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Abstract. Computational biomodelers adopt either of the following ap-
proaches: build rich, as complete as possible models in an effort to obtain
very realistic models, or on the contrary, build as simple as possible mod-
els focusing only on the core aspects of the process, in an effort to obtain
a model that is easier to analyze, fit, and validate. When the latter strat-
egy is adopted, the aspects that are left outside the models are very often
up to the subjective options of the modeler. We discuss in this paper a
heuristic method to simplify an already fit model in such a way that the
numerical fit to the experimental data is not lost. We focus in particular
on eliminating some of the variables of the model and the reactions they
take part in, while also modifying some of the remaining reactions. We
illustrate the method on a computational model for the eukaryotic heat
shock response. We also discuss the limitations of this method.
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1 Introduction

When designing a new molecular model for some biological process or network,
the choice one has to make early on in the modeling process is whether to strive
for a rich model, capturing many details, or on the contrary, to focus on a more
abstract model, capturing only a few, main actors of interest. The choice is not
obvious and depends heavily on the goals of the modeling project. On one hand,
a rich model has the potential of being more realistic but it leads to a more
complex mathematical model that may be difficult to fit to experimental data,
to analyze, and ultimately may be less apt to answer to biological queries. On
the other hand, a less finely grained molecular model leads to a smaller mathe-
matical model (in terms of the number of variables and equations) that may be
easier to work with, but it pays a price in ignoring a number of details. A main
difficulty in choosing between a rich and a simplified molecular model is that the
potential cost of starting off with a rich model only becomes transparent at a
latter stage, in the process of analyzing the corresponding mathematical model.
Moreover, in the case of choosing a simplified model, the selection of the aspects
to be ignored in the model is left up to the subjective choice of the modeler. We



discuss in this paper an intermediate approach where we start with a (potentially
large, rich) model that has already been fit and validated against experimental
data and we aim to simplify it in such a way that its numerical behavior remains
largely unchanged. In this way, the simplified model is the result of a system-
atic, numerical analysis of the larger model that preserves its validation. We
illustrate the approach on a computational model for the eukaryotic heat shock
response and discuss the biological relevance of the simplifications we operate
on the model. We also discuss the strong dependency of this approach on the
numerical setup of the model; we show that our approach in the case of the heat
shock response model is robust to some changes in the numerical values of the
parameters, but it is sensitive to others.

2 The heat shock response model

The heat shock response is a well-conserved defence mechanism across all eukary-
otic cells that enables them to survive under conditions of elevated temperatures.
When exposed to heat shock, proteins inside cells tend to misfold. In turn, as an
effect of their hydrophobic core being exposed, misfolded proteins form bigger
and bigger aggregates with disastrous consequences for the cell, see [1]. In order
to survive, the cell has to immediately react by increasing the level of chaperons
(proteins that assist other proteins in the process of folding or refolding). Once
the heat shock is removed, the defence mechanism is turned off and the cell
eventually re-establishes the original level of chaperons, see [7, 11, 17].

The heat shock response has been intensively investigated in recent years
for at least three main reasons. First, as a well-conserved mechanism in all eu-
karyotes, it is considered a promising candidate for investigating the engineering
principles of gene regulatory networks, see [3, 4, 8, 18]. Second, heat shock pro-
teins (hsp) act as main components in a large number of cellular processes such
as signaling, regulation and inflammation, see [6, 16]. Moreover, their contribu-
tion to the resilience of cancer cells makes them an attractive target for cancer
treatment, see [2, 9, 10, 19].

We consider in this paper the molecular model proposed in [14] for the eu-
karyotic heat shock response. This model consists of only the minimum num-
ber of components that any regulatory network must contain: an activation
mechanism and a feedback mechanism. Moreover, the model consists of only
well-documented reactions, without using any hypothetical, unknown cellular
mechanism. The control over the cellular defence mechanism against protein
misfolding is implemented through the regulation of the transactivation of the
hsp-encoding gene. The transcription of the gene is activated by heat shock fac-
tors (hsf) which trimerize (the trimerization includes a transient dimerization
phase) and in this form bind to the heat shock element (hse), which is the pro-
moter of the hsp-encoding gene. Once the hsf trimer is bound to the specific
DNA sequence, the gene is transactivated and the transcription and translation
take place. As a result, new hsp molecules are eventually synthesized. When
the level of hsp is high enough, the synthesis is switched off by the following



mechanism: hsp bind to free hsf as well as break the hsf trimers (both free and
those bound to DNA). This turns off DNA transcription and blocks the forming
of new hsf trimers. The whole defense mechanism is turned on again when, as
a result of raised temperature, the proteins (prot) in the cell begin misfolding
again. To counteract, the heat shock proteins become involved in refolding them
and they free the hsf, which in turn trimerize and activate the synthesis of hsp,
etc. What drives the heat shock response is the race to keep under control the
level of misfolded proteins, in such a way that they are not able to accumulate,
form aggregates, and eventually lead to cell death. The model consists of the
molecular reactions in Table 1.

Table 1. The reactions of the heat shock response model of [14].

(i) 2 hsf ⇆ hsf2 (x) prot → mfp

(ii) hsf + hsf2 ⇆ hsf3 (xi) hsp+ mfp ⇆ hsp:mfp

(iii) hsf3 + hse ⇆ hsf3: hse (xii) hsp:mfp → hsp + prot

(iv) hsf3: hse → hsf3: hse +mhsp (xiii) hsf → mhsf

(v) hsp + hsf ⇆ hsp: hsf (xiv) hsp → mhsp

(vi) hsp + hsf2 → hsp: hsf + hsf (xv) hsp+ mhsf ⇆ hsp:mhsf

(vii) hsp + hsf3 → hsp: hsf +2 hsf (xvi) hsp:mhsf → hsp+ hsf

(viii) hsp + hsf3: hse → hsp: hsf +2 hsf + hse (xvii) hsp+ mhsp ⇆ hsp:mhsp

(ix) hsp → ∅ (xviii) hsp:mhsp → 2 hsp

When designing this molecular model, several criteria were followed, see [14],
including that only well-documented reactions should be included and that the
model should explicitly consider the temperature-induced protein misfolding as
the trigger of the response. The model was also designed in such a way that
is consistent with itself and with the kinetic principles of biochemistry. E.g.,
although hsf dimers are not experimentally detectable, they should be included
in the model to account as a transient step in the formation of hsf trimers. Also,
since hsp and hsf are themselves proteins, they should be subject to temperature-
induced misfolding just like the regular proteins prot. Moreover, the refolding of
mhsf and mhsp is controlled by the same kinetic constants as the refolding of
mfp. The proper folding of newly synthesized hsp is assisted by chaperons as
in the case of most proteins, see [1]. The degradation of hsf, prot, and mfp was
on the other hand not included in the model so that intricate compensating
mechanisms of protein synthesis could be ignored, see [14].

The mathematical model associated with the molecular model in Table 1 is
in terms of ordinary differential equations and it is obtained by assuming for
all reactions the law of mass-action. The reasons for this choice is so that the
explicit contribution of each reaction to the overall behavior could be followed.
Let us denote the reactants occurring in the model according to the convention in
Table 2(a). We use κ ∈ R

25
+ to denote the vector with all reaction rate constants

as its components, see Table 2(b): κ = (k+

1 , k−

1 , k+

2 , k−

2 , k+

3 , k−

3 , k4, k
+

5 , k−

5 , k6,
k7, k8, k9, φ(T ), k+

11, k
−

11, k12, φ(T ), φ(T ), k+
11, k

−

11, k12, k
+
11, k

−

11, k12).



The corresponding mathematical model consists of the following differential
equations:

dX1/dt = −k+
2 X1 X2 + k−

2 X3 − k+
5 X1 X7 + k−

5 X9 + 2 k8 X4 X7 + k6 X2 X7

−ϕ(T )X1 + k14 X10 + 2 k7 X3 X7 − 2 k+
1 X2

1 + 2 k−

1 X2 (1)

dX2/dt = −k+
2 X1 X2 + k+

2 X3 − k6 X2 X7 + k+
1 X2

1 − k−

1 X2 (2)

dX3/dt = −k+
3 X3 X6 + k+

2 X1 X2 − k−

2 X3 + k−

3 X4 − k7 X3 X7 (3)

dX4/dt = k+
3 X3 X6 − k−

3 X4 − k8 X4 X7 (4)

dX5/dt = ϕ(T )X1 − k+
13 X5 X7 + k−

13 X10 (5)

dX6/dt = −k+
3 X3 X6 + k−

3 X4 + k8 X4 X7 (6)

dX7/dt = −k+
5 X1 X7 + k−

5 X9 − k+
11 X7 X14 + k−

11 X12 − k8 X4 X7 − k6 X2 X7

−k+
13 X5 X7 + (k−

13 + k14) X10 − (ϕ(T ) + k9)X7 − k+
15 X7 X8

−k7 X3 X7 + (k−

15 + 2 k16)X11 + k12 X12 (7)

dX8/dt = k4 X4 + ϕ(T )X7 − k+
15 X7 X8 + k−

15 X11 (8)

dX9/dt = k+
5 X1 X7 − k−

5 X9 + k8 X4 X7 + k6 X2 X7 + k7 X3 X7 (9)

dX10/dt = k+
13 X5 X7 − (k−

13 + k14) X10 (10)

dX11/dt = k+
15 X7 X8 − (k−

15 + k16) X11 (11)

dX12/dt = k+
11 X7 X14 − (k−

11 + k12)X12 (12)

dX13/dt = k12 X12 − ϕ(T )X13 (13)

dX14/dt = −k+
11 X7 X14 + k−

11 X12 + ϕ(T )X13 (14)

The rate coefficient of protein misfolding ϕ(T ) with respect to temperature T
has been investigated experimentally in [12, 13], and a mathematical expression
describing the relation has been proposed in [11]. After adapting this formula in
[11] to the time unit of our mathematical model (second), we obtain the following
misfolding rate coefficient:

ϕ(T ) = (1 −
0.4

eT−37
) · 1.4T−37

· 1.45 · 10−5 s−1, (15)

where T is the numerical value of the temperature of the environment in Celsius
degrees. The formula is valid for 37 ≤ T ≤ 45.

For the numerical fit of the model, data of [7] on DNA binding at 42◦C was
used to relate it to hsf3: hse. Moreover, the initial values of the model were sought
so that they give a steady state of the model at 37◦C. This latter restriction was
imposed since the heat shock response is absent at 37◦C. Once suitable numerical
values for the parameters were found, the model was subjected to a number of
other validation tests. For a detailed discussion on the fit and the validation of
the model we refer to [14] and [15]. The final numerical setup of the model is
shown in Tables 2(a) and 2(b).

3 Simplifying the model

We discuss in this section a series of numerical observations leading to several
simplifications we can operate on our model, without changing its numerical



Table 2. (a) The list of variables in the mathematical model, their initial concentration
values and their concentration values in one of the steady states of the system, for
T = 42. Note that the initial state of the model is a steady state for T = 37. All
concentrations are in #

cell
, where # denotes the number of molecules. The values should

be interpreted as an average of a population of cells. [14, 15]; (b) The numerical values
of parameters for the fitted model [14, 15].

Metabolite Variable Initial conc.

hsf X1 0.67
hsf2 X2 8.73 · 10−4

hsf3 X3 1.22 · 10−4

hsf3: hse X4 3
hse X5 30
hsp X6 766.92
hsp:hsf X7 1403.26
hsp:mfp X8 71.65
prot X9 1.14915 · 108

mfp X10 517.32
mhsf X11 3.01 · 10−6

mhsp X12 0.02
hsp:mhsf X13 4.17 · 10−7

hsp:mhsp X14 2.24 · 10−3

Constant Reaction Nr. value Unit

k+
1 (i), forward 3.49 cell

#·s

k−

1 (i), backward 0.19 s−1

k+
2 (ii), forward 1.07 cell

#·s

k−

2 (ii), backward 10−9 s−1

k+
3 (iii), forward 0.17 cell

#·s

k−

3 (iii), backward 1.21 · 10−6 s−1

k4 (iv) 8.3 · 10−3 s−1

k+
5 (v), forward 9.74 cell

#·s

k−

5 (v), backward 3.56 s−1

k6 (vi) 2.33 cell

#·s

k7 (vii) 4.31 · 10−5 cell

#·s

k8 (viii) 2.73 · 10−7 cell

#·s

k9 (ix) 3.2 · 10−5 s−1

k+
11 (xi), forward 3.32 · 10−3 cell

#·s

k−

11 (xi), backward 4.44 s−1

k12 (xii) 13.94 s−1

(a) (b)

behavior, in particular without losing its experimental fit and validation. We
then discuss the extent to which these simplifications are dependent on the
numerical values of our parameters.

The first observation is that the variables mhsf and hsp: mhsf both assume
negligible numerical values throughout numerical simulations for temperatures
from 37◦C to 45◦C. Even when their initial values are increased to higher values,
e.g. to 100 each, their numerical convergence towards their steady state values is
very fast. Moreover, if the increase in the initial values of mhsf and hsp: mhsf is so
that the total amount of hsf and of hsp remain unchanged, then the experimental
fit and validation of the model remain largely unchanged. The reason for this
behavior is that the reactions having mhsf as a product, i.e. reactions (xiii)
and the reverse reaction (xv) have a negligible flux rate, primarily due to the
small kinetic rate constant of the protein misfolding law, see (15). Consequently,
the reaction producing hsp: mhsf, i.e. reaction (xv), also has negligible flux rate.
On the other hand, the reactions having mhsf and hsp: mhsf as reactants reach
much higher flux rates because of larger kinetic constants and high levels of
hsp, a co-reactant in reaction (xv). We decide then to eliminate both mhsf and
hsp: mhsf from the model, along with the reactions where they take part in, i.e.,
reactions (xiii), (xv), and (xvi).



Note now that the situation is somewhat similar for hsf, hsf2 and hsf3: they
all assume small (albeit not negligible) values throughout numerical simulations.
There is however a crucial difference which points to their significance for the
model: when increasing the initial level of hsf3, even in such a way that the total
level of hsf is unchanged, the fit to the DNA binding experimental data of [7] is
drastically changed.

The observation that the flux of the hsf misfolding reaction is negligible was
the main rationale behind eliminating mhsf and hsp: mhsf from the model. This
leads to the observation that the flux of the hsp misfolding reaction, leading to
the formation of mhsp is also negligible. The case of mhsp is however different
because it is also the end product of reaction (iv). Moreover, mhsp plays a central
role in our model, being the source of all induced hsp through reactions (iv), (xvii)
and (xviii). The numerical values assumed by mhsp throughout simulations for
temperatures between 37◦C and 45◦C are small, but not negligible. They are
however negligible relative to the total level of hsp. Moreover, the numerical
convergence of mhsp towards its steady state value is very fast, even in the
case when the initial level of mhsp is increased several folds. This points to the
observation that mhsp plays the role of a transient state towards hsp, having a
very high turnover rate. As such, it could be eliminated from the model if only
mhsp were replaced in reaction (iv) with hsp. Consequently, we eliminate mhsp

from the model, along with reactions (xiv), (xvii) and (xviii). At the same time,
we replace reaction (iv) with

(iv′) hsf3: hse → hsf3: hse+ hsp

The simplified molecular model has only 10 variables and 12 reactions, compared
to 14 variables and 18 reactions in the initial model. The numerical simulations
of the simplified model for temperatures between 37◦C and 45◦C are indistin-
guishable from those of the initial model.

Regarding the biological relevance, the simplified model differs from the ini-
tial model in ignoring the misfolded form of hsf and hsp, as well as ignoring
that newly synthesized proteins often need chaperons to form their native fold.
Excluding the misfolding of hsf and hsp is reasonable because the numerical
levels of misfolded hsf and hsp are negligible with respect to the level of mfp

and thus, their competition for the chaperon resources of the cell is insignificant.
Excluding the role of chaperons in assisting the formation of the native fold of
newly synthesized proteins is justified by the high speed of the reaction, relative
to the speed of the other reactions in our model. As such, the complex chaperon
- newly synthesized protein is a very fast transient stage in the model and can
be ignored.

It should be noted that the simplifications we have made on the model are
based on numerical arguments and so, in principle, they are dependant on the
numerical values of the parameters of the model. To test the robustness of the
model reductions against changes in the numerical setup of the model, we per-
form several tests. In each test, we either change the initial values of some vari-
ables, or we change the values of some kinetic rate constants. For each new



numerical setup we set the initial values of all variables to their steady state val-
ues at 37◦C, similarly as done in [15] (to underline that the heat shock response
is missing at 37◦C). Finally, we compare the numerical behavior of the model
with that of its simplified version obtained as above, for temperatures between
37◦C and 45◦C.

We first consider a numerical setup where the total level of hsf is increased
by 1000 to a value of around 2400. In a second test, we increase both the total
level of hsf by 1000 and the total level of hse by 100. In both tests, the numerical
behaviors of the models and those of their simplified versions are undistinguish-
able. In a third test, we increase the total level of hsp by 1000. When estimating
the steady state values of the model at 37◦C, we note that they are identical with
those of the initial model, summarized in Table 2(a). This raises an intriguing
problem of independent interest: is the steady state of the model independent of
the initial total level of hsp?

A test where the complex chaperon–misfolded protein is made more unstable
by increasing the kinetic rate constant k−

11 to 25 yields a numerically equivalent
simplified model. In a final test, we decrease the value of the kinetic rate constant
k12 of the refolding reaction (xii) from almost 14 to 1. In this way, we induce
a great increase in the values of misfolded proteins of all types to test whether
eliminating mhsf and mhsp is still possible in this context. It turns out that
eliminating mhsf and hsp: mhsf is possible and yields a numerically equivalent
simplified model. On the other hand, eliminating mhsp and hsp: mhsp changes
the behavior of the model pronouncedly. E.g., mfp peaks at a lower value showing
that the simplified model, where hsp is not subject to misfolding, is more efficient
in fighting off the accumulation of mfp. A main reason why the elimination of
misfolded hsp fails is because, unlike in the previous tests, the change in the
refolding rate is not accounted for when setting the initial values of the variables
to the steady state values at 37◦C, since the refolding reaction has a negligible
flux at that temperature. At 42◦C however, protein refolding, in particular that
of mhsp, becomes very important and removing it from the model makes a big
difference.

4 Discussion

Having simple biomodels is very important for being able to analyze their math-
ematical properties and for their integration into larger models. In the case of the
heat shock response, adding the phosphorylation of hsf in all of its homo- and
hetero-polymers, along with its influence on gene transcription leads to a combi-
natorial explosion in the number of variables of the model. As such, decreasing
the number of variables, in particular the elimination of mhsf and hsp: mhsf

reduces the difficulty of the problem.
Several aspects contribute to the model simplification succeeding in a given

numerical setup. The most important is that we eliminate variables that have a
fast numerical convergence to their steady state values. This procedure is often
referred to as a time-separation principle. A factor here is the flux rate of the



reactions producing certain variables of the model. If the total flux contributing
to producing a given variable remains very small, then that variable will converge
fast to its steady state value and it can be eliminated from the model. There are
at least two reasons why a flux rate can be small: a small kinetic constant, or
much higher kinetic constant in reactions using some of the same reactants. In
the context of the heat shock response model, one more factor plays an important
role: the condition that the initial values of all variables are a steady state of
the model at 37◦C. It turns out that the model has an interesting property,
formulated as a theorem in the appendix: the steady state values of most of
its variables are independent of the temperature. In this way, even at higher
temperature, several of the variables of the model start from their steady state
values and witness only minor numerical disturbances before returning to the
same values.

The model simplification discussed in this paper is dependant on the nu-
merical setup of the model: on the initial values of the variables and on the
numerical values of the kinetic constants. Even if the initial and the simplified
models appear to be numerically equivalent in one particular setup, they may
be very different in other setups. To evaluate the robustness of the model sim-
plifications, one should compare the two models in several numerical setups,
spanning the domain of expected values for the model parameters. Some of the
simplifications may turn out to be robust against numerical variations, as it is
the case with eliminating hsf and mhsf in the heat shock model, while others
may be valid only in special numerical setups.

The main difficulty in designing a simple biomodel is that the decision to
exclude variables and reactions from the model is most often done at the early
stage of considering the molecular basis of the model. At that stage however it is
crucial to ensure that all aspects of potential interest are included in the model.
Appreciating the potentially insignificant contribution of some of the aspects
is very difficult at that stage, without having first a well-validated numerical
setup for the model. The approach we have discussed in this paper takes an
intermediate view: one may start with a rich model that is first numerically fit
and validated against experimental data and then it is subjected to a numerical
analysis to identify the components that can be eliminated without changing
the numerical behavior of the model. In this way, the result is a model that
remains faithful to the biological data and soundly identifies those aspects of the
biological reality that have insignificant contribution to the overall behavior.
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5 Appendix

The next theorem formulates an interesting property of the heat shock response
model. We formulate the property for the simplified model of the heat shock
response.

Theorem 1. Let c1 = (c1
1, c

1
2, c

1
3, . . . , c

1
10) be a steady state of the system at

temperature T1 and c2 = (c2
1, c

2
2, c

2
3, . . . , c

2
10) a steady state at temperature T2,

where c1
i

and c2
i

for i = 1, . . . , 10 are steady state concentrations of metabolite

Xi at temperatures T1 and T2 respectively. Then c = (c1
1, . . . , c

1
7, c

2
8, c

2
9, c

2
10) is

a steady state of the system at temperature T2.

Proof. Let c1 and c2 be steady states at temperatures T1 and T2, respectively.
Further, let us split the system of differential equations (1)-(10) into two sub-
systems: one containing equations (1)-(7) and the other consisting of equations
(8)-(10). Equation (6) is the only one in the first subsystem with right-hand
side containing functions defined by the second subsystem, i.e. X8(t), X9(t) and
X10(t), and can be by (9) rewritten in the following form:

dX6/dt = k4 X4 − k+

5 X1 X6 + k−

5 X7 − k8 X4 X6 − k6 X2 X6

−k7 X3 X6 − k9 X6 − dX8/dt. (16)

When considering the steady states, the left-hand sides of (1)-(10) are set to 0
and in consequence equation (16) can be written as

0 = k4 X4 − k+
5 X1 X6 + k−

5 X7 − k8 X4 X6 − k6 X2 X6 − k7 X3 X6 − k9 X6.

This algebraic relation does not contain any of functions X8(t), X9(t) or X10(t)
and hence the steady state algebraic relations of subsystem (1)-(7) become inde-
pendent of them. As a consequence, the relations do not contain temperature as
a parameter and are the same both for T1 and T2. Since the same equations have
the same solutions, it follows that c = (c1

1, . . . , c
1
7, c

2
8, c

2
9, c

2
10) is a steady state of

the whole system at temperature T2.

The biological significance of Theorem 1 deserves some comments. Even
though the cell approaches similar steady state levels regardless of the tem-
perature values, the time it takes to arrive in a certain neighborhood of the
steady state is longer for higher temperature values. Even if one starts in the
steady state, the effort required of the cell is higher for higher temperatures: the
fluxes of all reactions are higher for higher temperatures. The intuitive reason
for this is that the misfolding rate is vastly accelerated for higher temperatures,
eventually accelerating all other reactions.


