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Abstract. Untraceability and unreuseability are essential security prop-
erties for electronic cash protocols. Many protocols have been proposed
to meet these two properties. However, most of them have not been for-
mally proved to be untraceable and unreuseable. In this paper we propose
to use the applied pi calculus as a framework for describing and analyz-
ing electronic cash protocols, and we analyze Ferguson’s electronic cash
protocol as a case study. We believe that this approach is suitable for
many different electronic cash protocols.

1 Introduction

Security protocols for on-line payments play an important role in today’s elec-
tronic commerce. These protocols can be applied in a myriad of circumstances,
from real time money transfer to selling soccer match tickets on the Internet.
However, when transactions are monitored, some private information of cus-
tomers, which should be kept secret, is recorded too. In order to protect users’
privacy, researchers have proposed a set of untraceable electronic cash proto-
cols [14, 19, 11, 12, 29]. Similar to physical cash, electronic cash is also portable,
recognizable, transferable, and untraceable (anonymous).

As exemplified in Figure 1, an electronic cash protocol usually consists of
three sub-protocols — the withdraw protocol, the payment protocol, and the
deposit protocol. It also has three types of principals — a bank, a payer, and a
shop. A typical flow of the protocol is given as follows:

1. By executing a withdraw stage protocol with the bank over an authenticated
channel, the payer can obtain electronic coins issued by the bank;

2. The payer spends these coins in the shop, by performing the payment stage
protocol, in which the shop can be convinced that these coins are not faked;
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3. The shop can initiate the deposit stage protocol with the bank, to verify and
deposit these coins into its account.

Fig. 1. Typical electronic cash protocol

In an on-line electronic cash protocol, the bank is required to stay in a standby
condition to verify the coins for the shop in the payment stage protocol, while in
an off-line one, its payment stage protocol does not require interactions between
the shop and the bank. That is to say, the shop verifies the validity of the
electronic coins without the bank’s assistance. In this paper, we only consider
off-line electronic cash protocols because they reduce the complexity of the bank
systems. However this advantage also brings the danger of the payer’s using the
same coin more than once. So two main security properties are required for any
off-line electronic cash protocol:

– Anonymity (Untraceability). The bank should not be able to determine if a
certain payment is made by a particular payer, even with the shop’s coop-
eration.

– Detection-of-double-spending (Unreuseability). If a dishonest payer spends a
coin more than once, the bank should be able to detect the payer’s identity
with an overwhelming probability.

To our knowledge, most electronic cash protocols have not been proved to be
untraceable and unreuseable. Recently, the need for applying formal methods
to security protocols has been widely recognized and there have been several
attempts to develop a formal framework for specifying and reasoning about
security properties. For example, CSP [22] and the spi calculus [5] have been
used to analyze security protocols [28, 6]. The applied pi calculus [4], which is a
variant of the pi calculus [26, 27] extended with value passing, function symbol,
and equational theory over terms and functions, has been successfully applied
to verify some security protocols [2]. The protocol verifier ProVerif [8] provides



a set of proof techniques which can be used directly in proving the equivalence
between processes of the applied pi calculus.

The main contributions of this paper are summarized as follows.

– We model Ferguson’s electronic cash protocol in the applied pi calculus by
defining an appropriate signature and equational theory.

– We demonstrate that Ferguson’s electronic cash protocol fulfills untraceabil-
ity and unreuseability. The proofs are partly done by ProVerif.

Related work. Anonymity (untraceability) was first proposed by Chaum [13]
to solve the Dinning Cryptographer Problem. After that, a great deal of re-
search has been carried out on this topic and various formal definitions and
frameworks for analyzing anonymity have been developed in the literature. For
example, Schneider and Sidiropoulos analyzed anonymity with CSP [28]. They
used substitution and observable equivalence to define anonymity in CSP. In
their framework, the automatic tool FDR [24] was used to check the equivalence
of two processes. In [23] Kremer and Ryan analyzed the FOO92 voting proto-
col with the applied pi calculus and proved that it satisfies anonymity. Chothia
[15] used bisimulation in the pi calculus to test the anonymity of an anonymous
file-sharing system. Chothia et al. [16] proposed a general framework based on
the process algebraic verification tool µCRL [10] for checking anonymity and
applied it to several protocols, including the Dinning Cryptographer Problem
and the FOO92 voting protocol. Our framework is similar to [23], but our proofs
are partly done by ProVerif when in [23] all the proofs are done manually.

Other works, such as [7, 17, 18], considered probabilistic anonymity. Bhar-
gava and Palamidessi [7] formulated their notions of probabilistic anonymity in
terms of observables for processes in the probabilistic pi calculus [25]. Deng,
Palamidessi and Pang [17] extended the work of [7] and defined the notion of
weak probabilistic anonymity and used a probabilistic model checker [21] to au-
tomatically analyze the Dining Cryptographers Problem. In [18] Deng, Pang
and Wu used the notion of relative entropy from information theory to measure
the degree of anonymity a protocol can guarantee, and they proposed a proba-
bilistic process calculus to describe protocols. They considered the scenario with
nondeterministic and probabilistic users, which is more realistic. However, the
expressiveness of the process calculi they used are less powerful than that of
the applied pi calculus used here, which can express all the computations by
functions. All of these works on probabilistic anonymity have not been applied
to electronic cash protocols.

Organization of the paper. In next section, we briefly introduce the applied pi
calculus. In Section 3, we model a simplified version of Ferguson’s electronic cash
protocol. Two crucial properties of the protocol, untraceability and unreuseabil-
ity, are analyzed in Sections 4 and 5, respectively. Finally, we conclude the paper
and discuss some future work in Section 6.



2 The applied pi calculus

In this section, we give a brief overview of this calculus. The reader is referred
to [4] for more details.

2.1 Syntax

To describe a process in the applied pi calculus, one should first define a signature
Σ which consists of some function symbols. Given a signature Σ, an infinite set
of names, and an infinite set of variables, the set of terms are defined below:

L,M,N, T, U, V ::= terms
a, b, c, . . . , k, . . . ,m, n name
x, y, z variable
f(M1, . . . ,Ml) function application

Equational theories play an important role in security protocol analysis. An
equational theory over a signature usually consists of a set of equations asserting
the equality of cryptographic primitives. For example, in order to model the
symmetry cryptography, one can use the equation

dec(enc(x, y), y) = x.

Here x represents a plaintext and y is a key. The binary function symbols enc

and dec denote encryption and decryption operation, respectively.
We usually use E to denote an equational theory. The notation Σ ⊢M =E N

means the equation M = N is in the theory E associated with Σ.
The definition of plain processes is similar to the one in the pi calculus, except

that messages can contain terms rather than names.

P,Q,R ::= 0 null process
P | Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P else Q conditional
u(x).P message input
ū〈N〉.P message output

Extended processes introduce active substitutions and variable restrictions.

A,B,C ::= P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

Here {M/x} is an active substitution which replaces the variable x with the term
M , just like “let x = M in . . .”. The active substitution {M/x} typically appears



when the term M has been sent to the environment. The variable restriction νx
restricts the scope of active substitutions. We write fv(A), bv(A), fn(A), and
bn(A) for free and bound variables and free and bound names of A.

A closed extended process A can be rewritten into a form which consists of
a substitution and a plain process with some restricted names:

A ≡ ν ñ.{M̃/x̃} |P

where fv(P ) = ∅, fv(M̃) = ∅, and {ñ} ⊆ fn(M̃).
Every extended process can be mapped to a frame φ(A) which contains only

restriction and parallel composition of active substitutions, by replacing every
plain process in A with 0. The frame φ(A) can be viewed as static knowledge
exposed by A to its environment, but not for A’s dynamic behavior. We write
dom(ϕ) for the domain of ϕ, a set of variables which appear in active substitu-
tions in ϕ but not under a variable restriction.

We write φ ⊢ M to mean M can be deduced from φ. This relation is called
deduction which is axiomatized by the following rules.

Subst
ν ñ.σ ⊢M

if ∃x ∈ dom(σ) s.t. xσ = M

Nonce
ν ñ.σ ⊢ s

if s 6∈ ñ

Funct
φ ⊢M1 · · · φ ⊢Mk

φ ⊢ f(M1, · · · ,Mk)
f ∈ Σ

Equiv
φ ⊢M M =E N

φ ⊢ N

An evaluation context, denote by C[ ], is a context whose hole is not under
a replication, a conditional, an input, or an output. An evaluation context C[ ]
closes A when C[A] is closed, and C[ ] is called a closing evaluation context.

2.2 Semantics

Structural equivalence, written A ≡ B, is the smallest equivalence relation on ex-
tended processes that is closed under α-conversion on both names and variables,
and under evaluation contexts.

Internal reduction → is the smallest relation on extended processes closed by
structural equivalence and application of evaluation contexts:

Comm ā〈x〉.P | a(x).Q → P | Q
Then if M = M then P else Q→ P
Else if M = N then P else Q→ Q , when Σ 6⊢M =E N

As usual, labeled operational semantics extends reduction semantics and en-
ables us to reason about the interaction between processes and the environment.



We give a labeled operational semantics which defines transitions of the form
A

α
−→ A′ with α being a label of input or output action. The following rules are

adopted in the labeled operational semantics.

In a(x).P
a(M)
−−−→ P{M/x}

Out-Atom ā〈u〉.P
ā〈u〉
−−−→ P

Open-Atom
A

ā〈u〉
−−−→ A′ u 6= a

νu.A
νu.ā〈u〉
−−−−−→ A′

Scope
A

α
−→ A′ u does not occur in α

νu.A
α
−→ νu.A′

Par
A

α
−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅

A | B
α
−→ A′ | B

Struct
A ≡ B B

α
−→ B′ B′ ≡ A′

A
α
−→ A′

2.3 Equivalence relations

We write A ⇓ a when A can send a message on channel a, i.e., A→∗ C[ā〈M〉.P ]
for some evaluation context C[ ] that does not bind a.

Definition 1 (Observational equivalence). Observational equivalence (≈)
is the largest symmetric relation R between closed extended processes with the
same domain such that A R B implies:

1. if A ⇓ a, then B ⇓ a;
2. if A→∗ A′, then B →∗ B′ and A′ R B′ for some B′;
3. C[A] R C[B] for all closing evaluation contexts C[ ].

Definition 1 says that two processes which cannot be distinguished in any
context are observationally equivalent. The context usually denotes an attacker.

Definition 2. We say that two terms M and N are equal in the frame φ, and
write (M = N)φ, if and only if φ ≡ ν ñ.σ, Mσ = Nσ, and {ñ} ∩ (fn(M) ∪
fn(N)) = ∅ for some names ñ and substitution σ.

Definition 3 (Static equivalence). Two closed frames ϕ and ψ are statically
equivalent, written ϕ ≈s ψ, for ϕ ≡ νñ1σ1 and ψ ≡ νñ2σ2, when dom(ϕ) =
dom(ψ) and when, for all terms M and N , we have (M = N)ϕ if and only if
(M = N)ψ.
Two extended processes are static equivalent if and only if φ(A) ≈s φ(B).



Static equivalence only defines a relation on frames, which are static knowl-
edge exposed to the environment by some processes. More details about static
equivalence can be found in [3].

Definition 4 (Labeled bisimilarity). Labeled bisimilarity (≈l) is the largest
symmetric relation R on closed extended processes such that A R B implies:

1. A ≈s B;
2. if A→∗ A′, then B →∗ B′ and A′ R B′ for some B′

3. if A
α
−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, then B →∗ α

−→→∗ B′

The following theorem was proved in [4].

Theorem 1. ≈l = ≈ and ≈ ⊆ ≈s.

Theorem 1 shows that observational equivalence coincides with labeled bisim-
ilarity and observational equivalence is finer than static equivalence. Labeled
bisimilarity does not consider all the contexts, which leads to easy proofs in
many occasions.

3 Modeling an electronic cash protocol

In this section, we first introduce a simplified version of Ferguson’s electronic cash
protocol [19], then we define an appropriate equational theory with reasonable
abstraction for the blind signatures scheme in the protocol. Finally we model the
protocol in the applied pi calculus from the viewpoint of three types of principals.

3.1 Ferguson’s electronic cash protocol

As mentioned in the introduction, the protocol consists of three types of partic-
ipants, the bank, the payer, and the shop. The protocol employs a randomized
blind signatures scheme based on RSA-signature scheme to ensure that the payer
can obtain the bank’s signature on the coin, while the bank has no knowledge
of the coin. A polynomial secret sharing scheme is used for double-spending
detection. The whole protocol can be described by three sub-protocols:

Withdraw Stage

1. The payer chooses three numbers c, k, and g, where c represents a coin, k is
a random number, and g is a blinding factor;

2. The payer blinds the coin c with k and g using blinding function blind(c, k, g),
and then sends this blinded coin together with its identity U to the bank
over an authenticated channel c1;

3. The bank signs on the blinded coin using the randomized blind signatures
scheme, generates two blinded signatures s1 and s2, and sends them back to
the payer on c2;

4. The payer unblinds these two signatures received from the bank using un-
blinding function unblind and blinding factor g, and obtains sign(CkA, prvkey)
and sign(CUB, prvkey), which are two RSA signatures with the bank’s pri-
vate key prvkey on CkA andCUB separately. Here C = fc(c), A = fa(c), B =
fb(c), and fc, fa, fb are public suitable one-way functions.



Payment Stage

1. The payer sends the coin c to the shop over a secret channel cpay;
2. The shop sends the payer a randomly chosen (non-zero) challenge x on c3;
3. The payer computes a response r = kx+U (the share of the payer’s identity

for double-spending detection) and a signature on CrAxB which can be
easily deduced from the two RSA-signatures obtained from the bank, and
sends them on channel c4;

4. The shop can verify the signature on CrAxB with the bank’s public key to
ensure the validity of the payer’s coin, and then completes the trade with
the payer.

Deposit Stage

1. The shop sends the coin c, the challenge x and the response (both r and the
signature) to the bank on channel c5 to deposit the coin;

2. The bank can check whether the coin is valid by verifying the correctness of
the signature, and then stores (c, x, r) in the Used-coin Database and informs
the shop on channel cpayOK if the coin is valid;

3. If the payer spends the coin c twice dishonestly, then there must be two en-
tries (c, x1, r1) and (c, x2, r2) associated with c in the database. Since (x1, r1)
and (x2, r2) are two different points on the line r = kx+U , the bank is able
to determine the payer’s identity U immediately.

3.2 Equational theory

To analyze Ferguson’s electronic cash protocol, we define signature Σ for cryp-
tography primitives in the following way:

blind(c, k, g) (* blind a coin with k, and g * )
unblind(c, g) (* undo blinding * )
pk(sk) (* get public key from private key * )
blindsignA(c, U, sk) (* blind signature algorithm A * )
blindsignB(c, U, sk) (* blind signature algorithm B * )
sign(m, sk) (* RSA signature scheme* )
checksign(m, s, pk) (* verify RSA signature * )
hash1(c, k, U) (* hash1(c,k,U)=CkA * )
hash2(c, k, U) (* hash2(c,k,U)=CUB * )
hash3(c, x, r) (* hash3(c,x,r)=CrAxB * )
resp-r(x, k, U) (* polynomial secret sharing scheme * )
resp-s(x, s1, s2) (* compute the coin’s signature from the two given by the bank * )
reveal(x, y) (* determine the identity of the double-spender * )
( , ), ( , , ), . . . (* constructors for combined messages * )
F1, . . . ,Fi, . . . (* projections for combined messages * )

The equational theory on Σ is given as follows.



– For convenience, we introduce ( , ), ( , , ), . . . to denote combinations of
messages, and Fi extracts the i-th component of the combined messages. An
example of the equation is:

Fi((x1, . . . , xi, . . . , xn)) = xi

– For fa, fb, and fc, which are three public suitable one-way functions used
in the protocol, we introduce hash1, hash1, and hash3 for some kinds of
combinations of fa, fb and fc:

hash1(coin, k, U) = CkA
hash2(coin, k, U) = CUB
hash3(coin, x, r) = CrAxB

There is no equation on hash1, hash2, and hash3, because these one-way
functions are collision-free.

– In order to model the RSA signature scheme, sign and checksign are em-
ployed to denote corresponding signature and verification procedure, and
the function symbol pk is used for deriving public-key from private-key. The
equation is:

checksign(M, sign(M, sk), pk(sk)) = true

– The randomized blind signature scheme in the protocol runs as follows: The
payer first blinds the coin c with random number k and blinding factor g,
and then sends it together with the payer’s identity to the bank. The bank
executes two special blind signature algorithms A and B with its private key
and the payer’s identity to generate blinded signatures, from which the payer
can obtain two signatures over CkA and CUB (in RSA signature scheme)
after unblinding operation. The equations are describe as follows:

unblind(blindsignA(blind(coin, k, g), U, sk), g) = sign(hash1(coin, k, U), sk)
unblind(blindsignB(blind(coin, k, g), U, sk), g) = sign(hash2(coin, k, U), sk)

– Note that we use symbolic abstraction of blind function for the protocol.
Since there is no equation on blind functions, a blinded coin can be viewed
as a fresh, opaque message, apparently unrelated to the coin c, when the
blinding factor g is not revealed.

νn.c̄〈n〉 ≈ νk.νg.c̄〈blind(coin, k, g)〉

– Finally, the polynomial secret sharing scheme in the protocol is modeled with
three function symbols. The first one, resp-s(x, s1, s2), denotes a response
over challenge x and two signature s1 and s2 which are obtained from the
bank by the payer; the second one, resp-r(x, k, U), denotes a response over
challenge x on the line r = kx+U ; the last one, reveal, is a special function
symbol by which the bank can detect the double-spender’s identity. The
equations are defined below:

resp-s(x, sign(hash1(coin, k, U), sk), sign(hash2(coin, k, U), sk))
= sign(hash3(c, x, resp-r(x, k, U)), sk)

reveal(resp-r(x1, k, U), resp-r(x2, k, U)) = U,where x1 6= x2



3.3 The payer process

The payer process models the role of a payer, as the one in the protocol which
is mentioned in Section 3.1. First, the payer generates a fresh random number
k, a fresh blind factor g, and a coin c. Next, the payer blinds the coin c with k
and g, and then sends this blinded coin together with its identity U to the bank,
expecting two corresponding signatures. Finally, the payer sends the coin c to
the shop and accomplishes a challenge-response procedure with the shop.

It should be noticed that c1, . . . , cn are public channels, used only for syn-
chronizing different protocol steps. For example, the payer process sends its first
message on channel c1, and then the bank process will receive this message on
the same channel. Since these channels are public, the adversary will know what
has been sent on these channels.

We write let x = M in P instead of P{M/x} for ease of understanding.

Ppayer ::= νk.νg.νc.
c1〈(blind(c, k, g), U)〉.
c2(x1).
let signature1 = unblind(F1(x1), g) in
let signature2 = unblind(F2(x1), g) in
if checksign(hash1(c, k, U), signature1, Pubbank) = true then
if checksign(hash2(c, k, U), signature2, Pubbank) = true then
cpay〈c〉.
c3(x2).
c4〈(resp-r(x2, k, U), resp-s(x2, signature1, signature2))〉

3.4 The bank process

The behavior of the bank is modeled by the process below. After receiving a
blinded coin from the payer, the bank sends back two blind signatures, and
debits one dollar from the payer’s account at the same time. When the shop
requests to verify the validity of a coin, the bank first verifies the correctness of
signature, and then deposits one dollar to the shop’s account.

P ′
Bank ::= (c1(x1).

let blindcoin = F1(x1) in
let U = F2(x1) in
c2〈(blindsignA(blindcoin, U, Prvbank), blindsignB(blindcoin, U, Prvbank))〉) |
(c5(x2).
let coin = F1(x2) in
let challenge = F2(x2) in
let response = F3(x2) in
let signature = F4(x2) in
if checksign(hash3(coin, challenge, response), signature, Pubbank) = true
then cpayOK〈〉)



The bank’s public key is defined as a context, in which the private key remains
secret and the public is exported.

Keybank[ ] ::= νPrvbank.({pk(Prvbank)/Pubbank} | [ ])

The bank process is defined as follows, and the replication operator enables
the bank process to deal with multiple requests from payers and shops.

PBank ::= Keybank[!P ′
Bank]

3.5 The shop process

The shop is modeled as the process below. In order to determine whether a paid
coin is valid, the shop initiates the challenge-response procedure with the payer.
Then the shop sends the coin and the result of the challenge-response procedure
to the bank to deposit this coin.

Pshop ::= ν x.
cpay(x1).
let coinpay = x1 in
c3〈x〉.
c4(x2).
let response = F1(x2) in
let signature = F2(x2) in
if checksign(hash3(coinpay, x, response), signature, Pubbank) = true
then c5〈(coinpay, x, response, signature)〉.
cpayOK()

3.6 The system process

The whole system is obtained by putting in parallel the three components, the
payer process, the bank process, and the shop process. Notice that the public
key Pubbank used in Ppayer and Pshop is exported by Pbank, while the private
key of the bank remains secret.

Psystem ::= Pbank | Ppayer | Pshop

4 Analysis of untraceability

A formal definition of untraceability was first proposed in [20]. We follow this
formal definition and analyze Ferguson’s protocol in the applied pi calculus.
Here, we only consider passive attackers who eavesdrop on channels.

Definition 5 (Untraceability). Let passive attacker A has access to all bank’s
views of withdraw, payment, and deposit protocols. Then for any two coins Ci, Cj

and two withdraws W0,W1 such that Ci and Cj are originated from W0 and W1,
A cannot distinguish whether Ci comes from W0 or W1.



For ease of understanding, we specialize the above general definition to a sim-
ple system with two payers P1 and P2. Suppose P1 withdraws coin1, and P2

withdraws coin2.
P1 ::= Ppayer{coin1/c, payer1/U}
P2 ::= Ppayer{coin2/c, payer2/U}

We say that an electronic cash protocol satisfies the requirement of untraceabil-
ity, when process P1 with coin1 paralleled by process P2 with coin2 is observa-
tionally equivalent to process P1 with coin2 paralleled by process P2 with coin1,
i.e., P1 | P2 ≈ P1{coin2/coin1} | P2{coin1/coin2}.

Theorem 2 (Untraceability). Ferguson’s electronic cash protocol satisfies the
requirement of untraceability.

Proof. Proving equivalences of two processes which differ only in the choice
of some terms is supported by ProVerif [8, 9]. We benefit from this feature of
ProVerif, and the proof is partly done by this tool.

We use ProVerif to prove the following equivalence

Ppayer{coin1/c} ≈ Ppayer{coin2/c}.

The code for proving this equivalence in included in the appendix. Based on the
result of ProVerif, the process of withdraw stage is independent from the payment
stage. Even if the bank and the shop cooperate, they cannot distinguish whether
P1 withdraws coin1 or coin2, so we have

P1 ≈ P1{coin2/coin1}.

Thus, from the structural equivalence, the following equivalence is obvious.

P1 | P2 ≈ P1{coin2/coin1} | P2{coin1/coin2}

⊓⊔

5 Analysis of unreuseability

In this section we analyze the unreuseability property of the protocol modeled
in Section 3. In an off-line electronic cash protocol, after receiving a coin, the
shop does not deposit the coin immediately. Thus, the strategy adopted by the
system is to detect the behavior of double-spending instead of preventing it. The
formal definition of unreuseability from [20] is given below.

Definition 6 (Unreuseability). If a coin is successfully deposited twice, then
the identity of at least one misbehaving user can be efficiently computed and
proved from the bank’s view of the deposit.

In Ferguson’s protocol, the payer’s identity is embedded in the payment stage
by the polynomial secret sharing scheme. Repeated execution of the challenge-
response procedure over a same coin will certainly reveal the identity of the
payer. Since ProVerif cannot examine the knowledge of a particular participant,
the proof of Theorem 3 is done manually.



Theorem 3 (Unreuseability). Ferguson’s electronic cash protocol can detect
the identity of a double-spender, i.e. if a dishonest payer spends a coin twice

P
νy1.cpay〈y1〉.c3(x2).νy2.c4〈y2〉
−−−−−−−−−−−−−−−−−−−→

νy3.cpay〈y3〉.c3(x3).νy4.c4〈y4〉
−−−−−−−−−−−−−−−−−−−→ A′, and (y1 = y3)φ(A′)

then the payer’s identity must be revealed by the bank,

φ(A′) ⊢ payer

Proof. Without loss of generality, we construct a process representing the mis-
behaving payer.

Pdouble−spender ::= νk.νg.νc.
c1〈(blind(c, k, g), U)〉.
c2(x1).
let signature1 = unblind(F1(x1), g) in.
let signature2 = unblind(F2(x1), g) in.
if checksign(hash1(c, k, U), signature1, Pubbank) = true then
if checksign(hash2(c, k, U), signature2, Pubbank) = true then
cpay〈c〉.
c3(x2).
c4〈(resp-r(x2, k, U), resp-s(x2, signature1, signature2))〉.
cpay〈c〉.
c3(x3).
c4〈(resp-r(x3, k, U), resp-s(x3, signature1, signature2))〉

P ::= Pdouble−spender{payer/U}

After withdrawing the coin from the bank, and spending the coin twice,

P
νy.c1〈y〉.c2(x1)
−−−−−−−−−−→

νy1.cpay〈y1〉.c3(x2).νy2.c4〈y2〉
−−−−−−−−−−−−−−−−−−−→

νy3.cpay〈y3〉.c3(x3).νy4.c4〈y4〉
−−−−−−−−−−−−−−−−−−−→ A′

The knowledge exposed by the double-spender to the bank and the shop is

φ(A′) = νk.νg.νc.
({(blind(c, k, g), payer)/y} | {c/y1} | {c/y3} |
{(resp-r(x2, k, payer), resp-s(x2, signature1, signature2)/y2} |
{(resp-r(x3, k, payer), resp-s(x3, signature1, signature2)/y4})

Notice that x2 and x3 are two challenges initiated by the shop in different ses-
sions, so we can infer x2 6= x3. From the equations on resp-r and reveal, we
have

φ(A′) ⊢ resp-r(x2, k, payer), φ(A′) ⊢ resp-r(x3, k, payer)

φ(A′) ⊢ reveal(resp-r(x2, k, payer), resp-r(x3, k, payer)) = payer

Clearly, this protocol satisfies unreuseability. ⊓⊔



6 Conclusion and future work

In this paper we have modeled Ferguson’s electronic cash protocol in the applied
pi calculus, and we have verified that it satisfies the security properties of un-
traceability and unreuseability. We believe that the approach used in this paper
is suitable for analyzing many other similar electronic cash protocols as well.

As for the future work, it would be interesting to extend the framework of this
paper to a probabilistic setting and use it to analyze anonymity of electronic cash
protocols. We would also like to analyze other crucial properties of electronic cash
protocols, such as divisibility and transferability, and to develop an automatic
verification tool to verify security requirements of the protocols. Another future
direction is to look at on-line electronic cash protocols, where the bank systems
are much more complicated to model.

Appendix - The code for proving Theorem 2 in ProVerif

We use this piece of code to prove the following equivalence

Ppayer{coin1/c} ≈ Ppayer{coin2/c}.

The Ppayer is described by processP below.

(* Ferguson’s E-cash protocol *)

(* constant and constructor *)

data true/0.

data U/0.

data con2/2.

(* signature *)

fun blind/3.

(* fun unblind/2. *)

fun pk/1.

fun blindsignA/3.

fun blindsignB/3.

fun sign/2.

fun checksign/3.

fun hash1/3.

fun hash2/3.

fun hash3/3.

fun respr/3.

(* fun resps/3. *)

(* fun reveal/2. *)

(* equational theory *)

equation checksign(m,sign(m,sk),pk(sk))=true.



reduc unblind(blindsignA(blind(c,k,g),U,sk),g)

=sign(hash1(c,k,U),sk);

unblind(blindsignB(blind(c,k,g),U,sk),g)

=sign(hash2(c,k,U),sk).

reduc resps(x,sign(hash1(c,k,U),sk),sign(hash2(c,k,U),sk))

=sign(hash3(c,x,respr(x,k,U)),sk).

reduc reveal(respr(x1,k,U),respr(x2,k,U))=U.

(* channel *)

free cpk.

free c1.

free c2.

free c3.

free c4.

private free cpay.

let processP = new k; new g; new coin1; new coin2;

in (cpk, pubBank);

let c = choice[coin1,coin2] in

out (c1, con2(blind(c,k,g),U));

in (c2, con2(bs1,bs2));

let s1 = unblind(bs1,g) in

let s2 = unblind(bs2,g) in

if checksign(hash1(c,k,U),s1,pubBank) = true then

if checksign(hash2(c,k,U),s2,pubBank) = true then

out (cpay, coin);

in (c3, x);

out (c4, con2(respr(x,k,U),resps(x,s1,s2))).

process processP
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