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Abstract Boolean networks are an important formalism for modelling biological systems and have attracted

much attention in recent years. An important challenge in Boolean networks is to exhaustively find attractors,

which represent steady states of a biological network. In this paper, we propose a new approach to improve the

efficiency of BDD-based attractor detection. Our approach includes a monolithic algorithm for small networks,

an enumerative strategy to deal with large networks, a method to accelerate attractor detection based on

an analysis of the network structure, and two heuristics on ordering BDD variables. We demonstrate the

performance of our approach on a number of examples and on a realistic model of apoptosis in hepatocytes. We

compare it with one existing technique in the literature.

Keywords Boolean networks, systems biology, binary decision diagram, attractor, verification algorithms

Citation Yuan Q, Qu H, Pang J, et al. Improving BDD-based Attractor Detection for Synchronous Boolean

Networks. Sci China Inf Sci, 2016, 59(1): xxxxxx, doi: xxxxxxxxxxxxxx

1 Introduction

A gene regulatory network (GRN) is a collection of genes, proteins and other regulatory molecules that

interact with each other indirectly, govern the expression of genes and ultimately regulate the cellular

behaviours. Acquiring insights into the dynamics of GRNs has attracted much attention of researchers.

In particular, attractors of a GRN are of special interest. They are hypothesised to characterise cellular

phenotypes [12] or to correspond to functional cellular states such as proliferation, apoptosis, or differ-

entiation [10]. In this paper, we focus on detecting attractors for GRNs modelled with Boolean networks

(BNs) [12,21].

In the BN framework, algorithms for detecting attractors have been extensively studied in the literature.

One important type of algorithms among them is based on the Binary Decision Diagram (BDD). In this

paper, we concentrate on improving the BDD-based attractor detection algorithm for synchronous BNs

demonstrated in [8]. The algorithm works well for small BNs, but becomes inefficient for large BNs.

We improve this algorithm with regard to three aspects. Firstly, we propose to use different attractor

detection strategies for networks of different sizes. For small BNs, we propose to use a monolithic
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algorithm which searches for attractors starting from the whole state space, instead of one initial state,

in order to reduce the time for attractor detection. For large BNs, we improve the algorithm in [8] by

computing the predecessor states of each individual state in a detected attractor, instead of computing

the predecessors of the whole attractor, when pruning the searching space for the subsequent detection

of the remaining attractors. Our second contribution lies in accelerating the attractor detection of large

networks. We design a decomposition algorithm to reduce the state space to be searched. Lastly, we

propose two heuristics on ordering BDD variables based on the structure of BNs to further improve the

attractor detection algorithm. Experiments show that our proposed algorithms can effectively reduce the

time cost for BDD-based attractor detection and outputform the existing tool GenYsis [8] for more than

100 times in some cases.

Structure of the paper. The rest of the paper is organised as follows. We discuss the related work

in Section 2. After presenting preliminaries on Boolean networks and BDD in Section 3, we introduce

our proposed attractor detection algorithms in Section 4 and two methods for accelerating the attractor

detection algorithms in Section 5. We develop two BDD variables order heuristics in Section 6 and present

evaluation results in Section 7. We discuss some future work in Section 9.

2 Related Work

In this section we review a number of different approaches for attractor detection in the framework of

BNs. The simplest way to detect attractors is to enumerate all the possible states and to run simulation

from each one until an attractor is reached [24]. This method ensures that all the attractors are detected

but it has exponential time complexity and its applicability is highly restricted by the network size.

Another approach is to take a sample from the whole state space and simulate from it until an attractor

is found [16]. However, this technique cannot guarantee finding all the attractors of a BN. Later, Irons

proposed a method by analysing partial states involving parts of the nodes [11]. This method can reduce

the computational complexity of attractor detection from exponential time to polynomial time; however,

it is highly dependent on the topology of the underlying network and the network size manageable by

this method is restricted to 50.

Next, the efficiency and scalability of attractor detection techniques are further improved with the

integration of two techniques. This first technique is based on Binary Decision Diagram (BDD), a compact

data structure for representing Boolean functions. Algorithms proposed in [6–8] explore BDDs to encode

the Boolean functions in BNs, use BDD operations to capture the dynamics of the networks, and to build

their corresponding transition systems. The efficient operations of BDDs are used to compute the forward

and backward reachable states. Attractor detection is then reduced to finding self-loops or simple cycles in

the transition systems, which highly relies on the computation of forward and backward reachable states.

Garg et al. proposed a method for detecting attractors for both synchronous and asynchronous BNs [8].

Later in [7], the method was further improved for attractor detection of asynchronous BNs. In a recent

work [27], Zheng et al. developed an algorithm based on reduced-order BDD (ROBDD) data structure,

which further speeds up the computation time of attractor detection. These BDD-based solutions only

work for GRNs of a hundred of nodes and suffer from the infamous state explosion problem, as the size

of the BDD depends both on the regulatory functions and the number of nodes in the GRNs.

The other technique represents attractor detection in BNs as a satisfiability (SAT) problem [5]. The

main idea is inspired by SAT-based bounded model checking: the transition relation of the GRN is

unfolded into a bounded number of steps in order to construct a propositional formula which encodes

attractors and which is then solved by a SAT solver. In every unfolding step a new variable is required to

represent a state of a node in the GRN. It is clear that the efficiency of these algorithms largely depends

on the number of unfolding steps required and the number of nodes in the GRN.

Recently, decomposition based algorithms have been developed for dealing with large BNs. Zhao et

at. proposed an aggregation algorithm to deal with large BNs. Their idea is to decompose a large BN

into several sub-networks and detect attractors of each sub-network [26]. By merging the attractors
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of all the sub-networks, their algorithm can reveal the attractors of the original BN. In [9], Guo et al.

developed an SCC (strongly connected component)-based decomposition method. Their method divides

a BN into several sub-networks according to the SCCs in the BN and assigns each sub-network a credit.

The attractor detection in each sub-network is performed one by one according to their credits. Unlike

the algorithm in [26], when detecting attractors of a sub-network, the method of Guo et al. considers the

attractor information of other sub-networks whose credits are smaller. In this way, it reveals the attractors

of the original BN by detecting attractors of the last sub-network. In our work, we are inspired by the

ideas in [9, 26] to explore the structure of large BNs to accelerate the attractor detection process. Our

main idea is to use all attractor information of small sub-networks, to which efficient attractor detection

algorithms for small BNs can be applied, to reduce the set of initial states of the original BN and thus

speed up the attractor detection of the original but large network.

3 Preliminaries

3.1 Boolean networks

Boolean networks (BNs) are a class of discrete dynamical systems in which interactions over a set of

Boolean variables are considered. They were first introduced by Stuart Kauffman in 1969 as a class

of simple models for the analysis of the dynamical properties of gene regulatory networks [13], where

projection of gene states to an ON/OFF pattern of binary states was considered. Formally, a Boolean

Network G(V,f) is defined as a set of binary-valued variables, also referred to as nodes or genes, V =

{x1, x2, . . . , xn} and a vector of Boolean functions f = (f1, f2, . . . , fn). The time is discrete and in fact

the consecutive time points correspond to switching events of states of the genes. At each time point

t (t = 0, 1, . . .), the state of the network is defined by the vector x(t) = (x1(t), x2(t), . . . , xn(t)), where

xi(t) is the value of variable xi at time t, i.e., xi(t) ∈ {0, 1} (i = 1, 2, . . . , n).

For each variable xi, there exists a predictor set (parent nodes set) {xi1 , xi2 , . . . , xik(i)
}, and a Boolean

predictor function (or simply predictor) fi being the i-th element of f that determines the value of xi
at the next time point, i.e., xi(t + 1) = fi(xi1(t), xi2(t), . . . , xik(i)

(t)), where 1 6 i1 < i2 < · · · < ik(i) 6
n. Since the predictor functions of f are time-homogenous, the notation can be simplified by writing

fi(xi1 , xi2 , . . . , xik(i)
). A node xij with 1 6 j 6 k(i) in the parent nodes set is called a parent node of

xi and xi is called a child node of xij . The parent node set can be further divided into two sets, i.e.,

the activator set which contains genes that can activate xi and the inhibitor set which contains genes

that can inhibit xi. In general, the Boolean functions can be formed by combinations of any logical

operators. However, in the context of GRNs usually the set of possible Boolean functions is restricted

(see e.g., [7, 20]). Here the following three types of Boolean functions are considered in GenYsis [8]:

1) xi(t+1) =
(∨m

j=1 x
a
j (t)

)
∧¬
(∨n

j=1 x
in
j (t)

)
, 2) xi(t+1) =

(∨m
j=1 x

a
j (t)

)
, 3) xi(t+1) = ¬

(∨n
j=1 x

in
j (t)

)
,

where xj ∈ {0, 1}; xam and xinn are the set of activators and inhibitors of xi; ∧, ∨, and ¬ represent logical

and, or, and negation, respectively. The first function is used when there are both activators and

inhibitors for a gene xi. The second function is used when gene xi only has activators as its parent nodes

and the third function is used in the case where gene xi only has inhibitors as its parent nodes. The BNs

are divided into two types based on the time evolution of its states, i.e., synchronous and asynchronous.

In synchronous BNs, the values of all the variables are updated simultaneously; while in asynchronous

BNs, one variable is updated at a time. In this paper, we focus on synchronous BNs. The vector f of

predictor functions determines the time evolution of the state of a synchronous BN, i.e.,

x(t+ 1) = f(x(t)). (1)

Thus, the BN’s dynamics is fully deterministic. The only potential uncertainty lies in the selection of the

initial starting state of the network.

Starting from an initial state, after a finite number of steps, a Boolean network will reach an attractor :

either a fixed state or a set of states through which it will repeatedly cycle forever. Each fixed state is
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Figure 1 A BDD representing f = (a or c) and b. Left: full BDD; middle: reduced BDD; right: ordered reduced BDD.

referred to as a singleton attractor and each cyclicly revisited set of states is called a cyclic attractor.

The number of states in a cyclic attractor is the cycle length of that attractor. The attractor structure

of a BN is given by all its singleton and cyclic attractors together with their cycle lengths. The states

constituting an attractor are called attractor states. The remaining states are called transient and are

visited at most once on any network trajectory. An attractor and all the transient states that lead into it

constitute its basin of attraction. In consequence, all basins of attraction of a BN form a partition of its

state space. The attractor structure of a Boolean network characterises its long-run behaviour [23], and is

of particular interest as, for instance, attractors are hypothesised to characterise cellular phenotypes [12].

The density of a BN is measured with its parent nodes number. For a BN G, its density is defined as

D(G) = 1
n

∑n
i=1 k(i), where k(i) is the number of parent nodes of the i-th predictor function.

3.2 Binary Decision Diagram

A Binary Decision Diagram (BDD) is a directed acyclic graph (DAG) used to represent a Boolean function.

It was originally introduced by Lee in [14] and Akers in [1]. It consists of a root node, (intermediate)

decision nodes, and two terminal nodes, i.e., 0-terminal and 1-terminal. Each variable of a Boolean

function is represented as a decision node in the BDD. Each decision node contains two outgoing edges,

representing the two possible evaluations 0 and 1 of the variable. A path from the root node to the

1-terminal represents variable values that make the Boolean function evaluate to true; while a path from

the root node to the 0-terminal represents variable values that make the Boolean function take value

false. For example, a BDD that represents the Boolean function f = (a or c) and b is shown in Figure 1

(left). In this figure, root node and terminal nodes are represented with squares while decision nodes are

represented with circles. A solid arrow starting from a decision node represents the assignment of value

1 to that node while a dashed arrow starting from a decision node represents the assignment of value 0

for that node. Each path from the root node to one of the terminal nodes represents an assignment of

the variables, e.g., the path f −→ a
1−→ b

1−→ c
1−→ 1 represents the assignment a = 1, b = 1, c = 1 for

which the Boolean function takes the value true. If the value of a variable in a certain evaluation does

not affect the value of the Boolean function, the variable can be simply removed from the path. After

removing all unnecessary variables from the above BDD, we get a reduced BDD, as shown in Figure 1

(middle). The number of decision nodes in the BDD is reduced from 7 to 4. There are two paths

leading to the 1-terminal node. The first path f −→ a
1−→ b

1−→ 1 represents two possible assignments, i.e.,

a = 1, b = 1, c = 1 or a = 1, b = 1, c = 0; and the second path f −→ a
0−→ b

1−→ c
1−→ 1 represents the

assignment a = 0, b = 1, c = 1.

Different orders of BDD variables will result in different number of decision nodes in the reduced BDD

representation. For example, if we represent the above Boolean function in the order of a −→ c −→ b, as

shown in Figure 1 (right), we can reduce the number of decision nodes from 4 to 3. This reduction of

decision nodes directly affects the size of the BDD representation and the time cost of BDD operations. To

find an optimal variable ordering for constructing a minimum-size BDD is known to be an NP-complete

problem [2]. In consequence, using heuristics to construct a near optimal reduced ordered BDD is crucial

for achieving good performance in BDD-based operations.
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3.3 Encoding Boolean networks in BDDs

Boolean networks can be easily modelled as transition systems, which then can be encoded in BDDs. A

transition system TS is a tuple 〈S, S0, T 〉 where 1) S is a finite set of states, 2) S0 ⊆ S is the set of initial

states, and 3) T ⊆ S × S is the transition relation, which specifies how the system evolves in the state

space. In a transition (s1, s2) ∈ T , state s1 is called the source state and s2 is the target state.

Given a Boolean network G(V,f), a transition system TS = 〈S, S0, T 〉 can be generated as follows.

1) Each state of the network is a state in S. Thus, S contains 2n states. 2) Each state of the network

is an initial state in TS. Hence, in the transition system we have S0 = S. 3) Each time evolution of

the states of the network is a transition in T . That is, Equation (1) can be translated into a transition

(s1, s2) ∈ T , where s1 = x(t) and s2 = x(t + 1). As the network is deterministic, each state in TS has

only one outgoing transition and one successor state.

A Boolean network G(V,f) can be encoded in BDDs in order to be stored efficiently for further

processing. Each variable in V can be represented by a binary BDD variable. By slightly abusing the

notation, we use V to denote the set of BDD variables. In order to encode the transition relation, another

set V ′ of BDD variables, which is a copy of V , is needed, so that V encodes the source states and V ′

encodes the target states. Hence, the transition relation can be seen as a function T : V → V ′. Our

attractor detection algorithms also need two functions as the basis. 1) Image(X,T ) = {s ∈ S | ∃s′ ∈
X such that (s′, s) ∈ T} returns the set of target states that can be reached from a state in X ⊆ S

following a transition in T . 2) Preimage(Y, T ) = {s ∈ S | ∃s′ ∈ Y such that (s, s′) ∈ T} returns the set

of source states that can reach a state in Y ⊆ S following a transition in T .

4 Attractor Detection Algorithms

We propose in Section 4.1 a monolithic attractor detection algorithm (Algorithm 1) for dealing with

small networks and an enumerative search algorithm (Algorithm 5) for large networks in Section 4.2.

Algorithms 2 to 4 introduced in Section 4.2 are used by Algorithm 5. Based on Algorithms 1 and 5, we

further propose a decomposition approach to accelerate the detection process in Section 5.

4.1 Monolithic attractor detection algorithm

The first algorithm is called monolithic algorithm. The idea is to apply the transition relation to a set

of states iteratively. The set shrinks after each iteration and the process terminates when the size of the

set cannot be reduced any more. The final set is a fixpoint, and includes all attractors in the initial set.

If the initial set contains all states in the network, then all attractors in the network are discovered.

Algorithm 1 Monolithic(Z): Monolithic attractor detection on the set of Z of states

1: X ⇐ Z; Y ⇐ ∅;
2: while Y 6= X do

3: Y ⇐ X; X ⇐ Image(X,T );

4: end while

5: return X

Given a set Z of states in the network, Algorithm 1 computes the set X of successor states of Z under

the transition relation T , and then successor states of X. This process is repeated until a fixpoint is

reached. The fixpoint contains all attractors in Z. This algorithm utilises the property of synchronous

BNs that every loop is an attractor because each state has only one outgoing transition. The following

theorem shows the correctness of Algorithm 1.

Theorem 1. Given a set Z of states, let A = {A1, . . . , Am} be the set of attractors in Z. Algorithm 1

returns the set X of states such that X = A1 ∪ . . . ∪Am.

Proof. First of all, we prove that each Ai ∈ A is contained in X. When the while loop starts, Ai

is in X as X = Z. Let X ′ be the set of successor states returned by the Image function. Each state

s in Ai is contained in X ′ because there exists a state s′ ∈ Ai such that s′ → s. Therefore, we have

A1 ∪ . . . ∪Am ⊆ X ′.
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Algorithm 2 Search(s): Search for the loop reachable from state s

1: X ⇐ {s}; Y ⇐ {s};
2: while Y 6= ∅ do
3: Z ⇐ Image(Y, T ); Y ⇐ Z \X; X ⇐ X ∪ Y ;

4: end while

5: A⇐ Z;

6: while Z 6= ∅ do
7: Z ⇐ Image(Z, T ); Z ⇐ Z \A; A⇐ A ∪ Z;

8: end while

9: return A

Now we prove that for each state s ∈ X, there exists a state s′ ∈ X such that s′ → s. This can be

done by contradiction. Assume there is no such s′ in X. Then we apply the function Image again on X

and obtain X ′ = Image(X,T ). Clearly, X ′ does not contain s, which is in conflict with the premise that

X is a fixpoint.

Let X = X \A1 ∪ . . . ∪Ak. Since the final set X is a fixpoint, from each state s ∈ X, we can have an

infinite sequence of states such that ρ = s0s1s2 . . ., where s0 = s, si ∈ X, and si+1 → si for all i > 0.

Let k be the largest index in ρ such that si ∈ X for all 0 6 i 6 k and sk+1 6∈ X. Assume X 6= ∅. As

X is finite, there must exist an attractor Aj ∈ A in ρ such that sk+1 ∈ Aj . Therefore, there are two

outgoing transitions from sk+1: one goes to sk and the other to a state in Aj . This is in conflict with the

semantics of synchronous BNs. Hence, X = ∅.

4.2 Enumerative search attractor detection algorithm

Algorithm 1 begins with the whole set of states in the BN. Its performance can deteriorate dramatically

as the size of the network increases. To remedy this, we propose an enumerative search strategy to deal

with networks of large size. We first introduce an algorithm, i.e., Algorithm 2, for detecting a loop from

an arbitrary initial state. Algorithm 2 computes the set X of states that can be reached from a state

s and the attractor A contained in X. This algorithm iteratively uses forward reachability, i.e., the

function Image, to compute A. In each iteration, the newly discovered successor states are stored in

Z. Actually, Z contains only one state because each state in synchronous BNs has exactly one outgoing

transition. The last newly discovered state is a state in the attractor, from which the whole attractor

can be identified. This is performed in the second while loop of Algorithm 2. As an example of how this

algorithm works, consider a part of the state space of some synchronous BN presented in Figure 2. After

calling Search(s1), Z in the first while loop will consecutively consist of s2, s3, s4, s5, s6, and finally s3
again. With this the first loop will end. The state s3 is a member of the attractor {s3, s4, s5, s6}. This

attractor is constructed iteratively in the second loop and returned as A.

...

...

...
...

Figure 2 Part of the state space of some synchronous BN. The remaining states of the state space not shown in the figure

are indicated by incoming arrows with . . . to states s1, s7, s8, and s9. These arrows stand for potentially more than one

incoming transition to the four states.

Algorithm 3 Predecessor(Z): Compute predecessors

for the set Z of states

1: Y ⇐ Z; X ⇐ Z;

2: while Y 6= ∅ do
3: Y ⇐ Preimage(Y, T ); Y ⇐ Y \X;

4: X ⇐ X ∪ Y ;

5: end while

6: return X

Algorithm 4 SplitPre(Z): Compute predecessors of the set

Z of states in a divide-and-conquer manner

1: X ⇐ Z;

2: for all s ∈ Z do

3: Y ⇐ Preimage({s}, T );

4: Y ⇐ Y \ Z; X ⇐ X ∪ Predecessor(Y );

5: end for

6: return X
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After identifying the reachable attractor from an arbitrary initial state, we continue to compute the

predecessors of the attractor. This is done with Algorithm 3, which can compute the set X of states

that can reach a given set Z of states in the network via the transition relation. By slightly abusing the

notation, the states in X are the predecessors of those in Z. X is computed by iteratively applying the

Preimage function.

For any two states s and s′ in a cyclic attractor A, their predecessors are the same (Predecessor(s) =

Predecessor(s′) = Predecessor(A)). Therefore, the above mentioned Algorithm 3 will repeat unneces-

sary Preimage operations when computing the predecessors for a cyclic attractor. We improve on this

by considering individual states in Z, one at a time. For each individual state, the set of states that can

reach it are computed as shown in Algorithm 4.

In Algorithm 4, the statement Y ⇐ Preimage({s}, T ) computes the set Y of source states that can

reach state s in one transition. As this algorithm is called in Algorithm 5 with the input Z being the set

of states that form an attractor, Y contains not only transient states, but also a state s′ in the attractor.

Thus, we need the next statement Y ⇐ Y \Z to remove s′ from Y because s′ will be processed separately in

the for all loop. As an example, we follow the steps of Algorithm 4 run on the attractor states in Figure 2,

i.e., SplitPre({s3, s4, s5, s6}). Each of the four attractor states is considered one by one. For s3, we have

Preimage(s3, T ) = {s2, s6}. The state s6 is an attractor state, so it is not considered in Y which becomes

{s2}. Finally, the predecessors of Y are computed with the use of Algorithm 3, i.e., state s1 and all its

predecessors in the state space not shown in Figure 2. Similarly, for s4 we have Preimage(s4, T ) = {s3},
Y = ∅, and the predecessors of Y is an empty set. For s5 we have Preimage(s5, T ) = {s4, s7, s8},
Y = {s7, s8}, and the predecessors of Y are all the states in the state space that lead to states s7 and

s8 (not shown in Figure 2). Finally, for s6 we have Preimage(s6, T ) = {s5, s9}, Y = {s9}, and the

predecessors of Y are all the states in the state space that lead to state s9 (not shown in Figure 2). The

basic idea of Algorithm 4 is based on the following property of synchronous BNs: each state has only one

outgoing transition. This guarantees that the sets returned by the Predecessor function in each iteration

of the for all loop are pair-wise disjoint. In our above example, Predecessor({s2}), Predecessor(∅),
Predecessor({s7, s8}), and Predecessor({s9}) are all pair-wise disjoint.

With Algorithm 2 and Algorithm 4, we form our enumerative search strategy, shown in Algorithm 5, for

detecting all attractors reachable from states in a set Z. Algorithm 5 starts with a randomly chosen state

s ∈ Z and computes the attractor A reachable from s. After removing from Z all backward-reachable

states of A, the algorithm continues to search for other attractors of the remaining states in Z.

Algorithm 5 Enumerative(Z): Compute all attractors reachable from the set Z of states

1: As⇐ ∅;
2: while Z 6= ∅ do
3: pick up a state s ∈ Z; A⇐ Search(s);

4: Y ⇐ SplitPre(A); As⇐ As ∪A; Z ⇐ Z \ Y ;

5: end while

6: return As

The algorithm in GenYsis is very similar to Algorithm 5. The difference is that GenYsis computes all

predecessors that reach an attractor in one fixpoint computation, i.e., using Algorithm 3. Algorithm 5

utilises Algorithm 4 instead. The intuition behind Algorithm 4 is that by splitting a simple attractor into

individual states and by computing their predecessors separately it can better explore the regularity of

the BDDs and accelerate the computation.

5 Accelerating via Decomposition

Both algorithms presented above search the entire state space of a BN, which could become very slow

when the network is large and dense (see Section 7). In this section, we propose a decomposition attractor

detection algorithm to reduce the size of the state space to be searched. Prior to detecting attractors

of a BN, we first analyse the structure of the BN and try to decompose the BN into sub-networks,

called blocks. The attractor detection is then performed on each block and the attractors detected are

used to restrict the possible initial states of the original BN. The attractors of the original BN can then
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Figure 3 Flowchart of the decomposition attractor detection algorithm.

be detected by considering the restricted initial states only. The steps of this algorithm are shown in

Figure 3. We now explain the algorithm in details using the following two cases.

Case 1: Leaf-based decomposition. We start by detecting a special type of nodes, called leaf nodes

(or leaves for short) of a given BN G. Leaves are recursively defined as follows.

Definition 1. A node in a BN is a leaf node (or leaf for short) if and only if either (1) it has no child

nodes or (2) it has no other children after iteratively removing all its child nodes which are leaf nodes.

An example of leaf nodes (leaves) is shown in Figure 4. Node b is affected by nodes a and c, and it

does not have any children. Therefore, node b is a leaf. Node c contains only one child b and b is a leaf

node. Hence, c is also a leaf node. But a is not a leaf, as a has itself as a child after removing b and c.

If the number of leaves in a BN exceeds the threshold value T1, we simply remove all the leaves. The

threshold value T1 and the other two threshold values T2 and T3 which are used later in this section are

set empirically. In our experiments, T1 is set as N/6, where N is the total number of nodes in the BN.

Both T2 and T3 are set to 2. After removing all the leaf nodes, the remaining nodes in the BN form

a single block B. Formally, the blocks are defined as follows.

Definition 2. Given a BN G(V,f) where V = {x1, x2, . . . , xn} and f = {f1, f2, . . . , fn}, a block

B(V B ,fB) is a subset of the network, where V B ⊆ V . For any node xi ∈ V B , if B contains all the

parent nodes of xi, its Boolean function in B remains the same as in G, i.e., fi; otherwise, the Boolean

function is undetermined, meaning that xi is free to take either value 0 or 1 at any time point.

Definition 3. Given a state xB of a block B, we can extend it to a state x of the original BN G by

arbitrarily specifying the values of the nodes that are not in B, i.e., the nodes in V \ V B . We call state

x a mirror state of xB and state xB a compressed state of x in B. Let SG be a set of states in G and

SB be a set of states in B. Denote the set of compressed states of SG in block B as CB(SG) and the set

of mirror states of SB in G as MG(SB).

Notice that each state of B has more than one mirror state and each state of G has only one compressed

state in B.

Definition 4. Given a BN G and a block B in G, let Φ be the set of attractor states of G and ΦB be

the set of attractor states of B. We say that B preserves the attractors of G if CB(Φ) ⊆ ΦB .

Theorem 2. Given a BN G and a block B in G, let Φ be the set of attractor states of G and ΦB be

the set of attractor states of B. If B preserves the attractors of G, then Φ ⊆MG(ΦB).

Proof. Since B preserves the attractors of G, CB(Φ) ⊆ ΦB . By Definition 3, we have that Φ ⊆
MG(CB(Φ)). Hence, Φ ⊆MG(ΦB).

Theorem 3. Given a BN G and a block B in G, let ΦB be the set of attractor states of B. The set of

reachable states from MG(ΦB) in G is MG(ΦB).

Proof. Let x be a state inMG(ΦB). We have CB({x}) ∈ ΦB . Assume that state y is reachable from x

by one transition of G. Since a node in B either has the same Boolean function as the corresponding node
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Figure 4 An example of leaves. Figure 5 An example of SCC decomposition.

in G or is free to take any value at any time point, there is a transition of B from CB({x}) to CB({y}).
Since CB({x}) is an attractor state of B, necessarily CB({y}) ∈ ΦB . Therefore, y ∈ MG(CB({y})) ⊆
MG(ΦB). By the arbitrary choice of x and by induction on the length of a path in the state transition

system of G the claim of the theorem follows.

Since leaves have no affect on the nodes in the block, B preserves the attractors of G. According to

Theorem 2, the mirror states of B’s attractor states cover all G’s attractor states. Therefore, by searching

from the mirror states only instead of the whole state space, we can detect all the attractor states. In

fact, by restricting the initial states to the mirror states, we restrict the state space to the mirror states

as well since the reachable states equal to the mirror states according to Theorem 3.

Case 1 corresponds to the “Yes” branch of the first decision process in Figure 3. This branch is suitable

for BNs which contain a large number of leaves or a large number of one-node SCCs which are not suitable

for the “No” branch.

Case 2: SCC (strongly connected component)-based decomposition. If the number of leaves in

a BN does not exceed T1, we continue to decompose the network with SCC-based decomposition method.

The decomposition starts by detecting SCCs of the BN. Figure 5 shows the decomposition of a BN into

three SCCs: Σ1, Σ2, and Σ3. A node outside an SCC that is a parent to a node in the SCC is referred

to as a control node of this SCC. In Figure 5, nodes x1 and x2 are control nodes of Σ1 and node x7
is a control node of Σ2. An SCC together with its control nodes forms a block. In such blocks, nodes

belonging to an SCC are regulated by the same Boolean functions as in the original BN while control

nodes are free to take any value at any time point.

Theorem 4. Given a BN G, let Σ = {Σ1, . . . ,Σm} be the set of SCCs in G and let B = {B1, . . . , Bm}
be the set of blocks formed by merging an SCC with its control nodes. Block Bi preserves the attractors

of G for any 1 6 i 6 m.

Proof. Let Φ = {φ1, . . . , φn} be the set of G’s attractor states. We show that for any φj ∈ Φ

and for any Bi ∈ B, the compressed state of φj of Bi is an attractor state of Bi. Let φj = φj1 and let

Aj = (φj1 , φj2 , . . . , φjk) be the attractor that contains φj , where the states are ordered in accordance with

the state transition sequence φj1 → φj2 → . . .→ φjk → φj1 . In block Bi, the corresponding compressed

states of Aj are CBi
(Aj) =

{
CBi

({φj1}), CBi
({φj2}), . . . , CBi

({φjk})
}

. For any state φjp ∈ Aj and its

compressed state CBi
({φjp}), we let the control nodes in Bi to update their values in state CBi

({φjp})
in the same way as in G in state φjp . Since the nodes in the SCC of block Bi are regulated by the

same Boolean functions as in the original BN, there is a transition of Bi from CBi({φjp}) to CBi({φjp+1})
(we let φjp+1

= φj1 if p = k). Therefore, CBi
(Aj) forms an attractor of Bi with the transition sequence

CBi
({φj1})→ CBi

({φj2})→ . . .→ CBi
({φjk})→ CBi

({φj1}). Hence, Bi preserves the attractors of G.

Definition 5. Given a BN G, B is a block of G formed by merging an SCC with its control nodes.

We further compress the attractor states of B by removing the values of the control nodes and call these

states as double compressed attractor states.

The set of attractor states of a block is a subset of the mirror states of the double compressed attractor

states of the block.

Theorem 5. Given a BN G, let Σ = {Σ1, . . . ,Σm} be the set of SCCs in G and let B = {B1, . . . , Bm}
be a set of blocks, where Bi (i = 1, . . . , n) is a block formed by merging the SCC Σi with its control

nodes. Let Φ be the set of attractor states of G and let A = {A1, . . . , Am} be the family of sets of double
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compressed attractor states of each block. It holds that Φ ⊆ ∩mi=1MG(Ai).

Proof. Denote ΦBi the set of attractor states of block Bi for 1 6 i 6 m. Since ΦBi ⊆ MBi
(Ai),

we have MG{ΦBi} ⊆ MG(MBi
(Ai)) for 1 6 i 6 m. By Theorems 4 and 2, Φ ⊆ MG(ΦBi) for all

1 6 i 6 m. Therefore, Φ ⊆ ∩mi=1MG(ΦBi) ⊆ ∩mi=1MG(MBi(Ai)). According to Definition 3, we have

that MG(Ai) =MG(MBi(Ai)) for all 1 6 i 6 m. Hence, it holds that Φ ⊆ ∩mi=1MG(Ai).

After computing the double compressed attractors of each block, we get the sets of mirror states of

the original BN. By Theorem 5, we can use the intersection of these sets to reduce the search space.

Case 2 corresponds to the “No” branch of the first decision process. This branch contains a decision

process for merging two blocks and a process for removing blocks with node number smaller than T3.

The decision process is to guarantee that the number of control nodes in a block is as small as possible.

Adding q control nodes to an SCC does not only increases the state space but also adds to each state 2q

transitions, most of which do not exist in the original BN. This exponentially increases the time cost for

computing forward and backward states. Therefore, reducing the number of control nodes can potentially

reduce the time cost for computing the attractors of a block. Note that Theorem 4 and Theorem 5 still

hold for the merged blocks since the merged blocks contain the same types of nodes as the blocks used in

the two theorems, i.e., nodes regulated by the same Boolean functions as in the original BN and control

nodes that are free to take any value at any time point. The process of removing blocks eliminates

small blocks as attractors of small blocks will much likely lead to mirror states being virtually the whole

state space of the original BN. Note that Theorem 5 still holds after removing small blocks since the

intersection of sets of mirror states is used in the theorem.

The detection of attractors for a Boolean network or a block in Figure 3 is performed using one of

the two algorithms mentioned in Section 4. In general, for the leaf-based decomposition branch, the

enumerative search algorithm works faster and for the SCC-based decomposition branch, the monolithic

search algorithm is preferable.

6 Heuristics on BDD Variable Orders

The order of the input variables of a BDD can largely affect the constructed BDD size and the corre-

sponding operations [3]. In consequence, the performance of the BDD attractor detection algorithm also

heavily relies on the BDD variable orders. It is known to be an NP-complete problem [2] to find an

optimal variable ordering for constructing a minimum-size BDD. However, a lot of efficient heuristics

have been proposed in literature to establish near-optimal variable orderings for BDDs. In general, there

are two types of heuristic techniques for establishing efficient variable orders for BDD: static variable

ordering and dynamic variable ordering. Static variable ordering forms an order before the construction

of the BDD while dynamic variable ordering attempts to form an optimal order dynamically during the

construction process. As the order is formed before construction of the BDD, static variable ordering

cannot guarantee a good order. On the contrary, dynamic variable ordering allows adjusting the vari-

able order during the construction of the BDD, which is more effective in finding a good variable order.

However, this dynamic reordering process is usually time-consuming and therefore less practical. In this

paper, we concentrate on the static variable ordering heuristics and propose two BDD order heuristics

based on the structure of BNs.

Each node of a BN is represented as one variable in the corresponding BDD. For simplicity, we treat

ordering the variables of a BDD as ordering the nodes of a BN. As shown in [4], variables that are

topologically close in the original network should be ordered relatively close to each other in the BDD.

In a BN, a node is closer to its parent nodes and its child nodes comparing to others. Considering this,

we form the following two heuristics: (I) put a node’s parent nodes right after the node; (II) put a node’s

child nodes right after the node.

For heuristic (I), we order the nodes as follows. (1) From all the unordered nodes, find the one with

the fewest child nodes and order it as the next one. (2) For each of the ordered nodes, find its unordered

parent nodes and order them as the next ones. If a node has more than one unordered parent node, the
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order of its parent nodes can be arbitrary. (3) Repeat Step 2 until all the parent nodes of ordered nodes

have been ordered. (4) Finish if all the nodes have been ordered; otherwise, go back to step (1).

For heuristic (II), we order the nodes as follows. (1) From all the unordered nodes, find the one with

the most child nodes and order it as the next one. (2) For each of the ordered nodes, find its unordered

child nodes and order them as the next ones. If a node has more than one unordered child node, the

order of its child nodes can be arbitrary. (3) Repeat Step (2) until all the child nodes of ordered nodes

have been ordered. (4) Finish if all the nodes have been ordered; otherwise, go back to step (1).

Heuristic (I) will put the node which has the fewest child nodes in the beginning; while, on the opposite,

heuristic (II) will put the node which has the most child nodes in the beginning. The node with the most

children nodes is considered as the most influential node in the BN. It is suggested in [17] that the more

influential node should be put earlier in the ordering. However, in the case of BNs, our experience leads

us to the conclusion that topological closeness plays a more important role than the influence of nodes.

This can be demonstrated by the experimental results in Section 7.

7 Evaluation

We have implemented the algorithms presented in Section 4 in the model checker MCMAS [15]. In this

section, we demonstrate with experiments that our algorithms can outperform the existing BDD-based

attractor detection algorithm in [8] and our proposed BDD variable order heuristics can improve the

performance even further. Comparison with other SAT-based methods is one of our future works.

All the experiments in this paper are conducted on a high-performance computing (HPC) cluster with

Intel Xeon L5640@2.26GHz processor. The BNs we use for the experiments are randomly generated with

ASSA-PBN [18], which can generate random BNs complying with specified parameters, e.g., the number

of nodes in the BN and the maximal number of variables of the predictor functions.

7.1 Evaluation for small BNs

We first compare MCMAS with GenYsis for detecting attractors of small BNs. We generate BNs with

the number of nodes from the set {20, 30, 40, 50} and for each number in the set, we generate three BNs

of different densities. We divide the BNs into three different classes with respect to their densities: class

d, short for dense, refers to BNs whose density is over 3.1; class i, short for in-between, refers to BNs

whose density is in the range [2.0, 3.1]; and class s, short for sparse, refers to BNs whose density is in

the range [1.0, 2.0). Note that if the density of a BN is below 1.0, there exists at least one node without

any predictor function (see Section 3.1). We do not consider BNs containing such nodes since they can

be removed from the BN without changing the behaviour of the BN.

We name models in accordance with the following format “number of nodes density class model index”.

We show in Table 1 the number of detected singleton and cyclic attractors and the time cost of the two

tools (in seconds). To compare the performance of the proposed BDD orders, we also run the attractor

detection algorithms with different BDD orderings. We set the maximum running time to one hour and

mark as “—” in the table if the program fails to detect the attractors within this time bound.

It is clear from Table 1 that using the proposed monolithic attractor detection algorithm MCMAS

performs much faster than GenYsis in detecting attractors for small BNs. Our proposed BDD variable

order heuristics can further improve the performance in most cases. In particular, MCMAS reduces the

time cost by about 81 times for the 30-node dense BN by ordering the BDD variables with heuristic (II);

GenYsis fails to handle dense BNs of more than 40 nodes while MCMAS still manages to handle those

BNs. In general, the monolithic algorithm gains better performance for BNs with node number less than

50. For large models, we shall use different algorithms and we demonstrate the results in the next section.

In fact, BNs with around 50 nodes seem to be the borderline models. In our evaluation, for BNs with 50

nodes, the monolithic algorithm (Algorithm 1) performs better for the dense and in-between networks,

while the enumerative algorithm (Algorithm 5) performs better for the sparse ones (see the performance

of MCMAS for 50-node BNs in Table 1 and Table 2).
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Table 1 Performance of MCMAS and GenYsis for small BNs. The time is in seconds. Gen. is short for GenYsis; sin. is

short for singleton; cyc. is short for cyclic; ran. is short for random; and heu. is short for heuristic.

model

#

attractor

MCMAS monolithic

detection time Gen. model

#

attractor

MCMAS monolithic

detection time Gen.
name

sin. cyc.
ran.

order

heu.

(I)

heu.

(II)

time name
sin. cyc.

ran.

order

heu.

(I)

heu.

(II)

time

20 d 01 0 1 0.13 0.09 0.12 0.65 40 d 07 0 2 407.38 302.89 576.26 —

20 i 02 0 4 0.04 0.04 0.06 0.32 40 i 08 4 4 23.90 24.39 25.70 64.77

20 s 03 0 3 0.04 0.03 0.03 0.08 40 s 09 2 12 2.51 1.33 3.30 6.81

30 d 04 1 0 5.25 6.81 3.80 243.56 50 d 10 0 1 270.87 360.75 391.32 —

30 i 05 0 10 0.59 0.45 0.48 4.62 50 i 11 1 0 181.83 398.96 121.86 —

30 s 06 0 3 0.22 0.22 0.22 1.02 50 s 12 1 29 1.179 1.261 1.048 7.91

7.2 Evaluation for large BNs

For large BNs, MCMAS applies the enumerative algorithm (Algorithm 5) and the decomposition attractor

detection algorithm (Figure 3). We demonstrate the efficiency of these two algorithms by experiments

on a number of large BNs.

We present in Table 2 the time cost of MCMAS and GenYsis for detecting attractors of large BNs

with node number in the set {50, 60, 80, 100, 120, 300, 400}. For each of the node numbers, three BNs

with different densities are generated. With the node number increasing, it becomes difficult for both

the MCMAS and GenYsis to detect attractors within one hour. Therefore, we increase the time to three

hours. We omit the data if both methods fail to detect the attractors within this limit. In total, we

obtain data for 12 (out of 21) BNs.

In 11 out of these 12 cases, MCMAS is faster than GenYsis using the enumerative search strategy

and a random BDD order. Moreover, if we order the BDD variables according to heuristic (I), MCMAS

performs better than GenYsis in all the 12 cases. Notably, GenYsis fails to handle the 80-node sparse

BN while MCMAS still detects its attractors in 6.09 seconds using heuristic (I). As the performance of

BDD operations is sensitive to BDD orders, it would be better if we could compare the performance of

MCMAS and GenYsis under the condition that they use the same BDD variables order. However, the

source code of GenYsis is not available and the BDD variables order used in GenYsis is unclear to us.

Nevertheless, it is still clear from Table 2 that MCMAS performs better than GenYsis for large BNs using

the enumerative algorithm and the BDD variable order heuristic (I).

In 11 out of the 12 compared cases, heuristic (I) results in a better performance of MCMAS than the

random order; while for heuristic (II), the number of cases is 7 out of 12. Besides, heuristic (I) performs

better than heuristic (II) in 8 out of 12 cases. In general, both heuristics can improve the performance

of MCMAS for large BNs, but heuristic (I) often performs better.

The decomposition detection algorithm works faster than the enumerative search detection algorithm in

most cases. However, this does not mean that the enumerative search detection algorithm is meaningless.

In fact, the decomposition detection algorithm is based on the enumerative search detection algorithm.

The influence of order on the performance is not as impressive as that in the case of the enumerative

search algorithm. Heuristic (II) shows better performance in 7 out of 12 cases. In these 12 cases, the last

three cases are performed by the leaf-based decomposition while the others are performed by SCC-based

decomposition.

The missing data in Table 2 are mainly for dense and in-between networks. Both MCMAS and GenYsis

fail to handle dense BNs with over 80 nodes and in-between networks with over 100 nodes in 3 hours.

In general, increasing the density exponentially increases the size of Boolean functions in the BNs and

the corresponding BDD representation becomes more complex. This is the reason why the time cost for

dense networks is much larger than that of the sparse networks in both Table 1 and Table 2. Developing

efficient algorithms to handle large dense models is part of our future work.
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Table 2 Performance of MCMAS and GenYsis for large BNs.

model

#

attractor

MCMAS enumerative

search detection time(s)

MCMAS decomposition

detection time(s) GenYsis
name

sin. cyc.
random

order

heuristic

(I)

heuristic

(II)

random

order

heuristic

(I)

heuristic

(II)

time(s)

50 d 10 0 1 3070.11 1341.28 5398.86 304.63 549.43 598.11 —

50 i 11 1 0 6683.67 915.516 2801.74 284.34 319.40 300.55 —

50 s 12 1 29 1.02 0.87 1.16 0.85 1.01 0.67 7.91

60 d 13 0 5 2032.16 3117.18 1236.45 795.01 1254.88 591.17 —

60 i 14 1 1 560.95 67.86 542.39 27.35 25.79 28.74 120.23

60 s 15 0 5 0.51 0.22 0.27 0.4 0.27 0.29 0.99

80 i 16 6 124 224.94 84.22 248.54 70.12 33.88 46.02 275.84

80 s 17 0 4 9.99 6.09 11.82 1.64 1.49 1.49 —

100 s 18 1 13 12.65 12.15 10.61 10.13 4.47 4.67 54.02

120 s 19 0 16 24.72 14.76 33.15 6.39 6.71 6.72 38.79

300 s 20 0 64 96.57 65.07 81.42 70.34 86.27 77.75 5895.26

400 s 21 3 350 2771.50 2686.77 2467.11 2123.42 2131.13 2106.52 5315.84

8 Biological Case Study: A Signalling Network of Apoptosis

Cells in a multicellular organism are tightly controlled by mechanisms that regulate the cell division and

the cell death. One of these mechanisms is apoptosis, the programmed cell death: if cells are damaged

or no longer needed, the intracellular death program is activated, which leads to cell death without lysis

or damage to neighbouring cells. This process is regulated by a number of signalling pathways which are

extensively linked by cross-talk interactions and which form an intricate system. In [22], a large-scale

multi-value logic model of apoptosis in hepatocytes was presented, where all interactions were introduced

based on literature study. The model was recast into the probabilistic Boolean network (PBN) framework,

fitted to experimental steady-state data and analysed in [25]. Further, more quantitative analysis was

performed with the ASSA-PBN tool, which enabled the computation of certain long-run influences and

sensitivities of the PBN model, see [19] for more details.

In this work, the original model was recast into the Boolean network framework: a binary BN model

which comprises 97 nodes (state-space of size 297). The BN model contains 10 input nodes. In the

original model three levels of activation of FasL and UV nodes are considered represented by values 0, 1,

and 2. We model this with two binary nodes, i.e., (FasL(1), FasL(2)) and (UV(1), UV(2)), respectively.

The possible combinations of activations are: (0, 0) (level 0), (1, 0) (level 1), and (0, 1) (level 2). The

combination (1, 1) is biologically meaningless and excluded from discussion. There is also a housekeeping

node which value is fixed to 1 and which is used to model constitutive activation of certain nodes in the

network. For the wiring of the BN model, see Figure 6 in the appendix.

In [22], the steady-state analysis was performed after excluding 13 interactions in order to break all the

feedback loops in the network. Existence of feedback loops is a necessary condition for oscillations to be

present in a system. By removing them, it was made sure that oscillations would not lead to ambiguous

interpretation of the logical steady states. Here, we put back all the 13 interactions (cf. Table S4 in [22])

and consider the full model of apoptosis. We then apply our algorithms to compute all the attractors of

the BN model: 2272 attractors are detected for all possible combinations of stimulation of the 10 input

nodes and the housekeeping node. It takes 1559s, 681s, and 153s, respectively, to finish the computation

with our monolithic, enumerative and decomposition algorithms. Note that GenYsis uses 3314 seconds to

finish the same computation. In the following, we consider only biologically meaningful stimulations. In

particular, we repeat the experiment of [22] and we focus on all single and double input-node stimulation

scenarios and demonstrate the results for them in Table 3. We compare them with the results presented

in Table 4 in [22]. For each scenario the corresponding one or two input node(s) are set to 1, the
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Table 3 Apoptosis node value for all single and double input-node stimulation scenarios of the full Boolean model of

apoptosis originally published in [22] with all feedback loops included. The smac-mimetics input node is denoted as s-m.

The values 0 and 1 represent the steady-state value of the apoptosis node which is fixed to the respective value in the

attractor(s). Oscillations of the apoptosis node value are denoted ∼, which represents an attractor of length four in which

the apoptosis node takes values 1→ 0→ 0→ 0. The number in the parenthesis is the number of attractors for a particular

stimulation, i.e., the number of attractors that can be reached dependent on the initial state of the non-input nodes in the

network. Abberations with respect to the values presented in Table 4 in [22] are highlighted bold.

Glucagon Insulin TNF FasL(1) FasL(2) T2RL IL-1 s-m UV(1) UV(2)

Glucagon 0 (7) 0 (7) 0 (7) 0 (1) ∼ (1) 1 (1) 0 (7) 1 (1) 1 (1) 1 (1)

Insulin 0 (7) 0 (7) 0 (1) ∼ (1) 1 (1) 0 (7) 1 (1) 1 (1) 1 (1)

TNF 0 (7) 0 (1) ∼ (1) 1 (1) 0 (7) 1 (1) 1 (1) 1 (1)

FasL(1) 0 (1) — 1 (1) 0 (1) 1 (1) 1 (1) 1 (1)

FasL(2) ∼ (1) ∼ (1) ∼ (1) ∼ (1) ∼ (1) ∼ (1)

T2RL 1 (1) 1 (1) 1 (1) 1 (1) 1 (1)

IL-1 0 (7) 1 (1) 1 (1) 1 (1)

s-m 1 (1) 1 (1) 1 (1)

UV(1) 1 (1) —

UV(2) 1 (1)

housekeeping node is fixed to 1, all the other input nodes are kept 0, and the attractors for all possible

initial settings of the remaining nodes in the network are considered. There is either a single attractor

or there are seven different attractors for each stimulation scenario. All attractors for all scenarios are

of length four. As can be seen in Table 3, in all scenarios not involving activation of the FasL(2) input

node, the apoptosis node in all the attractors is fixed either to 0 or to 1, which is inline with the fact

that commitment to apoptosis is a digital (YES or NO) response of the network. Although some nodes

in the network oscillate, the apoptosis node remains fixed. However, in all the scenarios where FasL(2)

is active, the value of the apoptosis node oscillates and it values evolve cyclically in accordance with

the pattern 1 → 0 → 0 → 0. The apoptosis node is inactive in three out of the four attractor states.

Whether the apoptosis node oscillates or not depends on the dynamics of C3ap17 and C3ap17 2. From

the wiring diagram of the BN model it can be observed that the constant activation of FasL(2) causes

the value of the node C8a 2 to be always 1. In consequence, C3ap20 is fixed to 0 independent of the

value of C8a. Moreover, C3ap20 2 is constantly 1. Hence, the values of C3ap17 and C3ap17 2 become

independent of the values of C3ap20 and C3ap20 2. This breaks the feedback loop via C6. It can be

observed that C3ap17 2 is negatively regulated by NFκB via XIAP 2 and both C3ap17 and C3ap17 2

(via an OR gate) negatively regulate C3ap17 through C3a XIAP and BIR 1-2. Furthermore, there is no

feedback from C3ap17 and C3ap17 2 that would influence the behaviour of NFκB. If NFκB were fixed

to 0, C3ap17 would be fixed to 0 and C3ap17 2 to 1. If NFκB were fixed to 1, C3ap17 2 would be fixed

to 0 and although C3ap17 would oscillate, the apoptosis node would be fixed to 0 through gelsolin. In

this way the oscillations of the apoptosis node are induced by the oscillations of NFκB.

If FasL(2) is excluded, we observe that in comparison to the model without feedbacks, the apoptosis

node is constantly activated whenever any of smac-mimetics, UV(1), or UV(2) input nodes are active.

The differences are indicated by bold in the respective columns of Table 3. The biological meaning of

these differences and the oscillations in the case of FasL(2) activation require further investigation.

9 Conclusions and Future Work

In this paper, we have resented several strategies for improving the BDD-based attractor detection al-

gorithm shown in [8] for synchronous BNs, including (1) a monolithic algorithm for small BNs; (2) an

enumerative algorithm for large BNs; (3) a decomposition method to accelerate attractor detection; and

(4) two heuristics on ordering BDD variables. Experimental results show that the proposed strategies

can improve the BDD-based attractor detection algorithm [8] for both small and large BNs. Comparing

our algorithms with SAT-based approaches (e.g., see [5]) is one of our future works.
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Appendix: The Boolean Model of Apoptosis
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Figure 6 The wiring of the multi-value logic model of apoptosis by Schlatter et al. [22] recast into a binary Boolean

network. For clarity of the diagram the nodes I-kBa, I-kBb, and I-kBe have two positive inputs. The inputs are interpreted

as connected via ⊕ (logical OR).
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