
Vulnerabilities in web
applications

Web = Client + Server

Client
(browser) Server

request

response

HTTP

HTTP request contains the URL of the resource and the header
HTTP response contains a status code, the header, data

Client-server interaction
• Web pages (resources) are identified by URL

http://securityfans.com/forum/viewtopic.php?t=4841378

path to a resource arguments
Z

protocol hostname

Client request:
GET / HTTP/1.1
Host: satoss.uni.lu
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Accept-Encoding: gzip,deflate,sdch
Accept-Language: en-US,en;q=0.8,it;q=0.6,ru;q=0.4
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_0) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/38.0.2125.122 Safari/537.36

Client-server interaction
• Web pages (resources) are identified by URL

http://securityfans.com/forum/viewtopic.php?t=4841378

path to a resource arguments
Z

protocol hostname

Server response:
HTTP/1.1 200 OK
Connection: keep-alive
Content-Encoding: gzip
Content-Length: 3161
Content-Type: text/html; charset=utf-8
Date: Tue, 25 Nov 2014 13:56:31 GMT
Server: ATS/3.2.4
Vary: Accept-Encoding
X-Powered-By: PHP/5.4.34-0+deb7u1

Vulnerabilities in web
applications

• Many security holes in corporate IT are due to vulnerabilities in the code of
web applications

• These are often used as the “weakest link principle” by the attackers

• Differences between web apps and client-server apps open enterprises to
significant risks

• JavaScript has diffused boundaries between client and server

• Web apps are easier to deploy but harder to maintain securely

• Equifax credit bureau had leaked critical personal data of 143 million
customers because of a patchable vulnerability in a third-party component of
one of their web app (CVE-2017-5638)

• The attack was launched at the end of July, but the patch for CVE-2018-5638 was already
available in March!

Practical approaches in
vulnerability discovery

• Software security is a problem that is very hard to define

• Bell-LaPadula model: “a system is secure iff it starts in a secure state and
cannot enter an insecure state”

• “I don’t want my emails to be read by others” - this is easy to express, but quite
difficult to formalize

• It is nearly impossible to analyze software behavior conclusively

• Turing’s halting problem, Rice’s theorem

• The complexity of software systems continue to grow -> more and
more vulnerabilities are introduced

• Sometimes, we must fall back to a set of empirical recipes

Practical approaches in
vulnerability discovery (continued)
• Plan your actions as if everything is already compromised

• Rely on tools that detect SPECIFIC problems, but do not
rely on tools completely

• Tools can help in finding certain vulnerabilities, but they are
nothing without human knowledge (same problem as with
signature-based intrusioin detection).

• Learn from (preferably) others’ mistakes

• There are many vulnerability taxonomies, databases, case
studies. Don’t forget about Open Source Sotfware

A quick look at vulnerability
taxonomies

• All vulnerabilities are related to flaws in source code

• Design and implementation errors

• Many of them are language/framework independent

• Categories, classifications, and databases

• Open Web Application Security Project (OWASP)

• Common Weakness Enumeration (CWE)

• The National Vulnerability Database (NVD)

• Open-sourced Vulnerability Database (OSVDB)

• IARPA Securely Taking On New Executable Software of Uncertain Provenance
(STONESOUP

OWASP Top 10 (2013)
A3: Cross-site
Scripting (XSS)A1: Injection

A4: Insecure
Direct Object
References

A5: Security
Misconfiguration

A6: Sensitive
Data Exposure

A7: Missing
Function Level
Access Control

A8:Cross-site
Request Forgery

(CSRF)

A9: Using
Component With

Known Vulns.

A10: Unvalidated
Redirects and

Forwards

A2: Broken Auth.
and Session
Management

Injection vulnerabilities
• Assume, an app is written in multiple languages: Java,

JavaScript, HTML, SQL, …

• An app accepts user inputs and does not check them

• Problem: some inputs that look like String in Java, might
be valid instructions in SQL, JavaScript, …

• Consequences?

• From website defacement …

• … to complete control over a vulnerable server

SQL/NoSQL injection

• Due to insufficient input filtering (or output escaping),
attacker-controlled input may be interpreted as code
by a database interpreter and executed

• Related threats: Information Disclosure, Data
Modification/Deletion, Elevation of Privileges

• Technical impact: Moderate/Severe

SQL injection: example
UserData data = getDataFromUser();
String userId = data.getUserId();
String passwd = data.getPasswd();

SomeDB.executeQuery("SELECT * FROM users WHERE users.userId =
'”+ userId + ”’ AND users.passwd ='” + passwd + “'");

query <- "SELECT * FROM users WHERE users.userId =
’Batman’ OR ’1’ == ’1’; DROP TABLE users;
—’ AND users.passwd= ’’"

userId <- “Batman’ OR ’1’ == ’1’; DROP TABLE users; --”
passwd <- “”

userid <- ”John Doe”
passwd <- ”qweJk@#4kw”
query <- "SELECT * FROM users WHERE users.userId =
’John Doe’ AND user.passwd = ’qweJk@#4kw’”

NoSQL injection: example
var login = request.body.userid;
var passwd = request.body.passwd;

var query = eval("({ _id: '" + login + "', pword : '" +
Passwd + “‘})”);
if (dbprovider.findOne(query)) authenticate(login);

query <- “({ _id : ‘Batman’})//, pword : ‘’})”
query <- “({ _id : ‘Batman’})”

login <- “Batman’})//”
passwd <- “”

Login <- ”John Doe”
passwd <- ”qweJk@#4kw”
query <- ({ _id : ‘John doe’, pword: ‘qweJk@#4kw’})

SQL/NoSQL injection

DEMO

Finding db injection
• Symptoms:

• App gets user input and does not check it

• App uses user input to construct database queries, uses
string concatenation

Language Keywords
Java (+JDBC) sql, java.sql
Python pymssql,
C# Sql, SqlClient, OracleClient, SqlDataAdapter

PHP mysql_connect
Node.js require("mysql”), require(”mssql"),

require("mongodb")

Preventing db injection

• Validate user inputs on server side before processing

• In JavaScript, do not use the eval() function to parse
user inputs, do not use String concatenation

• Use special library functions (a.k.a. prepared
statements in Java, or JSON.parse() in JavaScript) for
constructing database queries with user input

Cross-site Scripting (XSS)
• Insufficient input validation can allow attackers to plant

own HTML or scripts on a vulnerable website.

• The reflected variant takes the advantage of the input
when it is being incorrectly “echoed” back to a browser

• The stored (persistent) variant takes the additional
advantage of the lack of sanitization of the data that goes
to a DB (and is displayed to users later)

• Related threats: Information Disclosure, Elevation of Privileges

• Technical impact: Moderate/Severe

Cookies
• Cookies are key-value pairs that are set up in a web

browser

• Cookies are mostly used for site personalization and
session management

• Cookies can be used by advertisement engines to
track users

• Stealing valid session cookies allows to impersonate
legitimate users

XSS scenario
• Every JavaScript program can be written as a string that gets

evaluated

• Attacker injects a malicious script to yourbank.com

• When a victim access yourbank.com, her browser assumes that the
script is being executed under yourbank.com and should be trusted

• The malicious script can access cookies (unless the “HttpOnly”
flag is set) or any other sensitive information saved by the browser
and used for yourbank.com

• The script can also rewrite the contents of a HTML web page to
trick users into giving up their personal data

http://yourbank.com
http://yourbank.com
http://yourbank.com
http://yourbank.com

XSS reflected

DEMO

XSS stored
Step 0: developer writes vulnerable pages:
1st one stores invalidated input;
2nd one reads it from a database and with no validation.

Database

Step 1:
Attacker sends malformed
 input (code) to a vulnerable web page.

Step 2: User browses the site.

Step 3: Web site reads unchecked data
and sends it along with attacker’s code
to the user’s browser.

Step 4: User’s browser renders the web
page and runs the attacker’s code
(every time the page is requested!)

XSS stored

DEMO

Finding XSS
Language Keywords

Java (JSP) addCookie, getRequest, request.getParameter followed by
<jsp:setProperty or <%= or response.sendRedirect

Python form.getvalue, SimpleCookie when the data is not validated correctly.

C# Request.*, Response.*, and <%= when the data is not validated
correctly.

PHP Accessing $_REQUEST, $_GET, $_POST, or $_SERVER followed by echo,
print, header, or printf.

Node.js request, response, …

Preventing XSS
• Validate user input on both client- and server-side

• Set the “HttpOnly” for cookies explicitly

• Use output encoding for correct contexts

• Implement Content Security Policy (CSP)

Content-Security-Policy: default-src 'self' *.mydomain.com

Information disclosure
• Attacker is able to get unprotected critical data. The data

itself can be the goal, or it can be used by the attacker
for reaching its goal (exploit other vulnerabilities)

• Intentional: developers have a mistmatch with end users on
what data should be protected (privacy issues)

• Accidental: critical data can be accessed throug an error in
the code, or a non-obvious channel (e.g., verbose error
messages).

• Technical impact: could be anything

Information disclosure:
intentonal

Information disclosure:
accidental 1

ERROR!
Username does not exist

ERROR!
Your password is not correct!

Information disclosure:
accidental 2

password = null;

May throw null reference
exception

Finding information
disclosure

• App returns the “default” information such as server
type, configuration, ip address, hostname, etc.

• There are too many details in error messages (e.g.,
stack traces), there are unhandled exceptions; non-
uniform error messages when handling user logins

• Look for “password”, “credentials”, “login” in the
source code - you might find something interesting

Path traversal

• An application can be tricked into reading/writing files
at arbitrary locations (despite app-level restrictions).
Unconstrainted, such bugs are often used for
deploying attacker-controlled scripts

• Related threats: Information Disclosure, Code Injection,
Denial of Service

• Technical Impact: Moderate/Severe

Path traversal: example

String path = getInputPath();
if (path.startsWith("/safe_dir/")) {
 File f = new File(path);
 f.delete();
}

The code attempts
to validate the

input by
whitelisting.

If the file is within the
”/safe_dir/” folder,

the file gets deleted.

An attacker could
provide an input such

as :
/safe_dir/../data.db

Database

Path traversal

DEMO

Finding path traversal

• App gets an input from user that is not being checked

• The user input is used to constuct a path string to a
file/folder (downloading/uploading files, redirects,
etc.)

• Sanitization functions often contain errors (remember
the previos example), so they have to be checked
carefully

Useful links
• Zalewski, Michal. The tangled Web: A guide to securing

modern web applications. No Starch Press, 2012.

• Howard, Michael, David LeBlanc, and John Viega. 24
deadly sins of software security: programming flaws
and how to fix them. McGraw-Hill, Inc., 2009.

• OWASP: the free and open software security
community https://www.owasp.org/index.php/
Main_Page

• Secure Coding Guidelines for Java SE
http://www.oracle.com/technetwork/java/
seccodeguide-139067.html

https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

