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Abstract. We show that, contrary to common belief, Dijkstra’s K-state
mutual exclusion algorithm on a ring [1, 2] also stabilizes when the num-
ber K of states per process is one less than the number N+1 of processes
in the ring. We formalize the algorithm and verify the proof in PVS,
based on Qadeer and Shankar’s work [8]. We show that K = N is sharp
by giving a counter-example for K = N − 1.
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1 Introduction

In his seminal paper [1], Dijkstra introduced the notion of self-stabilization. A
distributed system is said to be self-stabilizing if it satisfies the following two
properties:

1. convergence: starting from an arbitrary state, the system is guaranteed to
reach a stable state;

2. closure: once the system reaches a stable state, it cannot become unstable
anymore.

A system with the property of self-stabilization can have the advantages of fault
tolerance, robustness for dynamic topologies, and straightforward initialization.
Consider a system with a number of processes sharing a common resource

(usually called critical section). Given an arbitrary initial state of the system,
there might be more than one process enable to access the common resource. The
problem of mutual exclusion is to guarantee that the common resource will not

? This research is partly supported by the Dutch Technology Foundation STW under
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be accessed by more than one process simultaneously. Self-stabilizing algorithms
for mutual exclusion make sure that each infinite run of the system reaches a
stable state where exactly one process is enabled; and from then on, mutual
exclusion of the common resource is guaranteed.
In [1], Dijkstra presented three elementary self-stabilizing algorithms for mu-

tual exclusion on a ring network: an algorithm with K-state processes, an al-
gorithm with four-state processes, and an algorithm with three-state processes.
Regarding their correctness, he wrote:

– “For brevity’s sake most of the heuristics that led me to find them, together
with the proofs that they satisfy the requirements, have been omitted, [...]”.

After more than ten years, Dijkstra [3] published a proof of self-stabilization of
his algorithm with three-state processes, and acknowledged that the verification
was actually not trivial.
In this paper, we focus on Dijkstra’s algorithm with K-state processes. We

consider a system of N + 1 processes, numbered from 0 through N , arranged in
a unidirectional ring. Each process pi has a counter v(i) that can hold a value
from 0 to K−1. Each process can observe its own counter value and the counter
value of its anti-clockwise neighbor. p0 is a distinguished process that is enabled
when v(0) = v(N), and when enabled, it can increment its counter by 1 modulo
K. Each process pi for i = 1, . . . , N is enabled when v(i) 6= v(i − 1), and when
enabled, it can update its counter value so that v(i) = v(i−1). Thus the behavior
of the system can be presented as follows:

Dijkstra’s K-state algorithm for mutual exclusion. Let processes p0, . . . , pN form
a unidirectional ring, where the counter for each process pi holds a value v(i) ∈
{0, . . . ,K − 1}.

– if v(0) = v(N), then v(0) := (v(0) + 1) mod K;
– if v(i) 6= v(i− 1) for i = 1, . . . , N , then v(i) := v(i− 1).

The system is said to be in a stable state if it contains exactly one enabled
process, which can be interpreted as holding a token. This token can be passed
along the ring network; a process can access the common resource only when it
holds the token.
This algorithm has been proved correct by different proof methods for self-

stabilization, e.g. [14, 11, 12]. It attracted much attention from the formal veri-
fication community. There are two distinct traditions in automatic verification:
theorem proving and model checking. Merz [5] formalized the algorithm and
proved it correct in Isabelle/HOL [6]. Qadeer and Shankar [8] applied PVS [7]
to prove its correctness. Later on, Kulkarni et al. [4] also proved its correctness
using PVS in a different fashion. Model checking techniques were applied to this
algorithm in [10, 13]. Due to the state explosion problem, this approach has some
restrictions: it cannot be directly used for any possible initial state, and/or it
can only prove the algorithm correct with a limited number of processes and
states.
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However, all these proofs only showed correctness of the algorithm under a
weaker condition, namely the algorithm is correct if K > N . This also happened
in Schneider’s survey paper on self-stabilization [9]. The only exception we could
find is [4]. Although they proved the algorithm correct for K > N , almost at
the end of the paper, they stated:

– “it is possible to prove stabilization when K ≥ N– we will need to redo only
the proofs that depend on this assumption, namely Lemmas 6.4, 6.6, 6.8.”

However, the validity of this claim is not clear, especially their formulation of
Lemma 6.4 is false when K = N .
Judging on the literature, it seems to be a common belief that Dijkstra’s

K-state mutual exclusion algorithm on a ring only stabilizes when K > N . But
in fact, Dijkstra gave a note after presenting the solution with K-state machines
in [1] as follows:

– “Note 1. [...] the relation K ≥ N is sufficient.”

A brief informal proof sketch was given by himself in [2]. In addition, he said:

– “(and for smaller values of K counter examples kill the assumption of self-
stabilization.)”

We note that, if K = N , there should be at least three processes in the ring;
namely, if K = N = 1, then clearly p0 is always enabled and p1 is never enabled.
If K > N , then the algorithm also works for a ring with two processes.
In this paper, we formally prove that ifN > 1, thenK ≥ N is sufficient for the

stabilization of Dijkstra’s K-state mutual exclusion algorithm. For the condition
K > N , the proofs in [14, 11, 8, 5, 4] used the classic pigeonhole principle. The
proof for K = N becomes considerably more complicated, since the pigeonhole
principle cannot be simply applied for any state of the algorithm. This will be
explained in detail in Section 3. Our proof, which is different from the proof
sketch in [2], has been checked in PVS.

Outline of the paper. In Section 2, we show that Dijkstra’s K-state mutual
exclusion algorithm on a ring also stabilizes when the number of states per
process is one less than the number of processes on the ring, namely K ≥ N . We
formalized the algorithm and checked our proof in PVS. Our verification in PVS
is based on [8], we reused their formalization of the algorithm and most of their
lemmas. We present the crucial lemmas of our PVS verification in Section 3.
In Section 4, we show that K ≥ N is sharp by a counter-example, which was
missing in [2]. We conclude this paper in Section 5.

2 Proof of Self-Stabilization

We give the proof that Dijkstra’s K-state mutual exclusion algorithm on a ring
stabilizes when K ≥ N . First we prove the closure property for self-stabilization
(see Proposition 1).
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Lemma 1. In each state of the algorithm, there is at least one enabled process.

Proof. We distinguish two cases:

– for all i ∈ {1, . . . , N}, v(i) = v(0). In particular, v(0) = v(N), which implies
p0 is enabled;

– otherwise, there exists a j ∈ {1, . . . , N} such that v(j) 6= v(0), and for all
i ∈ {1, . . . , j − 1}, v(i) = v(0). Since v(j) 6= v(j − 1), pj is enabled.

ut

Lemma 1 implies that no run of the algorithm ever deadlocks, as in each state
the enabled process(es) can “fire”, meaning that the counter value is updated.

Proposition 1. Once in a stable state, the system will remain in stable states.

Proof. We assume pi is the only enabled process in some stable state. It is easy to
see that when pi fires, it makes itself disabled, and it makes at most pi’s clockwise
neighbor enabled. By Lemma 1, in each state of the algorithm, there exists at
least one enabled process. Therefore, after the firing of pi, the clockwise neighbor
of pi is the only enabled process, so the system remains in a stable state. ut

We proceed to prove the convergence property for self-stabilization (see The-
orem 1).

Lemma 2. In each infinite run of the algorithm, p0 fires infinitely often.

Proof. Given a state, consider the sum over all elements {N−i | i ∈ {1, . . . , N}∧
pi is enabled}. Clearly, when a nonzero process fires, this sum strictly decreases.
Furthermore, for each state, this sum is at least 0. Hence, in each infinite run,
p0 must fire infinitely often. ut

Definition 1. The legitimate states are those states that satisfy v(i) = x for all
i < j and v(i) = (x − 1) mod K for all j ≤ i ≤ N , for some choice of x < K

and j ≤ N .

Note that a legitimate state is stable, as only pj is enabled.

Theorem 1. Let N > 1. Even if K = N , Dijkstra’s K-state mutual exclusion
algorithm for N + 1 processes stabilizes.

Proof. By Lemma 1, no run of the algorithm ever deadlocks. By Lemma 2, in
each infinite run of the algorithm p0 fires infinitely often.
Let N > 1. We prove that each infinite run of the algorithm visits a legitimate

state. Consider the case where p0 fires for the first time. Then just before that,
v(0) = v(N) = y for some y, and the new value of v(0) becomes (y+1) mod K.
Now consider the case when p0 fires again. Then just before that, v(0) = v(N) =
(y + 1) mod K. In order for pN to change its counter value from y to (y +
1) mod K, it must have copied (y + 1) mod K from its anti-clockwise neighbor
pN−1. This moment must have occurred after p0 changed its counter value to
v(0) = (y+1) mod K. But then, just after pN copies (y+1) mod K from pN−1,
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we actually have v(N − 1) = v(N) = (y + 1) mod K. In other words, since
N > 1 implies that pN−1 6= p0, two different nonzero processes hold the same
counter value (y+1) mod K. Then the N nonzero processes hold at most N − 1
different counter values from {0, . . . ,K − 1}. When K ≥ N (so in particular
when K = N), then at this point in time there is an x < K that does not occur
as the counter value of any nonzero process in the ring.
Since p0 fires infinitely often, eventually v(0) becomes x. The other processes

merely copy counter values from their anti-clockwise neighbors, so at this point
no other process holds x. The next time p0 fires, v(N) = v(0) = x. The only
way that pN gets the counter value x is if all intermediate processes have copied
x from p0. We conclude that all processes have the counter value x, which is a
legitimate state. ut

Dijkstra [2] gave a specific scenario to show that the system will definitely
reach a legitimate state, after p0 has been enabled for N times. In most cases,
a legitimate state can be detected earlier than in that scenario, as shown in the
above proof.

3 Mechanical Verification in PVS

In [8], Qadeer and Shankar presented a detailed description of a mechanical veri-
fication in PVS of stabilization of Dijkstra’s K-state mutual exclusion algorithm.
Although they only checked the correctness of the algorithm under the condition
K > N , their PVS formalism and proof could for a large part be reused,4 which
saved us much effort and gave us many insightful thoughts on the verification in
PVS.
First, we present Qadeer and Shankar’s claims to sketch their proof skeleton.

Then we show the lemma that we had to adapt for our proof. The algorithm
satisfies the following properties, for each state of the system, and each infinite
run from this state:

– I. there is always at least one enabled process;
– II. the number of enabled processes never increases;
– III. the enabledness of each process is eventually toggled;
– IV. p0 eventually takes on any counter value below K (follows by Property
III);

These properties require no restriction on the relation between N and K. Prop-
erty I corresponds to Lemma 1. Property II follows the fact that when a process
fires, it makes itself disabled, and it makes at most its clockwise neighbor en-
abled. Property III is a more general version of Lemma 2. Qadeer and Shankar’s
PVS proof of these first four properties could be (more or less) reused by us
directly.

4 The URL www.csl.sri.com/pvs/examples/self-stability contains their PVS for-
malization and proofs.
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– V. there is some value x below K such that v(i) 6= x for all i ∈ {1, . . . , N}
(follows by Property IV, and the proof of Theorem 1);

– VI. eventually v(0) = x, and v(i) 6= x for all i ∈ {1, . . . , N}; then p0 is
disabled until v(i) = v(0) for all i ∈ {1, . . . , N} (follows by Property V);

– VII. the system is self-stabilizing (follows by properties VI, I, and II).

The proof of Property V uses the pigeonhole principle, which states that if each
of n+1 pigeons is assigned to one of n pigeonholes, then some hole must contain
at least two pigeons. This principle was also formulated and proved in [8].
Let S(v) denote the set {x < K | ∃i ∈ {1, . . . , N}(v(i) = x)}. The following

lemma corresponds to Property V. It states that the nonzero processes do not
contain all the possible counter values.

Lemma 3. (Lemma 4.13 in [8]) If K > N , then ∃x < K(x 6∈ S(v)).

Under the condition K > N , this can be informally proved as follows [8]: there
are N nonzero processes, and hence at most N distinct counter values at these
processes; if there are K (K > N) possible counter values, then there must be
some x < K that is not the counter value at any nonzero process.
If we relax the condition to K ≥ N , the above proof fails, because the

pigeonhole principle does not apply when the number of pigeons equals the
number of pigeonholes.
Starting from this point, we assume that K ≥ N . We define T (v) to denote

the set {x < K | ∃i ∈ {1, . . . , N − 1}(v(i) = x)}. In the following lemma the
pigeonhole principle does apply.

Lemma 4. ∃x < K(x 6∈ T (v)).

Proof. T (v) contains at most N − 1 distinct counter values at processes from p1

to pN−1. If there are K (K ≥ N) possible counter values, then there must be
some x < K with x 6∈ T (v). ut

To check the proof of Lemma 4 in PVS, we could simply follow the PVS proof
steps of Lemma 3 in [8]. Now we introduce an extra lemma.

Lemma 5. v(N) ∈ T (v) =⇒ S(v) = T (v).

Proof. This is straightforward by the definitions of S(v) and T (v). ut

In PVS, Lemma 5 could be proved by using existing PVS libraries for the finite
cardinalities. Now we present the main lemma for our PVS proof, corresponding
to Lemma 3 in [8] (Property VI).

Lemma 6. Each infinite run of the algorithm eventually reaches a state where
the nonzero processes do not contain all the possible counter values.

Proof. We know from Property III that pN will eventually fire. By the algorithm,
we then have v(N) = v(N−1), so that v(N) ∈ T (v). By Lemma 5, S(v) = T (v).
By Lemma 4, we can find an x < K with x 6∈ T (v), so x 6∈ S(v). ut

After proving Lemma 6, and reusing (more or less) the lemmas and the PVS
proof steps for properties VI and VII in [8], we could mechanically prove self-
stabilization of Dijkstra’s K-state algorithm in PVS.
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4 K = N is Sharp

In this section, we give a counter-example showing that a smaller value of K

would kill self-stabilization. For example, in Fig. 1 (which assumes that N ≥ 3),
we have a system with K = N−1, meaning that each process can have a counter
value {0, . . . , N − 2}. Consider the initial state shown at the top left-hand side
of Fig. 1, in which p0, . . . , pN−2 hold counter values from 0 to N −2, pN−1 holds
counter value 0, and pN holds counter value 1. By the algorithm, p1, . . . , pN are
enabled, so the number of enabled processes is N . (In Fig. 1, black processes are
enabled.)
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0
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pN−1

0

0

Fig. 1. A counter-example: a ring with K = N − 1

We have a run as follows:

Step 1: pN fires and makes p0 enabled;
Step 2: pN−1 fires and makes pN enabled;
. . . . . .

Step N − 1: p2 fires and makes p3 enabled;
Step N : p1 fires and makes p2 enabled;
Step N + 1: p0 fires and makes p1 enabled.

From the initial state, after the above N + 1 steps (all processes have fired only
once), the system ends in a state where the counter values of the processes are
symmetric (modulo N−1) to the initial state, so it still has N enabled processes.
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This scenario can be executed infinitely often without breaking the symmetry.
So the system will never reach a legitimate state. Thus K = N is sharp!

5 Conclusion

Judging on the literature on self-stabilization, it seems to be common belief that
Dijkstra’s K-state algorithm on a ring stabilizes when K > N . In this paper we
show that, contrary to this common belief, the algorithm also stabilizes when
the number of states per process is one less than the number of processes on the
ring (namely K = N). Our proof was formalized and checked in PVS, based on
[8]. We have given a counter-example showing that K = N is indeed sharp.
One important fact (Lemma 6) used in our proof is that the nonzero processes

do not contain all the possible counter values. By this observation, together with
the fact that each process is infinitely often enabled, we can prove that each
infinite run of the algorithm will reach a legitimate state. For the case K > N ,
this fact can be proved using the pigeonhole principle, as is done in [14, 11, 8,
5, 4]. For the case K = N in this paper, we choose the moment that pN is
enabled and fires, which makes v(N) = v(N − 1). After that we can apply the
pigeonhole principle. Another important fact (Lemma 1) is that whenever the
system reaches a stable state, it will remain in stable states. Thus we have proved
the properties for self-stabilization.
Regarding the verification in PVS, we downloaded the PVS code and proof

by Qadeer and Shankar. Following their proof steps in PVS, we simply added a
new definition of T (v), proved two new lemmas (Lemma 4 and Lemma 5), and
adapted one lemma as Lemma 6. The whole verification did not take too much
effort. First, we spent a few days to understand the formalism and proof in [8].
Since the PVS system, including PVS libraries, has been updated after 1998, the
downloaded PVS proof could not be simply rerun. We made some adaptions to
make their PVS proof work again. After that, when we had the idea to prove (as
shown in Section 2) the algorithm correct under the condition K = N , the proof
was completely checked in PVS within one day. The dump file containing our
PVS formalization and proofs can be found at the URL www.cwi.nl/~pangjun/

stabilization/.
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