If the attacker
succeeds in poisoning the DNS cache of the user, the user will be redirected to the wrong server.

After fooling the user into visiting the malicious web site, the attacker might try to alter the
address bar. He can either use JavaScript to alter the address bar, place a picture of a legitimate
URL over the address bar or close the original address bar and open a new one with the URL of
the legitimate URL.

In general phishing attacks are performed through e-mail or instant messaging communication.

3.1.7 Browsers compromising privacy

Recently, two examples have shown that websites with CSS can be used to violate the privacy of
the user visiting the website. The website uses the fact that the browser stores a history of visited
pages. Depending on whether a user has visited a page that is linked to from a browser, the color
of the hyper link is changed. The following two web sites show whether a user visited a page or
not:

http://ha.ckers.org/weird/CSS-history-hack.html

http://ha.ckers.org/weird/CSS-history.cgi

The second web site shows how a hostile web site may abuse this information: it includes an
image iff the user has visited the page. In doing this, the browser essentially tells the web site
which pages have been visited.

3.1.8 Predictable Resource Location (PRL)

Over time, many pages on a website become unlinked, orphaned, and forgotten - especially on
websites experiencing a high rate of content and/or code updates. These Web pages sometimes
contain payment logs, software backups, post dated press releases, debug messages, source code -
nothing, or everything. Normally, the only mechanism protecting the sensitive information within
is the predictability of the URL. Automated scanners have become adept at uncovering these files
by generating thousands of guesses. However, although a scanner can guess at a filename, it has no
contextual reasoning to tell if the data received is sensitive or how valuable it might be. Humans
need to make this determination.

3.1.9 Sources

These notes are among others based on the following:

• OWASP Top 10 Project1.

1http://www.owasp.org/index.php/OWASP_Top_Ten_Project

http://www.owasp.org/index.php/OWASP_Top_Ten_Project

3.1. Web Security 16

• MITRE vulnerability trends2.

2http://cwe.mitre.org/documents/vuln-trends/index.html

http://cwe.mitre.org/documents/vuln-trends/index.html

Bibliography

[1] Adi Shamir. On the power of commutativity in cryptography. In ICALP, pages 582–595, 1980.

17

	Email Security
	Motivation and requirements
	Solutions
	Email confidentiality
	Authentication & Integrity

	The bootstrapping problem for trust
	Implementations
	PGP

	Security Protocols
	Motivation
	A hierarchy of building blocks
	Security requirements
	Assumptions
	What goes wrong
	Security misconceptions

	Web Security
	Web Security
	Introduction
	Cross-site scripting (XSS)
	Injection flaws
	Cross-site request forgery (CSRF)
	Information leakage
	Phishing attacks
	Browsers compromising privacy
	Predictable Resource Location (PRL)
	Sources

