
Sequential Reprogramming of Boolean Networks
Made Practical

Hugues Mandon?1,2, Cui Su?3, Stefan Haar1, Jun Pang3,4, and Löıc Paulevé5

1 LSV, ENS Cachan, INRIA, CNRS, Université Paris-Saclay, France
2 LRI UMR 8623, Univ. Paris-Sud – CNRS, Université Paris-Saclay, France

3 SnT, University of Luxembourg, Luxembourg, Luxembourg
4 FSTC, University of Luxembourg, Esch-sur-Alzette, Luxembourg

5 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, F-33400 Talence, France

Abstract. We address the sequential reprogramming of gene regulatory
networks modelled as Boolean networks. We develop an attractor-based
sequential reprogramming method to compute all sequential reprogram-
ming paths from a source attractor to a target attractor, where only
attractors of the network are used as intermediates. Our method is more
practical than existing reprogramming methods as it incorporates several
practical constraints: (1) only biologically observable states, viz. attrac-
tors, can act as intermediates; (2) certain attractors, such as apoptosis,
can be avoided as intermediates; (3) certain nodes can be avoided to per-
turb as they may be essential for cell survival or difficult to perturb with
biomolecular techniques; and (4) given a threshold k, all sequential repro-
gramming paths with no more than k perturbations are computed. We
compare our method with the minimal one-step reprogramming and the
minimal sequential reprogramming on a variety of biological networks.
The results show that our method can greatly reduces the number of
perturbations compared to the one-step reprogramming, while having
comparable results with the minimal sequential reprogramming. More-
over, our implementation is scalable for networks of more than 60 nodes.

Keywords: Cell reprogramming · Boolean networks · Attractors

1 Introduction

Cell reprogramming is one of the big discoveries of regenerative medicine. Taka-
hashi and Yamanaka in [23] demonstrated that cell fate decisions could be re-
versed: a mature cell can be reprogrammed into an induced pluripotent stem
cell. Even though different cocktails of transcription factors have been found to
switch cell phenotypes [8,22], the identification of specific transcription factors
for a particular task remains a big obstacle. Blindly testing combinations of
transcription factors is unfeasible due to the high cost of biological experiments.

Computational models of cell dynamics enable the in silico prediction of
reprogramming targets. Qualitative models, notably Boolean networks, allow

? Co-first authors.

2 H. Mandon, C. Su, et al.

initial
condition

target
attractor

transient
state

other attractors

perturbations

natural
dynamics

initial
condition

target
attractor

other attractorsperturbations

intermediate
attractor

initial
condition

target
attractor

other attractors

perturbations

(a) one-step reprogramming (b) sequential reprogramming

(c) attractor-based sequential reprogramming

Fig. 1: Different flavors of Boolean networks reprogramming.

accounting the influences between numerous genes by requiring few modelling
parameters. Thus, they turn out to be well suited for modelling cellular differenti-
ation processes and thereby predict perturbations for their control [1,5,6,7,18,24].
In Boolean networks, each gene or protein is modelled as a binary variable, which
can only take 0 or 1 as its value: a value of 0 means that the gene or protein is
inactive, whereas a value of 1 means that the gene or protein is active. Each vari-
able is assigned with a Boolean function, which determines the next value of the
variable given the current values of other variables of the network. The computa-
tion of the next states depends on the chosen update mode for the variables. In
this paper, we focus on the asynchronous updating mode where a single variable
is updated at a time, selected non-deterministically. The long term dynamics of
a Boolean network is described as attractors, which can be either single-state
attractors (fixed points), or cyclic attractors.

Cell reprogramming consists of triggering a change of cellular phenotype. In
the context of Boolean networks, phenotypes are modelled by the attractors.
Cellular reprogramming becomes then a control problem: driving the dynamics
of the network from a source attractor to a target attractor. In order to control
a network, the system is perturbed out of its actual state. These perturbations
can be applied instantaneously (for an instant), temporarily (for limited time),
or permanently (mutations). In this paper, we focus on instantaneous perturba-
tions. Moreover, the perturbations can take place at different “times”, and as
such, multiple kinds of reprogramming strategies can be found in the literature.

Existing works focus on one-step reprogramming [5,7,10,16,18], or in rare
instances, on sequential reprogramming, e.g., [12]. One-step reprogramming al-

Sequential Reprogramming of Boolean Networks Made Practical 3

lows applying perturbations only once as shown in Fig. 1(a). On the other hand,
sequential reprogramming identifies a sequence of perturbations to be applied at
different intermediate states. The intermediate states can be either a transient
state or a state in an attractor. As illustrated in Fig. 1(b), a set of perturba-
tions are applied to the initial state, which stirs the network to a transient state.
After one-step spontaneous evolution, we apply another set of perturbations
to the new transient state. This leads the network dynamics to a state in the
strong basin of the target attractor, from which the network always eventually
reaches the target attractor. By taking advantage of the natural dynamics of
the network, sequential reprogramming can provide alternative predictions to
one-step reprogramming, notably requiring considerably less perturbations [12].
However, in order to apply the perturbations at the correct time, sequential re-
programming requires complete observability of the network (i.e., the state of the
network is known at any discrete time), which is rarely feasible in practice. This
motivates us to develop an attractor-based sequential reprogramming as illus-
trated by Fig. 1(c), where perturbations should be applied only at attractors.
Since the attractors can be observed experimentally, the attractor-based sequen-
tial reprogramming only requires partial observability of the network. Moreover,
in experiments, perturbations need to take time before effectively changing the
values of the variables. Attractor-based sequential reprogramming captures this
requirement well, as the network dynamics remains in the attractor when per-
turbations are applied.

In this paper, we describe in detail our attractor-based sequential reprogram-
ming to compute sequential reprogramming paths through other attractors of
the network. We compare the performance of this new method with the minimal
one-step reprogramming and the minimal sequential reprogramming. The re-
sults show that all the three methods are efficient in terms of computation time.
Both sequential reprogramming methods can greatly reduce the number of per-
turbations compared to the minimal one-step reprogramming. Even though our
attractor-based sequential reprogramming may need a few more perturbations
than the minimal sequential reprogramming for some cases, the paths identified
by our method are more easily transferable to biological experiment protocols.

Outline. Section 2 gives preliminary notions on Boolean networks. Section 3
addresses the attractor-based sequential reprogramming, with definitions and an
algorithm to compute the solutions. Section 4 evaluates it by comparing its per-
formance with the minimal one-step reprogramming and the minimal sequential
reprogramming on several biological networks. Lastly, section 5 discusses the
results and reviews further the state of the art.

2 Background

2.1 Boolean networks

A Boolean network (BN) describes elements of a dynamical system with binary-
valued nodes and interactions between elements with Boolean functions. It is
formally defined as follows.

4 H. Mandon, C. Su, et al.

Definition 1 (Boolean networks). A Boolean network is a tuple BN = (x, f)
where x = (x1, x2, . . . , xn) such that each xi, 1 ≤ i ≤ n is a Boolean variable and
f = (f1, f2, . . . , fn) is a tuple of Boolean functions over x. |x| = n denotes the
number of variables.

In what follows, i will always range between 1 and n, unless stated otherwise.
A Boolean network BN = (x, f) may be viewed as a directed graph GBN = (V,E)
where V = {v1, v2 . . . , vn} is the set of vertices or nodes and for every 1 ≤ i, j ≤ n,
there is a directed edge from vj to vi if and only if fi depends on xj . An edge
from vj to vi will be often denoted as vj → vi. A path from a vertex v to a vertex
v′ is a (possibly empty) sequence of edges from v to v′ in GBN. For the rest of
the exposition, we assume that an arbitrary but fixed network BN of n variables
is given to us and GBN = (V,E) is its associated directed graph.

A state s of BN is an element in {0, 1}n. Let S be the set of states of BN.
For any state s = (s1, s2, . . . , sn), and for every i, the value of si, often denoted
as s[i], represents the value that the variable xi takes when the BN ‘is in state
s’. For some i, suppose fi depends on xi1 , xi2 , . . . , xik . Then fi(s) will denote
the value fi(s[i1], s[i2], . . . , s[ik]). For two states s, s′ ∈ S, the Hamming distance
between s and s′ will be denoted as hd(s, s′) and arg(hd(s, s′)) ⊆ {1, 2, . . . , n}
will denote the set of indices in which s and s′ differ. For a state s and a subset
S′ ⊆ S, the Hamming distance between s and S′ is defined as the minimum of
the Hamming distances between s and all the states in S′. That is, hd(s,S′) =
mins′∈S′ hd(s, s′). We let arg(hd(s,S′)) denote the set of subsets of {1, 2, . . . , n}
such that I = arg(hd(s,S′)) if and only if I is a set of indices of the variables
that realise this Hamming distance.

2.2 Dynamics of Boolean networks

We assume that the Boolean network evolves in discrete time steps. It starts
initially in a state s0 and its state changes in every time step according to the
update functions f . The updating may happen in various ways. Every such way
of updating gives rise to a different dynamics for the network. In this article, we
focus on the fully asynchronous update mode, but the method is actually generic
to any update mode, as it computes on the resulting global transition system.

Definition 2 (Asynchronous dynamics of Boolean networks). Suppose
s0 ∈ S is an initial state of BN. The asynchronous evolution of BN is a function
ξ : N→ ℘(S) such that ξ(0) = s0 and for every j ≥ 0, if s ∈ ξ(j) then s′ ∈ ξ(j+1)
is a possible next state if and only if either hd(s, s′) = 1 and s′[i] = fi(s) where
{i} = arg(hd(s, s′)) or hd(s, s′) = 0 and there exists i such that s′[i] = fi(s).

Note that the asynchronous dynamics is non-deterministic – the value of
exactly one variable is updated in a single time-step. The index of the variable
that is updated is not known in advance. Henceforth, when we talk about the
dynamics of BN, we shall mean the asynchronous dynamics as defined above.

The dynamics of a Boolean network can be represented as a state transition
graph or a transition system (TS).

Sequential Reprogramming of Boolean Networks Made Practical 5

Definition 3 (Transition system of BN). The transition system of BN, de-
noted by the generic notation TS is a tuple (S,→) where the vertices are the set
of states S and for any two states s and s′ there is a directed edge from s to
s′, denoted s → s′ iff s′ is a possible next state according to the asynchronous
evolution function ξ of BN.

2.3 Attractors and basins of attraction

A path from a state s to a state s′ is a (possibly empty) sequence of transitions
from s to s′ in TS. A path from a state s to a subset S′ of S is a path from s to
any state s′ ∈ S′. For any state s ∈ S, let preTS(s) = {s′ ∈ S | s′ → s} and let
postTS(s) = {s′ ∈ S | s → s′}. preTS(s) contains all the states that can reach s
by performing a single transition in TS and postTS(s) contains all the states that
can be reached from s by a single transition in TS. preTS(s) and postTS(s) are
often called the set of predecessors and successors of s. Note that, by definition,
hd(s, preTS(s)) ≤ 1 and hd(s, postTS(s)) ≤ 1. preTS and postTS can be lifted to a
subset S′ of S as: preTS(S′) =

⋃
s∈S′ preTS(s) and postTS(S′) =

⋃
s∈S′ postTS(s).

We define prei+1
TS (S′) = preTS(preiTS(S′)) and posti+1

TS (S′) = postTS(postiTS(S′))
where pre0TS(S′) = post0TS(S′) = S′. For a state s ∈ S, reachTS(s) denotes the set
of states s′ such that there is a path from s to s′ in TS and can be defined as
the fixpoint of the successor operation which is often denoted as post∗TS. Thus,
reachTS(s) = post∗TS(s).

Definition 4 (Attractor). An attractor A of TS (or of BN) is a minimal
subset of states of S such that for every s ∈ A, reachTS(s) = A.

Remark that attractors are the bottom strongly connected component of TS.
Any state which is not part of an attractor is a transient state. An attractor

A of TS is said to be reachable from a state s if reachTS(s) ∩ A 6= ∅. Attractors
represent the stable behaviour of the BN according to the dynamics. Assuming
strong fairness, the network starting at any initial state s0 ∈ S will eventually
end up in one of the attractors of TS and remain there forever unless perturbed.

For an attractor A of TS, we define a subset of states of S called the strong
basins of A, denoted as basSTS(A), as follows.

Definition 5 (Strong basin). Let A be an attractor of TS. The strong basin
of attraction of A with respect to TS, is defined as basTS(A) = {s ∈ S|reachTS(s)∩⋃
A′ = ∅} where the union is over all attractors A′ of TS such that A′ 6= A.

The definition of strong basin guarantees that any state s in basTS(A) can only
reach the attractor A and cannot reach any other attractor A′, A′ 6= A of BN.6

Example 1. Consider the following four-node network BN = (x, f) where x =
(x1, x2, x3, x4), and f = (f1, f2, f3, f4) where f1 = x1, f2 = x2, f3 = x1 ∧ ¬x2
and f4 = x3 ∨ x4. The graph of the network GBN and its associated transition
system TS is given in Fig. 2. TS has seven attractors marked in red. Their
corresponding strong basins of attractions are shown by enclosing grey regions
of a lighter shade.
6 Henceforth, we drop the subscript TS for the sake of simplicity.

6 H. Mandon, C. Su, et al.

v1 v2

v3

v4

(a) GBN

0000 0001

0010 0011

0110 0111

0100 0101

1000 1001

1010 1011

1110 1111

1100 1101

(b) TSBN

Fig. 2: The graph of BN and its transition system, with the attractors in red.

3 Attractor-based Sequential Reprogramming

3.1 Motivation

In most methods on cellular reprogramming using Boolean networks [18,7,16], all
perturbations are done at once, and the system is left to stabilize itself towards
the desired target attractor. However, allowing perturbations to be performed
at different points in time opens alternative reprogramming paths, possibly less
costly. In general, sequential reprogramming allows the network to be perturbed
in any state (transient states or states in an attractor) [19,12]. This requires
complete observability of the system, which is very hard to obtain experimentally.

To make the sequential reprogramming practical, we design an attractor-
based sequential reprogramming, which only requires partial observability of the
network. The principle of this method is to use other attractors as intermediate
states for the reprogramming. At each step, we apply a set of perturbations to
stir the dynamics towards a state in the strong basin of an intermediate attrac-
tor (or a target attractor). We then let the network evolve spontaneously to the
intermediate attractor (or the target attractor). We repeat the above procedure
until the network reaches the target attractor. In this paper, we focus on instan-
taneous perturbations, while applying the perturbations longer will not affect
the reachability of the target attractor. In practice, based on empirical experi-
ence, biologists may be able to determine how long it takes for the network to
stabilize in an intermediate attractor, i.e., the timing to apply the next pertur-
bations. In that case, if the intermediate attractors are single-state attractors,
partial observability is not required. However, if the intermediate attractors are
cyclic attractors, an observation of the state might still be required.

A feasible reprogramming method has to encode practical considerations. In
most cases, some variables cannot be perturbed, either because they represent
an external cause the experimenter cannot change, or a set of multiple genes and
proteins that would require a lot more work to perturb, or a transcription factor
impacting only the gene or protein hasn’t been found. Moreover, some attractors
might not be suitable as intermediate states, because they lead to the death or

Sequential Reprogramming of Boolean Networks Made Practical 7

disease of the cell. Thus, the algorithm we will describe in Section 3.3 provides
options to avoid perturbing user-specified variables and/or avoid passing user-
specified attractors.

The general principle of this method can be applied to other means to com-
pute the required perturbations for the system to reach a target attractor, given
an initial state in an attractor.

3.2 The reprogramming problem

In this work, we are interested in instantaneous perturbations, thus we define
reprogramming of a BN as follows.

Definition 6 (Reprogramming). A reprogramming set C of a BN is a (pos-
sibly empty) subset of {1, 2, . . . , n}. For a state s ∈ S, the application of C to s
reprograms the state of BN from s to s′ ∈ S, such that s′[i] = 1 − s[i] if i ∈ C
and s′[i] = s[i] otherwise.

Since the perturbations are applied instantaneously, only the state of BN
is changed while the Boolean functions remain the same. Based on the above
definition, we define one-step reprogramming of a BN as follows.

Definition 7 (One-step reprogramming). Given a source attractor As and
a target attractor At of BN, find a state s ∈ As and a reprogramming set C, such
that the dynamics of BN always eventually reaches At after the application of C
to s.

According to [16], we can easily obtain the following proposition.

Proposition 1. A one-step reprogramming CAs→At(s) (s ∈ As) from As to At
is minimal if and only if

1. C(s) ∈ bas(At) and C = arg(hd(s, bas(At))).
2. ∀s′ ∈ As, hd(s′, bas(At)) ≥ hd(s, bas(At)).

We denote a minimal one-step reprogramming from As to At as CAs→At
min (s). A

minimal one-step reprogramming drives the dynamics of BN from As to a state
in the strong basin of At, from which spontaneous evolution will eventually guide
the network to At.

As explained in Section 3.1, attractor-based sequential reprogramming can
provide new solutions apart from the one-step reprogramming paths. Let |ABN|
denote the total number of attractors of BN. We define attractor-based sequential
reprogramming as follows.

Definition 8 (Attractor-based sequential reprogramming). Given As (a
source attractor) and At (a target attractor) of BN, find a sequence of attractors
{A1, A2, . . . , Am} of BN, where A1 = As, Am = At, Ai 6= Aj for any i, j ∈ [1,m]
and 2 ≤ m ≤ |ABN|, such that a sequence of minimal one-step reprogramming

8 H. Mandon, C. Su, et al.

{CA1→A2
min ,CA2→A3

min , . . . ,C
Am−1→Am

min } always eventually reaches At (Am). We call
it a attractor-based sequential path, denoted as

ρ : A1
C
A1→A2
min−−−−−→ A2

C
A2→A3
min−−−−−→ A3

...−→ . . .
C
Am−1→Am
min−−−−−−−−→ Am

(|CA1→A2
min |+ |CA2→A3

min |+ . . .+ |CAm−1→Am

min |) is the total number of perturbations.

Due to the diversity of biological networks, there does not exist one univer-
sal reprogramming strategy that suits all different networks. Hence, we develop
an algorithm to compute all attractor-based sequential reprogramming paths
satisfying the following constraints:

1. the total number of perturbations is less than a threshold;
2. certain attractors can be avoided as intermediates;
3. certain nodes of the network can be avoided to be perturbed.

These constraints encode practical considerations described in Section 3.1 and
thus lead to biologically feasible reprogramming paths. We describe such an
algorithm in the next section.

3.3 Algorithm

Let BN = (x, f) be a Boolean Network of size n = |x|. Let U be the set of
variables that cannot be perturbed, As be an attractor of the network, which is
the initial state of the system, and At be another attractor of the network, which
is the target to reprogram to.

Algorithm 1 describes the algorithm to compute sequential paths from As

to At, using other attractors as intermediate steps. The inputs are: the Boolean
Network BN, the initial attractor As, the target attractor At, the set of attractors
A that can act as intermediate states, and the set of variables U that can not be
perturbed. The set A excludes the attractors that cannot act as intermediates,
such as the source attractor and the undesired attractors.7

The algorithm uses a modified Hamming distance hdm between the states of
the transition system. Between a state s and a state t, this modified Hamming
distance hdm(s, t) is defined as:

hdm(s, t) =

{
∞ if ∃v ∈ U, s[v] 6= t[v]
hd(s, t) otherwise

The modified Hamming distance between two sets of states S and T is defined
as: hdm(S, T) = mins∈S,t∈T (hdm(s, t)).

To compute the sequential paths from As to At using other attractors as
intermediate states, we have to compute the strong basin of At, which is bas(At).
Since we only use the distance between a state and a basin, let HBm, the distance
between a set of states S and the basin of a set of states T , be defined as

7 We refer details on attractor detection to [13].

Sequential Reprogramming of Boolean Networks Made Practical 9

Algorithm 1 Inevitable reprogramming of BNs from As to At

1: procedure Computation of inevitable paths(BN,As,At,A,U)
2: max dist = HBm(BN,U,As,At))
3: LAs = new empty dictionary
4: if max dist <∞ then
5: a = arg HB(BN,U,As,At)
6: . Associate (distance, [perturbations list]) to the [path]
7: LAs .add([At] : (max dist, [a]))
8: . Associate the minimal length of all paths from As to At

9: LAs .add(“min” : max dist)

10: list := ∅
11: for A ∈ A do
12: d = HBm(BN,U,A,At)
13: if d < max dist then
14: list.add(A)
15: LA = map()
16: a = arg HB(BN,U,A,At)
17: . Associate (distance, [perturbations list]) to the [path]
18: LA.add([At] : (d, [a]))
19: . Associate minimal length of all paths from A to At

20: LA.add(“min” : d)

21: . Recursively computes the paths with attractors as intermediate steps
22: while list 6= ∅ do
23: l := ∅
24: for A1 ∈ A do
25: for A2 ∈ list do
26: d = HBm(BN,U,A1,A2)
27: if d 6=∞ and d+ LA2 [“min”] ≤ max dist then
28: l.add(A1)
29: for path ∈ LA2 \ {“min”} do
30: td = d+ LA2 [path][0] . total length of the new path to At

31: if td ≤ max dist and A2 6∈ path then
32: if LA1 does not exists then
33: LA1 = map()
34: . Associate minimal length of all paths from A to At

35: LA1 .add(“min” : td)

36: a = arg HB(BN,U,A1,A2)
37: . Associate (distance, [perturbations]) to the [path]
38: LA1 .add([A2] + path : (td, [a] + LA2 [path][1]))
39: if td < LA1 [“min”] then
40: LA1 [“min”] = td

41: list = l
42: return LAs

10 H. Mandon, C. Su, et al.

Algorithm 2 Distance functions

1: function HBm(BN,U, S, T)
2: B = bas(T)
3: . Details on the computation of basinS can be found in [16,17]
4: return mins∈S,t∈B(hdm(U, s, t))

5: function hdm(BN,U, s, t)
6: sum = 0
7: for i = 1, i ≤ n, i+ + do
8: if s[i] 6= t[i] then
9: if i ∈ U then

10: return ∞
11: sum = sum+ |s[i]− t[i]|
12: return sum
13: function arg HB(BN,U, S, T)
14: min = HBm(BN,U, S, T)
15: if min =∞ then
16: Fail(”infinite distance”)

17: D = map()
18: for s ∈ S do
19: for t ∈ T do
20: if hdm(U, s, t) = min then
21: for i = 1, i ≤ n, i+ + do
22: if s[i] 6= t[i] then
23: . Associate the desired value of the variable i to ti
24: D.add(i : ti)

25: return D

HBm(S, T) = hdm(S, bas(T)). Algorithm 2 describes how to compute both of
these distances, as well as how to compute the argument of HBm, including
the set of variables that realize the minimum Hamming distance and the desired
value of these variables. The distance between As and the basin of At, max dist =
HBm(As,At), will be used as a benchmark for the next computations: this is the
maximum number of perturbations allowed to reach At.

An empty dictionary LAs is created, to store the possible paths. If max dist <
∞, the perturbed variables, a = arg HB(BN,U,As,At) are computed. The path,
represented by a list of targets to reach in order to reach the next one, [At] is
added as an entry of the dictionary, with the value (max dist, [a]). This dictionary
regroups all paths from As to At, the first value is the length of the path, and
the second is how to get from one attractor to the next one in the list. A special
value is added to the dictionary, “min”, which is the minimal length of all the
paths from As to At, and it is given the value max dist.

Then, for all attractor A in A, the distance d = HBm(A,At) is computed.
If this distance d is strictly lower than max dist8, then A is added to a list of
attractors list and a dictionary LA is created. We add to LA the entry [At] to

8 In this case, if max dist =∞, any non infinite distance is considered strictly lower.

Sequential Reprogramming of Boolean Networks Made Practical 11

which we associate the length of the path, d, and the perturbations made in a list,
[arg HB(BN,U,A,At)]. The path is a list of the attractors to reach in the right
order. The perturbations made are a set, a dictionary in our case, containing the
variables to perturb and the desired values. This set is put in a list: each set of
the list is a set of perturbations to go from the current attractor to the next one
in the path defined above. A special value “min” is added to the dictionary, in
the same way as for LAs , to store the minimal length of paths from A to At.

The list list is used to recursively compute the shortest paths. As long as list
is not empty, the following steps are done:

1. First, create an empty list l.
2. Then, from all attractor A1 in A, for all attractor A2 in list, the distance
d = HBm(A1,A2) is computed. If this distance plus LA2

[“min”]9 is lower
than max dist, then for every path path in LA2

, the total distance d +
LA2

[path][0]10 is computed. If this distance is lower or equal to max dist
and if A1 6∈ path, a new entry [A2] + path11 is added to LA1

, with the value
(d + LA2 [path][0], [arg HB(A1,A2)] + LA2 [path][1]). The first value, the dis-
tance, is the one to go from A1 to At using A2 as an intermediate step, and
the paths from A2 to At already computed. The second value is the set of
variables to perturb, using the same principle. If the dictionary does not
exist, it is created, and “min” is updated or created. Moreover, A1 is added
to l.

3. Lastly, the value of list is changed to match l, list = l.

When this loop is over, all paths are in LAs , with the associated length and
steps of variables to perturb, and LAs is returned.

4 Evaluation

To demonstrate the efficiency and the efficacy of our attractor-based sequential
reprogramming described in Algorithm 1, we compare its performance with the
minimal one-step reprogramming [16] and the minimal sequential reprogram-
ming [12] on a variety of biological networks.

4.1 Reprogramming strategies

To drive a network from a source state to a target attractor, the minimal one-step
reprogramming [16] computes a minimal set of perturbations to be conducted
simultaneously, and the minimal sequential reprogramming [12] computes short-
est sequential paths, where any state may act as an intermediate state. Different
from [12], the attractor-based sequential reprogramming (this work) identifies all
the sequential paths with at most k perturbations, where only attractors (bio-
logically observable states) can play the role of intermediate states. We compute

9 This value is the minimal length path from A1 to At.
10 As A2 is in list, LA2 exists.
11 Here, the + is the usual concatenation for lists.

12 H. Mandon, C. Su, et al.

the reprogramming paths for all combinations of source and target attractors of
the studied networks with the three methods. For the attractor-based sequen-
tial reprogramming, the maximal number of perturbations allowed is set as the
number of perturbations required by the minimal one-step reprogramming; and
we assume all the nodes can be perturbed, thus U = ∅ due to the lack of rel-
evant biological knowledge. The three methods are implemented as part of the
software tool ASSA-PBN [14]. All the experiments are performed on a computer
with a CPU of Intel Core i7 @3.1 GHz and 8 GB of DDR3 RAM12.

4.2 Benchmark biological networks

We give a short description of the biological networks on which we test the three
different reprogramming methods of Boolean networks. Table 1 gives an overview
of the sizes and number of attractors for these networks. All the attractors of
the networks are single-state attractors.

– The myeloid differentiation network is designed to model myeloid differen-
tiation from common myeloid progenitors to megakaryocytes, erythrocytes,
granulocytes and monocytes [11].

– The cardiac gene regulatory network is constructed for the early cardiac gene
regulatory network of the mouse, including the core genes required for the
cardiac development and the FHF/SHF determination [9].

– The ERBB receptor regulated G1/S transition network enables us to identify
potential targets in the treatment of trastuzumab resistant breast cancer [20].

– The tumour network is constructed to study the role of individual mutations
or their combinations in the metastatic process [5].

– The PC12 cell network models the temporal sequence of protein signalling,
transcriptional response and subsequent autocrine feedback [15].

– The model of hematopoietic cell specification recaps cytokine induced dif-
ferentiation, several reported gene knockdowns and the reprogramming of
pre-B cells [6].

– The model of bortezomib responses can predict responses to the lower borte-
zomib exposure and the dose-response curve for bortezomib [4].

4.3 Results on the myeloid differentiation network

Let us analyse in more depth the predictions obtained on the the myeloid dif-
ferentiation network. Figure 3 depicts its influence graph, and Table 2 lists its
six attractors, all being fixed points, four of which correspond to megakaryocyte
(A2), erythrocyte (A3), granulocyte (A5) and monocyte (A6) [11]. Table 3 de-
scribes the number of perturbations required by the three methods (|CO|, |CA|,
and |CS |) for this network. The first column and the first row stand for the

12 Executable and data are available at the following link: https://github.com/cuisu/
attractor_based_sequential_reprogramming.

https://github.com/cuisu/attractor_based_sequential_reprogramming
https://github.com/cuisu/attractor_based_sequential_reprogramming

Sequential Reprogramming of Boolean Networks Made Practical 13

network
#

#A
range of |C| time (seconds)

nodes edges |CO| |Cmin
A | |CS | TO TA TS

myeloid 11 30 6 1-5 1-4 1-4 0.02 0.04 0.21
cardiac 15 39 6 1-9 1-8 1-4 0.23 0.63 2.28
ERBB 20 52 3 1-9 1-8 1-5 0.05 0.07 0.49
tumour 32 158 9 1-10 1-9 1-6 1.54 5.99 387.04
PC12 33 62 7 1-11 1-10 1-10 0.39 3.21 95.10
hematopoietic 33 88 5 1-13 1-12 1-12 1.89 4.87 8067.73
bortezomib 67 135 5 1-21 1-15 ∗ 50.24 106.91 ∗
Table 1: An overview of the networks and the evaluation results. O, A and S
stand for the minimal one-step reprogramming, the attractor-based sequential
reprogramming and the minimal sequential reprogramming, respectively.

PU1

GATA2 GATA1

FOG1

Fli1

SCL

EKLF

C/EBP

Gfi1EgrNab

cJun
↵

Fig. 3: Structure of the myeloid network. Rightarrow and bar arrow represent
activation and inhibition, respectively.

source and the target attractors, respectively. The minimal one-step reprogram-
ming needs more perturbations since it only allows to apply perturbations once.
By choosing appropriate states as intermediates, the sequential reprogramming
can reduce the number of perturbations for a few cases (e.g. from A2 (A3, A4 or
A5) to A6). The minimal number of perturbations required by the two sequen-
tial reprogramming methods are identical for this network. Besides the shortest
paths, the attractor-based sequential reprogramming also identifies paths with
at most |CO| perturbations. For instance, there are in total three attractor-based
sequential paths from A2 to A6:

– ρ1 : A2
GATA1,EgrNab,PU1,cJun, C/EBPα−−−−−−−−−−−−−−−−−−−−−−−→ A6,;

– ρ2 : A2
GATA1, Fli1−−−−−−−−→ A4

PU1−−−→ A1
C/EBPα−−−−−→ A6;

– ρ3 : A2
GATA1,PU1−−−−−−−−→ A1

C/EBPα−−−−−→ A6.

Path ρ1 is also a shortest one-step path, which requires 5 perturbations. Paths ρ2
and ρ3 only require 4 and 3 perturbations, respectively. An interesting observa-
tion is that the sequential paths may require the perturbation of the same gene

14 H. Mandon, C. Su, et al.

GATA2 GATA1 FOG1 EKLF Fli1 SCL C/EBPα PU1 cJun EgrNab Gfi1

A1 0 0 0 0 0 0 0 1 1 1 0
A2 0 1 1 0 1 1 0 0 0 0 0
A3 0 1 1 1 0 1 0 0 0 0 0
A4 0 0 0 0 0 0 0 0 0 0 0
A5 0 0 0 0 0 0 1 1 0 0 1
A6 0 0 0 0 0 0 1 1 1 1 0

Table 2: Attractors of the myeloid network.

A1 A2 A3 A4 A5 A6

|CO| |CA| |CS | |CO| |CA| |CS | |CO| |CA| |CS | |CO| |CA| |CS | |CO| |CA| |CS | |CO| |CA| |CS |
A1 0 0 0 3 3 3 3 3 3 1 1 1 3 3 3 1 1 1
A2 2 2 2 0 0 0 2 2 2 2 2 2 4 4 4 5 3, 4, 5 3
A3 2 2 2 2 2 2 0 0 0 1 1 1 3 3 3 5 3, 5 3
A4 1 1 1 2 2 2 2 2 2 0 0 0 2 2 2 4 2, 4 2
A5 1 1 1 3 3 3 3 3 3 2 2 2 0 0 0 3 2, 3 2
A6 1 1 1 3 3 3 3 3 3 2 2 2 2 2 2 0 0 0

Table 3: The number of perturbations computed by the three reprogramming
methods for the myeloid differentiation network. The first column and the first
row stand for the source and the target attractors, respectively.

multiple times, which will not happen for the one-step reprogramming method.

For instance, a sequential path from A5 to A6 is ρ : A5
C/EBPα−−−−−→ A1

C/EBPα−−−−−→ A6.
By perturbing ‘C/EBPα’ twice, we can achieve the sequential reprogramming
from A5 to A6.

4.4 Results on the benchmark biological networks

An overview of the evaluation results on the seven networks is given in Table 1.
It is worth noting that Table 3 gives the number of perturbations for every
pair of source and target attractors of the myeloid differentiation network, while
in Table 1, columns |CO|, |Cmin

A |, and |CS | summarise the minimal number of
perturbations required by the three methods for all pairs of source and target
attractors of the seven biological networks. 13 In Table 1, |Cmin

A | only considers
the shortest attractor-based sequential paths, instead of all the identified paths
(see |CA| in Table 3) with less than |CO| perturbations.

In general, the sequential strategy results in less perturbations. Even though
the attractor-based sequential method requires a few more perturbations than
the minimal sequential reprogramming, it uses biological observable states as
intermediates and thus is considered more realistic and applicable. In particular,
the attractor-based sequential control can reduce up to 9 perturbations compared
to the minimal one-step control. Columns TO, TA and TS of Table 1 give the total
computation time. We can see that all three methods are efficient and scale well
for large networks. Even though the attractor-based sequential reprogramming
takes a bit longer than the one-step reprogramming, it identifies a number of
potential applicable solutions.

13 ‘*’ means the algorithm fails to return any result within five hours. We excluded the
‘apoptosis’ attractor for the tumour network for the evaluation.

Sequential Reprogramming of Boolean Networks Made Practical 15

5 Discussion

Combining the available techniques from computer science with the constraints
of experimental protocols in biology, in this paper, we have designed attractor-
based sequential reprogramming of Boolean networks. Compared to one-step
reprogramming [16], where all perturbations are applied only once, our method
identifies a sequence of perturbations to be applied sequentially. Taking full ad-
vantage of spontaneous evolutions, our method requires less perturbations and
thus results in lower experimental costs. Different from the sequential reprogram-
ming [12], our method only uses other attractors as intermediates. Therefore, it
does not require complete observability, except within cyclic attractors, which
makes its application more feasible in biological experiments.

Moreover, our method allows avoiding some variables to be perturbed and
some attractors to be used as intermediate steps, which differs from a previ-
ously developed sequential reprogramming method [12]. These constrains key
observations in practice, as some biological networks have genes that cannot
yet be influenced by transcription factors (or they can be influenced at a very
high cost), and some attractors such as apoptosis of the cell shouldn’t be vi-
able intermediate steps. Our method sits in a middle ground between one-step
reprogramming [16] and sequential reprogramming [12].

Existing works mainly focus on one-step reprogramming [2,3,5,6,7,21,24],
considering various kinds of perturbations and targeted dynamical properties.
Predictions are obtained following different techniques, with probabilistic mod-
elling in [3,5,6], or qualitative modelling in [2,7,21,24]. Sequential reprogramming
is also studied in the literature [1,19,12] using quite different approaches: Abou-
Jaoudé et al. [1] applied model checking to verify that a set of perturbations
can reprogram the cell correctly, using other attractors as intermediate steps if
needed, Ronquist et al. [19] used a quantitative model that returns a specific
time for the perturbations to be made; lastly in the work of Mandon et al. [12],
the perturbations can be done at any time, but require precise knowledge of the
state of the system (i.e., complete observability).

In future work, besides relaxing the observability within cyclic attractors,
we plan to address attractor-based sequential reprogramming with temporary
perturbations (i.e., sustained for a limited time). This corresponds to another
classical experimental setting in cellular reprogramming, and should provide
alternative and potentially shorter sequences of perturbations.

Acknowledgement. This research was supported by the ANR-FNR project Al-
goReCell (ANR-16-CE12-0034; FNR INTER/ANR/15/11191283); Labex Digi-
Cosme (project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as part
of the program “Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-
0003-02); and by the project SEC-PBN funded by University of Luxembourg.
Cui Su was also partially supported by the COST Action IC1405.

16 H. Mandon, C. Su, et al.

References

1. Abou-Jaoudé, W., Monteiro, P.T., Naldi, A., Grandclaudon, M., Soumelis, V.,
Chaouiya, C., Thieffry, D.: Model checking to assess T-helper cell plasticity. Fron-
tiers in Bioengineering and Biotechnology 2 (2015)

2. Biane, C., Delaplace, F.: Abduction based drug target discovery using boolean
control network. In: Feret, J., Koeppl, H. (eds.) Computational Methods in Systems
Biology. pp. 57–73. Springer International Publishing, Cham (2017)

3. Chang, R., Shoemaker, R., Wang, W.: Systematic search for recipes to generate in-
duced pluripotent stem cells. PLOS Computational Biology 7(12), e1002300 (2011)

4. Chudasama, V., Ovacik, M., Abernethy, D., Mager, D.: Logic-based and cellular
pharmacodynamic modeling of bortezomib responses in U266 human myeloma
cells. Journal of Pharmacology and Experimental Therapeutics 354(3), 448–458
(2015)

5. Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.:
Mathematical modelling of molecular pathways enabling tumour cell invasion and
migration. PLOS Computational Biology 11(11), e1004571 (2015)

6. Collombet, S., van Oevelen, C., Ortega, J.L.S.and Abou-Jaoudé, W., Di Stefano,
B., Thomas-Chollier, M., Graf, T., Thieffry, D.: Logical modeling of lymphoid
and myeloid cell specification and transdifferentiation. Proceedings of the National
Academy of Sciences 114(23), 5792–5799 (2017)

7. Crespo, I., Perumal, T.M., Jurkowski, W., del Sol, A.: Detecting cellular repro-
gramming determinants by differential stability analysis of gene regulatory net-
works. BMC Systems Biology 7(1), 140 (2013)

8. Graf, T., Enver, T.: Forcing cells to change lineages. Nature 462(7273), 587–594
(2009)

9. Herrmann, F., Gro, A., Zhou, D., Kestler, H.A., Kühl, M.: A Boolean model of the
cardiac gene regulatory network determining first and second heart field identity.
PLOS ONE 7, 1–10 (10 2012)

10. Jo, J., Hwang, S., Kim, H.J., Hong, S., Lee, J.E., Lee, S.G., Baek, A., Han, H.,
Lee, J.I., Lee, I., et al.: An integrated systems biology approach identifies posi-
tive cofactor 4 as a factor that increases reprogramming efficiency. Nucleic Acids
Research 44(3), 12031215 (2016)

11. Krumsiek, J., Marr, C., Schroeder, T., Theis, F.J.: Hierarchical differentiation of
myeloid progenitors is encoded in the transcription factor network. PLOS ONE
6(8), e22649 (2011)

12. Mandon, H., Haar, S., Paulevé, L.: Temporal Reprogramming of Boolean Networks.
In: Proc. 15th Conference on Computational Methods for Systems Biology. Lecture
Notes in Computer Science, vol. 10545, pp. 179–195. Springer (2017)

13. Mizera, A., Pang, J., Qu, H., Yuan, Q.: Taming asynchrony for attractor detection
in large Boolean networks. IEEE/ACM transactions on computational biology and
bioinformatics 16(1), 31–42 (2018)

14. Mizera, A., Pang, J., Su, C., Yuan, Q.: ASSA-PBN: A toolbox for probabilis-
tic boolean networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 15(4), 1203–1216 (2018)

15. Offermann, B., Knauer, S., Singh, A., Fernández-Cachón, M.L., Klose, M., Kowar,
S., Busch, H., Boerries, M.: Boolean modeling reveals the necessity of transcrip-
tional regulation for bistability in PC12 cell differentiation. Frontiers in Genetics
7, 44 (2016)

Sequential Reprogramming of Boolean Networks Made Practical 17

16. Paul, S., Su, C., Pang, J., Mizera, A.: A decomposition-based approach towards
the control of Boolean networks. In: Proc. 9th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics. pp. 11–20. ACM Press (2018)

17. Paul, S., Su, C., Pang, J., Mizera, A.: An efficient approach towards the source-
target control of Boolean networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (2019), accepted

18. Remy, E., Rebouissou, S., Chaouiya, C., Zinovyev, A., Radvanyi, F., Calzone,
L.: A modelling approach to explain mutually exclusive and co-occurring genetic
alterations in bladder tumorigenesis. Cancer Research pp. canres–0602 (2015)

19. Ronquist, S., Patterson, G., Muir, L.A., Lindsly, S., Chen, H., Brown, M., Wicha,
M.S., Bloch, A., Brockett, R., Rajapakse, I.: Algorithm for cellular reprogramming.
Proceedings of the National Academy of Sciences 114(45), 11832–11837 (2017)

20. Sahin, Ö., Fröhlich, H., Löbke, C., Korf, U., Burmester, S., Majety, M., Mattern, J.,
Schupp, I., Chaouiya, C., Thieffry, D., et al.: Modeling ERBB receptor-regulated
G1/S transition to find novel targets for de novo trastuzumab resistance. BMC
Systems Biology 3(1), 1 (2009)

21. Samaga, R., Von Kamp, A., Klamt, S.: Computing combinatorial intervention
strategies and failure modes in signaling networks. Journal of Computational Bi-
ology 17(1), 39–53 (2010)

22. del Sol, A., Buckley, N.J.: Concise review: A population shift view of cellular re-
programming. STEM CELLS 32(6), 1367–1372 (2014)

23. Takahashi, K., Yamanaka, S.: A decade of transcription factor-mediated repro-
gramming to pluripotency. Nature Reviews Molecular Cell Biology 17(3), 183193
(2016)

24. Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular
network dynamics. PLOS Computational Biology 11, 1–24 (04 2015)

	Sequential Reprogramming of Boolean Networks Made Practical

