Nov. 2004, Vol.19, No.6, pp.848-858 J. Comput. Sci. & Technol.

Model for Slicing JAVA Programs Hierarchically

Bi-Xin Li!, Xiao-Cong Fan?, Jun Pang®, and Jian-Jun Zhao*

! Department of Computer Science and Engineering, Southeast University, Nanjing 210096, P.R. China

2School of Information Science and Technology, PENNSTATE, University Park, PA 16802, U.S.A.

8CWI, Kruislaan 413 1098 SJ Amsterdam, Netherlands

4 Department of Computer Science and Engineering, FIT, Fukuoka 811-02, Japan

E-mail: bx.li@seu.edu.cn; zfan@ist.psu.edu; Jun.Pang@cwi.nl; zhao@cs.fit.ac.jp

Received June 25, 2002; revised January 5, 2004.

Abstract Program slicing can be effectively used to debug, test, analyze, understand and maintain object-
oriented software. In this paper, a new slicing model is proposed to slice Java programs based on their inherent
hierarchical feature. The main idea of hierarchical slicing is to slice programs in a stepwise way, from package

level, to class level, method level, and finally up to statement level. The stepwise slicing algorithm and the related
graph reachability algorithms are presented, the architecture of the Java program Analyzing TOol (JATO) based

on hierarchical slicing model is provided, the applications and a small case study are also discussed.

Keywords

1 Introduction

A program slice is actually an abstraction of hu-
man’s concerns in program understanding(!-?!. Pro-
gram slicing has been used in a variety of software
engineering areas, such as debugging, testing, pro-
gram comprehension, reverse engineering, software
maintenance, software test, software metrics, etc.
A slice of a module at statement s with respect to
variable v is the set of all statements and predicates
that might affect or be affected by the value of v
at s. Initially, the algorithm for computing slices
is based on data flow analysis. It is suggested in
[3] that program dependence graphs (PDGs) could
be used to compute slices more efficiently and pre-
cisely. An algorithm based on PDGs was presented
by Horwitz, Reps, and Binkley!¥, where backward
slices can be obtained by walking backwards over
the PDGs to obtain all the nodes affecting the value
of the concerned variables, and forward slices can
be obtained by walking forwards over the PDGs
to obtain all the nodes affected by concerned vari-
ables.

In traditional procedure-based programs, we
mainly focus on all kinds of data-flows and
control-flows in procedures or among procedures,
which can be computed by graph-reachability
algorithms[*%!, or two-phase graph-reachability
algorithmsl®!. In order to slice such kind of
procedure-based programs, one must take three

software engineering, hierarchical model, program slicing, JAVA, stepwise algorithm, JATO

steps: 1) construct PDGs, 2) slice PDGs based on
graph-reachability or two-phase graph-reachability
algorithms and get sliced PDGs, 3) obtain sliced
program from sliced PDGs.

However, things get complicated when we take
into account object-oriented programs. In addition
to considering all kinds of data-flows and control-
flows as those in procedure-based programs, we
must also consider different dependency relation-
ships originating from the class and object con-
cepts, such as inheritance dependency, message de-
pendency, reference dependency, concurrency de-
pendency, etc.

So far, there are two approaches proposed to
slice object-oriented programs. One can be called
object-oriented extension that is based on tradi-
tional graph-reachability algorithms and two-phase
graph-reachability algorithms. Many researchers
are doing work along this line. For instance,
Krishnaswamy!®! used object-oriented program de-
pendence graph (OPDG), an extension of system
dependence graph (SDG), by embedding class hi-
erarchy graphs (CHGs) into SDG. He also pro-
posed an algorithm based on OPDG to slice C++
programs. Larsen and Harrold extended the tra-
ditional SDG by adding class dependence graphs
(CIDS) in computing C++ program slices!”). Tip,
Choi, Field and Ramalingham used class hierarchy
graph (CHG) to compute class hierarchy slices!®!.
Steindl presented an approach to computing inter-

*Correspondence

This work is supported by the National Natural Science Foundation of China under Grant No.60473065 and the
Outstanding Youth Teacher Support Foundation of Southeast University under Grant No.4009001011.

Bi-Xin Li et al.: Model for Slicing JAVA Programs Hierarchically 849

modular slices in object-oriented program!®!. Zhao
proposed a method to compute dynamic object-
oriented program slices!’®. All these methods are
simply based on some kinds of dependence graphs
and graph reachability or two-phase graph reacha-
bility algorithms.

The other promising way is to introduce new al-
gorithms to deal with the new object-oriented chal-
lenges in slicing object-oriented programs. In this
paper, we follow this way and try to go a step fur-
ther to separate our concerns in program slicing.
In other words, we are trying to slice programs in
a stepwise way.

The organization of this paper is as follows. An
overview of the main idea of our approach is pre-
sented in the next section. A hierarchical slicing
model (HSM) is introduced in Section 3, where
we discuss a hierarchical slicing criterion, hierarchi-
cal dependence graphs and a stepwise slicing algo-
rithm. Section 4 introduces the implemented Java
program analyzing tool—JATO, which is based on
the hierarchical slicing model and the stepwise slic-
ing algorithm. Section 5 makes some comparison
with related work, and Section 6 concludes the pa-
per.

2 Basic Ideas

Object-oriented programs have explicit hierar-
chical structures. Especially, the hierarchical struc-
ture in a Java program is very clear, i.e., a pack-
age consists of classes and interfaces; a class or
an interface consists of methods and member vari-
ables; a method consists of some statements and
local variables. The HSM constructs dependence
graphs and computes program slices over these hi-
erarchical structures to meet the different specific
requirements.

The points to stress are as follows. 1) A pack-
age, class/interface, or method affects or is affected
by variable v if and only if a statement or a predi-
cate in the package, class/interface, or method af-
fects or is affected by the variable v. 2) If a state-
ment or predicate may affect variable v, and the
statement or predicate uses variable 7, then we say
that variable j may affect variable v.

The HSM divides a Java source program into
four levels, i.e., package-level, class or interface-
level, member method/member variable-level, and
statement /local variable-level. A Java program
contains some packages, which produce dependen-
cies by import statements and sub-package relation-
ships; a package consists of some classes or interface

declarations. These classes and interfaces produce
dependence relationships between them by inher-
itance, implement, call to class member, etc. A
class or interface declaration consists of some mem-
ber data and member methods, the connection be-
tween methods is realized by calling each other, and
a method consists of some statements and variables
(including local and global variables).

The main idea of the hierarchical slicing al-
gorithm is: if we consider slicing criterion (s,v),
where s and v are a statement and a variable in any
method, respectively, then we can compute slices
w.r.t slicing criterion (s, v) according to the follow-
ing steps using our hierarchical slicing algorithm
(in the following steps, J represents a Java source
program, which may be related to some packages):

e Package-level. First we determine all packages
related to the package containing s and v based
on the direct or indirect dependence relationships
caused by import statements. We delete all the
packages which are not related to the package con-
taining s and v. Finally, we get the package-level
slice w.r.t the slicing criterion (s,v), marked as
SHT).

e Class or interface-level. We analyze S'(J)
and delete all classes and interfaces which are not
related to the class containing s and v, and get the
class or interface-level slice w.r.t the slicing crite-
rion (s,v), marked as S?(J). We have S'(J) D
S2(7).

e Member method or variable-level. We an-
alyze S?(J) and delete all member methods and
variables which are not related to the method con-
taining s and v, and get the member method or
variable-level slice w.r.t the slicing criterion (s, v),
marked as S3(J) . We have S'(J) 2 S*(J) 2
S3(T).

e Statement and local variable-level.
lyze S3(J) and delete all statements and predicates
which are not related to the statement s contain-
ing the variable v. We get the statement and local
variable-level slice w.r.t the slicing criterion (s, v),
marked as S(J) . We have SY(J) D S%(J) 2
S3(J) D S(J). By now we get the slice S(J)

w.r.t slicing criterion (s,v) of a Java program.

We ana-

3 Hierarchical Slicing Model

The hierarchical slicing model consists of three
parts: 1) hierarchical slicing criterion, 2) hierar-
chical dependence graphs, and 3) stepwise slicing
algorithms, which will be covered in this and the
next two sections. Fig.1 shows the structure of

850

our hierarchical slicing model. In the HSM, we
can obtain the package-level slice (or the class-level
slice, or the method-level slice, or the statement-
level slice) based on the package-level dependence
graph (or the class-level, or the method-level, or the
statement-level dependence graph) and the step-
wise slicing algorithm.

Stepwise
slicing

| Package-level slice |—[PL,

[Class-level slice

[Method-level slice

[Statement-level slice

Fig.1. Structure of hierarchical slicing model.

3.1 Hierarchical Slicing Criterion

In this section, we define formally our hierarchi-
cal slicing criterion. Given a Java program 7, let
Py, C7, My and S7 represent the set of pack-
ages, classes or interfaces, methods(attributes),
and statements declared, defined or used in 7, re-
spectively.

For Vs € S, we use V; to denote the variable
set occurring (defined or referenced) in statement s.
V, may be empty or a singleton. For any statement
s € Sz, we can always get its enclosing method,
class or interface, and package by mappings M(s),
C(s), and P(s), respectively. For the declaration
statement s (or the initializer) of an attribute m,
M(s) is m itself.

The statements that can affect a variable v may
be the variable declaration statement, assignment
statements with v as the left hand side, or method
call statements with v as a call by reference pa-
rameter. The statements that can be affected by
a variable v may be expressions with one or more
occurrences of v, or method call statements with
v as a parameter. We denote the set of state-
ments affecting v as affect(v), and the set of state-
ments affected by v as affected-by(v). Let predi-
cates B, = affect(v), F, = affected-by(v), that is to
say, By(s) =true iff s € affect(v) and F,(s) =true
iff s € affected-by(v).

We say that a package p € Py, or a class (in-
terface) ¢ € Cz7, or a method m € M7, may affect
variable set V'if 3s € S7, v € V- P(s) = pA B,(s),
ds € Sz, v € V-C(s) = cA By(s), or Is € Sz,
v eV -M(s) =mA B,(s), hold.

We say that a package p € Py, or a class (in-
terface) ¢ € Cz, or a method m € M7, may be af-
fected by variable set V if 3s € Sz, v € V- P(s) =
pAF,(s),ds € Sy, v € V-C(s) = c A Fy,(s), or

J. Comput. Sci. & Technol., Nov. 2004, Vol.19, No.6

dse Sz, veV - M(s)=mA F,(s), hold.

Thus, all the packages that may affect vari-
able set V are given by >, ., = {p|3s € Sz,
v € V.P(s) = pA By(s)}. Similarly, all the
classes (interfaces) that may affect variable set V
are given by > ~_,,, ={c|3s € Sy, v €V -C(s) =
¢ A\ By(s)}, and all the methods that may affect
variable set V are given by > ,, .., = {m|3S € Sz,
veV -M(s)=mABy(s)}.

All the packages that may be affected by vari-
able set V' are given by Y p, , = {p|3s € Sz,v €
V-P(s) = pAF,(s)}. Similarly, all the classes (in-
terfaces) that may be affected by variable set V are
given by > . ={c|3s € Sy,v € V-C(s) =cA
F,(s)}, and all the methods that may be affected by
variable set V are given by > _,,, |, = {m|3s € Sz,
veV -M(s)=mAF,(s)}

Definition 1 (Hierarchical Slicing Crite-
rion). Given a program J, a slicing criterion with
respect to J is a pair (s,v), where s € Sz, v € V.
By mappings M(s), C(s), and P(s), we can get
method-level, class-level and package-level slicing
criteria (M(s),v), (C(s),v) and (P(s),v).

To make any sense, we assume the variable set
V, must not be empty. Thus, in the following we
assume V; #£ 0, for any slicing criterion (s, v).

Definition 2 (Package-Level Slice). Given
a program J and a slicing criterion (P(s),v). The
package-level backward slice of J with respect to
(P(s),v) is given by > p_,i,, where V. = {v}; the
package-level forward slice of J with respect to
(P(s),v) is given by Y p, 1, where V = {v}.

We can define class-level, method-level and
statement-level slices according to the same idea,
regarding the slicing criteria (C(s),v), (M(s),v),
and (s,v), respectively.

3.2 Hierarchical Dependence Graphs

When implementing the hierarchical slicing
model, we only consider a subset of Java syntax,
where we do not consider the cases including mul-
tithreading and exception handling, etc. The hier-
archical slicing model consists of three levels: syn-
tax analysis, generation of dependence graphs and
computation of slices.

The syntax of a Java source program is ana-
lyzed at the syntax analysis level. The code infor-
mation tree (CIT) and global symbol table (GST)
are constructed based on the information obtained
by syntax analysis. In the implementation, we
first use lex/yacc to produce a CIT. Then all kinds
of dependence graphs are generated based on the

Bi-Xin Li et al.: Model for Slicing JAVA Programs Hierarchically 851

CIT produced at the syntax analysis level. Fi-
nally, different-level slices can be computed based
on these dependence graphs.

Four kinds of dependence graphs are used in
the hierarchical slicing model: package level de-
pendence graphs (PLDG), class level dependence
graphs (CLDG), method level dependence graphs
(MLDG), and statement level dependence graphs
(SLDG).

The construction of these dependence graphs
depends on the CIT and the GST, which can be
obtained by JAST — a built-in special compiler
generated by lex/yacc. Logically, the structure of a
CIT is equivalent to an abstract syntax tree (AST).
Each yacc syntax rule has a corresponding CIT
node, which stores all the useful information for
later processing. The data structure of the CIT is
defined as
typedef struct TREENODE
{ struct TREENODE* sibling;

struct TREENODE¥* child[4];
int lineno; //record line number for slice
Nodetype nodetype; //mark node type

char* name;

char* datatype; // datatype including basic and refer-

// ence types
//record the class name of type cast
//between classes

char* casttype;

We can construct a GST by further processing
the information involved in a CIT. The GST ex-
hibits the kernel idea of hierarchical slicing model
and plays an important role during slice genera-
tion. Package-level, class-level and method-level
dependence graphs are constructed based on the
GST. The GST reorganizes the information above
method-level, and divides the information into four
levels, i.e., package level, compile unit level, class
level and intra-class level, to meet the requirement
of later slicing algorithms. The following is the data
structure of the GST: a global symbol table is a
dynamic array whose element type is class Pack-
ageDefine.

class PackageDefine //record the information of a package
{ int PackagelD; //package identification, begin with zero
CString PackageName; //package name
CStringArray ImportPackages; //record the informa-
//tion of all import statements in a package
CObArray CompileUnitTable; //record the informa-
//tion of all compile units in a package, it is a
//dynamic array whose element type is
// CompileUnitDefine
}

class CompileUnitDefine
// compile unit
{ CString FileName;
//pile unit
CObArray ClassTable;

//record the information of a
the name of file including com-
// g

//record the information of

{ int MemberID;

//all interfaces in compile unit, it is a dynamic
//array whose element type is ClassDefine

}

class ClassDefine
//interface
{ int ClassID;

// record the information of class or

//ID of a class or interface

CString ClassName; //name of a class or interface

CStringArray Extends; / /record the information of
// extends statement in a class or interface

CStringArray Implements; // record the information
//of implements in a class

CObArray MemberTable; // record the information
//of all member variables and member functions in
//a class or interface, it is a dynamic array whose
// element type is MemberDefine

}

class MemberDefine //record the information of all
//member variables and member functions in a
//class or interface

//the identification of member
//variables and member functions

bool IsMemberData; //mark is used to determine a
//member variable or member function

bool HasMethodBody; //mark is used to determine a
//member function or method body

CString MemberName; //the name of member variable
//or member function

CStringArray DataType; //the types of all formal para-
//meters in member function or the types of member
//variables

CStringArray CreateClassName; //record the names
//of all other classes created in a member function
//for constructing new relationship

CUlntArray MemberMethodUselD; //record ID of all
//member variables used in a member function for
/[constructing MSV relationship

CUlntArray MemberDataDefID; //record ID of all
//member variables changed in a member function

CUlIntArray MemberDataRefID; //record ID of all
//member variables referenced in a member function

CStringArray MemberDataDef; //record all varia-
//bles defined in a member method

CStringArray MemberDataRef; //record all varia-
//bles referenced in a member method

In next subsections, we introduce the algo-
rithms used to generate the hierarchical depen-
dence graphs. All these algorithms need to traverse
some parts of the CIT.

1) Algorithm 1: Generation of PLDG. A
PLDG is used to represent the import and sub-
package relationships between packages. If pack-
age p; imports package ps, then there is an edge
from p; to ps. Because it is the import statement
that creates the import relationship between pack-
ages, so the package-level dependence graph can be
constructed directly by scanning CIT.

The data structure of a PLDG is: int* Pack-

ageHierarchyDependence. A PLDG is logically a
square matrix PA, and the rank of PA is the length

852

PackageCount of the symbol table SymbolTable.
The subscripts of PA represent the id of all pack-
ages in source program. PA[i,j] = 1 means that
the package ¢ imports package j; and PA[i, j] = 2
means that the package ¢ is a sub-package of pack-
age J.
Input: CIT of a program
Output: PLDG
Procedure. Construct-PLDG(CIT *aProgram)
begin
1. for (int ¢ = 04; ¢ < PackageCount; i++)
2. for each PackageDefine piin SymbolTable
3. if (pi is a sub-package) then
4 Create sub-package dependence relation-
ship
5. Add 2 to corresponding position in the
square matrix PA

6. else

7. Get the names of all imported packages
of pt from pi.ImportPackages

8. Get the id of each imported package from
SymbolTable

9. Build import dependence relationship be-
tween the package and its import package

10. Add 1 to corresponding position in the

square matrix PA
end

For instance, by scanning the CIT we find that
there is no import package in the Java program of
Fig.2, so its PLDG is the root node itself.

1. class A{ 13. public f1()
2. public in x; 14. {z=y;}
3. public f1() }
4. {z=1;} 15. class D{
16. public void f3(A a)
5. class B extends A{ 17. {a.f1();
6. public int y; 18. return; }
7. public f1()
8. {z=2;} 19. class E{
9. public f2() 20. public static void
10. {y =3; main(String str[]){
21. A al =new B();
11. class C extends A{ | 22. D dl =new D()
12. public int y; 23. d1.f3(al); }

Fig.2. Toy Java program.

2) Algorithm 2: Generation of CLDG. A
CLDG is used to represent the inheritance, imple-
ment and create relationships between classes or
interfaces. If an object of class co is created di-
rectly in class ¢y, then we say that there is a create
relationship between classes ¢; and c;. If an ob-
ject of class c; is created in class cg, then there is a
bi-direction edge between c¢; and cy. If class B in-
herits from class A or implements interface A, then

J. Comput. Sci. & Technol., Nov. 2004, Vol.19, No.6

there is an inheritance edge from B to A. Since the
inheritance, implement and create relationships in
a class or interface are described using extend, im-
plement and new in Java program, the CLDG can
also be constructed directly by scanning the CIT.
The data structure of a CLDG is: int*
ClassHierarchyDependence. A CLDG is logically
a square matrix CA. The rank of square matrix
CA is the number of classes and interfaces in the
source program, i.e., ClassCount. The subscripts
of CA represent the id of each class or interface in
the source program. The meanings of square ma-
trix are: CA[Z, j] = 1 denotes that class or interface
Jj inherits class or interface i; CAJi, j] = 2 denotes
that class 7 implements interface i; CA[i, j] = 3 de-
notes that class or interface j is a member variable
of class or interface i; CA[i,j] = 4 denotes that
class j creates class i. The algorithm for construct-
ing the CLDG is:
Input: CIT of a package
Output: CLDG
Procedure. Construct-CLDG(CIT *aPackage)
begin
1. for(int ¢ = 0; ¢ < ClassCount; i++)
2. foreach ClassDefine ci in SymbolTable
3. Find the names of all classes inherited by ci in
extends statements
4. Find the names of all interfaces inherited by
ci in extends statements
5. Find the id of each father class or father inter-
face in SymbolTable
6. Create “inheritance dependence” relationship
7. Add 1 to corresponding position in square ma-

trix CM
8. Find the name of each implemented interface
by ci
9. Find the id of each implemented interface in
SymbolTable
10. Create “implement dependence” relationship
11. Add 2 to corresponding position in square
matrix CM
12. foreach member method or member variable
in ci
13. Get the information inf of member variable
or member method in ci
14. if (inf is a member variable, var with a class
type or interface type) then
15. Find the id of class or interface of the

member variable in SymbolTable
16. Create “aggregation dependence”
tween ci and class or interface of var
17. Add 3 to corresponding position in
square matrix CM

be-

18. else (inf is a member method)
19. Find the name of each created class in Cre-
ateClassName

Bi-Xin Li et al.: Model for Slicing JAVA Programs Hierarchically 853

20. Find the id of each class in SymbolTable
21. Create “create dependence” between ci
and the class or interface
22. Add 4 to corresponding position in square
matrix CM
end

The CLDG of Program given in Fig.2 is shown
in Fig.3.

» Inheritance edge

&1 (o] [0 o] =5

— Create dependence edge

Fig.3. CLDG and its logical matrix of the toy Java program
in Fig.2.

3) Algorithm 3: Generation of MLDG. In
Java programs, class member methods and member
variables may have the following two kinds of de-
pendence relationships: 1) multiple member meth-
ods share a member variable that leads to a direct
definition or use relationship, called MSV (method
sharing variable) relationship; 2) call relationship
caused by calling other methods so as to use the
member variables indirectly. An MLDG is used
to describe the two relationships between member
methods and member variables.

The data structure of an MLDG is int* Mem-
berDependence. An MLDG is logically a square
matrix MA. The rank of the square matrix MA
is the number of all member variables and mem-
ber methods, i.e., MemberCount. The subscripts
of MA represent the id of each member variable
or member method in the class. The meanings of
the square matrix are: MA[i,j] = 1 denotes that
member method j uses member variable 7 (MSV re-
lation); MA[i,j] = 2 denotes that member method
7 calls member method i. The algorithm for con-
structing the MLDG is:

Input: CIT of a class

Output: MLDG

Procedure. Construct MLDG(CIT *aClass)
begin

1. for (int 2 = 0; ¢ < MemberCount; i++)

2. foreach MethodDefine mi in SymbolTable

3. if (mi is a member method) then

4. Find the id of each referenced member vari-
able in mi in MemberDataRefID

5. Find the id of each referenced member vari-
able in mi in MemberDataDefID

6. Find the id of each defined member variable

in mi in MemberDataRefID

7. Find the id of each defined member variable
in mi in MemberDataDefID

8. Create “MSV dependence” between mi and
all these member variables

9. Add 1 to corresponding position in matrix
MA

10. Find the id of each member method refer-
enced in mi in MemberMethodUselD

11. Create “call dependence” between mi and
these member methods

12. Add 2 to corresponding position in matrix

MA

end

The MLDG of the program given in Fig.2 is
shown in Fig.4. The method f1 of classes B and C
inherited from A may be covered by the method f1
newly defined in B and C, respectively. Inherited
method f1 will not be shown in the MLDG.

1 Class node
() Method node

< Variable node
— Variable use edge
e Clags member edge

Fig.4. MLDG of the toy Java program in Fig.2.

4) Algorithm 4: Generation of SLDG. An
SLDG will be derived for each member method of
each class. The SLDG of member method m of
class ¢ is a pair (Ng, E;), where Ny is the node set,
each of the node corresponds to a certain statement
in m and FEj is the edge set. There are three kinds
of dependence relationships between statements.
Statement node j may have data dependence on
node ¢, where variable z is declared and accessible
from j. There exists sequential control dependence
between a statement and its immediate last state-
ment. And transfer control dependence occurs in
conditional statements or loop statements, where
the body depends on the predicate part of these
statements. FE, is the set which is composed of
all these kinds of dependences. The generation al-
gorithm of an SLDG is similar to the traditional
algorithms(*7]. We here do not discuss it in de-
tails.

854

3.3 Stepwise Slicing Algorithm

Based on the hierarchical slicing criterion and
different kinds of dependence graph generation al-
gorithms, we can introduce a stepwise slicing al-
gorithm for slicing Java programs. The slicing al-
gorithm includes some continuous steps, like the
stepwise refinement method adopted in program
development, so we call this algorithm the stepwise
slicing algorithm.

Firstly, we construct PLDG based on source
program, and perform the computation of the
package-level slice (in fact, it is a sliced PLDG)
over the PLDG w.r.t the package-level slicing cri-
terion (P(s),v).

Secondly, we construct the CLDG based on a
sliced PLDG (in fact, it is the class-level extension
of the sliced PLDG), and perform the computation
of the class-level slice (in fact, it is a sliced CLDG)
over the CLDG w.r.t the class-level slicing criterion
(C(s),v).

Along this way, we can further obtain the
method-level slice and the statement-level slice
w.r.t slicing criteria (M(s),v) and (s,v), respec-
tively.

In the implementation of slicing algorithm, we
define a slicing criterion class SliceCriterion.
class SliceCriterion
{ set var; //record the interesting variable or

//the set of variables

int lineno; //record the number of statement s

// containing varible var

int packagelD; //record id of the package containing
//the interesting variable var or the set of
//variables, we get by mapping P(s)

int classID; //record id of the package containing
//the interesting variable var or the set of var-
//iables, we get it by mapping C(s)

int methodID; //record id of the package containing
//the interesting variable var or the set of vari-
// ables, we get it by mapping M(s)

Then, the algorithm for stepwise program slic-
ing is:
Input: Slice criterion (s,v), PLDG
Output: program slice
Procedure. CIT *OnSlicing (PLDG *pa, Slice-
Criterion *sc)
begin
PS=PackageSlicing(pa, sc.packagelD)
CGS={}
for all package p in PS do
CGS=CGS.append(GetCLDG(p))
CS=ClassSlicing(CGS, sc.classID)
MGS={ }

A

J. Comput. Sci. & Technol., Nov. 2004, Vol.19, No.6

7. for all class cin CS do

8. MGS = MGS.append(getMLDG(c))
9. MS=MethodSlicing(MGS, sc.methodID)
10. SGS={}
11. for all method m in MS do
12. SGS = SGS.append(getSLDG(m))
13. SS=StatementSlicing(SGS, sc.lineno)
14. return SS
end

The procedure PackageSlicing() is used to get
the package level slice of (s,v), by taking the PLDG
of the system in question and the slicing crite-
rion (packagelID,var) as parameters, and return-
ing all the packages (or sub-packages) relevant to
the package containing statement s. Since all the
irrelevant packages are cleared out of the follow-
ing focus, the overall performance of slicing will be
improved considerably.

The procedure ClassSlicing() is used to com-
pute the class level slice of (s,v), by taking the
CLDG (in fact, it is sliced PLDG) and slicing crite-
rion (classID, var) as parameters, and returning all
the classes or interfaces relevant to the class con-
taining statement s. The slicing focus is further
zoomed in to leave all the irrelevant classes or in-
terfaces out of consideration.

The procedure MethodSlicing() is used to fur-
ther determine all the member methods and mem-
ber variables which are relevant to the method con-
taining statement s, within every relevant class.
Likewise, MethodSlicing() returns all the pertinent
methods (variables) and ignores the others.

The procedure StatementSlicing() is used to
compute the statement-level slice of (s, v}, i.e., the
set of all statements and control predicates, which
affects the value of variable v for backward slicing
(or is affected by the value of variable v for for-
ward slicing). The way we compute the statement
level slice is a top-down, instead of a bottom-up,
method.

This kind of stepwise slicing approach is based
on the hierarchical structure of Java programs, and
has been shown in JATO to be an effective and ef-
ficient solution to Java program slicing. We will
give a case study in the next section. Each of the
procedures, PackageSlicing(), ClassSlicing(), and
MethodSlicing(), is actually a graph-reachability al-
gorithm. Procedure StatementSlicing() is a two-
phase graph-reachability algorithm, which is the
same as traditional algorithm!*7). For simplicity,
here we only give the algorithm for package-level
slicing. The others can be done along the same
way.

Bi-Xin Li et al.: Model for Slicing JAVA Programs Hierarchically 855

Input: package level dependence graph, slicing cri-
terion

Output: package level slicing

Procedure PackageSlicing (PLDG *pa, PNode

*node)
begin
1 if node is not marked then
2 mark the node visited
3. insert node into wvisited Nodes
4 for all nodes pred on which node depends
do
5. PackageSlicing(pred);

end

Procedures GetCLDG(), GetMLDG() and Get-
SLDG() are used to extend sliced PLDG, sliced
CLDG and sliced MLDG to class-level, method-
level and statement-level dependence graphs, re-
spectively. The concrete processes are given in Al-
gorithms 1-4.

4 JATO—Java Program Analyzing Tool

JATO has been implemented in C++ based on
the hierarchical slicing model. JATO can construct
different dependence graphs and compute program
slices at different levels. The main goal of JATO
is to be integrated into a Software Quality Mea-
surement Platform as an embedded system, where
program slices of Java programs at different ab-
straction levels can be computed and used to ana-
lyze, measure and test Java programs in the same
environment.

GUI !

Software measurement tools Software test tools I

JATO
[agsT }—+PLDG Graph
CLDG reachability
it]+ sorithm | €2y
CIT trees MLDG Program
SLDG Stepwise .slice
library

slicing

A A

! I
Slicing criterion

Java program

Fig.5. Architecture of JATO.

4.1 Architecture of JATO

The architecture of JATO and its embedding en-
vironment are shown in Fig.5. JATO expects Java
project files (deployment of packages) as its input.
JAST is responsible for generating the abstract

syntax trees of the syntactically correct Java pro-
grams, and the GSTs are generated by a GST gen-
erator. Then, different dependence graphs are de-
rived and fed to the graph-reachability algorithms
and the stepwise slicing algorithm to produce the
desired program slices.

Measurement and test tools provide some ba-
sic tools such as coupling measurement tools,
information-flow analysis and test tools, etc. Users
can get different-level slices and measurement or
test results by interacting with the GUI, which is
not discussed in this paper, interested readers are
referred to [11, 12] for more information.

4.2 Case Study in JATO

We show the hierarchical slicing approach under-
pinning JATO by slicing the Java program shown
in Fig.2 step by step.

We input a slicing criterion (23, al), since state-
ment 23 belongs to the main method, and belongs
to class E. The method level slicing criterion is
(main,al), and the class level slicing criterion is
(E,al). Assume that all these classes belong to
a package named P, then the package level slicing
criterion is (P,al). In order to get a slice at the
package level, we start from the node that repre-
sents package P, find all nodes whose import edges
directly or indirectly arrive at node P. The set of
all these nodes is the package level slice of the Java
program with respect to slicing criterion (P, al). In
the above example, the package level slice is P it-
self because only one package is in question. Here,
the package level slice (a sliced PLDG) and PLDG
are the same, i.e., the P node.

Fig.6. Sliced CLDG and its method-level extension.

In order to get a class level slice, we first ex-
tend package node P to the CLDG. In fact, the
CLDG can be acquired by traversing the concerned
CIT of P and GST. Fig.3 is the CLDG of the ex-
ample program, where there is an inheritance de-
pendence edge from B to A, as well as from C to
A. Since class E creates an object of both class B
and class D respectively, there is a create depen-
dence edge from class E to B, as well as from F
to D. Then, from the class containing the slicing

856

interested point, statement 23 figures out the set Z,
which contains all nodes that can be reached from
class node E along creation edges, and finds the set
I7T of all nodes which can be reached from every
class node in set Z along inheritance or implement
edges. The union of Z and ZZ is the class level
slice with respect to slicing criterion (23, al). Here,
T = {B,D,E}, ITT = {A}, thus the class level
slice w.r.t slicing criterion (23,al) is {B, D, A, E}.
Then, we get the sliced CLDG and its method-level
extension in Fig.6.

To get the method level slice, we first extend
the sliced CLDG to the MLDG. Since class C is
not contained in the class-level slice, we ignore it
when we extend the sliced CLDG to the MLDG.
Then start to traverse backward from f3 node of
D along defining edges, and we get node a of D.
Then traverse backward from nodes a of D and
x of B along used-by edges, and we get nodes f1
of B and main. Thus, the method level slice is
{main,D.f3,B.f1,D.a,B.x}. To get the state-
ment level slice, we first extend the sliced MLDG
to the SLDG along the same way as Fig.6, then
we use two-phase graph-reachability algorithm to
compute the statement level slice, which is shown
in Fig.7.

1. class A{ 17. {a.f1();

2. public int z;} 18. return; }}

5. class B extends A{ 19. class E{

6. public int y; 20. public static void
7. public f1() main(String str[]){
8. {z =2;}} 21. A al = new B();
15. class D{ 22. D d1 = new D();
16. public void f3(A a) | 23. d1.f3(al);}}

Fig.7. Statement slice of Java program in Fig.2 w.r.t. slicing

criterion (23, al).

5 Related Work and Comparison

In this section, we make a comparison between
our hierarchical slicing model and other object-
oriented program slicing approaches, e.g., [6, 7, 13]
and consider two aspects: the complexity of the
algorithms and the exactness of the slicing results.

5.1 Complexity of the Slicing Algorithm

Compared with the traditional approaches!*~7,

the hierarchical slicing model may reduce the whole
complexity of the slicing algorithm and the de-
pendence graph construction algorithms, since the
different dependence graphs, i.e., PLDG, CLDG,
MLDG, and SLDG, can be constructed one upon

J. Comput. Sci. & Technol., Nov. 2004, Vol.19, No.6

another. If a slicing criterion is specified, PLDG
can be constructed by only considering the pack-
ages relevant to the slicing criterion, and leaving
the other irrelevant packages out of focus. Thus,
the construction time of PLDG w.r.t this slicing
criterion will decrease. For the same reason, the
construction time of CLDG, MLDG, and SLDG
w.r.t this slicing criterion will decrease consider-
ably. However, this is under the assumption that
the slicing criterion specified by users is unchange-
able, or at least is not changed so frequently. If
there are lots of slicing criteria to be specified,
the overall performance will get worse since every
time a slicing criterion is input, all the dependence
graphs, which depend on the slicing criterion, must
be re-constructed accordingly.

To overcome this, we can construct these de-
pendence graphs completely, once and for all, for
every input Java program. Such pre-computed re-
sults can be reused for all slicing criteria selected
from the source program. In this way, the construc-
tion of SLDG will have the same complexity as that
of the traditional approaches. But, the complexity
of the slicing algorithm is getting reduced because
many of irrelevant packages, classes and methods
are ignored when we compute statement-level slices
using hierarchical slicing algorithm for a slicing cri-
terion. So, the whole complexity is decreased.

In addition, we can get different level slices us-
ing our approach, these by-products are very use-
ful for program comprehension, reverse engineer-
ing, code reuse, etc.

5.2 Exactness of Slice Results

One of the main concerns of program slicing is
the exactness of the slicing results. One can get a
piece of program and claim that it is just the slicing
result of the given slicing criterion. However, better
program understanding can only be derived from
more precise slicing results. In the previous work,
the solutions to slice programs with polymorphism
are very weak, especially for polymorphic object
parameters. A method was proposed to slice pro-
grams with polymorphism in [13], but the slicing re-
sults are not so exact. It might include the methods
in class C or A if we compute the slice with respect
to slicing criterion (23,al) by using their method.
The hierarchical slicing model proposed in this pa-
per can eliminate irrelevant classes or methods at
class slicing level or method slicing level, so, more
precise slicing results can be acquired.

Bi-Xin Li et al.: Model for Slicing JAVA Programs Hierarchically

6 Conclusion

The concept of class hierarchy slice was intro-
duced in [8]. This idea was further extended in the
hierarchical slicing modell™*15] which covers the
package level, method level, in addition to the class
level and statement level. In this model, program
slices can be derived at different levels with differ-
ent granularities in a stepwise way. In this paper,
the hierarchical slicing model is further elaborated
and refined.

The application study of the hierarchical slic-
ing model was presented in [11, 12], where we stud-
ied the information-flow analysis and coupling mea-
surement using the hierarchical slicing model.

The prototype tool JATO has been imple-
mented based on the hierarchical slicing model to
slice Java programs. One of the aims of the JATO
project is to measure and to test Java programs by
using object-oriented program slicing techniques.
The slice results acquired from JATO can be fur-
ther exploited in tools concerning software metrics,
software test, etc. Currently, the slicing results can
be generated correctly in the stepwise slicing algo-
rithm within a Java syntax subset.

But since the multithreading and exception
handling are not included in our algorithm, the
wider application of the algorithm is delayed. As a
next step, we will extend our algorithm with more
Java program features. Some research results show
that it is not very difficult to add these properties
to our algorithm, but we do not want to discuss
these issues in this paper for the simplicity.

Many experiments should be performed in the
next stages to improve the functionality of JATO
and the software quality measurement platform.
Even though we can do some information-flow anal-
ysis, coupling assessment and some data-flow test
in our environment, there are still many function-
alities, for instance functional test, some structural
test, cohesion measurement, and code reuse, are
not realized in the current version. These will be
considered in the next version of the software qual-
ity measurement platform.

Acknowledgements The authors would like
to thank Yong-Xiang Zhang, Yi Tan, Ping Zhu,
Yu-Ting Cheng, Fang Liu, Xiao-Dong Liu, Yu
Qian, Zhi-Hong Dong, Liang Jia, Xuan-Dong Li
and Guo-Liang Zheng for their contributions in the
implementation of the prototype tool—JATO and
the Java software quality management platform.
Thanks to the reviewers, who made comments and
suggestions on the earlier version of this paper, and

857

thanks to Paul Klint and J¢rgen Iversen for their
valuable comments on this paper.

References

[1] Weiser M. Program slicing. IEEFE Transactions on Soft-
ware Engineering, 1984, SE-10(4): 352-357.

[2] Weiser M. Program slicing. IEEFE Transactions on Soft-
ware Engineering, 1984, 10(4): 352-357.

[3] Ottenstein K J, Ottenstein L M. The program depen-

dence graph in a software development environment.

ACM SIGPLAN Notices, 1984, 19(5): 177-184.

Horwitz S B, Reps T, Binkley D. Interprocedural slic-

ing using dependence graphs. ACM SIGPLAN Notices,

1988, 23(7): 35—46.

[5] Horwitz S B, Reps T. The use of program dependence

graphs in software engineering. In Proc. the Four-

teenth International Conference on Software Engineer-
ing, Melbourne, Australia, May 1992, pp.392—411.

Krishnaswamy A. Program slicing: An application of

object-oriented program dependence graphs. Techni-

cal Report TR94-108, Department of Computer Science,

Clemson University, 1994.

Larsen L, Harrold M J. Slicing object-oriented software.

In Proc. 18th International Conference on Software En-

gineering, 1996, pp.495-505.

Tip F, Choi J D, Field J, Ramalingham G. Slicing class

hierarchies in C++. In Proc. the Eleventh Annual Con-

ference on Object-Oriented Programming Systems, Lan-
guages, and Applications (OOPSLA’96), 1996, pp.179—

197.

[9] Steindl C. Intermodular slicing of object-oriented pro-
grams. In Proc. International Conference on Compiler
Construction (CC’98), 1998, pp.264-278.

[10] Zhao J. Dynamic slicing of object-oriented programs.
Technical Report SE-98-119, Information Processing
Society of Japan (IPSJ), 1998.

[11] Li B. An approach for assessing software coupling. In
Proc. Third Asian Workshop on Programming Lan-
guage and Systems, Shanghai, China, 2002.

[4

[6

[7

8

[12] Li B. A technique to analyze information-flow in object-
oriented programs. Information and Software Technol-
ogy, 2003, 45(6): 305-314.

[13] Liang D, Harrold M J. Slicing objects using system de-
pendence graph. In Proc. the 1998 International Con-
ference on Software Maintenance, 1998, pp.358—-367.

[14] Li B, Fan X. JATO: Slicing Java program hierarchically.
TUCS Techinical Reports, No.416, Finland, 2001.

[15] Li B. Program slicing techniques and its application in
object-oriented software metrics and software test [Dis-
sertation]. Nanjing University, 2000.

Bi-Xin Li is a professor in
Southeast University from Jan.,
2004. He received the Ph.D. de-
gree in computer software and
theory from Nanjing University
in 2001. From Apr. 2001
to Apr. 2002, he worked at
TUCS (Turku Centre for Com-
puter Science) for one year as a
post-doctoral researcher. From
2003, he worked at Department

Apr. 2002 to Dec.

858

of Computer and Information Science, NTNU (Norwe-
gian University of Science and Technology), and CWI
(the Centrum voor Wiskunde en Informatica), both
as an ERCIM Fellow. His current research interests
include software construction, software testing, SQA
techniques, software architecture and component tech-
niques, safety-critical system and formal verification,
etc.

Xiao-Cong Fan is a senior researcher in the Intel-
ligent Agent Lab of the Pennsylvania State University
from 2002. He received the Ph.D. degree from Nanjing
University in 1999. From 2000 to 2002, he worked at
the Turku Centre for Computer Science and the Com-
puter Science Department of Abo Akademi University
in Finland, where he participated in the projects SO-
COS and SPROUT, which developed a methodology
for software platform construction based on the Re-
finement Calculus. He currently works on formal agent

J. Comput. Sci. & Technol., Nov. 2004, Vol.19, No.6

theories in teamwork, and projects for applying these
theories.

Jun Pang is now a Ph.D. candidate in CWI, the
Netherlands. He received the B.Sc. and M.Sc. degrees
in computer science from Nanjing University, China, in
1997 and 2000. His research interests include proto-
col verification, process algebra, safety critical systems,
security, testing, software architecture etc.

Jian-Jun Zhao is an associate professor of com-
puter science at Fukuoka Institute of Technology,
Japan. He received the B.S. degree in computer sci-
ence from Tsinghua University, China, in 1987, and the
Ph.D. degree in computer science from Kyushu Univer-
sity, Japan, in 1997. His research interests include pro-
gram analysis and compiler, software architecture anal-
ysis, aspect-oriented software development, and ubiqui-
tous computing environment.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

