Vulnerabilities in web
applications

Web = Client + Server

request

Client

(browser) Server

response

HTTP request contains the URL of the resource and the header
HTTP response contains a status code, the header, data

Client-server interaction

 Web pages (resources) are identified by URL

[http]: // [securityfans : corerorum/ viewtopic. php]?ﬁ:=4841378

GET /HTTP/1.1

Host: satoss.uni.lu

Accept: text/html,application/xhtml+xml,application/xml;q=0.9 image/webp,*/*;q=0.8
Accept-Encoding: gzip.deflate,sdch

Accept-Language: en-US ,en;q=0.8,1t;q=0.6,ru;q=0 .4

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_0) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/38.0.2125.122 Safari1/537.36

Client-server interaction

 Web pages (resources) are identified by URL

{http}: // {securityfans : conﬂ/ {forum/ viewtopic. php}?ﬁ:=4841378

HTTP/1.1 200 OK

Connection: keep-alive
Content-Encoding: gzip
Content-Length: 3161

Content-Type: text/html; charset=utf-8
Date: Tue, 25 Nov 2014 13:56:31 GMT
Server: ATS/3.2.4

Vary: Accept-Encoding
X-Powered-By: PHP/5.4.34-0+deb7ul

Vulnerabilities in web
applications

e Many security holes in corporate IT are due to vulnerabilities in the code of
web applications

 These are often used as the “weakest link principle” by the attackers

e Differences between web apps and client-server apps open enterprises to
significant risks

e JavaScript has diffused boundaries between client and server

 Web apps are easier to deploy but harder to maintain securely

e Equifax credit bureau had leaked critical personal data of 143 million
customers because of a patchable vulnerability in a third-party component of
one of their web app (CVE-2017-5638)

e The attack was launched at the end of July, but the patch for CVE-2018-5638 was already
available in March!

Practical approaches in
vulnerability discovery

e Software security is a problem that is very hard to define

e Bell-LaPadula model: “a system is secure iff it starts in a secure state and
cannot enter an insecure state”

e “[don’t want my emails to be read by others” - this is easy to express, but quite
difficult to formalize

e [tis nearly impossible to analyze software behavior conclusively

e Turing’s halting problem, Rice’s theorem

* The complexity of software systems continue to grow -> more and
more vulnerabilities are introduced

e Sometimes, we must fall back to a set of empirical recipes

Practical approaches in
vulnerability discovery (continued)

 Plan your actions as if everything is already compromised

e Rely on tools that detect SPECIFIC problems, but do not
rely on tools completely

* Tools can help in finding certain vulnerabilities, but they are
nothing without human knowledge (same problem as with
signature-based intrusioin detection).

e Learn from (preferably) others’ mistakes

* There are many vulnerability taxonomies, databases, case
studies. Don’t forget about Open Source Sotfware

A quick look at vulnerability
taxonomies

e All vulnerabilities are related to flaws in source code
* Design and implementation errors
 Many of them are language/framework independent

e Categories, classifications, and databases
 Open Web Application Security Project (OWASP)

e Common Weakness Enumeration (CWE)

The National Vulnerability Database (NVD)

. C \ulnerabilitv Datal OSVDB

IARPA Securely Taking On New Executable Software of Uncertain Provenance
(STONESOUP

OWASP Top 10 (2013)

A1: Injection

A4: Insecure
Direct Object
References

A7: Missing
Function Level
Access Control

A2: Broken Auth.
and Session
Management

A5: Security
Misconfiguration

A8:Cross-site
Request Forgery
(CSRF)

A10: Unvalidated
Redirects and
Forwards

A3: Cross-site
Scripting (XSS)

A6: Sensitive
Data Exposure

A9: Using
Component With
Known Vulns.

Injection vulnerabilities

Assume, an app is written in multiple languages: Java,
JavaScript, HTML, SQL, ...

An app accepts user inputs and does not check them

Problem: some inputs that look like String in Java, might
be valid instructions in SQL, JavaScript, ...

Consequences?
e From website defacement ...

e ... to complete control over a vulnerable server

SQL/NoSQL injection

Due to insufficient input filtering (or output escaping),
attacker-controlled input may be interpreted as code
by a database interpreter and executed

Related threats: Information Disclosure, Data
Modification/Deletion, Elevation of Privileges

Technical impact: Moderate/Severe

SQL injection: example

UserData data = getDataFromUser();
String userId = data.getUserId();
String passwd data.getPasswd();

SomeDB.executeQuery("SELECT * FROM users WHERE users.userId =

'+ userId + "' AND users.passwd ='" + passwd + “'");

userid <- "John Doe”

passwd <- "gqwedJk@#4kw”
query <- "SELECT * FROM users WHERE users.userId =

John Doe’ AND user.passwd = 'qwedJk@#4kw'"”
userId <- “Batman’ OR ’'1l’ == ’'1’; DROP TABLE users; --"
passwd <- “"

query <- "SELECT * FROM users WHERE users.userId =
"'Batman’ OR 1’ == ’'1’; DROP TABLE users;

—’ AND users.passwd= '’'"

NoSQL injection: example

var login = request.body.userid;
var passwd = request.body.passwd;

var query = eval("({ 1id:
Passwd + “‘})");
if (dbprovider.findOne(query)) authenticate(login);

+ login + , pword : '" +

Login <- "John Doe”
passwd <- "qwedJk@#4kw”
query <- ({ id : ‘John doe’, pword: ‘qwedk@#4kw’})

login <- “Batman’})//"
passwd <- “"

query <- “({ id : ‘Batman’}) "
query <- “({ id : ‘Batman’})"”

SQL/NoSQL injection

DEMO

Finding db Injection

e Symptoms:
 App gets user input and does not check it

 App uses user input to construct database queries, uses
string concatenation

Java (+JDBC) sgl, java.sql

Python pymssql,

C# Sgl, SglClient, OracleClient, SglDataAdapter
PHP mysgl connect

Node.js require("mysqgl”), require(”"mssqgl"),

require("mongodb")

Preventing db injection

* Validate user inputs on server side before processing

 |n JavaScript, do not use the eval() function to parse
user inputs, do not use String concatenation

 Use special library functions (a.k.a. prepared
statements in Java, or JSON.parse() in JavaScript) for
constructing database queries with user input

Cross-site Scripting (XSS)

Insufficient input validation can allow attackers to plant
own HTML or scripts on a vulnerable website.

The reflected variant takes the advantage of the input
when it is being incorrectly “echoed” back to a browser

The stored (persistent) variant takes the additional
advantage of the lack of sanitization of the data that goes
to a DB (and is displayed to users later)

Related threats: Information Disclosure, Elevation of Privileges

Technical impact: Moderate/Severe

Cookies

Cookies are key-value pairs that are set up in a web
browser

Cookies are mostly used for site personalization and
session management

Cookies can be used by advertisement engines to
track users

Stealing valid session cookies allows to impersonate
legitimate users

XSS scenario

Every JavaScript program can be written as a string that gets
evaluated

Attacker injects a malicious script to yourbank.com

When a victim access yourbank.com, her browser assumes that the
script is being executed under yourbank.com and should be trusted

The malicious script can access cookies (unless the “HttpOnly”
flag is set) or any other sensitive information saved by the browser
and used for yourbank.com

The script can also rewrite the contents of a HTML web page to
trick users into giving up their personal data

http://yourbank.com
http://yourbank.com
http://yourbank.com
http://yourbank.com

XSS reflected

DEMO

XSS stored

Step 0: developer writes vulnerable pages:
1st one stores invalidated input;
2nd one reads it from a database and with no validation.

Database 4_’5
/ v

Step 1: Step 4: User’s browser renders the web
Attacker sends malformed page and runs the attacker’s code
input (code) to a vulnerable web page. (every time the page is requested!)

Step 2: User browses the site.

Step 3: Web site reads unchecked data
and sends it along with attacker’s code

\ to the user’s browser.

XSS stored

DEMO

Finding XSS

Java (JSP) addCookie, getRequest, request.getParameter followed by
<jsp:setProperty Or <%= or response.sendRedirect

Python form.getvalue, SimpleCookie when the data is not validated correctly.

C# Request.*, Response.*, and <%= when the data is not validated
correctly.

PHP Accessing $ REQUEST, $ GET, $ POST, or $ SERVER followed by echo,

print, header, or printf.

Node.js request, response, ...

Preventing XSS

Validate user input on both client- and server-side

Set the “HttpOnly” for cookies explicitly

HTML Attribute
Use output encoding for correct contexts Encoding

URI Encoding
Implement Content Security Policy (CSP)

JavaScript

Encoding

CSS Encoding

Content-Security-Policy: default-src 'self'

<input type="text" name="fname" value="
UNTRUSTED DATA">

<a href="/site/search?value= UNTRUSTED
DATA">clickme

<script>var currentValue=' UNTRUSTED
DATA';</script>

<script>someFunction(' UNTRUSTED
DATA');</script>

<div style="width: UNTRUSTED
DATA;">Selection</div>

* . mydomain.com

Information disclosure

Attacker is able to get unprotected critical data. The data
itself can be the goal, or it can be used by the attacker
for reaching its goal (exploit other vulnerabilities)

Intentional: developers have a mistmatch with end users on
what data should be protected (privacy issues)

Accidental: critical data can be accessed throug an error In
the code, or a non-obvious channel (e.g., verbose error
messages).

Technical impact: could be anything

Information disclosure:
Intentonal

def authenticate(uname, pword):

<?php if uname == ""
SUName = " vy return False
SPWord = " ", elif pword != "
$DBR="" " return False
2 else:

return True

def authenticate(uname,pword):
1T uname==" " and pword=="
return True
else:
return False

Information disclosure:
accidental 1

O @ [login.jsp

— C @ https://login.jsp

ERROR!
Username does not exist

@ O [login.jsp

& C @ https://login.jsp

ERROR!
Your password is not correct!

Information disclosure:
accidental 2

HTTP Status 500 - rord = null;

)

- LW N -

VN

(5 Exception report
The server encountered an internal error () that prevented it from fuffiling this request.
exception

-)

e
A

-

LS
\L)

—
~>
L

MNN M

java.lang.NullPointerException

r ’
e L

J

s 1
") I~

)Al }41 b41 }41)Al }4) }41

rence

D 00 ~J

‘e

fle: The full stack trace of the root cause is available in the Apache Tomeat/ logs.

<™
=

!

J NN =

3 3
LL
- |
-

NS

Finding information
disclosure

 App returns the “default” information such as server
type, configuration, ip address, hosthame, etc.

* There are too many details in error messages (e.g.,
stack traces), there are unhandled exceptions; non-
uniform error messages when handling user logins

* Look for “password”, “credentials”, “login” in the
source code - you might find something interesting

Path traversal

 An application can be tricked into reading/writing files
at arbitrary locations (despite app-level restrictions).
Unconstrainted, such bugs are often used for
deploying attacker-controlled scripts

 Related threats: Information Disclosure, Code Injection,
Denial of Service

e Technical Impact: Moderate/Severe

Path traversal: example

An attacker could

String path = getInputPath(); provide a:si!’nput such

if (path.startsWith("/safe dir/")) il Lt
File £ = new File(path);

f.delete(); The code attempts
to validate the

input by
whitelisting.

If the file is within the
”/safe_dir/” folder,

the file gets deleted. Database

Path traversal

DEMO

Finding path traversal

 App gets an input from user that is not being checked

* The user input is used to constuct a path string to a
file/folder (downloading/uploading files, redirects,
etc.)

e Sanitization functions often contain errors (remember
the previos example), so they have to be checked
carefully

Useful links

» Zalewski, Michal. The tangled Web: A guide to securing
modern web applications. No Starch Press, 2012.

» Howard, Michael, David LeBlanc, and John Viega. 24
deadly sins of software security: lprogrammmg flaws
and how to fix them. McGraw-Hill, Inc., 2009.

* OWASP: the free and open software securit
community https://www.owasp.org/index.php/
Main Page

» Secure Coding Guidelines for Java SE

http://www.oracle.com/technetwork/java/
seccodeguide-139067.htm! !

https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
https://www.owasp.org/index.php/Main_Page
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

