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Abstract. Many automated system analysis techniques (e.g., model checking,
model-based testing) rely on first obtaining a model of the system under anal-
ysis. System modeling is often done manually, which is often considered as a
hindrance to adopt model-based system analysis and development techniques.
To overcome this problem, researchers have proposed to automatically “learn”
models based on sample system executions and shown that the learned models
can be useful sometimes. There are however many questions to be answered.
For instance, how much shall we generalize from the observed samples and how
fast would learning converge? Or, would the analysis result based on the learned
model be more accurate than the estimation we could have obtained by sampling
many system executions within the same amount of time? In this work, we inves-
tigate existing algorithms for learning probabilistic models for model checking,
propose an evolution-based approach for better controlling the degree of general-
ization and conduct an empirical study in order to answer the questions. One of
our findings is that the effectiveness of learning may sometimes be limited.
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1 Introduction

Many system analysis techniques rely on first obtaining a system model. The model
should be accurate and often is required to be at a proper level of abstraction. For in-
stance, model checking [14, 7] works effectively if the user-provided model captures all
the relevant behavior of the system and abstracts away the irrelevant details. With such
a model as well as a given property, a model checker would automatically verify the
property or falsify it with a counterexample. Alternatively, in the setting of probabilis-
tic model checking (PMC, see Section 2) [7, 9], the model checker would calculate the
probability of satisfying the property.

Model checking is perhaps not as popular as it ought to be due to the fact that a
good model is required beforehand. For instance, a model which is too general would
introduce spurious counterexamples, whereas the checking result based on a model
which under-approximates the relevant system behavior is untrustworthy. In the setting
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of PMC, users are required to provide a probabilistic model (e.g., a Markov chain [7])
with accurate probabilistic distributions, which is often challenging.

In practice, system modeling is often done manually, which is both time-consuming
and error-prone. Worse, it could be infeasible if the system is a black box or it is so com-
plicated that no accurate model is known (e.g., the chemical reaction in a water treat-
ment system [1]). This is often considered by industry as one hindrance to adopt oth-
erwise powerful techniques like model checking. Alternative approaches which would
rely less on manual modeling have been explored in different settings. One example is
statistical model checking (SMC, see Section 2) [41, 36]. The main idea is to provide
a statistical measure on the likelihood of satisfying a property, by observing sample
system executions and applying standard techniques like hypothesis testing [8, 16, 41].
SMC is considered useful partly because it can be applied to black-box or complex
systems when system models are not available.

Another approach for avoiding manual modeling is to automatically learn models. A
variety of learning algorithms have been proposed to learn a variety of models, e.g., [35,
34, 11, 20]. It has been showed that the learned models can be useful for subsequent sys-
tem analysis in certain settings, especially so when having a model is a must. Recently,
the idea of model learning has been extended to system analysis through model check-
ing. In [26, 13, 27], it is proposed to learn a probabilistic model first and then apply
techniques like PMC to calculate the probability of satisfying a property based on the
learned model. On one hand, learning is beneficial. For instance, it solves some known
drawbacks of SMC or even simulation-based system analysis methods in general. For
instance, since SMC relies on sampling finite system executions, it is challenging to ver-
ify un-bounded properties [39, 32], whereas we can verify un-bounded properties based
on the learned model through PMC. Furthermore, the learned model can be used to
facilitate other system analysis tasks like model-based testing and software simulation
for complicated systems. On the other hand, learning essentially is a way of generaliz-
ing the sample executions and there are often many variables on, for instance, how the
sample executions are generalized. It is thus worth investigating whether indeed such
learning-based approaches are justified.

In particular, we would like to investigate the following research questions. Firstly,
how can we control the degree of generalization for the best learning outcome, since
it is known that both over-fitting or under-fitting would cause problems in subsequent
analysis? Secondly, often it is promised that the learned model would converge to an
accurate model of the original system, if the number of sample executions is sufficiently
large. In practice, there could be only a limited number of sample executions and thus it
is valid to question how fast the learning algorithms converge. Furthermore, do learning-
based approaches offer better analysis results if alternative approaches which do not
require a learned model, like SMC, are available?

In order to answering the above questions, we mainly make the following contri-
butions. Firstly, we propose a new approach (Section 4) to better control the degree of
generalization than existing approaches (Section 3) in model learning. The approach is
inspired by our observations on the limitations of existing learning approaches. Exper-
iment results show that our approach converges faster than existing approaches while
providing better or similar analysis results. Secondly, we develop a software toolkit



ZIQIAN, realizing previously proposed learning approaches for PMC as well as our
approach so as to systematically study and compare them in a fair way. Lastly, we con-
duct an empirical study on comparing different model learning approaches against a
suite of benchmark systems, two real world systems, as well as randomly generated
models (Section 5). One of our findings suggests that learning models for model check-
ing might not be as effective compared to SMC given the same time limit. However, the
learned models may be useful when manual modeling is impossible. From a broader
point of view, our work is a first step towards investigating the recent trend on adopting
machine learning techniques to solve software engineering problems. We remark there
are extensive existing research on learning non-probabilistic models (e.g., [5]), which is
often designed for different usage and is thus beyond the scope of this work. We review
related work and conclude this paper in Section 6.

2 Preliminary

In this work, the model that we focus on is discrete-time Markov chains (DTMC) [7].
The reason is that most existing learning algorithms generate DTMC and it is still on-
going research on how to learn other probabilistic models like Markov Decision Pro-
cesses [10, 27, 35, 26, 13]. Furthermore, the learned DTMC is aimed for probabilistic
analysis by methods like PMC, among others. In the following, we briefly introduce
DTMC, PMC as well as SMC so that we can better understand the context.

Markov Chain A DTMC D is a triple tuple (S, ıinit, T r), where S is a countable,
nonempty set of states; ıinit : S → [0, 1] is the initial distribution s.t.

∑
s∈S ıinit(s) =

1; and Tr : S × S → [0, 1] is the transition probability assigned to every pair of states
which satisfies the following condition:

∑
s′∈S Tr(s, s

′) = 1. D is finite if S is finite.
For instance, an example DTMC modelling the egl protocol [24] is shown in Figure 1.
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Fig. 1: DTMC of egl protocol.

A DTMC induces an underlying digraph
where states are vertices and there is an edge
from s to s′ if and only if Tr(s, s′) > 0.
Paths of DTMCs are maximal paths in the
underlying digraph, defined as infinite state
sequences π = s0s1s2 · · · ∈ Sω such
that Tr(si, si+1) > 0 for all i ≥ 0.
We write PathD(s) to denote the set of
all infinite paths of D starting from state
s.

Probabilistic Model Checking PMC [9, 7] is a formal analysis technique for stochastic
systems including DTMCs. Given a DTMCD = (S, ıinit, T r) and a set of propositions
Σ, we can define a function L : S → Σ which assigns valuation of the propositions
in Σ to each state in S. Once each state is labeled, given a path in PathD(s), we can
obtain a corresponding sequence of propositions labeling the states.

Let Σ? and Σω be the set of all finite and infinite strings over Σ respectively. A
property of the DTMC can be specified in temporal logic. Without loss of generality,



we focus on Linear Time Temporal logic (LTL) and probabilistic LTL in this work. An
LTL formula ϕ over Σ is defined by the syntax:

ϕ ::= true | σ | ϕ1 ∧ ϕ2 | ¬ϕ | Xϕ | ϕ1Uϕ2

where σ ∈ Σ is a proposition; X is intuitively read as ‘next’ and U is read as ‘until’.
We remark commonly used temporal operators like F (which reads ‘eventually’) and
G (which reads ‘always’) can be defined using the above syntax, e.g., Fϕ is defined
as trueUϕ. Given a string π in Σ? or Σω , we define whether π satisfies a given LTL
formula ϕ in the standard way [7].

Given a path π of a DTMC, we write π |= ϕ to denote that the sequence of propo-
sitions obtained from π satisfies ϕ and π 6|= ϕ otherwise. Furthermore, a probabilistic
LTL formula φ of the form Pr./r(ϕ) can be used to quantify the probability of a sys-
tem satisfying the LTL formula ϕ, where ./∈ {≥,≤,=} and r ∈ [0, 1] is a probability
threshold. A DTMC D satisfies Pr./r(ϕ) if and only if the accumulated probability of
all paths obtained from the initial state of D which satisfy ϕ satisfies the condition ./ r.
Given a DTMC D and a probabilistic LTL property Pr./r(ϕ), the PMC problem can
be solved using methods like the automata-theoretic approach [7]. We skip the details
of the approach and instead remark that the complexity of PMC is doubly exponential
in the size of ϕ and polynomial in the size of D.

Statistical Model Checking SMC is a Monte Carlo method to solve the probabilistic
verification problem based on system simulations. Its biggest advantage is perhaps that
it does not require the availability of system models [15]. SMC works by sampling sys-
tem behaviors randomly (according to certain underlying probabilistic distribution) and
observing how often a given property ϕ is satisfied. The idea is to provide a statisti-
cal measure on the likelihood of satisfying ϕ based on the observations, by applying
techniques like hypothesis testing [8, 16, 41]. We refer readers to [41, 7] for details.

3 Probabilistic Model Learning

Learning models from sample system executions for the purpose of PMC has been ex-
plored extensively in recent years [35, 34, 11, 20, 26, 13, 27]. In this section, we briefly
present existing model learning algorithms for two different settings.

3.1 Learn from Multiple Executions

In the setting that the system can be reset and restarted multiple times, a set of in-
dependent executions of the system can be collected as input for learning. Learning
algorithms in this category make the following assumptions [26]. First, the underly-
ing system can be modeled as a DTMC. Second, the sampled system executions are
mutually independent. Third, the length of each simulation is independent.

Let Σ denote the alphabet of the system observations such that each letter e ∈ Σ
is an observation of the system state. A system execution is then a finite string over Σ.
The input in this setting is a finite set of strings Π ⊆ Σ?. For any string π ∈ Σ?, let
prefix (π) be the set of all prefixes of π including the empty string 〈〉. Let prefix (Π)
be the set of all prefixes of any string π ∈ Π . The set of strings Π can be naturally
organized into a tree tree(Π) = (N, root, E) where each node in N is a member of



prefix (Π); the root is the empty string 〈〉; and E ⊆ N ×N is a set of edges such that
(π, π′) is in E if and only if there exists e ∈ Σ such that π · 〈e〉 = π′ where · is the
sequence concatenation operator.

The idea of the learning algorithms is to generalize tree(Π) by merging the nodes
according to certain criteria in certain fixed order. Intuitively, two nodes should be
merged if they are likely to represent the same state in the underlying DTMC. Since
we do not know the underlying DTMC, whether two states should be merged is de-
cided through a procedure called compatibility test. We remark the compatibility test
effectively controls the degree of generalization. Different types of compatibility test
have been studied [11, 33, 23]. We present in detail the compatibility test adopted in
the AALERGIA algorithm [26] as a representative. First, each node π in tree(Π) is
labeled with the number of strings str in Π such that π is a prefix of str . Let L(π)
denote its label. Two nodes π1 and π2 in tree(Π) are considered compatible if and only
if they satisfy two conditions. The first condition is last(π1) = last(π2) where last(π)
is the last letter in a string π, i.e., if the two nodes are to be merged, they must agree
on the last observation (of the system state). The second condition is that the future be-
haviors from π1 and π2 must be sufficiently similar (i.e., within Angluin’s bound [6]).
Formally, given a node π in tree(Π), we can obtain a probabilistic distribution of the
next observation by normalizing the labels of the node and its children. In particular,
for any event e ∈ Σ, the probability of going from node π to π · 〈e〉 is defined as:
Pr(π, 〈e〉) = L(π·〈e〉)

L(π) . We remark the probability of going from node π to itself is
Pr(π, 〈〉) = 1−

∑
e∈Σ Pr(π, 〈e〉), i.e., the probability of not making any more obser-

vation. The multi-step probability from node π to π · π′ where π′ = 〈e1, e2, · · · , ek〉,
written as Pr(π, π′), is the product of the one-step probabilities:

Pr(π, π′) = Pr(π, 〈e1〉)× Pr(π · 〈e1〉, 〈e2〉)× · · · × Pr(π · 〈e1, e2, · · · , ek−1〉, 〈ek〉)
(1)

Two nodes π1 and π2 are compatible if the following is satisfied:

Pr(π1, π)− Pr(π2, π) <
√

6ε log(L(π1))/L(π1) +
√

6ε log(L(π2))/L(π2) (2)

for all π ∈ Σ?. We highlight that ε used in the above condition is a parameter which
effectively controls the degree of state merging. Intuitively, a larger ε leads to more state
merging, thus fewer states in the learned model.

If π1 and π2 are compatible, the two nodes are merged, i.e., the tree is transformed
such that the incoming edge of π2 is directed to π1. Next, for any π ∈ Σ∗, L(π1 ·
π) is incremented by L(π2 · π). The algorithm works by iteratively identifying nodes
which are compatible and merging them until there are no more compatible nodes. After
merging all compatible nodes, the last phase of the learning algorithms in this category
is to normalize the tree so that it becomes a DTMC.

3.2 Learn from a Single Execution

In the setting that the system cannot be easily restarted, e.g., real-world cyber-physical
systems. We are limited to observe the system for a long time and collect a single, long
execution as input. Thus, the goal is to learn a model describing the long-run, stationary



behavior of a system, in which system behaviors are decided by their finite variable
length memory of the past behaviors.

In the following, we fix α to be the single system execution. Given a string π =
〈e0, e1, · · · , ek〉, we write suffix (π) to be the set of all suffixes of π, i.e., suffix (π) =
{〈ei, · · · , ek〉|0 ≤ i ≤ k}∪{〈〉}. Learning algorithms in this category [13, 34] similarly
construct a tree tree(α) = (N, root, E) where N is the set of suffixes of α; root = 〈〉;
and there is an edge (π1, π2) ∈ E if and only if π2 = 〈e〉 · π1. For any string π, let
#(π, α) be the number of times π appears as a substring in α. A node π in tree(α) is
associated with a function Prπ such that Prπ(e) = #(π·〈e〉,α)

#(π,α) for every e ∈ Σ, which
is the likelihood of observing e next given the previous observations π. Effectively,
function Prπ defines a probabilistic distribution of the next observation.

Based on different suffixes of the execution, different probabilistic distributions of
the next observation will be formed. For instance, the probabilistic distribution from
the node 〈e〉 where e is the last observation would predict the distribution only based
on the last observation, whereas the node corresponding to the sequence of all previous
observations would have a prediction based the entire history. The central question is
how far we should look into the past in order to predict the future. As we observe
more history, we will make a better prediction of the next observation. Nonetheless,
constructing the tree completely (no generalization) is infeasible and the goal of the
learning algorithms is thus to grow a part of the tree which would give a “good enough”
prediction by looking at a small amount of history. The questions are then: what is
considered “good enough” and how much history is necessary. The answers control the
degree of generalization in the learned model.

In the following, we present the approach in [13] as a representative of algorithms
proposed in the setting. Let fre(π, α) = #(π,α)

|α|−|π|−1 where |π| is the length of π be the
relative frequency of having substring π in α. Algorithm 1 shows the algorithm for
identifying the right tree by growing it on-the-fly. Initially, at line 1, the tree T contains
only the root 〈〉. Given a threshold ε, we identify the set S = {π|fre(π, α) > ε} at line
2, which are substrings appearing often enough in α and are candidate nodes to grow
in the tree. The loop from line 3 to 7 keeps growing T . In particular, given a candidate
node π, we find the longest suffix π′ in T at line 4 and if we find that adding π would
improve the prediction of the next observations by at least ε, π is added, along with
all of its suffixes if they are currently missing from the tree (so that we maintain all
suffixes of all nodes in the tree all the time). Whether we add node π into tree T or
not, we update the set of candidate S to include longer substrings of α at line 6. When
Algorithm 1 terminates, the tree contains all nodes which would make a good enough
prediction. Afterwards, the tree is transformed into a DTMC where the leafs of tree(α)
are turned into states in the DTMC (refer to [34] for details).

4 Learning through Evolution

Model learning essentially works by generalizing the sample executions. The central
question is thus how to control the degree of generalization. To find the best degree
of generalization, both [26] and [13] proposed to select the ‘optimal’ ε value using the
golden section search of the highest Bayesian Information Criterion (BIC) score. For



Algorithm 1 Learn PST
1: Initialize T to be a single root node representing 〈〉;
2: Let S = {σ|fre(σ, α) > ε} be the candidate suffix set;
3: while S is not empty do
4: Take any π from S; Let π′ be the longest suffix of π in T ;
5: (B) If fre(π, α) ·

∑
σ∈Σ Pr(π, σ) · log Pr(π,σ)

Pr(π′,σ) ≥ ε
add π and all its suffixes which are not in T to T ;

6: (C) If fre(π, α) > ε, add 〈e〉 · π to S for every e ∈ Σ if fre(〈e〉 · π, α) > 0;
7: end while

instance, in [26], the BIC score of a learned model M , given the sample executions Π ,
is computed as follows: log(PrM (Π))−µ×|M |× log(|Π|) where |M | is the number
of states in M ; Π is the total number of observations and µ is a constant (set to be 0.5
in [26]) which controls the relative importance of the size of the learned model. This
kind of approach to optimize BIC is based on the assumption that the BIC score is a
concave function of the parameter ε. Our empirical study (refer to details in section 5),
however, shows that this assumption is flawed and the BIC score can fluctuate with ε.

In the following, we propose an alternative method for learning models based on
genetic algorithms (GA) [21]. The method is designed to select the best degree of gen-
eralization without the assumption of BIC’s concaveness. The idea is that instead of
using a predefined ε value to control the degree of generalization, we systematically
generate candidate models and select the ones using the principle of natural selection
so that the “fittest” model is selected eventually. In the following, we first briefly intro-
duce the relevant background on GA and then present our approach in detail.

4.1 Genetic Algorithms

GA [21] are a set of optimization algorithms inspired by the “survival of the fittest”
principle of Darwinian theory of natural selection. Given a specific problem whose so-
lution can be encoded as a chromosome, a genetic algorithm typically works in the fol-
lowing steps [4]. First, an initial population (i.e., candidate solutions) is created either
randomly or hand-picked based on certain criteria. Second, each candidate is evaluated
using a pre-defined fitness function to see how good it is. Third, those candidates with
higher fitness scores are selected as the parents of the next generation. Fourth, a new
generation is generated by genetic operators, which either randomly alter (a.k.a. muta-
tion) or combine fragments of their parent candidates (a.k.a. cross-over). Lastly, step 2-4
are repeated until a satisfactory solution is found or some other termination condition
(e.g., timeout) is satisfied. GA are especially useful in providing approximate ‘optimal’
solutions when other optimization techniques do not apply or are too expensive, or the
problem space is too large or complex.

GA are suitable for solving our problem of learning DTMC because we view the
problem as finding an optimal DTMC model which not only maximizes the likelihood
of the observed system executions but also satisfies additional constrains like having
a small number of states. To apply GA to solve our problem, we need to develop a
way of encoding candidate models in the form of chromosomes, define operators such



as mutation and crossover to generate new candidate models, and define the fitness
function to selection better models. In the following, we present the details of the steps
in our approach.

4.2 Learn from Multiple Executions

We first consider the setting where multiple system executions are available. Recall
that in this setting, we are given a set of strings Π , from which we can build a tree
representation tree(Π). Furthermore, a model is learned through merging the nodes
in tree(Π). The space of different ways of merging the nodes thus corresponds to the
potential models to learn. Our goal is to apply GA to search for the best model in this
space. In the following, we first show how to encode different ways of merging the
nodes as chromosomes.

Let the size of tree(Π) (i.e., the number of nodes) be X and let Z be the number
of states in the learned model. A way of merging the nodes is a function which maps
each node in tree(Π) to a state in the learned model. That is, it can be encoded as a
chromosome in the form of a sequence of integers 〈I1, I2, · · · , IX〉 where 1 ≤ Ii ≤ Z
for all i such that 1 ≤ i ≤ X . Intuitively, the number Ii means that node i in tree(Π)
is mapped into state Ii in the learned model. Besides, the encoding is done such that
infeasible models are always avoided. Recall that two nodes π1 and π2 can be merged
only if last(π1) = last(π2), which means that two nodes with different last observation
should not be mapped into the same state in the learned model. Thus, we first partition
the nodes into |Σ| groups so that all nodes sharing the same last observation are mapped
to the same group of integers. A chromosome is then generated such that only nodes
in the same group can possibly be mapped into the same state. The initial population
is generated by randomly generating a set of chromosomes this way. We remark that in
this way all generated chromosomes represent a valid DTMC model.

Formally, the chromosome 〈I1, I2, · · · , IX〉 represents a DTMCM = (S, ıinit, T r)
where S is a set of Z states. Each state s in S corresponds to a set of nodes in tree(Π).
Let nodes(s) denote that set. Tr is defined such that for all states s and s′ in M ,

Tr(s, s′) =

∑
x∈nodes(s)

∑
e∈Σ|〈s,e〉∈nodes(s′) L(x · 〈e〉)∑
x∈nodes(s) L(x)

(3)

The initial distributions ıinit is defined such that for any state s ∈ S, ıinit(s) =∑
x∈nodes(s) L(x)/L(〈〉).
Next, we define the fitness function. Intuitively, a chromosome is good if the cor-

responding DTMC model M maximizes the probability of the observed sample execu-
tions and the number of states in M is small. We thus define the fitness function of a
chromosome as: log(PrM (Π))−µ× |M | × log|Π| where |M | is the number of states
inM and |Π| is the total number of letters in the observations and µ is a constant which
represents how much we favor a smaller model size. The fitness function, in particular,
the value of µ, controls the degree of generalization. If µ is 0, tree(Π) would be the
resultant model; whereas if µ is infinity, a model with one state would be generated. We
remark that this fitness function is the same as the formula for computing the BIC score
in [26]. Compared to existing learning algorithms, controlling the degree of generaliza-
tion in our approach is more intuitive (i.e., different value of µ has a direct effect on the



Algorithm 2 Model learning by GA from multiple executions

input: tree(Π ) and the alphabet Σ
output: A chromosome encoding a DTMC D
1: Let Z be |Σ|; Let Best be null;
2: repeat
3: Let population be an initial population with Z states;
4: Let generation be 1;
5: repeat
6: Let newBest be the fittest in population;
7: if newBest is fitter than Best then
8: Set Best to be newBest;
9: end if

10: for all fit pairs (p1, p2) in population do
11: Crossover (p1, p2) to get children C1 and C2;
12: Mutate C1 and C2;
13: Add C1 and C2 into population;
14: Remove (p1, p2) from population;
15: end for
16: generation← generation+ 1;
17: until generation > someThreshold
18: Z ← Z + 1;
19: until Best is not improved
20: return Best

learned model). In particular, a single parameter µ is used in our approach, whereas in
existing algorithms [26, 13], a parameter µ is used to select the value of ε (based on a
false assumption of the BIC being concave), which in turn controls the degree of gen-
eralization. From a user point of view, it is hard to see the effect of having a different
ε value since it controls whether two nodes are merged in the intermediate steps of the
learning process.

Next, we discuss how candidate models with better fitness score are selected. Selec-
tion directs evolution towards better models by keeping good chromosomes and weed-
ing out bad ones based on their fitness. Two standard selection strategies are applied.
One is roulette wheel selection. Suppose f is the average fitness of a population. For
each individual M in the population, we select fM/f copies of M . The other is tour-
nament selection. Two individuals are chosen randomly from the population and a tour-
nament is staged to determine which one gets selected. The tournament is done by
generating a random number r between zero and comparing it to a pre-defined number
p (which is larger than 0.5). If r is smaller than p, the individual with a higher fitness
score is kept. We refer the readers to [21] for discussion on the effectiveness of these
selection strategies.

After selection, genetic operators like mutation and crossover are applied to the
selected candidates. Mutation works by mapping a random node to a new number from
the same group, i.e., merging the node with other nodes with the same last observation.
For crossover, chromosomes in the current generation are randomly paired and two



children are generated to replace them. Following standard approaches [21], we adopt
three crossover strategies.

– One-point Crossover. A crossover point is randomly chosen, one child gets its prefix
from the father and suffix from the mother. Reversely for the other child.

– Two-point Crossover. Two crossover points are randomly chosen, which results in
two crossover segments in the parent chromosomes. The parents exchange their
crossover segments to generate two children.

– Uniform Crossover. One child gets its odd bit from father and even bit from mother.
Reversely for the other child.

We remark that during mutation or crossover, we guarantee that only chromosomes
representing valid DTMC models are generated, i.e., only two nodes with the same last
observations are mapped to the same number (i.e., a state in the learned model).

The details of our GA-based algorithm is shown as Algorithm 2. Variable Z is the
number of states in the learned model. We remark that the number of states in the
learned model M is unknown in advance. However, it is at least the number of let-
ters in alphabet Σ, i.e., when all nodes in tree(Π ) sharing the same last observation
are merged. Since a smaller model is often preferred, the initial population is gener-
ated such that each of the candidate models is of size |Σ|. The size of the model is
incremented by 1 after each round of evolution. Variable Best records the fittest chro-
mosome generated so far, which is initially set to be null (i.e., the least fit one). At
line 3, an initial population of chromosome with Z states are generated as discussed
above. The loop from line 5 to 17 then lets the population evolve through a number
of generations, during which crossover and mutations take place. At line 18, we then
increase the number of states in the model in order to see whether we can generate a
fitter chromosome. We stop the loop from line 2 to 19 when the best chromosome is not
improved after increasing the number of states. Lastly, the fittest chromosome Best is
decoded to a DTMC and presented as the learned model.

Example We use an example to illustrate how the above approach works. For simplicity,
assume we have the following collection of executions Π = {〈aacd〉, 〈abd〉, 〈acd〉}
from the model shown in Figure 1. There are in total 10 prefixes of these execution
(including the empty string). As a result, the tree tree(Π) contains 10 nodes. Since the
alphabet {a, b, c, d} has size 4, the nodes (except the root) are partitioned into 4 groups
so that all nodes in the same group have the same last observation. The initial population
contains a single model with 4 states, where all nodes in the same groups are mapped
into the same state. After one round of evolution, models with 5 states are generated (by
essentially splitting the nodes in one group to two states) and evaluated with the fitness
function. The evolution continues until the fittest score does not improve anymore when
we add more states.

4.3 Learn from Single Execution

In the following, we describe our GA-based learning if there is only one system exe-
cution. Recall that we are given a single long system observation α in this setting. The
goal is to identify the shortest dependent history memory that yields the most precise



probability distribution of the system’s next observation. That is, we aim to construct
a part of tree(α) which transforms to a “good” DTMC. A model thus can be defined
as an assignment of each node in tree(α) to either true or false. Intuitively, a node is
assigned true if and only if it is selected to predict the next observation, i.e., the cor-
responding suffix is kept in the tree which later is used to construct the DTMC model.
A chromosome (which encodes a model) is thus in the form of a sequence of boolean
variable 〈B1, B2, · · · , Bm〉 where Bi represents whether the i-th node is to be kept or
not. We remark that not every valuation of the boolean variables is considered a valid
chromosome. By definition, if a suffix π is selected to predict the next observation, all
suffixes of π are not selected (since using a longer memory as in π predicts better) and
therefore their corresponding value must be false. During mutation and crossover, we
only generate those chromosomes satisfying this condition so that only valid chromo-
somes are generated.

A chromosome defined above encodes a part of tree(α), which can be transformed
into a DTMC following the approach in [34]. Let M be the corresponding DTMC. The
fitness function is defined similarly as in Section 4.2. We define the fitness function of a
chromosome as log(PrM (α))− µ× |M | × log(|α|) where PrM (α) is the probability
of exhibiting α in M , µ is a constant that controls the weight of model size, and |α|
is the size of the input execution. Mutation is done by randomly selecting one boolean
variable from the chromosome and flip its value. Notice that afterwards, we might have
to flip the values of other boolean values so that the chromosome is valid. We skip the
discussion on selection and crossover as they are the same as described in Section 4.2.

We remark that, compared to existing algorithms in learning models [26, 13, 27], it
is straightforward to argue that the GA-based approaches for model learning do not rely
on the assumption needed for BIC. Furthermore, the learned model improves monoton-
ically through generations.

5 Empirical Study

The above mentioned learning algorithms are implemented in a self-contained tool
called ZIQIAN (available at [2], approximately 6K lines of Java code). In this work,
since the primary goal of learning the models is to verify properties over the systems, we
evaluate the learning algorithms by checking whether we can reliably verify properties
based on the learned model, by comparing verification results based on the learned
models and those based on the actual models (if available). All results are obtained
using PRISM [25] on a 2.6 GHz Intel Core i7 PC running OSX with 8 GB memory.
The constant µ in the fitness function of learning by GA is set to 0.5.

Our test objects can be categorized in two groups. The first group contains all
systems (brp, lse, egl, crowds, nand, and rsp) from the PRISM benchmark suite for
DTMCs [24] and a set of randomly generated DTMC models (rmc) using an approach
similar to the approach in [38]. We refer the readers to [24] for details on the PRISM
models as well as the properties to be verified. For these models, we collect multiple
executions. The second group contains two real-world systems, from which we collect
a single long execution. One is the probabilistic boolean networks (PBN), which is a
modeling framework widely used to model gene regulatory networks (GRNs) [37]. In



PBN, a gene is modeled with a binary valued node and the interactions between genes
are expressed by Boolean functions. For the evaluation, we generate random PBNs
with 5, 8 and 10 nodes respectively using the tool ASSA-PBN [28]. The other is a real-
world raw water purification system called the Secure Water Testbed (SWaT) [1]. SWaT
is a complicated system which involves a series of water treatments like ultrafiltration,
chemical dosing, dechlorination through an ultraviolet system, etc. We regard SWaT
as a representative complex system for which learning is the only way to construct a
model. Our evaluation consists of the following parts (all models as well as the detailed
results are available at [3]).

We first show that assumptions required by existing learning algorithms may not
hold, which motivates our proposal of GA-based algorithms. Existing learning algo-
rithms [26, 13] require that the BIC score is a concave function of ε in order to select
the best ε value which controls the degree of generalization. Figure 2 shows how the
absolute value of BIC scores (|BIC|) of representative models change with ε. It can be
observed that this assumption is not satisfied and ε is not controlling the degree of gen-
eralization nicely. For example, the |BIC| (e.g., for brp, PBN and egl) fluctuate with
ε. Besides, we observe climbings of |BIC| for lse when ε increases, but droppings for
crowds, nand and rsp. What’s worse, in the case (e.g., PBN) of learning from a single
execution, if the range of ε is selected improperly, it is very likely that an empty model
(a tree only with root 〈〉) is learned.
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Fig. 2: How the absolute values of BIC
score change over ε.

Second, how fast does learning con-
verge? In the rest of the section, we
adopt absolute relative difference (ARD)
as a measure of accuracy of different ap-
proaches. The ARD is defined as |Pest −
Pact|/Pact between the precise result
Pact and the estimated results Pest, which
can be obtained by AA, GA as well as
SMC. A smaller ARD implies a better es-
timation of the true probability. Figure 3
shows how the ARD of different systems
change when we gradually increase the
time cost from 30 seconds to 30 minutes
by increasing the size of training data. We
remark that some systems (brp, egl, lse)
are not applicable due to different reasons. We can observe that GA converges faster
and better than AA. In general, both AA and GA converges to relatively accurate re-
sults when we are given sufficient time. But there are also cases of fluctuation of ARD,
which is problematic, as in such cases, we would not know which result to trust (given
the different verification results obtained with different number of sampled executions),
and it is hard to decide whether we have gathered enough system executions for reliable
verification results.

Third, how accurate can learning achieve? We compare the accuracy of AA, GA,
and SMC for benchmark systems given the same amount of time in Figure 4. We remark
that due to the discrimination of system complexity (state space, variable number/type,
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Fig. 3: Convergence of AA and GA over time. The numbers after the system of legends
are one kind of system configuration.

etc.), different systems can converge in different speed. For SMC, we adopt the statisti-
cal model checking engine of PRISM and select the confidence interval method. We fix
confidence to 0.001 and adjust the number of samples to adjust time cost. We have the
following observations based on Figure 4. Firstly, for most systems, GA results in more
accurate results than AA given same amount of time. This is especially true if sufficient
time (20m or 30m) are given. However, it should be noticed that SMC produces signif-
icantly more accurate results. Secondly, we observe that model learning works well if
the actual model contains a small number of states. Cases like random models with 8
states (rmc-8) are good examples. For systems with more states, the verification results
could deviate significantly (like nand-20-3, rsp-11).

Among our test subjects, PBN and SWaT are representative systems for which
manual modelling is extremely challenging. Furthermore, SMC is not applicable as
it is infeasible to sample the executions many times for these systems. We evaluate
whether we can learn precise models in such a scenario. Note that since we do not
have the actual model, we must define the preciseness of the learned model without
referring to the actual model. For PBN, following [37], we use mean squared error
(MSE) to measure how precise the learned models are. MSE is computed as follows:
MSE = 1

n

∑n
i=1(Ŷi − Yi)

2 where n is the number of states in PBN and Yi is the
steady-state probabilities of the original model and Ŷi is the corresponding steady-state
probabilities of the learned model. We remark that the smaller its value is, the more
precise the learned model is. Table 1 shows the MSE of the learned models with for
PBN with 5, 8, and 10 nodes respectively. Note that AA and GA learn the same models
and thus have the same MSE, while GA always consumes less time. We can observe the
MSEs are very small, which means the learned models of PBN are reasonably precise.

For the SWaT system, we evaluate the accuracy of the learned models by comparing
the predicted observations against a set of test data collected from the actual system. In
particular, we apply steady-state learning proposed in [13] (hereafter SL) and GA to
learn from executions of different length and observe the trends over time. We select 3
critical sensors in the system (out of 50), named ait502, ait504 and pit501, and learn
models on how the sensor readings evolve over time. During the experiments, we find
it very difficult to identify an appropriate ε for SL in order to learn a non-empty useable
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Fig. 4: The comparison of accuracy of AA, GA, and SMC given same amount of time,
which varies from 30 seconds to 30 minutes. The horizontal-axis point represents a
benchmark system with certain configuration in Figure 3.

model. Our GA-based approach however does not have such problem. Eventually we
managed to identify an optimal ε value and both SL and GA learn the same models
given the same training data. A closer look at the learned models reveals that they are
all first-order Markov chains. This makes sense in the way that sensor readings in the
real SWaT system vary slowly and smoothly. Applying the learned models to predict
the probability of the test data (from another day with length 7000), we observe a very
good prediction accuracy. We use the average prediction accuracy for each observation
P̄obs = P

1/|td|
td , where td is the test data and |td| is its length, to evaluate how good

the models are. In our experiment, the average accuracy of prediction for ait502 and
pit501 is over 0.97, and the number is 0.99 for ait504, which are reasonably precise.

Last, there are some potential problems that may render learning ineffective. One of
them is the known problem of rare-events. For brp system, the probability of satisfying
the given properties are very small. As a result, a system execution satisfying the prop-
erty is unlikely to be observed and learned from. Consequently, the verification results
based on the learned models are 0. It is known that SMC is also ineffective for these
properties since it is also based on random sampling. Besides, learning doesn’t work
when the state space of underlying system is too large or even infinite. If there are too
many variables to observe (or when float/double typed variables exist), which induces
a very large state space, learning will become infeasible. For example, to verify the
fairness property of egl protocol, we need to observe dozens of integer variables. Our
experiment suggests that AA and GA take unreasonable long time to learn a model, e.g.,
more than days. In order to apply learning in this scenario, we thus have to apply ab-
straction on the sampled system executions and learn from the abstract traces. Only by



Table 1: Results of PBN steady-state learning.

# nodes # states
trajectory

size (×103)
time cost(s) MSE

(×10−7)
# nodes # states

trajectory
size (×103)

time cost(s) MSE
(×10−7)SL GA SL GA

5 32

5 37.28 6.37 36.53

8 256

5 29.76 2.36 1.07
15 161.57 53.49 15.21 15 105.87 26.4 0.03
25 285.52 182.97 6.04 25 197.54 73.92 0.37
35 426.26 348.5 7.75 35 310.87 122.61 0.94
45 591.83 605.1 5.74 45 438.09 429.81 0.78
50 673.55 767.7 4.28 50 509.59 285.66 0.34

10 1024
5 902.69 266.74 1.78

10 1024
15 5340.54 2132.68 0.61

10 2772.56 1010.16 1.01 20 8477.24 3544.82 0.47

doing so, we are able to reduce the learning time significantly (in seconds) and success-
fully verified the egl protocol by learning. However, how to identify the right level of
abstraction is highly non-trivial in general and is to be investigated in the future. What’s
more, there are other complications which might make model learning ineffective. For
the lse protocol, the verification results based on the learned models may deviate from
actual result for properties that show the probability of electing a leader in L rounds,
with a different value for L. While the actual result ‘jumps’ as L increases, the result
based on the learned model is smooth and deviates from actual results significantly
when L is 3, 4 or 5, while results based on SMC are consistent with the actual results.

6 Conclusion and Related Work

In this work, we investigate the validity of model learning for the purpose of PMC. We
propose a novel GA-based approach to overcome limitations of existing model learning
algorithms and conducted an empirical study to systematically evaluate the effective-
ness and efficiency of all these model learning approaches compared to statistical model
checking over a variety of systems. We report their respective advantages and disadvan-
tages, potential applications and future direction to improve.

This work is inspired by the work on comparing the effectiveness of PMC and
SMC [40] and the line of work on adopting machine learning to learn a variety of sys-
tem models (e.g., DTMC, stationary models and MDPs) for system model checking, in
order to avoid manual model construction [26, 13, 27]. Existing learning algorithms are
often based on algorithms designed for learning (probabilistic) automata, as evidenced
in [34, 33, 11, 20, 12, 5]. Besides the work in [26, 13, 27] which have been explained
in detail, this work is also related to the work in [35], which learns continuous time
Markov chains. In addition, in [10], learning algorithms are applied in order to ver-
ify Markov decision processes, without constructing explicit models. Our proposal on
adopting genetic algorithms is related to work on applications of evolutionary algo-
rithms for system analysis. In [17], evolutionary algorithm is integrated to abstraction
refinement for model checking. This work is remotely related to work on SMC [41,
36], some recent work on extending SMC to unbounded properties [39, 32]. Lastly, our
work uses the PRSIM model checker as the verification engine [25] and the case studies
are taken from various practical systems and protocols including [19, 18, 31, 30, 29, 22,
28].
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