
Analyzing the Redesign of a Distributed

Lift System in UPPAAL ?

Jun Pang1, Bart Karstens1 and Wan Fokkink1,2

1 CWI, Department of Software Engineering,
P.O. Box 94079, 1090 GB Amsterdam, The Netherlands,

{pangjun,bart,wan}@cwi.nl
2 Vrije Universiteit Amsterdam, Department of Computer Science,

De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands, wanf@cs.vu.nl

Abstract. An existing distributed lift system was analyzed using the
process algebraic language µCRL [7]. Four problems were found, three
of which were also found independently by the developers in the testing
phase. They solved these problems in an ad hoc manner, because the
causes of the problems were unclear. The analysis in [7] revealed the
reasons for those problems, and proposed solutions.
In this paper, we checked the developers’ solutions using Uppaal. We
show that the solutions of the developers do not solve these problems
completely, while a refined version of our solution proposed in [7] does.

1 Introduction

As is well known, distributed algorithms form a major aspect of system de-
sign. Verifying the correctness of the protocols that regulate the behavior of dis-
tributed systems is usually a formidable task, as even simple behaviors become
wildly complicated when they are carried out in parallel. Formal verification is
a suitable approach to check whether a system meets its requirements.

In a formal model of a real-life system, details irrelevant to the requirements
under scrutiny can be abstracted away. With the formal model at hand, one is
able to reason about the system in a systematic and automatic way, using for
example a model checker or a theorem prover. This formal reasoning can detect
errors and suggest ways in which the system can be improved or optimized. A
model is never completely equal to the original system, because it describes the
system at a certain level of abstraction. This means that we can never be hundred
percent sure that the system is correct with respect to the checked requirements.
To achieve more confidence with the verified system, the model can be refined
by adding more details. In this paper, we report some experience related to this
topic by analyzing the redesign of a distributed lift system.

This lift system is used in real life for lifting lorries, railway carriages, buses
etc. A system consists of a number of lifts: each wheel is supported by one lift
? This research is partly supported by the Dutch Technology Foundation STW under

the project CES5008: Improving the quality of embedded systems using formal design
and systematic testing.



and each lift has its own micro controller. This system has been designed and
implemented by a small Dutch company (for commercial reasons we are not at
liberty to reveal the company name). A special protocol has been developed to
let the lifts operate synchronously. When testing their implementation the de-
velopers found three problems, but the causes of two of them were unclear. They
solved these problems in an ad hoc manner. In order to explain the reasons and
to make sure there are no more errors, the lift system was specified and verified
in µCRL [8] and its toolset [5] in close cooperation with the developers. The
three problems that were found by the developers were also found in the µCRL
model. This indicated that the specification is actually close to the implementa-
tion. Another new problem was found in the model, which is indeed present in
the system. The causes for the problems were detected, and solutions were pro-
posed and included in the µCRL specification. The modified µCRL specification
was shown to satisfy all the requirements by model checking. However, this hap-
pened independently of the developers, who decided not to wait for the results
of the formal analysis and to redesign their implementation based on their own
solutions. To distinguish between the two lift systems in this paper, we call the
first lift system ‘original design’ and the one with the solutions of the developers
‘redesign’.

The developers experienced a new problem in the redesign. Again the reason
was unclear. Since the error traces displayed a regular pattern in time, the devel-
opers thought modeling exact timing might reveal the reason for this problem.
In the µCRL specification, time is abstracted away. We could extend the µCRL
model with exact timing information, but there is no automated verification
toolset for timed process algebras. Therefore it was decided to use Uppaal [11],
which is a toolset for validation and model checking of real time systems.

The Uppaal model of the redesign is achieved in several steps. First the
µCRL model is translated into Uppaal. Then the Uppaal model is refined to
move it closer to the real system; each lift is split into two components, where
one component communicates with the other lifts and the other component can
receive input from the environment. The developers’ solutions for the aforemen-
tioned problems are adopted. After discussions with the developers, exact timing
information is added. The requirements for the lift system are formulated in Up-

paal, using its requirement specification language and test automata, and model
checked. Using the graphic simulation tool in Uppaal, we detect the reason for
the new problem, which the developers encountered in the redesign. We propose
a new solution, which is based on the solution that was already put forward in
[7]. The Uppaal model with the new solution satisfies all the requirements.

The developers acknowledge the efficiency and usefulness of formal verifi-
cation for their redesign. Our solution will be implemented in the new release
of the lift system; they are now more confident in the correct functioning of
the redesigned lift system. The developers stress that formal methods should be
applied in the early design phases to save testing effort and cost.



2 The lift system

2.1 Layout of the lift system

The lift system consists of an arbitrary number of lifts. Each lift supports one
wheel of a vehicle. Different lift systems may have a different number of lifts,
but this has no influence on the analysis, since this network should operate in
the same way regardless how many lifts are connected.

Every lift has its own buttons. Three buttons are taken into account in the
model: up, down and setref. If an up or down button on a certain lift is
pressed, all lifts in the system should move up or down. Pressing a setref

button on a lift is the only way a run of the system can start.
The movement of a lift system is controlled by means of a micro controller.

Each lift has its own micro controller, called station. The stations can adopt four
different states: startup, standby, up and down. The state of a lift can change
in two ways: when a button on the lift is pressed, or by receiving a message from
the network.

In the lift system, the data field of the messages transferred over the bus
can contain two pieces of information: the position of the sender station, and
the type of the message. There are two types of messages: sync messages and
state messages. State messages broadcast the state of the sending station to the
other stations. sync messages initiate physical movement. In response to a sync

message, each station will immediately transfer its state to the motor of the lift,
which causes movement. If the station is in up, the lift will move up a fixed
distance; if it is in down, the lift will move down.

All the stations are connected to a can (Controller Area Network) bus [6].
The can bus is a simple, low-cost, multi-master serial bus with error detection
capabilities. The bus transmits messages to the stations. Whenever a station
wants to send a message, it is said to claim the bus. Stations can receive messages
at any moment, but when a station wants to send a message it has to wait until
it is its turn to use the bus. In the can bus, all stations can claim the bus at each
cycle and several stations can claim the bus simultaneously. A non-destructive
arbitration mechanism is used to determine which station may send its message.
The resulting usage of the bus is ordered, and the stations take fixed turns to
send their messages. To achieve this orderly usage of the bus, before the real use
of the lift system we call ‘normal operation’, a start-up phase has been designed.
In this phase each station finds out its position in the network and the total
number of lifts in the network. When each station has been assigned a unique
position, a virtual token can pass among the stations in the same order cycle
after cycle. A station knows whether it is its turn to use the bus by checking
the position of the sender station in the received message. The orderly usage
of the bus during normal operation plays a crucial role in the analysis of the
requirements and in the problems the lift system faces.

Control of the lift: Start-up The start-up phase has two functions. First it
assigns a unique position to each lift in the network. This position works as an



identity. When each lift has got its own position, an orderly usage of the bus is
possible. To assure that all lifts move simultaneously in the same direction, the
station initiating a certain movement must verify whether all stations are in the
appropriate state before it sends the sync message. In order to do this, each
station must know how many stations there are in the network.

There is a relay between every pair of adjacent stations and each relay is
controlled by the station at its left side. When the system is switched on all the
relays are open.

D

A B

C

a

b

c

d

D

A B

C

a

d

c

b

1

23

4

Fig. 1. State of the relays before (left) and after (right) initialization

The start-up phase is initialized by the station where the setref button
is pressed. This station will behave differently from the other stations in the
network. It will act as follows (chronological order):

1. it stores that it has position 1,
2. it adopts the startup state,
3. it closes its relay,
4. it broadcasts a startup message,
5. it opens its relay,
6. it waits for a startup message,
7. it stores the position of the sender of that message as the number of stations

in the network,
8. it adopts the standby state,
9. it broadcasts this state.

The other stations receive a startup message from another station. The first
time a station receives a startup message, it will act as follows:

1. it adds 1 to the position of the sender of that message and stores this as its
own position,

2. it stores its own position as the number of stations in the network,
3. it adopts the startup state,



4. it closes its relay,
5. it sends a startup message,
6. – if it receives another startup message, it stores the position of the

sender of that message as the number of stations in the network,
– if it receives a standby message, it adopts the standby state (if the

station has position 2 it will in addition initiate normal operation by
broadcasting its state).

Assume that in the left part of Fig. 1, the setref button of station B is
pressed. The end result is that all stations are connected in the manner pictured
in the right part of Fig. 1. All stations know their position and all stations know
that there are four lifts in the network. More explanation about the start-up
phase can be found in [7].

Control of the lift: Normal Operation When the start-up phase is finished,
all the stations are in standby. During the normal operation phase, the first
station broadcasts its state, then the next station broadcasts its state and so
on, until the last station has broadcast its state, after which the first station
starts again. The state of a lift is changed if its up or down button is pressed.
The station where this happens is called an active station. The active station
will send an up or down message, according to the button that was pressed
at the station. Passive stations change their state according to the messages
they receive, and when it is their turn to use the bus they broadcast a message
according to their state. These messages are received by all the other stations,
and the active station is the only one that will count them. When it counts
enough state messages, the active station will send a sync message, after which
all the lifts move. The ordered sending of messages makes sure that the active
station counts no more than one message from each station. In contrast to the
passive stations, the state of the active station can only change if the pressed
button is released again. In that case its state changes to standby and the
station becomes passive again. More details about this phase, including what
happens when two up or down buttons at different lifts are pressed at the same
time, will be discussed in Section 3.

2.2 Requirements

The desired behavior of the system is formulated in five requirements it has to
fulfill. These requirements are listed below:

1. Deadlock freeness: The system never ends up in a state where it cannot
perform any action.

2. Liveness I: It is always possible for the system to get to a state in which
pressing up or down will yield the appropriate response.

3. Liveness II: If exactly one up or exactly one down button is pressed and
not released, then all the lifts will eventually move up or down.



4. Safety I: If one of the lifts moves, all the other lifts should simultaneously
move in the same direction.

5. Safety II: If the lifts move, an appropriate button was pressed. The lifts will
not move if no one has pressed an up or down button.

The two liveness requirements make sure that buttons can always be pressed
and in response the lifts will always move. The two safety requirements make
sure that the system will move properly. In Section 3, we present four problems
in the original lift system. If the lift system satisfies the five requirements above,
those four problems are guaranteed to be resolved.

3 UPPAAL model of the redesign

Uppaal [11] is a toolset for validation and model checking of real time systems,
which are modeled as networks of timed automata [2] extended with global
shared variables. It consists of a number of tools including a graphic editor for
system description, a simulator and a model checker. The idea of the Uppaal

toolset is to model a system using timed automata, simulate it and then verify
properties of the system. During the design phase, the graphic simulator is used
intensively to validate the dynamic behavior of each design sketch, in particular
for fault detection, and later on for debugging the generated diagnostic traces.
The verifier mainly checks for invariants and reachability properties. It does so
by exploring the state space of a system using ‘on the fly’ searching techniques.
It uses symbolic techniques to reduce the verification of modal logic formulas
to solving simple reachability constraints. Some notable recent case studies with
Uppaal are [9, 12, 3].

The Uppaal model presented in this section is the result of a few steps.
First the µCRL model of the original design is translated into Uppaal. This
model is then changed into a representation of the redesign by adding the de-
velopers’ solutions to the problems, that were found in the original design. The
Uppaal model of the redesign is also more specific, since interactions between
the environment and the lift system are added that were abstracted away in the
µCRL model of the original design. Furthermore, the model is extended with
exact timing information. With respect to the explanation of the original design
in Section 2, the redesign can be viewed as a refinement of the µCRL model.
However, the desired behavior of the lift is basically the same as explained in
Section 2. The redesign should therefore meet the same requirements as the
original design.

The Uppaal model contains four components. They are automata: Station,
Bus, Interface and Timer. In Uppaal, an automaton can be instantiated an
arbitrary number of times. As explained in Section 2, the lift system consists of
one bus and an arbitrary number of lifts. The automaton Bus models the can

bus. For each lift in the system, we create two automata: Station and Interface.
The automaton Station models the micro controller. In automaton Interface, the
pressing and releasing of buttons on the lift is modeled. The automaton Timer is
used to model time delay. In this section we will walk through the model. Due to



space limitation, pictures of these automata are presented with only superficial
explanation. Detailed information can be found in [10].

3.1 Transforming the µCRL model

The original lift system has been analyzed in µCRL [8], which combines the
process algebra ACP [4] with equational abstract data types. To analyze the
redesign of this system, first we transform the µCRL model into Uppaal. In
this section, we discuss some model choices that have been made.

Value passing The µCRL specification of a process is constructed from action
names, recursion variables and process algebraic operators. Actions and recur-
sion variables carry zero or more data parameters. Parallel composition p ‖ q

interleaves the actions of processes p and q; moreover, actions from p and q

may also synchronize to a communication action, when this is explicitly allowed
by a predefined communication function. Two actions can only synchronize if
they occur at the same time, and if their data parameters are semantically the
same, which means that communication can be used to represent data transfer
from one process to another. The communication function was used heavily in
the µCRL specification in [7] to model the communications between the bus and
stations. However in Uppaal, data transfer (or value passing) between processes
(or automata) cannot be modeled in this way.

left2

rightbroadcastingleftbroadcasting

initial

right42right41

left6

right5right3

left5

right2

left4

left12 deliver

right1

left11

left3

closerelay?openrelay?

lifttobus?

sender:=tobesender,
tobesender:=0,
messagestate:=tobemessagestate,
tobemessagestate:=0,
messageposition:=tobemessageposition,
tobemessageposition:=0

closedrelay[sender]==0

closedrelay[sender]==1

relaypointer:=sender

sender>1

sender==1
relaypointer:=N

relaypointer := sender-1

closedrelay[relaypointer]==0

closedrelay[relaypointer]==1

relaypointer==0, 
sender>1

relaypointer==0,
sender==1

relaypointer>0

relaypointer<N

relaypointer:=relaypointer+1

relaypointer==N

relaypointer:=1

relaypointer==sender

relaypointer==sender

closedrelay[relaypointer]==1

receiver:=relaypointer

bustolift!

relaypointer:=relaypointer-1

receiver:=(relaypointer==N? 1: relaypointer+1)

bustolift!

relaypointer!=sender
relaypointer!=sender

closedrelay[relaypointer]==0

Fig. 2. The automaton Bus

We define two channels between the bus and stations: bustolift and liftto-

bus, and declare several global variables for data transfer when communication
happens. When a station wants to send a message to the bus, it has to instan-
tiate the values for some global variables in the message, for instance the state



and the sender’s position. When communication takes place, the values of those
global variables are saved to the variables used by the bus. After communica-
tion, those global variables are provided with default values. In a similar fashion,
messages are sent from the bus to stations. Detailed information can be found
in the automata Station and Bus (see Fig. 2, Fig. 4 and Fig. 5).

Messages broadcasting In µCRL, summation
∑

d:D p(d) provides the possibly
infinite choice over a data type D. In the µCRL specification of the bus, when
the bus gets a message from a station, it can compute the set of stations who can
get this message via closed relays. Then the bus can choose one station from the
set nondeterministically, and send it the message. By this way, we can model the
broadcasting of a message. In Uppaal, the summation operator is absent. We
set a kind of fix order for the bus to broadcast a message. The relay controlled
by a station is modeled as a flag. When the relay is closed, the flag is set to 1;
otherwise it is 0. When a bus broadcasts a message, it starts to check the flag
at the position of the message sender. If the flag is 1, it sends a message to the
station connected by this relay, and continues to check the flag of this station.
As soon as it reaches a flag with value 0, it continues at the station preceding the
message sender. If the flag at this station is 1, the message is sent to the station,
and the bus continues to check the flag at the preceding station. This procedure
moves on until the bus reaches another flag with value 0. Recall that in both
phases of the lift system, there is at least one open relay, which guarantees that
the broadcasting procedure terminates. In the automaton Bus (see Fig. 2), when
a bus gets a message at the ‘initial’ node, it starts broadcasting the message from
the left part of the picture, then continues at the right part, and finally goes back
to the ‘initial’ node.

One SETREF button pressed In [7], the second problem of the original
design was found during the start-up phase. It occurs if the setref buttons
at two lifts are pressed. The result of the problem is that after the start-up
phase there will be two lift systems instead of one. The situation may lead to
the violation of all the requirements. Given the chosen bus it seems impossible
to solve this problem satisfactorily. The developers chose to emphasize in the
manual that it is important to make sure that in the start-up phase the setref

button of only one lift is pressed. We also take this assumption into our analysis
of the redesign.

In the Uppaal model it is impossible to press another setref button af-
ter one is pressed. We use guards on transitions to block pressing of setref

buttons after one setref button has been pressed. In the automaton Inter-

face (see Fig. 3), a variable onesetref is used as a guard on both transitions
from the initial state. Initially the variable is zero, so one Interface can take
the transition with the guard ‘onesetref==0’, if the setref button on the lift
is pressed. The variable onesetref is now set to 1. In order to leave their initial
state, the other Interface automata have to take the other transition with the



inDown

inUP

onlyonesetref
inSBY

onesetref==0
setref!
onesetref:=1,
buttonstate[myid]:=Standby

pressed[myid]<2,
cyclecounter[myid]<CYCLES,
buttonstate[myid]==Standby

buttonstate[myid]:=Up,
pressed[myid]:=pressed[myid]+1

pressed[myid]<2,
cyclecounter[myid]<CYCLES,
buttonstate[myid]==Standby

buttonstate[myid]:=Down,
pressed[myid]:=pressed[myid]+1

released[myid]<2,
cyclecounter[myid]<CYCLES,
buttonstate[myid]==Up

buttonstate[myid]:=Standby,
released[myid]:=released[myid]+1

released[myid]<2,
cyclecounter[myid]<CYCLES,
buttonstate[myid]==Down

buttonstate[myid]:=Standby,
released[myid]:=released[myid]+1

cyclecounter[myid]==CYCLES
mainloop!
pressed[myid]:=1, 
released[myid]:=0

cyclecounter[myid]==CYCLES
mainloop!
pressed[myid]:=1, 
released[myid]:=0

cyclecounter[myid]==CYCLES

mainloop!

pressed[myid]:=0, 
released[myid]:=0

onesetref>0
buttonstate[myid]:=Standby

Fig. 3. The automaton Interface

guard ‘onesetref>0’. Therefore it is simply made impossible to press more than
one setref button in our Uppaal model.

3.2 Adding the solutions

In the automaton Station, the two phases of the lift system as explained in
Section 2 are clearly distinguishable.

Start-up Until all the stations have reached the node ‘normaloperation’, it is
in the start-up phase. The main role of the start-up phase is to find out which
position a lift has in the network and how many lifts there are in the network. The
variables position and number are assigned to each lift to store this information.

The station where the setref button is pressed will move clockwise in Fig. 4
from the ‘initial’ node. It gets position 1, closes its relay, and sends a startup

message to the bus. After that it opens its relay and waits for a startup message.
When it gets the startup message, it adopts the value of the variable number

in this message; this way it gets to know how many lifts there are in the system.
Then, it sends a standby message and reaches the ‘normaloperation’ node. The
other stations will move anti-clockwise in Fig. 4 from the ‘initial’ node. They
first get a startup message, increase the sender of the message by one, and save
it as their own position. They close their own relay and send a startup message.
There is a small loop in Fig. 4, to indicate that the stations keep getting startup

messages and changing the knowledge of the number of lifts in the system. In
the end, they will get a standby message, and end up in the ‘normaloperation’
node. When all the stations have reached the ‘normaloperation’ node, all the
stations are standby. They all have a unique value for position, and the value
of number of all the lifts is equal to the total number of lifts in the network.

Some time delays are added into the start-up phase to solve one problem
found during testing. The timing information will be discussed in Section 3.3.



position2

whatposition

broadcaststartupmesx<=29

close

receivestartupmes

x<=24

receivestartupmes2 x<=1

inital

relayopened
x<=30

sendstandbymessage

initialise

waitforturn

endofST

waittoopen

x<=25

sendstartupmesrelayclosed

x<=24

setrefpressed

waitforbusmes

normaloperation

setref?

x == 24

tobesender:=myid, 
tobemessagestate:=Startup,
position[myid]:=1,
currentstate[myid]:=Startup,
number[myid]:=1,
tobemessageposition:=1

lifttobus!

myid==receiver

bustolift?

myid==receiver
bustolift?
x:=0

messagestate==Startup, 
tobemessagestate==0

number[myid]:=messageposition,
currentstate[myid]:= Standby,
tobesender := myid,
tobemessagestate:=Standby,
tobemessageposition:=position[myid],
cyclecounter[myid]:=0,
Echo[myid]:=0,Can[myid]:=0,Fcha[myid]:=0

lifttobus!

messagestate==Startup, tobemessagestate==0, x==24

position[myid]:=messageposition+1,
number[myid]:=messageposition+1,
currentstate[myid]:=Startup,
tobesender:=myid,
tobemessagestate:=Startup,
tobemessageposition:=number[myid]

closerelay!

closedrelay[myid]:=1

myid==receiver, 
messagestate==Standby

bustolift?

currentstate[myid]:=Standby,
lastsender[myid]:=
(messageposition==number[myid]? 0:messageposition),
cyclecounter[myid]:=0,
Echo[myid]:=0,Can[myid]:=0,Fcha[myid]:=0

tobemessagestate==0

tobesender:=myid,
tobemessagestate:=Standby,
tobemessageposition:=position[myid]

myid==receiver, 
messagestate==Startup

bustolift?
number[myid]:=messageposition,
x:=0

x==30

position[myid]>=2, x==29

lifttobus!

x:=0

(lastsender[myid]+1)==position[myid]

closerelay!
closedrelay[myid]:=1, 
x:=0

x==25
openrelay!
closedrelay[myid]:=0

x==1
x:=0

(lastsender[myid]+1)!=position[myid]

Fig. 4. The automaton Station: Start-up phase

Normal operation At node ‘normaloperation’, a station enters the normal
operation phase, which is depicted in Fig. 5. In the normal operation phase,
a distinction is made between two loops which a station can perform. One is
the ‘main loop’, which takes place at the node ‘normaloperation’ in Fig. 5; and
the other one we will call ‘internal loop’, which is the other part of Fig. 5. The
difference between the main loop and the internal loop can be stated as follows:
in a main loop the station receives state messages from its Interface and can
change its state accordingly, and in an internal loop the station exchanges state
messages with Bus and changes its state accordingly.

The main loop is a short loop in which the automaton Station synchronizes
with its Interface. Executing the main loop is the only way the station can get
information about which button on the lift (if any) is pressed or released. This
main loop takes place after a fixed number of internal loops, which is modeled
as a constant CYCLES in the Uppaal model. And a counter cyclecounter is
used to record the number of internal loops that have happened after the last
main loop. When ‘cyclecounter==CYCLES’, the main loop takes place and cy-

clecounter is reset to 0. If the station detects a difference between its current
state (modeled by variable currentstate) and the state of the Interface (modeled
by variable buttonstate), the station may change its state and adopt the one
from the Interface. The main loop is also part of the original design, but it was
abstracted away in the µCRL model in [7]. In the Uppaal model of the redesign



it could not be left out, because as we will see the solutions from the developers
interact in a critical way with the main loop.

In an internal loop, a station can do several things. First a station can get
messages from the bus. Second, a station can send a message to the other sta-
tions, if it gets the turn to use the bus. Third, the active station can count state
messages and initiate a movement of the whole system. In that case the active
station will enter the node ‘activemovement’, while the other stations get a sync

message and enter the node ‘passivemovement’. A variable move is associated
to each station to indicate the direction of the current movement.

startmoving

activemovement

passivemovement
normaloperationdecidevalues

S5

gobacktonormal

S4

countenough

S3

S2S1

wait2

wait1

getmessage

sendingsyncmes

sendingstatemes

myturn

waitforbus2

waitforbus1

endofST

myid==receiver,
messagestate==Sync

bustolift?
move[myid]:=currentstate[myid]

t10!

move[myid]:=0

myid==receiver,
messagestate<Sync,
cyclecounter[myid]<CYCLES

bustolift?

lastsender[myid]:=(messageposition==number[myid]?
0:messageposition),
cyclecounter[myid]:=cyclecounter[myid]+1

counter[myid]!=1
counter[myid]==1

tobemessagestate==0

tobesender:=myid,
tobemessagestate:=Sync,
tobemessageposition:=position[myid]

move[myid]:=currentstate[myid]

tobemessagestate==0

tobesender:=myid,
tobemessagestate:=currentstate[myid],
tobemessageposition:=position[myid],
counter[myid]:=number[myid]

move[myid]:=0

CAN[myid]==0,cyclecounter[myid]==CYCLES

mainloop?

counter[myid]:=(currentstate[myid]!=buttonstate[myid]?
number[myid]:counter[myid]),
ECHO[myid]:=(currentstate[myid]!=buttonstate[myid]?1:ECHO[myid]),
FCHA[myid]:=(currentstate[myid]!=buttonstate[myid]?1:FCHA[myid]),
currentstate[myid]:=buttonstate[myid],
cyclecounter[myid]:=0

CAN[myid]==1,cyclecounter[myid]==CYCLES
mainloop?

cyclecounter[myid]:=0

CAN[myid]==1,
currentstate[myid]!=Standby

ECHO[myid]==0

currentstate[myid]==Standby

messagestate!=Standby

CAN[myid]==0,
currentstate[myid]!=Standby

counter[myid]:=(messagestate!=currentstate[myid]?
counter[myid]:counter[myid]-1)

CAN[myid]:=(currentstate[myid]==Standby?CAN[myid]:1),
currentstate[myid]:=messagestate

ECHO[myid]==1

messagestate==Standby

CAN[myid]:=0,FCHA[myid]:=0,
ECHO[myid]:=(lastsender[myid]+1
==position[myid]?0:ECHO[myid])

currentstate[myid]:=
(ECHO[myid]==1?currentstate[myid]:messagestate),
CAN[myid]:=(ECHO[myid]==1?currentstate[myid]:1)

t10!

(lastsender[myid]+1)==position[myid]

(lastsender[myid]+1)!=position[myid]

lifttobus! t10! t15!

t20!

lifttobus!

t10!

Fig. 5. The automaton Station: Normal operation

Flags Problem three and four found in [7] occur in the normal operation phase.
The third problem happens when an up or down button is pressed and released
at an inappropriate moment. The lift system will end up in the situation that
all stations are in up or down state, but there is no active station. This means
that all the lifts will remain in that state until the system is shut down. This
problem violates property Liveness II in Section 2.2. The reason for this problem
is that in the original system a station becomes passive as soon as the pressed
button on this lift is released. This problem was discovered by the developers
when testing the system, and they solved it by means of flags.

The fourth problem occurs when two up or down buttons on different lifts are
pressed at the same time and one of them is released at an inappropriate moment.
As a result, some lifts will move, and one lift (where the button is released)
remains at the same height. This violates property Safety I in Section 2.2. The
reason for this problem is that a station becomes active as soon as a button on



this lift is pressed. This problem was unknown to the developers and found its
way into the final implementation of the original system. The detailed description
of each problem can be found in [7]. We proposed to solve this problem by
allowing a station to decide to be active or passive only when it is its turn to use
the bus. In this paper, we focus on the solutions from the developers, and explain
how they fail to solve the problems in Section 4. Furthermore, in Section 5 we
refine our solution from [7], and show that it does solve the problems.

The developers attempted to solve the third problem with flags. When they
are set their value is 1, and when they are reset their value is 0. The flags serve as
blocks: they can prevent state changes when they are set. Two type of flags are
used in the redesign, i.e. Can, Echo. Every station has its own flags. Initially all
flags are 0. The Can flag is set when a station receives a state message from the
bus. An exception is the standby message. If a station receives this message, the
opposite happens: Can is reset, but only when the current state of the station is
also standby; otherwise Can is left unchanged. The idea of the developers was
to use the Can flag to block state changes by the main loop. If Can is set, the
main loop cannot change the state of the station. In Fig. 5, we have two main
loops with different guards. One is ‘CAN==1’, and the other ‘CAN==0’. If
‘CAN==0’ the main loop is taken. The current state of the station is compared
with the Interface. In Fig. 3, Interface can communicate with Station when it is
in the nodes ‘inUp’ (the up button is pressed), ‘inDown’ (the down button is
pressed) or ‘inSby’ (no button is pressed). If ‘CAN==1’, some counters such as
cyclecounter are reset, but nothing else happens.

The Echo flag can only be set via the main loop with guard ‘CAN==0’.
When the station detects a difference between its current state and the state
of the button, Echo is set. When Echo is set, the state of the station cannot
change by messages it receives from the bus. Like Can, Echo can only be reset
when the state of the station is standby and a standby message is received
from the bus. But for Echo, there is an extra requirement that has to be fulfilled
before it can be reset: it has to be the station’s turn to use the bus.

3.3 Adding timing information

The time model in Uppaal is continuous or dense. Clocks are used to capture
time in Uppaal. They can be associated with a transition or a node. In a
transition, clock variables can be reset or used as a guard. In a node, clock
variables can be used as a hold up to let the process stay in that node for a
certain amount of time. Such nodes are said to be labeled with an invariant.

The way we modeled the time information of the lift system is influenced by
the developers’ solution to solve one problem found in the start-up phase. It is
also influenced by the fact that during normal operation the stations take fixed
turns to use the bus. During the start-up phase there is no such order. This
difference has led to a different treatment of the timing information in the two
phases. We first discuss the start-up phase and then normal operation.



Start-up The first problem found in [7] occurs in the start-up phase. It has to
do with the re-opening of the relay between the first and second lift at the wrong
moment. Consider Fig. 1 in Section 2 again. The setref button is pressed on
station B, which closes its relay and sends a startup message to station C.
If station C sends a startup message before the relay between station B and
station C is opened, this message is received by station B, which draws the
incorrect conclusion that there are only two lifts in the network.

The solution to this problem is to let station C (or in general the station with
position 2) wait until the relay between the first station and the second station
is opened, before sending the startup message. The developers added delays to
the original design to make sure this happens.

In the redesign, during the start-up phase, a local clock ‘x’ is assigned to each
station. The local clock is reset when a station gets a startup message, or a
setref button is pressed. This is used to capture the moment when the stations
join the network. Receiving a message from the bus or sending a message to the
bus costs 1 millisecond. The opening and closing of a relay cost 5 milliseconds.
There is a delay of 24 milliseconds before sending a startup message. This is
all the timing information in the start-up phase.

Normal operation During normal operation, the local clocks used during the
start-up phase are not used anymore. Instead we use one global. We create an
extra automaton Timer depicted in Fig. 6.

n15 k<=15

n5

k<=5

back

n10k<=10

start

go

k<=0

n20

k<=20

t5?
t10? t15?

t20?

k==5
k==10

k==15

k==20

k:=0

endofST==N

k:=0

Fig. 6. The automaton Timer

Transitions normally don’t take time in Uppaal, but this does happen in the
lift system. Each main loop consumes 1 millisecond. After each main loop, the
station waits 0.5 millisecond to get messages from the bus. During the internal
loop, the receiving and sending messages take 1 millisecond. Before sending a
sync message, stations delay 1.5 milliseconds. Before sending a state message,
stations delay 2 milliseconds. This is all the timing information in the normal
operation phase. We use Timer to express time consumption by transitions; this



idea is borrowed from [9]. The guard ‘endofST==N’ makes sure that the Timer

is only used in normal operation, where N is the number of lifts in the system. In
node ‘go’, time is constrained to not progress at all. This means that in order for
time to progress, one of the edges ‘tn?’ must be taken; where n ∈ {5, 10, 15, 20}
expresses the amount time of delay. These edges then lead to nodes where time
can progress with the corresponding number of time units, where after control
returns immediately to the ‘go’ node.
Concluding, the four problems in the original system are:

1. The relay between the first and second lift is re-opened at the wrong moment;
2. The setref buttons at two lifts are pressed in the start-up phase;
3. An up or down button is pressed and released at an inappropriate moment;
4. Two up or down buttons at different lifts are pressed at the same time, and

one is released at an inappropriate moment.

4 Analysis of the redesign

Since the redesign does not change the desired external behavior of lifts, the
Uppaal model of the redesign should satisfy all the requirements in Section 2.2.
We formulate those requirements in the Uppaal requirement specification lan-
guage, and verify them, sometimes with the help of test automata, to check
whether the redesign solves problems 3 and 4. We do not give the definition and
explanation of the Uppaal requirement specification language [11]; we expect
that the formulas in this section can be understood without difficulties.

4.1 Expressing the requirements

We first check deadlock freeness. This can be translated into the Uppaal re-
quirement specification language directly:

– A[] not deadlock

The redesign satisfies this property, which indicates that the solution from the
developers solves the first problem found in [7]. In the implementation of the lift
system, the delay for each startup message is 24 milliseconds. In the Uppaal

model, a delay of 6 milliseconds for each startup message is already enough to
solve this problem.

Liveness I says that buttons on a lift can be pressed and released whenever
the user wants, and that the system will respond to this. After implementing the
main loop in the Uppaal model, it is always possible to press or release buttons.
So for the redesign, Liveness I becomes trivial.

Liveness II says that if an up or down button is pressed and not released
and no other button is pressed, all lifts will move. In the Uppaal requirement
specification language, it is impossible to express this property. Fortunately,
according to [1], we can transform this property into a test automaton, in which
an approach is developed to model-checking of timed automata via reachability



testing. The idea is to create a ‘bad’ state in the test automaton and let the
verifier check whether the system can reach this state. If it does, the system
violates a certain property.

The test automaton may need some extra ‘decorations’ for the verification
purpose. In principle, with the test automaton we can express all scenarios we
want to check. As this would lead to a possibly infinite state space, some scenarios
which are not interesting can be abstracted away. For example, in the lift system,
the buttons can be pressed and released many times. We consider only those
scenarios where a button on one lift is pressed and released at most once. The
automaton for the Liveness II requirement is depicted in Fig. 7.

initial wait2 badwait1

wait3

endofST==N
visitmovement<N, 
enoughcycles==NCYCLE

press?

visitmovement:=0, 
enoughtcycles:=0

nomore<NOMORE release? nomore:=nomore+1

nomore<NOMORE

press?
release?

nomore:=nomore+1

Fig. 7. The test automaton for Liveness II

We add new synchronizations between the Interface automata and the test
automaton via press and release channels, to model the number of pressing and
releasing actions. In the test automaton only one pressing and releasing per
lift can take place. nomore is a variable that is used to block more pressing
and releasing actions. This test automaton is used to express that if a button
is pressed and not released any more, after some period of time (modeled by
variable enoughcycles) all the lifts will move. We now check whether the test
automaton can reach the node ‘bad’. If the test automaton reaches the node
‘bad’, it means that not all the lifts have moved and the system violates property
Liveness II.

– A[] not testautomaton.bad

Test automata are also used to model and check the other two safety prop-
erties.

With Liveness II, we could check that if one button is pressed, all the lifts
reach their ‘activemovement’ or ‘passivemovement’ node within a certain amount
of time. What we do not check is whether they move in the same direction. Safety
I demands that whenever a lift moves, all the other lifts move simultaneously
in the same direction. The corresponding test automaton is depicted in Fig. 8.
This test automaton waits for one lift to reach the ‘activemovement’ node, which
is detected by a synchronization on channel ‘go?’ between Station and this test
automaton. The test automaton then checks whether the other lifts move in the



initial wait

bad

go?

enoughcycles:=0
visitmovement!=N,
enoughcycles==NCYLES

Fig. 8. The test automaton for Safety I

same direction (modeled by guard ‘visitmovement!=N’) within a certain amount
of time (modeled by ‘enoughcycles==NCYCLES’).

Safety II states that there will be no movement when no button has been
pressed. The corresponding test automaton is depicted in Fig. 9. The variable

initial wait

bad

noupdown==0
visitmovement>=1

Fig. 9. The test automaton for Safety II

noupdown (meaning no up or down button pressed) is used to block all pressings
of buttons in the Interfaces. Now we can check whether it is still possible for the
lifts to reach movement nodes (modeled by ‘visitmovement≥0’).

The redesign satisfies requirement Safety II, and violates requirements Live-
ness II and Safety I. We will discuss the diagnostic traces and the reasons in the
next section.

4.2 Problems

The developers invented flags to solve the third problem found in [7]. These
flags seem to solve the error scenario described in [7]. But during the testing
phase, the developers encountered a new error; again the cause for this error
was not clear to them. We have built a Uppaal model (see Section 3) for the
redesign and checked it. Liveness II turns out to be violated. We first investigate
the diagnostic trace generated by the model checker in Uppaal, and then give
the reason why the solution from the developers fails. The generated diagnostic
trace contains 256 transitions; we used the graphic simulation tool in Uppaal

to analyze it.
Initially all the flags are 0. When an up button is pressed on one station (A),

Echo will be set and the state of station A will change to up. Station A sends an
up message. The other stations will set the Can flag and change their state to



up. Suppose the button is released again. The flag of station A does not change,
but its state will change to standby (see the main loop in Fig. 5). Station A will
send a standby message which the others will adopt. When they have adopted
this state, and if they receive another standby message, the Can flags of the
other stations will be reset. After a short while all Can flags in the network
are 0, Echo of station A is 1, and all the states of the stations are standby.
Suppose now that an up button of another station (B) is pressed. Station B
will send an up message. Station A will receive this but cannot change its state
because Echo is set. When it is station A’s turn to use the bus it will therefore
send a standby message. Station B will receive this standby message, and it
will not count enough up messages. The whole counting procedure has to start
over again. Station B will send an up message. The other stations will adopt
this state and send a up message. But when it is station A’s turn, again since
Echo is set, it will send a standby message and station B will again not count
enough up messages. It is clear that the Echo of station A should be reset to
get out of this situation, but that can only happen when the state of the station
is standby, a standby message is received, and it is this station’s turn to use
the bus. For station A this never happens. As a result, the whole system will
never move, even when an up button is pressed.

The test automaton detects this problem. Even though the solution of the
developers has some virtue, they seem not to have taken into account that the
main reason for the third problem lies in the fact that the active station immedi-
ately changes its state to standby after a button is released. Their solution was
directed to block state changes to the active station after its state has changed
to standby. This is not the heart of the problem and therefore the problem
remains in the redesign.

The fourth problem found in [7] is also still in the redesign. The redesign
violates Safety I property. The reason resembles what is already explained in
[7]. This is not very surprising, since the fourth problem was unknown to the
developers at the time of the redesign.

5 A new solution

In this section, we refine the solution proposed in [7] in such a way that it
corresponds with Uppaal and resemble to the solution from the developers.
The key point why our solution differs from the flags added into the redesign is
that our solution creates a link between the state change of a station and the
turn of the station to use the bus. This idea was already mentioned in the µCRL
model [7], but it was not further specified. With the more exact model of the
redesign, including the main loop, and using the idea of the flags the developers
came up with, now we work out the idea in detail.

The new flags are called Change and Active. They are assigned to each
station. Can and Echo are no longer a part of the new solution. When Active is
1, the corresponding station is active; otherwise, the station is passive. Change

of a station is set when there is a button pressed or released at this station



(through the main loop). This is used to remember that the Active flag at
this station must change from active to passive, or vice versa. Only when the
station gets its turn to use the bus, this change will actually happen. If one
station wants to become active, it has to make sure that there are no other
active stations in the system, by checking whether the state of the message from
the bus is standby. If the Change of a station is set, this station does not
change its state until it is its turn to use the bus to make a decision. Change

is reset together with a setting or resetting of Active.

Changing the new flags has no effect on the automata Interface, Bus and
Timer. They are exactly the same as in the redesign. Only the automaton Station

has undergone crucial changes. We will not explain the new Station automaton
in detail, more information can be found in [10]. All requirements have been
checked successfully on the model with this new solution. In particular, problem
three and four are resolved.

6 Concluding remarks

In this paper, we have reported an industrial case study on applying formal
techniques for the design and analysis of a distributed system for lifting trucks.
Our work can be considered as one piece of evidence that formal verification
techniques are mature enough to be applied in industrial projects.

The lift system has been analyzed in the process algebraic language µCRL
[7]. Four problems were found. Three of them were also found by the developers
during the testing phase. They proposed solutions and made a redesign. But they
faced a new problem. The redesign was then modeled in Uppaal. The analysis
in Section 4 has produced some interesting results. The first is that the redesign
does not satisfy all the requirements. Second, the redesign does not solve all
the problems with the original design. Only one problem is solved by adding
time delays. The third problem, for which those flags were developed, and the
fourth problem are not solved. Third, our solution in [7] was refined, and will be
implemented in the new release of the lift system.

Since more details of the lift system are taken into account in the Uppaal

model, the state space of the redesign increases dramatically. In [7], we could an-
alyze the µCRL model with up to five lifts. With the current version of the µCRL
toolset, we can get up to seven lifts on a cluster at CWI, owing to a distributed
state space generation algorithm. For the Uppaal model of the redesign, we
could only manage the analysis for systems with three lifts. The requirements
were checked on a 1.4 GHz AMD AlthlonTM Processor with 512 Mb memory.

Acknowledgments We thank the developers of the lift systems for their collabo-
ration and fruitful discussions. We thank the anonymous referees for their useful
comments.



References

1. L. Aceto, A. Burgueno and K.G. Larsen. Model checking via reachability testing
for timed automata. In Proceedings of 4th International Conference on Tools and

Algorithms for Construction and Analysis of Systems, LNCS 1384, pp. 263-280.
Springer-Verlag, 1998.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

3. J. Bengtsson, W.O.D. Griffioen, K.J. Kristoffersen, K.G. Larsen, F. Larsson, P.
Pettersson, and Y. Wang. Automated analysis of an audio control protocol using
UPPAAL. Journal of Logic and Algebraic Programming, 52-53:163–181, 2002.

4. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Computation, 60:109–137, 1984.

5. S.C.C. Blom, W.J. Fokkink, J.F. Groote, I.A. van Langevelde, B. Lisser, and J.C.
van de Pol. µCRL: A toolset for analysing algebraic specifications. In Proceedings

of 13th Conference on Computer Aided Verification, LNCS 2102, pp. 250–254.
Springer, 2001.

6. Robert Bosch Gmbh, Postfach 30 02 40, D-70442 Stuttgart, Germany. CAN Spec-

ification. Version 2.0, 1991.
7. J.F. Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system for

lifting trucks. Journal of Logic and Algebraic Programming, 55(1/2):21–56, 2003.
8. J.F. Groote and A. Ponse. The syntax and semantics of µCRL. Algebra of Com-

municating Processes ’94, Workshops in Computing Series, pages 26–62. Springer-
Verlag, 1995.

9. K. Havelund, K.G. Larsen and A. Skou. Formal verification of a power controller
using the real-time model checker UPPAAL. In Proceedings of 5th International

AMAST Workshop on Formal Methods for Real-Time and Probabilistic Systems,
LNCS 1601, pp. 277-298. Springer-Verlag, 1999.

10. B. Karstens. Formal verification of the redesign of a distributed lift system using

UPPAAL. Master thesis, Utrecht University, 2003. Available at http://www.cwi.
nl/~pangjun/research/liftredesign.ps

11. K.G. Larsen, P. Pettersson, and Y. Wang. UPPAAL in a nutshell. International

Journal on Software Tools for Technology Transfer, 1(1–2):134–152, 1997.
12. M. Lindahl, P. Pettersson, and Y. Wang. Formal design and analysis of a gear con-

troller. International Journal on Software Tools for Technology Transfer, 3(3):353–
368, 2001.


