
Cones and Foci for Protocol Verification

Revisited ?

Wan Fokkink1,2 and Jun Pang1

1 CWI, Department of Software Engineering, PO Box 94079, 1090 GB Amsterdam,
The Netherlands, {wan,pangjun}@cwi.nl

2 Vrije Universiteit Amsterdam, Department of Theoretical Computer Science, De
Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands, wanf@cs.vu.nl

Abstract. We define a cones and foci proof method, which rephrases
the question whether two system specifications are branching bisimilar in
terms of proof obligations on relations between data objects. Compared
to the original cones and foci method from Groote and Springintveld [22],
our method is more generally applicable, and does not require a prepro-
cessing step to eliminate τ -loops. We prove soundness of our approach
and give an application.

1 Introduction

In order to make data a first class citizen in the study of processes, the language
µCRL [21] combines the process algebra ACP [3] with equational abstract data
types [27]. Processes are intertwined with data: Actions and recursion variables
are parametrized by data types; an if-then-else construct allows data objects
to influence the course of a process; and alternative quantification sums over
possibly infinite data domains. Internal activity of a process can be hidden by
a hiding operator τI , which renames all internal actions (i.e., the actions in the
set I) into the hidden action τ [5].

A labeled transition system is associated to each µCRL specification. Two
µCRL specifications are considered equivalent if the initial states of their labeled
transition systems are branching bisimilar [16]. Verification of system correctness
boils down to checking whether the implementation of a system (with all internal
activity hidden) is branching bisimilar to the specification of the desired external
behavior of the system. Checking whether two states are branching bisimilar can
be performed efficiently [23]. The µCRL toolset [7] supports the generation of
labeled transition systems, together with reduction modulo branching bisimula-
tion equivalence, and allows model checking of temporal logic formulas [10] via
a back-end to the CADP toolset [12].

This approach to verify system correctness has three important drawbacks.
First, the labeled transition systems of the µCRL specifications involved must be

? This research is supported by the Dutch Technology Foundation STW under the
project CES5008: Improving the quality of embedded systems using formal design
and systematic testing.



generated; often the labeled transition system of the implementation of a system
cannot be generated, as it is too large, or even infinite. Second, this generation
usually requires a specific choice for one network or data domain; in other words,
only the correctness of an instantiation of the system is proved. Third, support
from and rigorous formalization by theorem provers and proof checkers is not
readily available.

Groote and Springintveld [22] introduced the cones and foci method, which
rephrases the question whether two µCRL specifications are branching bisimilar
in terms of proof obligations on relations between data objects. These proof
obligations can be derived by means of algebraic calculations, in general with
the help of invariants (i.e., properties of the reachable states) that are proved
separately. This method was used in the verification of a considerable number of
real-life protocols (e.g., [15, 20, 34]), often with the support of a theorem prover
or proof checker.

The main idea of this method is that quite often in the implementation of
a system, internal actions progress inertly towards a state in which no internal
actions can be executed; such a state is declared to be a focus point. The cone
of a focus point consists of the states that can reach this focus point by a string
of internal actions. In the absence of infinite sequences of internal actions, each
state belongs to a cone. This core idea is depicted below. Note that the external
actions at the edge of the depicted cone can also be executed in the ultimate
focus point F ; this is essential for soundness of the cones and foci method, as
otherwise internal actions in the cone would not be inert.

External actions

F

Internal actions

c
d

c
d

d

d

a
b

a

b
b

b

c

a

Linear process equations [6] constitute a restricted class of µCRL specifica-
tions in some kind of linear format. Algorithms have been developed to transform
µCRL specifications into this linear format [19, 24, 35]. In a linear process equa-
tion, the states of the associated labeled transition system are data objects.

Assume that the implementation of a system and its desired external behav-
ior are both given in the form of a linear process equation. In the cones and



foci method, a state mapping φ relates each state of the implementation to a
state of the desired external behavior. Groote and Springintveld [22] formulated
matching criteria, consisting of relations between data objects, which ensure that
states s and φ(s) are branching bisimilar.

If an implementation, with all internal activity hidden, includes infinite se-
quences of τ -actions, then Groote and Springintveld [22] distinguish between
progressing and non-progressing τ -actions. Their requirements are that (1) there
is no infinite sequence of progressing τ -actions, (2) non-progressing τ -actions are
only executed at a focus point, and (3) a focus point cannot perform progress-
ing τ -actions. A pre-abstraction function divides occurrences of τ -actions in the
implementation into progressing and non-progressing ones, and only progressing
τ ’s are abstracted away; in many cases it is far from trivial to define the proper
pre-abstraction. Finally, a special fair abstraction rule [2] can be used to try and
eliminate the remaining (non-progressing) τ ’s.

In this paper, we propose an adaptation of the cones and foci method, in
which the cumbersome treatment of infinite sequences of τ -actions is no longer
necessary. This improvement of the cones and foci method was conceived during
the verification of a sliding window protocol [13], where the adaptation simplified
matters considerably. As before, the method deals with linear process equations,
requires the definition of a state mapping, and generates the same matching
criteria. However, we allow the user to freely assign which states are focus points
(instead of prescribing that they are the states in which no progressing τ -actions
can be performed), as long as each state is in the cone of a focus point. We
do allow infinite sequences of internal actions. Since the meaning of recursive
specifications that include infinite sequences of τ -actions is ambiguous, we leave
the hiding operator τI around the µCRL specification of the implementation in
place. No distinction between progressing and non-progressing internal actions
is needed, and loops of internal actions are eliminated without having to resort
to a fair abstraction rule.

We prove that our method is sound modulo branching bisimulation equiv-
alence. Furthermore, we apply our method to the Concurrent Alternating Bit
Protocol [26], which served as the main example in [22]. While the old cones and
foci method required a typical cumbersome treatment of τ -loops, here we can
take these τ -loops in our stride.

Related Work In compiler correctness, advances have been made to validate pro-
grams at a symbolic level with respect to an underlying simulation notion (e.g.,
[9, 17, 30]). The methodology surrounding cones and foci incorporates well-known
and useful concepts such as the precondition/effect notation [25, 28], invariants
and simulations. Linear process equations resemble the UNITY format [8] and
recursive applicative program schemes [11]; state mappings are comparable to
refinement mappings [29, 32] and simulation [14]. Van der Zwaag [36] gave an
adaptation of the cones and foci method from [22] to a timed setting, mod-
ulo timed branching bisimulation equivalence. We leave it as an open question
whether our innovations for the cones and foci method can also be introduced
in this timed setting.



2 Preliminaries

2.1 µCRL

µCRL [21] is a language for specifying distributed systems and protocols in an
algebraic style. It is based on process algebra extended with equational abstract
data types. In a µCRL specification, one part specifies the data types, while a
second part specifies the process behavior. We do not describe the treatment
of data types in µCRL in detail. For our purpose it is sufficient that processes
can be parametrized with data. We assume the data sort of booleans Bool with
constant T and F, and the usual connectives ∧, ∨, ¬ and ⇒. For a boolean b,
we abbreviate b = T to b and b = F to ¬b.

The specification of a process is constructed from action names, recursion
variables and process algebraic operators. Actions and recursion variables carry
zero or more data parameters. There are two predefined actions in µCRL: δ
represents deadlock, and τ a hidden action. These two actions never carry data
parameters.

Processes are represented by process terms, which describe the order in which
the actions from a set Act may happen. A process term consists of action names
and recursion variables combined by process algebraic operators. p·q denotes
sequential composition and p+q non-deterministic choice, summation

∑
d:D p(d)

provides the possibly infinite choice over a data type D, and the conditional
construct p � b � q with b a data term of sort Bool behaves as p if b and as q
if ¬b. Parallel composition p ‖ q interleaves the actions of p and q; moreover,
actions from p and q may also synchronize to a communication action, when this
is explicitly allowed by a predefined communication function. Two actions can
only synchronize if their data parameters are semantically the same, which means
that communication can be used to represent data transfer from one system
component to another. Encapsulation ∂H(p), which renames all occurrences in p
of actions from the set H into δ, can be used to force actions into communication.
Finally, hiding τI(p) renames all occurrences in p of actions from the set I into
τ . The syntax and semantics of µCRL are given in [21].

2.2 Labeled transition systems

Labeled transition systems (LTSs) capture the operational behavior of concur-

rent systems. An LTS consists of transitions s
a
→ s′, denoting that the state s can

evolve into the state s′ by the execution of action a. To each µCRL specification
belongs an LTS, defined by the structural operational semantics for µCRL in
[21].

Definition 1 (Labeled transition system). A labeled transition system is
a tuple (S,Lab,→, s0), where S is a set of states, Lab a set of transition labels,
→⊆ S × Lab × S a transition relation, and s0 the initial state. A transition

(s, `, s′) is denoted by s
`
→ s′.



Here, S consists of µCRL specifications, and Lab consists of actions from
Act ∪ {τ} parametrized by data. We define branching bisimilarity [16] between
states in LTSs. Branching bisimulation is an equivalence relation [4].

Definition 2 (Branching bisimulation). Assume an LTS. A symmetric bi-

nary relation B on states is a branching bisimulation if sBt and s
`
→ s′ implies:

- either ` = τ and s′ B t;

- or there is a sequence of (zero or more) τ -transitions t
τ
→ · · ·

τ
→ t0 such that

sBt0 and t0
`
→ t′ with s′Bt′.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a
branching bisimulation relation B such that sB t.

The µCRL toolset [7] supports the generation of labeled transition systems
of µCRL specifications, together with reduction modulo branching bisimulation
equivalence and model checking of temporal logic formulas. This approach has
been used to analyze a wide range of protocols and distributed systems (e.g., [1,
18, 31, 33]).

In this paper we focus on analyzing protocols and distributed systems on the
level of their symbolic specifications.

2.3 Linear process equations

A linear process equation (LPE) is a one-line µCRL specification consisting of
actions, summations, sequential compositions and conditional constructs. In par-
ticular, an LPE does not contain any parallel operators, encapsulations or hid-
ings. In essence an LPE is a vector of data parameters together with a list of
condition, action and effect triples, describing when an action may happen and
what is its effect on the vector of data parameters. Each µCRL specification that
does not include successful termination can be transformed into an LPE [35].1

Definition 3 (Linear process equation). A linear process equation is a
µCRL specification of the form

X(d:D) =
∑

a∈Act∪{τ}

∑

e:E

a(fa(d, e))·X(ga(d, e)) � ha(d, e) � δ

where fa : D × E → D, ga : D × E → D and ha : D × E → Bool for each
a ∈ Act ∪ {τ}.

1 To cover µCRL specifications with successful termination, LPEs should also include
a summand

∑
a∈Act∪{τ}

∑
e:E

a(fa(d, e)) � ha(d, e) � δ. The cones and foci method
extends to this setting without any complication. However, this extension would com-
plicate the matching criteria in Definition 7. For the sake of presentation, successful
termination is not taken into account here.



The LPE in Definition 3 has exactly one LTS as its solution.2 In this LTS, the
states are data elements d:D (where D may be a Cartesian product of n data
types, meaning that d is a tuple (d1, ..., dn)) and the transition labels are actions
parametrized with data. The LPE expresses that state d can perform a(fa(d, e))
to end up in state ga(d, e), under the condition that ha(d, e) is true. The data
type E gives LPEs a more general form, as not only the data parameter d:D
but also the data parameter e:E can influence the parameter of action a, the
condition ha and the resulting state ga.

Definition 4 (Invariant). A mapping I : D → Bool is an invariant for an
LPE, written as in Definition 3, if for all a ∈ Act ∪ {τ}, d:D and e:E,

I(d) ∧ ha(d, e) ⇒ I(ga(d, e)).

Intuitively, an invariant characterizes the set of reachable states of an LPE.
That is, if I(d), and if one can involve from state d to state d′ in zero or more
transitions, then I(d′). Namely, if I holds in state d and it is possible to execute
a(fa(d, e)) in this state (meaning that ha(d, e)), then it is ensured that I holds
in the resulting state ga(d, e). Invariants tend to play a crucial role in algebraic
verifications of system correctness that involve data.

3 Cones and foci

In this section, we present our version of the cones and foci method [22]. Suppose
that we have an LPE X(d:D) (including internal actions from a set I, which will
be hidden) specifying the implementation of a system, and an LPE Y (d′:D′)
(without internal actions) specifying the desired input/output behavior of this
system. Furthermore, assume an invariant I : D → Bool characterizing the
reachable states of X. We want to prove that the implementation exhibits the
desired input/output behavior.

We assume the presence of an invariant I : D → Bool for X. In the cones and
foci method, a state mapping φ : D → D′ relates each state of the implementation
X to a state of the desired external behavior Y . Furthermore, some states in
D are designated to be focus points. In contrast with the approach of [22], we
allow to freely assign focus points, as long as each state d:D of X with I(d) can
reach a focus point by a sequence of internal transitions. If a number of matching
criteria for d:D are fulfilled, consisting of relations between data objects, and
if I(d), then the states d and φ(d) are guaranteed to be branching bisimilar.
These matching criteria require that (A) after hiding, all internal transitions of
d become invisible, (B) each external transition of d can be mimicked by φ(d),
and (C) if d is a focus point, then vice versa each transition of φ(d) can be
mimicked by d.

We start with defining the predicate FC, designating the focus points of X
in D. Next we define the state mapping together with its matching criteria.
2 LPEs exclude “unguarded” recursive specifications such as X = X, which have

multiple solutions.



Definition 5 (Focus point). A focus condition is a mapping FC : D → Bool.
If FC (d), then d is called a focus point.

Definition 6 (State mapping). A state mapping is of the form φ : D → D′.

Definition 7 (Matching criteria). Let the LPE X be of the form

X(d:D) =
∑

a∈Act

∑

e:E

a(fa(d, e))·X(ga(d, e)) � ha(d, e) � δ.

Furthermore, let the LPE Y be of the form

Y (d′:D′) =
∑

a∈Act\I

∑

e:E

a(f ′
a(d′, e))·Y (g′a(d′, e)) � h′

a(d′, e) � δ.

A state mapping φ : D → D′ satisfies the matching criteria for d:D if for all
a ∈ Act\I and c ∈ I:

I ∀e:E (hc(d, e) ⇒ φ(d) = φ(gc(d, e)));
II ∀e:E (ha(d, e) ⇒ h′

a(φ(d), e));
III FC (d) ⇒ ∀e:E (h′

a(φ(d), e) ⇒ ha(d, e));
IV ∀e:E (ha(d, e) ⇒ fa(d, e) = f ′

a(φ(d), e));
V ∀e:E (ha(d, e) ⇒ φ(ga(d, e)) = g′a(φ(d), e)).

Matching criterion I requires that after hiding, all internal c-transitions from
d are invisible, meaning that d and gc(d, e) are branching bisimilar. Criteria
II, IV and V express that each external transition of d can be simulated by
φ(d). Finally, criterion III expresses that if d is a focus point, then each external
transition of φ(d) can be simulated by d.

Theorem 1. Assume LPEs X(d:D) and Y (d′:D′) written as in Definition 7.
Let I ⊆ Act, and let I : D → Bool be an invariant for X. Suppose that for all
d:D with I(d),

1. φ : D → D′ satisfies the matching criteria for d, and
2. there is a d̂:D such that FC (d̂) and d

c1→ · · ·
cn→ d̂ with c1, . . . , cn ∈ I in the

LTS for X.

Then for all d:D with I(d),

τI(X(d)) ↔b Y (φ(d)).

Proof. We assume without loss of generality that D and D′ are disjoint. Define
B ⊆ D ∪ D′ × D ∪ D′ as the smallest relation such that whenever I(d) for a
d:D then dBφ(d) and φ(d)Bd. Clearly, B is symmetric. We show that B is a
branching bisimulation relation.

Let sBt and s
`
→ s′. First consider that case where φ(s) = t. By definition of

B we have I(s).



1. If ` = τ , then hc(s, e) and s′ = gc(s, e) for some c ∈ I and e:E. By match-
ing criterion I, φ(gc(s, e)) = t. Moreover, I(s) and hc(s, e) together imply
I(gc(s, e)). Hence, gc(s, e)Bt.

2. If ` 6= τ , then ha(s, e), s′ = ga(s, e) and ` = a(fa(s, e)) for some a ∈
Act\I and e:E. By matching criteria II and IV, h′

a(t, e) and fa(s, e) =

f ′
a(t, e). Hence, t

a(fa(s,e))
→ g′a(t, e). Moreover, I(s) and ha(s, e) together im-

ply I(ga(s, e)), and matching criterion V yields φ(ga(s, e)) = g′a(t, e), so
ga(s, e)Bg′a(t, e).

Next consider the case where s = φ(t). Since s
`
→ s′, for some a ∈ Act\I and

e:E, h′
a(s, e), s′ = g′a(s, e) and ` = a(f ′

a(s, e)). By definition of B we have I(t).

1. If FC (t), then by matching criterion III, ha(t, e). So by matching criterion

IV, fa(t, e) = f ′
a(s, e). Hence, t

a(f ′

a
(s,e))
→ ga(t, e). Moreover, I(t) and ha(t, e)

together imply I(ga(t, e)), and matching criterion V yields φ(ga(t, e)) =
g′a(s, e), so g′a(s, e)Bga(t, e).

2. If ¬FC (t), then there is a t̂:D with FC (t̂) such that t
c1→ ...

cn→ t̂ with

c1, . . . , cn ∈ I in the LTS for X. This implies that t
τ
→ ...

τ
→ t̂ in the LTS

for τI(X). Invariant I, so also the matching criteria, hold for all states on
this τ -path. Repeatedly applying matching criterion I we get φ(t̂) = φ(t) =
s. So matching criterion III together with h′

a(s, e) yields ha(t̂, e). Then by

matching criterion IV, fa(t̂, e) = f ′
a(s, e), so t

τ
→ ...

τ
→ t̂

a(f ′

a
(s,e))
→ ga(t̂, e).

Moreover, I(t̂) and ha(t̂, e) together imply I(ga(t̂, e)), and matching criterion
V yields φ(ga(t̂, e)) = g′a(s, e), so sBt̂ and g′a(s, e)Bga(t̂, e).

Concluding, B is a branching bisimulation.

We note that Groote and Springintveld [22] proved for their notion of their cones
and foci method that it can be derived from the axioms of µCRL, which implies
that their method is sound modulo branching bisimulation equivalence. We leave
it as future work to try and derive our cones and foci method from the axioms
of µCRL.

4 Application to the CABP

Groote and Springintveld [22] proved correctness of the Concurrent Alternating
Bit Protocol (CABP) [26] as an application of their cones and foci method. Here
we redo their correctness proof using our version of the cones and foci method,
where in contrast to [22] we can take loops of internal activity in our stride.

In the CABP, data elements d1, d2, . . . are communicated from a data trans-
mitter S to a data receiver R via a lossy channel, so that a message can be
corrupted or lost. Therefore, acknowledgments are sent from R to S again via a
lossy channel. In the CABP, sending and receiving of acknowledgments is decou-
pled from R and S, in the form of separate components AS and AR, respectively,



where AS autonomously sends acknowledgments to AR. This ensures a better
use of available bandwidth.

S attaches a bit 0 to data elements d2k−1 and a bit 1 to data elements d2k,
and AS sends back the attached bit to acknowledge reception. S keeps on sending
a pair (di, b) until AR receives the bit b and sends the message ac to S; then S
starts sending the next pair (di+1, 1− b). Alternation of the attached bit enables
R to determine whether a received datum is really new, and alternation of the
acknowledging bit enables AR to determine which datum is being acknowledged.

The CABP contains unbounded internal behavior, which occurs when a chan-
nel eternally corrupts or loses the same datum or acknowledgment. The fair ab-
straction paradigm [2], which underlies branching bisimulation, says that such
infinite sequences of faulty behavior do not exist in reality, because the chance
of a channel failing infinitely often is zero. Groote and Springintveld [22] defined
a pre-abstraction function to hide all internal actions except those that are ex-
ecuted in focus points, and used Koomen’s fair abstraction rule [2] to eliminate
the remaining loops of internal actions. In our adaptation of the cones and foci
method, focus points can perform internal actions, so neither pre-abstraction
nor Koomen’s fair abstraction rule are needed here.

The structure of the CABP is shown in Figure 1. The CABP system is built
from six components.

S is a data transmitter, which reads data from port 1 and transmits such a
datum repeatedly via channel K, until an acknowledgment ac regarding this
datum is received from AR.

K is a lossy data transmission channel, which transfers data from S to R. Either
it delivers the datum correctly, or it can make two sorts of mistakes: lose the
datum or change it into the checksum error ce. The non-deterministic choice
between the three options is modeled by the action j.

R is a data receiver, which receives data from K, sends freshly received data
into port 2, and sends an acknowledgment to AS via port 5.

AS is an acknowledgment transmitter, which receives an acknowledgment from
R and repeatedly transmits it via L to AR.

L is a lossy acknowledgment transmission channel, which transfers acknowl-
edgments from AS to AR. Either it delivers the acknowledgment correctly,
or it can make two sorts of mistakes: lose the acknowledgment or change it
into ae.

AR is an acknowledgment receiver, which receives acknowledgments from L and
passes them on to S.

The components can perform read rn(...) and send sn(...) actions to trans-
port data through port n. A read and a send action over the same port n can
synchronize into a communication action cn(...). For a detailed description of the
data types and each component’s specification in µCRL the reader is referred to
[22]. The µCRL specification of the CABP is obtained by putting the six com-
ponents in parallel, encapsulating the internal send and read actions at ports
{3, 4, 5, 6, 7, 8}, and hiding the internal communication actions at these ports
together with the action j.



RS K
1 2

58

3 4

AR ASL 67

Fig. 1. The structure of the CABP

4.1 Implementation and external behavior

As a starting point we take the LPE Sys that is obtained from the implementa-
tion of the CABP; see [22]. It includes the sort Bit with elements b0 and b1 and
with an inversion function inv : Bit → Bit , and the sort Nat of natural num-
bers. The sort D contains the data elements to be transferred by the protocol.
eq : S × S → Bool coincides with the equality relation between elements of the
sort S.

Definition 8. In each summand of the LPE for Sys below, we only present the
parameters whose values are changed.

Sys(ds:D, bs:Bit , is:Nat , i′s:Nat , dr:D, br:Bit ,
ir:Nat , dk:D, bk:Bit , ik:Nat , bl:Bit , il:Nat)

=
∑

d:D r1(d)·Sys(d/ds, 2/is) � eq(is, 1) � δ (1)
+ c3(〈ds, bs〉)·Sys(ds/dk, bs/bk, 2/ik) � eq(is, 2) ∧ eq(ik, 1) � δ (2)
+ (j·Sys(1/ik) + j·Sys(3/ik) + j·Sys(4/ik)) � eq(ik, 2) � δ (3)
+ c4(〈dk, br〉)·Sys(dk/dr, 2/ir, 1/ik) � eq(ir, 1) ∧ eq(br, bk) ∧ eq(ik, 3) � δ (4)
+ c4(〈dk, br〉)·Sys(1/ik) � eq(ir, 1) ∧ eq(br, inv(bk)) ∧ eq(ik, 3) � δ (5)
+ c4(ce)·Sys(1/ik) � eq(ir, 1) ∧ eq(ik, 4) � δ (6)
+ s2(dr)·Sys(3/ir) � eq(ir, 2) � δ (7)
+ c5(ac)·Sys(inv(br)/br, 1/ir) � eq(ir, 3) � δ (8)
+ c6(inv(br))·Sys(inv(br)/bl, 2/il) � eq(il, 1) � δ (9)
+ (j·Sys(1/il) + j·Sys(3/il) + j·Sys(4/il)) � eq(il, 2) � δ (10)
+ c7(bl)·Sys(1/il, 2/i

′
s) � eq(i′s, 1) ∧ eq(bl, bs) ∧ eq(il, 3) � δ (11)

+ c7(bl)·Sys(1/il) � eq(i′s, 1) ∧ eq(bl, inv(bs)) ∧ eq(il, 3) � δ (12)
+ c7(ae)·Sys(1/il) � eq(i′s, 1) ∧ eq(il, 4) � δ (13)
+ c8(ac)·Sys(inv(bs)/bs, 1/is, 1/i

′
s) � eq(is, 2) ∧ eq(i′s, 2) � δ (14)

In the LPE Sys, ds, dr and dk represent a datum of sort D which S, R and K read
at ports 1, 4 and 3, respectively; bs, br, bk and bl are the attached alternating bit
for R, S, K and L, respectively. is, i′s, ir, ik and il are auxiliary parameters that
are introduced by the linearization algorithm which transforms the concurrent



specification of the CADP into the LPE Sys; these parameters model different
states of S, AR, R, K and L, respectively.

The specification of the external behavior of the CABP is a one-datum buffer,
which reads a datum at port 1, and sends out this same datum at port 2.

Definition 9. The LPE of the external behavior of the CABP is

B(d:D, b:Bool) =
∑

d′:D r1(d
′)·B(d′, F) � b � δ + s2(d)·B(d, T) � ¬b � δ.

4.2 Verification

Let Ξ abbreviate D×Bit×Nat×Nat×D×Bit×Nat×D×Bit×Nat×Bit×Nat .
Furthermore, let ξ:Ξ denote (ds, bs, is, i

′
s, dr, br, ir, dk, bk, ik, bl, il).

Invariants I1-I5, I7 below were taken from [22]. I1-I5 describe the range of
the data parameters is, i′s, ik, ir, and il, respectively. I6 says that bs and bk

remain equal until S gets an acknowledgment from AR. I7 expresses that each
component in Figure 1 either has received information about the datum being
transmitted which it must forward, or did not yet receive this information.

Definition 10.

I1(ξ) ≡ eq(is, 1) ∨ eq(is, 2)
I2(ξ) ≡ eq(i′s, 1) ∨ eq(i′s, 2)
I3(ξ) ≡ eq(ik, 1) ∨ eq(ik, 2) ∨ eq(ik, 3) ∨ eq(ik, 4)
I4(ξ) ≡ eq(ir, 1) ∨ eq(ir, 2) ∨ eq(ir, 3)
I5(ξ) ≡ eq(il, 1) ∨ eq(il, 2) ∨ eq(il, 3) ∨ eq(il, 4)
I6(ξ) ≡ ¬eq(ik, 1) ∧ eq(is, 2) ⇒ eq(bs, bk)
I7(ξ) ≡ (eq(is, 1) ⇒ eq(bs, inv(bk)) ∧ eq(bs, br) ∧ eq(ds, dk)

∧ eq(ds, dr) ∧ eq(i′s, 1) ∧ eq(ir, 1) ∧ eq(ik, 1))
∧ (eq(bs, bk) ⇒ eq(ds, dk))
∧ (eq(ir, 2) ∨ eq(ir, 3) ⇒ eq(ds, dr) ∧ eq(bs, br) ∧ eq(bs, bk))
∧ (eq(bs, inv(br)) ⇒ eq(ds, dr) ∧ eq(bs, bk))
∧ (eq(bs, bl) ⇒ eq(bs, inv(br)))
∧ (eq(i′s, 2) ⇒ eq(bs, bl)).

Lemma 1. I1, I2, I3, I4, I5, I6 and I4 ∧ I7 are invariants of Sys.

The focus condition for Sys is obtained by taking the disjunction of the
summands in the LPE in Definition 8 that deal with an external action; these
summands are (1) and (7).

Definition 11. The focus condition for Sys is

FC (ξ) = eq(is, 1) ∨ eq(ir, 2).

We proceed to prove that each state satisfying the invariants above can reach
a focus point by a sequence of internal transitions, carrying labels from I =
{c3, c4, c5, c6, c7, c8, j}.



Lemma 2. For each ξ:Ξ with In(ξ) for n = 1-6, there is a ξ̂:Ξ such that FC(ξ̂)

and ξ
c1→ · · ·

cn→ ξ̂ with c1, . . . , cn ∈ I in Sys.

Proof. Let ¬FC(ξ); in view of I1 and I4 this implies eq(is, 2) ∧ (eq(ir, 1) ∨
eq(ir, 3)). In case eq(ir, 3), we can perform c5(ac) at summand (8) to arrive a
state with eq(is, 2) ∧ eq(ir, 1). By I3 and summands (2), (3) and (6), we can
perform internal actions to reach a state where eq(is, 2)∧eq(ir, 1)∧eq(ik, 3). We
distinguish two cases.

1. eq(br, bk).
We can perform c4(〈dk, br〉) at summand (4) to reach a focus point.

2. eq(br, inv(bk)).
If i′s = 2, then we can perform c(ac) at summand (14) to reach a focus point,
so by I2 we can assume that i′s = 1. If eq(il, 3)∧eq(bl, bs), then by performing
c7(bl) at summand (11) followed by c8(ac) at summand (14) we can reach
a focus point. Otherwise, by I5 and summands (10), (12) and (13) we can
reach a state where eq(is, 2)∧eq(i′s, 1)∧eq(ir, 1)∧eq(ik, 3)∧eq(il, 1). We can
perform c6(inv(br)) at summand (9) followed by j at summand (10) to reach
a state where eq(is, 2)∧eq(i′s, 1)∧eq(ir, 1)∧eq(ik, 3)∧eq(il, 3)∧eq(bl, inv(br)).
By eq(br, inv(bk)), I6 and eq(bl, inv(br)) we have eq(bl, bs). Hence, we can
perform c7(bl) at summand (11) followed by c8(ac) at summand (14) to reach
a focus point.

The state mapping φ : Ξ → D × Bool is defined by

φ(ξ) = 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)〉.

Note that φ is independent of i′s, dr, dk, bk, ik, bl, il; we write φ(ds, bs, is, br, ir).

Theorem 2. For all d:D and b0, b1:Bit,

τI(Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1)) ↔b B(d, T).

Proof. It is easy to check that ∧7
n=1In(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1).

We obtain the following matching criteria. For class I, we only need to check
the summands (4), (8) and (14), as the other nine summands that involve an
initial action leave the values of the parameters in φ(ds, bs, is, br, ir) unchanged.

1. eq(ir, 1) ∧ eq(br, bk) ∧ eq(ik, 3) ⇒ φ(ds, bs, is, br, ir) = φ(ds, bs, is, br, 2/ir)
2. eq(ir, 3) ⇒ φ(ds, bs, is, br, ir) = φ(ds, bs, is, inv(br)/br, 1/ir)
3. eq(is, 2) ∧ eq(i′s, 2) ⇒ φ(ds, bs, is, br, ir) = φ(ds, inv(bs)/bs, 1/is, br, ir)

The matching criteria for the other four classes are produced by summands (1)
and (7). For class II we get:

1. eq(is, 1) ⇒ eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)
2. eq(ir, 2) ⇒ ¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br))

For class III we get:



1. (eq(is, 1) ∨ eq(ir, 2)) ∧ (eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) ⇒ eq(is, 1)
2. (eq(is, 1) ∨ eq(ir, 2)) ∧ ¬(eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)) ⇒ eq(ir, 2)

For class IV we get:

1. ∀d:D (eq(is, 1) ⇒ d = d)
2. eq(ir, 2) ⇒ dr = ds

Finally, for class V we get:

1. ∀d:D (eq(is, 1) ⇒ φ(d/ds, bs, 2/is, br, ir) = 〈d, F〉)
2. eq(ir, 2) ⇒ φ(ds, bs, is, br, 3/ir) = 〈ds, T〉

We proceed to prove the matching criteria.

I.1 Let eq(ir, 1). Then

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(1, 3) ∨ ¬eq(bs, br)〉
= 〈ds, eq(is, 1) ∨ eq(2, 3) ∨ ¬eq(bs, br)〉
= φ(ds, bs, is, br, 2/ir).

I.2 Let eq(ir, 3). Then by I7, eq(bs, br). Hence,

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(3, 3) ∨ ¬eq(bs, br)〉
= 〈ds, T〉
= 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, inv(br))〉
= φ(ds, bs, is, inv(br)/br, 1/ir).

I.3 Let eq(i′s, 2). By I7, eq(bs, bl), which together with I7 yields eq(bs, inv(br)).
Hence,

φ(ds, bs, is, br, ir) = 〈ds, eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br)〉
= 〈ds, T〉
= 〈ds, eq(1, 1) ∨ eq(ir, 3) ∨ ¬eq(inv(bs), br)〉
= φ(ds, inv(bs)/bs, 1/is, br, ir).

II.1 Trivial.
II.2 Let eq(ir, 2). Then clearly ¬eq(ir, 3), and by I7, eq(bs, br). Furthermore,

according to I7, eq(is, 1) ⇒ eq(ir, 1), so eq(ir, 2) also implies ¬eq(is, 1).
III.1 If ¬eq(ir, 2), then eq(is, 1) ∨ eq(ir, 2) implies eq(is, 1). If eq(ir, 2), then by

I7, eq(bs, br), so that eq(is, 1) ∨ eq(ir, 3) ∨ ¬eq(bs, br) implies eq(is, 1).
III.2 If ¬eq(is, 1), then eq(is, 1) ∨ eq(ir, 2) implies eq(ir, 2). If eq(is, 1), then the

formula ¬(eq(is, 1)∨eq(ir, 3)∨¬eq(bs, br)) is false, so that it implies eq(ir, 2).
IV.1 Trivial.
IV.2 Let eq(ir, 2). Then by I7, eq(dr, ds).
V.1 Let eq(is, 1). Then by I7, eq(ir, 1) and eq(bs, br). So for any d:D,

φ(d/ds, bs, 2/is, br, ir) = 〈d, eq(2, 1) ∨ eq(1, 3) ∨ ¬eq(bs, br)〉
= 〈d, F〉.

V.2
φ(ds, bs, is, br, 3/ir) = 〈ds, eq(is, 1) ∨ eq(3, 3) ∨ ¬eq(bs, br)〉

= 〈ds, T〉.

Note that φ(d, b0, 1, b0, 1) = 〈d, T〉. So by Theorem 1 and Lemma 2,

τI(Sys(d, b0, 1, 1, d, b0, 1, d, b1, 1, b1, 1)) ↔b B(d, T).



Acknowledgments Jan Friso Groote is thanked for valuable discussions.

References

1. T. Arts and I.A. van Langevelde. Correct performance of transaction capabilities.
In Proc. 2nd Conference on Application of Concurrency to System Design, pp.
35–42. IEEE Computer Society, June 2001.

2. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. On the consistency of Koomen’s
fair abstraction rule. Theoretical Computer Science, 51:129–176, 1987.

3. J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

4. T. Basten. Branching bisimilarity is an equivalence indeed! Information Processing
Letters, 58:141–147, 1996.

5. J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstrac-
tion. Theoretical Computer Science, 37:77–121, 1985.

6. M.A. Bezem and J.F. Groote. Invariants in process algebra with data. In Proc.
5th Conference on Concurrency Theory, LNCS 836, pp. 401–416. Springer, 1994.

7. S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser, and J.C.
van de Pol. µCRL: A toolset for analysing algebraic specifications. In Proc. 13th
Conference on Computer Aided Verification, LNCS 2102, pp. 250–254. Springer,
2001.

8. K.M. Chandy and J. Misra. Parallel Program Design. A Foundation. Addison
Wesley, 1988.

9. A. Cimatti, F. Giunchiglia, P. Pecchiari, B. Pietra, J. Profeta, D. Romano,
P. Traverso, and B. Yu. A provably correct embedded verifier for the certification
of safety critical software. In Proc. 9th Conference on Computer Aided Verification,
LNCS 1254, pp. 202–213. Springer, 1997.

10. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 2000.
11. B. Courcelle. Recursive applicative program schemes. In Handbook of Theoreti-

cal Computer Science, Volume B, Formal Methods and Semantics, pp. 459–492.
Elsevier, 1990.

12. J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and M. Sighire-
anu. CADP – a protocol validation and verification toolbox. In Proc. 8th Confer-
ence on Computer-Aided Verification, LNCS 1102, pp. 437–440. Springer, 1997.

13. W.J. Fokkink, J.F. Groote, and J. Pang. Verification of a sliding window protocol
in µCRL. In preparation.

14. W.J. Fokkink and J.C. van de Pol. Simulation as a correct transformation of
rewrite systems. In Proceedings of 22nd Symposium on Mathematical Foundations
of Computer Science, LNCS 1295, pp. 249–258. Springer, 1997.

15. L.-Å. Fredlund, J.F. Groote, and H.P. Korver. Formal verification of a leader
election protocol in process algebra. Theoretical Computer Science, 177:459–486,
1997.

16. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisim-
ulation semantics. Journal of the ACM, 43:555–600, 1996.

17. W. Goerigk and F. Simon. Towards rigorous compiler implementation verification.
In Collaboration between Human and Artificial Societies, Coordination and Agent-
Based Distributed Computing, LNCS 1624, pp. 62–73. Springer, 1999.

18. J. F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system for
lifting trucks. Journal of Logic and Algebraic Programming, 2003. To appear.



19. J. F. Groote, A. Ponse, and Y.S. Usenko. Linearization in parallel pCRL. Journal
of Logic and Algebraic Programming, 48:39–72, 2001.

20. J.F. Groote, F. Monin, and J.C. van de Pol. Checking verifications of protocols
and distributed systems by computer. In Proc. 9th Conference on Concurrency
Theory, LNCS 1466, pp. 629–655. Springer, 1998.

21. J.F. Groote and A. Ponse. The syntax and semantics of µCRL. In Proc. 1st
Workshop on the Algebra of Communicating Processes, Workshops in Computing
Series, pp. 26–62. Springer, 1995.

22. J.F. Groote and J. Springintveld. Focus points and convergent process operators.
A proof strategy for protocol verification. Journal of Logic and Algebraic Program-
ming, 49:31–60, 2001.

23. J.F. Groote and F.W. Vaandrager. An efficient algorithm for branching bisimula-
tion and stuttering equivalence. In Proc. 17th Colloquium on Automata, Languages
and Programming, LNCS 443, pp. 626–638. Springer, 1990.

24. J.F. Groote and J.J. van Wamel. The parallel composition of uniform processes
with data. Theoretical Computer Science, 266:631–652, 2001.

25. B. Jonsson. Compositional Verification of Distributed Systems. PhD thesis, De-
partment of Computer Science, Uppsala University, 1987.

26. C.P.J. Koymans and J.C. Mulder. A modular approach to protocol verification
using process algebra. In Applications of Process Algebra, Cambridge Tracts in
Theoretical Computer Science 17, pp. 261–306. Cambridge University Press, 1990.

27. J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types. Wi-
ley/Teubner, 1996.

28. N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. In Proc. 6th ACM Symposium on Principles of Distributed Computing, pp.
137–151. ACM, 1987.

29. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations. Part I:
Untimed systems. Information and Computation, 121:214–233, 1995.

30. G. Necula. Translation validation for an optimizing compiler. In Proc. 2000 ACM
SIGPLAN Conference on Programming Language Design and Implementation, pp.
SIGPLAN Notices 35:83–94. ACM, 2000.

31. J. Pang. Analysis of a security protocol in µCRL. In Proc. 4th International
Conference on Formal Engineering Methods, LNCS 2495, pp. 396–400. Springer,
2002.

32. A. Pnueli, M. Siegel, and E. Singerman. Translation validation. In Proc. 4th
Conference on Tools and Algorithms for Construction and Analysis of Systems,
LNCS 1384, pp. 151–166. Springer, 1998.

33. J.C. van de Pol and M. Valero Espada. Formal specification of JavaspacesTM

architecture using µCRL. In Proc. 5th Conference on Coordination Models and
Languages, LNCS 2315, pp. 274–290. Springer, 2002.

34. C. Shankland and M.B. van der Zwaag. The tree identify protocol of IEEE 1394
in µCRL. Formal Aspects of Computing, 10:509–531, 1998.

35. Y.S. Usenko. Linearization of µCRL specifications (extended abstract). In Proc.
3rd International Workshop on Verification and Computational Logic (VCL2002),
Technical Report DSSE-TR-2002-5. Department of Electronics and Computer Sci-
ence, University of Southampton, 2002.

36. M.B. van der Zwaag. The cones and foci proof technique for timed transition
systems. Information Processing Letters, 80(1):33–40, 2001.


