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Abstract

Comparing alternative models for a given biochemical system is in
general a very difficult problem: the models may focus on different as-
pects of the same system and may consist of very different species and
reactions. The numerical setups of the models also play a crucial role in
the quantitative comparison. When the alternative designs are submodels
of a reference model, e.g. knockdown mutants of a model, the problem
of comparing them becomes simpler: they all have very similar, although
not identical, underlying reaction networks, and the biological constraints
are given by the ones in the reference model. In the first part of our
study we review several known methods for model decomposition and for
quantitative comparison of submodels. We describe the knockdown mu-
tants, elementary flux modes, control-based decomposition, mathemati-
cally controlled comparison and its extension, local submodels comparison
and a discrete approach for comparing continuous submodels. In the sec-
ond part of the paper we present a new statistical method for comparing
submodels that complements the methods presented in the review. The
main difference between our approach and the known methods is related
to the important question of how to chose the numerical setup in which to
perform the comparison. In the case of the reviewed methods, the com-
parison is made in the numerical context of the reference model, i.e., in
each of the alternative models both the kinetics of the reactions and the
initial values of all variables are chosen to be identical to those from the
reference model. We propose in this paper a different approach, better
suited for response networks, where each alternative model is assumed
to start from its own steady state under basal conditions. We demon-
strate our approach on a case study focusing on the heat shock response
in eukaryotes.
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1 Introduction

Much experimental and theoretical effort is invested nowadays in analysing
large biochemical systems, e.g., metabolic pathways, regulatory networks, signal
transduction networks, aiming to obtain a holistic perspective providing a com-
prehensive, system-level understanding of cellular behaviour. This often results
in the creation and analysis of very large and complex models, often encom-
passing hundreds of reactions and reactants, see e.g. [5]. Therefore, obtaining
a global picture of the system’s architecture, in particular understanding the in-
teractions between various components, or even just distinguishing a high-level
functional decomposition of the network, constitutes a significant challenge. An
important insight here is that the architecture of some biological systems, e.g.
some regulatory networks, is a consequence of functional requirements of the en-
tire system. Even though evolution is driven by random events, some designs,
such as having an extra feedback loop helping the system to correlate better the
response of the system with its trigger, may offer a selective advantage and in
time, may get to dominate the population, see [39]. Thus, comparing the per-
formance of different alternative designs in terms of sub-components being on
or off, one aims to formulate general principles for how functional requirements
correlate biologically with various designs.

Similar problems have been encountered for instance in engineering sciences,
see [7], and a variety of strategies and approaches for solving such problems
have been already developed in this framework. Thus, when aiming to obtain
a system-level understanding of such large biochemical networks, one possible
approach is to adapt to systems biology some of the methods originating from
engineering sciences, especially from control theory, see e.g. [12, 18, 21, 46, 47,
49, 53]. Such methods have been used, as we also do in this paper, to iden-
tify various functional modules of a model, including feedback and feedforward
mechanisms. To identify the quantitative contribution of each of the modules
to the global behaviour of the model, the general approach is to consider knock-
down mutants of the initial model, missing one or several of the modules. The
main problem then becomes an objective quantitative comparison of several al-
ternative submodels for the same biological process. We focus on this problem
in our paper, i.e. we concentrate on the comparison of submodels of a given
reference model. This issue is a special case of the general problem of alternative
model comparison. In the general case it is a very difficult issue and is not in
the scope of this study.

The first part of our paper contains a review of existing techniques for
model decomposition and for quantitative comparison of submodels. We de-
scribe the knockdown mutants, elementary flux modes, control-based decompo-
sition, mathematically controlled comparison and its extension, local submodels
comparison and a discrete approach for comparing continuous submodels. In
the second part of the paper we introduce a new approach to quantitative sub-
model comparison. A main difference in our approach with respect to previous
methods is that we allow the alternative models to start from different initial
states, rather than to assume the initial state of the reference model. We argue
that this is a better approach at least in the case of response networks, where
the system is assumed to be in a steady state under basal conditions and ex-
hibit a response only as an effect of an external trigger. To treat each model
as a genuine alternative for the biological process under study, we allow it to
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start from its own steady state under basal conditions. Finally, we illustrate our
approach on a case study focusing on the heat shock response in eukaryotes.

The numerical behaviour of any model is clearly sensitive to the numerical
setup, i.e., the numerical values of the kinetic constants and of the initial values
of the model variables. In our approach for quantitative comparison of alter-
native submodels we adopt some statistical, parameter-independent methods
introduced in [1, 2]. These methods aim to sample the numerical behaviour of
the model through a sampling of the parameter space. We adopt in this paper
the latin hypercube sampling method of [14] that gives uniformly distributed
samples over each parameter, of size independent of the number of parame-
ters. We briefly survey this method and apply it to the heat shock response in
eukaryotes.

The heat shock response is an evolutionary conserved mechanism protecting
the cell against protein misfolding. In the case study for our new approach
to quantitative submodel comparison we consider a model recently introduced
in [28]. The model was analysed in [8] using control-driven methods where
it was decomposed into several modules, including three feedback loops. We
focus in the case study on identifying the numerical contribution of each of
these feedback loops to the global behaviour of the model. A local, point-wise
comparison of the three feedbacks was already done in [8], in the kinetic setup
of the reference model. In this paper we do a global, parameter-independent
analysis of the numerical role of each feedback, through a sampling of the whole
parameter space.

2 Methods for model decomposition

2.1 Knockdown mutants

A simple model decomposition consists of isolating a single process or mecha-
nism in the considered system. In this way the model is split into two parts:
the first one comprising the process of interest and the second containing all the
remaining elements of the system. Although such decomposition might seem
unsophisticated, this approach is often very useful in discovering the role of
a single mechanism in a larger system. It is widely exploited in reverse engi-
neering, a process aiming at revealing the technological principles of a device,
object or system. In Section 3 we shortly describe the method of mathemati-
cally controlled comparison ([39]), where this simple decomposition approach is
at the basis of the method.

2.2 Elementary flux modes

Another well-established decomposition method for biochemical models appears
in the context of the analysis of metabolic pathways. It is not easy to define
a pathway in a given metabolic network. An intuitive definition of a pathway
is a sequence of reactions linked by common metabolites ([19]). Examples of
metabolic pathways are glycolysis or amino acid synthesis. Discovering new
pathways in a large model driven only by biological intuition is even more dif-
ficult. An attempt to formalize the notion of pathway has been proposed in
[13, 30, 41, 42, 43, 44] in the form of elementary flux modes. The intuitive
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meaning of an elementary flux mode is a set of reactions whose combined quan-
titative contribution to the system is zero. In other words, the net loss of
substance caused by any reaction in that set is compensated by a net gain in
the same substance incurred by some other reactions in the set. A formal def-
inition of elementary flux modes is beyond the scope of this paper; instead we
refer to [13, 19, 41, 42, 43, 44] for details. For any given metabolic network,
the full set of elementary fluxes can be determined using methods of linear al-
gebra or dedicated software such as METATOOL ([30]). The recognition of the
elementary flux modes allows the detection of the full set of nondecomposable
steady-state flows that the network can support, including cyclic flows. Any
steady-state flux pattern can be expressed as a non-negative linear combination
of these modes ([41, 42, 43]). The identified elementary flux modes should have
clear biological interpretation: a flux mode is a set of enzymes that operate
together at a steady state and a flux mode is elementary if the set of enzymes is
minimal, i.e. complete inhibition of any of the enzymes would result in a termi-
nation of this flux ([41, 42, 43]). The lack of possibility to interpret the modes
in this way is a signal that the model under consideration may not be correct.

2.3 Control-based decomposition

A control-driven approach to model decomposition enables the recognition of
the main functional modules of a system and their individual contribution to
the emergent, complex behaviours of the system as a whole. In turn, this can
provide great insight about various properties of a given biochemical system,
e.g., robustness, efficiency, reactivity, adaptation, regulation, synchronization,
etc. In particular, by applying this approach, one usually aims to identify the
main regulatory components of a given biochemical system: the process to be
regulated, referred to as the plant, the sensors which monitor the current state
of the process and send the collected information to a decision-making module,
i.e. the controller and the actuator that modifies the state of the process in
accordance with the controller’s decisions, thus influences the activity of the
plant. One of the fundamental concepts in control theory is the feedback mecha-
nism, which provides the means to cope with the uncertainties: the information
about the current state of the process is sent back to the controller, which reacts
accordingly to facilitate a dynamic compensation for any disturbance from the
intended behaviour of the system. In the case of a complex system this decom-
position can be performed in different ways depending on what is considered
to be the main role of that system, i.e. there may be a few reasonable choices
for the plant, and the remaining components are recognized with respect to the
choice of the plant.

An easy example illustrating these concepts and their interactions is given by
the functioning principles of a motion activated spotlight. Here, the controller
module is an electronic unit which receives an input from the motion sensor
and then determines whether there are any changes in the environment. The
actuator is a relay switch that operates the lighting system. This actuator is
activated by the controller depending on the input sent by the sensor. Then,
the switch is kept on by the controller as long as movement is detected by the
sensor.

How this control-driven approach can be exploited to investigate and under-
stand regulatory networks can be seen in [7, 10, 18, 46, 47]. Here we shortly
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describe the approach taken in [10]. The authors make a thorough study of the
heat shock response mechanism in Escherichia coli based on modular decompo-
sition. A model for the system is built and functional modules, i.e. the plant,
sensors, controller, and actuator are identified. The decomposition reveals the
underlying design of the heat shock response mechanism and its level of com-
plexity, which, as the authors show, is not justified if only the functionality of
an operational heat shock system is required. Further, this observation leads
to the introduction and analysis of hypothetical design variants (mutants) of
the original heat shock response model. In the original model one feedforward
(temperature sensing) and two feedback elements (σ32 factor sequestration feed-
back loop and σ32 degradation feedback loop) can be isolated. The variants are
obtained through the elimination of either the σ32 degradation feedback loop
or both feedbacks. Moreover, the case without the feedforward element is also
considered, see [10] for details. One by one the variants in order of increasing
complexity are considered starting from the simplest architecture containing just
the feedforward element (the open-loop design). Based on numerical simulations,
the authors demonstrate how the addition of subsequent layers of regulation,
thereby increase in the complexity of the model, improves the performance of
the response in terms of systemic properties such as robustness, noise reduc-
tion, speed of response and economical use of cellular resources. Moreover, this
systematic approach enables the identification of the role of each of the regula-
tory layers to the overall behaviour of the system. In consequence the authors
succeed to perform an in-depth comparison between different model variants.

3 Known methods for submodel comparison

Comparing alternative models for a given biochemical system is in general a very
difficult problem, involving a deep analysis of both the underlying network of
reactions, the biological assumptions as well as the numerical setup. To decide
what are the benefits of one design over another, or to understand what are
the selection requirements involved in an evolutionary design, one needs some
unbiased methods to objectively compare the alternative designs.

3.1 Mathematically controlled model comparison

One such method is the mathematically controlled comparison, [39], which pro-
vides a structured approach for comparing alternative regulatory designs with
respect to some chosen measures of functional effectiveness. Under this ap-
proach, mathematical models for both the reference design and the alternatives
are first developed in the framework of canonical nonlinear modelling referred
to as S-systems, [36], [37], and [38]. This canonical nonlinear representation,
developed within the power-law formalism, is a system of non-linear ordinary
differential equations with a well-defined structure. Moreover, this framework
allows the alternative models to differ from the reference design in only one
process, e.g., the existence or not of some feedback mechanisms, which is actu-
ally the focuss of the comparison. Then, in each of the alternative models one
sets the numerical values of the parameters to be identical with those from the
reference model for all processes other than the process of interest. This leads
to a so-called internal equivalence between the reference model and the alterna-
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tives. Next, various systemic properties are selected and used to impose some
constraints for all the other parameters in the alternative designs. In general in
this approach, one imposes that some steady state values or logarithmic gains
are equal in the reference model and its alternatives. This provides a way to
express the parameters of the process of interest in the alternative models as
functions of the parameters of the reference model. Thus, one obtains a so-called
external equivalence between the reference model and the alternative designs,
meaning that to an external observer the considered models are equivalent with
respect to the selected systemic properties. Finally, one chooses various mea-
sures of functional effectiveness depending on the particularities of the biological
context of these models and uses them to compare the alternative designs with
the reference model. By doing this, one usually aims to determine analytically
the qualitative differences between the compared models. This method was
successfully used to compare alternative regulatory designs in, e.g., metabolic
pathways, [16], [40], in gene circuits, [15], in immune networks, [4]. Moreover,
by introducing specific numerical values for the parameters of the models, one
is also able to quantify these differences but, at the same time, the generality of
the results is lost. Thus, in [2], the method of mathematically controlled com-
parison was extended to include some statistical methods, [1], [3], that allow the
use of numerical values for the parameters while still preserving the generality
of the conclusions.

3.2 An extension of the mathematically controlled com-
parison

The first step of this extension is to generate a representative ensemble of sets of
parameter values. Since usually for biological systems the exact statistical dis-
tribution of the parameters values is not known, the most appropriate approach
is to sample uniformly a given range of values. There exist different methods
for scanning a given interval of values, ranging from (more or less sophisti-
cated) random samplings to some systematic deterministic scanning methods,
see e.g. [34]. Using this ensemble of sets of parameters, we can then construct
a large class of numerical models both for the reference and for the alternative
designs. There are two different methods to construct such a class of systems
for which we can then investigate some statistical properties. A structural class
consists of systems having the same network topology, i.e., generated by the
sampling of the parameter space. A behavioural class consists of systems that
exhibit a particular systemic behaviour, e.g., exhibiting a steady state behaviour
under given conditions, or low concentrations of intermediary products, or small
values for the parameter sensitivity, see, e.g., [3]. The members of such a class
are obtained in two steps: first generate a set of parameters by sampling the
parameter space, then test the sample for the desired systemic behaviour and
keep only those systems that fulfil the conditions.

After constructing this large class of numerical models both for the ref-
erence and the alternative architectures, one can start comparing the values
of a given systemic property P between the reference model and its alter-
native designs. One way to do this is by using density plots of the ratio
R = Preference/Palternative versus the values Preference, where the subscript
indicates in which model the property P was measured. Such density plots
can be used for instance to compute rank correlations between the considered
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property P (measured in the reference model) and the values of the ratio R.
However, this is not easy to do if the density plots are very scattered. Then, one
can construct secondary density plots by using the moving median technique
as follows. Basically, the density plot can be interpreted as a list of N pairs of
values (Preference, R), which can be arranged in a ordered list L with respect to
the first component, Preference. Then, we pick a window size W , usually much
smaller than the sample size N and we compute the median < R > of the ratio
values and the median < P > of the values Preference, for the first W pairs
in the list L. Then, we advance the window by one, we collect the ratios and
the values Preference from the second until the W + 1st pair and compute the
corresponding median values < R > and < P >. This process is continued until
the last pair of the list L is used for the first time. In the secondary density
plot, we will pair the computed values < R > with the corresponding < P >
values. This moving median technique is very useful since for a finite ordered
sample of size N , the moving median tends to the median of the samples as the
value W approaches N . These secondary density plots can be used to compare
the efficiency of two classes of models from the point of view of a given systemic
property.

3.3 Local submodels comparison

When the alternative designs are actually submodels of the reference architec-
ture, there is also another approach, see [8], for performing the comparison.
This is the case when, for instance, one is interested in a functional analysis of
various modules of a large system. Then, the underlying reaction networks in
the alternative designs are very similar (although not identical), and both the
biological constraints and the kinetics of the reactions are given by those of the
reference model. The only remaining question regards the initial distribution
of the variables in the alternative models. In the mathematically controlled
comparison they are usually taken from the reference model. However, for some
biochemical systems this choice might lead to biased comparisons. For instance,
in the case of regulatory networks, models should be in a steady state in the ab-
sence of the trigger of the response and indeed the initial values of the reference
model are usually chosen in such a way to fulfil this condition. However, this
will not imply in general that also a submodel will be in its steady state if it uses
the same initial values as the reference model. Thus, the dynamic behaviour of
the submodel will be the result of two intertwined tendencies: migrating from a
possible unstable state and the response to a trigger. If the focus of the compar-
ison is exactly the efficiency of the response of various submodels to a trigger,
then the approached proposed in [8] is more appropriate, yielding biologically
unbiased results. In this approach, the initial distribution of the reactants is
chosen in such a way that the initial setup of each submodel constitutes a steady
state of that design in the absence of a trigger.

3.4 A discrete approach for comparing continuous sub-
models

The application of the control-theoretical analysis described in Section 2 en-
ables the identification of the main functional modules, their interconnections
and control strategies of a biochemical network. In particular, this approach can
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be very useful for identifying the main regulatory components of a biochemical
network, including its feed-forward and feedback mechanisms. Then, in order
to identify and quantify the exact role of each of these regulatory mechanisms,
one usually uses knockdown mutants, see [10], lacking one or more of these
components. In particular, the knockdown mutant models are submodels of
the reference architecture. The approached proposed in [9], associates to each
knockdown mutant a Boolean formula describing its control architecture in the
following way. First, a Boolean variable is associated to each of the regulating
mechanisms. Then, using the negation and conjunction of Boolean variables,
one can write a Boolean formula for each of the knockdown mutants describing
which of the regulating mechanisms are present in their architecture. In par-
ticular, these Boolean formulas describe a property of the alternative designs
which is independent of time, i.e., their regulatory network. Moreover, one can
go one step further and write a Boolean formula describing all those mutant ar-
chitectures that show a given behavioural property, e.g., a high level of a given
reactant or a given correlation between two reactants. This formula is actually
the conjunction of all Boolean formulas characterizing the architectures of the
mutants exhibiting the required property. The numerical comparison of the mu-
tants is then performed by analysing the Boolean formulas associated to various
behavioural properties.

4 A new approach for quantitative submodel
comparison

Here we propose a new approach for quantitative comparison of biological mod-
els. Before presenting the method itself, we clarify the adopted terminology
which is used in the description of our new approach. Usually biological models
are expressed in terms of biochemical reactions. We will refer to a list of such
reactions describing a biological mechanism as its biochemical model. From the
biochemical model an associated mathematical model is derived by choosing one
of the two commonly used frameworks: either a deterministic or a stochastic
formulation. In the first case the biochemical reaction kinetics rely on the as-
sumption that the reaction rate at a certain point in time and space can be
expressed as a unique function of the concentrations of all substances at this
point in time and space, see [19]. It is governed by the mass action law, which
can be shortly summarized as follows: the rate of each reaction is proportional
to the product of the reactant masses, with each mass raised to the power equal
to the corresponding stoichiometric coefficient ([19]). With this assumption, the
mathematical formulation of a biochemical model results in a system of ordi-
nary differential rate equations constituting the associated deterministic math-
ematical model. In the second case, single molecules and their interactions are
considered and the changes in molecular populations are described in terms of
stochastic processes. In the stochastic framework the associated mathematical
model is a continuous-time Markov chain defined by a chemical master equa-
tion describing the time evolution of the probability of the biochemical system
to be in a certain state. Our new approach for model comparison is designed
and presented for the deterministic framework, however we notice that it can
be easily adapted for the stochastic formulation.
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As mentioned above, the assumption of the mass action kinetics leads to
a system of ordinary differential equations (ODE) constituting the mathematical
model. The ODE system contains a certain number of parameters representing
the kinetic rate constants of the biochemical reactions. By assigning numerical
values to the parameters and setting the initial conditions for the equations, we
obtain an instantiation of the mathematical model.

Our model comparison method can be outlined as follows. First, having
a biochemical model of some biological mechanism, referred to as the reference
model (or reference architecture) of this system, we construct a submodel (or
alternative architecture) by eliminating certain reactions from the list of bio-
chemical reactions of the reference model. In this stage, we can for example
apply control-based decomposition techniques to identify a number of modules,
and then study them separately by considering a number of knockdown mutants
lacking one or more of the modules. Second, the associated mathematical mod-
els both for the reference and alternative architecture are formulated. Notice
that this procedure assures that all the parameters of the alternative architec-
ture are common with a subset of parameters of the reference model. Next, we
perform the statistical sampling of the reference model and mutant behaviour.
To this aim we scan the parameter value space of the reference model. This pro-
vides us with a set of parameter value vectors. Each coordinate of these vectors
is associated with one of the parameters in the reference model and determines
the value of the corresponding parameter. We consider each of the vectors one
by one. We set the parameters of the reference model and the submodel in
accordance with the considered vector. Since, as mentioned above, the alter-
native architecture contains only a subset of the reference model parameters,
only the values of certain coordinates are used when setting the parameters
of the submodel. Further, the initial values of the variables of the reference
model and the submodel are determined independently of each other by a sys-
temic property such as the system being in a steady state in a given setup. For
example, in the general case of stress response, we expect in accordance with
biological observations that a feasible mathematical model is in a steady state
under the unstressed, physiological conditions. We call steady state a numeri-
cal configuration of the model (given by numerical values for all variables and
parameters of the model) such that starting from that configuration, the model
shows no change in the level of any of the variables. In other words, the net loss
per unit of time in every variable is exactly compensated by the net gain per
unit of time in that variable. The steady states of a model are defined by the
values of its parameters and by the initial values of its variables. Now, assur-
ing that both mathematical submodels satisfy such systemic properties makes
them suitable to be considered as viable alternative formal descriptions of the
biological mechanism being analysed. As a result we obtain the instantiations
of the reference model and the submodel and we run numerical simulations for
both of them in order to evaluate their functional effectiveness. Finally, hav-
ing done this for all sampled vectors, we summarize the obtained results for the
variants and compare the models by use of some statistical measures. Moreover,
the methodology allows us to consider more than one submodel and thus the
obtained results provide a basis for comparison between the different potential
architectural designs underlying the analysed biological mechanism.

For the parameter scanning, in the above procedure we use the latin hyper-
cube sampling method (LHS), originally introduced in [26]. It provides samples
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which are uniformly distributed over each parameter while the number of sam-
ples is independent of the number of parameters. The sampling scheme can
be briefly described as follows. First, the desired size N of the sampling set
is chosen. Next, the range interval of each parameter is partitioned into N
non-overlapping intervals of equal length. For each parameter, N numerical
values are randomly selected, one from each interval of the partition according
to a uniform distribution on that interval. Finally, the N sampled values for
the i-th parameter of the model are collected on the i-th column of a N ×p ma-
trix, where p is the number of model parameters and the values on each column
are shuffled randomly. As a result, each of the N rows of the matrix contains
numerical values for each of the p parameters. For a detailed description of this
sampling scheme we refer the reader to [14, 26], see also [28] for an example of
the application of this sampling method in the context of model identifiability
problem.

In the next sections we show how the described method, where the sampling
is performed with the LHS approach, can be utilized in the case of a recently
introduced mathematical model for the eukaryotic heat shock response. In par-
ticular, we present how this method allows to discriminate between different
variants of the model and to determine the roles of certain control mechanisms
of the response system.

5 Case study

5.1 A biochemical model for the heat shock response

The heat shock response (HSR) is a highly evolutionarily conserved defence
mechanism among organisms ([24]). It serves to prevent and repair protein
damage induced by elevated temperature and other forms of environmental,
chemical or physical stress. Such conditions induce the misfolding of proteins,
which in turn accumulate and form aggregates with disastrous effect for the cell.
In order to survive, the cell has to abruptly increase the expression of heat shock
proteins. These proteins operate as intra-cellular chaperones, i.e. play a crucial
role in folding of proteins and re-establishment of proper protein conformation.
They prevent the destructive protein aggregation. We discern two main rea-
sons that account for the strong interest in the heat shock response mechanism
observed in recent years, see e.g. [6, 32, 51]. First, as a well-conserved mech-
anism among organisms, it is considered a promising candidate for disentan-
gling the engineering principles being fundamental for any regulatory network
([10, 11, 20, 50]). Second, besides their functions in the HSR, heat shock pro-
teins have fundamental importance to many key biological processes such as
protein biogenesis, dismantling of damaged proteins, activation of immune re-
sponses and signalling, see [17, 31]. In consequence, a thorough insight into
the HSR mechanism would have significant implications for the advancement in
understanding the cell biology.

In order to coherently investigate the HSR a number of mathematical mod-
els has been proposed in the literature, see e.g. [10, 25, 27, 33, 48]. In this
study we consider a recently introduced model of the eukaryotic heat shock
response ([28] and [29]). In this model the central role is played by the heat
shock proteins (hsp), which act as chaperones for the misfolded proteins (mfp):
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the heat shock proteins sequester the misfolded proteins (hsp: mfp) and help
the misfolded proteins to regain their native conformation (prot). The defence
mechanism is controlled through the regulation of the transactivation of the hsp-
encoding genes. The transcription is initiated by heat shock factors (hsf), some
specific proteins which first form dimers (hsf2), then trimers (hsf3) and in this
configuration bind to the heat shock elements (hse), i.e. certain DNA sequences
in the promotor regions of the hsp-encoding genes. Once the trimers bind to
the promoter elements (hsf3: hse), the transcription and translation of the hsp-
encoding genes boosts and, in consequence, new heat shock protein molecules
get synthesized at a substantially augmented rate.

When the amount of the heat shock proteins reaches a high enough level
that enables coping with the stress conditions, the production of new chaperone
molecules is switched off by the excess of the heat shock proteins. To this aim
hsp form complexes with the heat shock factors (hsp: hsf) in three independently
and concurrently running processes: 1) by binding to the free hsf, 2) by breaking
the dimers and trimers, and 3) by breaking the hsf3: hse, in result of which the
trimer gets unbound from the DNA and decomposed into free hsf molecules.
This terminates the enhanced production of new heat shock protein molecules
and blocks the formation of new hsf trimers. As soon as the temperature in-
creases, proteins present in the cell start misfolding. The misfolded proteins
titrate hsp away from the hsp: hsf complexes. This enables the accumulation
of free hsf molecules, which in turn form trimers and promote the production
of new chaperones. In consequence the response mechanism gets switched on.
The full list of biochemical reactions constituting the biochemical model from
[28] is presented in Table 1. The model is based only on well-documented
reactions without introducing any hypothetical mechanisms or experimentally
unsupported biochemical reactions. For a full presentation and discussion of
this model we refer the reader to [28].

Based on the assumption of mass-action law for all the reactions (1)-(12)
an associated mathematical model of the eukaryotic heat shock response is ob-
tained. The resulting mathematical model is expressed in terms of ten, first
order, ordinary differential equations. The full ODE system is shown in Table 2,
where by ki we denote the reaction rate constant of the irreversible reaction (i)
in Table 1, by k+

i the rate constant associated with the ‘left-to-right’ direction
of the reversible reaction (i), while k−i denotes the rate constant corresponding
to its ‘right-to-left’ direction. By T we denote the numerical value of the tem-
perature of the environment in Celsius degrees. The rate coefficient of protein
misfolding with respect to the temperature (ϕ(T )) in reaction (10) is given by
the following formula:

ϕ(T ) = (1− 0.4
eT−37

) · 1.4T−37 · 1.45 · 10−5 s−1,

which is valid for T in the range from 37 to 45. The formula was obtained based
on experimental investigations described in [22, 23], was originally proposed
in [27] and adapted for use in the mathematical model of HSR in [28]. The
mathematical model comprises 16 independent kinetic parameters and 10 initial
conditions. In the case of our method we do not fix the parameter values as was
done in [28]: we neither fit nor validate the model with respect to experimental
data. Instead, we sample the HSR model behaviour by randomly choosing
different sets of parameter values. This results not in one, but in a collection
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of instances of the HSR model. Notice that in the process of obtaining these
instances no experimental data are considered. Thus, the instances are not
required to confirm any experimental results. We discuss in details how the
parameter values for the HSR model are obtained in subsection 5.4.

5.2 Control-based decomposition

In [8] a control-driven modular decomposition of the heat shock response model
has been performed. In result, the model has been divided into four main
functional submodules usually distinguished in control engineering: the plant,
the sensor, the controller and the actuator. In the case of the HSR model
the plant is the misfolding and refolding of proteins, the actuator consists of the
synthesis and degradation of the chaperones, the sensor measures the level of hsp
in the system and the controller regulates the level of DNA binding. Moreover,
within the controller we distinguish three feedback mechanisms. The feedback
loops are responsible for sequestering the heat shock factors in different forms
by the chaperones. In this way the feedback loops are decreasing the level of
DNA binding. The three identified feedback mechanisms are the following:

• FB1: sequestration of free hsf, i.e. reaction (5)+ (the ‘left-to-right’ direc-
tion of reaction (5));

• FB2: breaking of hsf dimers and trimers, i.e. reactions (6) and (7);

• FB3: unbinding of hsf3 from hse and breaking the trimers, i.e. reaction (8).

The control-driven functional decomposition of the eukaryotic heat shock re-
sponse model is shown in Figure 1, where the reaction numbers refer to the
reactions in Table 1. In Figure 2 a graphical illustration of the control struc-
ture, i.e. the three feedback loops and their points of interactions with the
mainstream process, is presented.

5.3 The knockdown mutants

In [8] and [9] the reference architecture and seven knockdown mutants (alter-
native architectures) were considered. The mutants were obtained by elimi-
nating from the reference architecture all possible combinations of the three
feedback loops FB1, FB2 and FB3. The mutants were denoted as MX , where
X ⊂ {1, 2, 3} is the set of numbers of the feedback mechanisms present in MX :

• M0 is determined by reactions (1)-(4), (9)-(12) and, in the terminology of
control theory, is characterized by the open-loop design;

• M1 is determined by reactions (1)-(5), (9)-(12);

• M2 is determined by reactions (1)-(4), (6)-(7), (9)-(12), and the ‘right-to-
left’ direction of reaction (5);

• M3 is determined by reactions (1)-(4), (8)-(12), and the ‘right-to-left’ di-
rection of reaction (5);

• M1,2 is determined by reactions (1)-(7), (9)-(12);

• M1,3 is determined by reactions (1)-(5), (8)-(12);
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• M2,3 is determined by reactions (1)-(4), (6)-(12), and the ‘right-to-left’
direction of reaction (5);

• M1,2,3 is the reference architecture consisting of all reactions (1)-(12).

5.4 Statistical sampling of the mutant behaviour

We apply our model comparison method described in Section 3 to the presented
model of eukaryotic heat shock response in order to investigate the functional
role of the feedback mechanisms. It is easy to see that M0 is non-responsive:
starting from a steady state at physiological conditions, i.e. 37 ◦C, M0 shows
no increase in DNA binding for any arbitrarily high temperature, see [9]. We
remove M0 from further considerations. In our study we analyse the six knock-
down mutants M1, M2, M3, M1,2, M1,3 and M2,3 as the variants of the reference
architecture M1,2,3. Our comparison method is applied in the following way.
First, a sample of 10.000 vectors of parameter values for the reference architec-
ture is obtained by the latin hypercube sampling described above. In our case
the sampled vectors are of length 15, i.e. the number of the unknown reference
architecture parameters. The value of the 16th remaining parameter, i.e. the
hsp degradation rate constant is assumed to be known and is obtained based on
the fact that heat shock proteins are generally long-lived proteins, see [35]. We
choose here their half-life to be 6 hours. Then, the procedure described next is
repeated separately for each of the six mutants. To begin with, each sampled
vector of parameter values is used to setup the parameters in the mathemati-
cal models of the considered mutant and the reference architecture (M1,2,3). It
follows from the construct of the mutant that the corresponding mathematical
model contains only a subset of the parameters of the reference model, so this
step can be performed. Next, the steady state concentrations at 37 ◦C both for
the mutant and the reference model are numerically computed and set as their
respective initial states. In this way we obtain two instances of the mathemat-
ical models, i.e. one for the mutant and the second for the reference model.
Further, the temperature is increased to 42 ◦C and the quantities

Θ1 = max
t∈[0s,1800s]

(total mfp(t)),

Θ2 = max
t∈[0s,1800s]

(hsf3 : hse(t))− hsf3 : hse(0),

Θ3 =
1
T

∫ T

0

(total hsp(t))dt,

Θ4 =
1
T

∫ T

0

(total mfp(t))dt

are computed both for the mutant and the reference instance. The initial 30
min. of the response are considered for the computation of Θ1 and Θ2. In the
case of Θ3 and Θ4 the time range of 4 hours (T = 14400s) is taken into account.
These quantities are used to evaluate the functional effectiveness of the mutant.
Having these quantities computed for all the 10.000 sampled parameter values,
the scatter plot of the R1 = Θm

1 /Θ
r
1 against Θr

1 values is made, where the
superscripts m and r indicate the instance for which Θ1 was computed, i.e. the
instance of the mutant or the reference model, respectively. Finally, the moving
median technique is applied to the scatter plot with the window size set to 500.
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These results in a trend curve summarizing the data of the scatter plot and
revealing the overall dependency between the considered quantities. Analogical
plots are computed for R2 = Θm

2 /Θ
r
2. Moreover, scatter plots of Θ3 versus Θ4

both for the mutant and the reference architecture are made and the moving
median technique is applied to each of these plots.

The mutants represent six different potential architectures of the heat shock
response mechanism and the sampling procedure, as explained above, provides
us with 10.000 different instantiations of each of the mutants and the reference
architecture.

5.5 Results

In our analysis of the obtained results we assume that the heat shock response at
raised temperatures is accompanied, and hence characterized, by the following
three phenomena:

1. increase in DNA-binding with respect to the steady-state level at 37 ◦C,

2. increase in the level of mfp, and

3. increase in the level of hsp as the effect of the response to the higher level
of mfp in the cell.

We base our analysis of the architecture properties of the six mutants with re-
spect to the reference architecture on the following plots: R1 vs Θr

1, R2 vs Θr
2,

Θ3 vs Θ4 made for each of the mutants and for the reference architecture. We
refer to the Θ3 vs Θ4 plot as the cost plot (or simply the cost) of the corre-
sponding architecture. This is motivated by the fact that the efficiency of the
heat shock response mechanism could be measured by the amount of chaperones
needed to cope with the intensified misfolding of proteins. Hypothetically, a cell
which produces smaller amounts of hsp than some other cell to cope with the
heat shock would be considered the one which manages with stress conditions at
a lower cost in terms of its resources than the latter one. Notice however that in
our case we are not assessing the ability of particular models to cope with heat
shock, i.e. the sampled models are neither validated against experimental data
nor classified by any other means whether they enable the cell to survive or not
in the stress conditions. Hence the cost plots reflect just the general tendency
of the models instantiating a particular architecture to keep certain average in
time amounts of hsp in response to different average levels of mfp present in the
system. The reference trend line indicates a clear linear dependency between
the average levels of hsp and mfp, see Figure 7. The trend lines of all mutants,
despite some more or less pronounced fluctuations in the region of small Θ4

values, can be seen as increasing (Figure 5), which is in agreement with our
characterization of the heat shock response.

Considering the three mutants with only one feedback, i.e. M1, M2 and M3,
we observe that the mfp level peak value in the first 30 min. of heat shock is
smaller than in the reference architecture: the ratio R1 in Figure 3(a), 3(b) and
3(c) is always smaller than 1. This is especially pronounced in mutant instances
obtained with samples characterized by providing high mfp peak values in the
case of the reference architecture. However, for all these mutants the cost is
definitely higher than in the reference architecture, compare Figure 5(a), 5(b),
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5(c) with Figure 7. Notice also that the M2 mutant is more economic in terms
of cost than the two other mutants with only one feedback.

In the mutants M1,2, M1,3 and M2,3 the mfp level also peaks at a lower value
than in the reference case, although this time the M1,3 and M2,3 mutants have
the cost comparable with the one of the reference architecture. Both M1,3 and
M2,3 reveal the same linear relationship between the average amounts of hsp and
mfp as is observable in the reference case, however in both cases the trend line
is slightly shifted upwards with respect to the reference. This indicates that the
mutants have a tendency to keep a bit higher than the reference amount of hsp
with a certain amount of misfolded proteins (Figure 5(e), 5(f) and Figure 7).
The same is true also for the M1,2 mutant. Although it admits an order of
magnitude larger range of observable average amounts of misfolded proteins
(Figure 5(d)), the cost plot restricted to Θ4 moving median values less than or
equal 4000 is basically identical with the cost plots of the two other mutants,
see Figure 6(a).

Another thing which we observe for the three mutants missing one feedback
is that the samples characterized by significant increase in DNA-binding in the
reference architecture, i.e. by 15 and more, span a wide range of possible be-
haviours in the mutants: from almost no DNA-binding increase to an increase
comparable with the one observed for the reference architecture. This feature
is clearly visible in Figure 4(e) and 4(f) for the mutants M1,3 and M2,3, respec-
tively. In the case of the M1,2 mutant we need to zoom in Figure 4(d). To
this aim we observe in the scatter plot R2 vs Θr

2 for the M1,2 mutant that all
points with R2 > 1000 are concentrated in the range [0, 0.0307] of Θr

2 values (not
shown). We exclude all samples with Θr

2 in this range, irrespective of the R2

value they admit in the mutant. All in all 2247 samples are filtered out and we
apply the moving median technique to the remaining ones. The resulting plot
is shown in Figure 6(b). It clearly illustrates that the discussed feature is also
a characteristic of the M1,2 mutant. This is not true for the three mutants with
only one feedback. In these cases we do not observe any substantial increase in
the DNA-binding with respect to the steady-state levels at 37 ◦C for samples
which generate such increase in the reference case (Figure 4(a), 4(b) and 4(c)).

On the basis of the presented results, we notice that all the mutants lacking
two feedbacks exhibit no heat shock response in the sense of the above definition:
as observed previously, there is no increase in the DNA-binding. This is in
agreement with the results presented in [8], where the models with only one
feedback kept the DNA-binding at the maximum possible level both at 37 ◦C
and 42 ◦C throughout the simulation time of 50.000s. The HSR can be observed
however in the mutants M1,3 and M1,2. In the case of the M2,3 mutant the HSR
is still observed, but only for a fraction of the 10.000 sampled models, i.e. only
those parameter values for which the reference architecture displays the maximal
possible increase in the peak of DNA-binding with respect to the steady-state
level at 37 ◦C. This is in complete agreement with previous observations that
FB1 is the most powerful feedback, see [8]. Since FB2 and FB3 include hsf
sequestration as one of their features, they compensate partially for the lack of
FB1. However, only FB2 or only FB3 are not enough to enforce the system’s
behaviour to have the HSR characteristics. Despite its power, FB1 alone is also
not enough and one of the other feedbacks is also needed in order to implement
a response mechanism with the features describing the heat shock response.
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6 Discussion

Very often, various experimental investigations of a given biochemical system
generate a large variety of alternative molecular designs, thus raising questions
about comparing their functionality, efficiency, and robustness. Comparing al-
ternative models for a given biochemical system is, in general, a very difficult
problem which involves a deep analysis of various aspects of the models: the
underlying networks, the biological constraints, and the numerical setup. The
problem becomes somewhat simpler when the alternative designs are actually
submodels of a larger model: the underlying networks are similar, although not
identical, and the biological constrains are given by the larger model. It only
remains to decide how to chose the numerical setup for each of the alternative
submodels, i.e., the initial conditions and the kinetics.

In the first part of our study we review several known methods for model
decomposition and for quantitative comparison of submodels. We describe
the knockdown mutants, elementary flux modes, control-based decomposition,
mathematically controlled comparison and its extension, local submodels com-
parison and a discrete approach for comparing continuous submodels. In the
second part of the paper we present a new statistical method for comparing sub-
models that complements the methods presented in the review. When choosing
the initial setup for the alternative submodels, i.e., the initial values of all vari-
ables, one approach is to take them from the reference model. This approach is
based on the technique of mathematically controlled comparison, [39], see also
[10] and [52] for some case studies using this method. However, in the case of
biological systems this approach may lead to biased conclusions. For instance,
regulatory networks exhibit a steady state behaviour in the absence of stimulus.
In general for the reference model, the initial values of the variables are chosen
such that it exhibits a steady state behaviour in the absence of a trigger. How-
ever, this will not insure that also the submodels of the reference model will
exhibit the same property if they start from the same initial values. Thus, the
dynamical behaviours of the considered submodels will exhibit the interwind
influences of two tendencies: the migration from a (possibly) unstable state and
the response to the stimulus. In this context, an analysis of the efficiency of the
response and the robustness of the alternative models may lead to erroneous
conclusions. In alternative, we propose in this paper to chose the initial values
in such a way that each alternative design starts from its own steady state.
Our main motivation for this is that we considered all submodels to be viable
alternatives for the biological system and, as such, they should exhibit (some
of) its main properties. Regarding the values of the kinetic parameters in each
of the alternative submodes, there are several approaches in the literature. In
the mathematically controlled comparison approach, the values of the kinetic
parameters in each of the alternative designs are uniquely determined from the
parameters of the reference model, see e.g., [10], [39]. Another approach is to
chose in each alternative submodel independent values for the kinetic param-
eters, e.g., through parameter estimation and validation against experimental
data, see e.g., [8]. However, restricting to some particular values for the kinetic
rate constants, will also confine the conclusions of our analysis to that particular
system. Instead, we take the approach proposed in [1] and [2] and we sample
a large set of parameter values from a given range of values. Then we use some
statistical techniques to analyse various properties of a general class of systems
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which includes the considered system. In particular, for each sampled parame-
ter vector, various functional effectiveness measures are computed both in the
reference and in the alternative models. Then by analysing both the density
of ratios plots and the moving median plots one can identify and quantify the
differences in the dynamical behaviours of the considered models, see e.g., [3],
[45] for some case studies where these methods were applied.

Acknowledgments. The work of Elena Czeizler, Andrzej Mizera and Ion Pe-
tre was supported by Academy of Finland, grants 129863, 108421, and 122426.
Andrzej Mizera is on leave of absence from the Institute of Fundamental Tech-
nological Research, Polish Academy of Sciences, Warsaw, Poland.

References
[1] R. Alves and M. A. Savageau. Comparing systemic properties of ensembles of biological

networks by graphical and statistical methods. Bioinformatics, 16(6):527–533, 2000.

[2] R. Alves and M. A. Savageau. Extending the method of mathematically controlled
comparison to include numerical comparisons. Bioinformatics, 16(9):786–798, 2000.

[3] R. Alves and M. A. Savageau. Systemic properties of ensembles of metabolic networks:
application of graphical and statistical methods to simple unbranched pathways. Bioin-
formatics, 16(6):534–547, 2000.

[4] R. J. D. Boer and P. Hogeweg. Stability of symmetric idiotypic networks-a critique of
hoffmann’s analysis. Bull. Math. Biol., 51:217–222, 1989.

[5] W. W. Chen, B. Schoeberl, P. J. Jasper, M. Niepel, U. B. Nielsen, D. A. Lauffenburger,
and P. K. Sorger. Inputoutput behavior of ErbB signaling pathways as revealed by a
mass action model trained against dynamic data. Molecular Systems Biology, 5:239.

[6] Y. Chen, T. S. Voegeli, P. P. Liu, E. G. Noble, and R. W. Currie. Heat shock paradox
and a new role of heat shock proteins and their receptors as anti-inflammation targets.
Inflammation & Allergy - Drug Targets, 6(2):91–100, 2007.

[7] M. E. Csete and J. C. Doyle. Reverse Engineering of Biological Complexity. Science,
295:1664–1669, 2002.

[8] El. Czeizler, E. Czeizler, R.-J. Back, and I. Petre. Control strategies for the regulation of
the eukaryotic heat shock response. In P. Degano and R. Gorrieri, editors, Computational
Methods in Systems Biology, volume 5688 of Lecture Notes in Computer Science, pages
111–125, Heidelberg, 2009. Springer-Verlag.

[9] El. Czeizler, A. Mizera, and I. Petre. A Boolean logic-based approach for comparing
biomodels. submitted, 2010.

[10] H. El-Samad, H. Kurata, J. C. Doyle, C. A. Gross, and M. Khammash. Surviving heat
shock: Control strategies for robustness and performance. PNAS, 102(8):2736–2741,
2005.

[11] H. El-Samad, S. Prajna, A. Papachristodoulou, M. Khammash, and J. C. Doyle. Model
validation and robust stability analysis of the bacterial heat shock response using SOS-
TOOLS. In Proceedings of the 42th IEEE Conference on Decision and Control, volume 4,
pages 3766–3771, Dec. 2003.

[12] B. A. Hawkins and H. V. Cornell, editors. Theoretical Approaches to Biological Control.
Cambridge University Press, 1999.

[13] R. Heinrich and S. Schuster. The regulation of cellular systems. Chapman & Hall, New
York, 1996.

[14] J. C. Helton and F. J. Davis. Latin hypercube sampling and the propagation of un-
certainty in analyses of complex systems. Reliability Engineering and System Safety,
81(1):23–69, 2003.

[15] W. S. Hlavacek and M. A. Savageau. Rules for coupled expression of regulator and
effector genes in inducible circuits. J. Mol. Biol., 255:121–139, 1996.

17



[16] A. Hunding. Limit-cycles in enzyme-systems with nonlinear negative feedback. Biophys.
Struct. Mech., 1:47–54, 1974.

[17] H. K. Kampinga. Thermotolerance in mammalian cells: protein denaturation and aggre-
gation, and stress proteins. Journal of Cell Science, 104:11–17, 1993.

[18] H. Kitano. Systems Biology: A Brief Overview. Science, 295:1662–1664, 2002.

[19] E. Klipp, R. Herwig, A. Kowald, C. Wierling, and H. Lehrach. Systems Biology in
Practice. Concepts, Implementation and Application. Wiley-VCH, 2005.

[20] H. Kurata, H. El-Samad, T.-M. Yi, M. Khammash, and J. C. Doyle. Feedback regulation
of the heat shock response in E. coli. In Proceedings of the 40th IEEE Conference on
Decision and Control, pages 837–842, 2001.

[21] Y. Lazebnik. Can a Biologist Fix a Radio? – or, What I Learned while Studying
Apoptosis. Cancer Cell, 2(3):179–182, 2002.

[22] J. R. Lepock, H. E. Frey, and K. P. Ritchie. Protein denaturation in intact hepato-
cytes and isolated cellular organelles during heat shock. The Journal of Cell Biology,
122(6):1267–1276, 1993.

[23] J. R. Lepock, H. E. Frey, A. M. Rodahl, and J. Kruuv. Thermal analysis of CHL V79
cells using differential scanning calorimetry: Implications for hyperthermic cell killing
and the heat shock response. Journal of Cellular Physiology, 137(1):14–24, 1988.

[24] S. Lindquist and E. A. Craig. The heat-shock proteins. Annual Review of Genetics,
22:631–677, 1988.

[25] O. Lipan, J.-M. Navenot, Z.Wang, L. Huang, and S. Peiper. Heat shock response in cho
mammalian cells is controlled by a nonlinear stochastic process. PLoS Computational
Biology, 3(10):1859–1870, 2007.

[26] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979.

[27] A. Peper, C. Grimbergent, J. Spaan, J. Souren, and R. van Wijk. A mathematical model
of the hsp70 regulation in the cell. International Journal of Hyperthermia, 14:97–124,
1997.

[28] I. Petre, A. Mizera, C. L. Hyder, A. Meinander, A. Mikhailov, R. I. Morimoto, L. Sis-
tonen, J. E. Eriksson, and R.-J. Back. A simple mass-action model for the eukaryotic
heat shock response and its mathematical validation. Natural Computing, 2010. doi:
http://dx.doi.org/10.1007/s11047-010-9216-y.

[29] I. Petre, A. Mizera, C. L. Hyder, A. Mikhailov, J. E. Eriksson, L. Sistonen, and R.-J.
Back. A new mathematical model for the heat shock response. In A. Condon, D. Harel,
J. N. Kok, A. Salomaa, and E. Winfree, editors, Algorithmic Bioprocesses, Natural Com-
puting Series, pages 411–425. Springer, 2009.

[30] T. Pfeiffer, I. Sanchez-Valdenebro, J. C. Nuno, F. Montero, and S. Schuster. META-
TOOL: for studying metabolic netwroks. Bioinformatics, 15:251–257, 1999.

[31] A. G. Pockley. Heat shock proteins as regulators of the immune response. The Lancet,
362(9382):469–476, 2003.

[32] M. V. Powers and P. Workman. Inhibitors of the heat shock response: Biology and
pharmacology. FEBS Letters, 581(19):3758–3769, 2007.

[33] T. R. Rieger, R. I. Morimoto, and V. Hatzimanikatis. Mathematical modeling of the
eukaryotic heat shock response: Dynamics of the hsp70 promoter. Biophysical Journal,
88(3):1646–58, 2005.

[34] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice:
A Guide to Assessing Scientific Models. John Wiley & Sons Ltd, Chichester, England,
2004.

[35] A. M. Sapozhnikov, G. A. Gusarova, E. D. Ponomarev, and W. G. Telford. Translocation
of cytoplasmic HSP70 onto the surface of EL-4 cells during apoptosis. Cell Proliferation,
35(4):193–206, 2002.

[36] M. A. Savageau. Biochemical systems analysis: I. Some mathematical properties of
the rate law for the component enzymatic reactions. Journal of Theoretical Biology,
25(3):365–369, 1969.

18



[37] M. A. Savageau. Biochemical systems analysis: II. The steady state solution for an n-pool
system using a power law approximation. Journal of Theoretical Biology, 25(3):370–379,
1969.

[38] M. A. Savageau. Biochemical systems analysis: III. Dynamic solutions using a power-law
approximation. Journal of Theoretical Biology, 26:215–226, 1970.

[39] M. A. Savageau. The behavior of intact biochemical control systems. Current Topics in
Cellular Regulation, 6:63–130, 1972.

[40] M. A. Savageau. Optimal design of feedback control by inhibition: steady state consid-
erations. J. Mol. Evol., 4:139–156, 1974.

[41] C. H. Schilling, S. Schuster, B. O. Palsson, and R. Heinrich. Metabolic Pathway Analysis:
Basic Concepts and Scientific Applications in the Post-genomic Era. Biotechnological
Progress, 15(3):296–303, 1999.

[42] S. Schuster, T. Dandekar, and D. A. Fell. Detection of elementary flux modes in biochem-
ical networks: a promising tool for pathway analysis and metabolic engineering. Trends
in biotechnology, 17(2):53–60, 1999.

[43] S. Schuster, D. A. Fell, and T. Dandekar. A general definition of metabolic pathways
useful for systematic organization and analysis of complex metabolic networks. Nature
Biotechnology, 18:326–332, 2000.

[44] S. Schuster, C. Hilgetag, J. H. Woods, and D. A. Fell. Reaction routes in biochemical
reaction systems: algebraic properties, validated calculation procedure and example from
nucleotide metabolism. Journal of Mathematical Biology, 45(2):153–181, 2002.

[45] J. H. Schwacke and E. O. Voit. Improved methods for the mathematically controlled
comparison of biochemical systems. Theoretical Biology & Medical Modelling, 1(1), 2004.

[46] E. D. Sontag. Some new directions in control theory inspired by systems biology. IEE
Systems Biology, 1(1):9–18, 2004.

[47] E. D. Sontag. Molecular systems biology and control. European Journal of Control,
11(4):396435, 2005.

[48] R. Srivastava, M. Peterson, and W. Bentley. Stochastic kinetic analysis of the es-
cherichia coli stres circuit using σ32-targeted antisense. Biotechnology and Bioengineer-
ing, 75(1):120–129, 2001.

[49] J. Stelling, U. Sauer, Z. Szallasi, F. J. Doyle, and J. Doyle. Robustness of cellular
functions. Cell, 118(6):675–685, 2004.

[50] C. J. Tomlin and J. D. Axelrod. Understanding biology by reverse engineering the control.
PNAS, 102(12):4219–4220, 2005.

[51] R. Voellmy and F. Boellmann. Chaperone regulation of the heat shock protein response.
Advances in Experimental Medicine and Biology, 594:89–99, 2007.

[52] M. E. Wall, W. S. Hlavacek, and M. A. Savageau. Design principles for regulator gene
expression in a repressible gene circuit. Journal of Molecular Biology, 332(4):861–876,
2003.

[53] O. Wolkenhauer. Systems biology: The reincarnation of systems theory applied in biol-
ogy? Briefings in Bioinformatics, 2(3):258–270, 2001.

19



Reaction (Reaction number)

2 hsf ↔ hsf2 (1)
hsf + hsf2 ↔ hsf3 (2)
hsf3 + hse↔ hsf3: hse (3)
hsf3: hse→ hsf3: hse + hsp (4)
hsp + hsf ↔ hsp: hsf (5)
hsp + hsf2 → hsp: hsf + hsf (6)
hsp + hsf3 → hsp: hsf +2 hsf (7)
hsp + hsf3: hse→ hsp: hsf + hse +2 hsf (8)
hsp→ (9)
prot→ mfp (10)
hsp + mfp↔ hsp: mfp (11)
hsp: mfp→ hsp + prot (12)

Table 1: The list of reactions of the biochemical model for the heat shock
response originally introduced in [28].
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Equation (Equation number)

d[hsf]/dt = −2k+
1 [hsf]2 + 2k−1 [hsf2]− k+

2 [hsf][hsf2] + k−2 [hsf3] (13)

− k+
5 [hsf][hsp] + k−5 [hsp: hsf] + k6[hsf2][hsp]

+ 2k7[hsf3][hsp] + 2k8(hsf3: hse) hsp

d[hsf2]/dt = k+
1 [hsf]2 − k−1 [hsf2]− k+

2 [hsf][hsf2] + k−2 [hsf3] (14)
− k6[hsf2][hsp]

d[hsf3]/dt = k+
2 [hsf][hsf2]− k−2 [hsf3]− k+

3 [hsf3][hse] + k−3 [hsf3: hse] (15)
− k7[hsf3][hsp] (16)

d[hse]/dt = −k+
3 [hsf3][hse] + k−3 [hsf3: hse] + k8[hsf3: hse][hsp] (17)

d[hsf3: hse]/dt = k+
3 [hsf3][hse]− k−3 [hsf3: hse]− k8[hsf3: hse][hsp] (18)

d[hsp]/dt = k4[hsf3: hse]− k+
5 [hsf][hsp] + k−5 [hsp: hsf]− k6[hsf2][hsp] (19)

− k7[hsf3][hsp]− k8[hsf3: hse][hsp]− k+
11[hsp][mfp]

+ (k−11 + k12)[hsp: mfp]− k9[hsp]

d[hsp: hsf]/dt = k+
5 [hsf][hsp]− k−5 [hsp: hsf] + k6[hsf2][hsp] (20)

+ k7[hsf3][hsp] + k8[hsf3: hse][hsp]

d[mfp]/dt = φT [prot]− k+
11[hsp][mfp] + k−11[hsp: mfp] (21)

d[hsp: mfp]/dt = k+
11[hsp][mfp]− (k−11 + k12)[hsp: mfp] (22)

d[prot]/dt = −φT [prot] + k12[hsp: mfp] (23)

Table 2: The system of differential equations of the mathematical model asso-
ciated with the biochemical model in Table 1.
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Figure 1: The control-based decomposition of the heat shock response network.
The reaction numbers refer to the reactions in Table 1. We denote the ‘left-to-
right’ direction of reaction (5) by (5)+ and by (5)− its ‘right-to-left’ direction.

Figure 2: The control structure of the heat shock response network. The three
identified feedback loops and their points of interaction with the mainstream
process are depicted.
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(d) M1,2
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(e) M1,3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Θ1 reference moving median

R
1

m
ov

in
g

m
ed

ia
n

(f) M2,3

Figure 3: The plots show the result of applying the moving median technique to
the scatter plots of R1 vs Θr

1 obtained individually for each of the six considered
mutants. For each mutant and each sampled vector of parameters, the value
of R1 was computed and plotted against the value of Θ1 obtained for the ref-
erence architecture with the same parameter vector. Then, the moving median
technique was applied to discern the overall trend in the data depicted in the
obtained scatter plots. The window size of the moving median was set to 500
and the sample size of the vectors of parameter values was 10.000.
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(e) M1,3
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Figure 4: The plots show the result of applying the moving median technique to
the scatter plots of R2 vs Θr

2 obtained individually for each of the six considered
mutants. For each mutant and each sampled vector of parameters, the value
of R2 was computed and plotted against the value of Θ2 obtained for the ref-
erence architecture with the same parameter vector. Then, the moving median
technique was applied to discern the overall trend in the data depicted in the
obtained scatter plots. The window size of the moving median was set to 500
and the sample size of the vectors of parameter values was 10.000.
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(d) M1,2
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Figure 5: The plots show the result of applying the moving median technique
to the scatter plots of the cost, i.e. Θ3 vs Θ4, obtained individually for each
of the six considered mutants. For each mutant and each sampled vector of
parameters, the values of Θ3 and Θ4 were computed and plotted against each
other. Then, the moving median technique was applied to discern the overall
trend in the data depicted in the obtained scatter plots. The window size of the
moving median was set to 500 and the sample size of the vectors of parameter
values was 10.000.
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(a) M1,2 (Θ4 moving median ≤ 4000)
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(b) M1,2 (without samples with Θr
2 ≤ 0.0307)

Figure 6: (a) The zoomed in version of Figure 5(d) where Θ4 moving median
is not greater than 4000. (b) A version of Figure 4(d) where samples with
Θr

2 ≤ 0.0307 were not considered. It shows that the samples characterized by
significant increase in DNA-binding in the reference architecture (by 15 and
more) span a wide range of possible behaviours in the M1,2 mutant: from al-
most no DNA-binding increase (the moving median of R2 = 0.2) to an increase
comparable with the one observed for the reference architecture (the moving
median of R2 ≥ 1).
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Figure 7: The plot shows the result of applying the moving median technique
to the scatter plots of the cost, i.e. Θ3 vs Θ4, obtained for the reference archi-
tecture. For each sampled vector of parameters, the values of Θ3 and Θ4 were
computed and plotted against each other. Then, the moving median technique
was applied to discern the overall trend in the data depicted in the obtained
scatter plot. The window size of the moving median was set to 500 and the
sample size of the vectors of parameter values was 10.000.
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