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Quantitative analysis of the self-assembly
strategies of intermediate filaments from

tetrameric vimentin
Eugen Czeizler, Andrzej Mizera, Elena Czeizler, Ralph-Johan Back, John E. Eriksson, and Ion Petre

Abstract—In vitro assembly of intermediate filaments from tetrameric vimentin consists of a very rapid phase of tetramers laterally
associating into unit-length filaments and a slow phase of filament elongation. We focus in this paper on a systematic quantitative
investigation of two molecular models for filament assembly, recently proposed in (Kirmse et al J. Biol. Chem. 282, 52 (2007), 18563–
18572), through mathematical modeling, model fitting, and model validation. We analyze the quantitative contribution of each filament
elongation strategy: with tetramers, with unit-length filaments, with longer filaments, or combinations thereof. In each case, we discuss
the numerical fitting of the model with respect to one set of data, and its separate validation with respect to a second, different set of
data. We introduce a high-resolution model for vimentin filament self-assembly, able to capture the detailed dynamics of filaments of
arbitrary length. This provides much more predictive power for the model, in comparison to previous models where only the mean length
of all filaments in the solution could be analyzed. We show how kinetic observations on low-resolution models can be extrapolated to
the high-resolution model and used for lowering its complexity.

Index Terms—Mathematical modeling, Protein self-assembly, Quantitative self-assembly strategies, Model resolution, Sensitivity
analysis, Filament length distribution.
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1 INTRODUCTION

The cytoskeleton of eukaryotic cells is an intricate net-
work of protein filaments that extends throughout the
cytoplasm. There are three types of protein filaments:
intermediate filaments (IFs), microtubules, and actin fila-
ments, [1]. Together with other proteins that attach to
them, they form a system of girders, ropes, and motors
that gives the cell its mechanical strength, controls its
shape, and drives and guides its movements, see [2].
Compared with microtubules and actin filaments, IFs
are more stable, tough and durable; in particular, IFs
are the most insoluble part of the cell, see [3]. IFs
have an important structural function in reinforcing the
cells, organize cells into tissues, and most importantly,
distribute the tensile forces across the cells in a tissue,
see [2]. Major degenerative diseases of skin, muscle, and
neurons are caused by disruptions of the IF cytoskeleton
or its connections to other cell structures. Currently,
around 80 diseases have been associated with the IF gene
family, including various skin fragility disorders, as well
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gies, Åbo Akademi University, Turku 20520, Finland.

• J. E. Eriksson is with the Turku Centre for Biotechnology and Department
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as laminopathies, a family of afflictions caused by point
mutations in the lamin A genes, [4], [5], [6]. A thorough
understanding of the assembling principles of IFs can
provide new insights on comprehending these abnormal
conditions, as well as a better basis for diagnostic and
possible treatment.

Contrary to the other protein filaments which are
assembled from globular proteins, see [7], [8], [9], IFs
subunits are α-helical rods that assemble into rope-like
filaments [3]. Their assembly proceeds through a series
of intermediate structures, which associate by lateral and
end-to-end interactions. However, unlike in the case of
microtubules and actin filaments where rich literature is
available, the assembly principles of IFs are still poorly
understood. We focus in this paper on the quantitative
kinetic strategies for the in vitro assembly of IFs from
human vimentin proteins (several other IF proteins exist,
see [10]). On a first level of their assembly, vimentin
proteins rapidly associate parallelly into dimers and then
form anti-parallel, half-staggered tetramers, see [11] and
Figure 1 (a)-(e). Tetramers then rapidly associate laterally
to yield short filaments called unit-length filaments (ULFs)
of the same length as the tetramers, see [3] and Figure 1
(f). On a second level of the assembly, the ULFs and the
emerging longer filaments elongate longitudinally with
tetramers, with ULFs, and with other filaments, [3] and
Figure 2. On a third level, filaments undergo a radial
compaction from an ULF diameter of about 15 nm to
a filament diameter of about 11 nm, see [3] for details.

We investigate in this paper two molecular models
(the so-called simple and extended models) introduced
in [12] for the in vitro assembly of intermediate filaments
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Fig. 1. The first stage in the assembly of human vimentin
proteins. Intermediate filament subunits are α-helical
rods, that associate parallelly into coiled-coil dimers,
which in turn form anti-parallel, half-staggered tetramers.
Tetramers rapidly associate laterally to yield the shortest
filaments called unit-length filaments (ULFs) of the same
length as the tetramers. (a) α-helical rods, (b) coiled-coil
dimer, (c) another representation of a coiled-coil dimer,
(d) tetramer, (e) ULF.

from tetrameric vimentin. We perform a quantitative
analysis of the predictive capabilities of these models.
We construct two mass action-based mathematical mod-
els corresponding to the two molecular models. For
each of them we consider several different knockdown
mutant model variants where various combinations of
assembly mechanisms are analyzed separately. We use
COPASI [13] as a computational environment for the
experimental data fitting (based on data of [12] and [14]),
the model validation, and the sensitivity analysis. Our
approach for the numerical analysis of the models differs
markedly from that of [12], see Section 4 for a discussion.

Our study provides several conclusions regarding the
kinetics of the in vitro assembly of human vimentin.
On one hand, we show that the filament elongation
process requires the end-to-end annealing of filaments
as one of its features, which is in agreement with the
results of [12]. Indeed, in all of our models where this
reaction was missing, either the model did not fit the
experimental data or the model was rejected in the
validation round. Moreover, in almost all cases where the
reaction modeling the end-to-end annealing of filaments
is present, its rate constant is estimated to roughly

(a)

(b)

Fig. 2. The two molecular models of the in vitro assembly
of vimentin IF tetramers. (a) In the simple model filaments
undergo elongation either by (a.1) longitudinal associ-
ation of tetramers or (a.2) by end-to-end annealing of
another filament. (b) The extended model adds a distinc-
tion between minimal-length filaments (ULFs) and longer
filaments (consisting of at least 2 ULFs). In this case,
there is one extra possibility for filament elongation: (b.1)
by tetramer, (b.2) by the longitudinal association of a ULF,
and (b.3) by another filament.

the same value, although the other kinetic constants
differ from model to model. On the other hand, the
quantitative contribution of the filament elongation with
tetramers depends on the turnover rate of tetramers into
unit length filaments. If tetramers are quickly depleted
from the system, e.g., through a high tetramer-to-ULF
turnover rate as documented in in vitro experiments of
[12], then only one of eight possible assembly strategies
correlates well with the available experimental data, in
agreement with conclusions of [12]. If free tetramers are
however available throughout the assembly, then we
show that several different assembly strategies correlate
similarly well with the experimental data.

One of the modeling challenges identified in [12] was
to increase the resolution of the model: instead of collect-
ing all filaments into a single variable, regardless of their
length, one should describe separately the dynamics of
filaments of various lengths, at least up to a certain fixed,
but arbitrarily high length, that we call the resolution
of the model. Indeed, the quantitative experimental data
of [12] captures the levels of filaments of various lengths,
but the data is only used in [12] to calculate the mean
length of all filaments in the solution. We provide in this
paper a generic solution to this problem, demonstrating
how to enhance the existing filament assembly models
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with the dynamics of the filament length distribution.
Our enhanced model can have arbitrarily high resolu-
tion, being able to capture the dynamics of filaments of
arbitrarily high length. The size of this detailed model
is considerably higher than that of the basic model, both
in terms of molecular species, as well as in terms of
molecular reactions. Based on kinetic observations on
the basic model, we show however how the size of
the high-resolution model can be drastically reduced.
Our approach towards high-resolution models for pro-
tein self-assembly is independent of the particulars of
vimentin filaments and can be applied to other instances
of protein-protein interactions and protein assemblies.

2 MODELS AND METHODOLOGY

2.1 Two molecular models for the assembly of vi-
mentin IFs

The in vitro assembly of vimentin IF proteins consists
of three major phases, see [10]: (i) formation of the
unit-length filaments (ULF) structures; (ii) longitudinal
annealing of ULFs and growing filaments; (iii) radial
compaction of immature filaments into mature IFs. We
consider here two molecular models for this process,
originally introduced in [12]. Both of them focus on the
first two phases of the assembly, ignoring the third.

The simple model of [12] treats ULFs as ordinary fila-
ments and describes the assembly process through a se-
quence of molecular events as follows, see also Figure 2
(a):

(i) two tetramers (denoted T) associate laterally into
an octamer (denoted O):

2T → O; (1)

(ii) two octamers associate laterally to yield a hexade-
camer (denoted H):

2O → H (2)

(iii) two hexadecamers associate laterally to form a (unit
length) filament (denoted F):

2H → F (3)

(iv) a tetramer associates longitudinally to a filament to
yield an elongated filament:

F+T → F; (4)

(v) two filaments associate longitudinally to yield an
elongated filament:

F+F → F . (5)

The extended model of [12] adds a distinction between
minimal-length filaments (ULFs, denoted U) and longer
filaments (consisting of at least two ULFs), treating them
as distinct species in the model, see Figure 2 (b). In terms
of molecular events, the extended model consists of the
following reactions:

(i’) two tetramers (denoted T) associate laterally into
an octamer (denoted O):

2T → O; (6)

(ii’) two octamers associate laterally to yield a hexade-
camer (denoted H):

2O → H (7)

(iii’) two hexadecamers associate laterally to form a unit
length filament (denoted U):

2H → U (8)

(iv’) two unit length filaments associate longitudinally
to form an elongated filament (denoted F):

2U → F (9)

(v’) a filament is elongated longitudinally with
a tetramer:

F+T → F (10)

(vi’) a filament is elongated longitudinally with a unit
length filament:

F+U → F (11)

(vii’) two filaments associate longitudinally to yield an
elongated filament:

F+F → F (12)

2.2 Mathematical models
We consider a mathematical formulation of the simple
and the extended models for IF assembly based on
the mass-action law, where each molecular species is
represented by a continuous non-negative real function
denoting its concentration in time. The system of differ-
ential equations corresponding to the simple model is
the following:

d[T]/dt = −2ks1[T]
2 − kst [T][F] (13)

d[O]/dt = ks1[T]
2 − 2ks2[O]2 (14)

d[H]/dt = ks2[O]2 − 2ks3[H]2 (15)
d[F]/dt = ks3[H]2 − ksf [F]

2 (16)

where ks1, k
s
2, k

s
3, k

s
t , k

s
f are the kinetic rate constants of

reactions (1)-(5), respectively.
The mathematical model corresponding to the ex-

tended model consists of the following system of dif-
ferential equations:

d[T]/dt = −2ke1[T]
2 − ket [T][F] (17)

d[O]/dt = ke1[T]
2 − 2ke2[O]2 (18)

d[H]/dt = ke2[O]2 − 2ke3[H]2 (19)
d[U]/dt = ke3[H]2 − 2ke4[U]2 − keu[U][F] (20)
d[F]/dt = ke4[U]2 − kef [F]

2 (21)

where ke1, k
e
2, k

e
3, k

e
4, k

e
t , k

e
u, k

e
f are the kinetic rate con-

stants of reactions (6)–(12), respectively.



4

Fig. 3. (a) The unit-length filament is approximately 63 nm
long ([15]). (b) However, each ULF associated longitudi-
nally at the end of an existing filament (or ULF) elongates
it by approximately 42 nm ([15]). This is due to the
interdigitation by which two ULFs anneal longitudinally.

An interesting aspect here is that the mass conser-
vation relation on the total number of tetramers in the
model is evident in the molecular models (since there is
no synthesis and no degradation in the model), whereas
it cannot be deduced as a property of either of the two
corresponding mathematical models. This is a conse-
quence of how, for example, the longitudinal association
of two filaments is modeled: the information about
the lengths of the two input filaments is not explicitly
reproduced in a property of the two filaments. One can
however calculate the number of tetramers integrated
in the assembled filaments, as we do in Section 2.3,
and then use this quantity to reason about the time-
dependant dynamics of the mean filament length (MFL).
We relate MFL to the experimental data of [12] and
discuss the numerical fit of the models in Section 3.

2.3 Calculating the mean filament length

Relating the models proposed in the previous section for
IF assembly to the quantitative data on the dynamics of
the filament length is non-trivial because the two models
do not represent explicitly the information about the
length of the emerging filaments. Indeed, both models
collect all filaments into a single variable (F ), regardless
of their length. We show however in this section that
the dynamics of the mean filament length can in fact be
deduced based on the variables of the two models.

During the process of ULFs aggregation atomic force
microscopy (AFM) shows that each ULF associated lon-
gitudinally at the end of an existing filament adds to
the length of that filament less than the stand-alone
length of a ULF, see [15]. In the model for vimentin
assembly of [15] this is due to interdigitation of the ULF
and the filament to each other, see Figure 3. The stand-
alone unit-length filament is approximately 63 nm long
([15]), while each additional ULF elongates a filament by
approximately 42 nm ([15]).

We denote by Lm(t) the time-dependent expression for
the mean filament length (MFL) at time t. We also denote
by #TF (t) the total number of all tetramers integrated
in the assembled filaments at time t. Since we consider

two categories of filaments, U and F, we obtain that

Lm(t) =
lF (t) + lU (t)

#F (t) + #U(t)
, (22)

where lF (t) and lU (t) denote the total length of all
filaments and the total-length of all ULFs at time t,
while #F (t) and #U(t) denote the total number of all
filaments and that of all ULFs, respectively. Since in each
filament the first ULF accounts for lULF ≃ 63 nm of the
total length of that filament and all the additional ULFs
elongate the filament by laddULF ≃ 42 nm, we have that

lF (t) = (#UF (t)−#F (t)) · laddULF +#F (t) · lULF

= #UF (t) · laddULF +#F (t) · (lULF − laddULF ),

where #UF (t) denotes the the total number of all ULFs
in all filaments, in time. Since ULFs consist on average
of eight tetramers, we have that

#UF (t) =
#TF (t)

8
,

where #TF (t) is the number of tetramers already assem-
bled into filaments.

We denote by c0 the initial molar concentration of
all tetramers in the system (occurring in any of the
molecular species of the model: tetramers, octamers,
hexadecamers, ULFs, or filaments). Then, in the case of
the extended model we obtain

#TF (t) = (c0 − [T ](t)− 2 [O](t)− 4 [H](t)

− 8 [U ](t)) ·NA · V,

where NA is the Avogadro constant and V is the volume
of the system. Thus, (22) becomes

Lm(t) =
c0−[T ](t)−2 [O](t)−4 [H](t)−8 [U ](t)

8 · laddULF

([F ](t) + [U ](t))

+
[F ](t) · (lULF − laddULF ) + lULF · [U ](t)

([F ](t) + [U ](t))
.

In the case of the simple model, we obtain that

#TF (t) = (c0 − [T ](t)− 2 [O](t)− 4 [H](t)) ·NA · V.

Thus, (22) becomes

Lm(t) =
c0−[T ](t)−2 [O](t)−4 [H](t)

8 · laddULF

[F ](t)

+ (lULF − laddULF ).

Since the volume V of the considered system does not
change, the molar concentrations are expressed simply
in terms of micromoles (without reciprocal of the volume
unit) in the continuation.

2.3.1 Experimental data and model fitting
For the parameter estimations and model validations we
used the experimental data from [14] on the in vitro
assembly process of recombinant vimentin at 37 ◦C. The
data consists of two sets, each containing the length dis-
tributions of growing filaments at distinct time points up



5

TABLE 1
Measurements on the mean filament length of vimentin

protein IFs, based on EM data of [14] (data in [nm]);
a preliminary version of the data (containing a few minor

errors) is in [12].

Time [s] Initial molar concentration of all tetramers (c0)
0.45 µM 0.9 µM

10 65.1±1.4 62.8±2.1
20 68.2±2.0
30 76.5±2.1 84.1±2.0
60 112.9±4.0 131.4±5.2

180 172.6±8.4
300 233.0±10.0 289.1±15.8
600 320.7±18.5 418.6±24.7
900 544.1±34.8

1200 474.9±37.2 821.3±41.5

to 20 min. The data sets were obtained by adsorption of
the filaments onto carbon-coated copper grids and mea-
surements of the filament lengths from images recorded
with electron microscopy (EM) in two cases: when the
initial amount of tetramers was 0.45 µM and 0.9 µM.
For each set the time-dependent mean filament length
(MFL) was calculated. The MFL values together with
the 0.95 confidence intervals are presented in Table 1.
For detailed description of experimental procedures and
discussion on the independence of the measured MFLs
from the support medium we refer to [12].

For fitting our mathematical models, we used the MFL
data obtained for an initial tetramer concentration of
0.45 µM. For model validation, we then compared the
numerical prediction for the mean filament length with
the experimental data in Table 1 for an initial tetramer
concentration of 0.9 µM.

We set the initial molar concentrations of all molecular
species other than tetramers to 0, based on the setup
of the experimental assays. Thus, there remained to be
estimated five independent parameters (rate constants
ks1, ks2, ks3, kst and ksf ) for the simple model and seven of
them (rate constants ke1, ke2, ke3, ke4, kst , keu and kef ) for the
extended model. Parameter estimations were performed
in COPASI [13].

We also considered a qualitative property of the IF
assembly, reported in [12]: very quickly (within approx-
imately 10 seconds) after the initiation of the assembly,
ULF is the most predominant species in the system,
while tetramers are depleted. This observation only ap-
plied for the ab initio in vitro assembly of intermediate
filaments. The dynamics could however be very dif-
ferent if more free tetramers were available for longer
throughout the assembly (e.g., through an additional
tetramer synthesis mechanism). To test it, we considered
two different strategies for fitting our models: one where
the tetramer-to-ULF turnover is fast, and another where
it is slow. While the latter setup does not mimic the
presence of a tetramer synthesis mechanism (introducing
one would make it difficult to compare the models),
it does allow us to analyze the system in the case
where tetramers are available for a longer period for

the assembly. We demonstrate in the next section that
the two situations are indeed very different, in terms of
which filament elongation mechanisms (with tetramers,
with ULFs, or with other filaments) can explain the
available experimental data.

The problem of estimating the parameters of com-
putational models in systems biology is difficult, see
e.g., [16], [17], [18]. This problem can be formulated as
a minimization of a cost function which quantifies the
differences between the values predicted by the model
and the experimental measurements. There are numer-
ous methods, both local and global, which can be used
to tackle this problem, each with its own advantages
and disadvantages. For instance, while local methods
work faster to find a solution, they tend to converge
to local optima. On the other hand, global optimization
methods are typically slower, but they tend to converge
to a global optimum. The global optimization methods
can be further divided into deterministic [19], [20] and
stochastic approaches [21], [22]. Although the determin-
istic methods guaranty the convergence to a global opti-
mum, they cannot ensure the termination of this process
within a finite time interval [18]. On the other hand, the
inherent randomness of the stochastic approaches makes
it very hard to guaranty that these methods actually
converge to the global optimum [18]. However, many
stochastic methods are capable of locating the vicinity of
global solutions with relative efficiency, i.e. they provide
a very good approximation of the solution in acceptable
computation time [18]. This makes the stochastic global
optimization methods to be usually preferred for pa-
rameter estimation problems. We chose COPASI, [13], as
a computational environment for parameter fitting since
it includes a number of various optimization algorithms,
searching for either local or global optimum values, see
e.g., [23], [24]. This software is a widely used tool in
the computational systems biology modeling commu-
nity, having a documented good performance, see e.g.
[16], [17], [18]. In particular, for determining the best
numerical fits of our models, a suite of various global,
stochastic parameter estimation procedures was used,
comprising of methods such as Simulated Annealing,
Genetic Algorithm, Evolution Strategy using Stochastic
Ranking, and Particle Swarm. All these methods use
specific strategies for sampling the parameter space look-
ing for combinations of parameter numerical values that
give better and better fits of the model predictions to the
experimental data.

The fit of a model was performed by searching for a set
of parameter values that minimizes the sum of squared
deviations SSf of the values predicted by the model
from the 0.45 µM experimental data. The validation of
a fitted model was performed by numerically simulating
the model and by computing the sum of squared devia-
tions SSv of the values predicted by the model from the
0.9 µM experimental data. Moreover, the quality of the
fit/validation for each model was estimated by a dimen-
sionless number expressing the deviation of the model
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TABLE 2
Kinetic rate constant values in µM−1s−1 for the simple

model.

ks1 ks2 ks3 kst ksf
3.39 · 10−3 30 30 0.83 0.11

from the experimental data, normalized by the mean
of the predicted values. This method for estimating the
quality of model fit/validation was originally proposed
in [25] and it allows for comparison of different models
and different data sets. The formula for the quality of
the fit (fq) is:

fq =

√
SSf/Nf

mean of predicted values
· 100%, (23)

where Nf is the number of 0.45 µM experimental data
points (in our case Nf = 8). Similarly, the formula for
the quality of the validation (vq) is:

vq =

√
SSv/Nv

mean of predicted values
· 100%, (24)

where Nv is the number of 0.9 µM experimental data
points (in our case Nv = 7). It was argued in [25]
that a low (say, lower than 15%) value of fq (vq) was
considered as an indicator of a successful fit (validation).
We discuss the numerical values of fq and vq for all our
models in Section 3.

3 RESULTS

3.1 Data fitting the simple model
The kinetic rate constants in Table 2 yield an excellent fit
(fq = 2.52%) of the simple model for the experimental
data from the assay with 0.45 µM tetramers and a good
validation (vq = 12.07%) of the model when compared
with the data from the assay with 0.9 µM initial concen-
tration of tetramers, see Figure 4.

This model however could not confirm the quick
turnover of tetramers into filaments. When this condition
was taken into consideration by searching for relatively
high numerical values of ks1, ks2, and ks3 (higher than
1 µM−1s−1), the fit of the model to the experimental
data was unsuccessful (fq = 26.00%), despite numerous
rounds of parameter estimation. The following mathe-
matical argument is also indicating that this model can-
not be given a reasonable fit. Based on the observation
that tetramers are quickly depleted (within 10 seconds)
by turning them into ULFs, the model can be split into
two processes separated in time: first, the formation
of filaments from tetramers, i.e. 2T → O, 2O → H,
2H → F, and second, the elongation of filaments, i.e.
F+F → F. The steady state value of F in the first
process is an initial value of F in the second one. The
second process is described by the differential equation
dF /dt = −k F2, which has an analytical solution of
the form F(t) = F0 /(1 + k t F0), where F0 is the initial
value of F. The initial concentration of tetramers in the

(a)

(b)

Fig. 4. Time-dependent MFL growth corresponding to
the simple model without the quick filament formation
requirement. (a) The model fit with respect to the EM 0.45
µM experimental data set. (b) Model validation based on
the EM 0.9 µM experimental data set. The continuous line
is the model prediction regarding Lm(t), that is compared
with the experimental data showed with crossed points.
The short vertical lines represent the 0.95 confidence
intervals for the experimental data.

first process is c0, hence it follows that F0 = c0/8 since
all tetramers are turned into ULFs. In consequence, the
mean filament length can be expressed as

Lm(t) = lULF +
k c0 t

8
.

Thus, Lm(t) is a linear function. By plotting the experi-
mental data in Table 1 for time points after 30 seconds,
together with their 0.95 confidence intervals one can see
that there exists no k such that the model would be fitted
and validated against the data.

3.2 Data fitting the extended model

In the case of the extended model we distinguished
among three modes for filament elongation: (i) with
a tetramer, (ii) with a ULF, or (iii) with another fila-
ment, see Figure 2 (b). We investigated all eight possible
combinations of these three mechanisms and performed
parameter estimation and numerical model validation
for each of them, see Figure 5. Excluding any of the three
modes from the investigation was done by simply setting
to 0 the corresponding rate constants, i.e. ket , keu, and kef ,
respectively.
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Scenario I Scenario II Scenario III

Scenario IV Scenario V Scenario VI

Scenario VII Scenario VIII

Fig. 5. The eight possible scenarios for filament elongation. The tetramers/ULFs/filaments are illustrated with the
same type of block as in Figure 2.

3.2.1 The extended model with fast ULF formation.
In the case of fast tetramers-to-ULF turnover, both the
simple model and the extended model can be reduced.
Indeed, in this case, the populations of tetramers, oc-
tamers, and hexadecamers are all quickly depleted (in
a matter of seconds), leaving only the filaments as the
dominant species. Consequently, the longitudinal assem-
bly of tetramers to filaments has a negligible contribu-
tion to the overall dynamics of the model: in the first
few seconds the reaction is strangled by the negligible
population of filaments, whereas later on the population
of tetramers is depleted. This is in agreement with [12],
where it was observed that this particular elongation has
insignificant role. In this case we set ket = 0 and we
searched for numerical values for the kinetic rate con-
stants ke1, ke2, and ke3 that are greater than 3 µM−1s−1, to
ensure a fast tetramer-to-ULF turnover. It turned out that
scenario VIII, where keu = kef = 0, could be immediately
excluded. Indeed, in this scenario no filament containing
more than two ULFs could be assembled and so, all
filaments would be at most 100 nm long, contradicting
the experimental data in Table 1.

Scenarios VI and VII, where the filament elongation
takes place only by ULF extension (kef = 0), or only
by filament extension (keu = 0), respectively, could not
be fitted: for Scenario VI we obtained fq = 22.77%
and for Scenario VII fq = 14.99%, vq = 16.07%. We
concluded that these two strategies do not represent
viable pathways for vimentin IFs assembly.

In the case of scenario V we were able to obtain numer-
ical values for the parameters, see Table 3, such that the

TABLE 3
Kinetic rate constant values in µM−1s−1 (under fast ULF

formation requirement).

ke1 ke2 ke3 ke4 keu kef
3 30 30 0.25 0.95 0.11

predicted mean filament length was in good agrement
with the experimental data (fq = 3.66%, vq = 11.45%),
virtually identical to that of the simple model, showed
in Figure 4. We concluded that this pathway, where the
filament elongation is enabled both with ULFs and with
other filaments, is the only viable strategy for vimentin
IFs assembly. This is in agreement with observations
of [12].

Numerically fitting this scenario, we noticed that the
values of the two numerical parameter ke2 and ke3 can be
modified arbitrarily within the [3, 30] interval without
any significant change in the mean filament length pre-
diction. This indicates that the extended model under
the fast ULF formation exhibits almost no sensitivity
of mean filament length with respect to these two pa-
rameters in the mentioned interval and, in consequence,
our computational model turns to have less degrees of
freedom in terms of the numerical fit.

3.2.2 The extended model with slow ULF formation.
In this case, we searched for arbitrary positive numerical
values for the kinetic rate constants ke1, ke2, and ke3. The
result of fitting and validating the extended model are
very different in this case. We find that three out of the
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eight pathways analyzed in this paper for vimentin IFs
assembly can explain the experimental data, see Figure 6.

Scenario VIII could not be fitted (fq = 179.37%) based
on similar considerations as in the case of the fast ULF
formation, see Figure 6 VIII(a) and VIII(b). In the case
of the other seven pathways, the model fit with respect
to the EM 0.45 µM data and the model validation with
respect to the EM 0.9 µM data yielded good results,
summarized in Table 4 and Figure 6I-VII. The obtained
numerical values of the parameters are given in Table 5.
We noted that in the case of scenarios II, IV, and VI
the experimental MFL measurement at 1200 seconds for
the EM 0.9 µM data was an outlier. In all these three
scenarios, we have kef = 0, which indicates that the
process of end-to-end filament annealing plays a crucial
role in the later stages of the IFs elongation process, i.e.,
after the first 600 seconds. In the case of scenario VII, the
model left several experimental data points as outliers,
see Figure 6VII(a) and (b).

We concluded that scenarios I, III, and V are similarly
good in explaining the experimental data in this case.
These models correspond to the following three path-
ways for filament elongation: (i) Scenario I: by a tetramer,
a ULF or another filament longitudinal elongation; (ii)
Scenario III: by a tetramer or a filament longitudinal
elongation; (iii) Scenario V: by a ULF or a filament
longitudinal elongation.

3.3 Sensitivity analysis of the mean filament length
The effect of small variations in the model’s parameters
over the evolution of the entire model is estimated
by the sensitivity analysis. This mathematical method
consists in determining the time evolution of the partial
derivatives of the solution of the system with respect
to the parameters of the system. We investigated the
sensitivity of the mean filament length, i.e., the Lm(t)
function, with respect to the parameters of the model.
We compared the results of the sensitivity analysis in the
case of Scenarios I-VII of the extended model in order
to gain further insight into the possible pathways for IF
vimentin assembly.

The concentration sensitivity coefficients are the time
functions ∂Xi/∂κj for all 1 ≤ i ≤ 5 and 1 ≤ j ≤ 7,
where X = (X1, . . . , X5) is the vector of the model
variables ([T], [O], [H], [U], and [F], respectively) and
κ = (κ1, . . . , κ7) is the vector of the model parameters
(ke1, ke2, ke3, ke4, ket , keu, and kef , respectively). The sensitivity
of the mean filament length with respect to the param-
eters is obtained as follows:
∂Lm(t)

∂κj
=

∂Lm

∂X

∂X

∂κj
=

∂Lm

∂X1

∂X1

∂κj
+ · · ·+ ∂Lm

∂X5

∂X5

∂κj
,

for all 1 ≤ j ≤ 7.
Since we want to compare the MFL sensitivities of

several models, we transform these coefficients into di-
mensionless measurements by normalizing them:

κj

Lm(t)

∂Lm(t)

∂κj
=

∂ lnLm(t)

∂ lnκj
, for all 1 ≤ j ≤ 7.

We can interpret these coefficients as follows: in Scenario
I, an increase of 1% of the parameter kef would generate
at time t = 1200 s an increase of 0.5165% of the MFL,
roughly as predicted by the value of ∂ ln(Lm)/∂ ln(kf )
at time t = 1200, see Figure 7 b).

In the case of the extended model with fast ULF forma-
tion, only scenario V could be experimentally validated.
The results of the sensitivity analysis in this case are
presented in Figure 7 a). The most significant coeffi-
cients are with respect to the ke4, k

e
u, and kef parameters,

with the latter one being the most significant. This is
consistent with the biological intuition that the mean
filament length is most dependent on the rate of filament
formation (parameter ke4) and elongation (parameters keu
and kef ). Less intuitive is the fact that there is a neg-
ligible dependency of the MFL measurement on the
rate constants ke1, k

e
2, and ke3, which determine the fast

ULF formation. The rationale for this result is that these
kinetic constants play a role only in the first seconds of
the assembly. Once the vast majority of tetramers are
assembled into ULFs, their further contribution to the
model dynamics is insignificant.

The numerical time simulation of the non-negligible
normalized MFL sensitivity coefficients for scenarios I-
VII without fast ULF formation requirement are pre-
sented in Figure 7 b)–h). It turned out that the mean
filament length is most sensitive to keu and especially to
kef , when these constants are non-zero. This observation
helps explain why kef is estimated to very similar values
in most scenarios where its role is considered. Note
also that while the sensitivity coefficient with respect
to kef increases mainly after about 200 seconds, the
sensitivity coefficients for the parameters ket and keu have
a steep increase in the first 100–200 seconds (except in
scenario VII where filament elongation takes place only
by longitudinal filament aggregation). The biological
intuition here is that on one hand, until approximately
200 seconds the assembled filaments are relatively short
and much fewer than the ULF’s, while on the other hand
the number of ULFs and of free tetramers becomes very
low after about 200 seconds.

3.4 The length distribution of filaments in time

The models discussed so far in this paper, as well
as those in [12] collect all filaments other than ULFs
into one single variable denoted F , regardless of their
length. This approach is indeed enough for capturing the
time-dependent dynamics of the mean filament length,
that could then be related to experimental data and
used for parameter estimation and model validation.
As pointed out also in [12], this modeling approach is
however unsuitable for capturing the time-dependent
distribution of the filament lengths. Indeed, the length
of the assembling filaments is not directly captured in
the models, which makes it impossible to reason about
the time-dependant concentration of filaments of some
given length. We describe in this section a refined model
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I(a) I(b) II(a)

II(b) III(a) III(b)

IV(a) IV(b) V(a)

V(b) VI(a) VI(b)

VII(a) VII(b) VIII(a)

VIII(b)

Fig. 6. I(a)–VIII(a) The model fit of the scenarios I to VIII with respect to the EM 0.45 µM experimental data set. I(b)–
VIII(b) Model validation of the scenarios I to VIII with respect to the EM 0.9 µM experimental data set. The continuous
line is the model prediction regarding Lm(t), that is compared with the experimental data showed with crossed points.
The short vertical lines represent the 0.95 confidence intervals for the experimental data.
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TABLE 4
Fit and validation quality measure values for scenarios I–VII (without the fast ULF formation requirement).

I II III IV V VI VII
fq 1.71% 6.50% 1.98% 6.79% 2.04% 6.54% 13.01%
vq 12.70% 29.03% 12.36% 25.83% 12.65% 29.11% 19.19%

TABLE 5
Kinetic rate constant values in µM−1s−1 of scenarios I–VII (without the fast ULF formation requirement).

I II III IV V VI VII
ke1 0.0705 30 4.83 · 10−3 4.58 · 10−3 1.24 30 30
ke2 30 30 30 10−09 17.78 30 30
ke3 11.34 4.63 · 10−3 21.25 6.06 · 10−5 2.65 · 10−2 4.67 · 10−3 30
ke4 0.32 10.69 30 30 11.16 10.69 2.56
ket 15.48 30 0.61 0.84 0 0 0
keu 0.59 30 0 0 11.57 30 0
kef 0.10 0 0.10 0 0.10 0 0.15

for the self-assembly of vimentin filaments that allows
capturing the evolution of filaments of length up to n,
for any given positive integer n.

For all i with 1 ≤ i ≤ n, we denote by Fi the
population of all filaments of length exactly i, where
the length is in terms of the number of ULFs that
the filament consists of. Thus, the ULFs are denoted
by F1 in the new model, the filaments formed by the
longitudinal extension of a ULF with another ULF have
length 2 and are denoted by F2, etc. The population
of all filaments of length higher than n is denoted by
F≥n+1. The longitudinal extension of a filament Fi (of
length i ≤ n) with a filament Fj (of length j ≤ n) yields
a filament of length Fi+j if i + j ≤ n and a filament
F≥n+1 if i+ j ≥ n+1. The extension of a filament F≥n+1

with any other filament yields a filament F≥n+1.
When describing the extended model for filament self-

assembly based on the populations Fi, 1 ≤ i ≤ n,
and F≥n+1, a considerable challenge is posed by the
elongation of a filament with tetramers. Indeed, such
a longitudinal elongation leads to a filament that ends
with an incomplete ULF. Only after the lateral associa-
tion of seven other tetramers would this be a complete
filament of length one higher. This difficulty can be
addressed by introducing a notation of the type F j,k

i

with 1 ≤ i ≤ n and 0 ≤ j, k ≤ 7 to denote filaments
consisting of i complete ULFs, an incomplete ULF with j
tetramers at their left end, and an incomplete ULF with k
tetramers at their right end, see Figure 9. One would also
denote by F j,k

≥n+1 the filaments consisting of more than n
complete ULFs, an incomplete ULF with j tetramers at
their left end, and an incomplete ULF with k tetramers at
their right end. This approach leads however to a steep
increase in the number of model variables. For example,
for n = 10, the model would have 396 variables just to
denote the different types of filaments.

To keep the size of the model manageable we can
however take advantage of the kinetic observations we
made on the extended model for filament assembly
in Section 3.2: in the case of fast ULF formation we
have demonstrated that the longitudinal elongation of

filaments with tetramers has negligible kinetic influence
on the dynamics of the model and that eliminating it
leads to a numerically equivalent model. Consequently,
we can ignore all possible filaments having incomplete
ULFs at either end, since essentially all tetramers in the
system assemble into ULFs within a very short period
of time. In this case our model consists of the following
reactions:

(T ) T + T → O;
(O) O +O → H;
(H) H +H → F1;
(Ai,j) Fi + Fj → Fi+j ,

for all 1 ≤ i ≤ j ≤ n such that
i+ j ≤ n;

(Bi,j) Fi + Fj → F≥n+1,
for all 1 ≤ i ≤ j ≤ n such that
i+ j ≥ n+ 1;

(Ci) F≥n+1 + Fi → F≥n+1,
for all 1 ≤ i ≤ n;

(D) F≥n+1 + F≥n+1 → F≥n+1.

We call this a model of resolution n, see Figure 8 for an
illustration. For example, in the case of n = 10, the model
consists of 14 variables and 69 reactions.

The initial values of all variables except for T are set to
0, while that of T is assumed the same as in the extended
model in Section 3.2. The kinetic rate constants of the
new model are set in such a way that the overall number
of filaments is the same as in the extended model. The
kinetics of reactions (T), (O), and (H) are the same as
in the corresponding reactions of the extended model. If
ai,j is the kinetic rate constant of reaction (Ai,j), bi,j that
of reaction (Bi,j), ci that of reaction (Ci), and d that of
reaction (D), then we set their values as follows:

• a1,1 = ke4, a1,j = keu, for all 1 < j ≤ n;
• b1,j = c1 = keu, for all 1 ≤ j ≤ n;
• ai,i = bi,i = kef , for all 1 < i ≤ n, and ai,j = bi,j =

ci = 2kef , for all 1 < i < j ≤ n;
• d = kef .

Based on the corresponding ODE models, a straightfor-
ward calculation shows that with these kinetic constants,
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a) Scenario with fast ULF formation b) Scenario I c) Scenario II

d) Scenario III e) Scenario IV f) Scenario V

g) Scenario VI h) Scenario VII

Fig. 7. The non-negligible sensitivity coefficients of the MFL measurement for the mathematical models corresponding
to the scenario with fast ULF formation requirement and the scenarios I to VII.

the extended model of Section 3.2 and the model of
resolution n are equivalent in the following sense:

• [F1](t) = [U ](t) and
• ([F2] + . . .+ [Fn] + [F≥n])(t) = [F ](t),

for all time points t ≥ 0.
As an example, we have implemented in COPASI the

model in the case of n = 10. In Figure 10 we plotted
this model’s prediction for the distribution in time of all
filaments of length at least two. The resulting dynamics
is in line with the biological expectation. For example,
the number of filaments of length two, F2, witnesses
a sharp increase right after the start of the experiment,
as tetramers are turned into (short) filaments. F2 then
decreases quickly as filaments start combining to each
other to yield longer filaments.

4 DISCUSSION

Related work. A recent review of the biochemistry of
the intermediate filaments, including kinetic aspects of
their self-assembly is in [3]. The simple and extended
models for the self-assembly of vimentin proteins were
originally investigated in [12]. The approach used in the

fitting and the validation of the models was somewhat
ad-hoc in [12], as discussed below. We made in our
paper a systematic investigation of the kinetics of the two
models for intermediate filament self-assembly, based
on well-established techniques of model fit and model
validation. Some of our results confirm those of [12],
while others bring a new insight into the nature of
filament assembly. We discuss in the following the main
points of divergence between our approach and that
of [12].

A main difference concerns the mathematical model-
ing of the simple and the extended models. The mod-
els in [12] assume that the lateral association of two
tetramers, of two octamers, and of two hexadecamers
have the same kinetic rate constants. This strong model
assumption is however unsubstantiated by experimental
evidence and leads to limiting the range of possible
model behaviors. We assign different kinetic constants
for each different reaction to allow maximum flexibility
in the predictive power of the models.

Our mathematical expression for the mean filament
length differs from the one presented in [12]. In there,
the authors use a so-called linear density variable dl, set
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Fig. 8. The scheme of a model of resolution 3 for the self-assembly of IF. We partition the population of filaments into
filaments of length one (F1), of length two (F2), and of length at least three (F≥3). The longitudinal annealing of two
filaments of length one yields a filament of length two (F1 + F1 → F2), that of a filament of length one and another
of length two yields a filament of length at least three (F1 + F2 → F≥3), the annealing of two filaments of length two
yields a filament of length at least three (F2 + F2 → F≥3), and that of two filaments of length at least three results in
a filament belonging to the same F≥3 group (F≥3 + F≥3 → F≥3).

at 43.5 nm, representing the length of a ULF inside
a filament, regardless of whether the ULF is the first
of the filament, or a subsequent one. This distinction is
however crucial for estimating the mean filament length.
Indeed, ignoring this distinction introduces an approxi-
mation error which is proportional to the length of each
filament. For example, according to the formula from
[12], the length of a filament consisting of only two ULFs
is 2 × 43.5 nm = 87 nm, while according to the current
knowledge regarding filaments measurements, see [15],
its length is 63 nm+42 nm = 105 nm. Consequently, [12]
introduces a so-called correction factor that only partially
addresses the problem. Our approach for computing the
MFL value is not influenced by this approximation error
and leads to a correct interpretation of the experimental
data.

For the experimental data fit of the models, [12] per-
forms a so-called pre-assessment of the eight variants
of the extended model. Based on some fixed parameter
values, the eight variants are classified into four classes
of dynamics. Three of the classes are then quickly dis-
missed from the analysis and only one representative of
the remaining class is chosen for further assessment. This
approach is however assuming that the classification of
the dynamics of the eight model variants is independent
of the parameter values, which is most likely not true
for mathematical models with 5 or more parameters,
such as those in [12]. In our case the approach was
different. During parameter estimation we fitted all the
variants of the extended model with respect to the EM
0.45 µM experimental data set. We then took advantage
of the available data from the EM 0.9 µM experiment
and performed model validation by comparing the pre-
dictions of the models with the experimental data. On
the contrary, the second set of data was used in [12] in
a second round of model fit, yielding different numerical
values for the model parameters. In a separate approach,
we reversed the use of the two data sets and used the
EM 0.9 µM data for model fit and the EM 0.45 µM data
for model validation; with this approach we re-fitted

and re-validated all models investigated in the paper.
The results of the two approaches were qualitatively
consistent with each other: the set of scenarios that could
be fitted and validated in each of the setups we investi-
gated (simple/extended model with/without fast ULF
formation) was identical in the two approaches. This
consensus reinforces our conclusions about which sce-
narios can explain the experimentally observed behavior.
As expected, see also [12], the best numerical setups
selected for a given scenario in the two approaches
were different. The main reason is that the model fitting
procedure only considers one data set, while the second
data set is considered a-posteriori to compare it with
the numerical predictions of the model. Even though we
only selected numerical setups where both the fitting and
the validation are evaluated as good, the fit+validation
method is biased towards selecting an excellent nu-
merical fit while allowing less than excellent (but still
good) numerical validation. Switching the fit and the
validation data sets leads the search towards different
numerical setups; all setups, in both approaches, are
however consistent with both data sets.

For the sake of having models of small size, in the
first part of the paper we do not distinguish between
filaments of different sizes and we use for the filament-
filament extensions a “generic” kinetic constant. How-
ever, in the second part of the paper we explicitly
address the problem of extending the molecular model
to distinguish between filaments of different sizes, rec-
ognizing that different constants may/should be used
depending on the size of the filaments. We approach the
problem from a numerical point of view, aiming to build
the extended model in such a way that the numerical fit
of the original model is preserved. On the other hand,
in [26] a physical approach to estimate how the size
of the complexes influences the binding rates is taken.
However, this approach is based on the hypotheses that:
i) reactants are shaped like balls and, especially, ii) the
diameter of the balls representing larger complexes is
the same as the diameter of the balls representing small
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complexes. Unfortunately, these assumptions make the
approach of [26] unsuitable for filament-filament inter-
actions. The approach might be developed further to suit
our models by modifying the reactants-as-balls assump-
tion and/or the assumption regarding the size of the
larger complexes. This would require the recalculation
of the collision probabilities in the stochastic approach
to chemical kinetics. This however is a project in itself,
distinct from the aim and scope of this paper.

Conclusions and further work. Our mathematical
models show that if tetramers are very quickly (in just
a few seconds) assembled into ULFs, then the elongation
of filaments with ULFs and with other filaments both
play a crucial role in the formation of long intermediate
filaments. The elongation with tetramers on the other
hand, has negligible quantitative contribution to the
filament assembly. One reason for this is that in the case
of fast ULF formation, the population of tetramers is
very quickly depleted. However, this leaves open the
question of the filament assembly dynamics in the case
when tetramers would be continuously added to the
system, i.e. by an additional synthesis mechanism. To
address this problem, we investigated our mathematical
models in the case when the turnover of tetramers into
ULFs is slower. It turned out that in case the tetramers
persist in the system for a longer time, the dynamics
of the filament assembly is much richer and several
different mechanisms can equally well explain the avail-
able experimental data. In fact, even the simple model
discussed in [12] and in our paper could be fitted to
the experimental data. An in vitro experiment where
tetramers were added either continuously or at well-
chosen time points could offer more insight into the role
of tetramer longitudinal aggregation for the process of
filament elongation. Choosing the time points when the
additional amount of tetramers should be added to the
solution could be done based on the analysis of our
mathematical models. For example, one could choose
the time points where the number of filaments in the
solution is close to its maximum, so that the possible
interplay between tetramers and filaments has maximum
flux.

It is visible already from the experimental data that the
system does not reach a steady state within 20 minutes,
our time interval of choice. Similarly as in the study
in [12], we have focused on the early dynamics of the
vimentin filament assembly, where the kinetics of the
system is fast, with tetramers and ULFs being quickly re-
placed by emerging filaments of various lengths. During
this phase, the presence of a large amount of tetramers
and, a little later, of short filaments in the solution
make far more likely assembly/elongation events rather
than disassembly events. For this reason our models
turn out to be able to explain the experimental data
during the early phase of the assembly, even though they
do not include any disassembly or filament breaking
mechanisms. The applicability of the models is however
tied to the early part of the assembly. Over longer time

Fig. 9. A filament consisting of 5 complete ULFs, an
incomplete ULF with 2 tetramers at the left end, and an
incomplete ULF with 3 tetramers at the right end. We
denote it in our model with F 2,3
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Fig. 10. Model prediction for the distribution in time of all
the filaments containing from two to ten ULFs.

intervals (e.g., long enough so that the experimental
data may potentially show a steady state), the lack of
a disassembly mechanism in the models makes them
limited in their predictive power. For example, a model
with no disassembly or filament breaking mechanism
would predict that the system will reach (albeit in a huge
interval of time) a steady state where all initial tetramers
are integrated into one single filament (of huge length).

The methodology introduced in this paper for increas-
ing the resolution of the filament assembly model helps
provide a deep insight into the dynamics of filament self-
assembly. Details on the assembly of filaments of various
lengths will help in designing finer grained experimental
assays that would focus on filaments of different lengths
at different time points. In terms of model complexity,
increasing the resolution of the model implies a con-
siderable increase in the size of the model, linear in
the number of variables and quadratic in the number
of reactions. We showed however that the kinetic rate
constants can be set from a model of low resolution to
one of higher resolution in such a way that the model
predictions on the dynamics of the total amount of
filaments, regardless of their length, are preserved. In
particular, this implies that given generic data on, for
example, the mean filament length, the model fit and
the model validation problems can be solved on the
(smaller) model of low resolution and then extrapolated
to the models of higher resolution.
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