
Mechanizing the CMP Abstraction for Parameterized

Verification

YONGJIAN LI, Institute of Software, Chinese Academy of Sciences, China

BOHUA ZHAN, Institute of Software, Chinese Academy of Sciences, China

JUN PANG, University of Luxembourg, Luxembourg

Parameterized verification is a challenging problem that is known to be undecidable in the general case.

CMP is a widely-used method for parameterized verification, originally proposed by Chou, Mannava and

Park in 2004. It involves abstracting the protocol to a small fixed number of nodes, and strengthening by

auxiliary invariants to refine the abstraction. In most of the existing applications of CMP, the abstraction and

strengthening procedures are carried out manually, which can be tedious and error-prone. Existing theoretical

justification of the CMP method is also done at a high level, without detailed descriptions of abstraction

and strengthening rules. In this paper, we present a formally verified theory of CMP in Isabelle/HOL, with

detailed, syntax-directed procedure for abstraction and strengthening that is proven correct. The formalization

also includes correctness of symmetry reduction and assume-guarantee reasoning. We also describe a tool

AutoCMP for automatically carrying out abstraction and strengthening in CMP, as well as generating Isabelle
proof scripts showing their correctness. We applied the tool to a number of parameterized protocols, and

discovered some inaccuracies in previous manual applications of CMP to the FLASH cache coherence protocol.

CCS Concepts: • Theory of computation → Invariants; Program verification; Program analysis;

Automated reasoning; Abstraction.

Additional KeyWords and Phrases: Parameterized verification, model checking, theorem proving, Isabelle/HOL,

invariants, cache coherence protocols

ACM Reference Format:

Yongjian Li, Bohua Zhan, and Jun Pang. 2024. Mechanizing the CMP Abstraction for Parameterized Verification.

Proc. ACM Program. Lang. 8, OOPSLA1, Article 141 (April 2024), 27 pages. https://doi.org/10.1145/3649858

1 INTRODUCTION

Parameterized concurrent systems, such as cache coherence protocols, have significant applications
in many practical areas. Verifying the correctness of such systems has attracted considerable interest
from model checking and theorem proving communities [1]. The challenge of parameterized
verification is that one needs to check the correctness of the system for an arbitrary number of
instances. This has been proved to be an undecidable problem in general [2].

Many approaches have been proposed for parameterized verification in the literature [3, 6, 8, 13,
14, 18, 22, 28, 31, 34, 36, 37, 41–43]. Among them, the CMP method, proposed by Chou, Mannava
and Park in [8] in 2004, building on the work of McMillan [28], has been widely used to verify large-
scale industrial cache coherence protocols, including Intel’s Chipset and FLASH protocols [39].

Authors’ addresses: Yongjian Li, Key Laboratory of System Software (Chinese Academy of Sciences) and State Key Laboratory

of Computer Science, Institute of Software, Chinese Academy of Sciences , Beijing, China; Bohua Zhan, Key Laboratory

of System Software (Chinese Academy of Sciences) and State Key Laboratory of Computer Science, Institute of Software,

Chinese Academy of Sciences , Beijing, China; Jun Pang, Department of Computer Science, University of Luxembourg,

Esch-sur-Alzette, Luxembourg.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/4-ART141

https://doi.org/10.1145/3649858

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3649858
https://doi.org/10.1145/3649858

141:2 Yongjian Li, Bohua Zhan, and Jun Pang

Fig. 1. An illustration of the idea of parameter (node) abstraction in the CMP method: For a parameterized
protocol P with # nodes, the basic idea is to retain" nodes and abstract the remaining nodes as a single
node Nother . The abstracted protocol is denoted as AP.

A theoretical justification for CMP at a high level is given in [22], but without describing the
abstraction procedure in full detail, nor with formalization in a theorem prover.
The central idea of the CMP method can be explained as follows. Let P be a parameterized

protocol, and let P(#) be the instantiation of the protocol with # nodes. The goal is to verify
whether some invariant Inv is satisfied by P(#) for any # . This is achieved using the following
procedure:

• A cut-off value" (usually very small, e.g. two or three) is set. For any protocol instance P(#)
with # > " nodes, we can construct an abstract modelAP by abstracting the rules, consisting of
" regular nodes and a special other node, which gives a conservative abstraction of the original
protocol. This is illustrated in Figure 1.
• The abstracted model AP, now with a finite number of states, is verified using a model checker.
If model checking produces a counterexample, it may be a real counterexample to the original
protocol, or a spurious one due to the abstraction. In the latter case, an auxiliary invariant (also
called a noninterference lemma), is constructed by analyzing the counterexample (usually by
hand). This auxiliary invariant is then used to strengthen the original protocol in order to rule
out the counterexample. After strengthening, the protocol is abstracted and model-checked again
in another round of CMP, as illustrated in Figure 2. Strengthening in CMP is justified by an
assume-guarantee style argument.
• The above iteration of abstraction and strengthening is repeated until either a real counterexample
is found, or model checking on the abstracted protocol is successful.

1.1 Related Work

Chou, Mannava, and Park proposed the CMP method informally and demonstrated its application
on two examples: the German and FLASH protocols [8]. Much inspiration came from the work of
McMillan on compositional model checking of parameterized systems [27, 28]. Krstić gave a formal
description of the method at a high level and proved its correctness [22]. The CMP method is
further developed by Talupur et al. [39], who proposed a technique for using high-quality invariants
derived frommessage flows. This work also gives a more modular justification ofCMP, independent
of the abstraction procedure. Abdulla et al. provided an overview of techniques for parameterized
verification including the CMP method [10]. In practice, CMP has been used extensively for
verifying real-world cache coherence protocols. As an alternative to the exhaustive simulation of
concrete protocols, or fully manual proofs by interactive theorem proving, the CMP method can
be considered as a lightweight formal approach. On the one hand, it is able to prove correctness
for arbitrary number of nodes. On the other hand, the auxiliary invariants that are needed for

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:3

Fig. 2. Illustration of the workflow of CMP. For some parameterized rule A of P, some auxiliary invariants
are provided and used to strengthen the guard of A , and then the strengthened rule is abstracted. Usually the
CMP procedures are done manually, which is highlighted by a dashed box.

applying CMP are usually much simpler than the fully inductive invariants, and can be more readily
provided by system designers.

There are many other methods for parameterized verification. For example, Chen et al. employed
a meta-circular assume-guarantee technique to reduce the complexity of verifying finite instances
of protocols [6, 7]. There are also many methods that focus on generating invariants automatically,
including techniques such as invisible invariants [3, 16, 36], indexed predicates [23], interpolant-
based invariant generation [29], and split invariants [11], all of which try to deduce invariants with
the aid of model checkers or theorem provers. In particular, Conchon et al. introduced a BRAB
algorithm which is implemented in an SMT-based model checker. It computes over-approximations
of backward reachable states that are checked to be unreachable in the parameterized system [13].
Li et al. proposed a method to automatically generate auxiliary invariants from a small reference
instance of protocols and construct a parameterized formal proof in Isabelle [24]. Padon et al.
designed a tool Ivy which graphically shows a counterexample to induction which guides human
to find inductive invariants [33]. Padon et al. also proposed a modular proof methodology to
produce decidable verification conditions [40]. Decidability greatly improves predictability of
proof automation, resulting in a more practical verification approach which is used to verify
implementations of distributed protocols.

1.2 Motivation of Our Work

Despite CMP’s extensive application in parameterized verification, formalization of CMP, with
detailed description of the procedures and proof of correctness in a theorem prover, is still absent.
Currently, in most applications of CMP, abstraction and strengthening are conducted by manual
editing of the description of the protocol. This can be error-prone for two reasons. First, the
theoretical justification of the method may have overlooked small side-conditions and details of
the abstraction and strengthening rules. Second, even if the theoretical justification is entirely
correct on paper, manual editing of the protocol may not faithfully reflect the theoretical procedure.
Another approach to applying the CMP method is to attempt to find auxiliary invariants and
carry out abstraction and strengthening completely automatically. In some ways this approach is
even more error-prone, as humans are no longer checking whether the steps taken make sense
intuitively, and any mistake in the implementation can lead to glaring errors. Considering the above
difficulties, it is desirable to have explicit, formally stated rules for strengthening and abstraction,
as well as verifying them in a theorem prover. This has been recognized as a first priority in [8,
Section 5], and also highlighted as an important research problem in [22].

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:4 Yongjian Li, Bohua Zhan, and Jun Pang

Unlike predicate abstraction as used in counterexample-guided abstraction refinement [9], pa-
rameter abstraction on array-based systems, such as cache coherence protocols, has its own special
features and difficulties. An array-based system’s state is defined by a global state as well as local
states indexed by node. During abstraction to" nodes, all nodes with index 8 > " will be abstracted
into other , and all local states on nodes 8 > " are abstracted away. The main issue then is how
to abstract predicates that involve indices and local states for nodes 8 > " . Previous work only
identifies a predicate on index 8 and abstracts it into True or False depending on whether it occurs
in a positive or negative context, and such identification and abstraction is performed manually.
Detailed description and soundness of this abstraction process is not at all obvious. In particular,
as we discover in our work, there are intricate side-conditions (called “safe” conditions1) that are
required for soundness. No previous work has formally discussed these side conditions and their
role in proving CMP’s correctness.

1.3 Our Contributions

In this paper, we present a formally verified theory of the CMP method in the interactive the-
orem prover Isabelle/HOL [32]. In particular, we fully verify the theoretical justification of the
CMP method, including the use of assume-guarantee, symmetry arguments, and correctness of the
abstraction procedure. As a natural outcome of the verification, we obtain an automatic, syntax-
directed procedure for abstraction and strengthening that is proven correct in Isabelle/HOL, in
the sense that correctness of the output protocol by model checking implies correctness of the
original protocol. For expressing the transformation procedures, we define a syntax for protocols
that closely corresponds to a subset of Murphi [15], and is expressive enough to handle the com-
mon benchmarks for the CMP method. We also implemented a tool AutoCMP for automatically
carrying out abstraction and strengthening, as well as generating Isabelle proof scripts verifying
their correctness. We applied our tool to four case studies, including the FLASH cache coherence
protocol. For the three smaller case studies, the output of the transformation matches previous
hand-edited results. For the FLASH protocol, we uncovered a few mistakes in the previous manual
abstraction process. Verification of FLASH using CMP still succeeds after correcting these errors.

In summary, our contributions in this paper are as follows.

• We formalize the theoretical justification of CMP in the Isabelle theorem prover, including
concepts of permutation and symmetry, symmetry reduction, and assume-guarantee reasoning.
• We describe syntax-directed procedures for abstraction and strengthening in CMP and prove the
correctness of these two procedures. In the process, we clarify some tricky side conditions in
the abstraction rules, proposing new concepts of safe expressions and safe formulas, which are
necessary to guarantee the soundness of abstraction.
• Based on our syntax-guided description of abstraction and strengthening procedures in CMP,
we implement a tool AutoCMP for carrying out these procedures automatically. The tool can
also produce proof scripts in Isabelle showing correctness of abstraction and strengthening on
each protocol. The overall theorem proved in Isabelle states that the parameterized protocol is
correct on the assumption that the abstracted model is correct as checked by Murphi.
• We applied our work to analyze four case studies on CMP, including the FLASH cache-coherence
protocol in [8], and discovered some mistakes in the original abstraction.

Organization of the paper. Section 2 introduces the preliminaries. We describe the formalization
of permutation and symmetry in Section 3. The two central procedures in CMP: strengthening
and abstraction, are formalized in Section 4 and Section 5, respectively. Section 6 presents the

1The term “safe” has special meaning here, different from the concept of safety properties in model checking.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:5

formalization of the main theorem to justify the CMP method. Section 7 describes the AutoCMP
tool, and presents a summary of experiments on four protocols. Section 8 concludes our paper with
discussion of directions for future work.

2 PRELIMINARIES

2.1 Expressions and Formulas

We first describe the syntax and semantics for specifying protocols and their invariants. The syntax
for values 2 , variables E , expressions 4 and formulas 5 are given as follows.

2 ::= enum | b | n | Xc
E ::= 0 | E [n] | Xvar
4 ::= E | 2 | 5 ? 41 : 42 | Xexp

5 ::= 41 = 42 | ¬51 | 51 op 52 |
#∧
8=1

5 (8) |
#∧
8=1

8 ≠ n→ 5 (8) |
#∨
8=1

5 (8) | Chaos | Xform

Values are either enumeration values with its own type, Boolean values (True or False), or natural
number values. The enumeration values are used to specify control states, natural number values
are intended only for specifying indices of nodes. State variables come in two types: global variables
(in the form 0), and local variables of each node (in the form E [=]). Expressions are either variables,
values, or if-then-else forms (written as 5 ? 41 : 42).

Formulas include equality between two expressions, the usual boolean connectives (here op is
one of {∧,∨,→}), and two forall-operators: quantifying over all nodes, and quantifying over all
nodes except node 9 . While the latter can be expressed in terms of the former and the other boolean
operations, we include it separately as they are handled in a special way during the abstraction
transformation. In order to formalize and reason about expressions depending on unobservable
values on an abstracted node in CMP, we also explicitly introduce X2 , Xvar , Xexp and Xform to denote
“unspecified” constants, variables, expressions, and formulas. These make it feasible to formally
state the abstraction procedure for expressions at the syntactic level later in Section 5.
A state B is a mapping from variables to values. If there are # nodes, then a value is associated

to each global variable 0 and each local variable E [8] for 1 ≤ 8 ≤ # . We use B (E) for the value of
variable E in state B , and B (4) for the evaluation of expression 4 on B . We use B |= 5 to denote that
formula 5 is evaluated as true in B .

2.2 Statements and Protocols

One key aspect in the description of protocols considered here is the parallel semantics of assignment.
That is, all statements in the body of a rule are considered to be executed in parallel, rather than
sequentially as in usual programming languages. Hence, we adopt a parallel notation for statements.
The syntax is given as follows.

(::= skip | E := 4 | (1 ∥ (2 | if 1 then (1 else (2 | ∥
#
8=1((8) | ∥

#
8=18 ≠ n→ ((8)

The meaning of ∥#8=1((8) is to perform all statements ((8) for 1 ≤ 8 ≤ # in parallel. Similarly,

∥#8=18 ≠ n→ ((8) performs all statements ((8) for 1 ≤ 8 ≤ # , except for n. We assume a well-
formedness condition on statements, saying that each variable is assigned at most once in every
statement (this condition can be easily checked syntactically). We use trans(0, B) to denote the
result of executing statement 0 on state B .

A protocol rule is of the form 6 ▷ 0, where the guard 6 is a formula and the action 0 is a statement.
The interpretation of the rule is the following: if B |= 6, then the rule can fire on state B , carrying it
to state trans(0, B).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:6 Yongjian Li, Bohua Zhan, and Jun Pang

A protocol P can thus be specified by a pair ⟨� , '⟩, where � is a set of formulas describing the
initial conditions, and ' is a set of protocol rules. The reachable states of a protocol are defined
inductively as follows: every state that satisfies all initial conditions are reachable. If B is reachable
and there is a rule A ∈ ' carrying B to B′, then B′ is reachable. For the correctness proof of the
CMP method, it is essential to define the concept of reachability in = steps. This is defined as an
inductive predicate reachUpTo as follows.

∀5 ∈ � . B |= 5 =⇒ reachUpTo(� , ', 0, B)
⟦reachUpTo(� , ', =, B), 6 ▷ 0 ∈ ', B |= 6⟧ =⇒ reachUpTo(� , ', = + 1, trans(0, B))

We define Reach(P) to be the entire reachable state set of a protocol P = ⟨� , '⟩, that is, all B
satisfying reachUpTo(� , ', 8, B) for some 8 . A protocol P is said to satisfy an invariant 5 , which is
denoted by P |= 5 , if all states in Reach(P) satisfy 5 .
In this paper, it is essential to distinguish the syntax of expressions, formulas, and statements

from their semantics, as the strengthening and abstraction procedures to be defined later will be
applied at the syntactic level. We use the usual equality sign · = · to denote syntactic equality. We
use 51 ∼form 52 to denote two formulas are semantically the same, that is they hold on the same set
of states. Likewise, we use 01 ∼stm 02 to denote two statements are semantically the same, that is
they have the same behavior on all states. Semantic equivalence of two rules 61 ▷ 01 ∼rule 62 ▷ 02
can then be defined as (61 ∼form 62) ∧ (01 ∼stm 02).

2.3 Parameterized Protocols

So far, we have defined protocols as sets of protocol rules. In this paper, we will focus on protocols
parameterized by a single integer # , standing for the number of nodes. Such protocols are described
using parameterized formulas and rules.
A parameterized formula is a function 5 (81, 82, . . . , 8<) from a tuple of node indices to formulas.

Similarly, a parameterized rule is a function A (81, 82, . . . , 8:) from a tuple of node indices to rules.
Given the number of nodes # and a parameterized formula 5 , we write 5 # for the set of formulas
containing 5 (81, 82, . . . , 8<) for all 1 ≤ 81, . . . , 8< ≤ # . Likewise, we write A# for the set of rules
generated by A . For the case studies, we only need formulas and rules with at most two indices for
specifying protocols.

2.4 Running Example: Mutual Exclusion

We used the mutual exclusion protocol (as considered in [12]) as a running example throughout
this paper. The protocol describes a parameterized system where # nodes share a resource and
need to ensure mutually exclusive access to the resource. Each node can be in one of four states: I
(Idle), T (Try to enter critical region), C (in the Critical region) and E (Exit the critical region). The
state of node 8 will be represented by a local variable st [8]. Mutually exclusive access is guaranteed
by a lock, represented by a global Boolean variable G .

The parameterized rules of the mutual exclusion protocol are given as follows:

try(8) ≡ st [8] = I ▷ st [8] := T
crit(8) ≡ G ∧ st [8] = T ▷ st [8] := C ∥ G := False
exit(8) ≡ st [8] = C ▷ st [8] := E
idle(8) ≡ st [8] = E ▷ st [8] := I ∥ G := True

For example, the second rule crit(8) states that any node 8 can transition from state T into state C
only if the global lock G is True, and G is set to False simultaneously with the transition. The initial

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:7

conditions of the protocol has two parts, stating that G is initially True, and each node is in state I.

init1 ≡ G = True and init2 (#) ≡
#∧
8=1

st [8] = I

The mutual exclusion protocolM is then described by collecting together the above initial
conditions and parameterized rules:

M(#) = ⟨{init1, init2 (#)}, try
∪ crit# ∪ exit# ∪ idle# ⟩

The invariant of the protocol is given by a parameterized formula as follows, stating that any two
distinct nodes cannot be in the critical section (state C) at the same time.

inv(#, 8) ≡ st [8] = C→
#∧

:=1

: ≠ 8 → st [:] ≠ C.

And the full invariant to be verified is:

M(#) |=
#∧

8=1

inv(#, 8)

While the description of the above protocol is relatively simple, it already shows potential
difficulties with verification. Standard model checking techniques are able to check the protocol for
any fixed number of nodes # , but are unable to verify the invariant for any # . Theorem proving
can potentially verify the protocol for any # , but may require complex invariants that are difficult
to find manually, especially by system designers who may be unfamiliar with formal methods. The
CMP method lies between the above two techniques. As we will show in the remainder of the
paper, a single auxiliary invariant is sufficient to strengthen the protocol, such that its abstracted
form can be verified corrected using the Murphi model checker.

3 PERMUTATION AND SYMMETRY

The CMP method is applied to the class of protocols whose nodes’ behaviors are symmetric with
each other. In this section, we formalize this meaning of symmetry, together with associated notions
of permutation action and symmetry reduction. This mostly follows the description in [22], but
we contribute the formalization of these concepts in Isabelle/HOL. Starting in this section, each
definition and theorem have their correspondences in Isabelle, but for readability we still state
them in more mathematical form.

3.1 Actions of Permutations

First, we describe the permutation action on protocols and specifications. Let # be the number
of nodes, and c be a permutation on {1, . . . , # }. For any 1 ≤ 8 ≤ # , we write c (8) for the result
of applying c to 8 . We can then lift the application of c to our definitions of values, variables,
expressions, formulas, statements and rules. In most cases the lifting is straightforward. We list the
non-trivial cases as follows.

Perm2 (c, n) ≡ c (n) if 2 is an index n
Permvar (c, E [n]) ≡ E [c (n)] if E is a local variable

Permform (c,
#∧
8=1

5 (8)) ≡
#∧
8=1

Permform (c, 5 (8))

Permform (c,
#∧
8=1

8 ≠ n→ 5 (8)) ≡
#∧
8=1

8 ≠ n→ Permform (c, 5 (8))

Permstm (c, ∥
#
8=1((8)) ≡ ∥#8=1Permstm (c, ((8))

Permstm (c, ∥
#
8=18 ≠ n→ ((8)) ≡ ∥#8=18 ≠ n→ Permstm (c, ((8))

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:8 Yongjian Li, Bohua Zhan, and Jun Pang

We say a set � of formulas is symmetric, if for every 5 ∈ � and permutation c , there exists
a formula 5 ′ ∈ � such that Permform (c, 5) ∼form 5 ′. Likewise we define symmetry for sets of
statements and protocol rules. Finally, we say a protocol presentation P = ⟨� , '⟩ is symmetric, if �
is a symmetric set of formulas, and ' is a symmetric set of protocol rules (see also [22]).
We now define the actions of permutations on states. This involves using the permutation to

transform both indices in local variables and indices in values. The definition is given as follows,
note the inverse application of c on indices of local variables.

Permst (c, B) (0) ≡ Perm2 (c, B (0))
Permst (c, B) (E [n]) ≡ Perm2 (c, B (E [c

−1 (n)]))

The following lemmas state that our definitions of actions on formulas, expressions, and states
are consistent with each other.

Lemma 3.1. Given a permutation c on {1, . . . , # }, evaluation of expressions and formulas on states

commutes with symmetry action:

Permst (c, B) (Permexp (c, 4)) = Perm2 (c, B (4))
Permst (c, B) |= Permform (c, 5) ←→ B |= 5

Likewise, applying a permutation action commutes with applying transition associated to a statement:

Permst (c, trans(0, B)) = trans(Permstm (c, 0), Permst (c, B)) .

3.2 Proving Symmetry

For applications of CMP to real-world protocols, we need to ensure that the protocol definition is
in fact symmetric. Symmetry is by no means automatically guaranteed. For example, the original
version of the FLASH protocol makes use of a home node, which breaks symmetry among nodes. To
apply CMP to FLASH in a rigorous way, the protocol needs to be modified to make any information
about the home node into global variables.

In our work, we prove a number of lemmas that allow us to quickly derive symmetry of protocol
presentations in Isabelle. Most of these lemmas are straightforward. The only tricky ones are those
involving forall-formulas and forall-statements. To state the lemmas precisely, we first define the
following properties on parameterized formulas (the definitions can be easily extended to the case
of more than two parameters).

Definition 3.2. Aparameterized formula 5 on one parameter 8 is symmetric if for any# and permu-
tation c on {1, . . . , # }, we have Permform (c, 5 (8)) ∼form 5 (c (8)) for all 1 ≤ 8 ≤ # . Likewise, a param-
eterized formula 5 on two two parameters is symmetric if Permform (c, 5 (8, 9)) ∼form 5 (c (8), c (9))
for all 1 ≤ 8, 9 ≤ # .

Lemma 3.3. The following results hold, linking symmetry of parameterized formulas and symmetry

of generated sets. If a parameterized formula 5 (8) is symmetric, then 5 # is a symmetric set of formulas.

Likewise for the case of two parameters. If a parameterized formula 5 (8, 9) is symmetric, then the

formulas
#∧
8=1

5 (8, 9) and
#∧
8=1

8 ≠ 9 → 5 (8) parameterized on 9 are symmetric.

Lemma 3.4. The following results are compositional laws of symmetry on formula constructors.

(1) If a parameterized formula 5 (8) and 6(8)is symmetric, then 5 (8) op 6(8) is a symmetric set of

formulas. Likewise for the case of two parameters. Here, we have op ∈ {∧,∨,→}.
(2) If a parameterized formula 5 (8) is symmetric, then ¬5 (8) is also symmetric.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:9

(3) If a parameterized formula 5 (8, 9) is symmetric, then the formulas
#∧
8=1

5 (8, 9) and
#∧
8=1

8 ≠ 9 → 5 (8)

parameterized on 9 are symmetric.

Using these lemmas, as well as more trivial results about taking unions and operation on formulas,
automation in Isabelle is able to conclude symmetry of guard conditions and invariants in our
examples. A similar development can be performed for sets of statements.

Definition 3.5. A parameterized statement (on one parameter 8 is symmetric if for any # and
permutation c on {1, . . . , # }, we have Permstm (c, ((8)) ∼stm ((c (8)) for all 1 ≤ 8 ≤ # . Likewise, a
parameterized statement A on two parameters is symmetric if Permstm (c, 5 (8, 9)) ∼stm A (c (8), c (9))
for all 1 ≤ 8, 9 ≤ # .

Lemma 3.6. The following results hold, linking symmetry of parameterized statements and symmetry

of generated sets. If a parameterized statement ((8) is symmetric, then (# is a symmetric set of

statements. Likewise for the case of two parameters. If a parameterized statement ((8, 9) is symmetric,

then we have the statements ∥#8=1((8, 9) and ∥
#
8=18 ≠ 9 → ((8, 9) parameterized on 9 are symmetric.

Symmetry of parameterized family of rules 6(8) ▷ 0(8) is reduced to showing the symmetry of
families 6(8) and 0(8), respectively.

Definition 3.7. A parameterized rule6 ▷ (on one parameter 8 is symmetric if6 and (is symmetric
for all 1 ≤ 8 ≤ # . Likewise, we can define a parameterized rule with two parameters. A symmetric
set of rules can also be defined as above. If � and ' are a symmetric set of formulas and protocol
rules respectively, then we say that P = ⟨� , '⟩ is a symmetric presentation of the protocol.

3.3 Symmetry Reduction

We now consider the principle of symmetry reduction. The general technique of symmetry reduction
has been developed in [19–21, 38] to address the state explosion problem for model checking of
protocols with symmetry properties. The basic idea is simple but effective: it uses an equivalence
relation between states to explore only one state per equivalence class. The CMP method also
makes use of a form of symmetry reduction, reducing model checking for an arbitrary number of
nodes to model checking a small fixed number of nodes.

In our context, symmetry reduction states that if a protocol has a symmetric presentation, then it
satisfies a formula 5 if and only if it satisfies all permutations of 5 . The statement of this principle,
in a form close to its formalization in Isabelle, is as follows.

Lemma 3.8. Given a protocol P with a symmetric presentation, and a permutation c on {1, . . . , # }.
If a state B is reachable in = steps, then the permuted state Permst (c, B) is also reachable in = steps.

More precisely:

∀B . reachUpTo(� , ', =, B) −→ reachUpTo(� , ', =, Permst (c, B))

This leads to the following theorem.

Theorem 3.9 (Symmetry reduction). Given a protocol P with a symmetric presentation, and

a permutation c on {1, . . . , # }. Then for any formula 5 , B |= 5 for any reachable state B if and only

if B |= Permform (c, 5) for any reachable state B . In other words, if 5 is an invariant of P, then any

formula 5 ′ such that 5 ′ ∼form Permform (c, 5) is also an invariant.

Running example. Let us revisit the mutual exclusion protocol. It is easy to check syntactically
that it is symmetric. By symmetry reduction, we can reduce the property to be verified into a simpler

form. Let inv′ (8, 9) ≡ 8 ≠ 9∧st [8] = C→ st [9] ≠ C. By symmetry arguments,M(#) |=
#∧
8=1

inv(#, 8)

iffM(#) |= inv′ (1, 2). Therefore, we only need to check this simpler form of the invariant.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:10 Yongjian Li, Bohua Zhan, and Jun Pang

4 GUARD STRENGTHENING

The idea of guard strengthening is to add an auxiliary invariant to the guard of certain rules, in
order to refine the resulting abstracted protocol by constraining its allowable behaviours. We begin
by presenting the guard strengthening procedure that is only appropriate in the semantic sense,
that is, yielding a formula that is semantically equal to the desired one, but is not appropriate in
the ensuing abstraction. The simple strengthening procedure is as follows:

Definition 4.1 (Simple strengthening). Given an auxiliary invariant 5 , strengthening of protocol
rule 6 ▷ 0 by 5 is defined as:

strengthen(6 ▷ 0, 5) ≡ (6 ∧ 5) ▷ 0

Strengthening a rule by a finite set of auxiliary invariants means applying strengthening one-by-
one using invariants in this set. In particular, strengthening a protocol rule by an empty set ∅ of
auxiliary invariants leaves the rule unmodified.

Given two protocols P = ⟨� , '⟩ and P′ = ⟨� , '′⟩ with the same initial conditions � , we say
P′ is guard-strengthened by a set � of auxiliary invariants from P, if any rule A ′ ∈ '′ is guard-
strengthened from a rule A ∈ ' using a subset of � . The following lemma contains the core of the
assume-guarantee principle justifying the CMP method.

Lemma 4.2 (Correctness of strengthening). Let P = ⟨� , '⟩, P′ = ⟨� , '′⟩, 5 is an invariant to

be checked, and � is a set of auxiliary invariants s.t. 5 ∈ � . From the following assumptions:

(1) P′ is guard-strengthened by the set � from P.
(2) P′ |= 5 ′ for any 5 ′ ∈ � .

We can conclude that for any B , B ∈ Reach(P) implies B ∈ Reach(P′) and B |= 5 ′ for any 5 ′ ∈ � . This
means Reach(P) ⊆ Reach(P′) and P |= 5 ′ for any 5 ′ ∈ � . In particular, the protocol P also satisfies

the invariant 5 .

The above simple form of guard strengthening is given in most presentations of the CMPmethod.
Unfortunately, this strengthening rule is not sufficient on the syntactic level. As an example, consider
our mutual exclusion example. The auxiliary invariant that is needed can be written as:

strExit(#, 8) ≡ st [8] = E→
#∧
9=1

9 ≠ 8 → st [9] ≠ C ∧ st [9] ≠ E

It states that if one node is in state E, then no other node can be in either state C or E. This auxiliary
invariant should be used to strengthen the idle rule. If the above simple strengthening procedure is
used, the strengthened idle rule would be (adding the invariant to the guard of the rule):

st [8] = E ∧ (st [8] = E→
#∧
9=1

9 ≠ 8 → st [9] ≠ C ∧ st [9] ≠ E) ▷ {st [8] := I, G := True}

However, the rule in the current form cannot be abstracted correctly using the syntax-directed
procedure in Section 5. The additional operation that is needed is to use the condition st [8] = E
already in the guard of idle to discharge the premise of the auxiliary invariant. We thus formalize
this idea below.

Definition 4.3. The function removeImplies(5 , 6) removes implication in 5 if its premise can be
implied by 6:

removeImplies(51 → 52, 6) ≡ (if 6⇒form 51 then 52 else 51 → 52)
removeImplies(5 , 6) ≡ 5 if 5 is not in implies form

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:11

Here 6⇒form 51 means 6 implies 51 semantically. This can be approximated by some syntactic
checks. In our case studies, it is sufficient to perform the check that each conjunct of 51 occurs
(syntactically) as a conjunct in 6.

Definition 4.4 (Refined strengthening). Given an auxiliary invariant 5 , refined strengthening of
rule 6 ▷ 0 by 5 is defined as:

strengthen2 (6 ▷ 0, 5) ≡ (6 ∧ removeImplies(5 , 6)) ▷ 0.

It is clear that the two strengthening procedures are semantically equivalent:

Lemma 4.5. For any auxiliary invariant 5 and rule 6 ▷ 0, we have:

strengthen(6 ▷ 0, 5) ∼rule strengthen2 (6 ▷ 0, 5).

As a consequence, the statement of Lemma 4.2 also holds with strengthen replaced by strengthen2.

Running example. As an example, the result of applying strengthen2 with strExit(#, 8) on rule
idle is:

st [8] = E ∧ (
#∧
9=1

9 ≠ 8 → st [9] ≠ C ∧ st [9] ≠ E) ▷ {st [8] := I, G := True},

It adds the conclusion of strExit(#, 8) to the guard of idle, since the assumption st [8] = E of
strExit(#, 8) already appears in the guard. This form of strengthening is now ready for abstraction.

For the other three rules try, crit, and exit, we strengthen them by the empty set ∅, then we get
intermediate parameterized protocol rules as follows:

tryref (8) ≡ st [8] = I ▷ st [8] := T
critref (8) ≡ G ∧ st [8] = T ▷ st [8] := C ∥ G := False
exitref (8) ≡ st [8] = C ▷ st [8] := E

idleref (8) ≡ st [8] = E ∧ (
#∧
9=1

9 ≠ 8 → st [9] ≠ C ∧ st [9] ≠ E) ▷ {st [8] := I, G := True}

We collect these rules to form the strengthened mutual exclusion protocolMref as follows:

Mref (#) = ⟨{init1, init2 (#)}, try
#
ref ∪ crit

#
ref ∪ exit

#
ref ∪ idle

#
ref ⟩

5 ABSTRACTION

The abstraction procedure is the most difficult part of formally describing the CMP method. The
procedure should satisfy the following properties:

• The abstraction should be fine-grained. That is, it should be no more conservative than necessary,
so it does not produce false negative results. We show that a type system for protocol descriptions
is necessary to achieve this fine-grainedness (Section 5.1).
• The abstraction should be syntax-guided, so it can be implemented as an automatic procedure.
We describe this syntax-guided procedure, along with some non-trivial side conditions that are
necessary for soundness in Section 5.2.
• The abstraction should be sound, which guarantees that the abstracted protocol can simulate
the original protocol. We define this simulation property and state the soundness theorem in
Section 5.3.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:12 Yongjian Li, Bohua Zhan, and Jun Pang

5.1 A Simple Type System

We first explain why a type system on protocol descriptions is necessary to define fine-grained
abstractions. Consider the protocol rule G ≠ ~ ▷ I := c, where G,~, I are variables, and c is a
constant. Without type information of the variables, we will not know whether G ≠ ~ can be
preserved when node indices n > " are abstracted into" + 1, so we have to abstract the rule into
True ▷ I := c. However, if G and ~ are known as boolean or enumerating type, we know G ≠ ~ will
be preserved by abstraction of node indices, so we can perform the more fine-grained abstraction
of this rule into G ≠ ~ ▷ I := c.
First, we introduce a typing environment env which maps variables to basic types: Enum, Bool,

Index, and Xtype . Here, Xtype is designed for reasoning about types of unknown objects such as Xvar .
Based on env, we can derive the type of an expression, denoted by env ⊩ 4 : C ; and define what it
means for a formula 5 , a statement (, and a rule A to be well-typed by env, denoted by env ⊩ 5 ,
env ⊩ (and env ⊩ A , respectively. The term Xc is assigned type Xtype. For a variable E , its type is
assigned to its predefined type 4=E (E). For an ite-expression 5 ? 41 : 42 to have type C , both 41 and
42 need to have the same type C , and 5 must be well-typed. The other typing rules are self-evident.
The full set of rules are given in Table 1.

Table 1. The simple type system

env ⊩ enum : Enum env ⊩ b : Bool

env ⊩ 8 : Index env ⊩ Xc : Xtype

env(E) = C

env ⊩ E : C

env ⊩ 41 : C ; env ⊩ 42 : C, env ⊩ 5

env ⊩ (5 ? 41 : 42) : C

env ⊩ 41 : C ; env ⊩ 42 : C

env ⊩ 41 = 42

env ⊩ 5

env ⊩ ¬5

env ⊩ 51; 4=E ⊩ 52

env ⊩ 51 >? 52

∀8 .env ⊩ 5 (8)

env ⊩

#∧

8=1

5 (8)

∀8 .env ⊩ 5 (8)

env ⊩

#∧

8=1

8 ≠ n→ 5 (8)

∀8 .env ⊩ 5 (8)

env ⊩

#∨

8=1

5 (8)

env ⊩ skip

env ⊩ G : C ; env ⊩ 4 : C

env ⊩ x := e

env ⊩ (1; env ⊩ (2

env ⊩ (1 ∥ (2

env ⊩ 1; env ⊩ (1; env ⊩ (2

env ⊩ if 1 then (1 else (2

∀8 .env ⊩ ((8)

env ⊩ ∥#8=1((8)

∀8 .env ⊩ ((8)

env ⊩ ∥#8=18 ≠ n→ ((8)

env ⊩ 6; env ⊩ (

env ⊩ 6 ▷ (

We next introduce the concept of a state of the protocol satisfying a given typing environment.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:13

Definition 5.1. A state B is well-typed by a type environment env, denoted fitEnv(B, env), if any
variable E in B such that env(E) ≠ Xtype satisfies env ⊩ B (E) : env(E).

The next lemma formalizes an induction principle on the well-typed properties of reachable
states of a protocol.

Lemma 5.2. Fix a protocol P = ⟨� , '⟩. Suppose the following two assumptions hold.

(1) For any initial state B satisfying � , we have fitEnv(B, env);
(2) For any rule A ∈ ' and state B satisfying B |= guard(A), if in addition fitEnv(B, env), then

fitEnv(trans(action(A), B), env).

Then for any reachable state B of P, we have fitEnv(B, env).

While the type system in our case is relatively simple, it is a necessary part of defining and
proving correctness of abstraction. Hence type checking need to be performed on the protocol
description, with proof generation by the tool AutoCMP like for all other parts of the procedure.

5.2 Syntax-guided Abstraction

In this section, we present a formalization of the abstraction procedure. This is the central part of the
CMPmethod. The basic idea is as follows. Given a fixed" , for an instantiation of the protocol with
> " nodes, we can abstract it to one with" ordinary nodes plus a special other node. Following
the formalization in Isabelle, we use" + 1 to represent the index of the other node. Abstraction for
formulas (guards) are over-approximations, so that the original protocol and the abstracted protocol
observe a simulation relation: any transition in the original protocol corresponds to a transition in
the abstracted protocol, but the abstracted protocol may allow more behaviors.

There are many subtleties in the abstraction rules due to this asymmetry. For example, if we have
an equality guard 8 = 9 between two indices, then it is safe to abstract it to Absexp (8) = Absexp (9)
(the abstraction function Absexp on expressions, to be defined below, transforms 8 to " + 1 if
8 > " and leaves it unchanged otherwise). However, it is not valid to transform a guard 8 ≠ 9 into
Absexp (8) ≠ Absexp (9), because if 8 and 9 take distinct values greater than" , then 8 ≠ 9 holds but
Absexp (8) ≠ Absexp (9) does not hold.

We now define the action of abstraction on values, variables, expressions, formulas and rules.
In stating the abstraction rules, we use Xvar , Xc , Xexp and Xform to propagate information that is
unknown. For values, abstraction of indices is by cutoff at" . Other kinds of values are unchanged:

Abs2 (",2) ≡ 2 if 2 is of the form enum, b or X2
Abs2 (", n) ≡ " + 1 if n > "

Abs2 (", n) ≡ n if n ≤ "

For variables, local variable E [8] with index 8 > " is abstracted to Xvar . All other variables are
preserved.

Absvar (",0) ≡ 0 if 0 is a global variable
Absvar (", E [n]) ≡ E [n] if n ≤ " otherwise Xvar
Absvar (", Xvar) ≡ Xvar

Wenow consider abstraction of expressions and formulas. For this, we first state some preliminary
concepts, concerning boundedness and safety of expression and formulas. Intuitively, an expression
or formula is bounded on 8 if all indices occurring in it equal 8 . A formula is safe if abstraction of the
formula gives an equivalence (not just an over-approximation). All these conditions are defined by
recursion, so they can be checked in a syntactic manner.

Definition 5.3. We define the following conditions on expressions and formulas.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:14 Yongjian Li, Bohua Zhan, and Jun Pang

• An expression 4 is a bound variable on 8 (written boundvar (8, 4)) if it is a variable of the form 0 or
E [8].
• An expression 4 is a bound expression (written boundexp (8, 4)) if it is an enumerating value,
boolean value, or the index 8 . A formula 5 is a bound formula on 8 (written boundform (8, 5)) if it
is a propositional combination of equalities of the form 41 = 42, where 41 is a bound variable on 8 ,
and 42 is a bound expression, or vice versa.
• Safety for" of variables G (written safevar (G,")), expressions 4 (written safeexp (4=E,", 4)), and
formulas 5 (written safeform (4=E,", 5)) are defined as follows:

safevar (G,") ≡ True if G is a global variable
safevar (0[n], ") ≡ True if n ≤ " else False
safeexp (4=E,", 2) ≡ True if 4=E ⊩ 2 : Enum

or 4=E ⊩ 2 : Bool or 4=E ⊩ 2 : Index ∧ 2 ≤ "

safeexp (4=E,", E) ≡ True if safevar (", E) and
(4=E (E) = Enum or 4=E (E) = Bool)

safeexp (4=E,", 5 ?41 : 42) ≡ True if safeexp (4=E,", 41) ∧ safeexp (4=E,", 42)
∧ safeform (4=E,", 5)

safeform (4=E,", 41 = 42) ≡ True if 4=E ⊩ 41 : Index ∧ safeexp (4=E,", 42) ∧ (∃8 .42 = 8) ∧
((∃E .41 = E ∧ safevar (E, ")) ∨ (∃8 .41 = 8)) ∨
4=E ⊩ 42 : Index ∧ safeexp (4=E,", 41) ∧ (∃8 .41 = 8) ∧
((∃E .42 = E ∧ safevar (E, ")) ∨ (∃8 .42 = 8)) ∨
(4=E ⊩ 41 : Bool ∨ 4=E ⊩ 41 : Enum) ∧
safeexp (4=E,", 41) ∧ safeexp (4=E,", 42)

safeform (4=E,",¬5) ≡ True if safeform (4=E,", 5)
safeform (4=E,", 51 >? 52) ≡ True if safeform (4=E,", 51) and safeform (4=E,", 52)
safeform (4=E,",�ℎ0>B) ≡ True

With these definitions, we are ready to define abstraction on expressions 4 and formulas 5 . Most
of the rules are straightforward, the main idea being to propagate unknowns, and recursively apply
abstraction to negations only if the formula involved is safe. We state the key rules below (here we
assume" ≤ #).

Absexp (4=E,", 2) ≡ Abs2 (",2) for value 2
Absexp (4=E,", E) ≡ Absvar (", E) for variable E with Absvar (", E) ≠ Xvar

≡ Xexp otherwise

Absexp (4=E,", 5 ?41 : 42) ≡
Absform (4=E,", 5)?
Absexp (4=E,", 41) :
Absexp (4=E,", 42)

if

Absform (4=E,", 5) ≠ Xform ∧
Absexp (4=E,", 41) ≠ Xexp ∧
Absexp (4=E,", 42) ≠ Xexp ∧
safeform (4=E,", 5)

≡ Xexp otherwise

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:15

Absform (4=E,", 41 = 42) ≡ Xform if Absexp (", 41) = Xexp
or Absexp (4=E,", 42) = Xexp

≡ Absexp (4=E,", 41) = Absexp (4=E,", 42) otherwise
Absform (4=E,",¬5) ≡ ¬Absform (4=E,", 5) if safeform (4=E,", 5)

≡ Xform otherwise
Absform (4=E,", 51 ∧ 52) ≡ Absform (4=E,", 52) if Absform (4=E,", 51) = Xform

≡ Absform (4=E,", 51) if Absform (4=E,", 52) = Xform
≡ Absform (4=E,", 51) ∧ Absform (4=E,", 52) otherwise

Absform (4=E,", 51 ∨ 52) ≡ Xform if Absform (4=E,", 51) = Xform
or Absform (4=E,", 52) = Xform

≡ Absform (4=E,", 51) ∨ Absform (4=E,", 52) otherwise
Absform (4=E,", Xform) ≡ Xform

Absform (4=E,",Chaos) ≡ True

Absform (4=E,",
#∧
8=1

�) ≡
"∧
8=1

� if" ≤ # and boundform (8, � (8))

≡ Xform otherwise

Absform (4=E,",
#∧
8=1

8 ≠ 9 → � (8)) ≡
"∧
8=1

8 ≠ n→ � (8) if" ≤ # and n ≤ " and

boundform (8, � (8))

≡
"∧
8=1

� if" ≤ # and n > " and boundform (8, � (8))

≡ Xform otherwise

Absform (4=E,",
#∨
8=1

�) ≡ Xform

In particular, the safeform (5) condition is used in the abstraction of negation formula ¬5 and ite-
expression 5 ? 41 : 42, which applies the abstraction at the next level only if 5 is safe, otherwise ¬5
and 5 ? 41 : 42 are abstracted into Xform and Xexp respectively. The condition boundform (8, � (8)) is used

to restrict the syntax of � (8) when abstracting the quantified formulas
#∧
8=1

� and
#∧
8=1

8 ≠ n→ � (8).

As a quick check, we see how the above definition prevents the invalid abstraction of an inequality
between two indices 8 ≠ 9 , represented as¬(8 = 9). In the rule forAbsform (",¬5), we check whether
5 is a safe form. However, neither 8 nor 9 are bound variables or bound expressions, hence ¬(8 = 9)
is abstracted to Xform. On the other hand, 8 = 9 is abstracted to Absexp (8) = Absexp (9), as neither
side is abstracted to Xexp.

Abstraction on states simply combines abstraction of variables and constants. It can be defined
directly as follows:

Absst (", B) (0) ≡ Abs2 (", B (0)) if 0 is a global variable
Absst (", B) (E [8]) ≡ Abs2 (", B (E [8])) if 8 ≤ " otherwise Xc
Absst (", B) (Xvar) ≡ Xc

Lemma 5.4. The following properties hold for environments, bound expressions, bound formulas,

and safe formulas, if for a state B such that fitEnv(B, 4=E):

(1) For any bound expression 4 such that 4=E ⊩ 4 : C for some C ≠ Xtype, and the state B , we have

Absst (", B) (4) = B (4).
(2) For any bound formula 5 on 8 with 8 ≤ " and 4=E ⊩ 5 , we have B |= 5 ←→ Absst (", B) |=

Absform (4=E,", 5).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:16 Yongjian Li, Bohua Zhan, and Jun Pang

(3) For any formula 5 such as safeform (4=E,", 5) and 4=E ⊩ 5 , we have B |= 5 ←→ Absst (", B) |=
Absform (4=E,", 5).

Abstraction of expressions and formulas commutes with abstraction of states, as given in the
following lemma. Note the abstraction of formulas gives an over-approximation.

Lemma 5.5. Given" ≤ # and expression 4 , ifAbsexp (", 4) ≠ Xexp , and for any state B , fitEnv(B, 4=E)
and 4=E ⊩ 4 : C for some C ≠ Xtype ,

Absst (", B) (Absexp (4=E,", 4)) = Abs2 (B (4)).

If a formula 5 satisfies Absform (", 5) ≠ Xform, for any state B , if fitEnv(B, 4=E) and 4=E ⊩ 5 , then

B |= 5 −→ Absst (", B) |= Absform (4=E,", 5).

For abstraction of statements, we further define the notion of boundedness of assignments.
The condition boundAssign(8, () means the statement does not contain forall-statements, and all
assignments in the statement are to local variables of a node 8 . This is the condition that should be
satisfied for the body ((8) of a forall-statement. Then, the well-formedness of a statement is defined
recursively. We show the these cases below.

wellformstm (4=E,", E := 4) ≡ ∀".Absvar (4=E,", E) ≠ Xvar →
Absexp (4=E,", 4) ≠ Xexp

wellformstm (4=E,", (1 ∥ (2) ≡ wellformstm (4=E,", (1) ∧ wellformstm (4=E,", (2)
wellformstm (4=E,", if 1 then (1 else (2) ≡ safeform (4=E,",1) ∧ wellformstm (4=E,", (1)∧

wellformstm (4=E,", (2)
wellformstm (4=E,", ∥#8=1((8)) ≡ ∀8 . boundAssign(8, ((8))

∧wellformstm (4=E,", ((8))
wellformstm (4=E,", ∥#8=18 ≠ n→ ((8)) ≡ ∀8 . boundAssign(8, ((8))

∧wellformstm (4=E,", ((8))

The explanations of these well-formedness conditions are as follows. For a single assignment, if
the left side does not abstract to an unspecified variable, then the right side must not abstract to an
unspecified expression. This would forbid, for example, assigning a global variable to an expression
that depends on information in node 8 , as the abstraction for 8 > " would not know what value
to assign. For forall-statements, we require all assignments in ((8) to assign a variable E [8] to an
expression that depends only on node 8 . If assignments ((8) involve other nodes, then reducing #

to" would not be safe as the first" nodes may involve assignments on node 8 with 8 > " .
A rule A = 6 ▷ (is well-formed, denoted by wellformrule (4=E,", A), if its statement (s.t.

wellformstm (4=E,", ().
Now we present rules for abstracting statements. The key cases are shown below.

Absstm (4=E,", E := 4) ≡ if Absvar (4=E,", E) = Xvar then skip
else E := Absexp (4=E,", 4)

Absstm (4=E,", (1 ∥ (2) ≡ let (′
1
= Absstm (4=E,", (1) in

let (′
2
= Absstm (4=E,", (2) in

if (′
1
= skip then if (′

2
= skip then skip else (′

2
else

if (′
2
= skip then (′

1
else (′

1
∥ (′

2

Absstm (4=E,", if 1 then (1 else (2) ≡ let (′
1
= Absstm (4=E,", (1) in

let (′
2
= Absstm (4=E,", (2) in

if (′
1
= skip ∧ (′

2
= skip then skip else

if Absform (4=E,",1) then (′
1
else (′

2

Absstm (4=E,", ∥#8=1() ≡ ∥"8=1(
Absstm (4=E,", ∥#8=18 ≠ n→ ((8)) ≡ ∥"8=18 ≠ n→ ((8) if n ≤ " otherwise ∥"8=1(

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:17

Here, assignments are removed (abstracted to skip) if they assign to variables that have been
abstracted away. All other assignments are kept. The abstraction rule for forall-statements changes
the range to" .

The following lemma shows that abstraction of statements commutes with abstraction on states:

Lemma 5.6. Given " ≤ # and a statement (that satisfies wellformstm (4=E, # , (), 4=E ⊩ (and

fitEnv(B, 4=E). The following equality holds:

Absst (", trans((, B)) = trans(Absstm (4=E,", ()) (Absst (", B)) .

Based on the abstraction of formulas and statements, we can define abstraction of a rule.

Absrule (4=E,",6 ▷ 0) ≡ Absform (4=E,",6) ▷ Absstm (4=E,", 0).

Running example. Now we use the abstraction operator Absrule on the rules inMref (#), we have
the following results:

Absrule (4=E,", rref (8)) ≡ rref (8) if 8 ≤ "

Absrule (4=E,", tryref (8)) ≡ skip_rule if 8 > "

Absrule (4=E,", critref (8)) ≡ abs_crit if 8 > "

Absrule (4=E,", exitref (8)) ≡ skip_rule if 8 > "

Absrule (4=E,", idleref (8)) ≡ abs_idle if 8 > "

where rref ∈ {tryref , critref , exitref , idleref }, skip_rule ≡ True ▷ skip

abs_crit ≡ G ▷ G := False

abs_idle(") ≡ (
"∧
9=1

BC [9] ≠ C ∧ BC [9] ≠ E) ▷ G := True

For 8 ≤ " abstraction on all rules changes nothing. For 8 > " , abstraction removes rules try
and exit completely. The rule crit is abstracted into G ▷ G := False. This indicates that the only
observable behavior of applying crit on a node with index 8 > " is changing the global variable G
from True to False. The transition on the state of the node is unobserved. For abstraction of the rule
idle, the bound on the forall-condition in the guard is changed from # to" , indicating that only the
condition on the first" nodes is observed. Note if we used the simple form of guard strengthening
in Section 4, the entire guard would be lost as the condition st [8] = � is abstracted to unknown,
which would have rendered the strengthening useless. With the more refined strengthening, the
key constraint in the guard is preserved, which is just what is needed to allow the abstracted
protocol pass model checking.
The strengthened and abstracted protocol rules are collected into the protocol AM(") as

follows. This is the form of the protocol sent to model checking when applying CMP.

AR(") ≡ {tryref (8) | 8 ≤ "} ∪ {critref (8) | 8 ≤ "} ∪ {exitref (8) | 8 ≤ "} ∪
{idleref (8) | 8 ≤ "} ∪ {abs_crit, abs_idle("), skip_rule}

AM(") ≡ ⟨{init1, init2 (")},AR(")⟩

Discussion.We compare the abstraction procedure given here with existing work. The work of
Krstic [22] gave a relatively formal description of the CMP method. Talupur et al. [39] described
an abstract version of the CMP method, and showed how it can be combined with generation of
auxiliary invariants from message flow diagrams. In both works, the description of the abstraction
procedure is informal, and misses many of the required details. In [39], abstraction is characterized
as replacing any condition involving processors greater than" with either True, False, or nondeter-
ministic variable to overapproximate it, and removing any assignment to state variables with index
greater than " . The work [22] gives more details, describing the changes made to each of four

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:18 Yongjian Li, Bohua Zhan, and Jun Pang

rule r

A!"#$	(', #)

A!"#$(', #‘)

#

#’

Reach(+) Reach(,+)

rule A!"3;<5	(567,', 3)

Fig. 3. An illustration of the commutation graph of the abstraction mapping.

forms of assignments: E := 4, 5 [?8] := 4, 6[4] := ? 9 and ℎ[?8] := ? 9 , and defines the replacement of
predicates depending on whether it appears positively or negatively in the condition. None of these
existing descriptions of CMP discusses how to handle expressions of the form 8 ≠ 9 appearing in
conditions, or how to abstract forall-conditions and forall-statements (as well as versions excluding
a certain index). In contrast, we formally state the abstraction rules for all these cases, so the entire
abstraction procedure is syntax-directed. This enables completely automatic abstraction that is also
proved correct in Isabelle.

5.3 Simulation of Two Protocols

Based on the above definitions, we can show that the abstracted protocol represents a simulation

of the original protocol, in the sense that any transition in the original protocol corresponds to a
transition in the abstracted protocol (but the abstracted protocol may allow more transitions). This
is formally defined as follows:

Definition 5.7. Given two protocol representationsP = ⟨� , '⟩ andP′ = ⟨� ′, '′⟩, and an abstraction
map Absst (", ·), we say P′ is a simulation of P, if the following two conditions hold:

(1) For any formula 5 ∈ � , there exists a formula 5 ′ ∈ � ′ such that for any state B , B |= 5 implies
Absst (", B) |= 5 ′.

(2) For any rule (6 ▷ 0) ∈ ', there exists a rule (6′ ▷ 0′) ∈ '′, such that for any state B , if B |= 6, then
Absst (", B) |= 6′ and Absst (", trans(0, B)) = trans(0′,Absst (", B)), as illustrated in Figure 3.

We use 5 (') to denote the image of function 5 under set '. From the properties of abstraction on
formulas and statements given in the previous section, we can formally verify the following result:

Lemma 5.8. Given" ≤ # and a protocol presentation P = ⟨� , '⟩, let � ′ = Absform (4=E,", �), and
'′ = Absrule (4=E,", '), 4=E ⊩ 5 for any 5 ∈ � , and 4=E ⊩ A for any A ∈ '. Then P′ = ⟨� ′, '′⟩ is
a simulation of P; furthermore, if fitEnv(B, 4=E) for all B ∈ Reach(P), then B ∈ Reach(P) implies

Absst (", B) ∈ Reach(P′).

6 MAIN THEOREM

In this section, we formally state the main theorem for the correctness of CMP. One additional
technical detail is necessary for this statement. We make use of two forms of auxiliary invariants.
Model checking can only check invariants of the form 5 ′ (8, 9) for 8 < 9 ≤ " on the abstracted
protocol, which is to be extended to 8, 9 ≤ # by symmetry arguments on the strengthened protocol.
Here, 5 ′ (8, 9) is symmetric with respect to the two parameters 8 and 9 . On the other hand, for
strengthening the protocol before abstraction, the auxiliary invariants are required to be in the
form 5 (9, 8), that is symmetric with respect to the single parameter 8 , and 9 is a dummy parameter.
We call the former form (used in model checking) invariants for observation, and the latter form
(used in strengthening) invariants for strengthening.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:19

𝐛𝐬𝒔𝒕 (𝑴,𝒔)
𝐛𝐬𝒔𝒕(𝑴, 𝒔‘)

𝒔
𝒔’

𝒫 𝒜𝒫

s

Reach(𝒫) Reach(𝒫ref) Reach(𝒜𝒫)
A𝐛𝐬𝑺𝒕(𝑴,𝒔)

𝒜𝒫 𝐀𝐛𝐬𝑭𝒐𝒓𝒎(𝒆𝒏𝒗,𝑴, 𝒇′)𝒫ref 𝒇 𝒫ref 𝒇′ ⟸⟸

𝐛𝐬𝒓𝒖𝒍𝒆 (𝒆𝒏𝒗,𝑴,𝒓)

𝒫 𝒇 ⟸

𝐛𝐬𝒔𝒕 (𝑴,𝒔)
𝐛𝐬𝒔𝒕(𝑴, 𝒔‘)

𝒔
𝒔’

𝒫 𝒜𝒫

𝒫 𝒫ref 𝒜𝒫
𝐛𝐬𝑺𝒕(𝑴,𝒔)

𝒜𝒫 𝐀𝐛𝐬𝑭𝒐𝒓𝒎(𝒆𝒏𝒗,𝑴, 𝒇′)𝒫ref 𝒇 𝒫ref 𝒇′ ⟸⟸

𝐛𝐬𝒓𝒖𝒍𝒆 (𝒆𝒏𝒗,𝑴,𝒓)

𝒫 𝒇 ⟸
Fig. 4. An illustration of the proof sketch of CMP.

We define a relation linking these two forms of auxiliary invariants as strVSobs(5 , 5 ′, #), where
5 is the invariants for strengthening, 5 ′ is the invariants for observation.

strVSobs(5 , 5 ′, #) ≡
(∃0=C 2>=B. both 0=C (8) and 2>=B (9) are symmetric ∧

(5 (#, 9, 8) = (0=C (8) →
#∧
:=1

: ≠ 8 → 2>=B (:)) ∨

5 (#, 8, 9) = (0=C (8) →
#∧
:=1

: ≠ 8 → 2>=B (:))) ∧

5 ′ (8, 9) = (8 ≠ 9 ∧ 0=C (8)) → 2>=B (9)

For example, the auxiliary invariant strExit(#, 8) in Section 4 is originally given in strengthening
form as follows:

strExit(#, 9, 8) ≡ st [8] = E→
#∧

:=1

: ≠ 8 → st [:] ≠ C ∧ BC [:] ≠ E.

The corresponding invariant for observation is:

obsExit′ (8, 9) ≡ 8 ≠ 9 ∧ st [8] = E→ st [9] ≠ C ∧ st [9] ≠ E.

For model checking, we only need to check strExit′ (1, 2) in the abstracted protocol model. We
also note that since the invariants for observation are safe, we can guarantee that the positive
result of model checking invariants for observation in abstracted model implies the invariants
for strengthening in parameterized strengthened protocol model. In general, 5 ′ (8, 9) being an
invariant for 8 < 9 ≤ " implies 5 (#, 8, 9) being an invariant for any 8 ≤ #, 9 ≤ # . This is stated in
the following lemma, which will be applied to Pref (the protocol after strengthening and before
abstraction) in the proof of the main theorem.

Lemma 6.1. If P is symmetric, and P |= 5 ′ (8, 9), 8 < 9 ≤ " , and strVSobs(5 , 5 ′, #), then
P |= 5 (8, 9) for any 8 ≤ #, 9 ≤ # .

Now we are ready to state the main theorem of the CMP theory.

Theorem 6.2. Given 2 ≤ " ≤ # , � and � ′ are set of invariants for strengthening and observation,

4=E is the type environment, P = ⟨� , '⟩, Pref = ⟨� , 'ref ⟩, AP = ⟨��,�'⟩, and if the following eight
conditions hold:

(1) Pref is guard-strengthened by P with � ;

(2) Absrule (4=E,", 'ref) ⊆ �', and Absform (4=E,", �) = �� ;

(3) for any 5 ′ ∈ � ′, any 8 < 9 ≤ " , AP |= Absform (4=E,", 5 ′ (8, 9));
(4) for any 5 ∈ � , there is an 5 ′ ∈ � ′ s.t. strVSobs(5 , 5 ′, #) or 5 = 5 ′;2

(5) for any 5 ′ ∈ � ′, s.t. safeform (4=E,", 5 ′);

2For the running example, only strVSobs(5 , 5 ′, #) is needed, but in the FLASH protocol, it also can be 5 = 5 ′ .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:20 Yongjian Li, Bohua Zhan, and Jun Pang

(6) for any B , B ∈ Reach(Pref) implies fitEnv(B, 4=E);
(7) 4=E ⊩ A and wellformrule (4=E,", A) for any A ∈ 'ref ;
(8) PA4 5 is symmetric and 5 is symmetric for any 5 ∈ � .

Then for any 5 ∈ � , any 8 ≤ # , 9 ≤ # , P |= 5 (8, 9).

Proof. For any state B such that B ∈ Reach(PA4 5), from condition (2), by Lemma 5.8, we have
Absst (B, 4=E,") ∈ Reach(AP), which is illustrated by the dash right arrow in Figure 4. From
condition (3), Absst (B, 4=E,") |= Absform (4=E,", 5 ′ (8, 9)) for any 5 ′ ∈ � ′, where 8 < 9 ≤ " , with
conditions (5) (6) (7), by Lemma 5.4(3), we have B |= 5 ′ (8, 9). That is to say, PA4 5 |= 5 ′ (8, 9) for any
8 < 9 ≤ " and this is illustrated by the first left arrow3 in Figure 4. For any 5 ∈ � , by condition (4),
we have a counter-part formula 5 ′ of 5 s.t. strVSobs(5 , 5 ′, #), 5 ′ (8, 9) ∈ � ′. From (8), by Lemma 6.1,
we have PA4 5 |= 5 (8, 9) for any 8, 9 ≤ # . This is illustrated by the second left arrow in Figure 4. With
condition (1), by Lemma 4.2, P |= 5 (8, 9). This is illustrated by the third left arrow in Figure 4. □

Running example. In order to verifyM(#), we need to define � ≡ {strExit(#, 9, 8) | 1 ≤ 8, 9 ≤
} ∪ {inv(9, 8) | 1 ≤ 8, 9 ≤ # }, and � ′ ≡ {obsExit′ (8, 9) | 1 ≤ 8 < 9 ≤ # } ∪ {inv′ (8, 9) | 1 ≤ 8 <

9 ≤ # }, where strExit(#, 9, 8) and inv(9, 8) are used to strengthen invariants, and inv(9, 8) is the
original invariant to be verified; obsExit′ (1, 2) and inv′ (1, 2) are the corresponding invariants for
observation.Mref (#) andAM(") are the strengthened and abstracted mutual exclusion protocol.
We also need to translate AM(") into a form which can be accepted by Murphi, and use the
model checker to verify whether any 5 ∈ � ′ is an invariant. As the model checking result on AM
is positive, the condition (3) is verified. Other conditions in the theorem are proved in Isabelle one
by one. Therefore, we conclude any 5 ∈ � is an invariant inM(#) by Theorem 6.2.

7 IMPLEMENTATION AND CASE STUDIES

All definitions and theorems presented in the above sections, including Theorem 6.2 which accounts
for the final correctness statement of CMP, are formalized in the Isabelle proof assistant. The
total line count for this formalization is 5,384 lines. Values, variables, expressions, formulas and
statements are represented as Isabelle datatypes (abstract syntax trees), using lambda expressions
for the quantified formulas and statements. The line count indicates that with these choices of
representations, the eventual proof effort is rather modest for authors who are already familiar
with Isabelle. However, the entire project still went on-and-off for about two years, with most of
the time spent working out the details of the theory such as the abstraction process, type system,
and various safe conditions. Hence we consider these to be one of the main contributions of the
paper.

7.1 An Overview of The Verification Framework AutoCMP

As a natural outcome of the verification, we obtain an automatic, syntax-directed procedure for
abstraction and strengthening, ultimately generating proofs that can be checked using Isabelle/HOL.
We implemented a tool AutoCMP [26] in Python to automate the CMP method. The tool accepts
user input in the form of the original protocol to be verified, list of auxiliary invariants, and
which auxiliary invariants are applied to strengthen each rule. The core functionality of AutoCMP
is the automation of guard strengthening and abstraction procedures. From the user inputs, it
automatically generates the strengthened and abstracted protocol, as well as the invariants for
observation in a new protocol file, which is sent to be model checked by Murphi. If model checking
succeeds, the tool also automatically generates a proof script for Isabelle to certify the correctness

3The order is from right to left.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:21

Fig. 5. Combination of model checking, abstraction and theorem proving in AutoCMP.

of running strengthening and abstraction procedures for the protocol (the implementation of the
procedures in Python are not verified, as it is much easier to verify the generated results for each
input protocol). The conclusion of the generated Isabelle script states that the parameterized protocol
satisfies the original invariants to be checked, on the assumption of that the finite, abstracted
protocol is correct. When combined with model checking by Murphi, this gives the correctness
of the original protocol. An overview of the verificaiton framework is presented in Figure 5. The
trusted code base (TCB) of AutoCMP include both the Isabelle theorem prover and the Murphi
model checker. We also assume the consistency between the representation of the parameterized
system in Isabelle and Murphi.
Proof generation in Isabelle is also implemented in a Python module. It depends on a set of

utilities for construction and representation of Isabelle types, terms, and proof tactics, which can
be output to formatted Isabelle text. This set of utilities can potentially be reused for other projects
where automatic generation of Isabelle proof script is needed. Based on these, the main work of
proof generation is constructing proofs showing symmetry and wellformedness of invariants and
rules, as well as typing conditions on the protocol description. The strengthening and abstraction
procedures are themselves defined and proved correct in Isabelle, so for proof generation, it suffices
to prove that the output of Python implementation agrees with applying the procedures in Isabelle.
Overall, proof generation is feasible because all our procedures, including those for checking
symmetry, wellformedness, and typing conditions, are syntax-directed, so they can be achieved by
fixed Isabelle automation tactics.
The above workflow assumes that information about auxiliary invariants are already available,

for example when reproducing existing work, or checking results of automatic generation of
auxiliary invariants by machine learning (such methods have been investigated by others, e.g.
in [4, 5, 25], but incorporating these techniques is outside the scope of this work). In the practical
scenario of verifying a new protocol by hand, the auxiliary invariants are initially unknown. Then
AutoCMP enables a workflow as illustrated by Figure 6. The original protocol is first abstracted
(without any strengthening) using AutoCMP and sent to model checking by Murphi. If model
checking produces a counterexample, it is analyzed by the user to determine a rule that should be
strengthened. The rule and auxiliary invariant chosen by the user are then added to the input to
AutoCMP, which automatically strengthens and abstracts the protocol again. This process iterates
until either a real counterexample is found, or when the user is unable to find a valid auxiliary

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:22 Yongjian Li, Bohua Zhan, and Jun Pang

Fig. 6. An illustration of the workflow of AutoCMP to automate the CMP method. CMP procedures are done
automatically, which is highlighted now by a concrete box.

invariant. The main advantage provided by AutoCMP compared to the traditional manual workflow
is that strengthening and abstraction is completely automatic, saving the effort (as well as risk
of making mistakes) in manually editing the protocol descriptions. Finally, upon success the tool
also produces Isabelle proof scripts certifying the correctness of the entire process. There are two
different failing cases. The first case leads from “r exists” to “Fail”, meaning that no rule can be
found for strengthening. This indicates that either the CMP method is not suitable for verifying
the protocol, or additional changes (e.g. adding ghost variables) are needed before applying the
CMP method. The second case leads from “pass?” to “Fail”. This indicates that automatic proof
generation for CMP has failed. This may occur during the development process, and more proof
patterns need to be added if this occurs.4 The CEGAR loop for introducing auxiliary invariants is
the loop containing boxes 2, 3, 4 and 5, not including the “Fail” case.

7.2 Level of Automation Compared to The State-of-art

In this and the next section, we evaluate the AutoCMP tool on some typical benchmarks of cache
coherence protocols. In comparison with earlier work applying the CMP method, we demonstrate
both increased level of automation and precision in applying the rules.

We applied the tool to four protocols that commonly serve as benchmarks for the CMP method.
The mutual exclusion protocol is used as a running example in this paper. The German and FLASH
protocols are used as the main examples in [8]. The detailed code and experiment data can be
found at the website of our verification framework [26]. Each experiment directory includes the
input files to AutoCMP: the original Murphi model, the auxiliary invariants, and the strengthening
information for each rule of the protocol. We also include the generated abstracted protocol and
Isabelle proof scripts. All the experiments were conducted on an iMac workstation with an Intel
i5 processor, 16 GiB memory and 64-bit macOs High Sierra. Statistics for each of the case studies
are summarized in Table 2. The results show that the number of auxiliary invariants is relatively
small (in the actual input files, the invariants are further merged, resulting in e.g. only six lemmas
for the Flash protocol). Model checking using Murphi is relatively fast. Checking the generated
proofs in Isabelle is more time consuming. However, these only need to be done once at the end of
verification process.

4For the final version of the proof generator, this case is not expected to happen, and indeed it does not occur in the examples

we tested.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:23

Table 2. Statistics for case studies. The #rules column contains the total number of protocol rules. The #lines
is the number of lines in the generated Isabelle proof script, and the #invariants is the number of invariants
before merging. The column ‘TP time’ presents the time consumed by the theorem proving in Isabelle, while
the column ‘MC time’ further indicates the amount of time spent on model checking the abtracted protocol.

Protocol #rules #lines #invariants TP time (seconds) MC time (seconds)

mutualEx 4 740 2 5.04 0.01

MESI 4 955 6 8.957 0.01

German 12 1,826 3 43.69 0.01

FLASH 40 6,497 36 1,565.56 8.41

In [8], the parameter abstraction and guard strengthening procedures in CMP method are done
manually. No mechanized proofs are provided to justify the foundation of CMP and the simulation
of a parameterized protocol and the counterpart abstraction. For Flash protocol, the authors argued
they need 0.5 day to do the above CMP work to work out an abstraction. Compared to purely
interactive verification of concurrent systems (i.e. without using the CMPmethod), we only require
auxiliary invariants, which are much less complicated than the fully inductive invariants. We are
also able to automatically verify the sufficiency of auxiliary invariants through model checking.
In our work, the parameter abstraction and guard strengthening procedures in CMP method

are done automatically (once a protocol and the auxiliary invariants are provided). Not only is the
abstraction protocol generated automatically, but also an Isabelle proof script is generated to verify
the abstraction relation between the abstraction result and the original parameterized protocol.
The proof scripts can be checked automatically in Isabelle.

7.3 Increased Precision for Handling Complex Real-world Protocols

Among our benchmarks, FLASH is more complex than the others and closer to being a real-world
protocol. Therefore, FLASH is a good test for any proposed method of parameterized verification: if
the method works on FLASH, then there is a good chance that it will also work on many real-world
cache coherence protocols.
The first verification of FLASH was achieved by Park and Dill in [35], by providing the needed

inductive invariants manually. Chou et al. [8] introduced their CMP method to verify safety
properties of FLASH. The application of CMP to the FLASH protocol is complicated by the fact that
the protocol contains rules with two parameters (hence there are 4 cases of abstraction for these
rules), and there are many auxiliary invariants, in several different forms. The model of the FLASH
protocol used by Chou et al. contains 33 rules. There are three main invariants to be checked:
mutual exclusion and two other data invariants. A total of 36 auxiliary invariants are used, which
for simplicity are merged into five according to their antecedents.

We applied our abstraction and strengthening procedures to the FLASH model, and discovered
that the original abstraction performed by Chou et al. contains two mistakes and one place where
abstraction is applied in a highly irregular way. We briefly describe these problems below, and
more details are available [26].

• In rules NI_LOCAL_GET_GET and NI_LOCAL_GETX_GETX, their guard contains the following con-
junct Dir .HeadPtr ≠ src, and this was abstracted to Dir .HeadPtr ≠ Other . However, this is not a
conservative abstraction as discussed in Section 5. We removed this conjunct from the abstraction
of these two rules.
• In rules NI_Local_GetX_PutX and NI_InvAck, there are if-then-else statements where the con-
dition is not a safe formula. The abstractions of these rules in [8] are not thus sound with respect

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

141:24 Yongjian Li, Bohua Zhan, and Jun Pang

to our theory. We rewrote the rules by splitting them into multiple rules, and obtain sound
abstractions.
• The abstraction for the rule NI_ShWb, while correct in hindsight, is highly irregular. The assigned
values in the rule involves ? = ShWbMsg.Proc. This is abstracted away, while adding a guard
ShWbMsg.Proc = Other . We clarified the situation by changing the rule to be parameterized by
an index src, and adding the guard ShWbMsg.Proc = src. This does not change the semantics of
the model.

The two mistakes resulted in the abstracted model having a smaller state space than it should
(158466 vs. 183596 for the corrected model). While model checking on the corrected model still
passes (no errors are found in the increased state space), so the general method of applying CMP to
FLASH protocol is valid, it does point to the danger of manually performing abstraction, which
is eliminated by using the AutoCMP tool. For the rule NI_ShWb, while the original abstraction is
correct, it may be difficult to understand for others reviewing the work. Using our tool clarifies the
issue and make the abstraction process fully transparent.

8 CONCLUSION AND FUTURE WORK

In this work, we provided for the first time the rigorous formalization of CMP for parameterized
verification in Isabelle/HOL. This includes concepts of symmetry, assume-guarantee reasoning,
type-checking on the protocol descriptions, and syntax-directed procedures for abstraction and
strengthening. All of the above have been proved correct in Isabelle. In particular, for the abstraction
process, we introduced additional side conditions such as safe expressions and formulas. The use
of a theorem prover like Isabelle forces the entire theory to be completely precise, and revealed
more tricky details in CMP than what would appear on first sight. Our work results in a tool
AutoCMP for automatically applying the CMP method. After providing the auxiliary invariants,
the tool automatically performs strengthening and abstraction, as well as generation of proof
scripts that can be checked in Isabelle. In the case studies, we applied the tool to four parameterized
protocols, which led to the discovery of some mistakes in the original manual abstraction of the
FLASH protocol. Although we illustrated the applicability of our mechanization only for cache
coherence protocols, the CMP method itself can be applied to a broad range of parameterized
protocols (e.g., distributed algorithms, multithreaded programs, hierarchical multicore protocols,
etc.), so our verification framework AutoCMP can potentially be applied to these areas as well.

Formalization of CMP is surprisingly difficult, with no essential progress made since the problem
was proposed by Chou, Mannava and Park in [8] in 2004. The proof is very challenging because
CMP appears alarmingly circular, and the abstraction/strengthening process is not described in
precise terms in the past. We address these problems with carefully chosen assume-guarantee
arguments and abstraction methods based on type information. We believe our work provides
experience in formalizing model checking techniques such as CMP, and many of the components,
such as symmetry and assume-guarantee reasoning, may provides guidance on formalizing similar
methodologies as well. Finally, we learn through the work that, as in the example of CMP, a method
that is not formalized may always contain subtle, unrealized flaws.
There are a number of directions for possible future work. First, we would like to extend

the formalism to be able to handle hierarchical multicore protocols [7, 30], which is known to
require special care in the strengthening procedure for statements and introduce new dimension of
symmetry. We also plan to link the formalization with verification of the model-checking process
itself, for example along the lines of [17]. Finally, we will consider linking our tool with automatic
methods of producing auxiliary invariants, for example, those based on machine learning.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

Mechanizing the CMP Abstraction for Parameterized Verification 141:25

9 DATA-AVAILABILITY STATEMENT

The development of AutoCMP can be found at [26]. It is also available as a verified artifact
in https://zenodo.org/doi/10.5281/zenodo.10464461.

ACKNOWLEDGMENTS

This research was supported by the Strategic Priority Research Program of the Chinese Academy
of Sciences, Grant No. XDA0320000 and XDA0320300. The authors would like to express their
gratitude to the anonymous reviewers for their valuable and insightful feedback, which greatly
contributed to improving the quality of the paper.

REFERENCES

[1] Parosh Aziz Abdulla, A. Prasad Sistla, and Muralidhar Talupur. 2018. Model Checking Parameterized Systems. In

Handbook of Model Checking. 685–725.

[2] Krzysztof R. Apt and Dexter Kozen. 1986. Limits for Automatic Verification of Finite-State Concurrent Systems. Inform.

Process. Lett. 22, 6 (1986), 307–309.

[3] Tamarah Arons, Amir Pnueli, Sitvanit Ruah, Jiazhao Xu, and Lenore D. Zuck. 2001. Parameterized Verification with

Automatically Computed Inductive Assertions. In Proc. 13th International Conference on Computer Aided Verification

(CAV’01) (Lecture Notes in Computer Science, Vol. 2102). Springer, 221–234.

[4] Jialun Cao, Yongjian Li, and Jun Pang. 2018. L-CMP: An automatic learning-based parameterized verification tool

(Tool Demo). In Proc. 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE’18). ACM Press,

892–895.

[5] J. Cao, Y. Li, and J. Pang. 2019. A learning-based framework for automatic parameterized verification. In Proc. 37th

IEEE International Conference on Computer Design (ICCD’19). IEEE CS, 450–459.

[6] Xiaofang Chen and Ganesh Gopalakrishnan. 2006. A General Compositional Approach to Verifying Hierarchical Cache

Coherence Protocols. Technical Report. Technical Report, School of Computing, University of Utah.

[7] Xiaofang Chen, Yu Yang, Ganesh Gopalakrishnan, and Ching-Tsun Chou. 2006. Reducing Verification Complexity of a

Multicore Coherence Protocol using Assume/guarantee. In Proc. 6th International Conference on Formal Methods in

Computer Aided Design (FMCAD’06). IEEE Computer Society, 81–88.

[8] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. 2004. A Simple Method for Parameterized Verification

of Cache Coherence Protocols. In Proc. 5th International Conference on Formal Methods in Computer-Aided Design

(FMCAD’04) (Lecture Notes in Computer Science, Vol. 3312). Springer, 382–398.

[9] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2003. Counterexample-Guided Abstraction

Refinement for Symbolic Model Checking. J. ACM 50, 5 (2003), 752–794.

[10] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem. 2018. Handbook of Model Checking.

Springer.

[11] Ariel Cohen and Kedar S. Namjoshi. 2009. Local Proofs for Global Safety Properties. Formal Methods in System Design

34, 2 (2009), 104–125.

[12] Sylvain Conchon, David Declerck, and Fatiha Zaïdi. 2018. Cubicle-W : Parameterized Model Checking on Weak

Memory. In Proc. 9th International Joint Conference on Automated Reasoning (IJCAR’18) (Lecture Notes in Computer

Science, Vol. 10900). 152–160.

[13] Sylvain Conchon, Amit Goel, Sava Krstic, Alain Mebsout, and Fatiha Zaïdi. 2012. Cubicle: A Parallel SMT-Based Model

Checker for Parameterized Systems - Tool Paper. In Proc. 24th International Conference on Computer Aided Verification

(CAV’12) (Lecture Notes in Computer Science, Vol. 7358). Springer, 718–724.

[14] Sylvain Conchon, Amit Goel, Sava Krstic, Alain Mebsout, and Fatiha Zaïdi. 2013. Invariants for Finite Instances

and Beyond. In Proc. 13th International Conference on Formal Methods in Computer-Aided Design (FMCAD’13). IEEE

Computer Society, 61–68.

[15] David L. Dill. 1996. The Murphi Verification System. In Proc. 8th International Conference on Computer Aided Verification

(CAV’96) (Lecture Notes in Computer Science, Vol. 1102). Springer, 390–393.

[16] Michael Emmi, Rupak Majumdar, and Roman Manevich. 2010. Parameterized Verification of Transactional Memories.

In Proc. 31th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’10). ACM Press,

134–145.

[17] Javier Esparza, Peter Lammich, René Neumann, Tobias Nipkow, Alexander Schimpf, and Jan-Georg Smaus. 2013. A

Fully Verified Executable LTL Model Checker. In Proc. 25th International Conference on Computer Aided Verification

(CAV’13) (Lecture Notes in Computer Science, Vol. 8044). Springer, 463–478.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

https://zenodo.org/doi/10.5281/zenodo.10464461

141:26 Yongjian Li, Bohua Zhan, and Jun Pang

[18] Jochen Hoenicke, Rupak Majumdar, and Andreas Podelski. 2017. Thread Modularity at Many Levels: A Pearl in

Compositional Verification. In Proc. 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL’17).

ACM Press, 473–485.

[19] Peter Huber, Arne M. Jensen, Leif O. Jepsen, and Kurt Jensen. 1984. Towards Reachability Trees for High-level Petri

Nets. In Proc. 6th European Workshop on Applications and Theory in Petri Nets (Lecture Notes in Computer Science,

Vol. 188). Springer, 215–233.

[20] C. Norris Ip and David L. Dill. 1993. Efficient Verification of Symmetric Concurrent Systems. In Proc. International

Conference on Computer Design (ICCD’93). IEEE Computer Soceity, 230–234.

[21] C. Norris Ip and David L. Dill. 1996. Better Verification through Symmetry. Formal Methods in System Design 9, 1/2

(1996), 41–75.

[22] Sava Krstic. 2005. Parameterized System Verification with Guard Strengthening and Parameter Abstraction. Proc. 4th

Workshop on Automated Verification of Infinite State Systems (AVIS’05) (2005).

[23] Shuvendu K. Lahiri and Randal E. Bryant. 2004. Constructing Quantified Invariants via Predicate Abstraction. In Proc.

5th International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI’04) (Lecture Notes in

Computer Science, Vol. 2937). Springer, 267–281.

[24] Yongjian Li, Kaiqiang Duan, Yi Lv, Jun Pang, and Shaowei Cai. 2016. A Novel Approach to Parameterized Verification of

Cache Coherence Protocols. In Proc. 34th IEEE International Conference on Computer Design (ICCD’16). IEEE Computer

Society, 560–567.

[25] Yongjian Li and Zimin Li. 2022. ILCMP source code. https://gitee.com/dust_capacity_i/ILCMP.git

[26] Yongjian Li, Zimin Li, Bohua Zhan, and Jun Pang. 2023. autoCMP. https://github.com/forSubmission238/autoCMP.

[27] Kenneth L. McMillan. 1999. Verification of Infinite State Systems by Compositional Model Checking. In Proc. 10th

Advanced Research Working Conference on Correct Hardware Design and Verification Methods (CHARME’99) (Lecture

Notes in Computer Science, Vol. 1703). Springer, 219–234.

[28] Kenneth L. McMillan. 2001. Parameterized Verification of the FLASH Cache Coherence Protocol by Compositional

Model Checking. In Proc. 11th IFIP WG 10.5 Advanced Research Working Conference on Correct Hardware Design and

Verification Methods (CHARME’01) (Lecture Notes in Computer Science, Vol. 2144). Springer, 179–195.

[29] Kenneth L. McMillan. 2008. Quantified Invariant Generation using An Interpolating Saturation Prover. In Proc. 14th

International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08) (Lecture Notes

in Computer Science, Vol. 4963). Springer, 413–427.

[30] Kenneth L. McMillan. 2016. Modular Specification and Verification of a Cache-coherent Interface. In Proc. 16th

International Conference on Formal Methods in Computer-Aided Design (FMCAD’16). IEEE, 109–116.

[31] Kenneth L. McMillan. 2018. Eager Abstraction for Symbolic Model Checking. In Proc. 30th International Conference on

Computer Aided Verification (CAV’18) (Lecture Notes in Computer Science, Vol. 10981). Springer, 191–208.

[32] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL - A Proof Assistant for Higher-Order

Logic. Lecture Notes in Computer Science, Vol. 2283. Springer.

[33] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: Safety Verification by

Interactive Generalization. In Proc. 37th ACM SIGPLANConference on Programming Language Design and Implementation

(PLDI’18). ACM Press, 614–630.

[34] Sudhindra Pandav, Konrad Slind, and Ganesh Gopalakrishnan. 2005. Counterexample Guided Invariant Discovery for

Parameterized Cache Coherence Verification. In Proc. 13th IFIP WG 10.5 Advanced Research Working Conference on

Correct Hardware Design and Verification Methods (CHARME’05) (Lecture Notes in Computer Science, Vol. 3725). Springer,

317–331.

[35] Seungjoon Park and David L Dill. 1996. Verification of FLASH Cache Coherence Protocol by Aggregation of Distributed

Transactions. In Proc. 8th ACM Symposium on Parallel Algorithms and Architectures (SPAA’96). ACM, 288–296.

[36] Amir Pnueli, Sitvanit Ruah, and Lenore D. Zuck. 2001. Automatic Deductive Verification with Invisible Invariants. In

Proc. 7th International Conference Tools and Algorithms for the Construction and Analysis of Systems (TACAS’01) (Lecture

Notes in Computer Science, Vol. 2031). Springer, 82–97.

[37] Amir Pnueli and Elad Shahar. 1996. A Platform for Combining Deductive with Algorithmic Verification. In Proc.

8th International Conference on Computer Aided Verification (CAV’96) (Lecture Notes in Computer Science, Vol. 1102).

Springer, 184–195.

[38] Peter H Starke. 1991. Reachability analysis of Petri Nets using Symmetries. Systems Analysis Modelling Simulation 8,

4-5 (1991), 293–303.

[39] Murali Talupur and Mark R. Tuttle. 2008. Going with the Flow: Parameterized Verification using Message Flows. In

Proc. 8th International Conference on Formal Methods in Computer-Aided Design (FMCAD’08). IEEE Computer Society,

1–8.

[40] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James R. Wilcox, and

Doug Woos. 2018. Modularity for Decidability of Deductive Verification with Applications to Distributed Systems.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

https://gitee.com/dust_capacity_i/ILCMP.git
https://github.com/forSubmission238/autoCMP

Mechanizing the CMP Abstraction for Parameterized Verification 141:27

In Proc. 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’18). ACM Press,

662–677.

[41] Ashish Tiwari, Harald Rueß, Hassen Saïdi, and Natarajan Shankar. 2001. A Technique for Invariant Generation. In

Proc. 7th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’01)

(Lecture Notes in Computer Science, Vol. 2031). Springer, 113–127.

[42] Pierre Wolper. 1986. Expressing Interesting Properties of Programs in Propositional Temporal Logic. In Proc. 13th

ACM SIGPLAN Symposium on Principles of Programming Languages (POPL’86). ACM Press, 184–193.

[43] Pierre Wolper and Vinciane Lovinfosse. 1989. Verifying Properties of Large Sets of Processes with Network Invariants.

In Proc. 1st International Conference on Computer Aided Verification (CAV’89) (Lecture Notes in Computer Science, Vol. 407).

Springer, 60–80.

Received 21-OCT-2023; accepted 2024-02-24

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA1, Article 141. Publication date: April 2024.

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Motivation of Our Work
	1.3 Our Contributions

	2 Preliminaries
	2.1 Expressions and Formulas
	2.2 Statements and Protocols
	2.3 Parameterized Protocols
	2.4 Running Example: Mutual Exclusion

	3 Permutation and Symmetry
	3.1 Actions of Permutations
	3.2 Proving Symmetry
	3.3 Symmetry Reduction

	4 Guard Strengthening
	5 Abstraction
	5.1 A Simple Type System
	5.2 Syntax-guided Abstraction
	5.3 Simulation of Two Protocols

	6 Main theorem
	7 Implementation and case studies
	7.1 An Overview of The Verification Framework AutoCMP
	7.2 Level of Automation Compared to The State-of-art
	7.3 Increased Precision for Handling Complex Real-world Protocols

	8 Conclusion and Future Work
	9 Data-availability Statement
	Acknowledgments
	References

