
Parallel Approximate Steady-state Analysis
of Large Probabilistic Boolean Networks

Andrzej Mizera
University of Luxembourg
andrzej.mizera@uni.lu

Jun Pang
University of Luxembourg

jun.pang@uni.lu

Qixia Yuan
∗

University of Luxembourg
qixia.yuan@uni.lu

ABSTRACT
Probabilistic Boolean networks (PBNs) is a widely used compu-
tational framework for modelling biological systems. The steady-
state dynamics of PBNs is of special interest in the analysis of bi-
ological machinery. However, obtaining the steady-state distribu-
tions for such systems poses a significant challenge due to the state
space explosion problem which arises in the case of large PBNs.
The only viable way is to use statistical methods. In the literature,
the two-state Markov chain approach and the Skart method have
been proposed for the analysis of large PBNs. However, the sam-
ple size required by both methods is often huge in the case of large
PBNs and generating them is expensive in terms of computation
time. Parallelising the sample generation is an ideal way to solve
this issue. In this paper, we consider combining the Gelman & Ru-
bin method with either the two-state Markov chain approach or the
Skart method for parallelisation. The first method can be used to
run multiple independent Markov chains in parallel and to control
their convergence to the steady-state while the other two methods
can be used to determine the sample size required for computing
the steady-state probability of states of interest. Experimental re-
sults show that our proposed combinations can reduce time cost of
computing stead-state probabilities of large PBNs significantly.

Keywords
probabilistic Boolean networks, Markov chains, parallel comput-
ing, steady-state analysis

1. INTRODUCTION
Computational systems biology aims to model and analyse bio-
logical systems from a holistic perspective with the use of formal,
mathematical reasoning and computational techniques that exploit
efficient data structures and algorithms. Computational modelling

∗Supported by the National Research Fund, Luxembourg (grant
7814267).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2016,April 04-08, 2016, Pisa, Italy
Copyright 2016 ACM 978-1-4503-3739-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2851613.2851614

allows systematisation of available biological knowledge concern-
ing biochemical processes of a biological system and provides for-
mal means for the analysis and understanding of real-life systems.
Unfortunately, it often arises that the size of the state space of
the system to be considered is so huge that it prohibits the anal-
ysis. Thus comprehensive understanding of biological processes
requires further development of efficient methods and techniques
for formal modelling and analysis of biological systems.

One key aspect in the analysis of biological systems is to under-
stand their long-run behaviour, which is crucial in many contexts,
e.g., in the analysis of the long-term influence of one gene on an-
other gene in a gene regulatory network (GRN) [9]. In this work,
we concentrate on the steady-state analysis of biological mecha-
nisms, in particular GRNs, cast into the framework of probabilis-
tic Boolean networks. As introduced by Shmulevich et al. [10]
(see [17] for a recent survey), PBNs are a probabilistic generalisa-
tion of the standard Boolean networks: they not only incorporate
rule-based dependencies between genes and allow the systematic
study of global network dynamics; but also provide means to deal
with uncertainty, which comes naturally in biological processes.
The dynamics of PBNs can be studied in the realm of discrete-time
Markov chains (DTMCs). Therefore, the rich theories of DTMCs
can be applied in the analysis of PBNs.

Given a PBN, one natural and crucial issue is to study the steady-
state probabilities of its underlying DTMC, which characterise the
long-run behaviour of the corresponding biological system [3]. Much
effort has been devoted to analysing the steady-state behaviour of
biological systems for better understanding of influences of genes
or molecules in the systems [9]. Furthermore, steady-state anal-
ysis has been used in gene intervention and external control [13,
12], which is of special interest to cancer research to predict the
potential reaction of a patient to treatment.

It has been well studied how to compute the steady-state probabil-
ities of small-size PBNs using numerical methods [14, 16]. How-
ever, in the case of large PBNs, their state-space size becomes so
huge that the numerical methods, often relying on the transition
matrix of the underlying DTMC of the studied network, are not
scalable any more. This poses a critical challenge for the steady-
state analysis of large PBNs. In fact, approximations with Markov
Chain Monte Carlo (MCMC) techniques remain the only feasible
method to solve the problem. In [6], we have considered the two-
state Markov chain approach and the Skart method for approximate
analysis of large PBNs. Taking special care of efficient simula-
tion, we have implemented these two methods in the tool ASSA-
PBN [5], and successfully used it for the analysis of large PBNs

http://dx.doi.org/10.1145/2851613.2851614

with a few thousands of nodes. However, the trajectory required for
analysing a large PBN is often very long and generating such long
trajectories is expensive in terms of computation time. A natural
idea for speeding up this is to perform the trajectory generation in
parallel. In this work, we consider combining the Gelman & Rubin
method [2] with the two methods considered in [6]. We simulate
multiple trajectories in parallel and verify the convergence of the
trajectories based on the Gelman & Rubin method. Once conver-
gence is reached according to the Gelman & Rubin method, either
the two-state Markov chain approach or the Skart method can be
applied to the converged trajectories to estimate the steady-state
probability for a set of states that are of interest. We show with ex-
periments that the combinations can significantly reduce the com-
putation time for approximate steady-state analysis of large PBNs.

2. PRELIMINARIES

2.1 Finite discrete-time Markov chains
We define a discrete-time Markov chain (DTMC) as a tuple (S,s0,P),
where S is a finite set of states, s0 ∈ S is the initial state, and P :
S×S→ [0,1] is a transition probability matrix. For any two states
s and s′, an element of P(s,s′) defines the probability that a transi-
tion is made from state s to state s′. It satisfies that P(s,s′) ≥ 0
for all s,s′ ∈ S and ∑s′∈S P(s,s′) = 1 for all s ∈ S. A path of
length n is a sequence of states s0,s1, . . . ,sn−1, where si ∈ S for all
i ∈ {0,1, . . . ,n−1} and P(si,si+1)> 0 for all i ∈ {0,1, . . . ,n−2}.
State s′ ∈ S is said to be reachable from state s ∈ S if there exists
a path from s to s′. A DTMC is said to be irreducible if any two
states in the state space are reachable from each other. A state of
a DTMC is of period d where d equals to the greatest common di-
visor of the lengths of all paths that start and end in the state. If
all states in the state space of a DTMC are of period one, then the
DTMC is aperiodic. A finite state DTMC that is both irreducible
and aperiodic is ergodic. Let π be a probability distribution on
S. π is called a stationary distribution of the DTMC if π = π ·P.
According to the ergodic theory of DTMC [7], an ergodic DTMC
has a unique stationary distribution, being simultaneously its lim-
iting distribution. It is also known as the steady-state distribution
given by limn→∞ π0 ·Pn, where π0 is any initial probability distri-
bution on S and Pn is the n times multiplication of the transition
matrix P. Therefore, the limiting distribution of an ergodic DTMC
is independent of the choice of the initial distribution and it can be
estimated by iteratively multiplying P.

2.2 Probabilistic Boolean network
A probabilistic Boolean network G(V,F) is composed of a set of
binary-valued variables (also referred to as nodes) V =(v1,v2, . . . ,vn)
whose values are governed by a list of sets F = (F1,F2, . . . ,Fn).
The set Fi = { f i

1, f i
2, . . . , f i

`(i)} is defined as a set of possible pre-
dictor functions for node vi, where i ∈ {1,2, . . . ,n} and `(i) is the
number of possible predictor functions for vi. Each predictor func-
tion f i

j is a Boolean function defined with respect to a subset of
nodes referred to as parent nodes of the node vi. At a given time
point t (t = 0,1, . . .), one predictor function is selected for each
of the nodes. We call the combination of all the selected predic-
tion functions at time t a realisation of a PBN. Assuming indepen-
dence among the predictor functions for different nodes, there are
N = ∏

n
i=1 `(i) possible realisations for a PBN. We denote the real-

isations as vectors f k, k ∈ {1, . . . ,N}, where the i-th element is the
Boolean function selected for node vi. The realisation at time point

t is expressed as f (t). For a node vi, the selection probability for se-
lecting its jth predictor function is denoted as c(i)j and it holds that

∑
`(i)
j=1 c(i)j = 1 for all i ∈ {1,2, . . . ,n}. The state of a PBN at time

point t, denoted as s(t), is defined as a collection of all the node
values at time t, namely s(t) = (v1(t),v2(t), . . . ,vn(t)), where vi(t)
is the value of node vi at time t. A PBN with n nodes has 2n pos-
sible states and s(t) ∈ {0,1}n for each t. The transition from s(t)
to s(t +1) is conducted by synchronously updating the node values
according to the realisation at time t, i.e., s(t +1) = f (t)(s(t)).

The concept of perturbations is introduced to PBN by providing a
parameter p ∈ (0,1), which is used to sample a perturbation vector
γ(t)= (γ1(t),γ2(t), . . . ,γn(t)), where each γi(t)∈{0,1} is a Bernoulli
distributed random variable with the parameter p for all t and i ∈
{1,2, . . . ,n}. If γi(t) = 0, the next state of a PBN is given by s(t +
1) = f (t)(s(t)); otherwise, it is determined as s(t+1) = s(t)⊕γ(t),
where⊕ is the ‘exclusive or’ operator for vectors. Perturbations al-
low to reach an arbitrary state from any other state within one tran-
sition in a PBN. Thus the dynamics of a PBN with perturbations
can be viewed as an ergodic DTMC over S = {0,1}n [10]. With
the ergodic theory of DTMCs [7], it can be concluded that the long
run dynamics of a PBN is independent of the choice of its initial
state. This allows the estimation of the steady-state behaviour of a
PBN by performing simulation from an arbitrary initial state.

The density of a PBN is measured with its predictor functions num-
ber and parent nodes number. For a PBN G, its density is defined
as D(G) = 1

n ∑
NF
i=1 θ(i), where NF is the total number of predictor

functions in G and θ(i) is the number of parent nodes of the i-th
predictor function.

3. STEADY-STATE ANALYSIS OF PBNS
As shown in [6], both the two-state Markov chain approach and the
Skart method are effective for analysing steady-state probabilities
of a PBN with number of nodes up to a few thousands. We briefly
discuss in this section these two methods. An efficient implementa-
tion of the two methods for the analysis of large PBNs is available
in the ASSA-PBN tool [5].

3.1 The two-state Markov chain approach
The two-state Markov chain approach [8] is a method for approx-
imate computation of the steady-state probability for a subset of
states of a DTMC. This approach splits the states of an arbitrary
DTMC into two parts, referred to as two meta states. One part is
composed of the states of interest, numbered 1, and the other part
is its complement, numbered 0. Such consideration abstracts an ar-
bitrary DTMC into a 0-1 stochastic process, which can further be
approximated by a first-order, two-state DTMC that consists of the
two meta states with transition probabilities α and β between them.
Fig. 1 illustrates the construction of a two-state Markov chain from
a 5-state Markov chain.

The steady-state probability of meta state 1 can be estimated by
performing simulation of the original DTMC. This estimation is
achieved iteratively using the standard two-state Markov chain ap-
proach of [8] to guarantee that the samples used for estimation are
drawn from a distribution which differs from the the steady-state
distribution at most by ε and that two precision requirements (pre-
cision r, and confidence level s) are satisfied. We outline the steps
in Algorithm 1. The two arguments m0 and n0 are the initial ‘burn-
in’ period and the initial sample size, respectively. In each iteration

B

A D

E

C

0 1

(a) Original DTMC

0 1

↵

�

1��1�↵

(b) Two-state DTMC

Figure 1: Conceptual illustration of the idea of the two-state
Markov chain construction. (a) The state space of the original
discrete-time Markov chain is split into two meta states: states A
and B form meta state 0, while states D, C, and E form meta state 1.
The split of the state space into meta states is marked with dashed
ellipses. (b) Projecting the behaviour of the original chain on the
two meta states results in a binary (0-1) stochastic process which
can be approximated as a first-order, two-state Markov chain.

Algorithm 1 The Two-state Markov chain approach

1: procedure ESTIMATEPROBABILITY(m0,n0,ε,r,s)
2: M := m0; N := n0; l := M+N;
3: Generate an initial trajectory of length l abstracted to the

two meta states.
4: repeat
5: Extend the trajectory by M+N− l.
6: l := M+N;
7: Estimate α,β based on the last N elements of the ex-

tended trajectory
8: M :=

⌈
log
(

ε(α+β)
max(α,β)

)
/ log(|1−α−β |)

⌉
N :=

⌈
αβ (2−α−β)

(α+β)3
(Φ−1(1

2 (1+s)))
2

r2

⌉
9: until M+N ≤ l

10: Estimate the probability of meta state 1 from the last N
elements of the trajectory.

11: end procedure

of the algorithm, the ‘burn-in’ steps M and the actual sample size N
are re-estimated. The iteration continues until the estimated sam-
ple size (M+N) is not bigger than the current trajectory length. For
more details on this approach, a derivation of the formulas for M
and N in line 8, and a discussion regarding a proper choice of n0,
we refer to [6].

3.2 The Skart method
Proposed by Tafazzoli et al. [15] in 2008, the Skart method is a non-
overlapping batch means method that can be used to estimate the
steady-state probabilities of a DTMC from a simulated trajectory
of the DTMC. It divides the simulated trajectory of length η , i.e.,
{Xi : i = 1,2, . . . ,η}, into p non-overlapping batches, each of size
κ . See Figure 2a for an illustration. Assuming p and κ are both

κ κ κ

η = κ ∗ p

...

(a) A single chain is divided into p batches

κ κ κ

κ ∗dp/ωe

...

...

κ κ κ

κ ∗dp/ωe

...

ω

(b) ω chains are divided into p batches

Figure 2: Demonstration of dividing samples into batches for the
Skart method. (a) Dividing samples from a single chain into p
batches, each of size κ . The chain size η = κ ∗ p. (b) Dividing
samples from ω chains into p batches, each of size κ . The size
of each chain is κ ∗ dp/ωe. The actual number of batches after
dividing is p′ = ω ∗dp/ωe.

Algorithm 2 The Skart method

1: procedure ESTIMATECI(H∗,α)
2: η := 1280; l := 1024; pass := FALSE;
3: Generate an initial trajectory of length η .
4: Compute the skewness B̂ of the last l samples and set batch

size κ based on B̂.
5: p := η ; η := κ ∗ p;
6: Extend trajectory to η and compute randomness test statis-

tics C
7: while Independence test is not passed do
8: Adjust batch size κ , number of batches p and spacer [1]

size d; η := κ ∗ p
9: Extend trajectory to η and compute randomness test

statistics C
10: end while
11: ζ := d ∗κ; skip first ζ samples.
12: repeat
13: Extend the trajectory to length η if necessary.
14: Compute nonspaced batch means µ and variance esti-

mator Var.
15: Compute skewness and autogression adjusted CI based

on Var and α .
16: H = max{µ−CIbottom,CItop−µ};
17: if H > H∗ then

//check whether the precision requirement is satisfied
18: Adjust batch size κ and number of batches p′;
19: η := κ ∗ (p′+d)

//p′ does not contain the number of discarded batches
20: else pass := TRUE;
21: end if
22: until pass
23: end procedure

large enough, it guarantees that the batch means are approximately
independent and identically distributed (i.i.d) normal random vari-
ables. The grand mean of the individual batch means, denoted as

µ , is considered as a point estimator of µX , i.e., the steady-state
expected value of the process Xi. In practise, some initial batches,
known as ‘burn-in’ steps and denoted as ζ , are discarded to elim-
inate the initialisation bias when computing the point estimator
µX . The method then constructs a CI (confidence interval) esti-
mator for µX that is centered on µ . The key process of the Skart
method is to determine a proper batch size κ , a proper batch num-
ber p, and proper number of ‘burn-in’ steps ζ , so that the computed
steady-state estimations are approximately the theoretical ones and
the computed CI estimator satisfies certain precision requirements.
This is achieved by using randomness test, autocorrelation, and
skewness adjustment in an iterative way. We summarise the process
of the Skart method in Algorithm 2, and we refer to [15] for a more
detailed description. Given two input parameters H∗ (precision re-
quirement) and α (confidence level), this algorithm computes a CI
estimator [CIbottom,CItop] and a point estimator µ which together
satisfy that H∗ < max{µ−CIbottom,CItop−µ} and the real steady-
state probability of the system is within the confidence interval with
100(1−α)% probability.

4. PARALLEL STEADY-STATE ANALYSIS
OF LARGE PBNS

It often appears that a huge sample size is required to estimate the
steady-state probabilities for large PBNs, which can be computa-
tionally expensive. In principle, parallelising the sample genera-
tion process can be considered an ideal solution to this problem.
We propose to combine the Gelman & Rubin method with the two
above mentioned methods. The Gelman & Rubin method is used
to monitor that all the simulated chains have approximately con-
verged to the steady-state distribution while the other two methods
are used to determine the sample size required for computing the
steady-state probabilities of the states of interest.

4.1 The Gelman & Rubin method
The Gelman & Rubin method [2] is an approach for monitoring
the convergence of multiple chains. It starts from simulating 2ψ

steps of ω ≥ 2 independent Markov chains in parallel. The first ψ

steps of each chain, known as the ‘burn-in’ period, are discarded
from it. The last ψ elements of each chain are used to compute the
within-chain (W) and between-chain (B) variance, which are used
to estimate the variance of the steady state distribution (σ̂2). Next,
the potential scale reduction factor R̂ is computed with σ̂2. R̂ in-
dicates the convergence to the steady state distribution. The chains
are considered as converged and the algorithm stops if R̂ is close to
1; otherwise, ψ is doubled, the trajectories are extended, and R̂ is
recomputed. We list the steps of this approach in Algorithm 3. For
further details of this method and the discussion on the choice of
the initial states for the ω chains we refer to [2].

4.2 Parallelising the two-state Markov chain
approach

To reduce the time cost of the two-state Markov chain approach
in the case of large PBNs, we propose to parallel this approach by
providing samples from multiple chains. To achieve this, the Gel-
man & Rubin method is used to run multiple chains of the original
DTMC to assure their convergence to the steady-state distribution.
Once convergence is reached, the second halves of the chains are
merged into one sample, and the two-state Markov chain approach
is applied to estimate N based on the merged sample. Since the

Algorithm 3 The Gelman & Rubin method

1: procedure GENERATECONVERGEDCHAINS(ω,ψ0)
2: ψ := ψ0;
3: Generate in parallel ω trajectories of length 2ψ;
4: repeat
5: chains(1. . . ω ,1. . . 2ψ) := Extend all the ω trajectories

to length 2ψ;
6: for i = 1..ω do
7: µi := mean of the last ψ values of chain i;
8: si := standard deviation of the last ψ values of chain

i;
9: end for

10: µ := 1
ω ∑

ω
i=1 µi;

11: B := ψ

ω−1 ∑
ω
i=1(µi−µ)2; W := 1

ω ∑
ω
i=1 s2

i ;
//Between and within variance

12: σ̂2 := (1− 1
ψ
)W + 1

ψ
B;

//Estimate the variance of the stationary distribution
13: R̂ :=

√
σ̂2/W ;
//Compute the potential scale reduction factor

14: ψ := 2 ·ψ;
15: until R̂ is close to 1
16: return (chains,ψ/2);
17: end procedure

convergence is assured, we propose to skip the iterative computa-
tion of the ‘burn-in’ period in the two-state Markov chain approach
to maximise the speed-up. The stop criterium for the two-state
Markov chain approach becomes that the estimated value N is not
bigger than the size of the merged sample. If the stop criterium is
not satisfied, the multiple chains are extended in parallel to provide
a sample of required length. The above idea would be fully correct,
if the fact that the simulated chains of the original Markov chain
have converged, would imply that the two-state Markov chain ab-
straction is also converged to its steady-state distribution. Although
our computational experiments indicated that this is often the case
(data not shown), it does not hold in general. Therefore, we add
an additional step. Once the stop criterium is satisfied, the ‘burn-
in’ period M of the two-state Markov chain is computed. The as-
sumption is verified true if M is not larger than the ‘burn-in’ period
ψ of the Gelman & Rubin method. Otherwise, additional M−ψ

elements will be discarded in the beginning of each chain and the
tweaked two-state Markov chain part is re-run on the modified sam-
ple. The detailed steps of this approach are outlined in Algorithm 4.

When analysing a biological system, we are often interested in
more than one set of states, e.g., in the case of a long-run sensitivity
analysis of a PBN modelling a biological system. For simplicity,
we call the steady-state probability of the states of interest as one
property and computing this steady-state probability as checking
one property. Given q different properties, the two-state Markov
chain approach needs to be run for q times in order to check all
of them. Since the generation process is the most time consum-
ing part in the algorithm, the time cost for checking multiple prop-
erties can be reduced significantly if we can reuse the generated
samples. We modify Algorithm 4 to allow the reuse of samples
for computing the steady-state probabilities of multiple properties.
The crucial idea is that the simulated samples are abstracted into
different meta states based on these different q properties simulta-
neously each time an extension of chains is obtained. The calcu-

Algorithm 4 The Parallelised two-state Markov chain approach

1: procedure ESTIMATEINPARALLEL(ω,ψ0,ε,r,s)
2: (chains,ψ) := generateConvergedChains(ω,ψ0);
3: n := 0; extend_by := ψ; monitor := FALSE; ab_sample :=

NULL;
4: repeat
5: repeat
6: chains := Extend in parallel each chain in chains by

extend_by;
7: sample := chains(1 . . .ω,(n + ψ + 1) . . .(n + ψ +

extended_by));
8: ab_sample := abstract sample and combine with

ab_sample ;
9: n := n+ extend_by; sample_size := ω ·n;

10: Estimate α,β from ab_sample;
11: Compute N as Line 8 Algorithm 1;
12: extend_by := d(sample_size−N)/ωe;
13: until extend_by < 0
14: Compute M as Line 8 Algorithm 1; monitor := FALSE;
15: if M ≥ ψ then
16: extend_by := ψ−M; ψ := M; monitor := TRUE;
17: end if
18: until monitor
19: Estimate the prob. of meta state 1 from ab_sample;
20: end procedure

lations of N for different properties are then performed simultane-
ously as well, resulting in another level of parallelisation. The next
extension length is determined by the minimal value of all the cal-
culated Ns. Using the minimal value could increase the number of
extensions; however it can avoid unnecessary abstraction of sam-
ples, which is a relatively expensive process. The extension process
is stopped when all the calculated Ns are smaller than the current
sample size. The steady-state probabilities of all the properties are
then calculated based on their corresponding abstracted meta states.

4.3 Parallelising the Skart method
The trajectory required by the Skart method can be very long as
well in the case of large networks. We propose to apply a similar
strategy as what we have done for the two-state Markov chain ap-
proach to reduce the time cost of the Skart method. It is assumed
in the Skart method that the number of batches p and the batch
size κ are large enough to guarantee that the batch means are ap-
proximately i.i.d normal random variables. This assumption still
holds when the batches are obtained from different chains given
that convergence has been reached in those chains. Therefore, the
Skart method can be parallelised by fetching samples from mul-
tiple chains which have converged. We use the Gelman & Rubin
method to guarantee that different chains have converged and the
Skart method to determine the number of batches and the size of
each batch in order to estimate the target stationary probability with
a given precision. Since the burn-in steps are already discarded by
the Gelman & Rubin method, no samples will be truncated when
computing the CI in the parallelised version of the Skart method.
For efficiency consideration, we further require that the number of
batches obtained from each chain is the same. This makes the num-
ber of batches used in the parallelised Skart method slightly larger
than that in the original Skart method. Figure 2 shows how a single
chain and multiple chains are divided into batches. We summarise
the parallelisation of the Skart method in Algorithm 5 and high-

Algorithm 5 The Parallelised Skart method

1: procedure ESTIMATECIINPARALLEL(H∗,α)
2: (chains,ψ) := generateConvergedChains(ω,ψ0);
3: Skip first ψ samples of each chain; η := d1,280/ωe ∗ω;

pass := FALSE;
4: Extend all the chains each to length η/ω if necessary
5: Compute the skewness B̂ and set batch size κ based on B̂
6: p := dη/ωe∗ω; η := κ ∗ p; // batch number is adjusted
7: Extend all the chains each to η/ω and compute random-

ness test statistics C
8: while Independence test is not passed do
9: Adjust κ , number of batches p and spacer size d;

10: p := dp/ωe∗ω; η := κ ∗ p// batch number is adjusted
11: Extend all the chains each to η/ω and compute ran-

domness test statistics C
12: end while
13: repeat
14: Extend all the chains each to length η/ω if necessary
15: Compute nonspaced grand batch mean µ and variance

estimator Var
16: Compute skewness and autogression adjusted CI based

on Var and α

17: H = max{µ−CIbottom,CItop−µ}
18: if H > H∗ then
19: Adjust batch size κ and number of batches p;
20: p := dp/ωe∗ω; η := κ ∗ p

// do not consider discarding the first d samples
21: else pass := TRUE
22: end if
23: until pass
24: end procedure

light the lines where there exists a main difference with respect to
the sequential method by adding comments.

5. EVALUATION
The above mentioned algorithms have been implemented in the tool
ASSA-PBN [5] and the performance of Algorithm 1 and Algo-
rithm 2 have been evaluated in [6]. We show in this section that
the proposed two parallel algorithms can significantly reduce the
time cost for computing steady-state probabilities of large PBNs in
comparison with their sequential versions. We evaluate this first on
randomly generated PBNs and then on a PBN for a real biological
system. To make the evaluation as fair as possible, the proposed
two parallel algorithms are implemented in the same programming
language, i.e., Java, as the tool ASSA-PBN uses. All the experi-
ments in this paper are conducted in a high-performance comput-
ing (HPC) node, which contains 16 Intel Xeon E7-4850 proces-
sors@2GHz. The 16 processors are equally distributed in 4 Bull
S6030 boards (servers) and each processor contains 10 cores. This
hardware architecture allows us to run a program with the maxi-
mum of 40 cores in one board. The initial and the maximum Java
Heap Size are set to 2GB and 64GB, respectively.

5.1 Speed-up for checking a single property
We first evaluate the speed-up for checking a single property using
the parallelised algorithms, i.e., Algorithm 4 and Algorithm 5. We
randomly generate 18 different PBNs with node numbers from the

set {80,100,200,500,1000,2000} using the tool ASSA-PBN. For
each node number, 3 PBNs are generated. We assign the obtained
PBNs into three different classes with respect to their density mea-
sure D : dense models with density 150−300, sparse models with
density around 10, and in-between models with density 50− 100.
The precision and confidence level of all the experiments are set
to 10−4 and 0.95, respectively. The parameter ε in the two-state
Markov chain approach is set to 10−10. We compute steady-state
probabilities for the 18 PBNs using Algorithms 1, 2, 4, and 5 and
compare their results as well as time costs. The parallelised algo-
rithms are launched with 6 different number of cores in one board
ranging in {2,5,10,20,30,40}.
As the models we use are too large to be analysed with numerical
methods, it is not possible to check the correctness of the paral-
lelised algorithms using the models’ theoretical steady-state prob-
ability distributions. Instead we compare the results of the paral-
lelised algorithms with their corresponding sequential algorithms.
We collect the two probabilities computed by Algorithms 1 and 4
or by Algorithms 2 and 5 for checking the same property of one
model as a pair. In this section, there are 216 pairs of probabili-
ties in total. We expect the difference of the two probabilities in
a pair to be less than 2× 10−4 with the probability of 95%. In all
the 216 pairs that we have obtained, the difference is always less
than 2×10−4. Moreover, we perform a similar verification for the
evaluation results in Section 5.2 and obtain the same observations.

Figure 3a and Figure 3b present the speed-ups when analysing
a single property of the 18 PBNs with the parallelised two-state
Markov chain approach. Each speed-up is computed using the for-
mula tsequential/tparallel , where tsequential is the time cost of the se-
quential two-state Markov chain approach and tparallel is the time
cost of its parallelised version. The parallelised approach is launched
with different number of cores ranging in {2,5,10,20,30,40}. We
see clearly from these figures that the speed-up is almost propor-
tional to the number of cores. Meanwhile, the speed-ups vary a
lot in different models with 40 cores, e.g., we observe a speed-up
about 46 in the case of the 2000-node dense model and a speed-up
of 22 in the case of the 200-node sparse model.

On the one hand, the required sample size varies in different runs
due to the nature of the two-state Markov chain approach. The
speed-up can be bigger than the number of cores when the required
sample size in the parallelised run is smaller than what is required
in the sequential run – this is actually the case where we obtain the
speed-up of 46 for the 2000-node dense model. On the contrary,
the speed-up can be much smaller than the number of cores when
the required sample size in the parallelised run is bigger than that
required in the sequential run – this is the case where we obtain the
speed-up of 31.7 for the 80-node dense model. To show the affec-
tion of sample size, we compute the speed-ups for the parallelised
run with 40 cores after eliminating the affection of sample size us-
ing the formula sp ∗ sizep/sizes, where sp is the original speed-up
computed with tsequential/tparallel , sizes is the sample size used for
the sequential run, and sizep is the sample size used for the parallel
run. The results are shown in Table 1 (in the rows labelled with
speed-up E). On the other hand, the time cost also varies when
checking a property for different models. When the time cost of
the sequential run is small, the percentage of time spent in gener-
ating samples is also small. As a consequence, the percentage of
time the parallelised algorithm can reduce is small as well. There-
fore, the speed-up the parallelised algorithm can gain is small when
the time cost of the sequential run is small – this is the case where

we obtain the speed-up of 22 for the 200-node sparse model. On
the contrary, a larger speed-up is easy to obtain when the time cost
of the sequential run is big – this is the case where we obtain the
speed-up of 46 for the 2000-node dense model. We obtain similar
speed-ups with the Skart method and the speed-ups are presented
in Figure 3c and Figure 3d.

Besides, we obtain maximum speed-ups with the use of 40 cores
under the current hardware condition. To illustrate this, we show in
Table 1 more detailed information, i.e., the time costs (in minutes),
the actual sample sizes (of millions), the speed-ups, and the speed-
ups after eliminating the affection from the sample size. Note that
in order to make the results as accurate as possible, all speed-ups
are computed using the original time and size values we get from
experiments, not the truncated ones shown in Table 1. For the
two-state Markov chain approach, the speed-ups are greater than
30 for 14 out of 18 cases and for the Skart method the speed-ups
are greater than 30 for 12 out of 18 cases.

Moreover, we show in the next section that with the use of 40
cores, speed-ups between 19.67 and 33.04 are obtained for a 96-
node PBN modelling a real biological system.

5.2 Speed-up for checking multiple properties
We have performed one influence analysis and two long-run sen-
sitivity analyses of an apoptosis network using the sequential two-
state Markov chain approach in [6]. The apoptosis network con-
tains 96 nodes; one of the nodes, i.e., UV, can take on three values
and was refined as UV(1) and UV(2) in order to cast the original
multi-value model into the binary PBN framework. The 96 nodes
with 107 Boolean functions and their parameters, i.e., the selection
probabilities of Boolean functions, were fitted to experimental data
in [16]. We took the 20 best fitted parameter sets and performed
analyses for them. With an efficient implementation of a PBN sim-
ulator, we managed to finish this analysis in an affordable amount
of time. Nevertheless, the analysis was still very expensive in terms
of computation time since the trajectories required were huge and
a number of properties needed to be checked.

In this work, we re-perform part of the influence analyses by run-
ning the parallelised two-state Markov chain approach for checking
7 properties simultaneously with 40 cores. In the influence analy-
sis, we aim to compute the long-term influences on complex2 from
each of its parent nodes: RIP-deubi, complex1, and FADD, in ac-
cordance with the definition in [11]. We consider both the case of
UV(1) and UV(2) and hence we construct 2 PBNs for each of the
20 best fit parameter sets. In total, we need to compute 7 different
steady-state probabilities for 40 different PBNs.

In [6], the two-state Markov chain approach has been applied 280
times to finish the computation. Using the parallelised version, we
only need to perform the parallelised two-state Markov chain ap-
proach 40 times since 7 properties for one PBN can be checked in
one run. In this evaluation, we perform the parallelised two-state
Markov chain approach to check the 7 properties of one of the 40
PBNs simultaneously and show in Table 2 the time cost (in min-
utes), the actual sample size (in millions) we use and the speed-ups
we obtain for checking them with the sequential and parallelised al-
gorithms. To make the comparison complete, we also perform the
parallelised two-state Markov chain approach to check the 7 prop-
erties one by one and show the results in Table 2. The precision
r, confidence level s, and steady-state convergence parameter ε in
this experiment are set to 10−5, 0.95 and 10−10, respectively. The

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

2	 5	 10	 20	 30	 40	

sp
ee
d-‐
up

	

number	 of	 cores	 (chains)	

80	 sparse	

80	 in-‐between	

80	 dense	

100	 sparse	

100	 in-‐between	

100	 dense	

200	 sparse	

200	 in-‐between	

200	 dense	

(a) Two-state Markov chain (I): PBNs with 80, 100, 200 nodes.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

2	 5	 10	 20	 30	 40	

sp
ee
d-‐
up

	

number	 of	 cores	 (chains)	

500	 sparse	

500	 in-‐between	

500	 dense	

1000	 sparse	

1000	 in-‐between	

1000	 dense	

2000	 sparse	

2000	 in-‐between	

2000	 dense	

(b) Two-state Markov chain (II): PBNs with 500, 1000, 2000 nodes.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

2	 5	 10	 20	 30	 40	

sp
ee
d-‐
up

	

number	 of	 cores	 (chains)	

80	 sparse	

80	 in-‐between	

80	 dense	

100	 sparse	

100	 in-‐between	

100	 dense	

200	 sparse	

200	 in-‐between	

200	 dense	

(c) The Skart method (I): PBNs with 80, 100, 200 nodes.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

2	 5	 10	 20	 30	 40	

sp
ee
d-‐
up

	
number	 of	 cores	 (chains)	

500	 sparse	

500	 in-‐between	

500	 dense	

1000	 sparse	

1000	 in-‐between	

1000	 dense	

2000	 sparse	

2000	 in-‐between	

2000	 dense	

(d) The Skart method (II): PBNs with 500, 1000, 2000 nodes.

Figure 3: Speed-up of Algorithms 4 and 5. Each curve shows the speed-up as a function of the number of cores used.

node # 80 100 200
density sparse in-between dense sparse in-between dense sparse in-between dense

tw
o-

st
at

e

time
(m)

seq. 27.4 50.7 30.6 30.4 52.5 119.5 18.0 159.3 171.0
par. 1.1 1.4 1.0 1.3 1.5 3.0 0.8 4.6 4.8

size
(million)

seq. 84.7 105.3 41.6 70.2 98.8 117.7 25.9 134.6 83.7
par. 85.2 105.0 49.3 70.3 98.8 117.5 25.9 134.7 83.7

speed-up 24.3 37.5 31.7 23.9 34.5 40.0 22.1 34.7 35.8
speed-up E 24.5 37.4 37.7 23.9 34.5 39.9 22.2 34.7 35.8

Sk
ar

t

time
(m)

seq. 29.9 49.2 31.7 30.5 47.6 110.0 16.7 167.3 176.9
par. 1.1 1.9 1.0 1.1 2.2 3.8 0.9 5.4 4.4

size
(million)

seq. 94.1 110.2 43.5 72.7 89.6 110.1 24.5 141.2 86.9
par. 78.3 109.7 40.8 69.6 109.7 123.5 29.1 131.1 73.8

speed-up 28.2 25.5 32.3 28.9 21.3 28.9 17.8 31.0 39.8
speed-up E 23.4 25.4 30.3 27.7 26.1 32.5 21.1 28.8 33.8
node # 500 1000 2000
density sparse in-between dense sparse in-between dense sparse in-between dense

tw
o-

st
at

e

time
(m)

seq. 302.5 556.9 410.8 211.3 620.4 1841.7 111.0 460.5 643.1
par. 9.3 15.9 11.4 7.2 20.3 52.6 3.2 14.0 14.0

size
(million)

seq. 156.1 198.3 113.9 75.8 176.7 297.6 44.8 114.1 115.5
par. 153.8 204.8 114.0 75.6 176.4 302.1 40.8 113.5 91.8

speed-up 32.7 34.9 36.2 29.5 30.6 35.0 34.9 32.8 45.8
speed-up E 32.2 36.0 36.2 29.5 30.5 35.6 31.8 32.6 36.4

Sk
ar

t

time
(m)

seq. 278.5 594.0 394.2 218.7 671.3 2095.5 98.9 467.5 466.9
par. 9.1 15.9 11.7 6.0 19.5 51.0 3.2 11.7 13.0

size
(million)

seq. 144.1 216.5 114.9 78.7 185.8 292.9 40.1 109.2 94.1
par. 134.9 208.6 117.4 75.3 184.4 274.0 38.4 103.3 86.4

speed-up 30.6 37.4 33.6 36.3 34.5 41.1 31.3 39.8 35.8
speed-up E 28.7 36.0 34.3 34.7 34.3 38.5 29.9 37.7 32.9

Table 1: Speed-up obtained with 40 cores for Algorithms 4 and 5. Seq. and par. are short for sequential and parallel.

sequential parallelised
speed-upproperty # sample size

(million) time (m) property # sample size
(million) time(m)

1 146.99 53.30 1 147.20 2.31 23.04
2 454.14 174.25 2 461.58 6.81 25.58
3 253.45 97.77 3 253.60 3.86 25.32
4 48.81 16.71 4 50.11 0.73 22.83
5 305.35 120.33 5 335.85 5.38 22.39
6 50.21 17.65 6 51.31 0.90 19.67
7 255.17 99.75 7 263.39 3.02 33.04

total 1563.05 579.75 1-7 452.74 10.96 52.88

Table 2: Performance comparison on checking seven properties. Property # “1-7” means checking seven properties simultaneously.

speed-ups for checking a single property are computed similarly
as in Figure 3; while the speed-up for checking the seven proper-
ties simultaneously is computed with ∑

7
i=1 ti/tmulti, where ti is the

time cost for checking the i-th property with the sequential algo-
rithm and tmulti is the time cost for checking the seven properties
simultaneously with the parallelised algorithm. From Table 2, the
parallelised algorithm obtains a speed-up between 19.67 and 33.04
for checking a single property and a speed-up of 52.88 for checking
seven properties. By reuse of generated samples, the sample size is
also reduced by 3.45 times from 1563.05 to 452.74 million.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed to combine the Gelman & Rubin method
with two statistical methods, i.e., the two-state Markov chain ap-
proach and the Skart method, to reduce the time cost for computing
steady-state probabilities of large PBNs. We showed with experi-
ments that the proposed combinations could reduce the time cost of
the original sequential methods significantly.

Our parallelised algorithms work well on multiple-core CPU ar-
chitecture. However, the scalability of multiple-core CPU based
parallelisation is often restricted by the CPU architecture since the
number of processing units in a CPU is usually small. On the con-
trary, GPUs often contain thousands of processing units and GPUs
achieve high performance when thousands of threads execute con-
currently [4]. Parallelising those algorithms with GPU based archi-
tecture will potentially lead to further speed-ups.

7. REFERENCES
[1] FOX, B. L., GOLDSMAN, D., AND SWAIN, J. J. Spaced

batch means. Operations Research Letters 10, 5 (1991),
255–263.

[2] GELMAN, A., AND RUBIN, D. Inference from iterative
simulation using multiple sequences. Statistical Science 7, 4
(1992), 457–472.

[3] KAUFFMAN, S. A. The Origins of Order: Self-organization
and Selection in Evolution. Oxford University Press, 1993.

[4] MICIKEVICIUS, P. 3D finite difference computation on
GPUs using CUDA. In Proc. 2nd Workshop on General
Purpose Processing on Graphics Processing Units (2009),
ACM, pp. 79–84.

[5] MIZERA, A., PANG, J., AND YUAN, Q. ASSA-PBN: a tool
for approximate steady-state analysis of large probabilistic
Boolean networks. In Proc. 13th International Symposium
on Automated Technology for Verification and Analysis

(2015), LNCS, Springer. Available at
http://satoss.uni.lu/software/ASSA-PBN/.

[6] MIZERA, A., PANG, J., AND YUAN, Q. Reviving the
two-state markov chain approach (technical report).
Available online at http://arxiv.org/abs/1501.01779, 2015.

[7] NORRIS, J. Markov Chains. Cambridge University Press,
1998.

[8] RAFTERY, A., AND LEWIS, S. How many iterations in the
Gibbs sampler? Bayesian Statistics 4 (1992), 763–773.

[9] SHMULEVICH, I., DOUGHERTY, E., AND ZHANG, W.
From Boolean to probabilistic Boolean networks as models
of genetic regulatory networks. Proceedings of the IEEE 90,
11 (2002), 1778–1792.

[10] SHMULEVICH, I., AND DOUGHERTY, E. R. Probabilistic
Boolean Networks: The Modeling and Control of Gene
Regulatory Networks. SIAM Press, 2010.

[11] SHMULEVICH, I., DOUGHERTY, E. R., KIM, S., AND
ZHANG, W. Probabilistic Boolean networks: a rule-based
uncertainty model for gene regulatory networks.
Bioinformatics 18, 2 (2002), 261–274.

[12] SHMULEVICH, I., DOUGHERTY, E. R., AND ZHANG, W.
Control of stationary behavior in probabilistic Boolean
networks by means of structural intervention. Journal of
Biological Systems 10, 04 (2002), 431–445.

[13] SHMULEVICH, I., DOUGHERTY, E. R., AND ZHANG, W.
Gene perturbation and intervention in probabilistic Boolean
networks. Bioinformatics 18, 10 (2002), 1319–1331.

[14] SHMULEVICH, I., GLUHOVSKY, I., HASHIMOTO, R.,
DOUGHERTY, E., AND ZHANG, W. Steady-state analysis of
genetic regulatory networks modelled by probabilistic
Boolean networks. Comparative and Functional Genomics
4, 6 (2003), 601–608.

[15] TAFAZZOLI, A., WILSON, J., LADA, E., AND STEIGER, N.
Skart: A skewness- and autoregression-adjusted batch-means
procedure for simulation analysis. In Proc. 2008 Winter
Simulation Conference (2008), pp. 387–395.

[16] TRAIRATPHISAN, P., MIZERA, A., PANG, J., TANTAR,
A.-A., AND SAUTER, T. optPBN: An optimisation toolbox
for probabilistic Boolean networks. PLOS ONE 9, 7 (2014),
e98001.

[17] TRAIRATPHISAN, P., MIZERA, A., PANG, J., TANTAR,
A.-A., SCHNEIDER, J., AND SAUTER, T. Recent
development and biomedical applications of probabilistic
Boolean networks. Cell Communication and Signaling 11
(2013), 46.

http://satoss.uni.lu/software/ASSA-PBN/
http://arxiv.org/abs/1501.01779

	Introduction
	Preliminaries
	Finite discrete-time Markov chains
	Probabilistic Boolean network

	Steady-state Analysis of PBNs
	The two-state Markov chain approach
	The Skart method

	Parallel Steady-state Analysis of Large PBNs
	The Gelman & Rubin method
	Parallelising the two-state Markov chain approach
	Parallelising the Skart method

	Evaluation
	Speed-up for checking a single property
	Speed-up for checking multiple properties

	Conclusion and Future Work
	References

