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Abstract

Model refinement is an important aspect of the model-building pro-
cess. It can be described as a procedure which, starting from an abstract
model of a system, performs a number of refinement steps in result of
which a more detailed model is obtained. At the same time, in order to be
correct, the refinement mechanism has to be capable of preserving already
proven systemic quantitative properties of the original model, e.g. model
fit, stochastic semantics, etc. In this study we concentrate on the re-
finement in the case of self-assembly models. Self-assembly is a process
in which a disordered ensemble of basic components forms an organized
structure as a result of specific, local interactions among these compo-
nents, without external guidance. We develop a generic formal model
for this process and introduce a notion of model resolution capturing the
maximum size up to which objects can be distinguished individually in
the model. All bigger objects are treated homogenously in the model. We
show how this self-assembly model can be systematically refined in such
a way that its resolution can be increased and decreased while preserving
the original model fit to experimental data, without the need for tedious,
computationally expensive process of parameter refitting. We demon-
strate how the introduced methodology can be applied to a previously
published model: we consider the case-study of in vitro self-assembly of
intermediate filaments.

1 Introduction

The great complexity of biological systems enforces the need for representing
them in formal models in order to investigate them and make specific predictions
about their behaviour that can be tested in subsequent experiments. Starting
from a model abstracting a biological system, the iterative process of hypothesis
generation, experimental design, experimental analysis, and model refinement
lies at the core of systems biology ([4, 16, 22]). Even more, this approach is
∗Address correspondence to: Andrzej Mizera, Department of Information Technologies,
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proposed as the only logical way for biology to advance ([19]). Development
and refinement of a mathematical model of a biochemical process proceeds, in
general, in accordance with the following scenario. First, an abstraction of the
process is made by identifying a relatively small set of biochemical reactions
which are capturing the main features of the process’ machinery. The chosen
biochemical reactions may be very abstract themselves, i.e. one reaction may
in fact encapsulate many real reactions which constitute a whole subprocess in
a living organism. Second, the molecular model formed of the chosen reactions is
transformed into an associated mathematical model. This usually involves two
steps: obtaining equations describing the dynamics of the system by assuming
some proper kinetic law, e.g. mass-action law, Michaelis-Menten kinetics, etc.,
and then identifying the model parameter values so that the model fits some
experimental data.

During the process of model development some simplifications and abstrac-
tions are introduced. With time, there may be a necessity for them to be refined
and modelled in a more detailed, accurate way. However, some carefulness is
required on this stage. For example, one could take all the intended changes
into consideration while simply repeating the whole model development pro-
cedure. But this solution involves repeating from scratch the time-consuming,
computationally-intensive model fitting, see [5]. Another approach, not much
investigated in the literature, is to refine the model in such a way that the pre-
viously obtained fit is preserved. This basically implies deriving the parameter
values of the refined model from the ones of the original model.

In this study we concentrate on the step of model refinement in the iterative
cycle of systems biology, which is an important aspect of the model-building
process. In particular, we develop a refinement procedure for a family of ordi-
nary differential equation (ODE) models describing the process of self-assembly.
Self-assembly is a process in result of which some pronounced structures emerge
out of an ensemble of scattered basic elements. Important is the fact that the
arrangements take place based just on local interactions between the building
blocks, without any external guidance. In our work we develop a generic for-
mal model for self-assembly. It consists of an ensemble of all possible objects
that can potentially appear in the course of the self-assembly, a composition
operation and a mapping from objects of the ensemble to positive integers. The
number is interpreted as the size of the considered object. The generic model
allows us to further introduce the notion of model resolution. We continue by
discussing the refinement of such models, i.e. we formally show how the resolu-
tion of a self-assembly model can be increased and decreased while preserving
the original model fit to experimental data. We demonstrate how our method-
ology of self-assembly model refinement can be applied to an existing model.
To this aim we utilize the previously published model of the in vitro assembly
of intermediate filaments from tetrameric vimentin, see [6, 15].

Our methodology of self-assembly model refinement is a particular instance
of formal model refinement. This topic has been extensively studied in Com-
puter Science, see, e.g., [3, 23, 24], especially in connection to formal software
specifications. The method we propose is an instance of data refinement, where
one replaces a variable with a set of other variables in a way that introduces
more details into the model, while keeping the model constraints unchanged.

The paper is organized as follows. First, a general, formal characterization
of the self-assembly process is presented. Then, the notion of model resolution
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is introduced and the model refinement procedure consisting in increasing and
decreasing the model resolution while preserving the fit to experimental data
is described. Finally, the technique is applied in a case study where the self-
assembly of intermediate filaments is considered.

2 A generic model for self-assembly

Self-assembly is a term coined to name processes in which a disordered ensemble
of basic components forms an organized structure as a result of specific, local
interactions among these components, without external guidance. In a general
case, the process of self-assembly can be formalized as follows. We consider an
ensemble E of all possible objects that can potentially appear in the course of
the self-assembly process, including the initial ones. Each object O from the
ensemble has a scalar value size(O) associated with it and determined through
a mapping size : E → N+. Moreover, the objects from E can combine with each
other to form another object from E in such a way that the sum of the sizes of
the objects equals the size of the resulting object. More formally, if we denote
the composition operation with + , then

O1 +O2 = Or ⇒ size(O1) + size(O2) = size(Or), (1)

where Or is the object assembled from component objects O1 and O2. The en-
semble E together with the binary operation + forms a structure (E ,+), which
in abstract algebra is named a semigroup. Furthermore, this structure is homo-
morphic with the (N+,+) semigroup by the size map.

Our generic model for self-assembly is on a high level of abstraction, fo-
cusing on the size of the emerging structures, while ignoring all details of the
topology of such structures. Size here can mean any semigroup homomorphism
between (E ,+) and (N+,+), as noted above. Intuitively, the size map would
count the number of elementary blocks forming the self-assembled structure
under consideration. This approach is applicable to any type of self-assembly
processes: uni-dimensional (such as the elongation of intermediate filaments,
the case-study investigated in this paper), branched two-dimensional structures,
three-dimensional assemblies, etc. However, extending the dynamics of the size
distribution of the self-assembled structures with some of their topological de-
tails would require a very different type of modelling, which goes beyond the
scope of our approach.

Through the map size, for a fixed n ∈ N+ we define a family of object classes
S(n) = {S(n)

1 , . . . ,S(n)
n ,S(n)

≥n+1}: S
(n)
i contains all the objects from E with size i

for i = 1, . . . , n and S(n)
≥n+1 consists of all objects with size greater than n. Each

object from E belongs to exactly one of these classes. Notice that for m > n we
have S(n)

k = S(m)
k for all k ∈ {1, . . . , n}.

The composition of objects in E is described by a system of rules. For the
general characterization of self-assembly we will assume that the rules are at
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the level of abstraction of S(n), i.e. that the system of rules is of the form

S(n)
i + S(n)

j → S(n)
i+j , for all 1 ≤ i ≤ j ≤ n, i+ j ≤ n;

S(n)
i + S(n)

j → S(n)
≥n+1, for all 1 ≤ i ≤ j ≤ n, i+ j ≥ n+ 1;

S(n)
i + S(n)

≥n+1 → S
(n)
≥n+1, for all 1 ≤ i ≤ n;

S(n)
≥n+1 + S(n)

≥n+1 → S
(n)
≥n+1.

(2)

In the case of biochemical systems these rules are usually referred to as (bio-
chemical) reactions and we will use this terminology in the following. The
semantics of the reactions in the above form can be described as: an object
from class S(n)

i combines with an object from class S(n)
j to form an object of

class S(n)
i+j if i+ j ≤ n or S(n)

≥n+1 if i+ j ≥ n+ 1. Notice that any reaction of this
form automatically satisfies the self-assembly condition (1).

In mathematical modelling it is common to associate a variable (understood
as a function) F : R+ → R+ with each of the sets in S(n). We denote with
F

(n)
i the variable corresponding to the set S(n)

i for i ∈ {1, . . . , n,≥ n + 1}.
The value of the variable F

(n)
i is interpreted as the concentration of objects

from the associated set S(n)
i , present in the system undergoing self-assembly

at a particular point in time. Further, we assume that the kinetics of the
reactions is based on the law of mass action ([17]). This law is a mathematical
model of reaction dynamics: it states that the reaction rate is proportional
to the probability of collision of the reactants, while the probability itself is
proportional to the product of concentrations of reactants raised to the number
in which they enter the reaction ([17]). We use ki,j , 1 ≤ i ≤ j ≤ n+ 1 to denote
the respective proportionality factor, the so-called rate constant, of the reaction
with the left-hand side containing S(n)

i (or S(n)
≥n+1 if i = n+ 1) as one and S(n)

j

(or S(n)
≥n+1 if j = n+ 1) as the other term. For example,

S(n)
2 + S(n)

3

k2,3−−→ S(n)
5

and
S(n)

2 + S(n)
≥n+1

k2,n+1−−−−→ S(n)
≥n+1.

The change of concentrations in time of the objects undergoing self-assembly can
be described using ordinary differential equations (ODEs). By the law of mass
action, the system of ODEs associated with the self-assembly system determined
by the reactions in (2) is

dF (n)
i

dt
=−

n∑
j=1

ki,j F
(n)
i F

(n)
j [i 6= j]− 2 ki,i F

(n)
i

2
− ki,n+1 F

(n)
i F

(n)
≥n+1

+
d i−1

2 e∑
j=1

kj,i−j F
(n)
j F

(n)
i−j for all 1 ≤ i ≤ n,

dF (n)
≥n+1

dt
=

∑
1≤i≤j≤n,
i+j≥n+1

ki,j F
(n)
i F

(n)
j − kn+1,n+1 F

(n)
≥n+1

2
,

(3)
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where [. . .] are used as the Iverson brackets ([14, 18]), i.e. [i 6= j] is 1 if i 6= j

and 0 otherwise. The negative term in the equation for dF (n)
≥n+1/dt originates

from the last rule in (2), where two objects from the set S(n)
≥n+1 combine to

form a bigger object belonging to the same class. In consequence, in S(n)
≥n+1 two

objects are consumed and one is produced, thus the net result is that one object
disappears from S(n)

≥n+1.

3 A notion of model resolution

When considering the dynamics of the self-assembly process, one of the main
concerns is the distribution of the number of components of different sizes in
time. To this aim we introduce the notion of model resolution in the con-
text of self-assembly. We say that a self-assembly model is of resolution n
if it consists of the set of reactions describing the interactions between the
classes of objects S(n)

1 , . . . ,S(n)
n ,S(n)

≥n+1, i.e. the set of rules of the form in (2).
The associated mathematical model (ODE-based or not), comprising variables
F

(n)
1 , . . . , F

(n)
n , F

(n)
≥n+1 is also referred to as an n-resolution model. Thus, the

system in (3) is a self-assembly ODE model of resolution n. Intuitively, a self-
assembly mathematical model is of resolution n if it allows for capturing the
dynamics of the number (or concentration) of components that are exactly of
size i, where 0 ≤ i ≤ n.

In light of this definition the superscript (n) obtains a new meaning: it
indicates the resolution of the considered model, i.e. F (n)

j determines the con-

centration of objects of size j in time in the model of resolution n and S(n)
j

refers to the class of objects of size j which appears in the set of reactions of the
n-resolution self-assembly model. This will be useful when considering the rela-
tionships between models of various resolutions in the subsequent subsections.

When setting the resolution of our generic self-assembly model we effectively
partition the set of possible emerging structures into two, depending on their
size:

(i) the set of visible assemblies whose size is at most the resolution level, and

(ii) the set of invisible assemblies whose size is larger than the resolution level.

The self-assembly process can be modelled in all of its combinatorial details on
the set of visible assemblies, including the assembly of all possible pairs of visible
assemblies and even their disassembly (disassembly is however not covered in
our case-study). For the invisible assemblies (size larger than the resolution
level) we only specify a number of generic reactions covering their elongation.
The idea here is that the details of the dynamics of such assemblies are beyond
the scope (or beyond the experimental measuring capabilities) of our current
model.

Choosing the resolution of a self-assembly model should be done in a careful
way, so that it includes in its visible assemblies that part of the species space
that is important for the model. Changing the resolution of a model may be
needed during the modelling process, depending on the application. For exam-
ple, a model of relatively low resolution may be enough in the early stage of the
process, when no (or very few) assemblies of large size exist. Later on however,
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as the size of the existing self-assembled structures grows, the modeller may
need to increase the resolution level to be able to track the details of the in-
teractions involving larger structures. We discuss in the next section a method
to increase the model resolution in such a way that the model’s numerical fit
to experimental data is preserved. Note also that the resolution may be fixed
a priori to a level that is higher than the number of available molecules, thus
making the whole species space visible, with the price that the manipulation of
the model (such as the model fit and validation) may become computationally
expensive.

3.1 Increasing the model resolution while preserving the
model fit

In this section we concentrate on the refinement in the case of the self-assembly
models. The aim is to increase the range of component sizes for which the distri-
bution in time is captured by the model, i.e. increase the model resolution, while
preserving the data fit of the original model. In the context of the associated
mathematical models, we say that a model of resolution n+ 1 is a quantitative
refinement of a model of resolution n if and only if the following quantitative
refinement conditions are satisfied:

F
(n+1)
i (t) = F

(n)
i (t), 1 ≤ i ≤ n (4)

and
F

(n+1)
n+1 (t) + F

(n+1)
≥n+2 (t) = F

(n)
≥n+1(t), (5)

for all t ≥ 0.
In the case of the self-assembly ODE models of the form in (3), the quanti-

tative refinement from resolution n to n+ 1 involves appropriate setting of the
rate constants and the initial values of the model of resolution n + 1 given the
rate constants and the initial values of the model of resolution n. We show in
the following how this should be performed.

We start our considerations with the statement of a lemma concerning the
existence and uniqueness of solutions of the self-assembly ODE system of any
fixed resolution.

Lemma 1. The system of ODEs for a self-assembly model of resolution n,
where n ∈ N, admits exactly one solution for any fixed initial condition.

Proof. Let us rewrite (3) in the form

F′ = F(F),

where F(t) = [F (n)
1 (t), . . . , F (n)

n (t), F (n)
≥n+1(t)]T and F : Rn+1 → Rn+1 defines

a vector field on Rn+1. A solution of this system is a function F : J → Rn+1

defined on some interval J ⊂ R such that, for all t ∈ J , F′(t) = F(F(t)).
Now, it is enough to observe that the right-hand sides of the equations in (3)
are continuously differentiable with respect to the coordinates of F. Thus, the
mapping F is Lipschitz continuous on a bounded domain ([8]) and by the Picard-
Lindelöf theorem ([8]) it follows that for any initial conditions the considered
system has a unique solution F(t).
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Equipped with Lemma 1, we continue to show how the refinement of a self-
assembly model can be effectively achieved. This is the content of the following
theorem, where li,j , 1 ≤ i ≤ j ≤ n+ 2 denote the rate constants of the (n+ 1)-
resolution model and kp,q, 1 ≤ p ≤ q ≤ n + 1 are the rate constants of the
n-resolution model. A discussion about the biological basis for the numerical
choices made in Theorem 1 is included after its proof.

Theorem 1. Setting the kinetic rate constants of the (n+ 1)-resolution model
in the following way 

li,j := ki,j 1 ≤ i ≤ j ≤ n,
li,n+1:= ki,n+1 1 ≤ i ≤ n,
li,n+2:= ki,n+1 1 ≤ i ≤ n,
ln+1,n+2 := 2 kn+1,n+1,
ln+1,n+1 := kn+1,n+1,
ln+2,n+2 := kn+1,n+1,

(6)

and its initial values so that they satisfy

F
(n+1)
i (0) = F

(n)
i (0), 1 ≤ i ≤ n, (7)

F
(n+1)
n+1 (0) + F

(n+1)
≥n+2 (0) = F

(n)
≥n+1(0) (8)

ensures that the self-assembly ODE model of resolution n + 1 is a quantitative
refinement of the self-assembly ODE model of resolution n.

Proof. Let us write the system of ODEs for the model of resolution n+ 1:

dF (n+1)
i

dt
=−

n∑
j=1

li,j F
(n+1)
i F

(n+1)
j [i 6= j]− 2 li,i F

(n+1)
i

2

− li,n+1 F
(n+1)
i F

(n+1)
n+1 − li,n+2 F

(n+1)
i F

(n+1)
≥n+2

+
d i−1

2 e∑
j=1

lj,i−j F
(n+1)
j F

(n+1)
i−j for all 1 ≤ i ≤ n,

dF (n+1)
n+1

dt
=−

n∑
j=1

lj,n+1 F
(n+1)
j F

(n+1)
n+1 − 2 ln+1,n+1 F

(n+1)
n+1

2

− ln+1,n+2 F
(n+1)
n+1 F

(n+1)
≥n+2 +

dn
2 e∑
j=1

lj,n+1−j F
(n+1)
j F

(n+1)
n+1−j

dF (n+1)
≥n+2

dt
=

∑
1≤i≤j≤n,
i+j≥n+2

li,j F
(n+1)
i F

(n+1)
j +

n∑
j=1

lj,n+1 F
(n+1)
j F

(n+1)
n+1

+ ln+1,n+1F
(n+1)
n+1

2
− ln+2,n+2F

(n+1)
≥n+2

2
.

(9)

Let us further denote by G(n+1) the sum of F (n+1)
n+1 and F

(n+1)
≥n+2 , i.e.

G(n+1)(t) = F
(n+1)
n+1 (t) + F

(n+1)
≥n+2 (t).
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With use of the expressions for dF (n+1)
n+1 /dt and dF (n+1)

≥n+2 /dt in (9), we can com-
pute the derivative of G(n+1)

dG(n+1)

dt
=

dF (n+1)
n+1

dt
+

dF (n+1)
≥n+2

dt
=

=
dn

2 e∑
i=1

li,n+1−i F
(n+1)
i F

(n+1)
n+1−i +

∑
1≤i≤j≤n,
i+j≥n+2

li,j F
(n+1)
i F

(n+1)
j (10)

− ln+1,n+1 F
(n+1)
n+1

2
− ln+1,n+2 F

(n+1)
n+1 F

(n+1)
≥n+2 − ln+2,n+2F

(n+1)
≥n+2

2
.

By substituting the rate constants in the above expression for dG(n+1)/dt in
accordance with (6) we obtain that

dG(n+1)

dt
=

∑
1≤i≤j≤n,
i+j≥n+1

ki,j F
(n+1)
i F

(n+1)
j − kn+1,n+1 (F (n+1)

n+1 + F
(n+1)
≥n+2 )2 =

=
∑

1≤i≤j≤n,
i+j≥n+1

ki,j F
(n+1)
i F

(n+1)
j − kn+1,n+1G

(n+1)2. (11)

Now, by substituting the rate constants also in the equations for dF (n+1)
i /dt in

(9) for all 1 ≤ i ≤ n and combing with (11) we have that

dF (n+1)
i

dt
=−

n∑
j=1

ki,j F
(n+1)
i F

(n+1)
j [i 6= j]− 2 ki,i F

(n+1)
i

2

− ki,n+1 F
(n+1)
i G(n+1) +

d i−1
2 e∑
j=1

kj,i−j F
(n+1)
j F

(n+1)
i−j

for all 1 ≤ i ≤ n,

dG(n+1)

dt
=

∑
1≤i≤j≤n,
i+j≥n+1

ki,j F
(n+1)
i F

(n+1)
j − kn+1,n+1G

(n+1)2.

(12)

The above system is identical with (3) modulo the renaming of variables, i.e.
F

(n+1)
i is in place of F (n)

i for all 1 ≤ i ≤ n and G(n+1) is in place of F (n)
≥n+1.

Hence, if the initial values are set up as stated in the theorem, then (3) and
(12) constitute the same initial value problem. By the existence and uniqueness
stated in Lemma 1, there exists exactly one solution to this problem and thus
we have that F (n)

i (t) = F
(n+1)
i (t) for all 1 ≤ i ≤ n and G(n+1)(t) = F

(n+1)
n+1 (t) +

F
(n+1)
≥n+2 (t) = F

(n+1)
≥n+1 (t).

Notice that what is important for the refinement is that the initial values of
the (n+ 1)-resolution model satisfy (8), however how the initial value of F (n)

≥n+1

is split into F
(n+1)
n+1 (0) and F

(n+1)
≥n+2 (0) is irrelevant, i.e. any partition of this

value in accordance with (8) leads to a quantitative refinement of the model of
resolution n into a model of resolution n+ 1.

The choice of the kinetic rate constants in Theorem 1 for the refined model
is consistent with the following basic principle:
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by distinguishing several subtypes of a reactant, we
do not change the kinetics of the reactions they par-
ticipate in.

In other words, whenever we distinguish several subspecies A1, A2, . . ., Am
of a species A, we consider in the refined model that each subspecies Ai par-
ticipates in the same reactions in which A was participating in the original
model and moreover, their kinetics is unchanged. (Extra biological knowledge
about kinetic differences among A1, . . ., Am may be included in the model in
a subsequent step; we only focus here on setting up the more detailed model
as a quantitative refinement of the original model.) Our reasoning about the
model refinement is discrete, in terms of a finite number of subspecies of a given
species. Consequently, our reasoning about the reaction kinetics and its changes
is also discrete, in terms of collision-based reactions.

When seen as the result of a collision between the reactants, the kinetics
of a reaction depends on a biochemical constant (whose value depends on the
specifics of the reactants and of the environment) and on the number of possible
combinations of reactant molecules, see [9, 10] for a detailed presentation of this
approach. The number of such combinations in the case of a collision A + B
(say, type 1) is [A] · [B], but in the case of a collision A + A (say, type 2), it
is [A] · ([A] − 1)/2, where [A], [B] denote the number of molecules of species
A and B, respectively. This is the fundamental reason why ln+1,n+2 is set in
Theorem 1 to a value that is twice as large as the kinetic rate constant of its
corresponding reaction in the original model. Indeed, reaction

S(n)
≥n+1 + S(n)

≥n+1

kn+1,n+1−−−−−−→ S(n)
≥n+1 (13)

is replaced in the refined model with reactions

S(n+1)
n+1 + S(n+1)

n+1

ln+1,n+1−−−−−→ S(n+1)
≥n+2 , (14)

S(n+1)
n+1 + S(n+1)

≥n+2

ln+1,n+2−−−−−→ S(n+1)
≥n+2 , (15)

S(n+1)
≥n+2 + S(n+1)

≥n+2

ln+2,n+2−−−−−→ S(n+1)
≥n+2 . (16)

When reasoning about the kinetic rate constants of the refined reactions, we
preserve the same biochemical constants as in the case of the original reaction
(no changes in the biochemical details of the subspecies as compared to the
original species, as formulated in our basic principle). The number of combina-
tions of reactants in the various reactions is however different: whereas reactions
(13), (14), and (16) are of type 2 (as defined above), reaction (15) is of type 1.
If we chose a discrete mathematical model formulation in terms of stochastic
processes, then the kinetic rate constants of reactions (14)-(16) would be set to
be equal to that of reaction (13). Translating such a model into a continuous,
ODE-based model involves a change in the kinetic rate constants, where that
of reaction (15) is set to twice that of reactions (13), (14), and (16) to account
for the different way of reasoning about collisions in discrete and in continuous
terms. Indeed, an ODE-based model considers the kinetic of a reaction of type 2
to be proportional to [A]2, unlike in the case of a discrete model, where it is
proportional to [A] · ([A]− 1)/2. We refer to [9] for a detailed discussion on the
relationship between the stochastic and the deterministic version of a biomodel.
We also note that similar choices for the kinetic rate constants were made in [7]
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when dealing with the refinement of rule-based models. Finally, we remark that
the calculations in the proof of Theorem 1 show that our choice of kinetic rate
constants, justified by the biochemical arguments above, lead to a numerically-
correct quantitative model refinement.

Now, let us consider a more general case, namely the refinement of a model
of resolution n to a model of resolution n + m. In this case the refinement
conditions that need to be satisfied for all t ≥ 0 are the following:

F
(n+m)
i (t) = F

(n)
i (t), 1 ≤ i ≤ n

and
m∑
j=1

F
(n+m)
n+j (t) + F

(n+m)
≥n+m+1(t) = F

(n)
≥n+1(t).

We start our considerations by a simple lemma.

Lemma 2. The property of a self-assembly ODE model to be the quantitative
refinement of another model of lower resolution is transitive, i.e. if the model
M(n+m) of resolution n+m is the refined version of the modelM(n) of resolution
n and M(n+m+k) of resolution n + m + k is the refined version of the model
M(n+m), then M(n+m+k) is a quantitative refinement of M(n), where n,m, k
are positive integers.

Proof. By the refinement conditions we have that for all t ≥ 0 F
(n)
i (t) = F

(n+m)
i (t), 1 ≤ i ≤ n,∑m

i=1 F
(n+m)
n+i (t) + F

(n+m)
≥n+m+1(t) = F

(n)(t)
≥n+1

and  ∀1≤i≤n+m F
(n+m)
i (t) = F

(n+m+k)
i (t),∑k

i=1 F
(n+m+k)
n+m+i (t) + F

(n+m+k)
≥n+m+k+1(t) = F

(n+m)(t)
≥n+m+1 .

This implies that
F

(n)
i (t) = F

(n+m+k)
i (t), 1 ≤ i ≤ n

and

F
(n)
≥n+1(t) =

m∑
i=1

F
(n+m)
n+i (t) +

k∑
i=1

F
(n+m+k)
n+m+i (t) + F

(n+m+k)
≥n+m+k+1(t) =

=
m∑
i=1

F
(n+m+k)
n+i (t) +

k∑
i=1

F
(n+m+k)
n+m+i (t) + F

(n+m+k)
≥n+m+k+1(t) =

=
m+k∑
i=1

F
(n+m+k)
n+i (t) + F

(n+m+k)
≥n+m+k+1(t).

Thus it follows that the model of resolution n+m+ k constitutes a refinement
of the model of resolution n.

In the next theorem we show how the quantitative refinement of the model
of resolution n to the one of resolution n + m can be effectively achieved. We
denote by li,j , 1 ≤ i ≤ j ≤ n+m+1 the rate constants of the (n+m)-resolution
self-assembly model M(n+m) and by kp,q, 1 ≤ p ≤ q ≤ n + 1 the ones of the
n-resolution self-assembly model M(n).
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Theorem 2. Setting the kinetic rate constants of the (n + m)-resolution self-
assembly ODE model M(n+m) in accordance with the rate constants of the n-
resolution self-assembly ODE model M(n) in the following way

li,j := ki,j 1 ≤ i ≤ j ≤ n+ 1,
li,n+j := ki,n+1 1 ≤ i ≤ n, 2 ≤ j ≤ m+ 1,
ln+i,n+i := kn+1,n+1 2 ≤ i ≤ m+ 1,
ln+i,n+j := 2 kn+1,n+1 1 ≤ i < j ≤ m+ 1,

(17)

and its initial values so that they satisfy

F
(n+m)
i (0) = F

(n)
i (0), 1 ≤ i ≤ n, (18)

m∑
i=1

F
(n+m)
n+i (0) + F

(n+m)
≥n+m+1(0) = F

(n)
≥n+1(0) (19)

ensures that M(n+m) is a quantitative refinement of M(n).

Proof. The proof is by induction on m. The basis of the induction which is the
step from resolution n to n+ 1 (m = 1) is given by Theorem 1. The statement
of Theorem 2 clearly holds in this case and we proceed to the inductive step.
We assume that the statement is true for m = z for some z ≥ 2 and we consider
the case where m = z + 1. Theorem 1 assures that setting

l
(n+z+1)
i,j := l

(n+z)
i,j 1 ≤ i ≤ j ≤ n+ z,

l
(n+z+1)
i,n+z+1 := l

(n+z)
i,n+z+1 1 ≤ i ≤ n+ z,

l
(n+z+1)
i,n+z+2 := l

(n+z)
i,n+z+1 1 ≤ i ≤ n+ z,

l
(n+z+1)
n+z+1,n+z+1 := l

(n+z)
n+z+1,n+z+1,

l
(n+z+1)
n+z+1,n+z+2 := 2 l(n+z)

n+z+1,n+z+1,

l
(n+z+1)
n+z+2,n+z+2 := l

(n+z)
n+z+1,n+z+1

(20)

and the initial values of F (n+z+1)
n+z+1 and F

(n+z+1)
≥n+z+2 in such a way that

F
(n+z+1)
n+z+1 (0) + F

(n+z+1)
≥n+z+2 (0) = F

(n+z)
≥n+z+1(0) (21)

is satisfied results in a refinement from the self-assembly model M(n+z) of res-
olution n+ z to the model M(n+z+1) of resolution n+ z + 1 (the subscripts of
the kinetic rate constants in (20) indicate the reactions and the superscripts the
models in terms of their resolution). By the induction hypothesis setting

l
(n+z)
i,j := ki,j 1 ≤ i ≤ j ≤ n+ 1,
l
(n+z)
i,n+j := ki,n+1 1 ≤ i ≤ n, 2 ≤ j ≤ z,
l
(n+z)
n+i,n+i := kn+1,n+1 2 ≤ i ≤ z,
l
(n+z)
n+i,n+j := 2 kn+1,n+1 1 ≤ i ≤ j ≤ z,
l
(n+z)
i,n+z+1 := ki,n+1 1 ≤ i ≤ n,
l
(n+z)
n+i,n+z+1 := 2 kn+1,n+1 1 ≤ i ≤ z,
l
(n+z)
n+z+1,n+z+1 := kn+1,n+1

(22)

and the initial values of F (n+z)
n+i and F

(n+z)
≥n+z+1, where 1 ≤ i ≤ z in such a way

that
z∑
i=1

F
(n+z)
n+i (0) + F

(n+z)
≥n+z+1(0) = F

(n)
≥n+1(0) (23)

11



is satisfied gives a refinement of M(n) to M(n+z). Combining (20) with (22)
results in

l
(n+z+1)
i,j := ki,j 1 ≤ i ≤ j ≤ n+ 1, (24)

l
(n+z+1)
i,n+j := ki,n+1 1 ≤ i ≤ n, 2 ≤ j ≤ z, (25)

l
(n+z+1)
n+i,n+i := kn+1,n+1 2 ≤ i ≤ z, (26)

l
(n+z+1)
n+i,n+j := 2 kn+1,n+1 1 ≤ i < j ≤ z, (27)

l
(n+z+1)
i,n+z+1 := ki,n+1 1 ≤ i ≤ n, (28)

l
(n+z+1)
n+i,n+z+1 := 2 kn+1,n+1 1 ≤ i ≤ z, (29)

l
(n+z+1)
i,n+z+2 := ki,n+1 1 ≤ i ≤ n, (30)

l
(n+z+1)
n+i,n+z+2 := 2 kn+1,n+1 1 ≤ i ≤ z, (31)

l
(n+z+1)
n+z+1,n+z+1 := kn+1,n+1, (32)

l
(n+z+1)
n+z+1,n+z+2 := 2 kn+1,n+1, (33)

l
(n+z+1)
n+z+2,n+z+2 := kn+1,n+1. (34)

Putting together (25), (28) and (30) gives l(n+z+1)
i,n+j := ki,n+1 for 1 ≤ i ≤ n and

2 ≤ j ≤ z + 2; combining (26), (32) and (34) results in l
(n+z+1)
n+i,n+i := kn+1,n+1

for 2 ≤ i ≤ z + 2; finally, (27), (29), (31) and (33) can be simply written as
l
(n+z+1)
n+i,n+j := 2 kn+1,n+1 for 1 ≤ i ≤ j ≤ z + 2. Together with (24) this coincides

with (17). Moreover, (23) together with (21) gives (19). By Lemma 2, since
M(n+z) refinesM(n) andM(n+z+1) refinesM(n+z), we have thatM(n+z+1) is
a refinement of M(n). This proves the induction hypothesis.

3.2 Decreasing the model resolution while preserving the
model fit

Let us now consider the reverse problem. Given a self-assembly model of certain
resolution, say n + 1, we want to obtain a self-assembly model of resolution n
such that the model of resolution n+ 1 constitutes its quantitative refinement.
We refer to this problem as the problem of decreasing model resolution. As in
the case of increasing model resolution, the ODE systems of these two models
are (3) and (9). However, now the known rate constants are the ones of the
model of resolution n + 1, i.e. li,j for all 1 ≤ i ≤ j ≤ n + 2, and the task is to
set appropriately the values of the rate constants ki,j , 1 ≤ i ≤ j ≤ n+ 1 of the
model of resolution n.

In this presentation we restrict our considerations to the particular case
where ki,j := li,j for all 1 ≤ i ≤ j ≤ n. This is in accordance with the biological
motivation of the model: species that were modelled explicitly in the original
model and continue to be so in the new model should not see their kinetics
changed. From a mathematical point of view, one could also consider a general
approach where the constants ki,j , 1 ≤ i ≤ j ≤ n are part of the unknowns.
In this case, a similar approach would be applicable, leading however to more
complicated equations.
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We investigate how to set the remaining constants, i.e. ki,n+1, 1 ≤ i ≤ n+1,
so that the quantitative refinement conditions are satisfied. Since we want for
the two models to satisfy (4) and (5), based on (3) and the fact that ki,j := li,j

for all 1 ≤ i ≤ j ≤ n the derivatives of F (n+1)
i , 1 ≤ i ≤ n and (F (n+1)

n+1 +F
(n+1)
≥n+2 )

can be expressed as

dF (n+1)
i

dt
=−

n∑
j=1

li,j F
(n+1)
i F

(n+1)
j [i 6= j]− 2 li,i F

(n+1)
i

2

− ki,n+1 F
(n+1)
i (F (n+1)

n+1 + F
(n+1)
≥n+2 ) +

d i−1
2 e∑
j=1

lj,i−j F
(n+1)
j F

(n+1)
i−j

for all 1 ≤ i ≤ n,

d(F (n+1)
n+1 + F

(n+1)
≥n+2 )

dt
=

∑
1≤i≤j≤n,
i+j≥n+1

li,j F
(n+1)
i F

(n+1)
j

− kn+1,n+1 (F (n+1)
n+1 + F

(n+1)
≥n+2 )2.

Now, we equalize the right-hand sides in the above system with the respective
right-hand sides in the model of resolution n+ 1, i.e. (9), where the expressions
for the derivatives of F (n+1)

n+1 and F
(n+1)
≥n+2 are added up to obtain an expression

for d(F (n+1)
n+1 + F

(n+1)
≥n+2 )/dt. After simplifying we obtain that the rate constants

ki,n+1, 1 ≤ i ≤ n+ 1 have to satisfy

li,n+1 F
(n+1)
i F

(n+1)
n+1 + li,n+2 F

(n+1)
i F

(n+1)
≥n+2

=

ki,n+1 F
(n+1)
i (F (n+1)

n+1 + F
(n+1)
≥n+2 )

(35)

and
ln+1,n+1 F

(n+1)
n+1

2
+ ln+1,n+2 F

(n+1)
n+1 F

(n+1)
n+2 + ln+2,n+2 F

(n+1)
≥n+2

2

=

kn+1,n+1 (F (n+1)
n+1 + F

(n+1)
≥n+2 )2

(36)

independently of time, i.e. at any time point t, where t ≥ 0. We do not reduce
(35) by dividing its sides by F (n+1)

i since the variable for a particular i may be
identically zero. In such case the rate constant ki,n+1 can admit an arbitrary
value. At the same time we notice that if for all 1 ≤ i ≤ n the variables
F

(n+1)
i are not identically zero, then such reduction can be done without loss of

generality and in this case all ki,n+1 admit the same value.
The variables F (n+1)

i s are in fact functions of time which constitute a solution
to the system of nonlinear, first-order differential equations in (9). Having the
explicit solutions, one could easily check whether there exist ki,n+1, 1 ≤ i ≤ n+1
such that (35) and (36) are satisfied at any time point t ≥ 0. However, to the
best of our knowledge, obtaining an analytical solution to (9) in a general case,
i.e. for arbitrary n, is infeasible. Thus, we consider numerical integration of the
system and propose the following procedure for checking whether the reduction
of resolution in the discussed case can be performed and, if yes, how the rate
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constants should be set. First, we numerically integrate the ODE system for
the model of resolution n + 1 in (9) to identify all i, 1 ≤ i ≤ n, for which
the product F (n+1)

i (F (n+1)
n+1 + F

(n+1)
≥n+2 ) is identically zero. In all these cases any

arbitrary value of the rate constant ki,n+1 satisfies (35). For the remaining is
we pick a time point at which the product is non-zero and simply solve (35)
for ki,n+1 at the chosen time point. Similarly, we solve (36) for the value of
kn+1,n+1 at a time point at which F (n+1)

n+1 +F
(n+1)
≥n+2 is non-zero. Second, in order

to be correct, the values of the rate constants have to satisfy the refinement
conditions without exception at any arbitrary time point. The correctness can
be checked numerically by setting the initial values of the n-resolution model as
follows  F

(n)
i (0) := F

(n+1)
i (0), 1 ≤ i ≤ n,

F
(n)
≥n+1(0) := F

(n+1)
n+1 (0) + F

(n+1)
≥n+2 (0)

and investigating whether the dynamics of the two considered models satisfy
(4) and (5). The numerical check provides the ultimate answer whether the
resolution decrease is realizable or not in the discussed case. Notice that if the
values of the rate constants of the model of resolution n + 1, say M(n+1), are
such that ln+1,n+1 = ln+2,n+2, ln+1,n+2 = 2 ln+1,n+1 and li,n+1 = li,n+2, for all
1 ≤ i ≤ n, then the decrease of resolution can be simply achieved by changing
the sides of the assignments in (6). In particular, if M(n+1) were the result of
applying Theorem 1 to a model of resolution nM(n), then this way of decreasing
the resolution of M(n+1) recovers M(n).

4 A case study: the self-assembly of intermedi-
ate filaments

One of the characteristics of eukaryotic cells is the existence of the cytoskele-
ton – an intricate network of protein filaments that extends throughout the
cytoplasm. It enables the cells to adopt a variety of shapes, interact mechan-
ically with the environment, organize the many components in their interior,
carry out coordinated and directed movements. It also provides the machin-
ery for intracellular movements, e.g. transport of organelles in the cytoplasm
and the segregation of chromosomes at mitosis ([1, 2]). There are three kinds
of protein filaments that form the cytoskeleton: actin filaments, intermediate
filaments (IFs) and microtubules. Each kind has different mechanical proper-
ties and is assembled from an individual type of proteins. Actin filaments and
microtubules are formed from globular proteins (actin and tubulin subunits,
respectively), whereas fibrous proteins are the building blocks of intermediate
filaments ([2, 11]). Thousands of these basic elements assemble into a construc-
tion of girders and ropes that spreads throughout the cell.

One of the main functions of intermediate filaments is to provide cells with
mechanical strength and they are especially prominent in the cytoplasm of cells
that are exposed to such conditions. For example, IFs are abundantly present
along nerve cells axons where they provide crucial internal reinforcement of
these long cell extensions. They can also be observed in great number in muscle
cells and epithelial cells. IFs are characterized by great tensile strength. By
stretching and distributing the effect of locally applied forces, they protect cells
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and their membranes against breaking due to mechanical shear. Compared with
microtubules and actin filaments, IFs are more stable, tough and durable, e.g.
remain intact during exposure of cells to salt solutions and nonionic detergents,
while the rest of the cytoskeleton is mostly destroyed ([1]).

Intermediate filaments can be grouped into four classes: (1) keratin filaments
in epithelial cells; (2) vimentin filaments in connective-tissue cells, muscle cells
and supporting cells of the nervous system; (3) neurofilaments in nerve cells;
and (4) nuclear lamins, which strengthen the nuclear membrane of all eukaryotic
cells, see [1]. In [15] a quantitative kinetic model for the in vitro self-assembly of
intermediate filaments from tetrameric vimentin was considered. The authors
introduced two molecular models (the so-called simple and extended models)
of this process. In general, the in vitro assembly of vimentin IF proteins can
be described as a process consisting of three major phases: (i) formation of the
unit-length filaments (ULFs); (ii) longitudinal annealing of ULFs and growing
filaments; (iii) radial compaction of immature (16 nm diameter) filaments into
mature (11 nm diameter) IFs ([12, 13]). However, in both models of [15] the
last, third phase was excluded from consideration.

In the case of the simple model from [15], ULFs are treated as ordinary
filaments. Moreover, as discussed in [6, 15], the extension of filaments with
tetramers plays an insignificant numerical role. This correlates with an exper-
imental observation that in vitro, starting from an initial pool of tetramers,
tetramers quickly turn into ULFs. Thus, the filament elongation by tetramers
is inhibited in the beginning by the lack of filaments and later by the lack of
free tetramers. In consequence, the assembly process is described through the
following sequence of molecular events:

2T1
k1−→ T2 2T2

k2−→ T4 2T4
k3−→ T≥8

2T≥8
kf−→ T≥8

(37)

where T1 is interpreted as a tetramer, T2 as an octamer, T4 as a hexadecamer
and, finally, T≥8 is an emerging filament, having at least one ULF.

In [6] and [15] the model is fit to experimental data of [15]. The raw data
consists of four sets, each containing the length distributions of growing fila-
ments at distinct time points up to 20 min. The data sets are obtained for two
initial concentrations of tetramers, i.e. 0.45µM and 0.9µM, in two cases: first,
with adsorption onto carbon-coated copper grids and second, with adsorption
onto mica support. The filament length distributions are determined from elec-
tron microscopy (EM) images and atomic force microscopy (AFM) images in
the first and second case, respectively. For each set the time-dependent mean
filament length (MFL) is calculated and only the processed data are reported
in [15]. The models in [6, 15] are capable of reproducing the experimental data
on time-dependent dynamics of the mean filament length, however are unsuit-
able for capturing the time-dependent distribution of the filament lengths. In
consequence, the information carried by the available experimental data is not
utilized to the full extent. The high resolution of the data is not incorporated
into the models, the predictive power of the models is significantly limited since
no predictions about the length distributions in time are possible, and the mod-
els cannot be fully validated against the available biological knowledge. This
highlights the necessity for high-resolution models as a tool for better under-
standing of the still little-known process of filament self-assembly. In order to
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meet this requirement, we apply our methodology of quantitative model refine-
ment to (37). By increasing the resolution with two in two steps we get the
following models: first

2T1
k1−→ T2 2T2

k2−→ T4

2T4
k3−→ T8 2T8

kf−→ T≥9 (38)

T8 + T≥9
2 kf−−→ T≥9 2T≥9

kf−→ T≥9

and next

2T1
k1−→ T2 2T2

k2−→ T4 2T4
k3−→ T8

2T8
kf−→ T≥10 T8 + T9

2 kf−−→ T≥10 T8 + T≥10
2 kf−−→ T≥10

2T9
kf−→ T≥10 T9 + T≥10

2 kf−−→ T≥10 2T≥10
kf−→ T≥10.

Note that T9 is not a product of any reaction and it will not become one in
any further refinement of the model. Since in our experimental set-up we have
T9(0) = 0, it follows that T9(t) = 0 for all t ≥ 0, i.e. reactions T8 + T9 → T≥10,
2T9 → T≥10 and T9 + T≥10 → T≥10 can be eliminated. Thus, the model of
resolution 8 coincides with the model of resolution 9. With the same reasoning,
all models of resolution between 8 and 15 are identical. The model of resolution
16 is however different:

2T1
k1−→ T2 2T2

k2−→ T4 2T4
k3−→ T8

2T8
kf−→ T16 T8 + T16

2 kf−−→ T≥17 2T16
kf−→ T≥17

T16 + T≥17
2 kf−−→ T≥17 2T≥17

kf−→ T≥17.

Thus, in a model of resolution n, for some arbitrary n ≥ 8, the variables of
the model are T1, T2, T4, T8, T16, T24, ..., T8k, T≥n+1, where k = bn/8c. The
biological interpretation of the variable T8i, 1 ≤ i ≤ k, is the species of filament
consisting of i complete ULFs. Using the terminology of [6] and [15], these are
the filaments of length i. Thus, our model of resolution n is in fact the model
of resolution bn/8c in terms of the number of complete ULFs included in the
filament. This can be seen by rewriting the model (38) as follows (with some of
the rate constants renamed):

2T1
k1−→ T2 2T2

k2−→ T4

2T4
k3−→ F1 2F1

k4−→ F≥2 (39)

F1 + F≥2
ku−→ F≥2 2F≥2

kf−→ F≥2,

where F1 stands for filament of length 1 (denoted as T8 in (38)), and F≥2 stands
for the longer filaments (denoted as T≥9 in (38)). The refinement of this model
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Rate constant k1 k2 k3 k4 ku kf
Value 3 30 30 0.25 0.95 0.11

Table 1: Kinetic rate constant values of the extended IF self-assembly model
with fast ULF formation (39). The unit is 1

µM ·s .

to a higher resolution level, say n ≥ 2, can be done as follows:

2T1
k1−→ T2

2T2
k2−→ T4

2T4
k3−→ F1

F1 + F1
k4−→ F2

F1 + Fi
ku−→ Fi+1 i ∈ {2, . . . , n,≥ n+ 1}

Fi + Fi
kf−→ F2i 2 ≤ i ≤ n

Fi + Fj
2 kf−−→ Fi+j 2 ≤ i < j ≤ n

Fi + F≥n+1
2 kf−−→ F≥n+1 2 ≤ i ≤ n

F≥n+1 + F≥n+1
kf−→ F≥n+1,

(40)

where we adopt the convention that all F s with indices greater than n are
identified with F≥n+1. Model (39) has been experimentally validated in [6].
Using the kinetic constants in Table 1, the numerical behaviour of the model
correlates very well with experimental data in [15] on the in vitro assembly
process of recombinant vimentin at 37 ◦C. Next, we refine the model in (39)
by setting n = 10 in (40). In result we obtained a model of resolution 10 for
the process of in vitro intermediate filament self-assembly that preserves the
experimental data fit of the original model. In Figure 1 the dynamics of the
overall concentration of filaments predicted by (39) and the model of resolution
10 are presented. Notice that the results are identical, which is in complete
agreement with the theoretical deliberations, and there is no need for tedious
parameter estimation during the construction of the high-resolution model.

5 Discussion

In this work we concentrated on model refinement, an important aspect of the
model-building process. In general, the concept of model refinement can be
described as a procedure which, starting with an abstract model of a system,
carries out a number of refinement steps which lead to the construction of a more
detailed model. At the same time, in order to be correct, the refinement mech-
anism should be capable of preserving already proven system properties of the
original model, e.g. model fit, stochastic semantics, etc. In particular, in our
study we focused on the issue of refining an ODE model describing the process
of self-assembly. We introduced the notion of model resolution and showed how
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Figure 1: Comparison between the dynamics of the extended model of IFs self-
assembly with fast ULF formation originally introduced in [6] and the refined
version of resolution 10. (a) The original extended model with fast ULF forma-
tion introduced in [6]. The curve shows the concentration of the intermediate
filaments of any length in time. (b) The refined version with resolution 10. The
colour curves of the subplot show the dynamics of IFs of lengths from the set
{1, . . . , 10} and the overall concentration of filaments of length greater than 10.
The black curve in the main plot is obtained by summing the concentrations in
time of filaments of length 1 to 10 and those of length greater than 10. Notice
that the two models predict identical overall concentration of IFs in time.
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the resolution can be both increased and decreased while satisfying the condi-
tion of preserving the model fit. Moreover, we showed how the technique can
be applied to an existing model: we considered the case-study of self-assembly
of intermediate filaments.

Restricted sets of reactions There are two ways of restricting the set of re-
actions of a generic self-assembly model: either by considering just the intended
subset of all possible reactions or by setting to zero the kinetic rate constants
for those reactions that are not taking place. It is worth noticing that in both
cases the refinement procedure will lead to the correct, expected model: in the
first case none of the unwanted reactions will be introduced to the new model
and in the second case all the new reactions related through the refinement to
the original reactions with the rate constant set to zero will remain inactive, i.e.
their rate constants will be zero as well.

Models of infinite resolution In this study we discussed the refinement of
a self-assembly model of resolution n to the model of resolution n+m, where n
and m are some fixed positive integers. One could however think of a refinement
to the model of infinite resolution. Although we believe that our methodology
would work also in this case, formal theoretical considerations of this issue
are much more intricate: one would need to deal with a system of an infinite
number of differential equations. Already at the stage of writing the differential
equations of the model one would have to make sure that the appearing infinite
function series are convergent. For example, let us consider a model of resolution
0, i.e F + F

k−→ F , and refine it to a model of infinite resolution by assuming
in accordance with our methodology that ki,j := 2k for 1 ≤ i < j ≤ ∞ and
ki,i := k for 1 ≤ i ≤ ∞. The solution to the ODE model associated with the
0-resolution model, i.e. dF/dt = −kF 2(t), can be obtained analytically: F (t) =
F (0)/(1+k t F (0)). In the case of the infinite resolution model one already faces
a problem of function series convergence while writing the differential equations
for Fis. For each fixed i, the expression for the derivative dFi/dt contains
a finite number of terms kl,jFiFj where l + j = i with 1 ≤ l ≤ j < i, and
an infinite number of terms −ki,jFiFj where j ≥ 1. The trouble is whether
the infinite series

∑∞
j=1 ki,jFiFj is convergent for all t ≥ 0 or whether the

terms can be reordered in such a way that the requirement of convergence is
satisfied. The difficulty is increased by the fact that the explicit formulas for
Fis are unknown. Further, in order for the refinement to be correct, the infinite
function series

∑∞
i=1 Fi(t) has to be convergent to F (t), i.e.

∑∞
i=1 Fi(t) = F (t).

If
∑∞
i=1 dFi(t)/dt were uniformly convergent, one could write

dF/dt =
∞∑
i=1

dFi(t)/dt. (41)

In order to check whether the refinement condition is satisfied, it would be
enough to verify (41) and make sure that

∑∞
i=1 Fi(0) = F (0). To this aim, by

the refinement condition, the left-hand side in (41) could be written as

dF/dt = −k(
∞∑
n=1

n∑
i=1

Fn−iFi),

19



where the Cauchy product of (
∑∞
i=1 Fi(t))

2 is considered. Now, satisfiability
of (41) could be checked by proper reordering of the terms on the both sides
of (41). However, prior to this, one would need to make sure that all the
convergence conditions required by such reorderings are fulfilled. We just signal
this issue here without providing a solution to this interesting problem and leave
it for further investigation.

Related work The discussed methods for decreasing and increasing the res-
olution of self-assembly ODE models can be viewed as examples of adaptations
of formal model refinement techniques from the field of computer science to sys-
tems biology. To the best of our knowledge, formal model refinement has not
been explored much in the context of systems biology and this is the first time
that it is considered in relation to computational ODE-based models. Some
attempts have been made previously in the case of the rule-based formalism,
see [7, 21], where the authors consider a process called the rule refinement. It
is a method to refine rule sets in such a way that the stochastic semantics, dic-
tated by the number of different ways in which a given rule can be applied to
a system, is preserved. It is shown how to refine rules and how to choose the
refined rates so that the global dynamics of the original and refined systems are
the same. For more details we refer to [7, 21].

In Section 3.1, we discussed the numerical choices for the rate constants
of the refined self-assembly model and we presented the biological basis for
them. However, in general, when considering refinement of reactions describing
assembly of larger and lager complexes, one could think of deriving the rate
constants based on physical deliberations, i.e. try to estimate how the size of
the complexes influences the binding rates. Such an attempt was originally
made in [20], where the collision probabilities in the stochastic approach to
chemical kinetics were recalculated with taking into account the change in the
masses of complexes under formation. However, the solution presented in [20]
is not completely satisfactory due to the following two assumptions it is based
on: i) reactants are shaped like balls, and, especially, ii) the diameter of the
balls representing larger complexes is the same as the diameter of the balls
representing small complexes. Nevertheless, this approach seems to have the
potential to be developed further to correctly address the problem of relationship
between rate constants of reactions involving reactants of same type but different
sizes. We leave this interesting problem for further investigation.
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