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Abstract. Computation of steady-state probabilities is an important aspect of analysing biological systems
modelled as probabilistic Boolean networks (PBNs). For small PBNs, efficient numerical methods to compute
steady-state probabilities of PBNs exist, based on the Markov chain state-transition matrix. However, for
large PBNs, numerical methods suffer from the state-space explosion problem since the state-space size
is exponential in the number of nodes in a PBN. In fact, the use of statistical methods and Monte Carlo
methods remain the only feasible approach to address the problem for large PBNs. Such methods usually rely
on long simulations of a PBN. Since slow simulation can impede the analysis, the efficiency of the simulation
procedure becomes critical. Intuitively, parallelising the simulation process is the ideal way to accelerate the
computation. Recent developments of general purpose graphics processing units (GPUs) provide possibilities
to massively parallelise the simulation process. In this work, we propose a trajectory-level parallelisation
framework to accelerate the computation of steady-state probabilities in large PBNs with the use of GPUs.
To maximise the computation efficiency on a GPU, we develop a dynamical data arrangement mechanism for

Correspondence and offprint requests to: Jun Pang, Computer Science and Communications, Faculty of Science, Technology
and Communication, University of Luxembourg. Postal address: 6, avenue de la Fonte, L-4362 Esch-sur-Alzette, Luxembourg.
A preliminary version of this work was presented at the 2nd International Symposium on Dependable Software Engineering:
Theories, Tools, and Applications [MPY16c].



2 Andrzej Mizera, Jun Pang, and Qixia Yuan

handling different size PBNs with a GPU. Specially, we propose a reorder-and-split method to handle both
large and dense PBNs. Besides, we develop a specific way of storing predictor functions of a PBN and the
state of the PBN in the GPU memory. Moreover, we introduce a strongly connected component (SCC)-based
network reduction technique to further accelerate the computation speed. Experimental results show that
our GPU-based parallelisation gains approximately a 600-fold speedup for a real-life PBN compared to the
state-of-the-art sequential method.

Keywords: Probabilistic Boolean networks, biological networks, computational modelling, discrete-time
Markov chains, simulation, statistical methods, graphics processing unit (GPU).

1. Introduction

Systems biology aims to model and analyse biological systems using mathematical and computational meth-
ods from a holistic perspective in order to provide a comprehensive, system-level understanding of cellular
behaviour. Advances in biology provide new biological knowledge and promote the interest in the com-
prehension of the functioning of larger and larger cellular systems. This requires the use of computational
modelling and formal analysis, which faces a significant challenge due to the state-space size of the sys-
tem under study. Developed in 2002 by Shmulevich et al. [SD10, TMP+13], probabilistic Boolean networks
(PBNs) is a well-suited framework for modelling large-size biological systems. Originally, the framework of
PBNs is introduced as a probabilistic generalisation of the standard Boolean networks (BNs) framework to
model gene regulatory networks (GRNs). The framework of BNs can incorporate rule-based dependencies
between genes and allow the systematic study of global network dynamics. The framework of PBNs not only
has the advantage of BNs, but also is capable of dealing with uncertainty, which naturally occurs in the
study of biological systems.

One of the key aspects of analysing biological systems, especially those modelled as PBNs, is the com-
prehensive understanding of their long-run (steady-state) behaviour. This is vital in many contexts, e.g.,
attractors of a GRN are considered to characterise cellular phenotypes [Kau69]. There have been a lot of
studies in analysing the steady-state behaviours of biological systems modelled as PBNs. As the dynamics of
a PBN can be viewed as a discrete-time Markov chain (DTMC), they can be studied with the use of the rich
theory of DTMCs. Relying on this, many numerical methods exist to compute steady-state probabilities for
small-size PBNs [SGH+03, TMP+14]. In the case of large-size PBNs, however, numerical methods face the
state-space explosion problem. The use of statistical methods and Monte Carlo methods is then proposed to
estimate the steady-state probabilities. These methods require simulating the PBN under study for a certain
length and the simulation speed is an important performance factor of these approaches. For large PBNs
and long trajectories, a slow simulation speed could render these methods infeasible as well. For example, it
would be too slow to compute a steady-state probability with a runtime of more than one month. Therefore,
we aim to improve the computation speed for estimating the steady-state probability of a set of states in
a PBN. We expect to have speedups of hundreds of times compared to existing state-of-the-art methods.
A natural way to address this problem is to parallelise the simulation process.

Recent improvements in the computing power of the general purpose graphics processing units (GPUs)
enable massive parallelisation of this process. In this work, we propose a trajectory-level parallelisation
framework to accelerate the computation of steady-state probabilities in large PBNs with the use of GPUs.
The architecture of a GPU is very different from that of a central processing unit (CPU) and the performance
of a GPU-based program is highly related to how the synchronisation between cores is implemented and
how memory access is managed. Our framework reduces the time needed for synchronisation by allowing
each core to simulate one trajectory. Regarding the memory management, we contribute in four aspects.
We first develop a dynamical data arrangement for handling different size PBNs with a GPU to maximise
the computation efficiency on a GPU for relatively small-size PBNs. We then propose a specific way of
storing predictor functions of a PBN and the state of the PBN in the GPU memory to reduce the memory
consumption and to improve the access speed. Thirdly, we take special care of large and dense networks using
our reorder-and-split method so that our parallelisation framework can efficiently handle large and dense
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networks. Lastly, we develop a network reduction technique which can significantly reduce the unnecessary
memory usage as well as the amount of required computations. We show with experiments that our GPU-
accelerated parallelisation gains a speedup of more than two orders of magnitude compared to the state-of-
the-art sequential method.

Structure of the paper. We present preliminaries on PBNs and the architecture of GPUs in Section 2. The
difficulties of parallelising the simulation of a PBN and how to overcome them are discussed in Section 3. We
then propose a strongly connected component (SCC)-based network reduction technique in Section 4. We
evaluate our GPU implementation in Section 5 and conclude our paper with some discussions in Section 6.

2. Preliminaries

2.1. Probabilistic Boolean networks (PBNs)

A PBN G(X,F , C) consists of a list of binary-valued nodes (also known as genes) X = (x1, x2, . . . , xn), a list
of function sets F = (F1, F2, ..., Fn), and a list of probability distributions C = (C1, C2, . . . , Cn). For each

i ∈ {1, 2, ..., n}, the set Fi = {f (i)
1 , f

(i)
2 , . . . , f

(i)
`(i)} is a collection of Boolean functions, known as predictor

functions of node xi, where `(i) is the number of predictor functions for node xi. Each f
(i)
j is a Boolean

function defined using a subset of the nodes, referred to as parent nodes of xi. At each time point t, the value
of each node xi is updated with one of its predictor functions. The predictor function is selected in accordance

with a probability distribution Ci = (c
(i)
1 , c

(i)
2 , . . . , c

(i)
`(i)), where the individual probabilities are the selection

probabilities for the respective elements of Fi and they sum to 1. We use xi(t) to denote the value of node
xi at time point t, and s(t) = (x1(t), x2(t), . . . , xn(t)) to denote the state of the PBN at time point t. The
state space of the PBN is S = {0, 1}n and it is of size 2n. PBNs can be divided into two types according to
the way of selecting predictor functions: independent PBNs and dependent PBNs. In independent PBNs, the
predictor functions for different nodes are chosen independently of each other; while in dependent PBNs, the
predictor functions for all the nodes are chosen simultaneously. The selected predictor functions for all the
nodes form one context. Due to the dependent relationship in selecting the predictor functions, a dependent
PBN has a context switching probability distribution specifying the probability of a context being selected.
In this paper, we focus on accelerating the computation of steady-state probabilities of independent PBNs.
However, our method can be easily applied to dependent PBNs by slightly changing the process for selecting
the predictor functions: we select predictor functions for all the nodes simultaneously based on the context
switching probability distribution instead of the selection probability distribution Ci. In general, the update
of a PBN can be performed in two different modes, i.e., synchronous mode and asynchronous mode.

• In the synchronous mode, the values of all the nodes are updated synchronously at each time step. The
transition from state s(t) to state s(t + 1) is performed by randomly selecting a predictor function for
each node xi from Fi and by applying those selected predictor functions to update the values of all the
nodes synchronously. Let f(t) be the combination of all the selected predictor functions at time point t.
The transition of state s(t) to s(t+ 1) can then be denoted as

s(t+ 1) = f(t)(s(t)). (1)

• In the asynchronous mode, one node is randomly selected at each time step (normally with uniform
distribution) and only the value of this selected node is updated. The transition from state s(t) to state
s(t+ 1) is performed by three steps: first randomly selecting a node, then randomly selecting a predictor
function for the selected node, and lastly applying the selected predictor function to update the value of
the selected node. Let fi(t) be the randomly selected function of the randomly selected node xi at time
point t and si(t) be the parent nodes of function fi(t). The transition of state s(t) to s(t + 1) can then
be denoted as

s(t+ 1) = (x1(t), x2(t), . . . , xi−1(t), fi(t)(si(t)), xi+1(t), . . . , xn(t)). (2)

A PBN can therefore be viewed as a discrete-time Markov chain (DTMC) with state space S = {0, 1}n
and transition relation defined by either Equation 1 or Equation 2.

In a PBN with perturbations, a perturbation probability p ∈ (0, 1) is introduced and the dynamics of
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a PBN is guided with both perturbations and predictor functions: at each time point t, the value of each
node xi is flipped independently with probability p; and if no flip happens, either the value of each node
xi is updated with selected predictor functions synchronously in the synchronous update mode or the value
of a randomly selected node is updated with the selected predictor function in the asynchronous update
mode. Let γ(t) = (γ1(t), γ2(t), . . . , γn(t)) be a perturbation vector, where each element is an independent
Bernoulli distributed random variable with parameter p, i.e., γi(t) ∈ {0, 1} and P(γi(t) = 1) = p for all t
and i ∈ {1, 2, . . . , n}. Extending Equation 1, the transition from s(t) to s(t+ 1) in synchronous PBNs with
perturbations is given by

s(t+ 1) =

{
s(t)⊕ γ(t) if γ(t) 6= 0

f(t)(s(t)) otherwise,
(3)

where ⊕ is the element-wise exclusive or operator for vectors. And extending Equation 2, the transition from
s(t) to s(t+ 1) in asynchronous PBNs with perturbations is given as

s(t+ 1) =

{
s(t)⊕ γ(t) if γ(t) 6= 0

(x1(t), x2(t), . . . , xi−1(t), fi(t)(si(t)), xi+1(t), . . . , xn(t)) otherwise.
(4)

According to Equations 3 and 4, from any state the system can move to any other state with one transition
due to perturbations. Therefore, the underlying Markov chain is in fact irreducible and aperiodic. Thus, the
dynamics of a PBN with perturbations can be viewed as an ergodic DTMC [SD10]. Based on the theory
of ergodic DTMCs, the long-run dynamics of a PBN with perturbations is governed by a unique limiting
distribution, convergence to which is independent of the choice of the initial state.

The density of a PBN is measured with the number of predictor functions and the number of parent

nodes for each predictor function. For a PBN G, its density is defined as D(G) = 1
n

∑M
i=1 φ(i), where n is the

number of nodes in G, M is the total number of predictor functions in G, and φ(i) is the number of parent
nodes for the ith predictor function.

2.2. Steady-state Analysis of PBNs

The steady-state probability of a PBN can be computed via either a numerical method or a simulation-based
method. However, when it comes to a large PBN, only the simulation-based method is feasible. We briefly
introduce a simulation-based method called the two-state Markov chain approach [RL92] for steady-state
computation of a PBN.

The two-state Markov chain approach [RL92] is a method for approximate computation of the steady-
state probability for a subset of states of a DTMC. This approach splits the states of an arbitrary DTMC
into two parts, referred to as two meta states. One part is composed of the states of interest, labelled 1,
and the other part is its complement, labelled 0. Denote the steady-state probability of meta state 1 as
q. One can estimate q by performing simulations of the original Markov chain. To make the estimation,
an abstraction of the original DTMC into a two-state Markov chain is required. Let {Zt}t>0 be a binary
0-1 process, where Zt represents the meta state in which the original Markov chain is at time t. In general,
{Zt}t>0 is not a Markov chain. However, as argued in [RL92], it is reasonable to assume that the dependency

in {Zt}t>0 falls off rapidly with lag. Hence, a new process {Z(k)
t }t>0, where Z

(k)
t = Ztk, will be approximately

a first-order Markov chain for k large enough. A procedure for determining appropriate k is given in [RL92].
The first-order Markov chain consists of the two meta states with transition probabilities α and β between
them. We illustrate in Fig. 1 the construction of a two-state Markov chain from a 5-state Markov chain.

The estimation of q, denoted as q̂, can be obtained by performing simulation of the original DTMC.
The key point is to determine a suitable length of the trajectory. Two requirements need to be considered.
Firstly, the abstracted two-state Markov chain should converge close enough to the steady-state distribution

π = (π0, π1). Formally, we require a t large enough such that |P[Z
(k)
t = i |Z(k)

0 = j]−πi| < ε for a given ε > 0
and all i, j ∈ {0, 1}. t is known as the “burn-in” period where the samples should be discarded. As given

in [RL92], the value of t is given by a function m(α, β), where m(α, β) = log
(

ε(α+β)
max(α,β)

)
/ log (|1− α− β|).

Secondly, the estimation q̂ should satisfy P[q − r 6 q̂ 6 q + r] > s, where r is the required precision and s is
a specified confidence level. This condition determines the sample size n required to compute q̂. Similar to
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Fig. 1. Conceptual illustration of the two-state Markov chain construction. (a) The state space of the original
DTMC is split into two meta states: meta state 0 (states A and B) and meta state 1 (states D, C and E).
The two meta states are marked with dashed ellipses. (b) Projecting the behaviour of the original chain on
the two meta states results in a binary (0-1) stochastic process which can be approximated as a first-order,
two-state Markov chain.

Algorithm 1 The Two-state Markov chain approach

1: procedure estimateProbability(m0, n0, ε, r, s)
2: M := m0; N := n0; l :=M+N ;
3: generate an initial trajectory of length l abstracted to the two meta states;
4: repeat
5: extend the trajectory by M+N − l states;
6: l :=M+N ;
7: estimate α, β based on the last N elements of the extended trajectory;

8: M :=
⌈
log
(

ε(α+β)
max(α,β)

)
/ log (|1− α− β|)

⌉
, N :=

⌈
αβ(2−α−β)

(α+β)3
(Φ−1( 1

2 (1+s)))
2

r2

⌉
9: until M+N ≤ l

10: estimate the probability of meta state 1 from the last N elements of the trajectory.
11: end procedure

the burn-in period, the sample size is given by a function n(α, β), where n(α, β) = αβ(2−α−β)
(α+β)3

(Φ−1( 1
2 (1+s)))

2

r2 .

Considering the two conditions together, we can get the total required trajectory length of the original
DTMC as M + N , where M = 1 + (dm(α, β)e − 1)k and N = 1 + (dn(α, β)e − 1)k. Often, k = 1 is large
enough. For simplification, we assume k = 1 in the following of this study. However, in the real case, we
follow the procedure in [RL92] to estimate an appropriate value of k. Denote the burn-in steps and sample
size asM and N respectively, given k = 1. We outline the steps in Algorithm 1. The two arguments m0 and
n0 are the initial burn-in period and the initial sample size, respectively. In each iteration of the algorithm,
the burn-in steps M and the sample size N are re-estimated. The iteration continues until M + N is not
bigger than the current trajectory length. For more details on this approach, a derivation of the formulas for
m(α, β) and n(α, β), and a discussion regarding a proper choice of n0, we refer to [MPY15b]. Note that the
initial choice of m0 can be arbitrary, as it does not affect the accuracy of the final estimation.

2.3. GPU architecture

We review the basics of GPU architecture and its programming approach, i.e., the common unified device
architecture (CUDA) released by NVIDIA.

At the physical hardware level, an NVIDIA GPU usually contains tens of streaming multiprocessors (SMs,
also abbreviated as MPs), each containing a fixed number of streaming processors (SPs), a fixed number of
registers, and fast shared memory as illustrated in Figure 2, with N being the number of MPs.

Accessing registers and shared memory is fast, but the size of these two types of memory is very limited.
In addition, a large size global memory, a small size texture memory, and constant memory are available
outside the MPs. Global memory has a high bandwidth (240 GB per second in our GPU), but also a high
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Fig. 2. Architecture of a GPU.

latency. Accessing global memory is usually orders of magnitude slower than accessing registers or shared
memory. Constant memory and texture memory are memories of special type which can only store read-only
data. Accessing constant memory is most efficient if all threads are accessing exactly the same data, while
texture memory is better for dealing with random access. We refer to registers and shared memory as fast
memory ; global memory as slow memory ; and constant memory and texture memory as special memory.

At the programming level, the programming interface CUDA is in fact an extension of C/C++. A segment
of code to be run in a GPU is put into a function called a kernel. The kernels are then executed as a grid
of blocks of threads. A thread is the finest granularity in a GPU and each thread can be viewed as an
execution of the kernel. A block is a group of threads executed together in a batch. Each thread is executed
in an SP and threads in a block can only be executed in one MP. One MP, however, can launch several blocks
in parallel. Communications between threads in the same block are possible via shared memory. NVIDIA
GPUs use a processor architecture called single instruction multiple thread (SIMT), i.e., a single instruction
stream is executed on a group of 32 threads, called a warp. Threads within a warp are bound together,
i.e., they always execute the same instruction. Therefore, branch divergence can occur within a warp: if one
thread within a warp moves to the ‘if’ branch of an ‘if-then-else’ sentence and the others choose the ‘else’
branch, then actually all the 32 threads will “execute” both branches, i.e., the thread moving to the ‘if’
branch will wait for other threads when they execute the ‘else’ branch and vice versa. If both branches are
long, then the performance penalty is huge. Therefore, branches should be avoided as much as possible for
reasons of performance. Moreover, the data accessing pattern of the threads in a warp should be taken care
of as well. We consider the access pattern of shared memory and global memory in this work. Accessing
shared memory is most efficient if all threads in a warp are fetching data in the same position or each thread
is fetching data in a distinct position. Otherwise, the speed of accessing shared memory is reduced by the
so-called bank conflict. Accessing global memory is most efficient if all threads in a warp are fetching data
in a coalesced pattern, i.e., all threads in a warp are reading data in adjacent locations in global memory.
In principle, the number of threads in a block should always be an integral multiple of the warp size due to
the SIMT architecture; and the number of blocks should be an integral multiple of the number of MPs since
each block can only be executed in one MP.

An important task for GPU programmers is to hide latency. This can be done via the following four
ways:

1. increase the number of active warps;

2. reduce the access to global memory by caching the frequently accessed data in fast memory, or in constant
memory or texture memory, if the access pattern is suitable;
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3. reduce bank conflict of shared memory access;

4. coalesce accesses to the global memory to use the bandwidth more efficiently.

However, the above four methods often compete with one another due to the restrictions of the hardware
resources. For example, using more shared memory would restrict the number of active blocks and hence the
number of active warps is limited. Therefore, a trade-off between the use of fast memory and the number of
threads has to be considered carefully. We discuss this problem and provide our solution to it in Section 3.2.

3. PBN Simulation in a GPU

In this section, we present how simulation of a PBN is performed in a GPU, while addressing the problems
identified at the end of Section 2. More specifically, we discuss in Subsections 3.1–3.3 how in general the
simulation of a PBN can be performed efficiently in a GPU; in Subsection 3.4, we take special care of large
and dense PBNs, and demonstrate our reorder-and-split method for handling the large memory required in
the dense network.

3.1. Trajectory-level parallelisation

In general, there are two ways of parallelising the PBN simulation. One way is to update all nodes syn-
chronously, i.e., each GPU thread only updates one node of a PBN; the other way is to simulate multiple tra-
jectories simultaneously. The first way requires synchronisation among the threads, which is time-consuming
in the current GPU architecture. Besides, this approach does not work for the asynchronous update mode
since only one node is updated at each time point. Therefore, in our implementation, we take the second way
and simulate multiple trajectories concurrently. In order to use samples from multiple trajectories to com-
pute the steady-state probabilities of a PBN, we propose to combine the Gelman & Rubin method [GR92]
with the two-state Markov chain approach [RL92, MPY17].

The Gelman & Rubin method [GR92] is an approach for monitoring the convergence of multiple trajec-
tories. It starts from simulating 2ψ steps of ω ≥ 2 independent trajectories in parallel. The first ψ steps of
each trajectory, known as the burn-in period, are discarded from it. The last ψ elements of each trajectory
are used to compute the within-chain (W ) and between-chain (B) variance1, which are used to estimate

the variance of the steady state distribution (σ̂2). Next, the potential scale reduction factor R̂ is computed

with σ̂2. R̂ indicates the convergence to the steady state distribution. The trajectories are considered as
converged and the algorithm stops if R̂ is close to 1; otherwise, ψ is doubled, the trajectories are extended,
and R̂ is recomputed. We list the steps of this approach in Algorithm 2. This algorithm takes the number of
trajectories ω and an initial length ψ0 as input, and has two outputs. The first output is ω trajectories and
the second output is the length of the final ψ, which equals to half of each trajectory’s length. For further
details of this method and the discussion on the choice of the initial states for the ω trajectories we refer
to [GR92].

Once convergence is reached, the second halves of the trajectories are merged into one sample, and the
two-state Markov chain approach is applied to estimate the required sample length L based on the merged
sample. Since the convergence is assured, we propose to skip the iterative computation of the burn-in period
in the two-state Markov chain approach to maximise the speed-up. We assume that the two-state Markov
chain abstraction has also converged to its steady-state distribution when the simulated trajectories of the
original Markov chain have converged. Denote the current burn-in period of the two-state Markov chain
approach as m. Then initially, m equals to ψ, the burn-in size of the Gelman & Rubin method. Now the
stop criterion for the two-state Markov chain approach becomes that the estimated required sample length
L is not bigger than the actual size of the merged sample. If the stop criterion is not satisfied, the multiple
trajectories are extended in parallel to provide a sample of required length. The above assumption holds in
most cases based on our computational experiments (data not shown); however, it does not hold in general.
Hence, we add another step to guarantee that the two-state Markov chain abstraction in each trajectory

1 We use within-chain and between-chain instead of within-trajectory and between-trajectory because within-chain and
between-chain are commonly used in the literature
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Algorithm 2 The Gelman & Rubin method

1: procedure generateConvergedChains(ω, ψ0)
2: ψ := ψ0;
3: chains := generate in parallel ω trajectories of length ψ;
4: repeat
5: Extend each trajectory in chains by ψ;
6: for i = 1..ω do
7: µi := mean of the last ψ values of chains[i];
8: si := standard deviation of the last ψ values of chains[i];
9: end for

10: µ := 1
ω

∑ω
i=1 µi;

11: B := ψ
ω−1

∑ω
i=1(µi − µ)2; W := 1

ω

∑ω
i=1 s

2
i ; //Between and within variance

12: σ̂2 := (1− 1
ψ )W + 1

ψB; //Estimate the variance of the stationary distribution

13: R̂ :=
√
σ̂2/W ; //Compute the potential scale reduction factor

14: ψ := 2 · ψ;
15: until R̂ is close to 1
16: return (chains, ψ/2); //ψ equals to the length of each chain
17: end procedure

Algorithm 3 The Parallelised two-state Markov chain approach

1: procedure estimateInParallel(ω, ψ0, ε, r, s)
2: (chains, ψ) := GenerateConvergedChains(ω, ψ0);
3: m := ψ; n := ψ; E := 0; ab sample := null;
4: repeat
5: repeat
6: chains := extend in parallel each trajectory in chains by E samples;
7: n := n+ E; sample size := ω · n;
8: sample := chains(m+1, . . . ,m+n); //obtain samples between m+1 and m+n in all trajectories
9: abstract sample to the 0-1 chain and append it to ab sample ;

10: Estimate α, β from ab sample;
11: Compute N as in Line 8 Algorithm 1;
12: E := d(sample size−N )/ωe;
13: until E ≤ 0
14: compute M as in Line 8 Algorithm 1;
15: if M > m then
16: E :=M−m; m :=M; n := n− E;
17: end if
18: until E ≤ 0
19: Estimate the prob. of meta state 1 from ab sample;
20: end procedure

has also converged. Once the stop criterion is satisfied, we compute the burn-in period M of the two-state
Markov chain. The assumption is verified true if M is smaller or equal to m. In the other case, we continue
to discard additional M−m elements in the beginning of each trajectory and re-run the two-state Markov
chain approach based-on the modified samples. Notice that the number of the burn-in steps does not depend
on the number of trajectories, but only on the values of α and β in the two-state Markov chain. Given the
real values (or a good estimate) of α and β, the number of burn-in steps is fixed. We describe this process
in Algorithm 3 and refer to [MPY16d] for a detailed description of this combination. Note that merging is
performed in a CPU and no synchronization is required. We show in Figure 3 the workflow for computing
steady-state probabilities based on trajectory-level parallelisation.

Each shaded box represents a kernel to be parallelised in a GPU. The first and second shaded boxes
perform the same task except that trajectories in the first shaded box are abandoned while those in the
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Fig. 3. Workflow of steady-state analysis using trajectory-level parallelisation.

second shaded box are stored in global memory. The second shaded box may be iterated several times
and only samples generated in the last iteration will be used for estimating the steady-state probabilities.
This is due to the requirement of the Gelman & Rubin method [GR92] that only the second half samples
in each trajectory (as shown in Line 8 of Algorithm 3) are used for computing steady-state probabilities.
Based on the last ψ samples simulated in the second shaded box, the third shaded box computes the meta
state information required by the two-state Markov chain approach [MPY15b]. The two-state Markov chain
approach determines whether the samples are large enough based on the meta state information. If not
enough, the last, fourth kernel is called repeatedly to extend samples; otherwise, the steady-state probability
is computed.

The key part of the four kernels is the simulation process. We describe in Algorithm 4 the process for
simulating one step of a PBN in a GPU. The four inputs of this algorithm are respectively the number of
nodes n, the Boolean functions F , the extra Boolean functions extraF , and the current state S. The extra
Boolean functions are generated due to that we optimise the storage of Boolean functions and split them into
two parts in order to save memory (see Section 3.3 for details). Due to this optimisation, an ‘if’ statement
(lines 14 to 17) has to be added. This ‘if’ statement fetches the Boolean function stored in the second part
(extraF ). The probability that this statement is executed is very small due to the way we split the Boolean
functions and the time cost of executing this statement is also very small. Therefore, by paying a small
penalty in terms of computational time, we are able to store Boolean functions in fast memory and in total
gain significant speedups.

3.2. Data arrangement

As mentioned in Section 2.3, a suitable strategy for hiding latency should be carefully considered for a GPU
program. Since the simulation process requires accessing the PBN information (in a random way) in each
simulation step and the latency cost for frequently accessing data in slow memory is huge, caching this
information in fast and special memory results in a more efficient computation compared to allowing more
active warps. Therefore, we first try to arrange all frequently accessed data in fast and special memory as
much as possible; then, based on the remaining resources we calculate the optimal number of threads and
blocks to be launched. Since the size of fast memory is limited and the memory required to store a PBN
varies from PBN to PBN, a suitable data arrangement policy is necessary. In this section, we discuss how
we dynamically arrange the data in different GPU memories for different PBNs.

In principle, frequently accessed data should be put in fast memory. We list all the frequently used data
and how we arrange them in GPU memories in Table 1. As the size of the fast memory is limited and has
different advantages for different data accessing modes, we save different data in different memories. Namely,
the read-only data that are always or most likely accessed simultaneously by all threads in a warp, are put
in constant memory; other read-only data are put in shared memory if possible; and the rest of the data
are put in registers if possible. Since the memory required to store the frequently used data varies a lot
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Algorithm 4 Simulate one step of a PBN in a GPU

1: procedure SimulateOneStep(n, F, extraF, p, S)
2: perturbed := false;
3: for (i := 0; i < n; i++) do
4: if rand() < p then perturbed := true; S[i/32] := S[i/32]⊕ (1� (i%32));
5: end if
6: end for
7: if perturbed then return S;
8: else
9: set array nextS to 0;

10: for (i := 0; i < n; i++) do
11: index := nextIndex(i); //sample the Boolean function index for node i
12: compute the entry of the Boolean function based on index and S;
13: v := F [index ];
14: if entry > 31 then //entry starts with 0
15: get index of the Boolean function in extraF ; //see Section 3.3
16: v := extraF [index ]; entry := entry%32;
17: end if
18: v := v � entry ; nextS[i/32] := nextS[i/32] | ((v&1)� (i%32));
19: end for
20: end if
21: S := nextS; return S.
22: end procedure

Table 1. Frequently accessed data arrangement.

data data type stored in

random number generator CUDA built in registers
node number integer constant memory
perturbation probability float constant memory
cumulative number of functions short array constant memory
selection probabilities of functions float array constant memory
indices of positive nodes integer array constant memory
indices of negative nodes integer array constant memory
cumulative number of parent nodes short array shared memory
Boolean functions integer array shared memory
indices for extra Boolean functions short array shared memory
parent nodes indices for each function short array shared/texture memory
current state integer array registers/global memory
next state integer array registers/global memory

from PBN to PBN, we propose to use a dynamic decision process to determine how to arrange some of
the frequently accessed data, i.e., the data shown in the last three rows of Table 1. The dynamic process
calculates the memory required to store all the data for a given PBN and determines where to put them
based on their memory size. If the shared memory and registers are large enough, all the data will be stored
in these two fast memories. Otherwise, they will be placed in the global memory. For the data stored in the
global memory, we use two ways to speed up their access. One way is to use texture memory to speed up
the access for read-only data, e.g., the parent node indices for each function. The other way is to optimise
the data structure to allow a coalesced accessing pattern, e.g., the current state. We explain this in details
in Section 3.3. This dynamical arrangement of data allows our program to explore the computational power
of a GPU as much as possible, leading to larger speedups for relatively small sparse networks.
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Fig. 4. Demonstration of storing Boolean functions in integer arrays.

3.3. Data optimisation

As mentioned in Section 2.3, a GPU usually has a very limited size of fast memory and the latency can
vary significantly depending on how the memory is accessed, e.g., accessing shared memory with or without
bank conflict. Therefore, we optimise the data structures for two important pieces of data, i.e., the Boolean
functions (stored as truth tables) and the states of a PBN, to save space and to maximise the access speed.

Optimisation on Boolean functions. A direct way to store a truth table is to use a Boolean array, which
consumes one byte to store each element. Accessing an element of the truth table can be directly made by
providing the index of the Boolean array. Instead, we propose to use a primitive 32-bit integer (4 bytes) type
to store the truth table. Each bit of an integer stores one entry of the truth table and hence the memory usage
can be reduced by 8 in maximum: 4 bytes compared to 32 bytes of a Boolean array. A 32-bit integer can store
a truth table of at most 32 elements, corresponding to a Boolean function with max. 5 parent nodes. Since
for real biological systems the number of parent nodes is usually small [HSIO06], in most cases one integer
is enough for storing the truth table of one Boolean function. In the case of a truth table with more than 32
elements, additional integers are needed. In order to save memory and quickly locate a specific truth table,
we save the additional integers in a separate array. More precisely, we use a 32-bit integer array F of length
M to store the truth tables for all the M Boolean functions and the ith (i ∈ [0,M − 1]) element of F stores
only the first 32 elements of the ith truth table. If the ith truth table contains more than 32 elements, the
additional integers are stored in an extra integer array extraF . In addition, two index arrays extraFIndex and
cumExtraFIndex are needed to store the index of the ith truth table in extraF . Each element of extraFIndex
stores one index value of the truth table which requires additional integers. The length of extraFIndex is at
most M . Each element of cumExtraFIndex stores the cumulative number of additional required integers for
all the truth tables whose indices are stored in extraFIndex .

As an example, we show how to store a truth table with 128 elements in Figure 4. We assume that this
128-element truth table is the ith one among all M truth tables and that it is the jth one among those m
truth tables that require additional integers to store. Therefore, its first 32 (0-31th) elements are stored in the
ith element of F and its index i is stored in the jth element of extraFIndex , denoted as ej . The jth element
of cumExtraFIndex , denoted as cj , stores the total number of additional integers required to store the j − 1
truth tables whose indices are stored in the first j−1 elements of extraFIndex . Let cumExtraFIndex[j] = k.
The kth, (k + 1)th, and (k + 2)th elements of extraF store the 32-127th elements of the ith truth table.
After storing the truth tables in this way, accessing the δth element of the ith truth table can be performed
in the following way. When δ ∈ [0, 31], F [i] directly provides the information and when δ ∈ [32, 127], three
steps are required: 1) search the array extraFIndex to find the index j such that extraFIndex [j] equals to i,
2) fetch the jth value of array cumFIndex and let k = cumFIndex [j], 3) the integer extraF [k + (δ − 32)/32]
contains the required information. Since in most cases the number of parent nodes is very limited, the array
extraFIndex is very small. Hence, the search of the index j in the first step can be finished very quickly. In
the rare case where the extraFIndex array would be large, e.g., M is large and the length of extraFIndex
would be close to M , it is preferable to store extraFindex as an array of length M and let extraFindex [i] store
the entry in cumFIndex for the ith truth table so that the search phase of the first step is eliminated. The
required memory for storing this truth table is reduced from 128 bytes (stored as Boolean arrays) to 20 bytes
(6 integers to store the truth table and 2 shorts to store the index). In addition to saving memory, the above



12 Andrzej Mizera, Jun Pang, and Qixia Yuan

S τ0
0 τ1

0
... τ31

0
... τT−1

0 τ0
1

... τT−1
1

... τ0
`

... τT−1
`

threads in one warp 0 1 ... 31

... fetching values of the first 32 nodes
for threads 0-31 in one transaction

T consecutive integers

Fig. 5. Storing states in one array and coalesced fetching for threads in one warp.

optimisation can also reduce the chances of bank conflict in shared memory due to the fact that accessing
any entry of a truth table is performed by fetching only one integer in array F in most cases. Accessing
the elements in extraFIndex requires additional memory fetching; however, as mentioned before, the chance
for such cases to happen is very small in a real-life PBN and the gained memory space and improved data
fetching pattern can compensate for this penalty.

Optimisation on PBN states. The optimisation of the data structure for states is similar to that for
Boolean functions, i.e., states are stored as integers and each bit of an integer represents the value of a node.
Therefore, a PBN with n nodes requires dn/32e integers (4 ∗ dn/32e bytes) to be stored, compared to n
bytes when stored as a Boolean array. During the simulation process, the current state and the next state of
a PBN have to be stored. As shown in Table 1, the states are put in registers whenever possible, i.e., when
the number of nodes is smaller than 129. In the case of a PBN with nodes number equal to or larger than
129, the global memory has to be used due to the limited register size (shared memory are used to store
other data and would not be large enough to store states in this case). To reduce the frequency of accessing
global memory, one register (32 bits) is used to cache the integer that stores the values of 32 nodes. Updating
of the 32 node values is performed via the register and stored in the global memory with a single access only
once all the 32 node values are updated in the register. Moreover, states for all the threads are stored in one
large integer array S in the global memory and we arrange the content of this array to allow for a coalesced
accessing pattern. More specifically, starting from the 0th integer, every consecutive T integers store the
values of 32 nodes in the T threads (assuming there are T threads in total). Figure 5 shows how to store
states of a PBN with n nodes for all the T threads in an integer array S and how the 32 threads in the
first warp fetch the first integer in a coalesced pattern. We denote τ ji as the ith integer to store values of 32
nodes for thread j and let ` = dn/32e. For threads in one warp, accessing the values of the same node can
be performed via fetching the adjacent integers in the array S. This results in a coalesced accessing pattern
of the global memory. Hence, all the 32 threads in one warp can fetch the data in a single data transaction.

3.4. Node-reordering for large and dense networks

The above mentioned data arrangements and optimisation methods work quite well if the network is relatively
sparse or small. However, when the network is both large and dense, the space required for storing the Boolean
functions becomes so huge that they cannot be handled by the fast memories. Moreover, when the network
is too dense, the number of parent nodes for each Boolean function is very likely to exceed 5. As a result,
the Boolean function requires extra integers to be stored as discussed in Section 3.3, leading to inefficient
access of Boolean functions.

To overcome the above mentioned problem, we propose a reorder-and-split method to handle the Boolean
functions and their parent node indices for a large and dense network. The method consists of the following
two steps. First, we reorder the nodes in an ascending order based on the number of their Boolean functions.
Secondly, we split the ordered nodes into two parts. This split is based on the available amount of shared
memory, i.e., the first part contains the first m nodes, where m is the maximum number of nodes whose
Boolean functions and parent node indices can be stored in the fast memory. By reordering the nodes, we
put the nodes with fewer Boolean functions in the fast memory. As a result, we can put more nodes in fast
memory. Therefore, accessing slow memory in each simulation step is reduced. By splitting, we maximise
the usage of the fast memory to store the Boolean functions so that the access to slow memory is minimised.
Besides, since the chance that a Boolean function may have more than five parent nodes becomes higher in
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Fig. 6. SCC-based network reduction.

a dense network, it is very likely that extraF is required to store a Boolean function if the Boolean functions
are stored as discussed in Section 3.3. As GPU instructions in a warp are performed simultaneously, even if
only one out of 32 threads is accessing the extraF , the other 31 threads have to wait for this access. Therefore,
the advantage for the optimisation of storing Boolean functions in Section 3.3 disappears or even becomes
a disadvantage. Instead of the above optimisation, we propose to store a Boolean function in consecutive
elements of the same array when the elements of a Boolean function is more than 32. In this way, we only
need two arrays to store the Boolean function information: one array F to store the Boolean functions and
one array startIndexF to store the starting index of each Boolean function.

4. Strongly connected component (SCC)-based network reduction

The set of states whose steady-state probability is to be computed is usually specified by specifying the
values for a subset of node, referred to as the nodes of interest. The values of the remaining nodes are
not considered when computing the steady-state probability. If a non-interest node is not an ancestor node
of any node of interest, then such a node would not affect the values of the nodes of interest. We call
such a node an irrelevant node. Removing the irrelevant nodes will not affect the computation of steady-
state probabilities if the perturbations of these irrelevant nodes are considered. In [MPY16b], a leaf-based
network reduction method was proposed to remove the irrelevant nodes and hence to reduce the amount
of computations required for PBN simulation. In this section, we present a strongly connected component
(SCC)-based network reduction technique to improve the performance. Our method differs from the leaf-
based network reduction method by removing not only the leaf nodes, but also any other node that does
not affect the nodes of interest. In other words, our method can remove all the irrelevant nodes. Please be
noted that our SCC-based method takes the SCCs on the level of network structure, i.e., the dependency
graph of nodes. Therefore, the detection of SCCs does not face the state-space explosion problem and can
be finished quickly. We first give the standard graph-theoretical definition of an SCC:

Definition 1 (SCC). Let G be a directed graph and V be its vertices. A strongly connected component
(SCC) of G is a maximal set of vertices C ⊆ V such that for every pair of vertices u and v, there is a directed
path from u to v and vice versa.

We take a PBN G and convert it, i.e., its network structure, to a graph G by taking the nodes of G as
the vertices in G and by drawing edges from the parent nodes to the child nodes in each of the Boolean
functions. We then detect SCCs for the graph G. By treating the SCCs as new vertices, we obtain a new
graph which is in fact a directed acyclic graph (DAG). In this DAG, we keep only the following two types
of SCCs: either an SCC that contains nodes of interest or an SCC that is an ancestor of a first type SCC.
Nodes in the remaining SCCs are removed.

Example 1. Figure 6 shows the graph of a BN with 8 nodes x1, x2, . . . , x8. The BN is decomposed into four
SCCs Σ1,Σ2,Σ3, and Σ4. Assume only node x7 is of interest, then the nodes in the SCC Σ2 and Σ3 can be
removed since these two SCCs neither contain the nodes of interest nor are ancestors of an SCC with nodes
of interest. Notably, the leaf-based network reduction method will not remove any node in this graph since
there is no leaf node in this graph.

Let us call the nodes removed by the above mentioned SCC-based network reduction technique as re-
dundant nodes. Since those redundant nodes do not affect the nodes of interest, the simulation of the nodes
of interest will not be affected in a PBN without perturbations after applying this network reduction tech-
nique. In the case of a PBN with perturbations, perturbations of the redundant nodes need to be considered.
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Algorithm 5 Checking perturbations of redundant nodes in a PBN

1: procedure CheckRedundantNodes(λ)
2: if rand() > λ then return true;
3: else return false;
4: end if
5: end procedure

Updating states with Boolean functions will only be performed when there is no perturbation in both the
redundant nodes and the non-redundant nodes. Whether at least one redundant node is perturbed can be
checked in constant time irrespective of the number of redundant nodes as described in Algorithm 5. The
input λ is the probability that no perturbation happens in all the redundant nodes. It is calculated by
λ = (1− p)`, where p is the perturbation probability for each node and ` is the number of redundant nodes
in the PBN. With the consideration of their perturbations, the redundant nodes can be removed without
affecting the simulation of the non-redundant nodes also in a PBN with perturbations. Since the redundant
nodes are not of interest, results of analyses performed on the simulated trajectories of the reduced network,
i.e., containing only non-redundant nodes, will be the same as performed on trajectories of the original
network, i.e., containing all the nodes. Algorithm 5 can be easily incorporated into Algorithm 4 with two
small changes: firstly, add the parameter λ to the inputs of Algorithm 4 at line 1; secondly, after line 7 of
Algorithm 4, add the following line “if CheckRedundantNodes(λ) then return S;” .

5. Evaluation

We evaluate our GPU-based parallelisation framework for computing steady-state probabilities of PBNs
on both randomly generated networks and on a real-life biological network. The evaluation contains three
parts. We first evaluate the performance of our framework on randomly generated networks in Section 5.1.
This evaluation includes the performance for relatively sparse networks as well as dense networks. Then,
we demonstrate the performance of our SCC-based network reduction technique in Section 5.2. Lastly,
we evaluate our framework on a real-life biological network. All the experiments are performed on high
performance computing (HPC) machines, each of which contains a CPU of Intel Xeon E5-2680 v3 @ 2.5
GHz and an NVIDIA Tesla K80 Graphic Card with 2496 cores @824MHz. The program is written in
a combination of both Java and C, and the initial and maximum Java virtual machine heap sizes are set
to 4GB and 11.82GB, respectively. The C language is used to program operations on GPUs due to the fact
that no suitable Java library is currently provided for programming operations on NVIDIA GPUs. When
launching the GPU kernels, the kernel configurations (the number of threads and blocks) are dynamically
determined as mentioned in Section 3.2.

5.1. Randomly generated networks

We first evaluate our framework on relatively sparse networks. This evaluation is performed on 380 PBNs,
which are generated using the tool ASSA-PBN [MPY15a, MPY16a]. The node numbers of these networks
are form the set {100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000}. For
each of the 380 networks, we compute one steady-state probability using both the sequential two-state Markov
chain approach and our GPU-accelerated parallelisation framework. We set the three precision requirements
of the two-state Markov chain approach, i.e., the confidence level s, the precision r, and the steady-state
convergence parameter ε to 0.95, 5× 10−5, and 10−10 respectively. The computation time limit is set to 10
hours. In the end, we obtain 366 pairs of valid results. The remaining 14 pairs are invalidated due to the
time out of the sequential version of the two-state Markov chain approach (not of the parallel version!). We
say a valid pair of results is comparable if the difference between the two estimated probabilities is no bigger
than 2× r (10−4). Among the 366 results, 355 (96.99%) are comparable. This number is in agreement with
the used confidence level of s = 95% for the precision of the estimation of the steady-state probabilities: the
sequential and the parallel versions independently estimate the probabilities with s = 95%, so the interval
±r around the estimated value contains the true value in 95% of the cases; therefore, the percentage of
comparable pairs should be no less than 90%.
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Fig. 7. Speedups of GPU-accelerated steady-state computation.

We compute the speedups of the GPU-accelerated parallelisation framework with respect to the sequential

two-state Markov chain approach for those 366 valid results with the formula speedup =
spa/tpa
sse/tse

, where spa
and tpa are respectively the sample size and time cost of the parallelisation framework, and sse and tse are
respectively the sample size and time cost of the sequential approach. The speedups are plotted in Figure 7.
As can be seen from this figure, we obtain speedups approximately between 102- and 405-fold. There are
some small gaps in the densities of the generated networks, e.g., there are no networks with density between
5 and 6. These gaps are due to the way the networks are randomly generated, i.e., one cannot force the
ASSA-PBN tool to generate a PBN with a fixed density, but can only provide the following information
to affect the density: the number of nodes, the maximum (minimum) number of functions for each node,
and the maximum (minimum) number of parent nodes for each function. However, even with the gaps, the
tendency of the changes of speedups with respect to densities can be well observed. In fact, this observation is
similar to that for the network size. With the network size decreasing and the density decreasing, our GPU-
accelerated parallelisation framework gains higher speedups. This is due to our dynamic way of arranging
data for different size PBNs: data for relatively small2 and sparse networks can be arranged in the fast
memory alone. As mentioned in Section 3.3, a state for a network with less than 129 nodes can be stored in
fast memory.

To present the details on the obtained results, we select 8 pairs among the 366 results and show in
Table 2 the computed probabilities, the sample size (in millions), and the time cost (in seconds) for com-
puting the steady-state probabilities using both the sequential two-state Markov chain approach and the
GPU-accelerated parallelisation framework. In all the cases, the numbers of burn-in steps are very small
compared to the sample size; therefore, they are not shown in the table. Note that the results of the two
methods are shown in columns titled “s.” and “–”; the columns titled “+” are used for demonstrating re-
sults of the network reduction technique discussed in the next section. The speedup of the GPU-accelerated
parallelisation framework with respect to the sequential method is shown in the column titled “–”. The two
approaches generated comparable results using similar length of samples while our GPU-accelerated paral-
lelisation framework shows speedups of more than two orders of magnitude. All detailed results for the 380
networks can be found at http://satoss.uni.lu/software/ASSA-PBN/benchmark/.

2 In fact all the networks used in this subsection should be called large-size PBNs since the state space of the network with
the smallest size has 2100 ≈ 1030 states. The networks with 100 nodes are relatively small compared to other networks.
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Table 2. Speedups of GPU-accelerated steady-state computation of 8 randomly generated networks. The
results shown here are based on 10 runs. The probability, sample size and time are shown in the format of
“average(standard deviation)”, where average is the average value of the 10 runs and standard deviation is
the standard deviation of the 10 runs. The networks are indexed with numbers and the detailed information
of each network is shown in the table after. The probability means the steady-state probability for being in
one set of randomly selected states; “s.” is short for the sequential two-state Markov chain approach; “–”
means the GPU-accelerated parallel approach without the network reduction technique applied; and “+”
means the GPU-accelerated parallel approach with the network reduction technique applied.

#
probability
(×10−5)

sample size
(million)

time (s) speedup

s. – + s. – + s. – + – +

1 24405(2) 24404(3) 24406(1) 358(4) 358(4) 366(5) 3595(34) 7(1) 4.6(0.3) 401 585
2 8831(2) 8831(3) 8830(1) 150(3) 153(3) 151(3) 939(29) 4(5) 2.9 (0.4) 215 323
3 20528(1) 20529(3) 20528(2) 494(3) 491(3) 494(2) 9833(22) 60(6) 38.2(2.4) 163 257
4 12002(1) 12002(2) 12003(1) 316(3) 316(2) 318(2) 7611(31) 28(3) 15.7(1.4) 276 487
5 13708(1) 13707(3) 13708(1) 542(2) 543(3) 540(3) 14625(117) 125(7) 79.8(2.0) 118 183
6 5797(2) 5798(2) 5797(1) 260(3) 260(3) 259(2) 8590(79) 36(4) 23.1(1.1) 237 371
7 17796(2) 17797(3) 17797(1) 990(3) 996(3) 992(3) 34109(81) 328(4) 214(1.4) 105 160
8 14674(2) 14674(2) 14675(1) 844(4) 843(4) 844(3) 30589(87) 183(4) 108(1.7) 167 283

# # nodes # redundant nodes density # # nodes. # redundant nodes density

1 100 36 2.53 5 700 231 7.08
2 100 31 7.31 6 700 269 2.64
3 400 131 7.14 7 1000 331 7.09
4 400 148 2.75 8 1000 338 2.73

Table 3. Speedups of GPU-accelerated steady-state computation with the reorder-and-split method applied.
As in Table 2, the results shown here are based on 10 runs. “+” means with the reorder-and-split method
applied; while “–” menas without the method applied.

# node density
probability
(×10−5)

sample size
(×105)

time (s)
speedup

– + – + – +

500 16.93 10275(3) 10276(2) 3287(3) 3290(6) 513(3) 77.4(0.4) 6.63
600 16.71 8992(2) 8991(3) 3170(6) 3169(6) 634(3) 90.7(0.2) 6.99
700 16.26 13129(2) 13130(3) 5324(8) 5319(1) 1346(9) 180.5(0.9) 7.45
800 16.46 9157(3) 9156(2) 4430(12) 4434(10) 1487(9) 175.8(0.4) 8.47
900 16.39 12739(2) 12739(2) 6694(10) 6693(9) 2736(19) 301(1) 9.09

1000 16.87 16529(3) 16531(3) 9374(19) 9367(9) 4921(18) 479.0(0.4) 10.27

We continue to demonstrate the performance of our framework on large and dense networks. Using the tool
ASSA-PBN, we generate 30 large and dense networks whose nodes number are in the set {500, 600, 700, 800,
900, 1000}. In this evaluation, we compare how our reorder-and-split method as discussed in Section 3.4
performs compared to the cases when the reorder-and-split method is not applied. Therefore, for each of
the 30 networks, we compute one steady-state probability using both the GPU-accelerated parallelisation
framework with and without the reorder-and-split method applied. The three precision parameters were kept
the same as in the previous evaluation. We repeat the computation 10 times. In the end, we get 10 pairs
of valid results for each of the 30 networks. We select the results for 6 networks and show them in Table 3.
It is obvious from this table that applying our reorder-and-split method can improve the performance of
the GPU-accelerated parallelisation framework by several times. Moreover, the improved performance of the
reorder-and-split method increases with the number of nodes. This reflects the fact that the advantages of
our reorder-and-split method become more pronounced with the network size increased.
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Table 4. Speedups of GPU-accelerated steady-state computation of a real-life apoptosis network. As in
Table 2, the results shown here are based on 10 runs. The three different types of methods calculate the same
probabilities for the given precision; therefore, the probabilities are shown in one column. “s.” represents the
sequential two-state Markov chain approach; “–” represents the GPU-accelerated parallel approach without
applying the network reduction technique; and “+” represents the GPU-accelerated parallel approach with
the network reduction technique applied.

steady-
state

R C F

probability
(×10−5)

sample size
(million)

time (s) speedup

s. – + s. – + – +

0 1 1 324(0) 591(3) 591(3) 593(2) 3906(13) 9.4(0.7) 5.8(0.1) 412 671
1 1 1 99005(0) 1810(3) 1810(2) 1811(1) 11476(17) 28.2(0.6) 17.6(0.6) 406 653
1 0 1 559(0) 1017(3) 1037(4) 1039(6) 6661(3) 15.8(0.9) 10.2(0.5) 431 670
1 1 0 108(0) 198(3) 203(3) 203(3) 1282(1) 3.4(0.9) 1.8(0.3) 385 740
* 1 1 99329(0) 1232(4) 1238(3) 1237(4) 7974(24) 19.3(0.3) 11.9(0.3) 415 675
* 1 0 109(0) 201(3) 205(3) 205(3) 1094(8) 3.4(0.3) 1.9(0.3) 328 585
* 0 1 562(0) 1030(4) 1037(2) 1037(2) 6737(22) 16.2(0.3) 9.8(0.3) 418 691

5.2. Performance of SCC-based network reduction

In this section, we evaluate the performance of our SCC-based network reduction technique. We use the 8
selected networks shown in Table 2 to perform this evaluation. We calculate 8 steady-state probabilities of
the 8 networks using the GPU-accelerated parallelisation framework with the SCC-based network reduction
technique applied and show the results in columns with title “+”. In the last column, we show the speedup of
the parallelisation framework with the SCC-based network reduction technique applied with respect to the

sequential two-state Markov chain approach. It is calculated based on the formula speedupSCC = sSCC/tSCC

sse/tse
,

where sSCC and tSCC are respectively the sample size and time cost of the parallelisation framework with
the SCC-based network reduction technique applied and sse and tse are respectively the sample size and
time cost of the sequential approach. The results in Table 2 show that, by applying our SCC-based network
reduction technique, the performance of our GPU-accelerated framework can be further improved. Given
around 35% of redundant nodes, the computational speed is improved by about 1.6 times (the number is
obtained by comparing the speedups in the last two columns). We made similar observation for the real-life
network demonstrated in the next section.

5.3. An apoptosis network

We have analysed a PBN model of an apoptosis network using the sequential two-state Markov chain
approach in [MPY15b]. The apoptosis network was originally published in [SSV+09] as a BN model and
cast into the PBN framework in [TMP+14]. The PBN model (as shown in Figure 8) contains 91 nodes
and 107 Boolean functions. The selection probabilities of the Boolean functions were fitted to experimental
data in [TMP+14]. We took the 20 best fitted parameter sets and performed the influence analyses for
them. Although we managed to finish this analysis in an affordable amount of time due to an efficient
implementation of a sequential PBN simulator, the analysis was still very expensive in terms of computation
time since the required trajectories were very long and we needed to compute steady-state probabilities for
a number of different states.

In this work, we re-perform part of the influence analyses from [MPY15b] using our GPU-accelerated
parallel two-state Markov chain approach. In the influence analysis, we consider the PBN with the best
fitted values and we aim to compute the long-term influences on complex2 from each of its parent nodes:
RIP-deubi, complex1, and FADD, in accordance with the definition in [SDKZ02]. In order to compute this
long-term influence, seven different steady-state probabilities are required. We show in the first column of
Table 4 the values of the nodes of interest for seven steady-state probabilities. The three numbers or “*”
with two numbers respectively represent the values of the three genes RIP-deubi, complex1, and FADD:
0 represents active; 1 represents inactive; and “*” represents irrelevant. We compute the seven different
steady-state probabilities using three different methods: the sequential two-state Markov chain approach, the
GPU-accelerated parallelisation framework without the SCC-based network reduction technique applied, and
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Fig. 8. The wiring of the probabilistic Boolean model of apoptosis in [TMP+14].
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the GPU-accelerated parallelisation framework with the SCC-based network reduction technique applied.
In this network, there are 36 redundant nodes for all the seven steady-state probabilities. We show in
Table 4 the computed steady-state probabilities, the sample size (in millions), the time cost (in seconds),
and the speedups we obtain for this computation. The confidence level s, precision r, and the steady-state
convergence parameter ε of this computation are set to 0.95, 5×10−6, and 10−10 respectively. The density of
the network is approximately 1.78. The three approaches compute comparable steady-state probabilities with
similar trajectory lengths; while our two GPU-accelerated parallelisation frameworks reduce the time cost
by approximately 400 and 600 times, respectively. The total time cost for computing the seven probabilities
is reduced from about 11 hours to approximately 1.5 min. for the parallel framework without the network
reduction technique applied and to less than 1 min. for the parallel framework with the network reduction
technique applied.

6. Conclusion and Future Work

Being able to compute the steady-state probabilities of a PBN is an important task for understanding
the behaviours of biological systems modelled as PBNs. Estimating the probabilities with simulation-based
methods is the only viable way for large PBNs. However, obtaining such probabilities for large PBNs is
often time-consuming. In this study, we have proposed a GPU-based parallelisation framework to accelerate
the computation speed of estimating the probabilities. We show with experiments that our GPU-based
parallelisation gains a speedup of more than two orders of magnitudes. Evaluation on a real-life apoptosis
network shows that our GPU-based parallelisation obtains a speedup of approximately 600 times. The
significant improvement in the computation speed enables the in-depth steady-state analysis of large PBNs.
For example, we can give answers in a reasonable amount of time to questions like “what is the influence of
gene A to gene B in the long-run”.

In the future, we will apply our work to analyse other large real-life biological models. Moreover, we plan
to explore the computation power of GPUs in problems of attractor detection for large Boolean networks.
The challenge for this type of problems is how to solve the large state-space exploration issue with the use
of GPUs.
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