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1. Introduction

Sliding window protocols [CeK74] (SWPs) ensure successful transmission of messages from a sender to a
receiver through a medium, in which messages may get lost. Their main characteristic is that the sender
does not wait for an incoming acknowledgment before sending next messages, for optimal use of bandwidth.
This is the reason why many data communication systems include the SWP, in one of its many variations.

In SWPs, both the sender and the receiver maintain a buffer. In practice the buffer at the receiver is
often much smaller than at the sender, but here we make the simplifying assumption that both buffers
can contain up to n messages. By providing the messages with sequence numbers, reliable in-order delivery
without duplications is guaranteed. The sequence numbers can be taken modulo 2n (and not less, see [Tan81]
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for a nice argument). The messages at the sender are numbered from i to i + n (modulo 2n); this is called
a window. When an acknowledgment reaches the sender, indicating that k messages have arrived correctly,
the window slides forward, so that the sending buffer can contain messages with sequence numbers i + k to
i + k + n (modulo 2n). The window of the receiver slides forward when the first element in this window is
passed on to the environment.

Within the process algebraic community, SWPs have attracted much attention, because their precise
formal verification turned out to be surprisingly difficult. We provide a comparison with verifications of
SWPs from the literature in Section 2, and restrict here to the context in which this paper was written.
After the advent of process algebra in the early eighties of last century, it was observed that simple protocols,
such as the alternating bit protocol, could readily be verified. In an attempt to show that more difficult
protocols could also be dealt with, SWPs were considered. Middeldorp [Mid86] and Brunekreef [Bru93] gave
specifications in ACP [BeK84] and PSF [MaV90], respectively. Vaandrager [Vaa86], Groenveld [Gro87], van
Wamel [Wam92] and Bezem and Groote [BeG94a] manually verified one-bit SWPs, in which the size of the
sending and receiving window is one.

Starting in 1990, we attempted to prove the most complex SWP from [Tan81] (not taking into account
additional features such as duplex message passing and piggybacking) correct using µCRL [GrP95], which
is a suitable process algebraic formalism for such purposes. This turned out to be unexpectedly hard, and
has led to the development of new proof methods for protocol verification. We therefore consider the current
paper as a true milestone in process algebraic verification.

Our first observation was that the external behavior of the protocol, as given in [Tan81], was unclear.
We adapted the SWP such that it nicely behaves as a queue of capacity 2n. The second observation was
that the SWP of [Tan81] contained a deadlock [Gro91, Stelling 7], which could only occur after at least n
messages were transmitted. This error was communicated to Tanenbaum, and has been repaired in more
recent editions of [Tan81]. Another bug in the µCRL specification of the SWP was detected by means of
a model checking analysis. A first attempt to prove the resulting SWP correct led to the verification of
a bakery protocol [GrK95], and to the development of the cones and foci proof method [GrS01, FoP03].
This method plays an essential role in the proof in the current paper, and has been used to prove many
other protocols and distributed algorithms correct. But the correctness proof required an additional idea,
already put forward by Schoone [Sch91], to first perform the proof with unbounded sequence numbers, and
to separately eliminate modulo arithmetic.

We present a specification in µCRL of a SWP with buffer size 2n and window size n, for arbitrary n. The
medium between the sender and the receiver is modeled as a lossy queue of unbounded capacity. We manually
prove that the external behavior of this protocol is branching bisimilar [GlW96] to a FIFO queue of capacity
2n. This proof is entirely based on the axiomatic theory underlying µCRL and the axioms characterizing
the data types. It implies both safety and liveness of the protocol (the latter under the assumption of
fairness). First, we linearize the specification, meaning that we get rid of parallel operators. Moreover,
communication actions are stripped from their data parameters. Then we eliminate modulo arithmetic,
using the proof principle CL-RSP [BeG94b]. Finally, we apply the cones and foci technique, to prove that
the linear specification without modulo arithmetic is branching bisimilar to a FIFO queue of capacity 2n. All
lemmas for the data types, all invariants and all correctness proofs have been checked using PVS [ORR+96].
The PVS files are available via http://homepages.cwi.nl/~vdpol/swp.html.

A concise overview of other verifications of SWPs is presented in Section 2. Many of these verifications
deal with either unbounded sequence numbers, in which case the intricacies of modulo arithmetic disappear,
or a fixed finite window size. The papers that do treat arbitrary finite window sizes in most cases restrict to
safety properties.

This paper is set up as follows. Section 2 gives an overview of related work on verifying SWPs. Section
3 introduces the process part of µCRL. In Section 4, the data types needed for specifying the SWP and
its external behavior are presented. Section 5 features the µCRL specifications of the SWP and its external
behavior. In Section 6, three consecutive transformations are applied to the specification of the SWP, to
linearize the specification, eliminate arguments of communication actions, and get rid of modulo arithmetic.
In Section 7, properties of the data types and invariants of the transformed specification are proved. In Section
8, it is proved that the three transformations preserve branching bisimilarity, and that the transformed
specification behaves like a FIFO queue. In Section 9, we present the formalization and verification of the
SWP in PVS [ORR+96]. Finally, we conclude the paper in Section 10.

An earlier version of this paper appeared as [FGP+04], where the medium between the sender and the
receiver was modeled as a lossy queue of capacity one. Here, we model the medium as a lossy queue of



Verification of a Sliding Window Protocol in µCRL and PVS 3

unbounded capacity, which is more realistic and further complicates the verification effort. In this paper,
we also present equational definitions of the data types, lemmas regarding these data types, all invariants,
and detailed correctness proofs, which were for a large part omitted in [FGP+04]. Moreover, in Section 9 we
report on the formalization and verification of the SWP in PVS.

2. Related Work

Sliding window protocols have attracted considerable interest from the formal verification community. In
this section we present an overview. Many of these verifications deal with unbounded sequence numbers, in
which case modulo arithmetic is avoided, or with a fixed finite buffer and window size at the sender and
the receiver. Case studies that do treat arbitrary finite buffer and window sizes mostly restrict to safety
properties.

Unbounded sequence numbers Stenning [Ste76] studied a SWP with unbounded sequence numbers and
an infinite window size, in which messages can be lost, duplicated or reordered. A timeout mechanism is used
to trigger retransmission. Stenning gave informal manual proofs of some safety properties. Knuth [Knu81]
examined more general principles behind Stenning’s protocol, and manually verified some safety properties.
Hailpern [Hai82] used temporal logic to formulate safety and liveness properties for Stenning’s protocol, and
established their validity by informal reasoning. Jonsson [Jon87] also verified safety and liveness properties of
the protocol, using temporal logic and a manual compositional verification technique. Rusu [Rus01] used the
theorem prover PVS to verify safety and liveness properties for a SWP with unbounded sequence numbers.

Fixed finite window size Richier et al. [RRS+87] specified a SWP in a process algebra based language
Estelle/R, and verified safety properties for window size up to eight using the model checker Xesar. Madelaine
and Vergamini [MaV91] specified a SWP in Lotos, with the help of the simulation environment Lite, and
proved some safety properties for window size six. Holzmann [Hol91, Hol97] used the Spin model checker to
verify safety and liveness properties of a SWP with sequence numbers up to five. Kaivola [Kai97] verified
safety and liveness properties using model checking for a SWP with window size up to seven. Godefroid and
Long [GoL99] specified a full duplex SWP in a guarded command language, and verified the protocol for
window size two using a model checker based on Queue BDDs. Stahl et al. [SBL+99] used a combination
of abstraction, data independence, compositional reasoning and model checking to verify safety and liveness
properties for a SWP with window size up to sixteen. The protocol was specified in Promela, the input
language for the Spin model checker. Smith and Klarlund [SmK00] specified a SWP in the high-level language
IOA, and used the theorem prover MONA to verify a safety property for unbounded sequence numbers with
window size up to 256. Jonsson and Nilsson [JoN00] used an automated reachability analysis to verify safety
properties for a SWP with a receiving window of size one. Latvala [Lat01] modeled a SWP using Colored
Petri nets. A liveness property was model checked with fairness constraints for window size up to eleven.

Arbitrary finite window size Cardell-Oliver [Car91] specified a SWP using higher order logic, and man-
ually proved and mechanically checked safety properties using HOL. (Van de Snepscheut [Sne95] noted that
what Cardell-Oliver claims to be a liveness property is in fact a safety property.) Schoone [Sch91] manually
proved safety properties for several SWPs using assertional verification. Van de Snepscheut [Sne95] gave a
correctness proof of a SWP as a sequence of correctness preserving transformations of a sequential program.
Paliwoda and Sanders [PaS91] specified a reduced version of what they call a SWP (but which is in fact
very similar to the bakery protocol from [GrK95]) in the process algebra CSP, and verified a safety property
modulo trace semantics. Röckl and Esparza [RoE99] verified the correctness of this bakery protocol modulo
weak bisimilarity using Isabelle/HOL, by explicitly checking a bisimulation relation. Chkliaev et al. [CHV03]
used a timed state machine in PVS to specify a SWP with a timeout mechanism and proved some safety
properties with the mechanical support of PVS; correctness is based on the timeout mechanism, which allows
messages in the mediums to be reordered.
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3. µCRL

µCRL [GrP95] (see also [GrR01]) is a language for specifying distributed systems and protocols in an algebraic
style. It is based on the process algebra ACP [BeK84] extended with equational abstract data types [LEW96].
We will use ≈ for equality between process terms and = for equality between data terms.

A µCRL specification of data types consists of two parts: A signature, consisting of function symbols
from which one can build data terms, and axioms that induce an equality relation on data terms of the same
type. They provide a loose semantics, meaning that it is allowed to have multiple models. The data types
needed for our µCRL specification of a SWP are presented in Section 4. In particular we have the data sort
of booleans Bool with constants t and f, and the usual connectives ∧, ∨, ¬, ⇒ and ⇔. For a boolean b, we
abbreviate b = t to b and b = f to ¬b.

The process part of µCRL is specified using a number of pre-defined process algebraic operators, which
we will present below. From these operators one can build process terms, which describe the order in which
the atomic actions from a set A may happen. A process term consists of actions and recursion variables
combined by the process algebraic operators. Actions and recursion variables may carry data parameters.
There are two predefined actions outside A: δ represents deadlock, and τ a hidden action. These two actions
never carry data parameters.

Two elementary operators to construct processes are sequential composition, written p·q, and alternative
composition, written p + q. The process p·q first executes p, until p terminates, and then continues with
executing q. The process p+q non-deterministically behaves as either p or q. Summation

∑
d:D p(d) provides

the possibly infinite non-deterministic choice over a data type D. For example,
∑

n:Nat
a(n) can perform the

action a(n) for all natural numbers n. The conditional construct p � b � q, with b a data term of sort Bool ,
behaves as p if b and as q if ¬b. Parallel composition p ‖ q performs the processes p and q in parallel; in other
words, it consists of the arbitrary interleaving of actions of the processes p and q. For example, if there is
no communication possible between actions a and b, then a ‖ b behaves as a·b + b·a. Moreover, actions from
p and q may also synchronize to a communication action, when this is explicitly allowed by a predefined
communication function; two actions can only synchronize if their data parameters are equal. Encapsulation
∂H(p), which renames all occurrences in p of actions from the set H into δ, can be used to force actions
into communication. For example, if actions a and b communicate to c, then ∂{a,b}(a ‖ b) ≈ c. Hiding τI(p)
renames all occurrences in p of actions from the set I into τ . Finally, processes can be specified by means of
recursive equations

X(d1:D1, . . . , dn:Dn) ≈ p

where X is a recursion variable, di a data parameter of type Di for i = 1, . . . , n, and p a process term
(possibly containing recursion variables and the parameters di). For example, let X(n:Nat) ≈ a(n)·X(n+1);
then X(0) can execute the infinite sequence of actions a(0)·a(1)·a(2) · · · · .

A recursive specification is a linear process equation (LPE) if it is of the form

X(d:D) ≈
∑

a∈A

∑

ea:Ea

a(fa(d, ea))·X(ga(d, ea)) / ha(d, ea) . δ

with fa : D × Ea → Da, ga : D × Ea → D, and ha : D × Ea → Bool . Note that an LPE does not contain
parallel composition, encapsulation and hiding, and uses only one recursion variable. Groote, Ponse and
Usenko [GPU01] presented an algorithm that transforms each µCRL specification into an LPE.

The µCRL specification of the data part of a SWP is presented in Section 4, while the process part
is presented in Section 5.1. The µCRL specification of the external behaviour of this SWP, being a FIFO
queue, is presented in Section 5.2. Section 6.1 contains the LPE that results from applying this linearization
algorithm to the µCRL specification of a SWP in Section 5.1

To each µCRL specification belongs a directed graph, called a labeled transition system. In this labeled
transition system, the states are process terms, and the edges are labeled with parameterized actions. For

example, given the µCRL specification X(n:Nat) ≈ a(n)·X(n + 1), we have transitions X(n)
a(n)
→ X(n + 1).

Branching bisimilarity ↔b [GlW96] and strong bisimilarity ↔ [Par81] are two well-established equivalence
relations on states in labeled transition systems.1 Conveniently, strong bisimilarity implies branching bisim-

1 The definitions of these relations often take into account a special predicate on states to denote succesful termination. This
predicate is missing here, as successful termination does not play a role in our SWP specification.
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ilarity. The proof theory of µCRL from [GrP94] is sound modulo branching bisimilarity, meaning that if
p ≈ q can be derived from it then p ↔b q.

Definition 3.1 (Branching bisimulation) Given a labeled transition system. A strong bisimulation re-

lation B is a symmetric binary relation on states such that if sB t and s
`
→ s′, then t

`
→ t′ with s′ B t′. Two

states s and t are strongly bisimilar, denoted by s ↔ t, if there is a strong bisimulation relation B such that
sB t.

A branching bisimulation relation B is a symmetric binary relation on states such that if sB t and s
`
→ s′,

then

- either ` = τ and s′ B t;

- or there is a sequence of (zero or more) τ -transitions t
τ
→ · · ·

τ
→ t̂ such that sB t̂ and t̂

`
→ t′ with s′ B t′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a branching bisimulation relation
B such that sB t.

See [Gla94] for a lucid exposition on why branching bisimilarity constitutes a sensible equivalence relation
for concurrent processes.

The goal of this paper is to prove that the initial state of the forthcoming µCRL specification of a SWP is
branching bisimilar to a FIFO queue. In the proof of this fact, in Section 8, we will use four proof techniques
from the literature to derive that two µCRL specifications are branching (or even strongly) bisimilar: sum
elimination, invariants, CL-RSP, and cones and foci.

Sum elimination [GrK95] states that a summation over a data type from which only one element can be
selected can be removed.

Theorem 3.2 (Sum elimination)
∑

d:D p(d) / d = e ∧ b . δ ↔ p(e) / b . δ.

An invariant I : D → Bool characterizes the set of reachable states of an LPE X(d:D). That is, if I(d) = t

and X can evolve from d to d′ in zero or more transitions, then I(d′) = t.

Definition 3.3 (Invariant) I : D → Bool is an invariant for an LPE

X(d:D) ≈
∑

a∈A

∑

ea:Ea

a(fa(d, ea))·X(ga(d, ea)) / ha(d, ea) . δ

if for all d:D, a:A and ea:Ea,

(I(d) ∧ ha(d, ea)) ⇒ I(ga(d, ea)).

If I holds in a state d and X(d) can perform a transition, meaning that ha(d, ea) = t for some ea:Ea, then
it is ensured by the definition above that I holds in the resulting state ga(d, ea).

CL-RSP [BeG94b] states that the solutions of an LPE are all strongly bisimilar. This proof principle
basically extends RSP [BeK86] to a setting with data. It says that if process terms t(d) are solutions for
recursion variables X(d) for d:D, where X(d:D) is an LPE, then t(d) and X(d) are strongly bisimilar for
d:D. For example, consider the LPEs X(b:Bool ) ≈ a·X(¬b) and Y ≈ a·Y . Substituting the process term
Y for both X(t) and X(f) results in sound equations modulo ↔, so according to CL-RSP, Y ↔ X(t) and
Y ↔ X(f). Given an invariant I , we only need to find solutions t(d) for d:D with I(d) = t.

Theorem 3.4 (CL-RSP) Consider an LPE

X(d:D) ≈
∑

a∈A

∑
e:Ea

a(fa(d, e))·X(ga(d, e)) / ha(d, e) . δ

Let I : D → Bool be an invariant for X . Let t(d) be process terms such that, for all d:D with I(d) = t,

t(d) ↔
∑

a∈A

∑
e:Ea

a(fa(d, e))·t(ga(d, e)) / ha(d, e) . δ

Then t(d) ↔ X(d) for all d:D with I(d) = t.
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The cones and foci method from [GrS01, FoP03] rephrases the question whether τI(X(d)) and Y (d′) are
branching bisimilar in terms of data equalities, where X(d:D) and Y (d′:D′) are LPEs, and the latter LPE
does not contain actions from some set I of internal actions. A state mapping φ relates each state in X(d) to
a state in Y (d′). Furthermore, some d:D are declared to be focus points. The cone of a focus point consists
of the states in X(d) that can reach this focus point by a string of actions from I. It is required that each
reachable state in X(d) is in the cone of a focus point. If a number of matching criteria are satisfied, then φ
establishes a branching bisimulation relation between terms τI(X(d)) and Y (φ(d)).

For example, consider the LPEs X(b:Bool ) ≈ a·X(¬b) � b � δ + c·X(b) �¬b � δ and Y (d′:D′) ≈ a·Y (d′),
with I = {c} and focus point t. Then for any d′:D′, the state mapping φ(b) = d′ for b:Bool satisfies the
matching criteria.

Given an invariant I , only d:D with I(d) = t need to be in the cone of a focus point, and we only need
to satisfy the matching criteria for d:D with I(d) = t.

Definition 3.5 (Matching criteria) Given two LPEs:

X(d:D) ≈
∑

a∈A

∑
e:Ea

a(fa(d, e))·X(ga(d, e)) / ha(d, e) . δ

Y (d′:D′) ≈
∑

a∈A\I

∑
e:Ea

a(f ′
a(d′, e))·Y (g′a(d′, e)) / h′

a(d′, e) . δ

Let a predicate FC on D designate the focus points. A state mapping φ : D → D′ satisfies the matching
criteria for d:D if for all a ∈ A\I and c ∈ I:

I ∀e:Ec (hc(d, e) ⇒ φ(d) = φ(gc(d, e)));

II ∀e:Ea (ha(d, e) ⇒ h′
a(φ(d), e));

III FC (d) ⇒ ∀e:Ea (h′
a(φ(d), e) ⇒ ha(d, e));

IV ∀e:Ea (ha(d, e) ⇒ fa(d, e) = f ′
a(φ(d), e));

V ∀e:Ea (ha(d, e) ⇒ φ(ga(d, e)) = g′
a(φ(d), e)).

Matching criterion I requires that the internal transitions at d are inert, meaning that d and gc(d, e) are
branching bisimilar for c ∈ I. Criteria II, IV and V express that each external transition of d can be simulated
by φ(d). Finally, criterion III expresses that if d is a focus point, then each external transition of φ(d) can
be simulated by d.

Theorem 3.6 (Cones and foci) Given LPEs X(d:D) and Y (d′:D′) written as in Definition 3.5. Let I :
D → Bool be an invariant for X . Suppose that for all d:D with I(d):

1. φ : D → D′ satisfies the matching criteria for d; and

2. there is a d̂:D such that FC (d̂) and X can perform transitions d
c1→ · · ·

ck→ d̂ with c1, . . . , ck ∈ I.

Then for all d:D with I(d), τI(X(d)) ↔b Y (φ(d)).

4. Data Types

In this section, the data types used in the µCRL specification of the SWP are presented: booleans, natural
numbers supplied with modulo arithmetic, and buffers. Furthermore, basic properties are given for the
operations defined on these data types.

4.1. Booleans

We introduce the data type Bool of booleans.

t, f :→ Bool
∧,∨ : Bool × Bool → Bool
¬ : Bool → Bool
⇒,⇔: Bool × Bool → Bool
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t and f denote true and false, respectively. The infix operations ∧ and ∨ represent conjunction and disjunction,
respectively. Finally, ¬ denotes negation. The defining equations are:

b ∧ t = b ¬t = f

b ∧ f = f ¬f = t

b ∨ t = t b ⇒ b′ = b′ ∨ ¬b
b ∨ f = b b ⇔ b′ = (b ⇒ b′) ∧ (b′ ⇒ b)

4.2. If-then-else and Equality

For each data type D in this paper we assume the presence of an operation

if : Bool × D × D → D

with as defining equations

if (t, d, e) = d
if (f, d, e) = e

Furthermore, for each data type D in this paper one can easily define a mapping eq : D × D → Bool such
that eq(d, e) holds if and only if d = e can be derived. For notational convenience we take the liberty to
write d = e instead of eq(d, e).

4.3. Natural Numbers

We introduce the data type Nat of natural numbers.

0 :→ Nat
S : Nat → Nat
+, .−, · : Nat × Nat → Nat
≤, <,≥, >: Nat × Nat → Bool

Here, 0 denotes zero and S(n) the successor of n. The infix operations +, .− and · represent addition, monus
(also called proper subtraction) and multiplication, respectively. Finally, the infix operations ≤, <, ≥ and
> are the less-than(-or-equal) and greater-than(-or-equal) operations. In the proofs we will take notational
liberties like omitting the sign for multiplication, and abbreviating ¬(i = j) to i 6= j, (k < `) ∧ (` < m) to
k < ` < m, S(0) to 1, and S(S(0)) to 2.

i + 0 = i 0 ≤ i = t

i + S(j) = S(i + j) S(i) ≤ 0 = f

i .− 0 = i S(i) ≤ S(j) = i ≤ j
0 .− i = 0 0 < S(i) = t

S(i) .− S(j) = i .− j i < 0 = f

i·0 = 0 S(i) < S(j) = i < j
i·S(j) = (i·j) + i i ≥ j = ¬(j < i)

i > j = ¬(j ≤ i)

We take as binding convention:

{=, 6=} > {·} > {+,
.−} > {≤, <,≥, >} > {¬} > {∧,∨} > {⇒,⇔}.

4.4. Modulo Arithmetic

Since the size of the buffers at the sender and the receiver in the sliding window are of size 2n, calculations
modulo 2n play an important role. We introduce the following notation for modulo calculations:

| : Nat × Nat → Nat
div : Nat × Nat → Nat
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i|n denotes i modulo n, while i div n denotes i integer divided by n. The modulo operations are defined by
the following equations (for n > 0):

i|n = if (i < n, i, (i .− n)|n)
i div n = if (i < n, 0, S((i .− n) div n))

4.5. Buffers

The sender and the receiver in the SWP both maintain a buffer containing the sending and the receiving
window, respectively (outside these windows both buffers are empty). Let ∆ be the set of data elements
that can be communicated between sender and receiver. The buffers are modeled as a list of pairs (d, i) with
d:∆ and i:Nat , representing that cell (or sequence number) i of the buffer is occupied by datum d; cells for
which no datum is specified are empty. The data type Buf is specified as follows, where [] denotes the empty
buffer:

[] :→ Buf
inb : ∆ × Nat × Buf → Buf

q|n denotes buffer q with all sequence numbers taken modulo n.

[]|n = []
inb(d, i, q)|n = inb(d, i|n, q|n)

test(i, q) produces t if and only if cell i in q is occupied, retrieve(i, q) produces the datum that resides at cell
i in buffer q (if this cell is occupied),2 and remove(i, q) is obtained by emptying cell i in buffer q.

test(i, []) = f

test(i, inb(d, j, q)) = i=j ∨ test(i, q)
retrieve(i, inb(d, j, q)) = if (i=j, d, retrieve(i, q))
remove(i, []) = []
remove(i, inb(d, j, q)) = if (i=j, remove(i, q), inb(d, j, remove(i, q)))

release(i, j, q) is obtained by emptying cells i up to j in q. release|n(i, j, q) does the same modulo n.

release(i, j, q) = if (i ≥ j, q, release(S(i), j, remove(i, q)))
release|n(i, j, q) = if (i|n=j|n, q, release|n(S(i), j, remove(i, q)))

next-empty(i, q) produces the first empty cell in q, counting upwards from sequence number i onward.
next-empty|n(i, q) does the same modulo n.

next-empty(i, q) = if (test(i, q),next-empty(S(i), q), i)
next-empty|n(i, q) = if (next-empty(i|n, q|n) < n,next-empty(i|n, q|n),next-empty(0, q|n))

Intuitively, in-window(i, j, k) produces t if and only if j lies in the range from i to k .− 1, modulo n, where
n is greater than i, j and k.

in-window(i, j, k) = i ≤ j < k ∨ k < i ≤ j ∨ j < k < i

Finally, we define an operation on buffers that is only needed in the derivation of some data equalities in
Section 7.1: max(q) produces the greatest sequence number that is occupied in q.

max([]) = 0
max(inb(d, i, q)) = if (i ≥ max(q), i,max(q))

2 Note that retrieve(i, []) is undefined. One could choose to equate it to a default value in ∆, or to a fresh error element in
∆. However, with the first approach an occurrence of retrieve(i, []) might remain undetected, and the second approach would
needlessly complicate the data type ∆. We prefer to work with an underspecified version of retrieve, which is allowed in µCRL,
since data types have a loose semantics. All operations in µCRL data models, however, are total; underspecified operations lead
to the existence of multiple models.
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4.6. Mediums

The medium in the SWP between the sender and the receiver is modeled as a lossy channel of unbounded
capacity with FIFO behavior. We model the medium containing frames from the sender to the receiver by
a data type MedK. It represents a list of pairs (d, i) with a datum d:∆ and its sequence number i:Nat . Let

[]K denote an empty medium.

[]K :→ MedK
inm : ∆ × Nat × MedK → MedK

g|n denotes medium g with all sequence numbers taken modulo n.

[]K |n = []K

inm(d, i, g)|n = inm(d, i|n, g|n)

member(d, i, g) produces t if and only if the pair (d, i) is in g. length(g) denotes the length of g. return-dat(i, g)
and return-seq(i, g) produce the datum and the sequence number, respectively, that reside at position i in g
(positions are counted from 0). For convenience, we use last-dat(g) and last-seq(g) to produce the datum and
the sequence number, respectively, that reside at the end of g. delete(i, g) is obtained by emptying position
i in g. Similarly, delete-last(g) is obtained by emptying the last position in g.

member(d, i, []
K

) = f

member(d, i, inm(e, j, g)) = (d = e ∧ i = j) ∨ member(d, i, g)

length([]
K

) = 0
length(inm(d, i, g)) = S(length(g))
return-dat(i, inm(d, j, g)) = if (i = 0, d, return-dat(i .− 1, g))
return-seq(i, inm(d, j, g)) = if (i = 0, j, return-seq(i .− 1, g))
last-dat(inm(d, i, g)) = if (length(g) = 0, d, last-dat(g))
last-seq(inm(d, i, g)) = if (length(g) = 0, i, last-dat(g))
delete(i, inm(d, j, g)) = if (i = 0, g, inm(d, j, delete(i .− 1, g)))
delete-last(inm(d, i, g)) = if (length(g) = 0, g, inm(d, i, delete-last(g)))

The medium containing the sequence numbers from the receiver to the sender by a data type MedL.
Similarly, we have the following defining equations.

[]
L

:→ MedL
inm : Nat × MedL → MedL

[]
L
|n = []

L

inm(i, g′)|n = inm(i|n, g′|n)

member(i, []
L
) = f

member(i, inm(j, g)) = i = j ∨ member(d, i, g)

length([]L) = 0
length(inm(i, g′)) = S(length(g′))
return-seq(i, inm(j, g′)) = if (i = 0, j, return-seq(i .− 1, g′))
last-seq(inm(i, g′)) = if (length(g′) = 0, i, last-seq(g′))
delete(i, inm(j, g′)) = if (i = 0, g′, inm(j, delete(i .− 1, g′)))
delete-last(inm(j, g′)) = if (length(g′) = 0, g′, inm(j, delete-last(g′)))

4.7. Lists

We introduce the data type of List of lists, which are used in the specification of the desired external behavior
of the SWP: a FIFO queue of size 2n. Let 〈〉 denote the empty list.

〈〉 :→ List
inl : ∆ × List → List
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Fig. 1. Sliding window protocol

length(λ) denotes the length of λ, top(λ) produces the datum that resides at the top of λ, tail(λ) is obtained
by removing the top position in λ, append(d, λ) adds datum d at the end of λ, and λ++λ′ represents list
concatenation.

length(〈〉) = 0
length(inl(d, λ)) = S(length(λ))
top(inl(d, λ)) = d
tail(inl(d, λ)) = λ
append(d, 〈〉) = inl(d, 〈〉)
append(d, inl(e, λ)) = inl(e, append(d, λ))
〈〉++λ = λ
inl(d, λ)++λ′ = inl(d, λ++λ′)

Furthermore, q[i..j〉 is the list containing the elements in buffer q at positions i up to but not including j.

q[i..j〉 = if (i ≥ j, 〈〉, inl(retrieve(i, q), q[S(i)..j〉))

5. Sliding Window Protocol

In this section, a µCRL specification of a SWP is presented, together with its desired external behavior.

5.1. Specification of a Sliding Window Protocol

Figure 1 depicts the SWP. A sender S stores data elements that it receives via channel A in a buffer of
size 2n, in the order in which they are received. S can send a datum, together with its sequence number in
the buffer, to a receiver R via a medium that behaves as lossy queue of unbounded capacity, represented
by the medium K and the channels B and C. Upon reception, R may store the datum in its buffer, where
its position in the buffer is dictated by the attached sequence number. In order to avoid a possible overlap
between the sequence numbers of different data elements in the buffers of S and R, no more than one half
of the buffers of S and R may be occupied at any time; these halves are called the sending and the receiving
window, respectively. R can pass on a datum that resides at the first cell in its window via channel D; in
that case the receiving window slides forward by one cell. Furthermore, R can send the sequence number of
the first empty cell in (or just outside) its window as an acknowledgment to S via a medium that behaves
as lossy queue of unbounded capacity, represented by the medium L and the channels E and F. If S receives
this acknowledgment, its window slides forward accordingly.

The sender S is modeled by the process S(`, m, q), where q is a buffer of size 2n, ` the first cell in the
sending window, and m the first empty cell in (or just outside) the sending window. Data elements can be
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Fig. 2. The medium K

selected at random for transmission from (the filled part of) the sending window.

S(`:Nat , m:Nat , q:Buf ) ≈
∑

d:∆ rA(d)·S(`, S(m)|2n, inb(d, m, q))

/ in-window(`, m, (` + n)|2n) . δ

+
∑

k:Nat
sB(retrieve(k, q), k)·S(`, m, q)

/ test(k, q) . δ

+
∑

k:Nat
rF(k)·S(k, m, release|2n(`, k, q))

The receiver R is modeled by the process R(`′, q′), where q′ is a buffer of size 2n and `′ the first cell in the
receiving window.

R(`′:Nat , q′:Buf ) ≈
∑

d:∆

∑
k:Nat

rC(d, k)·(R(`′, inb(d, k, q′))

/ in-window(`′, k, (`′ + n)|2n) . R(`′, q′))

+ sD(retrieve(`′, q′))·R(S(`′)|2n, remove(`′, q′))
/ test(`′, q′) . δ

+ sE(next-empty|2n(`′, q′))·R(`′, q′)

Finally, we specify the mediums K and L, which have unbounded capacity and may lose frames between
S and R, and vice versa. We cannot allow reordering of frames in the medium, as this would violate the
correctness of the protocol. The medium K (see Fig. 2) is modeled by the process K(g, p), where g:MedK is
a buffer with unbounded capacity, and p:Nat a pointer indicating that the frames at positions 0, . . . , p .− 1
can still be lost, while the frames beyond p cannot be lost anymore and can be communicated to R.

K receives a frame from S, stores it at the front (position 0) of g, and accordingly increases p by one. It
sends the last frame (last-dat(g), last-seq(g)) in g to R. A frame at position k can be lost (if k < p), and p
is then decreased by one. K can also make a choice that the frame at position p cannot be lost (p:=p .− 1).
The action j expresses the nondeterministic choice whether or not a frame is lost. In a similar way, we model
the medium L by the process L(g′, p′).

K(g:MedK, p:Nat) ≈
∑

d:∆

∑
k:Nat

rB(d, k)·K(inm(d, k, g), S(p))

+
∑

k:Nat
j·K(delete(k, g), p .− 1) / k < p . δ

+ sC(last-dat(g), last-seq(g))·K(delete-last(g), p)
/ p < length(g) . δ

+ j·K(g, p .− 1) / p > 0 . δ

L(g′:MedL, p′:Nat) ≈
∑

k:Nat
rE(k)·L(inm(k, g′), S(p′))

+
∑

k:Nat
j·L(delete(k, g′), p′ .− 1) / k < p′ . δ

+ sF(last-seq(g′))·L(delete-last(g′), p′)
/ p′ < length(g′) . δ

+ j·L(g′, p′ .− 1) / p′ > 0 . δ

For each channel i ∈ {B, C, E, F}, actions si and ri can communicate, resulting in the action ci. The
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initial state of the SWP is expressed by

τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]
K

, 0) ‖ L([]
L
, 0)))

where the set H consists of the read and send actions over the internal channels B, C, E, and F, namely
H = {sB, rB, sC, rC, sE, rE, sF, rF}, while the set I consists of the communication actions over these internal
channels together with j, namely I = {cB, cC, cE, cF, j}.

5.2. External Behavior

Data elements that are read from channel A should be sent into channel D in the same order, and no data
elements should be lost. In other words, the SWP is intended to be a solution for the linear specification

Z(λ:List) ≈
∑

d:∆ rA(d)·Z(append(d, λ)) / length(λ) < 2n . δ

+ sD(top(λ))·Z(tail (λ)) / length(λ) > 0 . δ

Note that rA(d) can be performed until the list λ contains 2n elements, because in that situation the sending
and receiving windows will be filled. Furthermore, sD(top(λ)) can only be performed if λ is not empty.

The remainder of this paper is devoted to proving the following theorem, expressing that the external
behavior of our µCRL specification of a SWP corresponds to a FIFO queue of size 2n.

Theorem 5.1 (Correctness of SWP) τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]
K

, 0) ‖ L([]
L
, 0))) ↔b Z(〈〉).

6. Transformations of the Specification

This section witnesses three transformations, one to eliminate parallel operators, one to eliminate arguments
of communication actions, and one to eliminate modulo arithmetic.

6.1. Linearization

The starting point of our correctness proof is a linear specification Mmod , in which no parallel composition,
encapsulation and hiding operators occur. Mmod can be obtained from the µCRL specification of the SWP
without the hiding operator, i.e.,

∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]
K

, 0) ‖ L([]
L
, 0))

by means of the linearization algorithm presented in [GPU01].

The linear specification Mmod of the SWP, with encapsulation but without hiding, takes the following
form. For the sake of presentation, we only present parameters whose values are changed.
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Mmod(`:Nat , m:Nat , q:Buf , `′:Nat , q′:Buf , g:MedK, p:Nat , g′:MedL, p′:Nat)

≈
∑

d:∆ rA(d)·Mmod(m:=S(m)|2n, q:=inb(d, m, q))
/ in-window(`, m, (` + n)|2n) . δ

+
∑

k:Nat
cB(retrieve(k, q), k)·Mmod(g:=inm(retrieve(k, q), k, g), p:=S(p))

/ test(k, q) . δ

+
∑

k:Nat
j·Mmod(g:= delete(k, g), p:=p .− 1) / k < p . δ

+ j·Mmod(p:=p .− 1) / p > 0 . δ

+ cC(last-dat(g), last-seq(g))·Mmod(q′:=inb(last-dat(g), last-seq(g), q′), g:=delete-last(g))
/ p < length(g) ∧ in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ cC(last-dat(g), last-seq(g))·Mmod(g:=delete-last(g))
/ p < length(g) ∧ ¬in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ sD(retrieve(`′, q′))·Mmod(`′:=S(`′)|2n, q′:=remove(`′, q′)) / test(`′, q′) . δ

+ cE(next-empty|2n(`′, q′))·Mmod(g′:=inm(next-empty|2n(`′, q′), g′), p′:=S(p′))

+
∑

k:Nat
j·Mmod(g′:=delete(k, g′), p′:=p′ .− 1) / k < p′ . δ

+ j·Mmod(p′:=p′ .− 1) / p′ > 0 . δ

+ cF(last-seq(g′))·Mmod(`:=last-seq(g′), q:=release|2n(`, last-seq(g′), q), g′:=delete-last(g′))
/ p′ < length(g′) . δ

The intuition for the LPE Mmod is as follows:

• The first summand describes that a datum d can be received by S through channel A if its window is
not full (in-window(`, m, (` + n)|2n)). This datum is then placed in the first empty cell of the sending
window (q:=inb(d, m, q)), and the next cell becomes the first empty cell (m:=S(m)|2n).

• By the second summand, a frame (retrieve(k, q), k) can be communicated to K if cell k in the sending
window is occupied (test(k, q)). This frame is then added to the buffer of K (g:=inm(retrieve(k, q), k, g))
and can be lost (p:=S(p)).

• The third summand describes that the first p messages in the buffer of K (i.e., the last p messages to
enter the medium K) can get lost. The fourth summand describes that if p > 0, then p can be decreased
by one, meaning that the p-th frame in the buffer of K can no longer be lost and can be communicated
to R.

• The fifth and sixth summand describe that the last frame (last-dat(g), last-seq(g)) in the buffer of K can be
communicated to R if p < length(g). This frame is then omitted from the buffer of K (g:=delete-last(g)).
In the fifth summand the frame is within the receiving window (in-window(`′, last-seq(g), (`′ + n)|2n)), so
it is included (q′:=inb(last-dat(g), last-seq(g), q′)). In the sixth summand the frame is outside the receiving
window, so it is omitted.

• By the seventh summand, the datum at the first cell of the receiving window (retrieve(`′, q′)) can be sent
through channel D if this cell is occupied (test(`′, q′)). This cell is then emptied (q′:=remove(`′, q′)) and
the first cell of the receiving window is moved forward by one (`′:=S(`′)|2n).

• By the eighth summand, the sequence number of the first empty cell in the receiving window can be com-
municated to L. This acknowledgement is included in the buffer of L (g′:=inm(next-empty|2n(`′, q′), g′))
and can get lost (p′:=S(p′)).

• The ninth summand describes that the first p′ messages in the buffer of L (i.e., the last p′ messages to
enter the medium L) can get lost. The tenth summand describes that if p′ > 0, then p′ can be decreased
by one, meaning that the p′-th acknowledgement in the buffer of L can no longer be lost and can be
communicated to S.

• By the eleventh summand, the last acknowledgement (last-seq(g′)) in the buffer of L can be communicated
to S if p′ < length(g′). Then this acknowledgement is omitted from the buffer of L (g′:=delete-last(g′)),
the cells in the sending window before last-seq(g′) are emptied (q:=release|2n(`, last-seq(g′), q)), and the
sending window is moved forward (`:=last-seq(g′)).
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Proposition 6.1

∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]
K

, 0) ‖ L([]
L
, 0)) ↔ Mmod(0, 0, [], 0, [], []

K
, 0, []

L
, 0).

Proof. It is not hard to see that replacing Mmod(`, m, q, `′, q′, g, p, g′, p′) by ∂H(S(`, m, q) ‖ R(`′, q′) ‖
K(g, p) ‖ L(g′, p′)) is a solution for the recursive equation above, using the axioms of µCRL modulo strong
bisimilarity [GrP94]. (The details are left to the reader.) Hence, the theorem follows by CL-RSP (see Theo-
rem 3.4).

6.2. Eliminating Arguments of Communication Actions

The linear specification Nmod is obtained from Mmod by stripping all arguments from communication actions,
and renaming these actions to a fresh action c.

Nmod(`:Nat , m:Nat , q:Buf , `′:Nat , q′:Buf , g:MedK, p:Nat , g′:MedL, p′:Nat)

≈
∑

d:∆ rA(d)·Nmod(m:=S(m)|2n, q:=inb(d, m, q))
/ in-window(`, m, (` + n)|2n) . δ

+
∑

k:Nat
c·Nmod(g:=inm(retrieve(k, q), k, g), p:=S(p)) / test(k, q) . δ

+
∑

k:Nat
j·Nmod(g:= delete(k, g), p:=p .− 1) / k < p . δ

+ j·Nmod(p:=p .− 1) / p > 0 . δ

+ c·Nmod(q′:=inb(last-dat(g), last-seq(g), q′), g:=delete-last(g))
/ p < length(g) ∧ in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ c·Nmod(g:=delete-last(g))
/ p < length(g) ∧ ¬in-window(`′, last-seq(g), (`′ + n)|2n) . δ

+ sD(retrieve(`′, q′))·Nmod(`′:=S(`′)|2n, q′:=remove(`′, q′)) / test(`′, q′) . δ

+ c·Nmod(g′:=inm(next-empty|2n(`′, q′), g′), p′:=S(p′))

+
∑

k:Nat
j·Nmod(g′:=delete(k, g′), p′:=p′ .− 1) / k < p′ . δ

+ j·Nmod(p′:=p′ .− 1) / p′ > 0 . δ

+ c·Nmod(`:=last-seq(g′), q:=release|2n(`, last-seq(g′), q), g′:=delete-last(g′))
/ p′ < length(g′) . δ

Proposition 6.2

τI(Mmod(0, 0, [], 0, [], []
K

, 0, []
L
, 0)) ↔ τ{c,j}(Nmod(0, 0, [], 0, [], []

K
, 0, []

L
, 0)).

Proof. By a simple renaming.

6.3. Getting Rid of Modulo Arithmetic

The specification of Nnonmod is obtained by eliminating all occurrences of |2n from Nmod , and replacing
in-window(`, m, (` + n)|2n by m < `+n and in-window(`′, last-seq(g), (`′ + n)|2n by `′ ≤ last-seq(g) < `′ +n.
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Nnonmod(`:Nat , m:Nat , q:Buf , `′:Nat , q′:Buf , g:MedK, p:Nat , g′:MedL, p′:Nat)

≈
∑

d:∆ rA(d)·Nnonmod(m:=S(m), q:=inb(d, m, q)) / m < ` + n . δ (A)

+
∑

k:Nat
c·Nnonmod(g:=inm(retrieve(k, q), k, g), p:=S(p)) / test(k, q) . δ (B)

+
∑

k:Nat
j·Nnonmod(g:= delete(k, g), p:=p .− 1) / k < p . δ (C)

+ j·Nnonmod(p:=p .− 1) / p > 0 . δ (D)

+ c·Nnonmod(q′:=inb(last-dat(g), last-seq(g), q′), g:=delete-last(g))
/ p < length(g) ∧ (`′ ≤ last-seq(g) < `′ + n) . δ (E)

+ c·Nnonmod(g:=delete-last(g))
/ p < length(g) ∧ ¬(`′ ≤ last-seq(g) < `′ + n) . δ (F )

+ sD(retrieve(`′, q′))·Nnonmod(`′:=S(`′), q′:=remove(`′, q′)) / test(`′, q′) . δ (G)

+ c·Nnonmod(g′:=inm(next-empty(`′, q′), g′), p′:=S(p′)) (H)

+
∑

k:Nat
j·Nnonmod(g′:=delete(k, g′), p′:=p′ .− 1) / k < p′ . δ (I)

+ j·Nnonmod(p′:=p′ .− 1) / p′ > 0 . δ (J)

+ c·Nnonmod(`:=last-seq(g′), q:=release(`, last-seq(g′), q), g′:=delete-last(g′))
/ p′ < length(g′) . δ (K)

Proposition 6.3

Nmod(0, 0, [], 0, [], []K , 0, []L, 0) ↔ Nnonmod(0, 0, [], 0, [], []K , 0, []L, 0).

The proof of Proposition 6.3 is presented in Section 8.1. Next, in Section 8.2, we prove the correctness
of Nnonmod . In these proofs we will need a wide range of data equalities, which are presented in Section 7.

7. Properties of Data

7.1. Basic Properties

In the correctness proof we will make use of basic properties of the operations on Nat and Bool , which are
derivable from their axioms (using induction). Some typical examples of such properties are:

¬¬b = b
i + k < j + k = i < j

i ≥ j ⇒ (i .− j) + k = (i + k) .− j

In this section we present basic properties on modulo arithmetic, buffers, the next-empty operation, and lists.
Unless stated otherwise (this will only happen in Lemmas 7.3.1-7.3.6 and 7.6.12) all variables that occur in
a data lemma are implicitly universally quantified at the outside of the lemma.

Lemma 7.1 collects basic properties of modulo arithmetic.

Lemma 7.1 Let n > 0.

1. (i|n + j)|n = (i + j)|n
2. i|n < n

3. i = (i div n)·n + i|n
4. i ≤ j < i + n ⇒ (j div 2n = i div 2n ∧ i|2n ≤ j|2n < i|2n + n) ∨ (j div 2n = S(i div 2n) ∧ j|2n + n < i|2n)

5. i ≤ j ⇒ i div n ≤ j div n

Lemma 7.2 collects basic properties of buffers.
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Lemma 7.2

1. test(i, remove(j, q)) = (test(i, q) ∧ i 6= j)

2. i 6= j ⇒ retrieve(i, remove(j, q)) = retrieve(i, q)

3. test(i, release(j, k, q)) = (test(i, q) ∧ ¬(j ≤ i < k))

4. ¬(j ≤ i < k) ⇒ retrieve(i, release(j, k, q)) = retrieve(i, q)

5. q 6= [] ⇒ test(max (q), q)

Lemma 7.3 contains properties of buffers modulo 2n. It deals with a buffer q that has a “window” of size n,
from i up to (i + n) − 1; in this case there is a strong correspondence between q and q|2n.

Lemma 7.3

1. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n) ∧ i ≤ k ≤ i + n) ⇒ test(k, q) = test(k|2n, q|2n)

2. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n) ∧ test(k, q)) ⇒ retrieve(k, q) = retrieve(k|2n, q|2n)

3. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n) ∧ i ≤ k ≤ i + n) ⇒ remove(k, q)|2n = remove(k|2n, q|2n)

4. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n) ∧ i ≤ k ≤ i + n) ⇒ release(i, k, q)|2n = release|2n(i, k, q|2n)

5. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n) ∧ i ≤ k ≤ i + n) ⇒ next-empty(k, q)|2n = next-empty|2n(k|2n, q|2n)

6. (∀j:Nat(test(j, q) ⇒ i ≤ j < i + n) ∧ test(k, q|2n)) ⇒ k + n < i|2n ∨ i|2n ≤ k < i|2n + n.

Lemma 7.4 relates in-window(i|2n, k|2n, (i + n)|2n) to inequalities between integers without modulo arith-
metic.

Lemma 7.4

1. i ≤ k < i + n ⇒ in-window(i|2n, k|2n, (i + n)|2n)

2. in-window(i|2n, k|2n, (i + n)|2n) ⇒ k + n < i ∨ i ≤ k < i + n ∨ k ≥ i + 2n

Lemma 7.5 collects basic properties of the next-empty operation, together with one result on max, which is
needed to derive those properties.

Lemma 7.5

1. test(i, q) ⇒ i ≤ max(q)

2. i ≤ j < next-empty(i, q) ⇒ test(j, q)

3. next-empty(i, q) ≥ i

4. next-empty(i, inb(d, j, q)) ≥ next-empty(i, q)

5. j 6= next-empty(i, q) ⇒ next-empty(i, inb(d, j, q)) = next-empty(i, q)

6. next-empty(i, inb(d,next-empty(i, q), q)) = next-empty(S(next-empty(i, q)), q)

7. ¬(i ≤ j < next-empty(i, q)) ⇒ next-empty(i, remove(j, q)) = next-empty(i, q)

Lemmas 7.6 and 7.7 collect basic properties of unbounded buffers.

Lemma 7.6

1. length(g) = length(g|2n)

2. i < length(g) ⇒ return-seq(i, g)|2n = return-seq(i, g|2n)

3. i < length(g) ⇒ return-dat(i, g) = return-dat(i, g|2n)

4. i < length(g) ⇒ delete(i, g)|2n = delete(i, g|2n)

5. length(g) > 0 ⇒ last-dat(g) = return-dat(length(g) .− 1, g)

6. length(g) > 0 ⇒ last-seq(g) = return-seq(length(g) .− 1, g)

7. length(g) > 0 ⇒ delete-last(g) = delete(length(g) .− 1, g)

8. (i < length(g) ∧ member(d, j, delete(i, g))) ⇒ member(d, j, g)

9. i < length(g) ⇒ length(delete(i, g)) = length(g) .− 1
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10. i < length(g) ⇒ member(return-dat(i, g), return-seq(i, g), g)

11. (i < length(g) .− 1 ∧ j < length(g))
⇒ return-seq(i, delete(j, g)) = if (i < j, return-seq(i, g), return-seq(S(i), g))

12. member(d, i, g) ⇒ ∃j:Nat (j < length(g) ∧ return-seq(j, g) = i ∧ return-dat(j, g) = d)

Lemma 7.7

1. length(g′) = length(g′|2n)

2. i < length(g′) ⇒ return-seq(i, g′)|2n = return-seq(i, g′|2n)

3. i < length(g′) ⇒ delete(i, g′)|2n = delete(i, g′|2n)

4. length(g′) > 0 ⇒ last-seq(g′) = return-seq(length(g′) .− 1, g′)

5. length(g′) > 0 ⇒ delete-last(g′) = delete(length(g′) .− 1, g′)

6. (i < length(g′) ∧ member(j, delete(i, g′))) ⇒ member(j, g′)

7. i < length(g′) ⇒ length(delete(i, g′)) = length(g′) .− 1

8. i < length(g′) ⇒ member(return-seq(i, g′), g′)

9. (i < length(g′) .− 1 ∧ j < length(g′))
⇒ return-seq(i, delete(j, g′)) = if (i < j, return-seq(i, g′), return-seq(S(i), g′))

Finally, Lemma 7.8 collects basic properties of lists.

Lemma 7.8

1. (λ++λ′)++λ′′ = λ++(λ′++λ′′)

2. length(λ++λ′) = length(λ) + length(λ′)

3. append(d, λ++λ′) = λ++append(d, λ′)

4. length(q[i..j〉) = j .− i

5. i ≤ k ≤ j ⇒ q[i..j〉 = q[i..k〉++q[k..j〉

6. i ≤ j ⇒ append(d, q[i..j〉) = inb(d, j, q)[i..S(j)〉

7. test(k, q) ⇒ inb(retrieve(k, q), k, q)[i..j〉 = q[i..j〉

8. ¬(i ≤ k < j) ⇒ remove(k, q)[i..j〉 = q[i..j〉

9. ` ≤ i ⇒ release(k, `, q)[i..j〉 = q[i..j〉

7.2. Invariants

Invariants of a system are properties of data that are satisfied throughout the reachable state space of the
system (see Definition 3.3). Lemma 7.9 collects 25 invariants of Nnonmod that are needed in the correctness
proof. Occurrences of variables i, j:Nat and d, e:∆ in an invariant are always implicitly universally quantified
at the outside of the invariant.

Invariants 9, 11, 17, 18, 19, 22, 23 are only needed in the derivation of other invariants. We provide some
intuition for the invariants that will be used in the proofs in Section 8. Invariants 7, 14, 15, 16 express that the
sending window is filled from ` up to m .− 1, and that it has size n. Invariants 10, 13 express that the receiving
window starts at `′ and stops at `′+n. Invariant 4 expresses that S cannot receive acknowledgements beyond
next-empty(`′, q′), and Invariant 12 that R cannot receive frames beyond m .− 1. Invariants 21, 24, 25 are
based on the fact that the sending and receiving windows and the buffer of K coincide on occupied cells and
frames with the same sequence number. Invariants 1 and 2 state that p and p′ cannot exceed the length of g
and g′, respectively. Invariants 3 and 5 capture that sequence numbers of subsequent acknowledgement are
non-decreasing. Invariant 8 depends on the fact that m is non-decreasing, and Invariants 6 and 20 depend
on the fact that frames in the mediums cannot be reordered.

Lemma 7.9 The following invariants hold for Nnonmod (`, m, q, `′, q′, g, p, g′, p′).

1. p ≤ length(g)

2. p′ ≤ length(g′)
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3. member(i, g′) ⇒ i ≤ next-empty(`′, q′)

4. ` ≤ next-empty(`′, q′)

5. i < j < length(g′) ⇒ return-seq(i, g′) ≥ return-seq(j, g′)

6. member(i, g′) ⇒ ` ≤ i

7. test(i, q) ⇒ i < m

8. member(d, i, g) ⇒ i < m

9. test(i, q′) ⇒ i < m

10. test(i, q′) ⇒ `′ ≤ i < `′ + n

11. `′ ≤ m

12. next-empty(`′, q′) ≤ m

13. next-empty(`′, q′) ≤ `′ + n

14. test(i, q) ⇒ ` ≤ i

15. ` ≤ i < m ⇒ test(i, q)

16. m ≤ ` + n

17. i ≤ j < length(g) ⇒ return-seq(i, g) + n > return-seq(j, g)

18. (member(d, i, g) ∧ test(j, q′)) ⇒ i + n > j

19. member(d, i, g) ⇒ i + n ≥ `′

20. member(d, i, g) ⇒ i + n ≥ next-empty(`′, q′)

21. (member(d, i, g) ∧ test(i, q)) ⇒ retrieve(i, q) = d

22. (test(i, q) ∧ test(i, q′)) ⇒ retrieve(i, q) = retrieve(i, q′)

23. (member(d, i, g) ∧ member(e, i, g)) ⇒ d = e

24. (member(d, i, g) ∧ test(i, q′)) ⇒ retrieve(i, q′) = d

25. (` ≤ i ≤ m ∧ j ≤ next-empty(i, q′)) ⇒ q[i..j〉 = q′[i..j〉

8. Correctness of Nmod

In Section 8.1, we prove Proposition 6.3, which states that Nmod and Nnonmod are strongly bisimilar. Next,
in Section 8.2 we prove that Nnonmod behaves like a FIFO queue of size 2n. Theorem 5.1 is proved in
Section 8.3.

8.1. Equality of Nmod and Nnonmod

In this section we present a proof of Proposition 6.3. It suffices to prove that for all `, m, `′:Nat , q, q′:Buf ,
g:MedK and g′:MedL,

Nmod(`|2n, m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′) ↔ Nnonmod (`, m, q, `′, q′, g, p, g′, p′)

Proof. We show that Nmod(`|2n, m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′) is a solution for the defining equation
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of Nnonmod(`, m, q, `′, q′, g, p, g′, p′). Hence, we must derive the following equation.3

Nmod(`|2n, m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′)

≈
∑

d:∆ rA(d)·Nmod(m:=S(m)|2n, q:=inb(d, m, q)|2n) / m < ` + n . δ (A)

+
∑

k:Nat
c·Nmod(g:=inm(retrieve(k, q), k, g)|2n, p:=S(p)) / test(k, q) . δ (B)

+
∑

k:Nat
j·Nmod(g:= delete(k, g)|2n, p:=p .− 1) / k < p . δ (C)

+ j·Nmod(p:=p .− 1) / p > 0 . δ (D)

+ c·Nmod(q′:=inb(last-dat(g), last-seq(g), q′)|2n, g:=delete-last(g)|2n)
/ p < length(g) ∧ (`′ ≤ last-seq(g) < `′ + n) . δ (E)

+ c·Nmod(g:=delete-last(g)|2n)
/ p < length(g) ∧ ¬(`′ ≤ last-seq(g) < `′ + n) . δ (F )

+ sD(retrieve(`′, q′))·Nmod(`′:=S(`′)|2n, q′:=remove(`′, q′)|2n) / test(`′, q′) . δ (G)

+ c·Nmod(g′:=inm(next-empty(`′, q′), g′)|2n, p′:=S(p′)) (H)

+
∑

k:Nat
j·Nmod(g′:=delete(k, g′)|2n, p′:=p′ .− 1) / k < p′ . δ (I)

+ j·Nmod(p′:=p′
.− 1) / p′ > 0 . δ (J)

+ c·Nmod(`:=last-seq(g′)|2n, q:=release(`, last-seq(g′), q)|2n, g′:=delete-last(g′)|2n)
/ p′ < length(g′) . δ (K)

In order to prove this, we instantiate the parameters in the defining equation of Nmod with `|2n, m|2n,
q|2n, `′|2n, g|2n, p, g′|2n, p′.

Nmod(`|2n, m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′)

≈
∑

d:∆ rA(d)·Nmod(m:=S(m|2n)|2n, q:=inb(d, m|2n, q|2n))
/ in-window(`|2n, m|2n, (`|2n + n)|2n) . δ (A)

+
∑

k:Nat
c·Nmod(g:=inm(retrieve(k, q|2n), k, g|2n), p:=S(p))

/ test(k, q|2n) . δ (B)

+
∑

k:Nat
j·Nmod(g:= delete(k, g|2n), p:=p .− 1) / k < p . δ (C)

+ j·Nmod(p:=p .− 1) / p > 0 . δ (D)

+ c·Nmod(q′:=inb(last-dat(g|2n), last-seq(g|2n), q′|2n), g:=delete-last(g|2n))
/ p < length(g|2n) ∧ in-window(`′|2n, last-seq(g|2n), (`′|2n + n)|2n) . δ (E)

+ c·Nmod(g:=delete-last(g|2n))
/ p < length(g|2n) ∧ ¬in-window(`′|2n, last-seq(g|2n), (`′|2n + n)|2n) . δ (F )

+ sD(retrieve(`′|2n, q′|2n))·Nmod(`′:=S(`′|2n)|2n, q′:=remove(`′|2n, q′|2n)) / test(`′|2n, q′|2n) . δ (G)

+ c·Nmod(g′:=inm(next-empty|2n(`′|2n, q′|2n), g′|2n), p′:=S(p′)) (H)

+
∑

k:Nat
j·Nmod(g′:=delete(k, g′|2n), p′:=p′ .− 1) / k < p′ . δ (I)

+ j·Nmod(p′:=p′ .− 1) / p′ > 0 . δ (J)

+ c·Nmod(`:=last-seq(g′|2n)|2n, q:=release|2n(`|2n, last-seq(g′|2n)|2n, q|2n), g′:=delete-last(g′|2n)) (K)
/ p′ < length(g′|2n) . δ

In order to equate the eleven summands in both specifications, we obtain the following proof obligations.
Cases for summands that are syntactically the same are omitted.

3 By abuse of notation, we use the parameters `, m, q, `′, q′, g, g′ in an ambiguous way. For example, m refers both to the
second parameter of Nmod and to the value of this parameter.
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A • m < ` + n ⇔ in-window(`|2n, m|2n, (`|2n + n)|2n).

m < ` + n
⇔ ` ≤ m < ` + n (Inv. 7.9.4, 7.9.12)
⇒ in-window(`|2n, m|2n, (` + n)|2n) (Lem. 7.3.1)

Reversely,

in-window(`|2n, m|2n, (` + n)|2n)
⇒ m + n < ` ∨ ` ≤ m < ` + n ∨ m ≥ ` + 2n (Lem. 7.3.2)
⇔ m < ` + n (Inv. 7.9.4, 7.9.12, 7.9.16)

Moreover, by Lemma 7.1.1, (` + n)|2n = (`|2n + n)|2n.

• S(m)|2n = S(m|2n)|2n.
This follows from Lemma 7.1.1.

• inb(d, m, q)|2n = inb(d, m|2n, q|2n).
This follows from the definition of buffers modulo 2n.

B Below we equate the entire summand B of the two specifications. The argument p := S(p) is omitted,
because it is irrelevant for this derivation.

∑
k:Nat

c·Nmod(g:=inm(retrieve(k, q), k, g)|2n)
/ test(k, q) . δ

≈
∑

k:Nat
c·Nmod(g:=inm(retrieve(k, q), k|2n, g|2n))

/ test(k, q) ∧ ` ≤ k < ` + n . δ (Inv. 7.9.7, 7.9.14, 7.9.16)

≈
∑

k:Nat
c·Nmod(g:=inm(retrieve(k|2n, q|2n), k|2n, g|2n))

/ test(k|2n, q|2n) ∧ ` ≤ k < ` + n . δ (Lem. 7.3.1, 7.3.2)

≈
∑

k′:Nat

∑
k:Nat

c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))
/ test(k′, q|2n) ∧ ` ≤ k < ` + n ∧ k′ = k|2n . δ (Thm. 3.2)

≈
∑

k′:Nat

∑
k:Nat

c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))
/ test(k′, q|2n) ∧ k = (` div 2n)2n + k′∧
`|2n ≤ k′ < `|2n + n ∧ k′ = k|2n . δ

+
∑

k′:Nat

∑
k:Nat

c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))
/ test(k′, q|2n) ∧ k = S(` div 2n)2n + k′∧
k′ + n < `|2n ∧ k′ = k|2n . δ (Lem. 7.1.3, 7.1.4)

≈
∑

k′:Nat
c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))

/ test(k′, q|2n) ∧ `|2n ≤ k′ < `|2n + n ∧ k′ = k′ . δ

+
∑

k′:Nat
c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))

/ test(k′, q|2n) ∧ k′ + n < `|2n ∧ k′ = k′ . δ (Thm. 3.2)

≈
∑

k′:Nat
c·Nmod(g:=inm(retrieve(k′, q|2n), k′, g|2n))

/ test(k′, q|2n) . δ (Lem. 7.3.6)

C k < p ⇒ delete(k, g)|2n = delete(k, g|2n).
By Invariant 7.9.1, k < p ≤ length(g). So this follows from Lemma 7.6.4.

E • length(g) = length(g|2n).
This follows from Lemma 7.6.1.

• p < length(g) ⇒ (`′ ≤ last-seq(g) < `′ + n = in-window(`′|2n, last-seq(g)|2n, (`′|2n + n)|2n)).
Since 0 < length(g), Lemmas 7.6.5, 7.6.6, and 7.6.10 yield member(last-dat(g), last-seq(g), g). So by
Invariant 7.9.20, next-empty(`′, q′) ≤ last-seq(g) + n. Hence, by Lemma 7.5.3, `′ ≤ last-seq(g) + n.
Furthermore, by Invariant 7.9.8, last-seq(g) < m, by Invariant 7.9.16, m ≤ `+n, and by Invariants 7.9.4
and 7.9.13, ` ≤ `′ + n. Hence, last-seq(g) < `′ + 2n. So by Lemmas 7.3.1 and 7.3.2, `′ ≤ last-seq(g) <
`′ +n = in-window(`′|2n, last-seq(g)|2n, (`′ + n)|2n). And by Lemma 7.1.1, (`′ + n)|2n = (`′|2n + n)|2n.

• p < length(g) ⇒ inb(last-dat(g), last-seq(g), q′)|2n = inb(last-dat(g|2n), last-seq(g|2n), q′|2n).
This follows from the definitions of buffers modulo 2n, and Lemmas 7.6.5, 7.6.6, 7.6.2 and 7.6.3.
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• p < length(g) ⇒ delete-last(g)|2n = delete-last(g|2n).
This follows from Lemmas 7.6.7 and 7.6.4.

F • ¬(`′ ≤ last-seq(g) < `′ + n) ⇔ ¬in-window(`′|2n, last-seq(g)|2n, (`′|2n + n)|2n).
This follows immediately from the second item of the previous case.

• p < length(g) ⇒ delete-last(g)|2n = delete-last(g|2n).
This follows immediately from the fourth item of the previous case.

G • test(`′, q′) = test(`′|2n, q′|2n).
This follows from Lemma 7.3.1 together with Invariant 7.9.10.

• test(`′, q′) ⇒ (retrieve(`′, q′) = retrieve(`′|2n, q′|2n)).
This follows from Lemma 7.3.2 together with Invariant 7.9.10.

• S(`′)|2n = S(`′|2n)|2n.
This follows from Lemma 7.1.1.

• remove(`′, q′)|2n = remove(`′|2n, q′|2n).
This follows from Lemma 7.3.3 together with Invariant 7.9.10.

H inm(next-empty(`′, q′)|2n, g′)|2n = inm(next-empty|2n(`′|2n, q′|2n), g′|2n).
By Lemma 7.3.5 and Invariant 7.9.10, next-empty(`′, q′)|2n = next-empty|2n(`′|2n, q′|2n). So the desired
equality follows from the definition of mediums modulo 2n.

I k < p′ ⇒ delete(k, g′)|2n = delete(k, g′|2n).
By Invariant 7.9.2, k < p′ ≤ length(g′). So the desired equality follows from Lemma 7.7.3.

K • length(g′) = length(g′|2n).
This follows from Lemma 7.7.1.

• p′ < length(g′) ⇒ last-seq(g′)|2n = last-seq(g′|2n)|2n.
This follows from Lemmas 7.7.4, 7.7.2 and 7.1.1.

• release(`, last-seq(g′), q)|2n = release|2n(`|2n, last-seq(g′)|2n, q|2n).
By Lemmas 7.7.4 and 7.7.8, p′ < length(g′) implies member(last-seq(g′), g′). So by Invariant 7.9.6,
` ≤ last-seq(g′). By Invariants 7.9.3 and 7.9.12, last-seq(g′) ≤ next-empty(`′, q′) ≤ m. And by Invariant
7.9.16, m ≤ ` + n. So ` ≤ last-seq(g′) ≤ ` + n. Furthermore, by Invariants 7.9.7, 7.9.14 and 7.9.16,
test(i, q) ⇒ ` ≤ i < ` + n. Hence, the desired equation follows from Lemma 7.3.4.

• p′ < length(g′) ⇒ delete-last(g′)|2n = delete-last(g′|2n).
This follows from Lemmas 7.7.3 and 7.7.5.

Hence, Nmod(`|2n, m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′) is a solution for the defining equation of
Nnonmod(`, m, q, `′, q′, g, p, g′, p′). So by CL-RSP (see Theorem 3.4), they are strongly (and thus branching)
bisimilar.

8.2. Correctness of Nnonmod

We prove that Nnonmod is branching bisimilar to the FIFO queue Z of size 2n (see Section 5.2), using cones
and foci (see Theorem 3.6).

Let Ξ abbreviate Nat ×Nat ×Buf ×Nat ×Buf ×MedK×Nat ×MedL×Nat . Furthermore, let ξ:Ξ denote
(`, m, q, `′, q′, g, p, g′, p′). The state mapping φ : Ξ ⇒ List , which maps states of Nnonmod to states of Z, is
defined by:

φ(ξ) = q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉

Intuitively, φ collects the data elements in the sending and receiving windows, starting at the first cell in
the receiving window (i.e., `′) until the first empty cell in this window, and then continuing in the sending
window until the first empty cell in that window (i.e., m). Note that φ is independent of `, g, p, g′, p′; we
therefore write φ(m, q, `′, q′).

The focus points are those states where either the sending window is empty (meaning that ` = m), or
the receiving window is full and all data elements in the receiving window have been acknowledged, meaning
that ` = `′ + n. That is, the focus condition for Nnonmod (`, m, q, `′, q′, g, p, g′, p′) is

FC (`, m, q, `′, q′, g, p, g′, p′) := ` = m ∨ ` = `′ + n
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Lemma 8.1 For each ξ:Ξ where the invariants in Lemma 7.9 hold, there is a ξ̂:Ξ with FC(ξ̂) such that

Nnonmod(ξ)
c1→ · · ·

ck→ Nnonmod (ξ̂), where c1, . . . , ck ∈ I.

Proof. By Invariants 7.9.12 and 7.9.13, next-empty(`′, q′) ≤ min{m, `′ + n}. We prove by induction on
min{m, `′ + n} .− next-empty(`′, q′) that for each state ξ where the invariants in Lemma 7.9 hold, a focus
point can be reached by a sequence of communication actions.
Base Case: next-empty(`′, q′) = min{m, `′ + n}.
Let y = length(g′) and x = next-empty(`′, q′) at state ξ. By summand H , we reach a state ξ′ with g′ :=
inm(x, g′). Hence, at state ξ′ there exists a 0 ≤ k < y such that return-seq(k, g′) = x and return-seq(i, g′) 6= x
for any k < i < y. In view of Invariant 7.9.5, k < i < y ⇒ x > return-seq(i, g′). Then, by repeating summand
J (p′ times), we reach a state ξ′′ with p′ = 0. Then, by repeating summand K (y − (k + 1) times), we reach
a state ξ′′′ such that last-seq(g′) = x. During these executions of H, J and K the values of m, `′, q′ remain

the same. By again performing summand K, we reach a state ξ̂ where ` = last-seq(g′) = x = min{m, `′ +n}.

Then ` = m or ` = `′ + n, so FC(ξ̂).
Induction Case: next-empty(`′, q′) < min{m, `′ + n}.
Let y = length(g) and x = next-empty(`′, q′) at state ξ. By Invariants 7.9.4 and 7.9.12, ` ≤ x < m. So
by Invariant 7.9.15, test(x, q). Furthermore, in view of Lemma 7.5.3, `′ ≤ x < `′ + n. By summand B, we
perform a communication action to a state ξ′ with g:=inm(d, x, g) (where d denotes retrieve(x, q)). Hence,
at state ξ′ there exists a 0 ≤ k < y such that return-seq(k, g) = x and return-seq(i, g) 6= x for any k < i < y.
Then, by repeating summand D (p times), we reach a state ξ ′′ with p = 0. Then, by repeating summands
E and F (y − (k + 1) times), we reach a state ξ′′′ with last-dat(g) = d and last-seq(g) = x. During these
executions of B, D, E and F , the values of m, `′ remain the same; and since during the executions of E
and F last-seq(g) 6= x, in view of Lemma 7.5.5, the value of next-empty(`′, q′) remains the same. By again
performing summand E, we reach a state ξ′′′′ where q′ := inb(d, x, q′). Recall that x = next-empty(`′, q′).

next-empty(`′, in(d,next-empty(`′, q′), q′))
= next-empty(S(next-empty(`′, q′)), q′) (Lem. 7.5.6)
> next-empty(`′, q′) (Lem. 7.5.3)

So we can apply the induction hypothesis to conclude that from ξ ′′′′ a focus point ξ̂ can be reached by a
sequence of communication actions.

Proposition 8.2 For all e:∆,

τ{c,j}(Nnonmod (0, 0, [], 0, [], []
K

, 0, []
L
, 0)) ↔b Z(〈〉).

Proof. According to the cones and foci method (see Theorem 3.6), we obtain the following matching criteria
(see Definition 3.5). Trivial matching criteria are left out.
Class I:

(p < length(g) ∧ `′ ≤ last-seq(g) < `′ + n)
⇒ φ(m, q, `′, q′) = φ(m, q, `′, inb(last-dat(g), last-seq(g), q′))

p′ < length(g′) ⇒ φ(m, q, `′, q′) = φ(m, release(`, last-seq(g′), q), `′, q′)

Class II:

m < ` + n ⇒ length(φ(m, q, `′, q′)) < 2n

test(`′, q′) ⇒ length(φ(m, q, `′, q′)) > 0

Class III:

((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) < 2n) ⇒ m < ` + n

((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) > 0) ⇒ test(`′, q′)

Class IV:

test(`′, q′) ⇒ retrieve(`′, q′) = top(φ(m, q, `′, q′))
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Class V:

m < ` + n ⇒ φ(S(m), inb(d, m, q), `′, q′) = append(d, φ(m, q, `′, q′))

test(`′, q′) ⇒ φ(m, q, S(`′), remove(`′, q′)) = tail (φ(m, q, `′, q′))

I.1 (p < length(g) ∧ `′ ≤ last-seq(g) < `′ + n)
⇒ φ(m, q, `′, q′) = φ(m, q, `′, inb(last-dat(g), last-seq(g), q′)).
Let p < length(g). By Lemmas 7.6.5, 7.6.6 and 7.6.10, member(last-dat(g), last-seq(g), g).
Case 1: last-seq(g) 6= next-empty(`′, q′).
By Lemma 7.5.5, next-empty(`′, inb(last-dat(g), last-seq(g), q′)) = next-empty(`′, q′). Hence,

φ(m, q, `′, inb(last-dat(g), last-seq(g), q′))
= inb(last-dat(g), last-seq(g), q′)[`′..next-empty(`′, q′)〉

++q[next-empty(`′, q′)..m〉

Case 1.1: `′ ≤ last-seq(g) < next-empty(`′, q′).
By Lemma 7.5.2, test(last-seq(g), q′), so by Invariant 7.9.24 together with
member(last-dat(g), last-seq(g), g), retrieve(last-seq(g), q′) = last-dat(g). So by Lemma 7.8.7,
inb(last-dat(g), last-seq(g), q′)[`′..next-empty(`′, q′)〉 = q′[`′..next-empty(`′, q′)〉.
Case 1.2: ¬(`′ ≤ last-seq(g) < next-empty(`′, q′)).
Using Lemma 7.8.8, it follows that

inb(last-dat(g), last-seq(g), q′)[`′..next-empty(`′, q′)〉
= remove(last-seq(g), inb(last-dat(g), last-seq(g), q′))[`′..next-empty(`′, q′)〉
= remove(last-seq(g), q′)[`′..next-empty(`′, q′)〉
= q′[`′..next-empty(`′, q′)〉

Case 2: last-seq(g) = next-empty(`′, q′).
The derivation splits into two parts.

(1) Using Lemma 7.8.8, it follows that

inb(last-dat(g), last-seq(g), q′)[`′..last-seq(g)〉
= remove(last-dat(g), inb(last-dat(g), last-seq(g), q′))[`′..last-seq(g)〉
= remove(last-dat(g), q′)[`′..last-seq(g)〉
= q′[`′..last-seq(g)〉

(2) By Invariant 7.9.4, ` ≤ last-seq(g). By Invariant 7.9.8 and member(last-dat(g), last-seq(g), g), last-seq(g) <
m. Thus, by Invariant 7.9.15, test(last-seq(g), q). So we have retrieve(last-seq(g), q) = last-dat(g) by In-
variant 7.9.21 together with member(last-dat(g), last-seq(g), g). Since ` ≤ S(last-seq(g)) ≤ m, by Invariant
7.9.25,

q′[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉
= q[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉

Hence,

inb(last-dat(g), last-seq(g), q′)[last-seq(g)..next-empty(S(last-seq(g)), q′)〉
= inl(last-dat(g), inb(last-dat(g), last-seq(g), q′)

[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉)
= inl(last-dat(g), remove(last-seq(g), inb(last-dat(g), last-seq(g), q ′))

[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉) (Lem. 7.8.8)
= inl(last-dat(g), remove(last-seq(g), q′)

[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉)
= inl(last-dat(g), q′[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉) (Lem. 7.8.8)
= inl(last-dat(g), q[S(last-seq(g))..next-empty(S(last-seq(g)), q′)〉) (see above)
= q[last-seq(g)..next-empty(S(last-seq(g)), q′)〉
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Finally, we combine (1) and (2). We recall that last-seq(g) = next-empty(`′, q′).

inb(last-dat(g), last-seq(g), q′)[`′..next-empty(`′, inb(last-dat(g), last-seq(g), q′))〉
++q[next-empty(`′, inb(last-dat(g), last-seq(g), q′))..m〉

= inb(last-dat(g), last-seq(g), q′)[`′..next-empty(S(last-seq(g)), q′)〉
++q[next-empty(S(last-seq(g)), q′)..m〉 (Lem. 7.5.6)

= (inb(last-dat(g), last-seq(g), q′)[`′..last-seq(g)〉
++inb(last-dat(g), last-seq(g), q′)[last-seq(g)..next-empty(S(last-seq(g)), q′)〉)
++q[next-empty(S(last-seq(g)), q′)..m〉 (Lem. 7.5.3, 7.8.5)

= (q′[`′..last-seq(g)〉
++q[last-seq(g)..next-empty(S(last-seq(g)), q′)〉)
++q[next-empty(S(last-seq(g)), q′)..m〉 (1), (2)

= q′[`′..last-seq(g)〉++q[last-seq(g)..m〉 (Lem. 7.8.1, 7.5.2, 7.8.5)

I.2 p′ < length(g′) ⇒ φ(m, q, `′, q′) = φ(m, release(`, last-seq(g′), q), `′, q′).
Let p′ < length(g′). By Lemmas 7.7.4 and 7.7.8, member(last-seq(g′), g′).
By Invariant 7.9.3, last-seq(g′) ≤ next-empty(`′, q′). So by Lemma 7.8.9,

release(`, last-seq(g′), q)[next-empty(`′, q′)..m〉 = q[next-empty(`′, q′)..m〉

II.1 m < ` + n ⇒ length(φ(m, q, `′, q′)) < 2n.
Let m < ` + n.

length(q′[`′..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉)
= length(q′[`′..next-empty(`′, q′)〉) + length(q[next-empty(`′, q′)..m〉)) (Lem. 7.8.2)
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′)) (Lem. 7.8.4)
≤ n + (m .− `) (Inv. 7.9.13, 7.9.4)
< 2n

II.2 test(`′, q′) ⇒ length(φ(m, q, `′, q′)) > 0.
test(`′, q′) together with Lemma 7.5.3 yields next-empty(`′, q′) = next-empty(S(`′), q′) ≥ S(`′). Hence, by
Lemmas 7.8.2 and 7.8.4,

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′))
> 0

III.1 ((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) < 2n) ⇒ m < ` + n.
Case 1: ` = m.
Then m < ` + n holds trivially.
Case 2: ` = `′ + n.

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′)) (Lem. 7.8.2, 7.8.4)
≤ ((`′ + n) .− `′) + (m .− `) (Inv. 7.9.13, 7.9.4)
= n + (m .− `)

So length(φ(m, q, `′, q′)) < 2n implies m < ` + n.

III.2 ((` = m ∨ ` = `′ + n) ∧ length(φ(m, q, `′, q′)) > 0) ⇒ test(`′, q′).
Case 1: ` = m.
Then m .− next-empty(`′, q′) ≤ m .− ` (Inv. 7.9.4) = 0, so

length(φ(m, q, `′, q′))
= (next-empty(`′, q′) .− `′) + (m .− next-empty(`′, q′)) (Lem. 7.8.2, 7.8.4)
= next-empty(`′, q′) .− `′

Hence, length(φ(m, q, `′, q′)) > 0 yields next-empty(`′, q′) > `′, which implies test(`′, q′).
Case 2: ` = `′ + n.
Then by Invariant 7.9.4, next-empty(`′, q′) ≥ `′ + n, which implies test(`′, q′).

IV test(`′, q′) ⇒ retrieve(`′, q′) = top(φ(m, q, `′, q′)).
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test(`′, q′) implies next-empty(`′, q′) = next-empty(S(`′), q′) ≥ S(`′) (Lem. 7.5.3). Hence,

q′[`′..next-empty(`′, q′)〉
= inl(retrieve(`′, q′), q′[S(`′)..next-empty(`′, q′)〉)

So

top(φ(m, q, `′, q′))
= top(inl(retrieve(`′, q′), q′[S(`′)..next-empty(`′, q′)〉++q[next-empty(`′, q′)..m〉))
= retrieve(`′, q′)

V.1 m < ` + n ⇒ φ(S(m), inb(d, m, q), `′, q′) = append(d, φ(m, q, `′, q′)).

q′[`′..next-empty(`′, q′)〉++
inb(d, m, q)[next-empty(`′, q′)..S(m)〉

= q′[`′..next-empty(`′, q′)〉++
append(d, q[next-empty(`′, q′)..m〉) (Lem. 7.8.6, Inv. 7.9.12)

= append(d, q′[`′..next-empty(`′, q′)〉++
q[next-empty(`′, q′)..m〉) (Lem. 7.8.3)

V.2 test(`′, q′) ⇒ φ(m, q, S(`′), remove(`′, q′)) = tail(φ(m, q, `′, q′)).
test(`′, q′) and Lemma 7.5.3 imply next-empty(`′, q′) = next-empty(S(`′), q′) ≥ S(`′). Hence,

remove(`′, q′)[S(`′)..next-empty(S(`′), remove(`′, q′))〉
++q[next-empty(S(`′), remove(`′, q′))..m〉

= remove(`′, q′)[S(`′)..next-empty(S(`′), q′)〉
++q[next-empty(S(`′), q′)..m〉 (Lem. 7.5.7)

= remove(`′, q′)[S(`′)..next-empty(`′, q′)〉
++q[next-empty(`′, q′)..m〉

= q′[S(`′)..next-empty(`′, q′)〉
++q[next-empty(`′, q′)..m〉 (Lem. 7.8.8)

= tail(q′[`′..next-empty(`′, q′)〉
++q[next-empty(`′, q′)..m〉)

8.3. Correctness of the Sliding Window Protocol

Finally, we can prove Theorem 5.1.

Proof.

τI(∂H(S(0, 0, []) ‖ R(0, []) ‖ K([]
K

, 0) ‖ L([]
L
, 0)))

↔ τI(Mmod(0, 0, [], 0, [], []
K

, 0, []
L
, 0)) (Prop. 6.1)

↔ τ{c,j}(Nmod(0, 0, [], 0, [], []K , 0, []L, 0)) (Prop. 6.2)

↔ τ{c,j}(Nnonmod (0, 0, [], 0, [], []K , 0, []L, 0)) (Prop. 6.3)
↔b Z(〈〉) (Prop. 8.2)

9. Formalization and Verification in PVS

In this section we report on the formalization of the correctness proof for SWP using the theorem prover
PVS [ORR+96]. Using a theorem prover without a good idea of the proof structure is generally difficult and
inefficient, so it is important that we had this manual µCRL proof to start with.

There are several reasons why a computer checked proof besides a manual proof is useful. First of all,
the manual µCRL proof of the SWP that we presented in the previous sections is so complicated that we
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decided to use a theorem prover to search for omissions and errors in this proof. The theorem proving exercise
led to the detection of several omissions in the manual proof; we will report on some of these omissions in
this section. After the formalization, we can be sure (modulo bugs in the prover software) that the proof is
complete and correct, including the smallest detail.

Interestingly, the use of PVS also led to a more precise formalization of the data specification (see
Section 9.1). Our conclusion is that the data specification in PVS is more precise, and can reveal potential
errors that go undetected in a µCRL specification.

Besides providing more confidence in the proof, the use of a theorem prover can also be more efficient.
In particular, tedious small proof steps concerning standard data types can be automated. But more impor-
tantly, the proofs can be rerun after small changes in the specification, in order to detect which parts are
affected by the change. In this way only the problematic parts need attention. We followed this procedure in
order to generalize our results in [FGP+04] to the current setting with unbounded buffers. Recently, we also
reused considerable parts of the proof for the verification of a bi-directional SWP, in which the acknowledge-
ments are piggy backed on the data stream of the opposite direction. A full review of the hand-written proof
would have been much more work than an interactive modification with PVS. In particular, PVS interaction
helped us in updating the list of invariants.

Finally, our formalization efforts provided and tested a library of protocol-independent verification theory,
in particular on linear processes and the cones and foci method [FPP05]. This library can be reused for
completely different protocols as well.

We selected PVS for several reasons. First, the specification language of PVS is based on simply typed
higher-order logics. PVS provides a rich set of types and the ability to define subtypes and dependent types.
Second, PVS provides a powerful, extensible system for verifying obligations. It has a tool set consisting of a
type checker, an interactive theorem prover, and a model checker. Third, PVS has high-level proof strategies
and decision procedures that take care of many low-level details associated with computer-aided theorem
proving. In addition, PVS has useful proof management facilities, such as a graphical display of the proof
tree, and proof stepping and editing.

The PVS specification language is based on simply typed higher-order logics. Its type system contains
basic types such as boolean, nat, integer, real, etc. and type constructors such as set, tuple, record, and
function. Tuple types have the form [T1,...,Tn], where Ti are type expressions. A record is a finite list
of fields of the form R:TYPE=[# E1:T1, ...,En:Tn #], where Ei are record accessor functions. A function
constructor has the form F:TYPE=[T1,...,Tn->R], where F is a function with domain D=T1×...×Tn and
range R.

A PVS specification can be structured through a hierarchy of theories. Each theory consists of a signature
for the type names, constants introduced in the theory, axioms, definitions, and theorems associated with the
signature. A PVS theory can be parametric in certain specified types and values, which are placed between
[ ] after the theory name.

In Section 9.1 we show examples of the original specification of some data functions, and then we introduce
the modified forms of them. Moreover, we show how measure functions are used to detect termination of
recursive definitions. In Section 9.2 and 9.3 we represent the LPEs and invariants of the SWP in PVS.
Section 9.4 presents the equality of µCRL specification of the SWP with and without modulo arithmetic.
Section 9.5 explains how the cones and foci method is used to formalize the main theorem, that is, the µCRL
specification of the SWP is branching bisimilar to a FIFO queue of size 2n. Finally, Section 9.6 is dedicated
to some remarks on the verification in PVS.

We try to motivate our formalization in PVS as much as possible, and also explain some erroneous
attempts, to bring across some valuable experience with PVS in such a formalization exercise.

9.1. Data Specifications in PVS

In µCRL, the (loose) semantics of a data specification is the class of all its models. Incomplete data specifica-
tions may have multiple models. Even worse, it is possible to have inconsistent data specifications for which no
models exist. Here the necessity of specification with PVS emerges, because of this probable incompleteness
and inconsistency which exists when working with µCRL.

In PVS, all the definitions are first type checked, which generates some proof obligations. Proving all
these obligations ascertains that our data specification is complete and consistent.

To achieve this, having total definitions is required. So in the first place, underspecified functions need
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to be extended to total ones. Below there are some examples of partial definitions in the original data
specification of the SWP, which we changed into total ones. Second, to guarantee totality of recursive
definitions, PVS requires the user to define a so-called measure function. Doing this usually requires time
and effort, but the advantage is that recursive definitions are guaranteed to be well-founded. PVS enabled
us to find non-terminating definitions in the original data specification of the SWP, which were not detected
within the framework of µCRL. Below we show some of the most interesting examples.

Example 9.1 We wanted to have next-empty|n(i, q) as a function which produces the first empty cell in q
modulo n, so it was reasonable to define it as:

next-empty|n(i, q) = if (test(i, q),next-empty|n(S(i)|n, q), i)

Although the definition looks total and well-founded, this was one of the undetected potential errors that
PVS detected during the type checking process. Below we bring an example to show what happens:

q = [(d0, 0), (d1, 1), (d2, 2), (d3, 3), (d5, 5)], n = 4, i = 5

Then

next-empty|4(5, q) = next-empty|4(6|4, q)

= next-empty|4(2, q)

= next-empty|4(3, q)

= next-empty|4(0, q)

= next-empty|4(1, q)

= next-empty|4(2, q)

= . . .

which will never terminate. At the end we replaced it with the following definition, which is terminating and
operates the way we expect.

next-empty|n(i, q) = if (next-empty(i|n, q|n) < n,next-empty(i|n, q|n),next-empty(0, q|n))

Example 9.2 release(i, j, q) is obtained by emptying cells i, . . . , j .− 1, as defined in Section 4.5. The original
definition was the one below which we modified, because PVS detected non-termination on it.

release(i, j, q) = if (i = j, q, release(S(i), j, remove(i, q)))

It is non-terminating when i > j. Therefore we replaced i = j with i ≥ j in the case distinction above.

Example 9.3 release|n(i, j, q) behaves similar to release(i, j, q) modulo n. The previous flaw in the definition
of release(i, j, q) does not apply here, since i|n will not grow beyond n .− 1. First, we defined it as follows:

release|n(i, j, q) = if (i = j, q, release(S(i)|n, j, remove(i, q)))

This definition met our expectations, except there was a undetected problem within it, that can cause a
non-termination, which occurs if i = S(j) and j > n. Thus we modified the above definition to:

release|n(i, j, q) = if (i|n = j|n, q, release|n(S(i), j, remove(i, q)))

This new definition works properly and is terminating.

We represented the µCRL abstract data types directly by PVS types. This enabled us to reuse the PVS
library for definitions and theorems of “standard” data types. As an illustration, Figure 3 shows part of
a PVS theory defining release|n. There D is an unspecified but non-empty type which represents the set
of all data that can be communicated between the sender and the receiver. Buf is a list of pairs of type
D × Nat defined as list [[D,nat ]]. Here we used list to identify the type of the set of lists, which is defined
in the prelude in PVS. Therefore we simply use it without any need to define it explicitly. This figure also
represents release|n(i, j, q) in PVS. Since it is defined recursively, in order to establish its termination (or
totality), it is required by PVS to have a measure function. This new function itself needs to be terminating
(or decreasing) in the recursion calls. The simplest function which provided us with this property is the
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...
D:nonempty type
Buf:type=list[[D,nat]]
x,i,j,k,l,n: VAR nat
...
dm(i,j,n): nat =
IF mod(i,2*n)<=mod(j,2*n)
THEN mod(j,2*n)-mod(i,2*n)
ELSE 2*n+mod(j,2*n)-mod(i,2*n)
ENDIF

dist(i,j,n): RECURSIVE nat=
IF mod(i,2*n)=mod(j,2*n) THEN 0
ELSE S(dist(mod(S(i), 2*n), j, n))
ENDIF
measure(dm(i,j,n))

...
release(n)(i,j,q): RECURSIVE Buf=
IF mod(i,2*n)=mod(j,2*n) THEN q
ELSE release(n)(mod(S(i),2*n),j,remove(mod(i,2*n),q))
ENDIF
measure dist(i,j,n)

...

Fig. 3. An example of a data specification in PVS

so-called dist function, which counts the steps from i|2n to j|2n, and is a recursive function itself. So a new
measure function was necessary to prove termination; for this purpose we defined a function called dm, which
is decreasing and non-recursive.

PVS does not allow to skip the proofs of basic properties of the operations on Nat and Bool , which
were mentioned in Section 7.1. Below we list all auxiliary lemmas for Nat and Bool that PVS requires to
be defined and proved literally, while in the µCRL proof we considered them as trivial facts. For the proofs,
the reader is referred to the dump file at http://homepages.cwi.nl/~vdpol/swp.html.

Lemma 9.4 The followings hold for n > 0:

1. i > 0 ⇒ i·n ≥ n

2. i > 0 ⇒ i .− n < i

3. i|n ≤ i

4. S(i)|n ≤ S(i|n)

5. i|n 6= n .− 1 ⇒ i|n < S(i)|n
6. i ≤ j ⇒ (i div n) ≤ (j div n)

7. i ≤ j ≤ i + n ⇒ (j div n) = (i div n) ∨ (j div n) = S(i div n)

8. test(i, q|n) ⇒ i < n

9. i + n ≤ j < i + 2n ⇒ ¬in-window(i|2n, j|2n, (i + n)|2n)

10. (q|n)|n = q|n
11. λ++〈〉 = λ

12. test(i, q) ⇒ test(i|n, q|n)

In the µCRL proof, several data lemmas contain many back and forth steps in their proof strategies,
which are complicated to mimick in PVS. Therefore some of the proofs were restructured or modified in
PVS, in such a way that they can be obtained without any detour. For example, Lemma 7.3.1 is proved by
using Lemmas 9.4.6 and 9.4.7 above (see the dump file).
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LPE[Act,State,Local:TYPE,n:nat]: THEORY BEGIN
SUMMAND:TYPE= [State,Local-> [#act:Act,guard:bool,next:State#] ]
LPE:TYPE= [#init:State,sums:[below(n)->SUMMAND]#]

END LPE

Fig. 4. Definition of LPE in PVS

9.2. Representing LPEs

We now show how the µCRL specification of the SWP (an LPE) can be represented in PVS (cf. [FPP05]).
The main distinction will be that we have assumed so far that LPEs are clustered. This means that each
action label occurs in at most one summand, so that the set of summands could be indexed by the set
of action labels. This is no limitation, because any LPE can be transformed in clustered form, basically
by replacing + by

∑
over finite types. Clustered LPEs enable a notationally smoother presentation of the

theory. However, when working with concrete LPEs this restriction is not convenient, so we avoid it in the
PVS framework: an arbitrarily sized index set {0, . . . , n − 1} will be used, represented by the PVS type
below(n). A second deviation is that we will assume from now on that every summand has the same set of
local variables. Again this is no limitation, because void summations can always be added (i.e., p =

∑
d:D p,

when d does not occur in p). This restriction is needed to avoid the use of polymorphism, which does not
exist in PVS. The third deviation is that we do not distinguish action labels from action data parameters.
We simply work with one type of expressions for actions. Note that this is a real extension, because one
summand may now generate steps with various action labels, possibly visible as well as invisible.

So an LPE is parameterized by sets of actions (Act), global parameters (State) and local variables
(Local), and by the size of its index set (n). Note that the guard, action and next-state of a summand
depend on the global parameters d:State and on local variables e:Local. This dependency is represented in
the definition SUMMAND by a PVS function type. An LPE (see Figure 4) consists of an initial state and a list
of summands indexed by below(n).

Figure 5 illustrates the definition of LPE by a fragment of the linear specification Nmod of SWP in PVS.
It is introduced as an lpe of a set of actions: Nnonmod act, states: State, local variables: Local, and a digit:
11 referring to the number of summands. The LPE is identified as a pair, called init and sums, where init
is introducing the initial state of Nmod and sums the summands. The first LAMBDA maps each number to
the corresponding summand in Nmod . The second LAMBDA is representing the summands as functions over
State and Local. Here, State is the set of states and Local is the data type D × Nat of all pairs (d, k) of
the summation variables, which is considered as a global variable regarding the property p =

∑
(d,k):Local p,

which was mentioned before.

9.3. Representing Invariants

By Figure 6, we explain how to represent an invariant of the µCRL specification in PVS. Invariants are
boolean functions over the set of states. We present Invariant 7.9.4 from Section 7.2 as an example.

9.4. Equality of Nmod and Nnonmod

Figure 7 is devoted to verifying the strong bisimilarity of Nmod and Nnonmod (Proposition 6.3). state f and
local f are introduced to construct the state mapping between Nnonmod and Nmod .

Here is one more point (next to deviations regarding data lemmas, as explained at the end of Section 9.1)
where the PVS proof deviates from the manual proof. In the manual proof we used the proof principle CL-
RSP [BeG94b] to derive this equivalence, by showing that Nmod(`|2n, m|2n, q|2n, `′|2n, q′|2n, g|2n, p, g′|2n, p′)
is a solution for the equation of Nnonmod (`, m, q, `′, q′, g, p, g′, p′); see Section 8.1. However, in the PVS
proof we introduced the state mapping (state f, local f) from the set of states of Nnonmod to those of
Nmod . Then we used the corresponding relation to this state mapping, and we showed that this relation is
a bisimulation relation between Nnonmod and Nmod .
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...
State: TYPE+ = [nat,nat,Buf,nat,Buf,nat,D,nat,nat,nat]
Local: TYPE+ = [D,nat]
n: posnat
e: D
...
Nmod:lpe[Nnonmod act, State, Local, 11] =
(# init := (0,0,null,0,null,0,0,0,0),
sums :=
LAMBDA (i:below(11)) :
LAMBDA (state:State, local:Local) :
LET (l,m,q,l1,q1,g,p,g1,p1) = state,
(d,k) = local IN
COND
i=0 -> (#
act := rA(d),
guard := in-window(l,m,mod(l+n,2*n)),
next := (l,mod(S(m),2*n),inb(d,m,q),l1,q1,g,p,g1,p1)
#),
...
i=10 -> (#
act := tau,
guard := p1<length(g1),
next := (last-seq(g1),m,release2(n)(l,last-seq(g1),q),
l1,q1,g,p,delete-last(g1),p1)

#)
ENDCOND #)
...

Fig. 5. The formalization of Nmod of SWP in PVS

...
l,m,l1,g,p,g1,p1: var nat
q, q1: var Buf
e: var D
...
inv7.9.4(l,m,q,l1,q1,g,p,g1,p1): bool= l<=next-empty(l1,q1)
...

Fig. 6. An example of representing invariants in PVS

The reason why we chose not to formalize CL-RSP in PVS is that it depends on recursive process
equations. Therefore it would require a deep embedding of µCRL in PVS, which would complicate the
formalization too much. In PVS we defined an LPO as a list of summands (not as a recursive equation),
equipped with the standard LTS semantics. It could be proved directly that state mappings preserve strong
bisimulation. Still, the manual proof is based on CL-RSP, mainly for algebraic reasons: By using algebraic
principles only, the stated equivalence still holds in non-standard models for process algebra + CL-RSP.
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...
state f(l,m:nat,q:Buf,l1:nat,q1:Buf,g,p,g1,p1): State=
(mod(l,2*n),mod(m,2*n),modulo(q,2*n),mod(l1,2*n),
modulo(q1,2*n),g,mod(p,2*n),g1,mod(p1,2*n))

local f(l:Local,i:below(11)): Local=
LET (e,k)=l IN
IF i=1 THEN (e,mod(k,2*n)) ELSE (e,k) ENDIF

...
Proposition 6.3: THEOREM bisimilar (lpe2lts(Nnonmod),lpe2lts(Nmod))
...

Fig. 7. Equality of Nmod and Nnonmod in PVS

...
fc(l,m,q,l1,q1,g,p,g1,p1): bool = (l=m OR l=l1+n)
k(i): below(2)= IF i=0 THEN 0 ELSE 1 ENDIF
h(l,m,q,l1,q1,g,p,g1,p1): List =
concat(ql(q1,l1,next-empty(l1,q1)),ql(q,next-empty(l1,q1),m))
mc: THEOREM FORALL d: reachable(Nnonmod)(d) IMPLIES MC(Nnonmod,Z,k,h,fc)(d)
wn: LEMMA FORALL S: reachable(Nnonmod)(S) IMPLIES WN(Nnonmod,fc)(S)
main: THEOREM brbisimilar(lpe2lts(Nmod),lpe2lts(Z))
...

Fig. 8. Correctness of Nmod in PVS

9.5. Correctness of Nmod

Figure 8 is devoted to verifying the branching bisimilarity of Nmod and Z (Theorem 5.1). ql(q,i,j) is used
to describe the function q[i..j〉, which is defined as an application on triples. fc(l,m,q,l1,q1,g,p,g1,p1)
defines the focus condition for Nnonmod (l, m, q, l′, q′, g, p, g′, p′) as a boolean function on the set of states.
The state mapping h maps states of Nnonmod to states of Z, which is called φ : Ξ ⇒ List in Section 8. k is a
Boolean function which is used to match each external action of Nnonmod to the corresponding one of Z. This
is done by relating the numbers of the summands. As PVS requires, this function must be total, therefore
without loss of generality we map all summands with an internal action from Nnonmod ’s specification to the
second summand of Z’s specification.

According to the cones and foci proof method [FPP05], to derive that Nnonmod and Nmod are branching
bisimilar, it is enough to check the matching criteria and the reachability of focus points. The two conditions of
the cones and foci proof method are represented by mc and WN, namely matching criteria and the reachability
of focus points, respectively. mc establishes that all the matching criteria (see Section 3) hold for every
reachable state d in Nnonmod, with the aforementioned h, k and fc functions. WN represents the fact that
from all reachable states S in Nnonmod, a focus point can be reached by a finite series of internal actions.
The function lpe2lts provides the LTS semantics of an LPE (see [FPP05]).

9.6. Remarks on the Verification in PVS

We used PVS to find omissions and undetected potential errors that have been ignored in the manual µCRL
proofs. Some of them have been shown as examples in Section 9.1. PVS formalization and verification can
be reused, and PVS guided us to find some important invariants. We affirmed the termination of recursive
definitions by means of various measure functions. We represented LPEs in PVS and then introduced Nmod

and Nnonmod as LPEs. We verified the bisimilarity of Nnonmod and Nmod . Finally we used the cones and
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foci proof method [FoP03], to prove that Nmod and the external behavior of the SWP, represented by Z, are
branching bisimilar.

10. Conclusions

In this paper we have proved the correctness of a SWP with an arbitrary finite window size n and sequence
numbers modulo 2n. We showed that the SWP is branching bisimilar to a queue of capacity 2n. This proof
is entirely based on the axiomatic theory underlying µCRL and the axioms characterizing the data types,
and was checked with the help of PVS. It implies both safety and liveness of the protocol. Liveness depends
on the fairness assumption underlying branching bisimilarity that in each infinite trace a transition that is
enabled infinitely often is performed infinitely often. Of course it is still possible to make an implementation
of the SWP that complies with our specification but that does not live up to this fairness assumption, so
that such an implementation does violate liveness.
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A. Proofs on Properties of Data

This appendix contains proofs of the lemmas in Section 7.

A.1. Modulo Arithmetic

We present a proof of Lemma 7.1

Proof.

1. By induction on i.

• i < n.
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Then i|n = i.

• i ≥ n.

(i|n + j)|n
= ((i .− n)|n + j)|n
= ((i .− n) + j)|n (by induction, i, n > 0)
= ((i + j) .− n)|n (i ≥ n)
= (i + j)|n

2. Trivial, by induction on i.

3. By induction on i.

• i < n.
Then i div n = 0 and i|n = i. Clearly, i = 0·n + i.

• i ≥ n.
Then i div n = S((i .− n) div n) and i|n = (i .− n)|n. Hence,

i
= (i .− n) + n (because i ≥ n)
= ((i .− n) div n)·n + (i .− n)|n + n (by induction, i, n > 0)
= S((i .− n) div n)·n + (i .− n)|n
= (i div n)·n + i|n

4. Let i ≤ j < i + n.
Case 1: j div 2n < i div 2n. This leads to a contradiction.

i .− j
= (i div 2n)·2n + i|2n

.− ((j div 2n)·2n + j|2n) (Lem. 7.1.3)
= (i div 2n .− j div 2n)·2n + (i|2n

.− j|2n)
≥ 2n + (i|2n

.− j|2n) (j div 2n < i div 2n)
> 2n .− 2n (Lem. 7.1.2 )
= 0 (contradict i ≤ j)

Case 2: j div 2n = i div 2n. We need to show i|2n ≤ j|2n < i|2n + n.

i ≤ j < i + n
= (i div 2n)·2n + i|2n ≤ (j div 2n)·2n + j|2n < (i div 2n)·2n + i|2n + n (Lem. 7.1.3)
= i|2n ≤ j|2n < i|2n + n (j div 2n = i div 2n)

Case 3: j div 2n = S(i div 2n). We need to show j|2n + n < i|2n.

j < i + n
= (j div 2n)·2n + j|2n < (i div 2n)·2n + i|2n + n (Lem. 7.1.3)
= (i div 2n)·2n + 2n + j|2n < (i div 2n)·2n + i|2n + n (j div 2n = S(i div 2n))
= j|2n + n < i|2n

Case 4: j div 2n > S(i div 2n). This leads to a contradiction.

j .− (i + n)
= (j div 2n)·2n + j|2n

.− ((i div 2n)·2n + i|2n) .− n (Lem. 7.1.3)
≥ (i div 2n)·2n + 4n + j|2n

.− (i div 2n)·2n .− i|2n
.− n (j div 2n > S(i div 2n))

= 3n + j|2n
.− i|2n

> 3n .− 2n (Lem. 7.1.2)
> 0 (contradict j < i + n)

5. By induction on i.

• i < n.
Then i div n = 0.
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• i ≥ n.

i div n
= S((i .− n) div n)
≤ S((j .− n) div n) (by induction, because i ≤ j, n > 0)
= j div n (because n ≤ i ≤ j)

A.2. Buffers

We present a proof of Lemma 7.2

Proof.

1. By induction on the structure of q.

• q = [].
test(i, remove(j, [])) = test(i, []) = f = test(i, []) ∧ i 6= j.

• q = inb(d, k, q′).
Case 1: j = k.

test(i, remove(j, inb(d, k, q′)))
= test(i, remove(j, q′))
= test(i, q′) ∧ i 6= j (by induction)
= test(i, inb(d, k, q′)) ∧ i 6= j (because j = k)

Case 2: j 6= k.
Case 2.1: i = k. Then i 6= j.

test(i, remove(j, inb(d, k, q′)))
= test(i, inb(d, k, remove(j, q′)))
= t

= test(i, inb(d, k, q′)) ∧ i 6= j

Case 2.2: i 6= k.

test(i, remove(j, inb(d, k, q′)))
= test(i, inb(d, k, remove(j, q′)))
= test(i, remove(j, q′))
= test(i, q′) ∧ i 6= j (by induction)
= test(i, inb(d, k, q′)) ∧ i 6= j

2. By induction on the structure of q.

• q = [].
remove(j, []) = [].

• q = inb(d, k, q′).
Case 1: j = k.

retrieve(i, remove(j, inb(d, k, q′)))
= retrieve(i, remove(j, q′))
= retrieve(i, q′) (by induction)
= retrieve(i, inb(d, k, q′))

Case 2: j 6= k.
Case 2.1: i = k.

retrieve(i, remove(j, inb(d, k, q′)))
= retrieve(i, inb(d, k, remove(j, q′)))
= d
= retrieve(i, inb(d, k, q′))
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Case 2.2: i 6= k.

retrieve(i, remove(j, inb(d, k, q′)))
= retrieve(i, inb(d, k, remove(j, q′)))
= retrieve(i, remove(j, q′))
= retrieve(i, q′) (by induction)
= retrieve(i, inb(d, k, q′))

3. By induction on k .− j.

• j ≥ k.
Then test(i, release(j, k, q)) = test(i, q) and ¬(j ≤ i < k) = t.

• j < k.

test(i, release(j, k, q))
= test(i, release(S(j), k, remove(j, q)))
= test(i, remove(j, q)) ∧ ¬(S(j) ≤ i < k) (by induction)
= test(i, q) ∧ ¬(j ≤ i < k) (Lem. 7.2.1)

4. By induction on k .− j.

• j ≥ k.
Then retrieve(i, release(j, k, q)) = retrieve(i, q).

• j < k.
Then ¬(j ≤ i < k) implies i 6= j. Hence,

retrieve(i, release(j, k, q))
= retrieve(i, release(S(j), k, remove(j, q)))
= retrieve(i, remove(j, q)) (by induction)
= retrieve(i, q) (Lem. 7.2.2, because i 6= j)

5. By induction on the structure of q.

• g = [].
This case is trivial.

• q = inb(d, k, q′).
By definition, max (inb(d, k, q′)) = if (k ≥ max (q′), k,max (q′)).
Case 1: k ≥ max (q′). Then max (inb(d, k, q′)) = k.
Clearly, test(k, inb(d, k, q′)).
Case 2: k < max (q′). Then max (inb(d, k, q′)) = max(q′).
test(max (q′), inb(d, k, q′)) = test(max (q′), q′). By induction, test(max (q′), q′) holds.

A.3. Buffers with Modulo Arithmetic

We present a proof of Lemma 7.3.

Proof.

1. By induction on the structure of q.

• q = [].
test(k, []) = f = test(k|2n, []|2n).

• q = inb(d, `, q′).
Let test(j, q) ⇒ i ≤ j < i + n and i ≤ k ≤ i + n.
Case 1: k|2n = `|2n.
test(`, q), so i ≤ ` < i + n. In combination with i ≤ k ≤ i + n and k|2n = `|2n, this implies k = `.
Hence, test(k, q). Furthermore, k|2n = `|2n implies test(k|2n, q|2n).
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Case 2: k|2n 6= `|2n. Then also k 6= `.
test(j, q′) ⇒ test(j, q) ⇒ i ≤ j < i + n, so induction can be applied with respect to q′.

test(k, inb(d, `, q′))
= test(k, q′)
= test(k|2n, q′|2n) (by induction)
= test(k|2n, inb(d, `, q′)|2n)

2. By induction on the structure of q.

• q = [].
test(k, []) = f.

• q = inb(d, `, q′).
Let test(j, q) ⇒ i ≤ j < i + n and test(k, q).
Case 1: k = `. Then also k|2n = `|2n.
Hence, retrieve(k, q) = d = retrieve(k|2n, q|2n).
Case 2: k 6= `.
test(j, q′) ⇒ test(j, q) ⇒ i ≤ j < i + n, and test(k, q) together with k 6= ` implies test(k, q′), so
induction can be applied with respect to q′.
test(k, q) and test(`, q), so i ≤ k < i + n and i ≤ ` < i + n. In combination with k 6= `, this implies
k|2n 6= `|2n. Hence,

retrieve(k, q)
= retrieve(k, q′)
= retrieve(k|2n, q′|2n) (by induction)
= retrieve(k|2n, q|2n)

3. By induction on the structure of q.

• q = [].
remove(k, [])|2n = [] = remove(k|2n, []|2n).

• q = inb(d, `, q′).
Let test(j, q) ⇒ i ≤ j < i + n and i ≤ k ≤ i + n.
Case 1: k = `. Then also k|2n = `|2n.

remove(k, q)|2n

= remove(k, q′)|2n

= remove(k|2n, q′|2n) (by induction)
= remove(k|2n, q|2n)

Case 2: k 6= `.
test(`, q), so i ≤ ` < i + n. In combination with i ≤ k ≤ i + n and k 6= `, this implies k|2n 6= `|2n.
Hence,

remove(k, q)|2n

= inb(d, `, remove(k, q′))|2n

= inb(d, `|2n, remove(k, q′)|2n)
= inb(d, `|2n, remove(k|2n, q′|2n)) (by induction)
= remove(k|2n, q|2n)

4. By induction on k .− i. Let test(j, q) ⇒ i ≤ j < i + n.

• i = k. Then also i|2n = k|2n.
Hence, release(i, k, q)|2n = q|2n = release|2n(i, k, q|2n).

• i < k ≤ i + n.
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Then i|2n 6= k|2n. Hence,

release(i, k, q)|2n

= release(S(i), k, remove(i, q))|2n

= release|2n(S(i), k, remove(i, q)|2n) (by induction)
= release|2n(S(i), k, remove(i|2n, q|2n)) (Lem. 7.3.3)
= release|2n(i, k, q|2n)

5. By induction on (i + n) .− k. Let test(j, q) ⇒ i ≤ j < i + n.

• k = i + n.
¬test(i + n, q), so by Lemma 7.3.1, ¬test((i + n)|2n, q|2n). By Lemma 7.1.2, (i + n)|2n < 2n. Hence,

next-empty(i + n, q)|2n

= (i + n)|2n

= next-empty((i + n)|2n, q|2n)
= next-empty|2n((i + n)|2n, q|2n)

• i ≤ k ≤ i + n.
Case 1: ¬test(k, q). By Lemma 7.3.1, also ¬test(k|2n, q|2n).
By Lemma 7.1.2, k|2n < 2n. Hence,

next-empty(k, q)|2n

= k|2n

= next-empty(k|2n, q|2n)
= next-empty|2n(k|2n, q|2n)

Case 2: test(k, q). By Lemma 7.3.1, also test(k|2n, q|2n).
We prove next-empty|2n(k|2n, q|2n) = next-empty|2n(S(k)|2n, q|2n).
Case 2.1: k|2n = 2n .− 1.
By Lemma 7.5.3,

next-empty(k|2n, q|2n)
= next-empty(S(k|2n), q|2n)
= next-empty(2n, q|2n)
≥ 2n

Hence,

next-empty|2n(k|2n, q|2n)
= next-empty(0, q|2n)
= next-empty|2n(S(k)|2n, q|2n)

Case 2.2: k|2n < 2n .− 1.
Using Lemma 7.1.1, we can derive S(k)|2n = S(k|2n). Since

next-empty(k|2n, q|2n)
= next-empty(S(k|2n), q|2n)
= next-empty(S(k)|2n, q|2n)

it follows that

next-empty|2n(k|2n, q|2n)
= next-empty|2n(S(k)|2n, q|2n)

Concluding,

next-empty(k, q)|2n

= next-empty(S(k), q)|2n

= next-empty|2n(S(k)|2n, q|2n) (by induction)
= next-empty|2n(k|2n, q|2n)

6. By induction on the structure of q.
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• q = [].
test(k, []|2n) = f.

• q = inb(d, `, q′).
Then test(`, q), so i ≤ ` < i+n. Thus, by Lemma 7.1.4, i|2n ≤ `|2n < i|2n +n∨ `|2n +n < i|2n. Hence,

test(k, inb(d, `, q′)|2n)
⇔ k = `|2n ∨ test(k, q′|2n)
⇒ k = `|2n ∨ i|2n ≤ k < i|2n + n ∨ k + n < i|2n (by induction)
⇔ i|2n ≤ k < i|2n + n ∨ k + n < i|2n

A.4. in-window

We present a proof of Lemma 7.4.

Proof.

1. Let i ≤ k < i + n.
Case 1: S(i div 2n)·2n ≤ k.
Then S(i div 2n)·2n ≤ k < i + n < S(i div 2n)·2n + n (by Lem. 7.1.3). It follows that k div 2n =
(i + n) div 2n = S(i div 2n). Hence, in view of Lemma 7.1.3, k|2n < (i + n)|2n < i|2n.
Case 2: k < S(i div 2n)·2n ≤ i + n.
Then (i div 2n)·2n ≤ i ≤ k < (i div 2n)·2n + 2n, so by Lemma 7.1.5 k div 2n = i div 2n. Furthermore,
S(i div 2n)·2n ≤ i+n < S(i div 2n)·2n+n, so (i + n) div 2n = S(i div 2n). Hence, (i + n)|2n < i|2n ≤ k|2n.
Case 3: i + n < S(i div 2n)·2n.
Then (i div 2n)·2n ≤ i ≤ k < i + n < (i div 2n)·2n + 2n, so by Lemma 7.1.5 k div 2n = (i + n) div 2n =
i div 2n. Hence, i|2n ≤ k|2n < (i + n)|2n.
By definition,

in-window(i|2n, k|2n, (i + n)|2n)
= i|2n ≤ k|2n < (i + n)|2n∨

(i + n)|2n < i|2n ≤ k|2n∨
k|2n < (i + n)|2n < i|2n

so in all three cases we conclude in-window(i|2n, k|2n, (i + n)|2n).

2. We prove

(i + n ≤ k < i + 2n ∨ i ≤ k + n < i + n) ⇒ ¬in-window(i|2n, k|2n, (i + n)|2n).

• i + n ≤ k < i + 2n.
Then i div 2n ≤ (i + n) div 2n ≤ k div 2n ≤ S(i div 2n). We distinguish three cases, in which we
repeatedly apply Lemma 7.1.3.
Case 1: i div 2n = (i + n) div 2n = k div 2n.
Then i < i + n yields i|2n < (i + n)|2n and i + n ≤ k yields (i + n)|2n ≤ k|2n.
Case 2: S(i div 2n) = S((i + n) div 2n) = k div 2n.
Then i < i + n yields i|2n < (i + n)|2n and k < i + 2n yields k|2n < i|2n.
Case 3: S(i div 2n) = (i + n) div 2n = k div 2n.
Then i + n ≤ k yields (i + n)|2n ≤ k|2n and k < i + 2n yields k|2n < i|2n.
In all three cases we can conclude ¬in-window(i|2n, k|2n, (i + n)|2n).

• i ≤ k + n < i + n.
Then i + n ≤ k + 2n < i + 2n, so by Case 1, ¬in-window(i|2n, (k + 2n)|2n, (i + n)|2n). Hence,
¬in-window(i|2n, k|2n, (i + n)|2n).

A.5. Buffers and next-empty

We present a proof of Lemma 7.5
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Proof.

1. By induction on the structure of q.

• q = [].
test(i, []) = f.

• q = inb(d, j, q′).
Case 1: i = j.
Then clearly i ≤ max(inb(d, j, q′)).
Case 2: i 6= j.
Then test(i, inb(d, j, q′)) implies test(i, q′), so

i ≤ max(q′) (by induction) ≤ max(inb(d, j, q′)).

2. By induction on j .− i.

• i = j.
¬test(i, q) implies next-empty(i, q) = i = j.

• i < j.
Case 1: ¬test(i, q).
Then next-empty(i, q) = i < j.
Case 2: test(i, q).
Then i < j < next-empty(i, q) ⇔ S(i) ≤ j < next-empty(S(i), q) ⇒ test(j, q) (by induction).

3. By induction on S(max(q)) .− i.

• ¬test(i, q). (This includes the base case S(max(q)) ≤ i.)
Then next-empty(i, q) = i.

• test(i, q).
According to Lemma 7.5.1, i ≤ max(q), so S(max(q)) .− S(i) < S(max(q)) .− i. Hence, by induction,
next-empty(i, q) = next-empty(S(i), q) > i.

4. By induction on S(max(q)) .− i.

• ¬test(i, q).
Then next-empty(i, inb(d, j, q)) ≥ i (Lem. 7.5.3) = next-empty(i, q).

• test(i, q). Then also test(i, inb(d, j, q)).
By Lemma 7.5.1, i ≤ max(q), so S(max(q)) .− S(i) < S(max(q)) .− i. Hence,

next-empty(i, inb(d, j, q))
= next-empty(S(i), inb(d, j, q))
≥ next-empty(S(i), q) (by induction)
= next-empty(i, q)

5. By induction on S(max(q)) .− i. Let j 6= next-empty(i, q).

• ¬test(i, q).
Then next-empty(i, q) = i, so j 6= i, and so ¬test(i, inb(d, j, q)). Hence, next-empty(i, inb(d, j, q)) = i.

• test(i, q). Then also test(i, inb(d, j, q)).
By Lemma 7.5.1, i ≤ max(q), so S(max(q)) .− S(i) < S(max(q)) .− i. Furthermore, test(i, q) implies
j 6= next-empty(S(i), q). Hence,

next-empty(i, inb(d, j, q))
= next-empty(S(i), inb(d, j, q))
= next-empty(S(i), q) (by induction)
= next-empty(i, q)

6. By induction on S(max(q)) .− i.

• ¬test(i, q).
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Then next-empty(i, q) = i. By Lemma 7.5.3, next-empty(S(i), q) 6= i. Hence,

next-empty(i, inb(d,next-empty(i, q), q))
= next-empty(i, inb(d, i, q))
= next-empty(S(i), inb(d, i, q))
= next-empty(S(i), q) (Lem. 7.5.5)
= next-empty(S(next-empty(i, q)), q)

• test(i, q).
By Lemma 7.5.1, i ≤ max(q), so the induction hypothesis can be applied with respect to S(i).

next-empty(i, inb(d,next-empty(i, q), q))
= next-empty(S(i), inb(d,next-empty(S(i), q), q))
= next-empty(S(next-empty(S(i), q)), q) (by induction)
= next-empty(S(next-empty(i, q)), q)

7. We apply induction on S(max(q)) .− i.

• ¬test(i, q).
By Lemma 7.2.1, ¬test(i, remove(j, q)). Hence, next-empty(i, remove(j, q)) = i = next-empty(i, q).

• test(i, q).
Let ¬(i ≤ j < next-empty(i, q)). test(i, q) implies ¬(S(i) ≤ j < next-empty(S(i), q)). Furthermore,
by Lemma 7.5.1, i ≤ max(q), so the induction hypothesis can be applied with respect to S(i). Since
next-empty(i, q) = next-empty(S(i), q) ≥ S(i) (Lem. 7.5.3), ¬(i ≤ j < next-empty(i, q)) implies j 6= i.
Then, by Lemma 7.2.1, test(i, remove(j, q)). Hence,

next-empty(i, remove(j, q))
= next-empty(S(i), remove(j, q))
= next-empty(S(i), q) (by induction)
= next-empty(i, q)

A.6. Unbounded Buffers

We present a proof of Lemma 7.6.11. The proofs of the other parts of Lemma 7.6 are straightforward, by
induction on g, and left to reader.

Proof. We apply induction on the structure of g.

• g = []
K

.
Then length(g) = 0, so this case is trivial.

• . g = inm(e, k, g1).
Let i < length(g1) and j ≤ length(g1).
Case 1: j = 0.
Then ¬(i < j) and return-seq(i, delete(j, g))=return-seq(i, g1)=return-seq(S(i), g).
Case 2: j > 0.
If i = 0, then i < j and return-seq(i, delete(j, g)) = k = return-seq(i, g).
If i > 0, then

return-seq(i, delete(j, g))
= return-seq(i .− 1, delete(j .− 1, g1))
= if (i .− 1 < j .− 1, return-seq(i .− 1, g1), return-seq(i, g1)) (by induction)
= if (i < j, return-seq(i, g), return-seq(S(i), g))

The proof of Lemma 7.7.9 is similar to the proof of Lemma 7.6.11. The other parts of Lemma 7.7 are
straightforward, by induction on g′.
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A.7. Lists

The proofs of the nine facts on lists in Lemma 7.8 are straightforward and left to the reader. We restrict to
a listing of the induction bases.

Proof.

1. By induction on the length of λ.

2. By induction on the length of λ.

3. By induction on the length of λ.

4. By induction on j .− i.

5. By induction on k .− i.

6. By induction on j
.− i.

7. By induction on j .− i.

8. By induction on j .− i, together with Lemmas 7.2.1 and 7.2.2.

9. By induction on j .− i, together with Lemmas 7.2.3 and 7.2.4.

A.8. Invariants

We present a proof of Lemma 7.9

Proof. It is easy to verify that all invariants hold in the initial state (where the buffers and mediums are
empty, the parameters in the natural numbers equal zero). In case 1-27 we show that the invariant is preserved
by each of the summands A-K in the specification of Nnonmod . For each of these invariants we only treat
the summands in which one or more values of parameters occurring in the invariant are updated. In each
of these proof obligations, we list the new values of these parameters together with those conjuncts in the
condition of the summand under consideration that play a role in the proof.

1. p ≤ length(g).
Summands B, C, D, E and F need to be checked. F is the same as E.
B: g := inm(retrieve(k, q), k, g), p := S(p);
length(inm(retrieve(k, q), k, g)) = S(length(g)) ≥ S(p).
C: g := delete(k, g), p := p .− 1; under condition k < p;
Since k < p ≤ length(g), by Lemma 7.6.9, length(delete(k, g))=length(g) .− 1 ≥ p .− 1.
D: p := p .− 1; under condition p > 0;
p .− 1 < p ≤ length(g).
E: g := delete-last(g); under condition p < length(g);
Since 0 < length(g), by Lemmas 7.6.7 and 7.6.9, length(delete-last(g))=length(g) .− 1 ≥ p.

2. p′ ≤ length(g′).
Summands H, I, J and K need to be checked.
H : g′ := inm(next-empty(`′, q′), g′), p′ := S(p′);
length(inm(next-empty(`′, q′), g′)) = S(length(g′)) ≥ S(p′).
I : g′ := delete(k, g′), p′ := p′

.− 1; under condition k < p′;
Since k < p′ ≤ length(g′), by Lemma 7.7.7, length(delete(k, g′))=length(g′) .− 1 ≥ p′ .− 1.
J : p′ := p′ .− 1; under condition p′ > 0;
p′ .− 1 < p′ ≤ length(g′).
K: g′ := delete-last(g′); under condition p′ < length(g′);
Since 0 < length(g′), by Lemmas 7.7.5 and 7.7.7, length(delete-last(g′))=length(g′) .− 1 ≥ p.

3. member(i, g′) ⇒ i ≤ next-empty(`′, q′).
Summands E, G, H , I and K need to be checked.
E: q′ := inb(last-dat(g), last-seq(g), q′);
Let member(i, g′). Then i ≤ next-empty(`′, q′) ≤ next-empty(`′, inb(last-dat(g), last-seq(g), q′)) (Lem.
7.5.4).
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G: `′ := S(`′), q′ := remove(`′, q′); under condition test(`′, q′);
Let member(i, g′). Then,

i
≤ next-empty(`′, q′)
= next-empty(S(`′), q′)
= next-empty(S(`′), remove(`′, q′)) (Lem. 7.5.7)

H : g′ := inm(next-empty(`′, q′), g′);
Let member(i, inm(next-empty(`′, q′), g′)).
Case 1: i = next-empty(`′, q′).
next-empty(`′, q′) ≤ next-empty(`′, q′).
Case 2: i 6= next-empty(`′, q′).
member(i, inm(next-empty(`′, q′), g′)) = member(i, g′) ⇒ i ≤ next-empty(`′, q′).
I : g′ := delete(k, g′); under condition k < p′;
Let member(i, delete(k, g′)). By Invariant 7.9.2, k < p′ ≤ length(g′). By Lemma 7.7.6, member(i, delete(k, g′)) ⇒
member(i, g′) ⇒ i ≤ next-empty(`′, q′).
K: g′ := delete-last(g′); under condition p′ < length(g′);
Let member(i, delete-last(g′)). By Lemmas 7.7.5 and 7.7.6, member(i, delete-last(g′)) ⇒ member(i, g′) ⇒
i ≤ next-empty(`′, q′).

4. ` ≤ next-empty(`′, q′).
Summands E, G and K need to be checked.
E: q′ := inb(last-dat(g), last-seq(g), q′);
` ≤ next-empty(`′, q′) ≤ next-empty(`′, inb(last-dat(g), last-seq(g), q′)) (Lem. 7.5.4).
G: `′ := S(`′), q′ := remove(`′, q′); under condition test(`′, q′);

`
≤ next-empty(`′, q′)
= next-empty(S(`′), q′)
= next-empty(S(`′), remove(`′, q′)) (Lem. 7.5.7)

K: ` := last-seq(g′); under condition p′ < length(g′).
Since 0 < length(g′), by Lemmas 7.7.4 and 7.7.8, member(last-seq(g′), g). Hence, by Invariant 7.9.3,
last-seq(g′) ≤ next-empty(`′, q′).

5. i < j < length(g′) ⇒ return-seq(i, g′) ≥ return-seq(j, g′).
Summands H, I and K need to be checked.
H : g′ := inm(next-empty(`′, q′), g′);
Let i < j < S(length(g′)).
Case 1: i > 0. Then i .− 1 < j .− 1 < length(g′), so

return-seq(i, inm(next-empty(`′, q′), g′))
= return-seq(i .− 1, g′)
≥ return-seq(j .− 1, g′)
= return-seq(j, inm(next-empty(`′, q′), g′))

Case 2: i = 0.
Since j > 0, return-seq(j, inm(next-empty(`′, q′), g′)) = return-seq(j .− 1, g′). Since j .− 1 < length(g′), by
Lemma 7.7.8, member(return-seq(j .− 1, g′), g′). By Invariant 7.9.3,

return-seq(j .− 1, g′)
≤ next-empty(`′, q′)
= return-seq(i, inm(next-empty(`′, q′), g′)) (because i = 0)

I : g′ := delete(k, g′); under condition k < p′;
Let i < j < length(delete(k, g′)). By Invariant 7.9.2, k < p′ ≤ length(g′). So by Lemma 7.7.7,
length(delete(k, g′)) = length(g′) .− 1. Since i < S(i) ≤ j < S(j) < length(g′), return-seq(i, g′) ≥
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return-seq(S(i), g′) ≥ return-seq(j, g′) ≥ return-seq(S(j), g′). So by Lemma 7.7.9,

return-seq(i, delete(k, g′))
≥ return-seq(S(i), g′)
≥ return-seq(j, g′)
≥ return-seq(j, delete(k, g′))

K: g′ := delete-last(g′); under condition p′ < length(g′);
Let i < j < length(delete-last(g′)). Since 0 < length(g′), by Lemmas 7.7.5 and 7.7.7, length(delete-last(g′)) =
length(g′) .− 1. By Lemmas 7.7.5 and 7.7.9,

return-seq(i, delete-last(g′))
= return-seq(i, g′)
≥ return-seq(j, g′)
= return-seq(i, delete-last(g′))

6. member(i, g′) ⇒ ` ≤ i.
Summands H , I and K need to be checked.
H : g′ := inm(next-empty(`′, q′), g′);
Let member(i, inm(next-empty(`′, q′), g′)).
Case 1: i = next-empty(`′, q′).
By Invariant 7.9.4, ` ≤ next-empty(`′, q′).
Case 2: i 6= next-empty(`′, q′).
member(i, inm(next-empty(`′, q′), g′)) ⇒ member(i, g′) ⇒ ` ≤ i.
I : g′ := delete(k, g′); under condition k < p′;
By Invariant 7.9.2, k < p′ ≤ length(g′). So by Lemma 7.7.6, member(i, delete(k, g′)) ⇒ member(i, g′) ⇒
` ≤ i.
K: g′ := delete-last(g′); under condition p′ < length(g′);
Since 0 < length(g′), by Lemmas 7.7.5 and 7.7.6, member(i, delete-last(g′)) ⇒ member(i, g′) ⇒ ` ≤ i.

7. test(i, q) ⇒ i < m.
Summands A and K need to be checked.
A: m := S(m), q := inb(d, m, q);
test(i, inb(d, m, q)) ⇔ (i = m ∨ test(i, q)) ⇒ (i = m ∨ i < m) ⇔ i < S(m).
K: q := release(`, last-seq(g′), q);
test(i, release(`, last-seq(g′), q)) ⇒ test(i, q) (Lem. 7.2.3) ⇒ i < m.

8. member(d, i, g) ⇒ i < m.
Summands A, B, C, E and F need to be checked. F is the same as E.
A: m := S(m);
member(d, i, g) ⇒ i < m < S(m).
B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)).
Case 1: i = k.
Since test(k, q), by Invariant 7.9.7, k < m.
Case 2: i 6= k.
member(d, i, inm(retrieve(k, q), k, g)) = member(d, i, g) ⇒ i < m.
C: g := delete(k, g); under condition k < p;
By Invariant 7.9.1, k < p ≤ length(g). So by Lemma 7.6.8, member(d, i, delete(k, g)) ⇒ member(d, i, g) ⇒
i < m.
E: g := delete-last(g); under condition p < length(g);
Since 0 < length(g), by Lemmas 7.6.7 and 7.6.8, member(d, i, delete-last(g)) ⇒ member(d, i, g) ⇒ i < m.

9. test(i, q′) ⇒ i < m.
Summands A, E and G need to be checked.
A: m := S(m);
test(i, q′) ⇒ i < m < S(m).
E: q′ := inb(last-dat(g), last-seq(g), q′); under condition p < length(g);
Since 0 < length(g), by Lemmas 7.6.5, 7.6.6 and 7.6.10, member(last-dat(g), last-seq(g), g). By Invariant
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7.9.8, last-seq(g) < m. Hence,

test(i, inb(last-dat(g), last-seq(g), q′))
⇔ (i = last-seq(g) ∨ test(i, q′))
⇒ (i = last-seq(g) ∨ i < m)
⇔ i < m

G: q′ := remove(`′, q′);
test(i, remove(`′, q′)) ⇒ test(i, q′) (Lem. 7.2.1) ⇒ i < m.

10. test(i, q′) ⇒ `′ ≤ i < `′ + n.
Summands E and G need to be checked.
E: q′ := inb(last-dat(g), last-seq(g), q′); under condition `′ ≤ last-seq(g) < `′ + n;

test(i, inb(last-dat(g), last-seq(g), q′))
⇔ (i = last-seq(g) ∨ test(i, q′))
⇒ (i = last-seq(g) ∨ `′ ≤ i < `′ + n)
⇔ `′ ≤ i < `′ + n

G: `′ := S(`′), q′ := remove(`′, q′);

test(i, remove(`′, q′))
⇔ (test(i, q′) ∧ i 6= `′) (Lem. 7.2.1)
⇒ (`′ ≤ i < `′ + n ∧ i 6= `′)
⇒ S(`′) ≤ i < S(`′) + n

11. `′ ≤ m.
Summands A and G need to be checked.
A: m := S(m);
`′ ≤ m < S(m).
G: `′ := S(`′); under condition test(`′, q′);
By Invariant 7.9.9, test(`′, q′) ⇒ `′ < m. Hence, S(`′) ≤ m.

12. next-empty(`′, q′) ≤ m.
By Invariant 7.9.11, `′ ≤ m. By Invariant 7.9.9, ¬test(m, q′). Hence, by Lemma 7.5.2, next-empty(`′, q′) ≤
m.

13. next-empty(`′, q′) ≤ `′ + n.
By Invariant 7.9.10, ¬test(`′ + n, q′). Hence, by Lemma 7.5.2, next-empty(`′, q′) ≤ `′ + n.

14. test(i, q) ⇒ ` ≤ i.
Summands A and K need to be checked.
A: q := inb(d, m, q);
By Invariants 7.9.4 and 7.9.12, ` ≤ m. Hence,

test(i, inb(d, m, q))
⇔ (i = m ∨ test(i, q))
⇒ (i = m ∨ ` ≤ i)
⇔ ` ≤ i

K: ` := last-seq(g′), q := release(`, last-seq(g′), q);

test(i, release(`, last-seq(g′), q))
⇔ (test(i, q) ∧ ¬(` ≤ i < last-seq(g′))) (Lem. 7.2.3)
⇒ (` ≤ i ∧ ¬(` ≤ i < last-seq(g′)))
⇒ last-seq(g′) ≤ i

15. ` ≤ i < m ⇒ test(i, q).
Summands A and K need to be checked.
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A: m := S(m), q := inb(d, m, q);

` ≤ i < S(m)
⇒ (i = m ∨ ` ≤ i < m)
⇒ (i = m ∨ test(i, q))
⇔ test(i, inb(d, m, q))

K: ` := last-seq(g′), q := release(`, last-seq(g′), q); under condition p′ < length(g′);
Since 0 < length(g′), by Lemmas 7.7.4 and 7.7.8, member(last-seq(g′), g′). Then by Invariant 7.9.6, ` ≤
last-seq(g′). Hence,

last-seq(g′) ≤ i < m
⇔ (` ≤ i < m ∧ ¬(` ≤ i < last-seq(g′)))
⇒ (test(i, q) ∧ ¬(` ≤ i < last-seq(g′)))
⇔ test(i, release(`, last-seq(g′), q)) (Lem. 7.2.3)

16. m ≤ ` + n.
Summands A and K need to be checked.
A: m := S(m); under condition m < ` + n;
Then S(m) ≤ ` + n.
K: ` := last-seq(g′); under condition p′ < length(g′);
Since 0 < length(g′), by Lemmas 7.7.4 and 7.7.8, member(last-seq(g′), g′). Then by Invariant 7.9.6, ` ≤
last-seq(g′). Hence, m ≤ ` + n ≤ last-seq(g′) + n.

17. i ≤ j < length(g) ⇒ return-seq(i, g) + n > return-seq(j, g).
Summands B, C, E and F need to be checked. F is the same as E.
B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Case 1: i > 0. Let i ≤ j < S(length(g)).

return-seq(j, inm(retrieve(k, q), k, g))
= return-seq(j .− 1, g)
< return-seq(i .− 1, g) + n
= return-seq(i, inm(retrieve(k, q), k, g)) + n

Case 2: i = 0.
The case j = 0 is trivial. So suppose that j > 0. Lemma 7.6.10 yields
member(return-dat(j .− 1, g), return-seq(j .− 1, g), g). By Invariant 7.9.8, return-seq(j .− 1, g) < m. By
Invariant 7.9.14, test(k, q) ⇒ ` ≤ k.

return-seq(j, inm(retrieve(k, q), k, g))
= return-seq(j .− 1, g)
< m
≤ ` + n (Lem. 7.9.16)
≤ k + n
= return-seq(i, inm(retrieve(k, q), k, g)) + n (because i = 0)

C: g := delete(k, g); under condition k < p;
Let i ≤ j < length(delete(k, g)). By Invariant 7.9.1, k < p ≤ length(g). By Lemma 7.6.9,
length(delete(k, g)) = length(g) .− 1.
Case 1: k ≤ i.
Since S(i) ≤ S(j) < length(g), by Lemma 7.6.11,

return-seq(i, delete(k, g)) + n
= return-seq(S(i), g) + n
> return-seq(S(j), g)
= return-seq(j, delete(k, g))

Case 2: i < k ≤ j.
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Since i < S(j) < length(g), by Lemma 7.6.11,

return-seq(i, delete(k, g)) + n
= return-seq(i, g) + n
> return-seq(S(j), g)
= return-seq(j, delete(k, g))

Case 3: j < k.
Since i ≤ j < length(g), by Lemma 7.6.11,

return-seq(i, delete(k, g)) + n
= return-seq(i, g) + n
> return-seq(j, g)
= return-seq(j, delete(k, g))

E: g := delete-last(g); under condition p < length(g);
Let i ≤ j < length(delete-last(g)). Since 0 < length(g), by Lemmas 7.6.6 and 7.6.9, length(delete-last(g)) =
length(g) .− 1. Since i ≤ j < length(g), by Lemma 7.6.11,

return-seq(i, delete-last(g)) + n
= return-seq(i, g) + n
> return-seq(j, g)
= return-seq(j, delete-last(g))

18. (member(d, i, g) ∧ test(j, q′)) ⇒ i + n > j.
Summands B, C, E, F and G need to be checked.
B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)) and test(j, q′).
Case 1: i = k.
By Invariant 7.9.14, test(k, q) yields ` ≤ k, and by Invariant 7.9.9, test(j, q′) yields j < m. Hence,
k + n ≥ ` + n ≥ m (Inv. 7.9.16) > j.
Case 2: i 6= k.
member(d, i, inm(retrieve(k, q), k, g)) = member(d, i, g). Hence, i + n > j.
C: g := delete(k, g); under condition k < p;
Let member(d, i, delete(k, g)) and test(j, q′). By Invariant 7.9.1, k < p ≤ length(g). So by Lemma 7.6.8,
member(d, i, delete(k, g)) ⇒ member(d, i, g). Hence, i + n > j.
E: q′ := inb(last-dat(g), last-seq(g), q′), g := delete-last(g); under condition p < length(g) and `′ ≤
last-seq(g) < `′ + n.
Let member(d, i, delete-last(g)) and test(j, inb(last-dat(g), last-seq(g), q ′)). Since 0 < length(g), by Lem-
mas 7.6.7 and 7.6.8, member(d, i, delete-last(g)) ⇒ member(d, i, g).
Case 1: j = last-seq(g).
The case i = last-seq(g). So suppose that i 6= last-seq(g). Since 0 < length(g), by Lemma 7.6.6,
last-seq(g) = return-seq(length(g) .− 1, g). Since member(d, i, g), by Lemma 7.6.12, there exists a k <
length(g) such that return-seq(k, g) = i. By Invariant 7.9.17, i + n > return-seq(length(g) .− 1, g) =
last-seq(g).
Case 2: j 6= last-seq(g).
test(j, inb(last-dat(g), last-seq(g), q′)) = test(j, q′). Hence, i + n > j.
F : g := delete-last(g); under condition p < length(g);
Let member(d, i, delete-last(g)) and test(j, q′). Since 0 < length(g), by Lemmas 7.6.7 and 7.6.8,
member(d, i, delete-last(g)) ⇒ member(d, i, g). Hence, i + n > j.
G: q′ := remove(`′, q′);
Let member(d, i, g) and test(j, remove(`′, q′)). By Lemma 7.2.1, test(j, remove(`′, q′)) ⇒ test(j, q′). Hence,
i + n > j.

19. member(d, i, g) ⇒ i + n ≥ `′.
Summands B, C, E, F and G need to be checked. F is the same as E.
B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)).
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Case 1: i = k.
By Invariant 7.9.14, test(k, q) yields ` ≤ k. Hence, k + n ≥ ` + n ≥ m (Inv. 7.9.16) ≥ `′ (Inv. 7.9.11).
Case 2: i 6= k.
member(d, i, inm(retrieve(k, q), k, g)) = member(d, i, g) ⇒ i + n ≥ `′.
C: g := delete(k, g); under condition k < p;
Let member(d, i, delete(k, g)). By Invariant 7.9.1, k < p ≤ length(g). By Lemma 7.6.8,
member(d, i, delete(k, g)) ⇒ member(d, i, g) ⇒ i + n ≥ `′.
E: g := delete-last(g); under condition p < length(g);
Let member(d, i, delete-last(g)). Since 0 < length(g), by Lemmas 7.6.7 and 7.6.8,
member(d, i, delete-last(g)) ⇒ member(d, i, g) ⇒ i + n ≥ `′.
G: `′ = S(`′); under condition test(`′, q′);
Let member(d, i, g). By Invariant 7.9.18, test(`′, q′) implies i + n > `′. Hence, i + n ≥ S(`′).

20. member(d, i, g) ⇒ i + n ≥ next-empty(`′, q′).
We distinguish two cases.
Case 1: q′ = [].
Then next-empty(`′, q′) = `′. By Invariant 7.9.19, member(d, i, g) ⇒ i + n ≥ `′.
Case 2: q′ 6= [].
By Lemma 7.2.5, test(max (q ′), q′). So Invariant 7.9.18 yields member(d, i, g) ⇒ i+n > max (q ′). By Lem-
mas 7.5.1 and 7.5.2, next-empty(`′, q′) ≤ S(max (q ′)). Hence, member(d, i, g) ⇒ i+n ≥ next-empty(`′, q′).

21. (member(d, i, g) ∧ test(i, q)) ⇒ retrieve(i, q) = d.
Summands A, B, C, E, F and K need to be checked. F is the same as E.
A: q := inb(e, m, q);
By Invariant 7.9.8, member(d, i, g) ⇒ i < m. So retrieve(i, inb(e, m, q)) = retrieve(i, q) = d.
B: g := inm(retrieve(k, q), k, g);
Let member(d, i, inm(retrieve(k, q), k, g)) and test(i, q). The case d = retrieve(k, q) ∧ i = k is trivial. And
otherwise, member(d, i, inm(retrieve(k, q), k, g)) = member(d, i, g), so since test(i, q), retrieve(i, q) = d.
C: g := delete(k, g); under condition k < p;
Let member(d, i, delete(k, g)) and test(i, q). By Invariant 7.9.1, k < p ≤ length(g). Then by Lemma 7.6.8,
member(d, i, delete(k, g)) ⇒ member(d, i, g). Since test(i, q), retrieve(i, q) = d.
E: g := delete-last(g); under condition p < length(g);
Let member(d, i, delete-last(g)) and test(i, q). Since 0 < length(g), by Lemmas 7.6.7 and 7.6.8,
member(d, i, delete-last(g)) ⇒ member(d, i, g). Since test(i, q), retrieve(i, q) = d.
K: q := release(`, last-seq(g′), q);
Let member(d, i, delete-last(g)) and test(i, release(`, last-seq(g′), q)). By Lemma 7.2.3, test(i, q) and
¬(` ≤ i < last-seq(g′)). By Lemma 7.2.4, retrieve(i, release(`, last-seq(g′), q)) = retrieve(i, q) = d.

22. (test(i, q) ∧ test(i, q′)) ⇒ retrieve(i, q) = retrieve(i, q′).
Summands A, E, G and K must be checked.
A: q := inb(d, m, q);
By Invariant 7.9.9, test(i, q′) implies i 6= m. So

test(i, inb(d, m, q)) ∧ test(i, q′)
⇔ test(i, q) ∧ test(i, q′)
⇒ retrieve(i, inb(d, m, q)) = retrieve(i, q) = retrieve(i, q′)

E: q′ := inb(last-dat(g), last-seq(g), q′); under condition p < length(g);
Let test(i, q) and test(i, inb(last-dat(g), last-seq(g), q′)).
Case 1: i 6= last-seq(g).

test(i, q) ∧ test(i, inb(last-dat(g), last-seq(g), q′))
⇒ test(i, q) ∧ test(i, q′)
⇒ retrieve(i, q) = retrieve(i, q′) = retrieve(i, inb(last-dat(g), last-seq(g), q′))

Case 2: i = last-seq(g).
Since 0 < length(g), by Lemmas 7.6.5, 7.6.6 and 7.6.10, member(last-dat(g), last-seq(g), g). Since
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test(last-seq(g), q),

retrieve(last-seq(g), q)
= last-dat(g) (Inv. 7.9.21)
= retrieve(last-dat(g), inb(last-dat(g), last-seq(g), q′))

G: q′ := remove(`′, q′);

test(i, q) ∧ test(i, remove(`′, q′))
⇔ test(i, q) ∧ test(i, q′) ∧ i 6= `′ (Lem. 7.2.1)
⇒ retrieve(i, q) = retrieve(i, q′)

= retrieve(i, remove(`′, q′)) (Lem. 7.2.2)

K: q := release(`, last-seq(g′), q);

test(i, release(`, last-seq(g′), q)) ∧ test(i, q′)
⇔ test(i, q) ∧ test(i, q′) ∧ ¬(` ≤ i < last-seq(g′)) (Lem. 7.2.3)
⇒ retrieve(i, q′) = retrieve(i, q)

= retrieve(i, release(`, h′, q)) (Lem. 7.2.4)

23. (member(d, i, g) ∧ member(e, i, g)) ⇒ d = e.
Summands B, C, E and F need to be checked. F is the same as E.
B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)) and member(e, i, inm(retrieve(k, q), k, g)).
Case 1: i = k.
By Invariant 7.9.21, test(k, q) implies d = retrieve(k, q) = e.
Case 2: i 6= k.
member(d, i, inm(retrieve(k, q), k, g)) ⇒ member(d, i, g) and
member(e, i, inm(retrieve(k, q), k, g)) ⇒ member(e, i, g). Hence, d = e.
C: g := delete(k, g); under condition k < p;
By Invariant 7.9.1, k < p ≤ length(g). By Lemma 7.6.8,

member(d, i, delete(k, g)) ∧ member(e, i, delete(k, g))
⇒ member(d, i, g) ∧ member(e, i, g)
⇒ d = e

E: g := delete-last(g); under condition p < length(g);
Since 0 < length(g), by Lemmas 7.6.7 and 7.6.8,

member(d, i, delete-last(g)) ∧ member(e, i, delete-last(g))
⇒ member(d, i, g) ∧ member(e, i, g)
⇒ d = e

24. (member(d, i, g) ∧ test(i, q′)) ⇒ retrieve(i, q′) = d.
Summands B, C, E, F and G need to be checked.
B: g := inm(retrieve(k, q), k, g); under condition test(k, q);
Let member(d, i, inm(retrieve(k, q), k, g)) and test(i, q′).
Case 1: d = retrieve(k, q) and i = k.
Since test(k, q) and test(k, q′), by Invariant 7.9.22, retrieve(k, q′) = d = retrieve(k, q).
Case 2: Otherwise, member(d, i, inm(retrieve(k, q), k, g)) = member(d, i, g).
Since test(i, q′), retrieve(i, q′) = d.
C: g := delete(k, g); under condition k < p;
Let member(d, i, delete(k, g)) and test(i, q′). By Invariant 7.9.1, k < p ≤ length(g). By Lemma 7.6.8,
member(d, i, delete(k, g)) ⇒ member(d, i, g). Since test(i, q′), retrieve(i, q′) = d.
E: q′ := inb(last-dat(g), last-seq(g), q′), g := delete-last(g); under condition p < length(g);
Let member(d, i, delete-last(g)) and test(i, inb(last-dat(g), last-seq(g), q ′)). Since 0 < length(g), by Lem-
mas 7.6.7 and 7.6.8, member(d, i, delete-last(g)) ⇒ member(d, i, g).
Case 1: i = last-seq(g).
Since 0 < length(g), by Lemmas 7.6.5, 7.6.6 and 7.6.10, member(last-dat(g), last-seq(g), g). Since
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member(d, last-seq(g), delete-last(g)), by Invariant 7.9.23,
d = last-dat(g) = retrieve(last-seq(g), inb(last-dat(g), last-seq(g), q ′)).
Case 2: i 6= last-seq(g).
Then test(i, inb(last-dat(g), last-seq(g), q′)) ⇒ test(i, q′). Since member(d, i, g), retrieve(i, q′) = d.
F : g := delete-last(g); under condition p < length(g);
Let member(d, i, delete-last(g)) and test(i, q′). Since 0 < length(g), by Lemmas 7.6.7 and 7.6.8,
member(d, i, delete-last(g)) ⇒ member(d, i, g). Since test(i, q′), retrieve(i, q′) = d
G: q′ := remove(`′, q′);
By Lemma 7.2.1, test(i, remove(`′, q′)) implies test(i, q′) and i 6= `′. Hence,
member(d, i, g) ⇒ retrieve(i, remove(`′, q′)) = retrieve(i, q′) (Lem. 7.2.2)= d.

25. (` ≤ i ≤ m ∧ j ≤ next-empty(i, q′)) ⇒ q[i..j〉 = q′[i..j〉.
Let ` ≤ i ≤ m and j ≤ next-empty(i, q′)). We apply induction on j .− i.
If i ≥ j, then q[i..j〉 = 〈〉 = q′[i..j〉.
Let i < j.
Case 1: i = m.
By Invariant 7.9.9, j ≤ next-empty(i, q′) = m. Hence, q[i..j〉 = 〈〉 = q′[i..j〉.
Case 2: ` ≤ i < m.
Then by Invariant 7.9.15, test(i, q). Furthermore, by Lemma 7.5.2, i < j ≤ next-empty(i, q ′) implies
test(i, q′). Hence,

q[i..j〉
= inb(retrieve(i, q), q[S(i)..j〉)
= inb(retrieve(i, q), q′[S(i)..j〉) (by induction)
= inb(retrieve(i, q′), q′[S(i)..j〉) (Inv. 7.9.22)
= q′[i..j〉.


