
Formal Verification and Solutions for Estonian E-Voting
Sevdenur Baloglu

sevdenur.baloglu@uni.lu
University of Luxembourg

Luxembourg

Sergiu Bursuc
sergiu.bursuc@uni.lu

University of Luxembourg
Luxembourg

Sjouke Mauw
sjouke.mauw@uni.lu

University of Luxembourg
Luxembourg

Jun Pang
jun.pang@uni.lu

University of Luxembourg
Luxembourg

ABSTRACT
Estonia has been deploying electronic voting for its government
elections since 2005. The underlying e-voting system and protocol
have been continuously improved, aiming to fix the vulnerabilities
found over the years and to provide election verifiability, which is
now the standard way to ensure election integrity despite corrupt
infrastructure or parties. Another goal is receipt-freeness, to ensure
privacy even if voters are coerced. However, several recent attacks
against its verifiability and privacy show the need of rigorous,
realistic formal specifications for the protocol and its security, of
new solutions to mitigate attacks, and of automated security proofs
to ensure all attacks have been covered. In this paper we propose:

• a formal specification of the Estonian E-Voting protocol in a
symbolic model suited for automated verification tools;
• a general symbolic model for specifying privacy and receipt-
freeness in presence of corrupt parties and infrastructure;
• automated verification of security with respect to an exhaus-
tive set of corruption scenarios, discovering new attacks on
verifiability (with Tamarin) and on privacy (with ProVerif).
• new solutions, focused on practical deployment and ease of
use, and their automated proofs of security.

CCS CONCEPTS
• Security and privacy→ Formal security models.

KEYWORDS
Formal verification, E-voting, Verifiability, Privacy

ACM Reference Format:
Sevdenur Baloglu, Sergiu Bursuc, Sjouke Mauw, and Jun Pang. 2024. Formal
Verification and Solutions for Estonian E-Voting. In ACM Asia Conference
on Computer and Communications Security (ASIA CCS ’24), July 1–5, 2024,
Singapore, Singapore. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3634737.3657009

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ACM AsiaCCS ’24, July 01–05, 2024, Singapore
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0482-6/24/07
https://doi.org/10.1145/3634737.3657009

1 INTRODUCTION
Estonian e-voting has been enjoying a high voter turnout [2], call-
ing for scrutinous security evaluation. Indeed, an early paper [36]
has shown that ballot manipulation attacks are possible by a cor-
rupt voting device. The protocol was later improved [38] to allow
individual verifiability, aiming to ensure that, if voters verified their
vote, their vote will be correctly counted, even if some of the vot-
ing infrastructure is corrupt. Universal verifiability complements
the voter checks with procedures performed by external auditors.
The improved protocol was used in the local elections of 2013. A
technical report [50] subsequently pointed out implementation
vulnerabilities and attacks against the individual verifiability mech-
anisms. The protocol was then further improved for the elections of
2015 [37]. However, a recent attack [46] on individual verifiability
shows remaining lacks in the security of the protocol.

A second crucial property of electronic voting is vote privacy.
To prevent voter coercion, an even stronger property of receipt-
freeness is desirable [33, 42]. This allows voters to cast their private
vote even if they are under pressure to vote in presence of the
adversary, or to reveal their credentials and any confirmations
they have received after voting. To achieve this stronger notion
of privacy together with individual verifiability, it is in general
necessary to allow revoting - otherwise the adversary can verify
the cast ballot to ensure its goals are achieved. Revoting is not
sufficient, since there may be ways for the adversary to detect that
the voter has cast a new vote against the its instructions. Therefore,
the Estonian E-voting protocol (EEV) supports several additional
measures that aim to support receipt-freeness: e.g. the bulletin
board is not public, a ballot may be verified only within a certain
timeframe, voters are allowed to verify any of their cast ballots.

The complex relation between verifiability, receipt-freeness and
the corruption abilities of the adversary calls for rigorous formal
models and automated verification for EEV. Indeed, in spite of
improvements over the years, recent attacks were shown against
EEV, both on individual verifiability [46], and on privacy [45]. The
attack against individual verifiability in [46] exploits the fact that
voters can verify any of their cast ballots, to resist coercion. The
privacy attack in [45] exploits cryptographic weaknesses that they
propose to fix with zero-knowledge proofs, yet we have found
with formal analysis a protocol level attack, in the style of ballot
copy attacks from [31]. Even if one removes duplicate ballots, by
exploiting revoting the adversary can lead the voter to create two
distinct ballots for the same candidate, leading to a privacy violation.

https://doi.org/10.1145/3634737.3657009
https://doi.org/10.1145/3634737.3657009
https://doi.org/10.1145/3634737.3657009

ACM AsiaCCS ’24, July 01–05, 2024, Singapore Baloglu et al.

Contributions and related work. We provide formal specifica-
tions and automated verification for the most recent version of
EEV [3, 37]. We systematically consider all possible corruption
scenarios, allowing the adversary to control various parties and
infrastructure: registration service, vote collector, communication
network, voting device, voters, etc. For the resulting models, we
verify end-to-end election verifiability with Tamarin [43], and pri-
vacy and receipt-freeness with ProVerif [15]. We find several new
attacks and propose practical solutions to provably improve the
protocol. We also propose a foundational symbolic framework that
allows for the first time to prove vote privacy for an unbounded
number of voters in presence of malicious parties or infrastructure.

Formal verification in a symbolic model, also called the Dolev-
Yao model, has become essential for ensuring protocol security or
finding attacks [28], in particular for e-voting, e.g. [10, 23, 31, 33].
It requires symbolic specifications of the protocol, the adversary
and security definitions. Currently, one can only find an informal
descriptions or the implementation of EEV [3, 37]; we are the first to
provide a detailed formal specification, suitable for automated tools.
Our specification also includes some additional timing checks that
we have not found in [3, 37], but which we think are necessary to
ensure that ballots cannot be reordered when the storage backend is
corrupt. We introduce some techniques that may be of independent
interest and of more general applicability, allowing for example to
express time ordering constraints. We also provide general adver-
sarial models to capture all potential attacks enabled by corrupting
each of the protocol parties. We rely on existing definitions to model
election verifiability [10, 12]. For privacy and receipt-freeness, we
introduce new definitions extending the scope of existing symbolic
definitions [33, 34]. As we discuss in Section 5.3, our definition
allows to specify more scenarios than the classic definition [33],
and allows for a more general way of handling corrupt parties and
infrastructure than the recent definition in [34].

We discover new attacks on verifiability (with Tamarin) and
privacy (with ProVerif). These attacks are possible when any party
involved in ballot casting is corrupt (i.e., the network, the voting
application, or the vote collector). The attack on privacy in addition
requires the adversary A to corrupt voters, and is similar to ballot
copy attacks from [31] against Helios, where the ballot of an honest
voter is copied and cast in the name of a corrupt voter. Against
verifiability, our attacks are similar to the ballot reordering attacks
from [10] against Belenios. There are several scenarios for the ballot
reordering attack. For example, if a voter votes for a candidate v1
and later revotes for v2 (e.g., to resist coercion) and verifies v2,
A has two ways of reordering the corresponding ballots b1 and
b2 and make v1 count while avoiding detection by the voter: i) it
can delay b1 so that it is cast after the voter verified v2; or ii) it
can reorder the ballots before verification, and exploit the fact that
voters can verify b2 even if b1 is the last ballot cast in their name -
which is a feature introduced to offer better receipt-freeness. We
also rediscover Pereira’s attack [46] against individual verifiability:
A induces the voter to sign two ballots, one of which will contain
the vote desired by A, and one for which the voter will perform
successful verification. We show that this type of attack is possible
in more scenarios than initially described in [46].

Several possible solutions against Pereira’s attack are discussed
in [46]. We discuss in Section 4.1 why these solutions are not suf-
ficient, and show what additions are needed in order to obtain
provable security. Furthermore, we argue that these solutions are
not yet readily deployable and affect usability. Therefore, in Sec-
tion 4.2 we propose a solution based on a better accounting of the
time when sessions are started and when corresponding ballots
are cast. Concerning privacy, we strengthen the recent improve-
ment proposed in [46] in order to counter our ballot copy attack.
Indeed, their attack exploits the malleability of the ballot, and they
propose to fix this with a zero-knowledge proof that prevents it.
To also prevent ballot copy, we extend this proof with a label that
verifiably links the ballot to the corresponding voter, similarly to
Belenios [27].

We perform automated verification of verifiability, privacy and
receipt-freeness in 6 protocol variants: two variants for the original
EEV (allowing individual verification for any ballot, or only for
the last ballot cast), and the two same variants for each of the two
improved versions described in Section 4. For each verification task,
we consider 9 corruption scenarios, showing that the improved
versions satisfy the original goals of EEV, and also where there
is scope for improvement. For example, none of the considered
variants can provide verifiability or receipt-freeness when both
the vote collector and the registration service are corrupt. Our
specifications and results are presented in Section 5, and the full
files are in supplementary material [1].

2 OVERVIEW OF THE EEV PROTOCOL
There have been several iterations of the EEV protocol [36–38].
We present an overview of the most recent version, IVXV [3, 37].
See Figure 1 for a more detailed description of some operations
and [1] for our full formal specification. A public key infrastruc-
ture provides protocol parties with certified signature key pairs; all
messages are signed by senders and verified by receivers. Secret
keys of eligible voters (used for authentication and signing) are
stored within their personal electronic identity card (EID). As listed
at the top of Figure 1, three election parties are responsible for
organising the election and computing the final result, and three
external parties perform ballot time-stamping, ballot registration,
and election data audit. The Election Organiser EO determines the
lists of candidates and eligible voters, each holding an EID card
with certified signature key pair (pkid, skid). EO also generates the
election key pair (pkE, skE), makes pkE available to any party in
the protocol, and decrypts the final ballots to be tallied. The Vote
Collector VC collects ballots from voters via their voting applica-
tions during the voting phase. It interacts with the Time Marking
Service TMS and the Registration Service RS to acquire a times-
tamp and registration confirmation for each ballot. The I-Ballot
Box Processor IBBP prepares the tally procedure by verifying that
all the ballots in the VC ballot box are valid and consistent with
the registration information recorded by RS and selects the last
ballot for each voter for tally. The Data AuditorsDA audit all parties
by verifying the list of ballots and the eligibility of corresponding
voters, verifying the registration confirmations from RS, checking
consistency between VC and RS as done by IBBP, and verifying
the proofs of tally correctness.

Formal Verification and Solutions for Estonian E-Voting ACM AsiaCCS ’24, July 01–05, 2024, Singapore

Election parties External parties Voter devices
EO : Election Organiser TMS : Time Marking Service EID: electronic ID card
VC : Vote Vollector RS : Registration Service VoteApp: voting app
IBBP : I-Ballot Box Processor DA : Data Auditors VerApp: verification app
Actions in [_]★ are only done in our proposed solution EEV★.

Vote(id, v) on VoteApp VC, TMS,RS

EO :
{

BBpk : pkE, pkVC, pkTMS, pkRS
BBreg : (id1, pk1), . . . , (idn, pkn)

start session id

[end(id, scid) = true]★
scid = scid + 1
[ta = TMS.Time(auth, id, scid)
if DiffT(ta,CurrTime()) < 0]★

scid, [ta]★

display: authentication scid
sa = EID.Sign((scid, [ta]★), id)
(b, r) = Ballot(id, v, [(scid, ta)]★)

id, scid, sa, b, [ta]★

if ¬end(id, scid) then
Fr(vid), t = TMS.Time(cast, vid, b)
rec = (id, vid, b, t,[scid, sa, ta]★)
reg = RS.Sign(rec)
if Valid(VC.Store :: (rec, reg)) then

VC.Store = VC.Store :: (rec, reg)
end(id, scid) = true

vid, rec, reg

if rec = (id, vid, b, . . .) ∧ ver(reg, rec, pkRS) then
display: (QR = (vid, r), [scid]★) // scid human readable

Verify(id, v,QR = (vid, r), [scid]★) on VerApp

vid

if (rec = (id, vid, b, t, _, _), reg) ∈ VC.Store
∧ DiffT(t,CurrTime()) < Tver

rec, reg

if rec = (id, vid, b, t, [sc′id, _, _]
★) ∧ b = (c, s) ∧

ver(reg, rec, pkRS) ∧ ver(s, (c, [scid, ta]★), pkid) ∧ enc(v, pkE, r) = c
[∧ scid = sc′id ∧ scid matches the expected voting attempt]★ then Verified(id, v)

IBPP/DA :
{

if VC.Store = RS.Store ∧ Valid(VC.Store) then
∀id. store in BBtally(id, b) its last ballot from VC.Store

Ballot(id, v, [(scid, ta)]★)
Fr(r), c = enc(v, pkE, r), [p = proof (c, v, r, pkid)]★,
s = EID.Sign((c, [scid, ta]★), id), b = (c, s, [p]★), return (b, r)

Valid(Store)
1 : return true iff : for all ((id, vid, b, t, [scid, sa, ta]★), reg) ∈ Store,
2 : b = (c, s, [p]★) ∧ BBreg(id, pkid) ∧ ver(s, (c, [scid, ta]★), pkid)

// tests that we explicitly add to protect ballot order against malicious storage
3 : ∧ VerifyT(t, (cast, vid, b)) // i.e. cast timing information is authentic for b
4 : ∧ for all ((id, _, b′, t′ , . . .)), _) occuring in Store after b : DiffT(t, t′) < 0

// tests below are only for EEV★

5 : [∧ VerifyT(ta, (auth, id, scid)) // authentication timestamp is valid
6 : ∧ ver(p, (c, scid, ta), pkid) ∧ ver(sa, (auth, scid, ta), pkid) // zkp and signature are valid

// session counting is correct and ballots cannot be cast for expired sessions:
7 : ∧ if sc′id is next session for id after scid timed at t′a: sc

′
id = scid + 1 ∧ DiffT(t, t′a) < 0)

8 : ∧ DiffT(ta, t) < 0]★ // i.e. the ballot is cast after the session is authenticated

Time management

TMS.Time(x)
𝜏 ← CurrTime()
return (𝜏, sign((x, 𝜏), skTMS))

VerifyT(x, (𝜏, 𝜎))
return
verify(𝜎, (x, 𝜏), pkTMS)

DiffT((𝜏 [, 𝜎]), (𝜏 ′ [, 𝜎′]))
return 𝜏 − 𝜏 ′
// 𝜎, 𝜎 ′ optional

Resisting coercion or not

VResist(id, v, vA)
QR← Vote(id, vA),Out(QR),
wait Tver minutes,Vote(id, v)

VObey(id, v, vA)
QR← Vote(id, vA),
Out(QR)

RS.Sign(x)
Add x to RS.Store
return sign(x, skRS)
EID.Sign(x, id)
return sign(x, skid)

(A) Voting and individual verification in EEV and EEV★.

Scenario: A convinces the voter to sign two ballots

A : corrupt VoteApp(id, v) VC

(b, r) ← Ballot(id, v) b added to VC.Storeid, b

vid, rec, reg

display: crash,
b′ ← Ballot(id, vA)
display: QR = (vid, r)

b′ added to VC.Storeid, b′

// attack originally for EEVany; we show it is
// also possible in EEVlast as A can delay b′

VerApp(id, v,QR = (vid, r))

vid

rec, reg

Verified(id, v) , but vA is counted

(B) Pereira’s attack against verifiability rediscovered with Tamarin.

Scenario: voter votes v1, and later changes to v2

VoteApp(id, v1, v2) A VC

(b1, r1) ← Ballot(id, v1) Corrupt:
- network and/or
- VoteApp

id, b1

A blocks b1 and casts it later
(b2, r2) ← Ballot(id, v2)

id, b2

b2 added to VC.Store
vid2, rec2, reg2

display: QR = (vid2, r2)

VerApp(id, v2,QR = (vid2, r2))
vid2

rec2, reg2

Verified(id, v2)
, but v1 is counted

A
id, b1

b1 added to VC.Store

(C) New attack against verifiability discovered with Tamarin.

VoteApp(idH, v) A VC

(b, r) ← Ballot(idH, v)
idH, b idH, b

b added to VC.Storefor b = (c, s) :
s′ = EID.Sign(c, skidC)
b′ = (c, s′)

Scenario: A casts a copy b′ of a
ballot b from an honest voter idH
using a corrupt voter idC

idC, b′

b′ added to VC.Store

The outcome (v, v, . . .) reveals the choice of idH

(D) New attack against privacy discovered with ProVerif.

Figure 1: Procedures and attacks in the Estonian E-Voting Protocol and its variants.

ACM AsiaCCS ’24, July 01–05, 2024, Singapore Baloglu et al.

Setup and voting phases. The election public key pkE and the
list of eligible voters are published by EO. Each voter id holds an
EID which has the tuple (id, pkid, skid) inside, where (id, pkid) is
certified. Similarly, the services TMS, RS and VC hold certificates
for their public keys. For simplicity of presentation, we assume a
bulletin board BB containing all the information that should be
available to all parties in the election. Voters use their VoteApp
and EID card to cast a ballot b = (c, s), where c = enc(v, pkE, r) is
the randomised encryption of their choice v and s = sign(c, skid)
is their signature. The EID card is first used to authenticate the
voter to VC and then for signing the ciphertext containing the vote.
The VoteApp sends (id, b) to VC, which verifies the eligibility of the
voter and the validity of the certificate acquiring a timestamp on the
ballot from TMS, creates a fresh identifier vid for b, and registers
(vid, b) with RS, who replies with a signature reg of (vid, b). If all
checks and registration are successful, VC stores the record in its
database and sends (vid, reg) back to the VoteApp, confirming the
receipt of the ballot by VC and its registration by RS. The VoteApp
constructs a QR code representing (vid, r) that can be used for
verifying the ballot.

Tally phase and individual verification. IBBP collects ballots from
VC, verifying their validity and consistency with ballots regis-
tered by RS. If no problem is detected, IBBP retrieves the last
ciphertext recorded for each voter. The list of resulting cipher-
texts is anonymised by homomorphic combination (or using a re-
encryption mixnet), and the resulting combined ciphertext (or list
of ciphertexts) is sent to EO for decryption. EO uses the election
secret key skE to decrypt the ciphertext(s), publishing the outcome
and a proof of correct decryption to be checked by DA. During the
voting phase, voters can verify that their ballots reached the VC and
encoded their desired votes. For this, they enter the QR = (vid, r)
code they received into the VerApp, which sends vid to VC to re-
quest the ballot recorded for that vid. The VC retrieves the tuple
(id, b = (c, s), reg) corresponding to vid from its database and sends
the tuple back. The VerApp first verifies s and reg. Second, using
the randomness r from the QR code it can determine whether the
ciphertext c recorded by VC encodes a valid vote v′, by simply
recomputing the encryption algorithm for eligible candidates. In
this case, v′ is displayed to the voter, who concludes successful
verification if v′ matches the expected vote v. We note that there
are two possible instances of EEV based on the type of individual
verification allowed: in one variant, that we call EEVlast, only the
last recorded ballot can be verified; in the second variant, EEVany,
any of the recorded ballots can be verified. We explain the reason
for this distinction below.

Measures for receipt-freeness. Voters in the EEV system are partic-
ularly vulnerable to coercion due to the verification QR codes that
could serve as receipt for the coercer. To counter this, EEV allows
individual verification only within a timeframe Tver specified by the
protocol, usually 30 minutes. This feature means that the voter can
pretend to follow the coercer instruction and provide them with
the corresponding QR code, but after Tver expires, the QR code
becomes useless to learn which vote was cast, and the voter can un-
detectably revote. Still, there may be a problem if the voter does not
have the possibility to wait for Tver minutes, and has to vote soon
after it was coerced. For that situation, the system EEVany provides

a better protection than EEVlast: the vote cast by the voter will be
counted (as it is the last one cast), while the QR code provided to
the coercer will still be valid, since any ballot can be verified.

Timing information and checks. During ballot casting, the VC
executes the OCSP [48] protocol with the TMS to attest that the
public key certificate of the voter is still valid. In [3, 37], we can see
that the OCSP protocol can also be used to get a timestamp t on
the ballot. In this case, the TMS will play the role of RS. In other
cases, the VC executes the TSP [53] protocol with the RS to register
the ballot in addition to the OCSP [48] protocol with the TMS. For
clarity of presentation, we assume all the timing information is
explicitly recorded with TMS in Figure 1, bearing in mind that RS
may also assume some timekeeping duties to distribute trust. Look-
ing at the informal specification in [37] and the implementation
at [3], we have not seen the ballot casting timestamps explicitly
verified in the auditing checks performed by DA. Furthermore, we
expect the DA should also check that the order of the stored ballots
is consistent with the order of their casting time, to ensure that
ballots have not been reordered in the final store. We add such
checks to the Valid(Store) procedure executed by DA. In one of our
solutions, we will add an additional timing information ta related to
the authentication time of the session, and additional timing checks
related to both t and ta. As part of the OCSP/TSP protocol, both
the VC and the TMS will check that the recorded time correctly
reflects the current time. Therefore, if at least one of these parties
is honest, we can trust that the timing information is correct.

3 THREAT MODELS AND ATTACKS
We present the considered threat models and the attacks that we
found by automated verification as described in Section 5. In the
next section we present our formally proved solutions to these
attacks. See Figure 1 for an illustration of attacks and Table 1 for
verification results in all cases. Each threat model (nine in total)
describes a corruption scenario concerning parties and infrastruc-
ture: the adversaryA may control voters, their voting applications,
the communication network and some of the election parties. In
each scenario, the verification application and the data auditors DA
are assumed honest. Since all IBPP actions are audited by DA, it is
subsumed by DA in our models. In each scenario, A has a subset
of the following corruption abilities:

• Corrupt voters: leak all their voting credentials, ballot casting
and signing abilities to A.
• Corrupt network: A may remove, insert, and reorder mes-
sages from public channels.
• Corrupt VoteApp:A can use the EID card to sign any chosen
message; it can see and replace voter’s inputs, and supplies
corresponding replies.
• Corrupt RS: A gets the secret key skRS and is allowed to
answer any queries meant for RS.
• Corrupt VC: leaks all its data toA and lets it cast any ballots.
• Corrupt TMS: helps A in manipulating the recorded time.

Verifiability should hold for EEV as soon as one of the VC or RS
is honest. The attacks we discover target individual verifiability,
which should ensure that for every voter that verified their vote
successfully, that vote should be correctly counted in the final tally.

Formal Verification and Solutions for Estonian E-Voting ACM AsiaCCS ’24, July 01–05, 2024, Singapore

Table 1: Corruption Scenarios and Verification Results in EEV and Its Variants

Verifiability Privacy RF
Corrupt parties EEV EEV+ EEV EEV+ EEV EEV+

A1 : voters ✓ ✓ ✓ ✓ ✓ ✓

A2 : voters, network ✗ ✓ ✗ ✓ ✗ ✓

A3 : voters,VoteApp ✗ ✓∗ ✗ ✗ ✗ ✗

A4 : voters, network, VoteApp ✗ ✓∗ ✗ ✗ ✗ ✗

Verifiability Privacy RF
Corrupt parties EEV EEV+ EEV EEV+ EEV EEV+

A5 : A4 + RS + TMS ✗ ✓∗ ✗ ✗ ✗ ✗

A6 : A4 + VC ✗ ✓∗ ✗ ✗ ✗ ✗

A7 : A2 + RS + TMS ✗ ✓ ✗ ✓ ✗ ✓

A8 : A2 + VC ✗ ✓ ✗ ✓ ✗ ✗

A9 : A2 + VC + RS + TMS ✗ ✓ ✗ ✓ ✗ ✗

where EEV+ is EEV★ or EEVntfy;✓∗ represents weak result integrity: A can stuff ballots if voters don’t verify their votes.

Known attacks. We rediscover Pereira’s attack [46] shown in
Figure 1.(B). This attack assumes a corrupt VoteApp, and was origi-
nally shown for the variant EEVany of the system. The voter starts a
session with the VC and submits a ballot b1 for the desired vote v1.
Instead of displaying the QR code that the VC sent as confirmation
for b1, the VoteApp pretends the connection was cut and asks for a
renewed voting session. In that session, the VoteApp encrypts the
adversary’s choice v2 and submits the corresponding b2. Finally,
VoteApp displays the first ballot’s QR code for verification and all
the verification checks pass, so the voter expects v1 to be tallied.
However, the last ballot cast, that is b2 corresponding to v2, is tallied
for the respective id. While the original attack as described in [46]
works only for EEVany, our results with Tamarin show that indi-
vidual verifiability is violated also for EEVlast. Indeed, A can delay
the delivery of the adversarial ballot b2 until after the voter verifies
their ballot b1. Furthermore, we find that the scenario described
by Pereira, where there is a dubious interaction with the VoteApp,
is not the only one where this attack is possible. The attack also
works if the voter simply decides to revote for the same candidate,
as a result of coercion or lost verification code. In that case,A could
simply feed to the voter the previous verification code and cast the
vote that it desires exploiting the second voting attempt.

New attack on verifiability, Figure 1(C). We discover a ballot re-
ordering attack when the network (or VoteApp, or VC) is corrupt,
which applies to both EEVany and EEVlast. The attack applies in
the scenario when the voter revotes and changes the desired vote,
e.g. from v1 to v2. Note that this is the prescribed behaviour in
EEV when the voter is coerced, so it is a situation that is anticipated
by design in EEV. Nevertheless, we find that in this case the adver-
sary can reorder the ballots and cast the vote for v1 - even if the
voter verifies the ballot for v2 and expects it to be cast. The attack
is depicted in Figure 1: the voter id casts two successive ballots b1
and b2, corresponding to v1 and v2;A controls the network, blocks
the first ballot b1, and submits the second ballot b2 directly. The
VC processes b2 and sends its confirmation to the voter. At some
later point, A silently submits b1. Finally, the voter verifies v2 and
expects it to be tallied, whereas the ballot b1 corresponding to v1 is
tallied instead, which violates individual verifiability. This attack is
similar to the one in [10] found for Belenios.

New attack on privacy, Figure 1(D). We discover a ballot copy
attack against privacy, which belongs to a class first described
in [31] against Helios. In its simplest version, the attack consist
in copying the ballot cast by one honest voter and recasting it in
the name of a dishonest voter. This creates a bias in the outcome
that allows the adversary to infer the vote of the honest voter.

For example, imagine a simple scenario with three voters, two
honest and one corrupt. If the two honest voters vote differently,
the adversary should not be able to tell how each of them voted.
However, if the adversary manages to copy and make the corrupt
voter cast the same vote as one of the honest voters, then the winner
will reveal the choice of that voter. As shown in [44], this type
of attack leads to quantifiable privacy violations in more general
scenarios.

Practical impact. Pereira’s attack clearly breaks verifiability un-
der the current trust assumptions of EEV, where the voting applica-
tion is assumed to be malicious. Malware on the voting platform is a
real threat, as noticed in the analyses of earlier variants of EEV [50],
and the point of individual verification is, among others, to protect
against this threat. Concerning the ballot reordering and the bal-
lot copy attacks, one may note that they should not be possible if
a secure channel is implemented between the voting application
and the vote collector. We note, however, that ballot reordering is
possible even if the network is assumed honest: it is sufficient for
either the voting application or the vote collector to be malicious.
A minimum standard for verifiability is that it should not fail if any
single party is corrupt or fails, e.g. due to an implementation error.
Ballot reordering is also stealthier than Pereira’s attack, since there
is no noticeable change in the system behaviour. Similarly, while
the voting application has to be trusted in EEV for privacy, the vote
collector or the network should not be trusted, yet A can mount a
ballot copy attack in EEV by corrupting them. We will aim to obtain
verifiability even if the voting application, the network and one of
the VC or RS are corrupt.

Attacks currently outside the scope of our model. The symbolic
model that we consider abstracts away some cryptographic details
like the type of the encryption scheme being used. In particular,
we treat a ciphertext as a black box that cannot be modified by A,
except through the equations we allow. Two recent attacks, one
against verifiability [51] and one against privacy [45], have been
found by exploiting additional properties of ElGamal ciphertexts
used in the implementation of EEV. The attack in [51] allows the
voting application to discard or change the vote in a ballot, even
if the voter verified it. It uses the fact the implementation of the
VC does not send back to the verification application the complete
ElGamal ciphertext of the vote enc(v, pk, r) = (gr, pkr · v), but only
pkr · v. This allows the malicious voting application to choose a
different randomness r′ when displaying the QR code. When com-
bined with pkr · v, this results in the encryption of another vote
(gr′ , pkr · v) = (gr′ , pkr′ · v′) = enc(v′, pk, r′), for some v′. The at-
tack on privacy described in [45] uses the fact that the ElGamal

ACM AsiaCCS ’24, July 01–05, 2024, Singapore Baloglu et al.

encryption scheme is malleable. Specifically, it uses its homomor-
phic properties to modify the vote inside the ballot of a voter and
make it equal to a value that, when published in the outcome, will
be an outlier that will give a hint about the original value of the
vote, or will leak the votes of other voters. These two attacks can
be brought within the scope of symbolic models by extending the
equational theory to capture the relevant algebraic properties of
the encryption scheme. However, automation for such homomor-
phic or re-randomisation properties of the encryption scheme is
currently outside the scope of Tamarin and ProVerif. The problem
may be simpler to automate for a bounded number of sessions,
but current tools targeted for this case, like e.g. DeepSec [20], still
cannot handle it.

4 SOLUTIONS
We first consider the possible solutions that have been proposed
in [46] (for verifiability) and [45] (for privacy) to counter the attacks
described in these papers. We showwhy these proposals are not suf-
ficient and propose improvements to obtain the desired properties.
This comes with significant changes to the voting infrastructure
and reduced usability. We therefore develop a new solution that
relies on existing infrastructure with minimal impact on the voting
and verification experience.

4.1 Improving existing solutions within EEVntfy

4.1.1 Achieving verifiability. Four approaches are proposed in [46]
to mitigate Pereira’s attack. We can discard two of them, since they
would violate receipt-freeness in EEV: providing a public bulletin
board (the coercer can see a disobeying revote) or accepting at
most one ballot per voter (one cannot revote to resist coercion).
Another approach suggested in [46] is to use EEVlast, since they
observed their attack only against EEVany. However, we have seen
in Section 3 that the attack still applies in this case. We are left with
the final variant suggested in [46]: the use of an additional feedback
channel (e.g. a mobile phone) whereby the voter is notified each
time a ballot is cast in their name. This notification should contain
the identifier vidc of the ballot cast, and the voter should confirm
that it matches the vidc they received from the VoteApp. Intuitively,
this should prevent Pereira’s attack because the malicious VoteApp
cannot hide from the voter that a ballot is cast in their name.

A first challenge for this solution is choosing the party that
notifies the voter. If we assign this role to VC, then an adversary
corrupting it can still mount the attacks, especially if it also cor-
rupts the VoteApp or the network channel. A second challenge
is usability. Indeed, to counter the ballot reordering attacks, not
only do the voters need to perform the additional test vidc = vidp,
but they also need to detect any notification received after they
performed verification, since the adversary may cast the desired
ballot afterwards. Finally, there is the question of deployment and
of new risks associated with the feedback channel, as discussed in
[35]. Our contribution in this context is to show what are the mini-
mally required additions in order to make the notification-based
extension of EEV provably secure, even if all parties except the DA
and one of VC and RS are corrupt.

Our main additions are a bulletin board shared between VC and
RS and additional voter checks. The VC and RS update the bulletin

board whenever a new ballot is cast, and a trusted party TPmonitors
the bulletin board and sends a notification to the respective voter
when a ballot is cast. The voters need to ensure they receive no
further notification after they verified their desired ballot. Formally,
for the given vid from the VoteApp, they should ensure that: (a) a
notification has been received on the out-of-band channel matching
vid; (b) no further notification is received, unless the voter has
revoted and expects the first ballot to be overwritten.

4.1.2 Achieving privacy and receipt-freeness. The privacy attacks
from [45] are based on corrupting the ballot of an honest voter, such
that the vote encoded inside can reveal information about the initial
vote cast. The solution proposed in [45] to mitigate this attack is to
add a zero-knowledge proof that ensures the ballot cannot be mod-
ified without detection, preventing the vote v inside the ciphertext
constructed by an honest voter from being modified. However, this
is not sufficient to prevent the ballot copy attack against privacy,
since the adversary can take a ballot, extract the ciphertext and the
zero-knowledge proof, and reuse them without modification to cast
a vote on behalf of a malicious voter. To prevent this from happen-
ing, we extend the zero-knowledge proof proposed in [45] to ensure
that no ciphertext from a ballot cast by an honest voter can be cast
by another voter. Specifically, we rely on labeled encryption, as used
in Belenios [27] to prevent ballot copy attacks like in [31]. A labeled
encryption scheme is one that has two additional algorithms, one for
labelling a ciphertext and one for verifying the label. The labelling
algorithm zkp allows the creator of a ciphertext c = enc(x, pk, r),
who knows the randomness r, to attach a label ℓ to c obtaining
a proof p such that, when the label verification algorithm ver is
applied with arguments p, c, pk, ℓ′, it will return true iff ℓ = ℓ′. This
can be modelled by the equation (3) from Figure 2. In Belenios, and
our proposed enhancement to EEV, the label attached to cipher-
text is the public key of the voter that constructs the ballot. The
ballot is now b = (c, s, p), where c = enc(v, pkE, r), s = sign(c, skid),
and p = zkp(enc(v, pkE, r), v, r, pkid)). The labelling proof p is veri-
fied through the test ver(p, c, pkE, pkid) = true, which must be per-
formed by the VC and the DA.

We denote by EEVntfy this version of the protocol. We prove that
verifiability holds for EEVntfy if (VC or RS) and TP are trusted. Apart
from the organisational challenges (who should play the role of TP?)
and the usability challenges involved in this solution, designing and
implementing a secure and distributed bulletin board for voting
with minimal trust assumptions is a long-standing and still actively
researched problem [39, 52], thus we think this solution is not easily
deployable. On the other hand, extending the zero-knowledge proof
with a label to protect privacy does not present any deployment
challenge. It is already implemented, for example, in Belenios.

4.2 New solution EEV★

We notice that both in Pereira’s and in the ballot reordering attacks,
the adversary is helped by the power to delay the delivery of a ballot,
and sometimes cast it after another session started. In Pereira’s
attack, it also helps that A can start a second voting session while
the voter thinks it is still participating in the first session. To prevent
attacks based on such vulnerabilities, we propose a solution that
allows to ensure that each ballot is cast within the session where
it was created, and that the voter cannot confuse the session for

Formal Verification and Solutions for Estonian E-Voting ACM AsiaCCS ’24, July 01–05, 2024, Singapore

which it verifies the ballot and the session for which the ballot
is cast. Recall that ballot casting in EEV requires to first start a
session for a given voter id, after which the VoteApp creates a ballot
and asks the voter to sign it. Our additions for EEV★ are shown
in Figure 1, denoted by [_]★. The main idea is to add verifiable
timing information when the user starts each new session. We link
this timing information with a corresponding session counter. This
session counter will help voters for individual verifiability, enabling
them to verify ballots for the correct voting session, without having
to track the time. In more detail, at every voting session for a
given id, the VC increases a corresponding session counter scid
and registers with the TMS that a new authentication session is
created for id and scid, obtaining a timestamp ta. It sends scid and
ta to the VoteApp for display to the voter. Then VoteApp includes
ta in the signature sa that authenticates the voter. When the voter
signs the ballot, the VoteApp puts scid and ta together with the
ciphertext c encoding the vote, to get a signature sign((c, scid, ta),
skid). The ballot also contains the zero-knowledge proofs described
in Section 4.1, in order to obtain privacy and receipt-freeness. The
VC checks that the ballot casting time is greater than the time when
the session has started, i.e. the time recorded in t is greater than
ta. The VC ends any old session if the voter starts a new voting
session: no ballot from the older session can be received anymore,
and there is at most one ballot per session.

Universal verification is done by DA in procedure Valid(Store).
It ensures that timestamp, signature and zkp in b are valid (line 5,
6); no ballot is cast for an older session if a new one started (line
7); the session started before the ballot is cast (line 8). Individual
verification: for a given vid, the VerApp displays to the voter the
session counter sc′id stored by VC for vid; the voter checks that
the displayed session counter sc′id matches their number of voting
attempts scid, obtained through their interaction with VoteApp. The
session counter scid is added to the receipt of the ballot in addition
to the QR code, in order to help voters track their number of voting
attempts. This number is displayed at ballot casting time and, if the
VoteApp attempts to display an incorrect counter, the assumption
is that the voter will spot this, either while casting the vote, or later
when verifying it on the VerApp. Note that scid is the number of
successfully established voting sessions; the number of cast ballots
for that voter may be smaller. We prove formally with Tamarin that
EEV★ is secure according to threat models and results in Table 1.
Verifiability holds even if the VoteApp, the communication network
and one of the VC or RS are corrupt. Note that, while the TMS
is responsible for the timing of sessions and ballots, the VC will
also check that the timing information is correct, as part of the
OCSP/TSP [48, 53] protocol, as we explain in Section 2. This means
that, if the TMS is corrupt, we can still obtain security when the
VC is honest.

How attacks are countered. The general pattern for Pereira’s at-
tack is that the voter creates a first ballot b1 containing the desired
vote v1, that is cast and is assigned a vid1. Then the voter constructs
a second ballot b2, which A manipulates to contain A’s desired
vote v2. For verification of this second session, which from the
voter’s perspective should still represent a vote for v1, A presents
the voter with (vid1, r1) from the earlier session. In EEV★, the veri-
fiable backend will record the session counter for the each session.

Let’s say that these will be sc1id for the first session, and sc2id for
the second session. Then, when the voter submits (vid1, r1) for
individual verification, the VerApp will be able to determine and
display the correct session number sc1id. On the other hand, from
the voter’s perspective, these numbers should satisfy sc2id > sc1id,
so the inconsistency can be detected by the voter.

In a ballot reordering attack, we have the following pattern:

Voter perspective
sess1 @t1, cast b1 @t2
sess2 @t3, cast b2 @t4

Adversary A
// corrupts VoteApp, VC or network
cast(b2) @t5, cast(b1) @t6

Time ordering: t1 < t2 < t3 < t4 < t5 < t6
In EEV★, once sess2 started, a ballot cannot be accepted for sess1.

So, for the attack to succeed, the adversary needs the voter to
sign both ballots b1, b2 before starting the second session. On the
voter side, the voter is instructed to sign at most one ballot per
session. Still, the adversary could try to manipulate the session
such that to the voter it looks like the two ballots are signed for
two different sessions. That is why we add the tuple (scid, ta) in
the ballot information signed by the voter. A has to timestamp the
session before the voter signs the ballot, and it cannot timestamp
a second session without a second authentication attempt by the
voter. This will be checked by DA so A cannot cheat on it even if
it corrupts all of VoteApp,VC and the network, but not the TMS.

We adopt the extended zero-knowledge proof described in Sec-
tion 4.1 and we formally prove with ProVerif that privacy holds
even if the network and (VC or RS) are corrupt. Intuitively, the
additional session constraints ensured in EEV★ improve privacy,
because they simply restrict the set of traces available for analysis
by the adversary, and this restriction does not depend on the votes
inside the ballot. Concerning receipt-freeness, we can still achieve
it through revoting by using a trusted environment, since there is
no constraint that prevents voters from authenticating and casting
a new ballot after they were coerced.

5 SPECIFICATION AND VERIFICATION
We use Tamarin [7, 43, 49] for verifying election verifiability (mod-
elled as a trace property) and ProVerif [8, 15] for verifying privacy-
type properties (modelled as equivalence). These are both state-of-
the-art tools for automated protocol verification, and for our mod-
els Tamarin is more expressive for trace properties, while ProVerif
works better for equivalence. To simplify presentation, we adopt a
generic specification language that borrows constructs from both
Tamarin and ProVerif. The semantics of these tools is based on a
notion of execution traces with events and, as shown in [19], a more
general and practical syntax can incorporate the two. Our syntax
can be seen as a simplified version of SAPIC [19] and part of our
future work is a unified specification code from which all the proofs
can be derived, e.g. with SAPIC. We refer to the supplementary
material [1] for details of our specifications in Tamarin and ProVerif,
and to [19] for a presentation of distinctive features of these tools.

5.1 Specification language
Messages (also called terms) are built from a set of variables x, y, z, ...,
constants and function symbols, endowed with a set of equations
for modelling the cryptographic primitives. A tuple (t1, . . . , tn) of

ACM AsiaCCS ’24, July 01–05, 2024, Singapore Baloglu et al.

(1) dec(enc(x, pk(y), z), y) = x
(2) verify(sign(x, y), x, pk(y)) = true
(3) ver(zkp(enc(x, y, z), x, z, ℓ), enc(x, y, z), y, ℓ) = true

In(t), P Out(t), P // input and output on public channel
Fr(x), P x = t, P // x can be fresh or assigned a term t
evstore T(t1, . . . , tn), P // event declaration and/or table storage
get T(x1, . . . , xn), P // reading from table
if Φ then P else P′ // Φ is a formula without implications
P | P′ Φ | Φ′ P | Φ // process = actions restricted by formulas
!P // unbounded number of instances
// formula atoms:
T(t1, . . . , tn) [@i] // event occurred [at timepoint i]
t = t′ i = i′ i < i′ // term equality and timepoint ordering
// trace formulas, with formula atoms as base cases:
Φ ∧ Φ′,Φ ∨ Φ′,¬Φ,Φ⇒ Φ′

Example process
Dec(x) := Key(k), y = dec(x, k) .
PStore := In(x) ; y← Dec(x) ; evstore S(y)

|
(
S(f (x)) @i⇒ S(x) @j ∧ j < i

)
.

POut(x, k) := if ¬S(x) ∧ x ≠ k then Out(enc(x, pk(k)))
System := !PStore | !In(x),Key(k), POut(x, k) .

Figure 2: Equational theory, processes and formulas.

terms is also a term. For EEV protocol, we use public key encryption,
signature schemes and zero-knowledge proofs, modelled by the
equations from Figure 2, where the equation for the zero-knowledge
proof ensures that verification will succeed only if the label ℓ is
the one originally associated with the ciphertext, as explained in
Section 4.1. We consider an additional set of symbols to represent
event names for defining the security property or table names
where we can store data during the execution of a protocol. Such
symbols are generically represented by the letter T in the following
grammar description. Processes P, P′ and formulas Φ,Φ′ are built
according to the grammar from Figure 2. A process is formed of
actions that can be put in sequence, in parallel, and also restricted
by formulas (that we also denote by a parallel composition). The
constructs Fr, In and Out are in the style of Tamarin, while event
declaration and table-based operations are in the style of ProVerif.
We have conflated the constructs event and store from ProVerif
into evstore to avoid repetitions, since often we need to store data
in a table, while at the same time declaring a corresponding event.
An execution trace of the process will record each event declared
with evstore along with the corresponding index in the trace. The
indices of the trace will be called timepoints, as they represent the
temporal ordering of events during the execution of the protocol.

The atom T(t1, . . . , tn) is true if there exists an index i in the trace
such that an event T(t′1, . . . , t

′
n) is recorded at timepoint i and we

have (t1𝜎, . . . , tn𝜎) = (t′1, . . . , t
′
n), for some substitution 𝜎 that as-

signs terms to variables. We can explicitly refer to such a timepoint
by using the notation @i. In general, variables and timepoints that
appear at the left of an implication⇒ are implicitly universally
quantified, otherwise they are existentially quantified. For example,
for some events F,G, constants a, b and variables x, y, the formula
F(a, x) ⇒ G(b, y) stands for ∀x, i. F(a, x) @i ⇒ ∃y, j.G(b, y) @j.

In the latter formula, we can add a timepoint ordering j < i to the
right of the implication if we want the corresponding occurrence
of G(b, y) to happen strictly earlier than that of F(a, x). We de-
note by (y1, . . . , yn) ← P(x1, . . . , xm) the execution of a process 𝑃
that assumes some instantiated variables x1, . . . , xm and assigns
values to some variables y1, . . . , ym. Branching execution on condi-
tion Φ is encoded in Tamarin with restrictions. The direct use of
events/tables in Φ can be encoded in ProVerif with get construction
with pattern matching and branching. In the example from Figure 2,
Dec(x) models the decryption of x with a stored key and assigning
the result to y; PStore models that we store plaintexts in a table
A, under the restriction that any term of the form f (t) should be
preceded by t; POut models that we can output encryptions of any
term different from the key, if it was not stored.

The adversary A is allowed to control any inputs and outputs
specified by In and Out and apply the function symbols from the
equational theory to obtain new messages. As we describe in Sec-
tion 5.2, to specify the abilities of the adversary resulting from
corrupting protocol parties, we can also add new processes, modify
honest processes, or omit actions and restrictions. For instance, in
the example from Figure 2 we can add a process get Key(k);Out(k)
to express that the key holder is compromised, or remove the restric-
tion, to specify that the storage is compromised. A trace property is
a trace formula defined as above. A process P satisfies a property
Φ if all its traces satisfy it, denoted by P |= Φ. Examples of trace
properties are secrecy, authentication and election verifiability - the
adversary should not reach a given state described by Φ without
a particular condition Φ′ being satisfied, i.e. Φ ⇒ Φ′ should be
satisfied. An equivalence property specifies that a pair of processes
P andQ is indistinguishable for the adversaryA, denoted by P ≈ Q .
To define the indistinguishability notion ≈, one first models the
ability of A to observe relations between messages it can build
by performing equality tests. Then, informally, the property re-
quires that any trace of P can be matched by a trace of Q where
A can perform the same observations. There are various ways of
formally defining the equivalence relation, e.g. trace equivalence,
bisimulation, etc [9, 21]. We use ProVerif, which relies on one of
the strongest notions, named diff-equivalence: the two processes
must have the same structure and the matching traces of P and Q
should come from the same execution branch [16].

5.2 E-voting protocols and the adversary
We assume that an e-voting specification is given by a process that
has the structure !Vote | !Verify | System | Tally | A, where:
• Vote and Verify model the voting and verification actions of
voters and their platforms;
• System models the actions of all other election parties and
components;
• Tally decrypts the ballots that determine the final outcome;
• A models any additional power of the adversary that may
result from corrupting components or voters.

Sometimes we model the power of A directly in System, for
example getting inputs on the voting platform from a public channel
without doing any prescribed verification checks. In addition, to
define verifiability along the lines of [10, 12, 26], we will assume
the following events:

Formal Verification and Solutions for Estonian E-Voting ACM AsiaCCS ’24, July 01–05, 2024, Singapore

// VOTING: generic voting process Vote, followed by instantiations of Ballot and Cast for EEV and EEV★

Vote := In(id, v), w← Auth(id), (b, x) ← Ballot(id, v,w), y← Cast(id, b,w), evstore CastB(id, b), evstore Voted(id, v), evstore Ver(id, v, x, y) .
// ballot creation for an honest voting platform; we have w = (skid, pkid, [scid, ta]★) from Auth process

Ballot(id, v,w) := get BBpk(pkE), Fr(r), c = enc(v, pkE, r), [p = zkp(c, v, r, pkid),]★,
s = sign((c, [scid, ta]★), skid), b = (c, s, [p]★), x = r.

// ballot creation for corrupt voting platform: we let A choose all ballot and session data, but we trust EID card for signing
Ballot(id, v,w) := In(c, r, p), s = sign((c, [scid, ta]★), skid), b = (c, s, [p]★), x = r.

// ballot casting for corrupt network and VC: we output the ballot and let A control how it is cast and provide the return value vid
Cast(id, b,w) := Out(b), In(vid), y = (vid, [scid]★) .

// authentication events: timing events are justified because one of TMS or VC is honest; counting events are justified because DA is honest
[AuthVC := In(id), In(scid), Fr(ta), evstore Time(ta, (auth, id, scid)), evstore Count(((auth, id), scid),Out(scid, ta), In(sa), evstore Sess(id, scid, sa, ta)]★.
// ballot registration and storage, complemented by restrictions checking the validity of the ballot; we let A choose vid
StoreVC := In(id, b, vid), [In(scid), get Sess(id, scid, sa, ta), Fr(t), evstore Time(t, (cast, vid, b))]★, rec = (id, vid, b, [scid, sa, ta]★),

In(rec, reg), evstore Store(rec, reg) . // complemented by restrictions checking that reg is a valid signature of RS on rec

// INDIVIDUAL VERIFICATION: the vote collector checks that the verification time is not expired before returning the record
VerifyVC := In(vid) ; get Store(rec, reg) ; if rec = (_, vid, . . .) ∧ ¬Expired(vid) then Out(rec, reg)
// INDIVIDUAL VERIFICATION: checks performed by the voter and the verification app
Verify := get Ver(id, v, r, vid, [scid]★),Out(vid), In(rec, reg), get BBpk(pkRS), [Count(id, scid)]★,

if ver(reg, rec, pkRS) = true ∧ rec = (id, vid, b, t, [sc′, _, _]★) ∧ b = (c, . . .) ∧ c = enc(v, pkE, r) [∧ scid = sc′]★ then evstore Verified(id, v)

// UNIVERSAL VERIFICATION: the last ballot is selected for tally and the ballot order is consistent with timestamps
Store((id, vid, b, t, . . .), _) @i ∧ Store((id, vid′, b′, t′, . . .), _) @i′ ∧ i < i′ ⇒ Earlier(t, t′) ∧ (b ≠ b′ ⇒ ¬BBtally(id, b))
// UNIVERSAL VERIFICATION: restrictions checking that signatures, proofs and timestamps are valid
Store(rec, reg) @i ∧ rec = (id, vid, b, t, [scid, sa, ta]★) ∧ BBreg(id, pkid) ∧ BBpk(pkE)
⇒ b = (c, s, [p]★) ∧ ver(s, (c, [scid, ta]★), pkid) = true [∧ ver(p, c, pkE, pkid) = true ∧ ver(sa, (scid, ta), pkid) = true]★

∧ Time(t, (cast, vid, b)) [∧ Time(ta, (auth, id, scid)) ∧ Earlier(ta, t) // the ballot is cast after the session is authenticated]★
// session counting is correct and ballots cannot be cast for expired sessions[
∧

(
Store(rec′, _) @i′ ∧ rec′ = (id, _, _, _, sc′id, _, t

′
a) ∧ i′ > i⇒ Count((auth, id), scid) @j ∧ Count((auth, id), sc′id) @j′ ∧ j < j′ ∧ Earlier(t, t′a)

)]★
// because of the test VC.Store = RS.Store and the fact that one of VC or RS is honest, in the specification we can assume one single Store table

// NATURAL ORDERING, COUNTING AND TIMING CONSTRAINTS
Counting :=

(
!In(𝑧) ; evstore Nat(𝑧)

)
|
(
Count(x, z1) @i1 ∧ Count(x, z2) @i2 ∧ i1 < i2 ⇒ Nat(z1) @j1 ∧ Nat(z2) @j2 ∧ j1 < j2 ∧ z1 ≠ z2

)
Timing :=

(
Earlier(x, x′) ∧ Time(x, y) @i ∧ Time(x′, y′) @i′ ⇒ i < i′

)
Expire :=

(
get Store(_, vid, . . .) ; evstore Expired(vid)

)
| // ballot verification period expiration is consistent with ballot casting time(

Time(t, (cast, vid, b)) ∧ Time(t′, (cast, vid′, b′)) ∧ Earlier(t′, t) ∧ Expired(vid) @i⇒ Expired(vid′) @i′ ∧ i′ < i
)

Figure 3: A selection of processes and restrictions for the specifications of EEV and EEV★ (in [_]★).

• Voted(id, v) to record that a voter with that id cast a vote v,
typically at the end of the Vote process;
• Verified(id, v) - a voter with that id verified a vote v, typically
at the end of the Verify process;
• Reg(id, cr) - id is registered with public credential cr; typi-
cally cr is equal to the public key of the voter, e.g. in EEV
and Belenios;
• Corr(id) to record that id is corrupt;
• BBtally(cr, b) to record that b is to be tallied for cr;
• v = open(b) to represent that v is the vote encoded by b.

For privacy, we will specify two processes that differ in ballots
cast by honest voters, and ask for them to be indistinguishable for
the adversary. To define the two worlds generically, we assume
the Vote process has a part Auth for authrnitcation, a part Ballot
that creates the ballot and a part Cast that casts it. We typically
have the structure from Figure 3, with small changes depending
on the protocol. The terms x, y represent data obtained from pro-
cedures Ballot and Cast that can be used for verification. We let

A determine the identity of the voter and its vote, so that A can
setup any scenario it would like to attack. The table Cred stores
voter credentials, where w is a tuple representing public and pri-
vate credentials. For example, in EEV we have w = (skid, pkid) and
x = r, y = vid form the voter QR code (vid, r). The process Cast for
EEV from Figure 3 is simple because we assume a corrupt network,
corrupt authentication and a corrupt VC: we output the ballot to
the adversary A and accept any vid as response. A can choose to
treat and cast the ballot in any way it wants, as soon as it passes
the verification tests performed by the voter and data auditors. Sim-
ilarly, when we assume a corrupt VoteApp, we allow A to choose
the ciphertext c in the Ballot process. This allows A to modify the
vote v or to copy the ciphertext from another voter.

Modelling time and counters. Both ProVerif and Tamarin have
recently introduced features that allow to model counters [17, 32].
We have attempted to use this feature in some of our models in
order to model the counting of voter sessions and the flow of time.
However, we have encountered termination problems, especially

ACM AsiaCCS ’24, July 01–05, 2024, Singapore Baloglu et al.

for checking equivalence in ProVerif and for advanced corruption
scenarios in Tamarin, showing that these features need to be further
improved in order to be applicable in general. Where counters don’t
pose problems, we have used them. Otherwise, in most of the cases,
we model time and counting using the natural ordering that is
provided by the trace execution timepoints in ProVerif or Tamarin.
As explained in Section 5.1, every event from the specification of
the protocol can occur several times in an execution trace, and we
can associate a timepoint for each instance. For example, for an
event E(x, y), we can have:

E(t1, u1) E(t2, u2) . . . E(tn, un) E(tn+1, un+1)
@i1 < @i2 < @in < @in+1

for various terms tj, uj substituted for x, y at each step. If we add a
restriction to make sure all terms ti are distinct, we can naturally
extend the total ordering on timepoints ij to a total ordering on the
corresponding terms tj and use tj as a label to mark that the event
E occurred with second argument uj at the timepoint tj. We show
how this idea can be applied to model timestamps and counters.

Timestamp ordering. To timestamp a term u at a given point in
the specification, we add the instruction Fr(t), evstore Time(t, u),
modeling that a time server signed the current time paired with
the term u. To verify that a timestamp t has been recorded for u
by the time when we perform an action A, we add a restriction
A⇒ Time(t, u). Finally, to ensure that a time t occurs earlier than
t′, we add an event Earlier(t, t′) with an associated constraint:

Earlier(x, x′) ∧ Time(x, y) @i ∧ Time(x′, y′) @i′ ⇒ i < i′

As shown in Figure 3, we use this model to ensure the correct
ordering of ballots according to their session and casting time. A
more realistic symbolic model of time in security protocols was
recently proposed in [13]. They allow for example specifying that
a certain cryptographic computations (e.g. the opening of a timed
commitment) will take at least a given amount of time, or adding
real-time constraints for the execution of protocol rules. However,
on the one hand, the support for automation provided in [13] is
quite limited: they perform a manual translation of their models
into Tamarin to obtain proofs or attacks for some simple examples.
On the other hand, we don’t need to capture the complex interplay
between cryptographic algorithms and their cost in time, as is
aimed in [13]. Since our goal is to enforce the ordering of certain
actions in time, the abstraction of the real time by ordered execution
timepoints is sufficient, and can be expressed directly in Tamarin.

Verification time. To obtain receipt-freeness, we need to restrict
the ballot verification functionality to a certain time. After that,
the ballot cannot be verified anymore, and the coerced voter can
revote for the desired candidate. For this feature, we use again
the timepoint ordering: it is sufficient to ensure that cast ballots
will eventually expire, in the same order as they were cast. As
shown in Figure 3, a respective event Expired can be recorded by
an ExpireVid process, and the VC can check expiration upon each
individual verification request.

Counter ordering. For modelling counters, we will similarly rely
on a series of events Nat(u1) @i1, . . . ,Nat(un) @in, . . ., where
i1 < . . . < in < . . . and u1, . . . , un, . . . as numbers occurring in the
natural order. We can refer to them in events Count(w, uj), with a

respective restriction Counting in Figure 3, modelling the natural
counting order. The meaning of Count(w, u) is that a party in the
protocol interprets u as a member of the set of counters defined by
the events Nat and w as the occurrence of a specific event it wants
to count. For example, for EEV★ in Figure 3 we use Count(id, sc)
to represent that the voter with that id counts sc as the current
session number. Then, the Counting restriction will ensure that
the order of counters on the voter side is the same as the order of
counters defined by the Nat events, which is the same as the order
ensured by the DA by universal verifiability on the vote collector
side, as we add the event Count((auth, id), sc) to which the same
restriction applies.

5.3 Definitions for security properties
Election verifiability. We consider the symbolic definition of elec-

tion verifiability from [12], extending earlier definitions of [10, 26],
which is a set of trace formulas ensuring two main properties:
• Individual verifiability: if a voter successfully verifies the
vote, it will be correctly counted for the final tally.
• Result integrity: the tallied vote for each credential should
correspond to a vote cast by the corresponding voter, unless
that voter is corrupt, i.e. BBtally(cr, b) ⇒ Reg(id, cr) ∧
(Vote(id, v) ∧ v = open(b) ∨ Corr(id)).

Ballot integrity. Recent works show a connection between pri-
vacy and verifiability, e.g. claiming that individual verifiability is
needed for privacy [29], or that we should consider various lev-
els of privacy to match various levels of bulletin board corruption
[30]. In this paper we take a simpler approach, showing that one
single property of ballot integrity is sufficient to define privacy in
any corruption model. Intuitively, ballot integrity (defined as Φbi

in Figure 4) is a stronger version of result integrity ensuring that
ballots tallied for honest voters have been actually cast by them.
In modern systems like e.g. Belenios [5], EEV [3] and the one from
SwissPost [6], ballot integrity has emerged as one of the fundamen-
tal requirements. It is sometimes called eligibility verifiability [41]
and is typically guaranteed by signing the ballots that the voters
cast. In some other systems the property does not hold if honest
voters don’t verify their votes, for example in Helios [4]. Although
individual verifiability can help in ensuring ballot integrity (e.g. in
Helios), it is just one of the available means.

Privacy definition and related notions. In symbolic models pri-
vacy is typically defined only for a simple scenario where two
honest voters swap their votes [33]. As shown in [14], this setting
cannot capture certain types of voting schemes and scenarios. It
also assumes an honest infrastructure that correctly counts the
ballots of the two voters. Definitions in the computational model
are more flexible and can be extended to handle corrupt infras-
tructure [30]. The computational definition that has emerged as
the most expressive and amenable to mechanised proofs is BPRIV
- ballot privacy [14, 25, 30]. It allows A to setup an experiment
whereby it interacts with the protocol in one of the two worlds:
the ballots in the left world include the real vote of honest voters,
while the ballots in the right world include arbitrary votes chosen
by the adversary. The goal is to show that A cannot distinguish
between the two worlds, which implies the privacy of honest votes.

Formal Verification and Solutions for Estonian E-Voting ACM AsiaCCS ’24, July 01–05, 2024, Singapore

Specification S = !Vote | !Verify | System | Tally | A
Vote : contains procedures Ballot and Cast to create and cast

a ballot; it generates events CastB(id, b) .
Verify : models voter verification; generates events Verified(id, v) .
System : generates events Reg(id, cr) and BBtally(cr, b) .
Tally : for all b s.t. BBtally(cr, b) , does TallyB(b) ,

where TallyB(b) opens and publishes the vote from b.
Adversary A : corrupts parties and infrastructure.

Voters = !Vote | !Verify VotersX = !VoteX | !Verify
Vote

In(id, v)
w← Auth(id)
(b, x) ← Ballot(id, v,w)
Cast(id, b,w, x)
evstore CastB(id, b)

VoteX for X ∈ {L,R}
In(id, vL, vR), Honest(id),
w← Auth(id)
(bL, xL) ← Ballot(id, vL,w)
(bR, xR) ← Ballot(id, vR,w)
Cast(id, bX,w, xX)
evstore CastB(id, bL, bR)

TallyR := for all (b, id) s.t. BBtally(cr, b),
let id be s.t. Reg(id, cr) , // well-defined by ballot integrity

if ¬Corr(id) ∧ CastB(id, bL, b) then TallyB(bL) else TallyB(b) .
TallyL := ∀b s.t. BBtally(cr, b), do TallyB(b) // note: TallyL = Tally

Property specifications for integrity, privacy, and receipt-freeness

Left and right specifications:

SL =!VotersL | System | TallyL | A
SR =!VotersR | System | TallyR | A

Simple ballot integrity : S |= Φbi, which implies SR |= Φbi
R , where

Φbi = BBtally(cr, b) ⇒ Reg(id, cr) ∧ (CastB(id, b) ∨ Corr(id))

Φbi
R = BBtally(cr, b) ⇒ Reg(id, cr) ∧ (CastB(id, bL, b) ∨ Corr(id))

Static corruption: for X ∈ {L,R },
SX |= Honest(id) ∧ Corr(id) ⇒ false

Ballot privacy : SL ≈ SR
Receipt-freenes : !VoterrfL | !VotersL | System | TallyL | A ≈

!VoterrfR | !VotersR | System | TallyR | A

VoterrfX for X ∈ {L,R}

In(id, vL, vR), if X = L then VResist(id, vL, vR) else VObey(id, vR)
where
VResist : is the strategy for voting vL while coerced to vote vR
VObey : the voter votes vR and forwards all data to A

Figure 4: E-voting specifications for privacy.

In order to avoid trivial attacks based on differences in the outcome
introduced by the experiment, the tally function computes the real
outcome for honest voters in both worlds. As shown in [30], when
infrastructure is corrupt, determining this outcome correctly re-
quires the definition and proof of additional ballot box integrity
properties, and corresponding recovery functions to determine the
ballots to be tallied to obtain the real outcome.

A symbolic version of the BPRIV property has recently been
introduced in [34]. We will propose a definition that is similar to
theirs, but that allows for a more general structure of the vote

and election processes. For technical reasons related to their proof
methods, they assume for example that each voter sends their ballot
on a separate channel. They also have a special version of the
definition for when revoting is allowed, since it is assumed also that
each new voting session happens on a separate channel. A more
fundamental difference between our definition and theirs is the
way in which corrupt infrastructure is handled. In their definition,
while the ballot is sent to A after it is created, it is also directly
added to the ballot box on the voter side; there is no (honest or
corrupt) server functionality for casting the ballot. This hardcodes
in the specification the fact that the ballots are honestly cast (except
they may be blocked by blocking the voter process), and mirrors
earlier computational BPRIV definitions [14]. Indeed, the conclusion
in [34] mentions a more advanced model of a malicious ballot box
in the style of [30] as future work.

Our symbolic definition more directly matches the protocol spec-
ification for each component, and explicitly allow A to control
the functionality of each party if it corrupts it. As in earlier BPRIV
definitions, we will set up a left versus right world security experi-
ment. In order to compute the expected outcome for the right world
in case of malicious components, we will rely on the property of
ballot integrity. Formally this will have the same effect as in [34],
allowing only honestly generated ballots to be tallied for honest
voters. The difference is that this property is outside the protocol
specification and it is something that we will actually prove. This
approach can be seen as a particular instance of using a recovery
function in the style of [30], translated to the symbolic model. To
apply [30], users have to define a ballot box integrity property and
an associated recovery function for each protocol. The guaranteed
level of privacy then depends on the strength or weakness of the
corresponding property of ballot box integrity. We think that our
proposal to use ballot integrity is currently the most usable way
to reconcile theory and practice: it allows to define and prove pri-
vacy, while also being a property satisfied by most current e-voting
systems. Both properties, of privacy and integrity, can be directly
given as input to automated tools like ProVerif or Tamarin.

Definition 5.1. A voting specification S satisfies ballot privacy if:

• Vote and Tally processes from S are as prescribed in Fig. 4,
• for SL and SR are defined as in Figure 4, SL ≈ SR, and
• SR satisfies ballot integrity, and SL,SR satisfy static corrup-
tion - as defined in Figure 4.

Receipt-freeness. In the privacy definition, the votes in the left
world can be interpreted as the voting intentions of honest voters,
while those on the right as the ones expected by the adversary.
When the voter is coerced and has to provide to the adversary
A any data that it obtained from the voting process, the indis-
tinguishability of the two worlds may not hold directly. Taking
EEV as example, if the voter forwards the QR code to A, then
the verification procedure allows A to derive the vote. For such
cases, some systems that attempt to achieve receipt-freeness, like
EEV, JCJ/Civitas [22, 40] or Selene [47] define a coercion-resistance
strategy (although the notions of receipt-freeness and coercion-
resistance are sometimes considered separately [33], they belong
to the same spectrum where A is allowed to exert influence and
interact with the voter). To define receipt-freeness, we assume that:

ACM AsiaCCS ’24, July 01–05, 2024, Singapore Baloglu et al.

VResist(id, vL, vR) for Honest(id)

w← Auth(id), (b1, x1) ← Ballot(id, vR,w),Cast(id, b1,w, x1),Out(tleak),
WaitOK, (b2, x2) ← Ballot(id, vL,w),Cast(id, b2,w, x2) .

VObey(id, vR)

w← Auth(id), (b1, x1) ← Ballot(id, vR,w),Cast(id, b1,w, x1),Out(tleak) .

Figure 5: Processes for receipt-freeness by revoting

VResist: on the left, coerced honest voters apply the coercion-
resistance strategy to cast their intended vote.

VObey: on the right, voters obey the coercer instructions.
and extend the indistinguishability experiment with these two types
of processes. The actual definition of VResist and VObey, as we
show below, will depend on the protocol specification and on the
assumed adversarial influence.

Definition 5.2. LetS be a specification that satisfies Definition 5.1.
In addition, assume we have processes VotersrfL ,Voters

rf
R as in Fig-

ure 4. Then S satisfies receipt-freeness iff

!VotersrfL | SL ≈ !Voters
rf
R | SR

The coercion scenario considered in EEV+ ∈ {EEV★, EEVntfy}
is that A is able to personally influence the voter for example by
over-the-shoulder coercion or by asking the voter to forward it
any information it received while casting the vote. We call this
the coerced voting session. However, at some later time while the
election is still open, the voter is assumed to no longer be under
the influence of A and be able to cast a vote on a trusted device.
Then, we have the following coercion-resistance strategies:
• in EEV+any: the voter is instructed to revote at any later time
when it is no longer controlled by A.
• in EEV+last: the voter has to revote, but only after the vote
verification window for the coerced session expired.

We say that an e-voting specification S satisfies receipt-freeness
by revoting if it satisfies Definition 5.2 using the VResist and VObey
processes from Figure 5, where tleak models data from the voting
session that the voter can leak to A, while WaitOK models the
conditions when revoting is prescribed. In EEV+, we assume tleak
is the QR code that the voter obtained from the first session, that is
equal to (vid, r, [scid]★). Note thatA can then obtain b from VC by
requesting ballot verification for the corresponding vid. In EEV+any,
WaitOK is empty, while in EEV+last it says the revote should happen
only after the verification time for the previous ballot has passed.
Based on the Expired table we introduced for VC, we can model
this by WaitOK;P ≡ get Expired(vid), if vid = vid1 then P, for
any process P, where vid1 is obtained from first session.

5.4 Verification results and discussion
Verification results for all cases are presented in Table 1, showing
that the current version of EEV is secure only in the basic scenario
A1 where all the parties are honest, except the voters. In other
cases we obtain attacks. Apart from the positive results for EEV+,
we should also note some limitations. First, we can see that receipt-
freeness does not hold if one of the backend parties VC,RS or

TMS is corrupt. This is because they can see the ballots cast by
voters, so voters cannot revote without being detected by A. We
can hide this information from RS or the TMS by asking them
to sign hashed data, instead of information in the clear. Yet, the
VC has to authenticate voters and check the signatures on ballots,
so a fundamental change is required to obtain receipt-freeness
when the VC is corrupt. Interestingly, a similar trust assumption is
also needed in BeleniosRF [18], even if it relies on more complex
cryptographic constructions. BeleniosRF also satisfies a weaker
notion of verifiability, since the voter cannot directly verify the vote
encoded inside the ballot, but has to trust the voting application, or
perform a Benaloh challenges in the style of Helios.

Another limitation of EEV+ is that, when the voting application
is corrupt, it satisfies only weak result integrity, according to the
terminology in [10, 12]. This means that, if the voting application
is corrupt and the voter does not verify the ballot, A can do ballot
stuffing, i.e. cast any ballot in the name of that voter. This, however,
is a more general limitation of current e-voting systems. Although
systems like Belenios are proved to satisfy a strong form of result
integrity and prevent ballot stuffing [11, 12, 24], this holds only
under the assumption that the voting platform is trusted. Under
this assumption, we also prove strong result integrity for EEV+.
Another trust assumption in EEV+ is shown by the negative results
for A9: at least one of the VC and RS should be honest in order to
achieve verifiability. While this is the original goal of EEV, we think
achieving verifiability when both are corrupt should be possible.

6 CONCLUSION AND FUTUREWORK
We perform a first thorough formal security analysis of the Estonian
E-voting protocol, relying on ProVerif and Tamarin. We discover
new attacks against individual verifiability and vote privacy, and
rediscover some recent attacks. In the light of this analysis, we pro-
pose solutions to improve privacy and verifiability of the protocol,
that we aim to further improve in future work. For example: all
current EEV variants can suffer from ballot stuffing if the voting
application is corrupt and voters do not verify their ballots; no
variant satisfies receipt-freeness if the vote collector is corrupt. It
would be interesting to see if weaker trust assumptions could be
achieved in practice without a loss of usability.

We propose the first definition and automated proofs that allow
to derive privacy guarantees even when any number of parties and
infrastructure can be corrupt. For our framework to be applicable,
it is only needed to prove that ballot integrity holds, which is a
general and natural property. In future work we aim to further
extend the scope of our framework to consider result integrity in-
stead of ballot integrity, to cover, for example, BeleniosRF that relies
on ballot re-randomisation. Automation needs to be improved to
cover the equational theories of re-randomisation and homomor-
phic encryption, and attacks like in [45], currently outside the scope
of automated tools. An end goal would be an unified model a la
SAPIC [19] to automatically prove all the desired properties from a
single specification file.

ACKNOWLEDGMENTS
This work was supported by the Luxembourg National Research
Fund (FNR) under the grant agreement C22/IS/17238244/AVVA.

Formal Verification and Solutions for Estonian E-Voting ACM AsiaCCS ’24, July 01–05, 2024, Singapore

REFERENCES
[1] a1 [n. d.]. Additional material: code files for the specifications. https://github.

com/sbaloglu/eev-codes
[2] a2 [n. d.]. Statistics about internet voting in Estonia. https://www.valimised.ee/

en/archive/statistics-about-internet-voting-estonia
[3] a3 [n. d.]. Estonian online voting system. https://github.com/valimised/ivxv

https://github.com/valimised/ivxv.
[4] a4 [n. d.]. Helios - Verifiable Online Elections. https://heliosvoting.org/ https:

//heliosvoting.org/.
[5] a5 [n. d.]. Belenios - Verifiable Online Voting System. https://belenios.org/

https://belenios.org/.
[6] a6 [n. d.]. SwissPost e-voting system. https://gitlab.com/swisspost-evoting

https://gitlab.com/swisspost-evoting.
[7] a7 [n. d.]. Tamarin Prover. https://tamarin-prover.github.io
[8] a8 [n. d.]. ProVerif: Cryptographic protocol verifier in the formal model. https:

//bblanche.gitlabpages.inria.fr/proverif/
[9] Kushal Babel, Vincent Cheval, and Steve Kremer. 2020. On the semantics of

communications when verifying equivalence properties. J. Comput. Secur. 28, 1
(2020), 71–127. https://doi.org/10.3233/JCS-191366

[10] Sevdenur Baloglu, Sergiu Bursuc, SjoukeMauw, and Jun Pang. 2021. Election Veri-
fiability Revisited: Automated Security Proofs and Attacks on Helios and Belenios.
In 34th IEEE Computer Security Foundations Symposium, CSF 2021, Dubrovnik,
Croatia, June 21-25, 2021. IEEE, 1–15. https://doi.org/10.1109/CSF51468.2021.
00019

[11] Sevdenur Baloglu, Sergiu Bursuc, Sjouke Mauw, and Jun Pang. 2021. Provably
Improving Election Verifiability in Belenios. In Electronic Voting, Robert Krimmer,
Melanie Volkamer, David Duenas-Cid, Oksana Kulyk, Peter Rønne, Mihkel Solvak,
and Micha Germann (Eds.). Springer International Publishing, Cham, 1–16.

[12] Sevdenur Baloglu, Sergiu Bursuc, Sjouke Mauw, and Jun Pang. 2023. Election
Verifiability in Receipt-Free Voting Protocols. In 36th IEEE Computer Security
Foundations Symposium, CSF 2023, Dubrovnik, Croatia, July 10-14, 2023. IEEE,
59–74. https://doi.org/10.1109/CSF57540.2023.00005

[13] Gilles Barthe, UgoDal Lago, GiulioMalavolta, and Itsaka Rakotonirina. 2022. Tidy:
Symbolic Verification of TimedCryptographic Protocols. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los
Angeles, CA, USA, November 7-11, 2022, Heng Yin, Angelos Stavrou, Cas Cremers,
and Elaine Shi (Eds.). ACM, 263–276. https://doi.org/10.1145/3548606.3559343

[14] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan
Warinschi. 2015. SoK: A Comprehensive Analysis of Game-Based Ballot Privacy
Definitions. In 2015 IEEE Symposium on Security and Privacy, SP 2015, San Jose,
CA, USA, May 17-21, 2015. IEEE Computer Society, 499–516. https://doi.org/10.
1109/SP.2015.37

[15] Bruno Blanchet. 2016. Modeling and Verifying Security Protocols with the
Applied Pi Calculus and ProVerif. Foundations and Trends in Privacy and Security
1, 1-2 (2016), 1–135. https://doi.org/10.1561/3300000004

[16] Bruno Blanchet, Martín Abadi, and Cédric Fournet. 2008. Automated verification
of selected equivalences for security protocols. J. Log. Algebraic Methods Program.
75, 1 (2008), 3–51. https://doi.org/10.1016/J.JLAP.2007.06.002

[17] Bruno Blanchet, Vincent Cheval, and Véronique Cortier. 2022. ProVerif with
Lemmas, Induction, Fast Subsumption, and Much More. In 43rd IEEE Symposium
on Security and Privacy, SP 2022, San Francisco, CA, USA, May 22-26, 2022. IEEE,
69–86. https://doi.org/10.1109/SP46214.2022.9833653

[18] Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. 2016.
BeleniosRF: A Non-interactive Receipt-Free Electronic Voting Scheme. In 23rd
ACM Conference on Computer and Communications Security (CCS’16). ACM, Vi-
enna, Austria, 1614–1625. https://doi.org/10.1145/2976749.2978337

[19] Vincent Cheval, Charlie Jacomme, Steve Kremer, and Robert Künnemann.
2022. SAPIC+: protocol verifiers of the world, unite!. In 31st USENIX Secu-
rity Symposium, USENIX Security 2022, Boston, MA, USA, August 10-12, 2022,
Kevin R. B. Butler and Kurt Thomas (Eds.). USENIX Association, 3935–3952.
https://www.usenix.org/conference/usenixsecurity22/presentation/cheval

[20] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2018. DEEPSEC: Deciding
Equivalence Properties in Security Protocols Theory and Practice. In 2018 IEEE
Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May 2018, San
Francisco, California, USA. IEEE Computer Society, 529–546. https://doi.org/10.
1109/SP.2018.00033

[21] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. 2020. The Hitchhiker’s
Guide to Decidability and Complexity of Equivalence Properties in Security
Protocols. In Logic, Language, and Security - Essays Dedicated to Andre Scedrov on
the Occasion of His 65th Birthday (Lecture Notes in Computer Science, Vol. 12300),
Vivek Nigam, Tajana Ban Kirigin, Carolyn L. Talcott, Joshua D. Guttman, Stepan L.
Kuznetsov, Boon Thau Loo, and Mitsuhiro Okada (Eds.). Springer, 127–145. https:
//doi.org/10.1007/978-3-030-62077-6_10

[22] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. 2008. Civitas:
Toward a Secure Voting System. In 2008 IEEE Symposium on Security and Privacy
(S&P 2008), 18-21 May 2008, Oakland, California, USA. 354–368. https://doi.org/
10.1109/SP.2008.32

[23] Véronique Cortier. 2017. Electronic Voting: How Logic Can Help. In Implemen-
tation and Application of Automata - 22nd International Conference, CIAA 2017,
Marne-la-Vallée, France, June 27-30, 2017, Proceedings (Lecture Notes in Computer
Science, Vol. 10329), Arnaud Carayol and Cyril Nicaud (Eds.). Springer, xi–xii.
https://link.springer.com/content/pdf/bfm%3A978-3-319-60134-2%2F1.pdf

[24] Véronique Cortier, Constantin Catalin Dragan, François Dupressoir, and Bogdan
Warinschi. 2018. Machine-Checked Proofs for Electronic Voting: Privacy and
Verifiability for Belenios. In 31st IEEE Computer Security Foundations Symposium,
CSF 2018, Oxford, United Kingdom, July 9-12, 2018. IEEE Computer Society, 298–
312. https://doi.org/10.1109/CSF.2018.00029

[25] Véronique Cortier, Constantin Cătălin Drăgan, François Dupressoir, Benedikt
Schmidt, Pierre-Yves Strub, and Bogdan Warinschi. 2017. Machine-Checked
Proofs of Privacy for Electronic Voting Protocols. In IEEE Symposium on Security
and Privacy. 993–1008. https://doi.org/10.1109/SP.2017.28

[26] Véronique Cortier, Alicia Filipiak, and Joseph Lallemand. 2019. BeleniosVS: Se-
crecy and Verifiability Against a Corrupted Voting Device. In 32nd IEEE Computer
Security Foundations Symposium, Hoboken, NJ, USA, June 25-28, 2019. 367–381.
https://doi.org/10.1109/CSF.2019.00032

[27] Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. 2019. Belenios: A
Simple Private and Verifiable Electronic Voting System. In Foundations of Se-
curity, Protocols, and Equational Reasoning - Essays Dedicated to Catherine A.
Meadows (Lecture Notes in Computer Science, Vol. 11565), Joshua D. Guttman,
Carl E. Landwehr, José Meseguer, and Dusko Pavlovic (Eds.). Springer, 214–238.
https://doi.org/10.1007/978-3-030-19052-1_14

[28] Véronique Cortier and Steve Kremer (Eds.). 2011. Formal Models and Techniques
for Analyzing Security Protocols. Cryptology and Information Security Series,
Vol. 5. IOS Press. http://www.iospress.nl/loadtop/load.php?isbn=9781607507130

[29] Véronique Cortier and Joseph Lallemand. 2018. Voting: You Can’t Have Pri-
vacy without Individual Verifiability. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018, David Lie, MohammadMannan, Michael Backes, and
XiaoFeng Wang (Eds.). ACM, 53–66. https://doi.org/10.1145/3243734.3243762

[30] Véronique Cortier, Joseph Lallemand, and Bogdan Warinschi. 2020. Fifty Shades
of Ballot Privacy: Privacy against a Malicious Board. In 33rd IEEE Computer
Security Foundations Symposium, CSF 2020, Boston, MA, USA, June 22-26, 2020.
IEEE, 17–32. https://doi.org/10.1109/CSF49147.2020.00010

[31] Véronique Cortier and Ben Smyth. 2011. Attacking and FixingHelios: AnAnalysis
of Ballot Secrecy. In Proceedings of the 24th IEEE Computer Security Foundations
Symposium, CSF 2011, Cernay-la-Ville, France, 27-29 June, 2011. IEEE Computer
Society, 297–311. https://doi.org/10.1109/CSF.2011.27

[32] Cas Cremers, Charlie Jacomme, and Philip Lukert. 2023. Subterm-Based Proof
Techniques for Improving the Automation and Scope of Security Protocol Analy-
sis. In 36th IEEE Computer Security Foundations Symposium, CSF 2023, Dubrovnik,
Croatia, July 10-14, 2023. IEEE, 200–213. https://doi.org/10.1109/CSF57540.2023.
00001

[33] Stéphanie Delaune, Steve Kremer, and Mark Ryan. 2009. Verifying privacy-type
properties of electronic voting protocols. J. Comput. Secur. 17, 4 (2009), 435–487.
https://doi.org/10.3233/JCS-2009-0340

[34] Stéphanie Delaune and Joseph Lallemand. 2022. One Vote Is Enough for Analysing
Privacy. In Computer Security - ESORICS 2022 - 27th European Symposium on
Research in Computer Security, Copenhagen, Denmark, September 26-30, 2022,
Proceedings, Part I (Lecture Notes in Computer Science, Vol. 13554), Vijayalakshmi
Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi Meng (Eds.).
Springer, 173–194. https://doi.org/10.1007/978-3-031-17140-6_9

[35] Sven Heiberg, Kristjan Krips, and Jan Willemson. 2020. Planning the next steps
for Estonian Internet voting. Proceedings of the E-Vote-ID (2020), 82.

[36] Sven Heiberg, Peeter Laud, and Jan Willemson. 2011. The Application of I-Voting
for Estonian Parliamentary Elections of 2011. In E-Voting and Identity - Third
International Conference, VoteID 2011, Tallinn, Estonia, September 28-30, 2011,
Revised Selected Papers (Lecture Notes in Computer Science, Vol. 7187), Aggelos
Kiayias and Helger Lipmaa (Eds.). Springer, 208–223. https://doi.org/10.1007/978-
3-642-32747-6_13

[37] Sven Heiberg, Tarvi Martens, Priit Vinkel, and Jan Willemson. 2016. Improving
the Verifiability of the Estonian Internet Voting Scheme. In Electronic Voting -
First International Joint Conference, E-Vote-ID 2016, Bregenz, Austria, October 18-21,
2016, Proceedings (Lecture Notes in Computer Science, Vol. 10141), Robert Krimmer,
Melanie Volkamer, Jordi Barrat, Josh Benaloh, Nicole J. Goodman, Peter Y. A.
Ryan, and Vanessa Teague (Eds.). Springer, 92–107. https://doi.org/10.1007/978-
3-319-52240-1_6

[38] Sven Heiberg and Jan Willemson. 2014. Verifiable internet voting in Estonia.
In 6th International Conference on Electronic Voting: Verifying the Vote, EVOTE
2014, Lochau / Bregenz, Austria, October 29-31, 2014, Robert Krimmer and Melanie
Volkamer (Eds.). IEEE, 1–8. https://doi.org/10.1109/EVOTE.2014.7001135

[39] Lucca Hirschi, Lara Schmid, and David A. Basin. 2021. Fixing the Achilles Heel
of E-Voting: The Bulletin Board. In 34th IEEE Computer Security Foundations
Symposium, CSF 2021, Dubrovnik, Croatia, June 21-25, 2021. IEEE, 1–17. https:
//doi.org/10.1109/CSF51468.2021.00016

https://github.com/sbaloglu/eev-codes
https://github.com/sbaloglu/eev-codes
https://www.valimised.ee/en/archive/statistics-about-internet-voting-estonia
https://www.valimised.ee/en/archive/statistics-about-internet-voting-estonia
https://github.com/valimised/ivxv
https://github.com/valimised/ivxv
https://heliosvoting.org/
https://heliosvoting.org/
https://heliosvoting.org/
https://belenios.org/
https://belenios.org/
https://gitlab.com/swisspost-evoting
https://gitlab.com/swisspost-evoting
https://tamarin-prover.github.io
https://bblanche.gitlabpages.inria.fr/proverif/
https://bblanche.gitlabpages.inria.fr/proverif/
https://doi.org/10.3233/JCS-191366
https://doi.org/10.1109/CSF51468.2021.00019
https://doi.org/10.1109/CSF51468.2021.00019
https://doi.org/10.1109/CSF57540.2023.00005
https://doi.org/10.1145/3548606.3559343
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1561/3300000004
https://doi.org/10.1016/J.JLAP.2007.06.002
https://doi.org/10.1109/SP46214.2022.9833653
https://doi.org/10.1145/2976749.2978337
https://www.usenix.org/conference/usenixsecurity22/presentation/cheval
https://doi.org/10.1109/SP.2018.00033
https://doi.org/10.1109/SP.2018.00033
https://doi.org/10.1007/978-3-030-62077-6_10
https://doi.org/10.1007/978-3-030-62077-6_10
https://doi.org/10.1109/SP.2008.32
https://doi.org/10.1109/SP.2008.32
https://link.springer.com/content/pdf/bfm%3A978-3-319-60134-2%2F1.pdf
https://doi.org/10.1109/CSF.2018.00029
https://doi.org/10.1109/SP.2017.28
https://doi.org/10.1109/CSF.2019.00032
https://doi.org/10.1007/978-3-030-19052-1_14
http://www.iospress.nl/loadtop/load.php?isbn=9781607507130
https://doi.org/10.1145/3243734.3243762
https://doi.org/10.1109/CSF49147.2020.00010
https://doi.org/10.1109/CSF.2011.27
https://doi.org/10.1109/CSF57540.2023.00001
https://doi.org/10.1109/CSF57540.2023.00001
https://doi.org/10.3233/JCS-2009-0340
https://doi.org/10.1007/978-3-031-17140-6_9
https://doi.org/10.1007/978-3-642-32747-6_13
https://doi.org/10.1007/978-3-642-32747-6_13
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1007/978-3-319-52240-1_6
https://doi.org/10.1109/EVOTE.2014.7001135
https://doi.org/10.1109/CSF51468.2021.00016
https://doi.org/10.1109/CSF51468.2021.00016

ACM AsiaCCS ’24, July 01–05, 2024, Singapore Baloglu et al.

[40] Ari Juels, Dario Catalano, and Markus Jakobsson. 2005. Coercion-resistant
electronic elections. In Proceedings of the 2005 ACM Workshop on Privacy in the
Electronic Society, WPES 2005, Alexandria, VA, USA, November 7, 2005. 61–70.
https://doi.org/10.1145/1102199.1102213

[41] Steve Kremer, Mark Ryan, and Ben Smyth. 2010. Election Verifiability in Elec-
tronic Voting Protocols. In Computer Security - ESORICS 2010, 15th European
Symposium on Research in Computer Security, Athens, Greece, September 20-
22, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6345), Dimitris
Gritzalis, Bart Preneel, and Marianthi Theoharidou (Eds.). Springer, 389–404.
https://doi.org/10.1007/978-3-642-15497-3_24

[42] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. 2011. Verifiability, Privacy,
and Coercion-Resistance: New Insights from a Case Study. In 32nd IEEE Sympo-
sium on Security and Privacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA.
538–553. https://doi.org/10.1109/SP.2011.21

[43] Simon Meier, Benedikt Schmidt, Cas Cremers, and David A. Basin. 2013. The
TAMARIN Prover for the Symbolic Analysis of Security Protocols. In 25th Inter-
national Conference on Computer Aided Verification (Lecture Notes in Computer
Science, Vol. 8044). Springer. https://doi.org/10.1007/978-3-642-39799-8_48

[44] David Mestel, Johannes Mueller, and Pascal Reisert. 2022. How Efficient are
Replay Attacks against Vote Privacy? A Formal Quantitative Analysis. In 35th
IEEE Computer Security Foundations Symposium, CSF.

[45] Johannes Müller. 2022. Breaking and Fixing Vote Privacy of the Estonian E-Voting
Protocol IVXV. In 7th Workshop on Advances in Secure Electronic Voting, FC22.
https://orbilu.uni.lu/handle/10993/49442

[46] Olivier Pereira. 2022. Individual Verifiability and Revoting in the Estonian Internet
Voting System. In 7th Workshop on Advances in Secure Electronic Voting, FC22.
https://eprint.iacr.org/2021/1098

[47] Peter Y. A. Ryan, Peter B. Rønne, and Vincenzo Iovino. 2016. Selene: Voting with
Transparent Verifiability and Coercion-Mitigation. In Financial Cryptography and
Data Security - FC 2016 International Workshops, BITCOIN, VOTING, and WAHC,

Christ Church, Barbados, February 26, 2016, Revised Selected Papers (Lecture Notes
in Computer Science, Vol. 9604). Springer, 176–192. https://doi.org/10.1007/978-3-
662-53357-4_12

[48] Stefan Santesson, Michael Myers, Rich Ankney, Ambarish Malpani, Slava
Galperin, and Dr. Carlisle Adams. 2013. X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP. RFC 6960. https://doi.org/10.17487/
RFC6960

[49] Benedikt Schmidt, Simon Meier, Cas Cremers, and David A. Basin. 2012. Auto-
mated Analysis of Diffie-Hellman Protocols and Advanced Security Properties.
In 25th IEEE Computer Security Foundations Symposium, CSF 2012, Cambridge,
MA, USA, June 25-27, 2012, Stephen Chong (Ed.). IEEE Computer Society, 78–94.
https://doi.org/10.1109/CSF.2012.25

[50] Drew Springall, Travis Finkenauer, Zakir Durumeric, Jason Kitcat, Harri Hursti,
Margaret MacAlpine, and J. Alex Halderman. 2014. Security Analysis of the
Estonian Internet Voting System. In Proceedings of the 21st ACM Conference on
Computer and Communications Security. ACM.

[51] Anggrio Sutopo, Thomas Haines, and Peter Roenne. 2023. On the Auditability of
the Estonian IVXV System and an Attack on Individual Verifiability. InWorkshop
on Advances in Secure Electronic Voting.

[52] Misni Suwito, Bayu Tama, Bagus Santoso, Sabyasachi Dutta, Haowen Tan,
Ueshige Yoshifumi, and Kouichi Sakurai. 2022. A Systematic Study of Bul-
letin Board and Its Application. In Proceedings of the 2022 ACM on Asia Con-
ference on Computer and Communications Security (Nagasaki, Japan) (ASIACCS
2022). Association for Computing Machinery, New York, NY, USA, 1213–1215.
https://doi.org/10.1145/3488932.3527280

[53] Robert Zuccherato, Patrick Cain, Dr. Carlisle Adams, and Denis Pinkas. 2001.
Internet X.509 Public Key Infrastructure Time-Stamp Protocol (TSP). RFC 3161.
https://doi.org/10.17487/RFC3161

Received 7 December 2023; accepted 13 March 2024

https://doi.org/10.1145/1102199.1102213
https://doi.org/10.1007/978-3-642-15497-3_24
https://doi.org/10.1109/SP.2011.21
https://doi.org/10.1007/978-3-642-39799-8_48
https://orbilu.uni.lu/handle/10993/49442
https://eprint.iacr.org/2021/1098
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.17487/RFC6960
https://doi.org/10.17487/RFC6960
https://doi.org/10.1109/CSF.2012.25
https://doi.org/10.1145/3488932.3527280
https://doi.org/10.17487/RFC3161

	Abstract
	1 Introduction
	2 Overview of the EEVprotocol
	3 Threat models and attacks
	4 Solutions
	4.1 Improving existing solutions within EEVntfy
	4.2 New solution EEV

	5 Specification and verification
	5.1 Specification language
	5.2 E-voting protocols and the adversary
	5.3 Definitions for security properties
	5.4 Verification results and discussion

	6 Conclusion and future work
	Acknowledgments
	References

