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Abstract—Cellular reprogramming, a technique that opens huge opportunities in modern and regenerative medicine, heavily relies on
identifying key genes to perturb. Most of the existing computational methods for controlling which attractor (steady state) the cell will
reach focus on finding mutations to apply to the initial state. However, it has been shown, and is proved in this article, that waiting
between perturbations so that the update dynamics of the system prepares the ground, allows for new reprogramming strategies. To
identify such sequential perturbations, we consider a qualitative model of regulatory networks, and rely on Binary Decision Diagrams to
model their dynamics and the putative perturbations.
Our method establishes a set identification of sequential perturbations, whether permanent (mutations) or only temporary, to achieve
the existential or inevitable reachability of an arbitrary state of the system. We apply an implementation for temporary perturbations on
models from the literature, illustrating that we are able to derive sequential perturbations to achieve trans-differentiation.
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1 INTRODUCTION

R EGENERATIVE medicine has gained traction with the
discovery of cell reprogramming, a way to change a

cell phenotype to another, allowing tissue or neuron regen-
eration techniques. After proof that cell fate decisions could
be reversed [21], scientists need efficient and trustworthy
methods to achieve cell reprogramming. Instead of pro-
ducing induced pluripotent stem cells and force the cell to
follow a distinct differentiation path, new methods focus on
trans-differentiating the cell, without necessarily going (back)
through a multipotent state [7], [6].

This paper addresses the formal prediction of perturba-
tions for cell reprogramming from computational models
of gene regulation. We consider qualitative models where
the genes and/or the proteins, notably transcription factors,
are variables with an assigned value giving the level of
activity, e.g., 0 for inactive and 1 for active, in a Boolean
abstraction. The value of each variable can then evolve in
time, depending on the value of its regulators.

In qualitative models of gene regulation, attractors of
the dynamics, which represent the long term dynamics,
are typically associated with differentiated and/or stable
states of the cell [14], [22]. In such a setting, cell reprogram-
ming can be interpreted as triggering a change of attractor:
starting within an initial attractor, perform perturbations
which would de-stabilize the network and lead the cell to
a different attractor.

Current experimental settings and computational mod-
els mainly consider cell reprogramming by applying the set
of perturbations simultaneously in the initial state. How-
ever, as suggested in [18] and as we will demonstrate
formally in this paper, one finds novel reprogramming
strategies, potentially requiring fewer interventions and /
or achieving more objectives, by using sequential reprogram-

ming, i.e., where perturbations are applied at particular
points in time, and in a particular ordering.

Contribution: This paper establishes the formal char-
acterization of all possible reprogramming paths leading
from one state of an asynchronous Boolean network to an-
other, by means of a bounded number of either permanent
(mutations) or temporary perturbations. We will account for
whether the target state may be reached, or will be reached
inevitably.

Our method relies on the exploration of the asyn-
chronous dynamics of a perturbed Boolean network. A
general algorithm is given to explore the perturbed transi-
tion graph. In the case of temporary perturbations, binary
decision diagrams are used to model both perturbations
and the dynamics of the system. We apply our approach
to biological networks from the literature, and show that
the sequential application of perturbations yields new repro-
gramming solutions.

This article extends the conference article [12] by general-
izing the algorithm, and making experimentations on bigger
models thanks to a new implementation.

Outline: Sect. 2 details an example of Boolean net-
work which motivates sequential reprogramming. Sect. 3
gives formal definitions and an algorithm relying on set
operations for sequential reprogramming. Sect. 4 Explains
how BDDs are used to encode the dynamics of temporary
sequential perturbations and how the reprogramming paths
can be extracted. Sect. 5 applies it to biological networks
from the literature. Sect. 6 concludes the paper.

Notations: For (k, n) two integers such that k < n,
the set {k, k + 1, . . . , n− 1, n} is denoted [k, n]. For a given
x ∈ {0, 1}n and i ∈ [1, n], x̄{i} ∈ {0, 1}n is defined as
follows:
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for all j ∈ [1, n], x̄{i}j
∆
= ¬xj if j = i and x̄{i}j

∆
= xj if j 6= i.

2 BACKGROUND AND MOTIVATING EXAMPLE

This section illustrates the benefits of sequential vs initial-
state reprogramming on a small Boolean network in order
to trigger a change of attractor. We show that, in this
example, initial-state programming requires at least three
perturbations, whereas the sequential approach necessitates
only two. But first some preliminaries.

2.1 Boolean networks
A Boolean Network (BN) is a tuple of Boolean functions
giving the future value of each variable with respect to the
global state of the network.

Definition 1. A Boolean Network (BN) of dimension n is a
function f such that:

f : {0, 1}n → {0, 1}n

x = (x1, . . . , xn) 7→ f(x) = (f1(x), . . . , fn(x))

The dynamics of a Boolean network f are modelled by
transitions between its states x ∈ {0, 1}n. In the scope of
this paper, we consider the fully asynchronous semantics of
Boolean networks: a transition updates the value of only one
variable i ∈ [1, n]. Notice that examples for the relevance
of sequential reprogramming can easily be exhibited in the
synchronous update semantics as well.

Thus, from a state x ∈ {0, 1}n, there is one transition
for each vertex i such that fi(x) 6= xi. The transition graph
(Def. 2) is a digraph where vertices are all the possible states
{0, 1}n, and edges correspond to asynchronous transitions.
The transition graph of a Boolean network f can be denoted
as STG(f).

Definition 2 (Transition graph). The transition graph (also
known as state graph) is the graph having {0, 1}n as vertex set
and the edges set {x → x̄{i} | x ∈ {0, 1}n, i ∈ [1, n], fi(x) =
¬xi}. A path from x to y is denoted x→∗ y.

The terminal strongly connected components of the tran-
sition graph can be seen as the long-term dynamics, pheno-
types or “fates” of the system; throughout, we will refer to
them as attractors. An attractor may model a unique state,
referred to as a fixpoint, f(x) = x, or sustained oscillations
(cyclic attractor) among several states.

Definition 3 (Attractor).

A ⊆ {0, 1}n is an attractor⇔
A 6= ∅
and ∀x ∈ A, ∀y ∈ {0, 1}n \A, x 6→∗ y
and ∀x, y ∈ A, x→∗ y

If |A| = 1 then A is a fixpoint. Otherwise, A is a cyclic attractor.

Let A(f) be the set of all attractors of the BN f .

The transition relation can be viewed as a Boolean func-
tion T : 22n → {0, 1}, where values 1 and 0 indicate a valid
and an invalid transition, respectively.

The computation of the predecessors and successors uti-
lize two basic functions: Preimage(X,T ) = {s′ ∈ S |
∃s ∈ X such that (s′, s) ∈ T}, which returns the di-
rect predecessors of X in T , i.e. pre(X); Image(X,T ) =
{s′ ∈ S | ∃s ∈ X such that (s, s′) ∈ T}, which returns
the direct successors of X ⊆ S in T , i.e. post(X). To
simplify the presentation, we define Preimagei(X,T ) =
Preimage(. . . (Preimage(X,T )))︸ ︷︷ ︸

i times

with Preimage0(X,T ) =

X and Imagei(X,T ) = Image(. . . (Image(X,T )))︸ ︷︷ ︸
i times

with

Image0(X,T ) = X . In this way, the set of all prede-
cessors of X via transitions in T is defined as an itera-
tive procedure pre∗(X) =

n⋃
i=0

Preimagen(X,T ) such that

Preimagen(X,T ) = Preimagen+1(X,T ). Similarly, the set
of all successors of X via transitions in T is defined as
an iterative procedure post∗(X) =

n⋃
i=0

Imagen(X,T ) such

that Imagen(X,T ) = Imagen+1(X,T ).

The (strong) basin of X is the set of states that always
eventually reach a state in X . It should be noted that X can
be any set of states, not necessarily an attractor.

Definition 4 (Basin). Let X be a set of nodes. The basin of X is
the biggest set Y such that X ⊆ Y and ∀y ∈ Y \X, post(y) ⊆
Y ∧ ∃x ∈ X, y →∗ x.

Basins are usually related to attractors, and are partic-
ularly interesting in this case: the basin of an attractor is
the set of all states that will end up in the attractor. In
most cases, the target of a reprogramming is an attractor,
as explained in Sect. 1.

2.2 The advantage of sequential reprogramming

By taking advantage of the natural dynamics of the system,
sequential reprogramming can provide additional strategies
which may require fewer perturbations than with the initial
state only reprogramming.

Let us consider the following BN

f1(x) = x1 f2(x) = x2

f3(x) = x1 ∧ ¬x2 f4(x) = x3 ∨ x4

Fig. 1 gives the transition graph of this BN, and the differ-
ent perturbation techniques. To understand the benefit of
sequential perturbations, let us consider the fixpoint 0000
as starting point and fixpoint 1101 as target.

Obviously, because 0000 is a fixpoint, there can be no
sequence of updates from 0000 to 1101. It can also be seen
that if one or two vertices are perturbed at the same time, by
giving them new values, 1101 is not reachable, as shown in
Fig. 1(top). However, if two vertices are perturbed, but the
system is allowed to follow its own dynamics between the
changes, 1101 can be reached, as shown in Fig. 1(bottom),
by using the path 0000

x1=1−−−→ 1000 → 1010 → 1011
x2=1−−−→

1111 → 1101, i.e. we first force the activation of the first
variable, then wait until the system reaches (by its own
dynamics) the state 1011 before activating variable 2. From
the perturbed state, the system is guaranteed to end up in
the desired fixpoint, 1101.
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Fig. 1: Transition graph of f and candidate perturbations
(magenta) for the reprogramming from 0000 to 1101: (top)
none of candidate perturbations of one or two variables in
the initial state allow to reach 1101; (bottom) sequences of
two sequential perturbations allow to reach 1101.

In this case and almost every other case of sequential
reprogramming, the ordering of perturbations is crucial.
For example, if the perturbations were done in a different
order in this example, the first perturbation to be made
would be x2 = 1, then only 0100 would be reachable.
From this state, perturbing with x1 = 1 allows 1100 to be
reachable, and it is the only attractor reachable. 1101 is still
unreachable, meaning the perturbations failed to make the
target reachable.

Inevitable and existential reprogramming
This example shows that some otherwise unattainable at-
tractors may be reached when the changes of values of
vertices are coordinated in a particular order, and using the
transient dynamics between perturbations. We remark that
there exists another reprogramming path, where variable
2 is perturbed when the system reaches 1010. Note that,
in this case, after the second perturbation, the system can
reach 1101, but it is not guaranteed. We say that, in the
first reprogramming path, the reprogramming is inevitable,
whereas it is only existential in the second case.

Permanent and temporary perturbations
We also have to consider the sequential characteristics of
how individual perturbations act. The system may either
only be temporarily perturbed, by changing the value of
a vertex i for a time (setting i to 0 or 1), or the change can
be permanent, i.e. a modification of the update function of
the vertex (setting fi to 0 or 1). On our example, making
permanent changes would yield the solutions given above.
However, if the initial state is 1011 and the target state is
1100, then it has different solutions (Fig. 2).

Indeed, if the objective is to go from 1011 to 1100 in the
same transition graph using only permanent perturbations,
then their order does not matter. Perturbing x2 and x4 from

1000 1001

1010 1011

1100 1101

1110 1111
1000 1001

1010 1011

1100 1101

1110 1111\

x2 = 1 ; x4 = 0 x2 = 1

x4 = 0

Fig. 2: Right part of the transition graph of f from initial
state 1011 to 1100, with permanent perturbations (left) and
temporary ones (right).

the initial state is enough to make 1100 the only reachable
state. On the other hand, if the perturbations are temporary,
x2 has to be perturbed first, then when 1101 is reached,
x4 can be perturbed. If this order is not followed, 1101 is
reachable as well as 1100.

In most cases, the perturbations done in permanent
reprogramming and the ones done in temporary reprogram-
ming can be on different variables.

3 CHARACTERIZATIONS OF REPROGRAMMING
STRATEGIES

This section brings a formal definition of dynamical models
adding perturbations to BN dynamics, and the character-
ization of sequential reprogramming. It also explains an
algorithm to find all inevitable reprogramming solutions,
given a maximum number of perturbations k, and applies
the algorithm to the example from Sect. 2.

3.1 Perturbed model

Given a BN, perturbations can be added by allowing the
variables to change value (temporary or permanently). We
introduce the notion of Perturbed Transition Graph (Def. 5)
which encompasses the transitions allowed by the BN and
transitions due to perturbations. Moreover, a variable vk
tracks the number of applied perturbations. It should be
noted that how the perturbations are made, which vari-
ables can be perturbed, in which states the variables can
be perturbed, and other details are all part of the model.
The model is an input from the user, and should conform
to the following definition in order for the properties and
algorithm to work on it. An example of perturbed transition
graph to model temporary perturbations is given in Sect. 4.

Definition 5 (Perturbed Transition Graph). Given a BN f
of dimension n, its transition graph STG(f )=(S, Ef ), and a
maximum number of allowed perturbations k, the Perturbed
Transition Graph G is a pair (Sp, Ep) where

• Sp = S × [0, k] is the set of states, S is the set of states of
the transition graph with states possibly added to account
for the perturbations, times a perturbation counter vk
ranging from 0 to k;

• Ep ⊆ {(s, i) → (s′, i) | i ∈ [0, k], (s → s′) ∈ Ef} ∪
{(s, i) → (s′, i + 1) | i ∈ [0, k − 1], s, s′ ∈ S}, is
the set of transitions, which accounts both for a subset of
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asynchronous transitions of STG(f) and for perturbations
(which increase the perturbation counter by one).

Graph layers and layer subsets
The transition graph can be layered by regrouping all states
having the same perturbation count in the same layer. Let
Nj = Vp × {j} be the set of all states in layer j. A subset
A ⊆ Sp restricted to a layer j is denoted Aj := A ∩ Nj . A
subset A ⊆ Vp of STG(f) times a layer j is Aj := A× {j}.

Property 1. Given a Perturbed Transition Graph G of a BN f
with temporary perturbations, for all i ≤ k, the subgraph Ni
of G is isomorphic to STG(f), the original network’s transition
graph.

Property 2. If i > j, then (s, j) ∈ Sp cannot be reached from
(s′, i) ∈ Sp, regardless of s and s′. That is, the perturbation
counter can only increase.

From the definition of basin (Def. 4), the basin of a set of
nodes X restricted to a layer considers only the transitions
in the layer.

Definition 6 (Basin restricted to a layer). The basin of X
restricted to a layer j, denoted by basj(X), is the biggest set Y
such that X ⊆ Y ⊆ Nj and ∀y ∈ Y \ X, (post(y) ∩ Nj) ⊆
Y ∧ ∃x ∈ X, y →∗ x.

3.2 Set characterization of inevitable reprogramming
Given a Perturbed Transition Graph (Sp, Ep) of a BN f with
a maximum number of perturbations k (temporary or per-
manent), let φ ⊆ S be a set of states of the original STG(f).
States in φ are the targets of the inevitable reprogramming.
W is the solution set, the set of all states that have inevitable
reprogramming from them to one of the target states.

As a reminder, φj is the set of states in φ in STG(f) which
are in layer j in the perturbed transition graph.

In order to compute W , two other sets ψj and Wj for
each layer are computed. ψj is the set of states in layer j
that need to be reached in order to reach one of the target
states in φ. Thus, ψj contains states of φj and states allowing
one or multiple perturbations to a lower layer, where φ can
be reached. Wj is the basin, restricted to the layer j, of ψj .
Hence, Wj is the set of states, in layer j, that reach one of
the states in φ, whether the state is in layer j or not.

The sets ψj and Wj are defined as follows:
ψk = {x | x ∈ Nk ∧ x ∈ φk}
Wk = bask(ψk)

For j between k − 1 and 0:
ψj = {x | x ∈ Nj ∧ (x ∈ φj ∨ x ∈ pre(Wj+1)}
Wj = basj(ψj)
Since ψk exists and is defined, all ψj and Wj are defined.

The set describing the solution isW = ∪j∈[1,k]Wj .
If the initial state s0 is in W , then there exist inevitable
reprogramming solutions, and all reprogramming solutions
are inW .

Property 3. By construction, the set of all attractors reachable in
the graph restricted toW is a subset of φ× [0, k].

Algorithm using the state set characterization
Algorithm 1 is given in pseudo-code using the set
characterization explained previously. The notations are

the same. A loop invariant is that W corresponds to the
set of states from layer j to layer k that have inevitable
reprogramming to a state in φ.

The inputs of the algorithm are a Perturbed Transition
Graph (Sp, Ep), a set of states φ, an initial state s0, and the
maximal number of perturbations, k.

The first step is to set Wk+1 to the empty set, as there
are no states in layer k + 1 (line 2), and W is the set of all
possible solutions, henceW = ∅ at the beginning.

Then, for each layer j, ψj has to be computed. ψj is the
set of states either in φj or being direct predecessors of the
solution states of the lower layer, the layer j + 1. The basin
of ψj is then computed. These states are the solution states
of layer j, and are added to the set of all solution states,W .

When the computation has reached the first layer, either
the initial state is not among the solution states, in which
case there is no solution for this reprogramming (line 7), or,
if s0 ∈ W0, then the set of states containing all inevitable
reprogramming paths is returned (line 9).

Algorithm 1 Inevitable Reprogramming relying on the Set
Characterization

1: function REPROGRAMMING(G, φ, s0, k)
2: Wk+1 = ∅.
3: W = ∅
4: for j = k to 0 do
5: ψj = {x ∈ Nj | x ∈ φj ∨ x ∈ pre(Wj+1)}
6: Wj = basj(ψj)
7: W =W

⋃
Wj

8: if s0 6∈W0 then
9: Return ∅

10: else
11: ReturnW

One could be surprised by the definition of ψj : in Wj ,
we use the basin of ψj , where the system will always reach
one of the state in ψj , and on the other hand, in ψj , only the
preimage of Wj+1 is used. However, in this case, we want to
control the system, meaning the perturbations are chosen by
the controller. As a consequence, the controller only needs
to choose one perturbation among all possible ones in order
to reach Wj+1.

Complexity
Given a transition graph G from a network with n variables,
and the possibility of doing up to k perturbations, k×m can
be defined as the number of states of G, with m = O(en).

Since the algorithm relies on the exploration of subparts
of the graph, and the distance between basins of attraction
and other layers, the complexity, both in space and time,
will vastly depend on the graph properties.

In the worst case, all ln(m) perturbations from a state in
ψj have to be explored, and all k ×m states are in different
ψj . Hence, the worst time complexity is inO(k×m×ln(m)),
or, if we use the size of the network as the entry, O(k × n×
en).

As for space complexity, the algorithm returnsW , which
is the set of explored states mentioned for time complexity,
giving the same complexity.
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inital state

Layer 0

Layer 1

Fig. 3: Computing ψ1, in green.

However, these worst cases happen only if there are only
perturbations in the transition graph, meaning there is no
inherent dynamics to the model. Typical cases would have
a lower time and space complexity.

Visual explanation of the set algorithm
Figures 3 to 7 show an example of the algorithm applied to a
transition graph, with the states in φmarked as squares, and
perturbation transitions in red. In this example, there are
only two layers. Note that each layer of the transition graph
should always be the same that layer 0, except for some
transitions removed in the case of permanent or durable1

perturbations. Here the two layers are different, it could be
a different part of the original transition graph.

Figures 3 and 4 represent the first iteration of the for
loop, respectively computing ψ1 and then its basin to have
the solution states in the layer 1: W1 = bas(ψ1).

The next two figures, 5 and 6, represent the second itera-
tion of the for loop, computing (in green) ψ0, by using some
states in W1 (in blue), and then computing W0 = bas(ψ0).

Figure 7 represents the last step of the algorithm: since
the initial state is in W0, the different perturbations to reach
φ are computed.

The algorithm then returns W , the set of states in green
in figure 7. From this set, the perturbations can be extracted
using the perturbation counter and by comparing the states.
An example on how to do so is given in Sect. 4.

Existential Reprogramming
The algorithm and experiments focus on inevitable repro-
gramming as it is the most relevant for applications in cel-
lular reprogramming. However, existential reprogramming
can be easily achieved with the same algorithm by changing
basj(X) to pre∗j (X) on line 6.
As a reminder, in Sect. 2 the definition for pre∗j (X) is the set
of states that can lead to X . This set can then be restricted
to states only being in layer j.
Existential Reprogramming is the existence of a path to the

1. One could imagine a model where perturbations change the func-
tions of the graph for a given time. In this case, the model and hence
the perturbed transition graph are changed.

inital state

Layer 0

Layer 1

Fig. 4: Computing W1 = bas(ψ1), in green.

inital state

Layer 0

Layer 1

Fig. 5: In green, ψ0 in the layer 0, and in blue the successors
in W1.

inital state

Layer 0

Layer 1

Fig. 6: Computing in green W0 = bas(ψ0).
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inital state

Layer 0

Layer 1

Fig. 7: Marking in greenW , and in purple the perturbations
possible.

0000,0 0001 1000,1

1010,1 1011,1

1111,2

1101,2

0010 0011

0100 0101

0110 0111
1001

1100

1110

x1 = 1
x2 = 1

Fig. 8: The perturbation path returned by the algorithm on
the example of Sect. 2.

solution. By using the set of predecessors instead of the
basin, the algorithm no longer guarantees the reprogram-
ming, but still guarantees the target to be reachable with the
perturbations returned.

3.3 Example

Applied on the example of Sect. 2 for the inevitable repro-
gramming from 0000 to 1101 with k = 2, W is the set of
highlighted states, meaning all states not in gray in Fig. 8,
and the algorithm returns (x1 = 1, x2 = 1) as the only
solution. The perturbation count is the number after the
comma in the state.

The sequential reprogramming path identified in Sect. 2
is the only strategy for inevitable reprogramming.

A more complete explanation is given in sub-sect. 4.3,
with the implemented version of the algorithm.

4 COMPUTATION OF THE TEMPORARY SEQUEN-
TIAL REPROGRAMMING PATHS

In Sect. 3, we have introduced a general algorithm to
compute all the inevitable reprogramming solutions for the
temporary and the permanent sequential control. In this
section, we focus on the temporary sequential control, and
we propose an algorithm to find the minimal number of
perturbations and the associated reprogramming paths.

4.1 Encoding BNs with temporary perturbations in
BDDs

Binary decision diagrams (BDDs) were introduced by Lee
in [10] and Akers in [2] to represent Boolean functions [10],
[2]. BDDs have the advantage of memory efficiency and
have been applied in many model checking algorithms to
alleviate the state space explosion problem.

A BN with temporary perturbations, denoted as
G(Vp, fp) is constructed by adding a variable vk to V , whose
value denotes the number of perturbations, and adding
functions to f to enable the perturbations of the variables
V . These functions allow any variable to change value at
the cost of increasing the perturbation counter vk. It can
be modeled as a perturbed transition graph G(Sp, Ep) as
described in Sect. 3, which can then be encoded in a BDD.
Each variable in Vp can be represented by a BDD variable.
Specifically, the Boolean variables V ∈ Vp are binary BDD
variables and the perturbation counter vk is a bounded
integer variable, whose value is in [0, k]. By slight abuse of
notation, we also use Vp to denote the set of BDD variables.
In order to encode the transition relations, another set V ′p
of BDD variables, which is a copy of Vp, is introduced: Vp
encodes the possible current states, i.e., x(t), and V ′p encodes
the possible next states, i.e., x(t+ 1).

4.2 Method for the computation of the temporary se-
quential reprogramming paths

In Sect. 3, we described Algorithm 1 to compute inevitable
reprogramming solutions with k perturbations. In this sec-
tion, we modify Algorithm 1 to derive a method to compute
the minimal number of perturbations and the corresponding
inevitable temporary reprogramming paths in Algorithm 2.
As mentioned in Sect. 4.1, we encode BNs with pertur-
bations in BDDs, hence most operations of the algorithm
are performed with BDDs. This algorithm takes a BN with
perturbations G, the maximal number of perturbations al-
lowed k, a source attractor As and a target attractor At as
inputs. Note that At is an attractor of the original STG(f)
and does not contain the value of the perturbation counter.
If there exist temporary reprogramming paths within k
perturbations, the minimal number of perturbations pmin
and all inevitable temporary reprogramming paths ρ will be
returned as outputs.

We first compute the corresponding set of states of the
target attractor At in the perturbed transition graph at each
layer i, i ∈ [0, k] as line 3. We cycle through lines 4–15 to
compute the minimal number of perturbations pmin and the
corresponding reprogramming paths ρ. Let m denote the
number of perturbations. Starting fromm = 0, we gradually
increase m by 1 until we find a solution or m is greater than
k. For each m, we compute two sets W and P according
to lines 6-9. Wm is the basin of the projection of the target
attractor at layer m (line 6). Pi, i ∈ [0,m − 1] stores the
direct predecessors of Wi+1 at layer i and Wi, i ∈ [0,m− 1]
is the basin of Pi at layer i. The basin is computed using the
fixed point computation of strong basins in [16]. In this way,
any state s, s ∈ Pi can reach a state s′, s′ ∈ Wi+1 with one
perturbation and any state s, s ∈ (Wi \ Pi) can reach a state
s′, s′ ∈ Pi spontaneously.
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Algorithm 2 Temporary sequential reprogramming of BNs

1: procedure COMPUTATION OF SEQUENTIAL REPROGRAMMING PATHS(G, As, At, k)
2: Initialize the minimal number of perturbation pmin = 0, flag = False ;
3: Compute the corresponding set of states of A at each layer i, i ∈ [0, k], denoted as {At0, At1, . . . , Atk}.
4: for m = 0;m <= k;m+ + do
5: InitializeW = {W0,W1, . . . ,Wm}, P = {P0, P1, . . . , Pm−1};
6: Wm = basm(Atm)
7: for z = m− 1; z >= 0; z −− do
8: Pz = pre(Wz+1) ∩Nz
9: Wz = basz(Pz) ∩Nz // local basin of Pz at layer z

10: if As ⊆W0 then
11: pmin = m,flag = True
12: Initialize a vector ρ to store the paths.
13: ρ = COMPUTE PATHS(1, As, ρ,W,P); // Algorithm 3
14: TSρ = EXTRACT PATHS(ρ,TS ).
15: break;
16: if flag == False then
17: There is no temporary sequential reprogramming paths within k perturbations.

Algorithm 3 Helper functions

1: procedure COMPUTE PATHS(z, Tz−1, ρ,W,P)
2: Sz = post∗(Tz−1) ∩ Pz−1;
3: Tz = post(Iz) ∩Wz ;
4: Insert (Sz, Tz) to ρ.
5: if z <W .size() then
6: ρ = COMPUTE PATHS(z + 1, Tz, ρ,W,P)

7: return ρ
8: procedure EXTRACT PATHS(ρ,TS )
9: Initialize a BDD TSρ

10: for (Sz, Tz) ∈ ρ, z ∈ [1,m] do
11: Add the transition relation from any state s in Sz

to any state t in Tz to TSρ.
TSρ = TSρ ∧ TS

12: return TSρ

For the two loops, an invariant is that m is the maximum
number of perturbations for a minimal solution. The first
loop stops when such a m is found, and the fact that W
is the set of states that have an inevitable reprogramming
solution to A, as in Algorithm 1.

There exist reprogramming paths with m perturbations
if and only if As ⊆ W0. If so, the minimum number of
perturbations required is m and the reprogramming paths
ρ can be computed with Procedure “COMPUTE PATHS” in
Algorithm 3. We start with As and by iteratively performing
lines 2-4 of Algorithm 3, we can identify all the paths ρ
from s to A with m perturbations. ρ stores a list of tuples
{(S1, T1), (S2, T2) . . . , (Sm, Tm)}. S1 is a set of states at
layer 0, that can be reached by the source state s0 spon-
taneously. With one perturbation, any state s1, s1 ∈ S1

can reach a state t1, t1 ∈ T1, and t1 can always reach a
state s2, s2 ∈ S2. With the co-action of the spontaneous
evolutions of BNs and m perturbations, the network will
eventually reach At.

However, Sz and Tz , z ∈ [1,m] are two sets of states, for
any state sz ∈ Sz , its successors post(sz) are a subset of Tz
and this information is missing in ρ. In order to identify the

reprogramming determinants, we extracted the transition
relations of the reprogramming paths TSρ from the transi-
tion system TS using Procedure “EXTRACT PATHS” .

Due to the utilization of the spontaneous evolutions of
BNs, this method requires a full observation of the transition
system to identify which path the system follows.

Existential Reprogramming
As for Algorithm 1, Existential Reprogramming can be
achieved easily by replacing basz(X) by pre∗z(X) in Algo-
rithm 2.

4.3 Example

For the example in Sect. 2, we compute all the minimal
inevitable sequential reprogramming paths from 0000 to
1101 with Algorithm 2. We cycle through lines 4-15 and
increase the number of perturbations m from 0 to k until we
find a solution. Fig. 9 shows the computation process when
m = 2. For every state, the number after the comma is the
perturbation count. We first computeW and P according to
lines 6-9. At layer 2, W2 (green and red states) is the basin
of the projection of the target at that layer, 1101,2. At layer
1, P1 (green states) represents the predecessors of W2, from
which, by applying one perturbation, we can each one of
the state in W2. And W1 (green and blue states) is the basin
of P1 at layer 1. Similarly, P0 represents the predecessors of
W1 and W0 is the basin of P0 at layer 0. For this example, P0

and W0 are the same, and they include green and red states
at layer 0. Since the source state 0000,0 is in W0, the minimal
number of perturbation required is 2.

We compute the reprogramming paths by iteratively
applying the procedure COMPUTE PATHS. The intersection
S1 = {0000,0} of P0 with the successors of the source state
0000,0 at layer 0, is the set of states from which we can apply
one perturbation to reach a subset T1 = {1000,1} of W1.
The intersection S2 = {1011,1} of P1 with the successors of
T1 at layer 1, is the set of states from which we apply the
second perturbation to reach a subset T2 = {1111,2}
of W2. Thus, the reprogramming paths are ρ =
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{(S1:{0000,1}, T1:{1000,1}), (S2:{1011,1}, T2:{1111,2})}.
For this example, there is only one path and the repro-
gramming determinants are x1 and x2. The whole control
process will be s0 → S1

x1=1−−−→ T1 → S2
x2=1−−−→ T2 → A2.

0101,0

0111,00110,0

0100,0 1100,0

1110,0 1111,0

1101,0

0001,0

0011,00010,0

0000,0 1000,0

1010,0 1011,0

1001,0

Layer 0

0101,1

0111,10110,1

0100,1 1100,1

1110,1 1111,1

1101,1

0001,1

0011,10010,1

0000,1 1000,1

1010,1 1011,1

1001,1

Layer 1

0101,2

0111,20110,2

0100,2 1100,2

1110,2 1111,2

1101,2

0001,2

0011,20010,2

0000,2 1000,2

1010,2 1011,2

1001,2

Layer 2

x1 = 1

x2 = 1

Fig. 9: Computation of reprogramming paths of the example
of Sect. 2 with Algorithm 2.

5 CASE STUDIES

To demonstrate the efficiency and effectiveness of the tem-
porary sequential control method, we apply it to three real-
life biological networks. The method is implemented in
ASSA-PBN[13], based on the model checker MCMAS [11] to
encode BNs into BDDs. All the experiments are performed
on a computer (MacBook Pro), which has a CPU of Intel
Core i7 @3.1 GHz and 8 GB of DDR3 RAM. Program
executables and model files are provided as supplementary
material. We first describe the three biological networks.

The cardiac gene regulatory network is constructed for the
early cardiac gene regulatory network of the mouse, includ-
ing the core genes required for the cardiac development
and the FHF/SHF determination [9]. This network has 15
variables and 6 single-state attractors.

inital state

s1 s2

s3 s4

s5 s6 s7 s8 s9 s10 s11 s12

target attractor

Layer 0

Layer 1

Layer 2

Fig. 10: Reprogramming paths from attractor A2 to attractor
A5 for the cardiac network.

The PC12 cell differentiation network is a comprehensive
model used to clarify the cellular decisions towards pro-
liferation or differentiation [15]. It shows the interactions
between protein signalling, transcription factor activity and
gene regulatory feedback in the regulation of PC12 cell
differentiation after the stimulation of NGF. This network
consists of 32 variables and has 7 single-state attractors.

The bladder network is designed for studying patterns and
conceiving counter-intuitive observations, which allow us
to formulate predictions about conditions where combining
genetic alterations benefits tumorigenesis [17]. This network
consists of 35 variables. It has 5 single-state attractors and 3
cyclic attractors.

We choose two different attractors as the source and
target attractors. For each pair of the source and target at-
tractors, we compute the minimal number of perturbations
and all inevitable reprogramming paths for the sequential
control.

Table 1, 2 and 3 give the minimal number of perturba-
tions for the initial reprogramming [16] and the sequential
control on three networks for all combinations of the source
and the target attractors. It is obvious that the sequential
control always outperforms the initial reprogramming in
terms of the number of perturbations. This is due to the
fact that the initial reprogramming performs all the per-
turbations at once [16], while our sequential control takes
advantage of the spontaneous evolutions of the networks,
which helps to drive the network towards the desired target.

We compute all possible inevitable paths for every pair
of the source and the target attractors. Figure 10 describes
the reprogramming paths from attractor A2 to attractor A5

for the cardiac network. It is also a partial transition system
of the cardiac network with perturbations. The red arrows
represent perturbations and the dashed arrows represent
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A A1 A2 A3 A4 A5 A6

sim seq sim seq sim seq sim seq sim seq sim seq
A1 0 0 7 3 4 2 1 1 8 4 6 3
A2 2 2 0 0 1 1 1 1 2 2 4 3
A3 1 1 1 1 0 0 2 2 4 3 3 3
A4 1 1 6 2 6 3 0 0 8 3 9 4
A5 2 2 1 1 2 2 1 1 0 0 1 1
A6 1 1 2 2 1 1 2 2 1 1 0 0

TABLE 1: The minimal number of perturbations for the initial reprogramming and the sequential control on the cardiac
network.

A A1 A2 A3 A4 A5 A6 A7

sim seq sim seq sim seq sim seq sim seq sim seq sim seq
A1 0 0 1 1 10 2 1 1 11 3 2 2 1 1
A2 9 8 0 0 1 1 10 9 3 2 11 10 10 9
A3 7 7 1 1 0 0 8 8 1 1 9 9 8 8
A4 1 1 1 1 10 2 0 0 11 3 1 1 2 2
A5 8 8 1 1 1 1 9 9 0 0 8 8 7 7
A6 2 2 1 1 11 2 1 1 10 3 0 0 1 1
A7 1 1 1 1 11 2 2 2 10 3 1 1 0 0

TABLE 2: The minimal number of perturbations for the initial reprogramming and the sequential control on the PC12 cell
network.

A A1 A2 A3 A4 A5 A6 A7 A8

sim seq sim seq sim seq sim seq sim seq sim seq sim seq sim seq
A1 0 0 1 1 1 1 3 3 2 2 2 2 7 4 13 4
A2 1 1 0 0 2 2 8 4 1 1 9 3 10 3 8 3
A3 1 1 2 2 0 0 2 2 1 1 3 3 3 3 7 3
A4 3 3 2 2 2 2 0 0 3 3 1 1 1 1 9 3
A5 2 2 1 1 1 1 3 3 0 0 8 4 2 2 4 2
A6 2 2 1 1 3 3 1 1 4 2 0 0 6 2 14 4
A7 4 2 1 1 3 3 1 1 2 2 6 2 0 0 6 2
A8 2 2 1 1 1 1 6 3 2 2 12 4 5 4 0 0

TABLE 3: The minimal number of perturbations for the initial reprogramming and the sequential control on the bladder
network.

T (s) A1 A2 A3 A4 A5 A6

A1 0 0.115 0.082 0.007 0.186 0.171
A2 0.013 0 0.045 0.006 0.1 0.166
A3 0.005 0.045 0 0.012 0.133 0.196
A4 0.007 0.069 0.099 0 0.134 0.228
A5 0.011 0.044 0.072 0.006 0 0.043
A6 0.007 0.069 0.067 0.012 0.063 0

TABLE 4: The time costs of the sequential control on the
cardiac network.

T (s) A1 A2 A3 A4 A5 A6 A7

A1 0 0.188 0.463 0.479 0.458 0.473 0.486
A2 3.509 0 0.446 3.803 0.254 2.676 4.358
A3 2.906 0.185 0 3.843 0.21 2.86 3.597
A4 0.833 0.188 0.467 0 0.457 0.399 0.519
A5 3.589 0.183 0.4 5.792 0 3.473 3.229
A6 0.946 0.188 0.453 0.485 0.542 0 0.43
A7 1.183 0.189 0.453 0.601 0.545 0.388 0

TABLE 5: The time costs of the sequential control on the
PC12 cell network.
T (s) A1 A2 A3 A4 A5 A6 A7 A8

A1 0 1.037 3.909 2.984 15.547 3.519 7.318 5.991
A2 3.37 0 6.11 12.349 6.64 10.705 5.286 4.651
A3 3.538 1.073 0 2.402 6.559 3.249 5.467 4.581
A4 5.426 1.073 6.085 0 18.906 1.737 0.951 4.564
A5 3.987 0.995 3.908 3.277 0 43.301 4.238 3.344
A6 4.037 0.982 9.357 2.325 16.124 0 4.273 9.803
A7 4.144 0.991 6.882 1.974 16.021 4.974 0 3.340
A8 4.13 0.973 4.659 3.107 16.106 11.763 8.111 0

TABLE 6: The time costs of the sequential control on the
bladder network.

paths in the transition system. The initial state is A2 at layer
0 and the target attractor is the extension of A5 at layer 2.
By perturbing variables “Tbx5” or “Nkx25”, we can reach
s1 or s2 at layer 1. At this step, on one hand, we can perturb
“Nkx25” at s1 or “Tbx5” at s2 to reach s5 at layer 2. On
the other hand, we can let the network evolve and when
the network is at states s3 or s4, by performing different
perturbations, we can reach one of the states (s5-s12) at layer
2, which is in the basin of the target attractor A5 at layer 2.
In this way, the network will eventually reach the target
attractor spontaneously.

Table 4, 5 and 6 show the time costs of the sequential
control on three networks. The time costs include the com-
putation of the minimal number of perturbations as well
as the computation of all inevitable reprogramming paths.
The ranges of the time costs for the cardiac network, the
PC12 network and the bladder network are 0.005-0.228,
0.183-5.792, 0.951-43.301 seconds, indicating the efficiency
and scalability of our sequential control method. There are
mainly two factors that influence the efficiency of the se-
quential control: the minimal number of perturbations and
the number of reprogramming paths. If the required mini-
mal number of perturbations is big, many iterations will be
performed since we start from m = 0. Meanwhile, it also
takes time to compute all the solutions using the procedure
“COMPUTE PATHS” if there exist many reprogramming
paths.
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6 DISCUSSION

Sequential reprogramming consists in applying perturba-
tions in a specific order and in specific states of the system to
trigger and control an attractor change. It relies on the tran-
sient dynamics of the system. Sequential reprogramming is
interesting for biologists wanting to reprogram cells: it can
return new targets, and can lower costs by requiring lighter
interventions.

As discussed in Sect. 2, initial reprogramming is only
allowing perturbations from the initial state, thus there is
no order needed. This case is discussed in multiple other
works, and has been the main computation technique for
perturbations. Once all the perturbations have been done,
the system stabilizes itself in the targeted attractor. By
ordering and “waiting” between the perturbations, other
dynamics of the system can be used, thus possibly reducing
the number of variables to be perturbed, and returning new
solutions.

Other works [4], [8], [3], [19] can use probabilistic meth-
ods to determine perturbations to do in the initial state.
These reprogramming techniques compute initial existential
reprogramming. Technically, no proof is given that the net-
work will reach the wanted target, however there is a high
probability that it will. Some of these works [4], [3] choose
an initial state randomly for each test.

Some works [5], [20] focus on making the target always
reached, but still only use initial perturbations, making them
initial inevitable reprogramming techniques.

In other works [1], [18], the model allows for sequential
reprogramming, making them sequential existential repro-
gramming. In [1], the existence of solutions is checked
through a model checker, and specific perturbation paths
can be tested. In [18], the model is probabilistic and use time-
series data, thus allowing to make perturbations at different
times in the series.

Lastly, some works [23], [12] allow for sequential in-
evitable reprogramming.

Most of mentioned methods provide incomplete or non-
guaranteed results. Our aim is to provide a formal frame-
work for the complete and exact characterization of the
initial state and sequential reprogramming of Boolean net-
works.

This paper establishes a set characterization of sequen-
tial reprogramming for Boolean networks with either per-
manent (mutations) or temporary (e.g, through signalling)
perturbations. Perturbations can be applied at the initial
state, and during the transient dynamics of the system. This
later feature allows identifying new strategies to reprogram
regulatory networks, by providing solutions with different
targets and possibly requiring fewer perturbations than
when applied only in the initial state.

The algorithm we designed relies on modelling the com-
bination of Boolean network asynchronous transitions with
perturbation transitions by using binary decision diagrams.
The identification of sequential reprogramming solutions
then relies on an explicit exploration of the resulting tran-
sition system. Our method has no restriction on the nature
of the target state, which could be either a transient state,
fixed point attractor, or within a cyclic attractor. Our frame-
work can handle temporary perturbations for the inevitable

reprogramming to the targeted state, and the use of BDDs
allows for some scalability as supported by performed case
studies.
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