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Abstract. Computation of steady-state probabilities is an important
aspect of analysing biological systems modelled as probabilistic Boolean
networks (PBNs). For small PBNs, efficient numerical methods can be
successfully applied to perform the computation with the use of Markov
chain state transition matrix underlying the studied networks. However,
for large PBNs, numerical methods suffer from the state-space explosion
problem since the state-space size is exponential in the number of nodes
in a PBN. In fact, the use of statistical methods and Monte Carlo meth-
ods remain the only feasible approach to address the problem for large
PBNs. Such methods usually rely on long simulations of a PBN. Since
slow simulation can impede the analysis, the efficiency of the simula-
tion procedure becomes critical. Intuitively, parallelising the simulation
process can be an ideal way to accelerate the computation. Recent de-
velopments of general purpose graphics processing units (GPUs) provide
possibilities to massively parallelise the simulation process. In this work,
we propose a trajectory-level parallelisation framework to accelerate the
computation of steady-state probabilities in large PBNs with the use
of GPUs. To maximise the computation efficiency on a GPU, we de-
velop a dynamical data arrangement mechanism for handling different
size PBNs with a GPU, and a specific way of storing predictor functions
of a PBN and the state of the PBN in the GPU memory. Experimen-
tal results show that our GPU-based parallelisation gains a speedup of
approximately 400 times for a real-life PBN.

1 Introduction

Systems biology aims to model and analyse biological systems using mathemat-
ical and computational methods from a holistic perspective in order to provide
a comprehensive, system-level understanding of cellular behaviour. Recent de-
velopments in systems biology have greatly promoted the discovery of unknown
biological information, leading to the revealing of more and more large bio-
logical systems. This brings a significant challenge to computational modelling
in terms of the state-space size of the system under study. Developed in 2002
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by Shmulevich et al. [1, 2], probabilistic Boolean networks (PBNs) is a well-
suited framework for modelling large-size biological systems. Originally, PBNs
is introduced as a probabilistic generalisation of the standard Boolean networks
(BNs) to model gene regulatory networks (GRNs). The framework of PBNs not
only takes the advantage of BNs to incorporate rule-based dependencies between
genes and allow the systematic study of global network dynamics, but also is ca-
pable of dealing with uncertainty, which naturally occurs at different levels in
the study of biological systems.

One of the key aspects of analysing biological systems, especially for those
modelled as PBNs, is the comprehensive understanding of their long-run (steady-
state) behaviour. This is vital in many contexts, e.g., attractors of a GRN were
considered to characterise cellular phenotype [3]. There have been a lot of stud-
ies in analysing the steady-state behaviours of biological systems modelled as
PBNs. As the dynamics of a PBN can be viewed as a discrete-time Markov chain
(DTMC), it can be studied with the use of the rich theory of DTMCs. Relying
on this, many numerical methods exist to compute steady-state probabilities
for small-size PBNs [4, 5]. In the case of large-size PBNs, however, numerical
methods face the state-space explosion problem. The use of statistical methods
and Monte Carlo methods are then proposed to estimate the steady-state prob-
abilities. These methods require simulating the PBN under study for a certain
length and the simulation speed is an important factor in the performance of
these approaches. For large PBNs and long trajectories, a slow simulation speed
could render these methods infeasible as well. A natural way to address this
problem is to parallelise the simulation process.

Recent improvements in the computing power and the general purpose graph-
ics processing units (GPUs) enable the possibilities to massively parallelise this
process. In this work, we propose a trajectory-level parallelisation framework to
accelerate the computation of steady-state probabilities in large PBNs with the
use of GPUs. The architecture of a GPU is very different from that of a central
processing unit (CPU), and the performance of a GPU-based program is highly
related to how the synchronisation between cores is processed and how memory
accessing is managed. Our framework reduces the time-consuming synchroni-
sation cost by allowing each core to simulate one trajectory. Regarding to the
memory management, we contributes in two aspects. We first develop a dynam-
ical data arrangement mechanism for handling different size PBNs with a GPU
to maximise the computation efficiency on a GPU for relatively small-size PBNs.
We then propose a specific way of storing predictor functions of a PBN and the
state of the PBN in the GPU memory to reduce the memory consumption and
to improve the accessing speed. We show with experiments that our GPU-based
parallelisation gains a speedup of more than two orders of magnitudes.

Structure of the paper. We present preliminaries on PBNs and the archi-
tecture of GPUs in Section 2. The difficulties of parallelising the simulation of
a PBN and how to overcome them are discussed in Section 3. We evaluate our
GPU implementation in Section 4 and conclude our paper with some discussions
in Section 5.
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2 Preliminaries

2.1 Probabilistic Boolean networks (PBNs)

A PBN G(X,F ) consists of a set of binary-valued nodes (also known as genes)
X = {x1, x2, . . . , xn} and a list of sets F = (F1, F2, ..., Fn). For each i ∈
{1, 2, ..., n}, the set Fi = {f (i)1 , f

(i)
2 , . . . , f

(i)
`(i)} is a collection of Boolean functions,

known as predictor functions, for node xi, where `(i) is the number of predictor

functions for node xi. Each f
(i)
j is a Boolean function defined using a subset of

the nodes, referred to as parent nodes of xi. At each time point t, the value of each
node xi is updated with one of its predictor functions. The predictor function is

selected in accordance with a probability distribution Ci = (c
(i)
1 , c

(i)
2 , . . . , c

(i)
`(i)),

where the individual probabilities are the selection probabilities for the respec-
tive elements of Fi and they sum to 1. Several variants of PBNs exist due to the
different way of selecting predictor functions and the synchronisation of nodes
update. In this paper, we focus on the independent synchronous PBNs, i.e., the
choice of predictor functions for each node is made independently and the values
of all the nodes are updated synchronously. We use xi(t) to denote the value of
node xi at time point t, and s(t) = (x1(t), x2(t), . . . , xn(t)) to denote the state of
the PBN at time point t. The state space of the PBN is S = {0, 1}n and it is of
size 2n. The transition from state s(t) to state s(t+1) is performed by randomly
selecting a predictor function for each node xi from Fi and by applying those
selected predictor functions to update the values of all the nodes synchronously.
Let f(t) be the combination of all the selected predictor functions at time point
t. The transition of state s(t) to s(t+ 1) can then be denoted as

s(t+ 1) = f(t)(s(t)). (1)

A PBN can therefore be viewed as a discrete-time Markov chain (DTMC) with
state space S = {0, 1}n and transition relation defined by Equation 1.

In a PBN with perturbations, a perturbation rate p ∈ (0, 1) is introduced
and the dynamics of a PBN is guided with both perturbations and predictor
functions: at each time point t, the value of each node xi is flipped with prob-
ability p; and if no flip happens, the value of each node xi is updated with
selected predictor functions synchronously. Let γ(t) = (γ1(t), γ2(t), . . . , γn(t))
be a perturbation vector, where each element is a Bernoulli distributed random
variable with parameter p, i.e., γi(t) ∈ {0, 1} and P(γi(t) = 1) = p for all t and
i ∈ {1, 2, . . . , n}. Extending Equation 1, the transition from s(t) to s(t + 1) in
PBNs with perturbations is given as

s(t+ 1) =

{
s(t)⊕ γ(t) if γ(t) 6= 0

f(t)(s(t)) otherwise,
(2)

where ⊕ is the element-wise exclusive or operator for vectors. According to
Equation (2), from any state, the system can move to any other state with one
transition due to perturbations. Therefore, the underlying Markov chain is in
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Fig. 1: Architecture of a GPU.

fact irreducible and aperiodic. Thus, the dynamics of a PBN with perturbations
can be viewed as an ergodic DTMC [1]. Based on the ergodic theory, the long-
run dynamics of a PBN with perturbations is governed by a unique limiting
distribution, convergence to which is independent of the choice of the initial
state.

The density of a PBN is measured with the number of predictor functions
and the number of parent nodes for each predictor function. For a PBN G, its
density is defined as D(G) = 1

n

∑M
i=1 φ(i), where n is the number of nodes in G,

M is the total number of predictor functions in G, and φ(i) is the number of
parent nodes for the ith predictor function.

2.2 GPU architecture

We review the basics of GPU architecture and its programming approach, i.e.,
common unified device architecture (CUDA) released by NVIDIA.

At the physical hardware level, an NVIDIA GPU usually contains tens of
streaming multiprocessors (SMs, also abbreviated as MPs), each containing
a fixed number of streaming processors (SPs), fixed size of registers, fast shared
memory (as shown in Figure 1, with N being the number of MPs).

Accessing registers and shared memory is fast, but the size of these two types
of memory is very limited. In addition, a large size global memory, a small size
texture memory and constant memory are available outside the MPs. Global
memory has a high bandwidth (128 bytes in our GPU), but also a high latency.
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Accessing global memory is usually orders of magnitude slower than accessing
registers or shared memory. Constant memory and texture memory are memories
of special type which can only store read-only data. Accessing constant memory
is most efficient if all threads are accessing exactly the same data; and texture
memory is better for dealing with random access. We refer to registers and shared
memory as fast memory ; global memory as slow memory ; and constant memory
and texture memory as special memory.

At the programming level, the programming interface CUDA is in fact an ex-
tension of C/C++. A segment of code to be run in a GPU is put into a function
called a kernel. The kernels are then executed as a grid of blocks of threads.
A thread is the finest granularity in a GPU and each thread can be viewed as
a copy of the kernel. A block is a group of threads executed together in a batch.
Each thread is executed in an SP and threads in a block can only be executed
in one MP. One MP, however, can launch several blocks in parallel. Commu-
nications between threads in the same block are possible via shared memory.
NVIDIA GPUs use a processor architecture called single instruction multiple
thread (SIMT), i.e., a single instruction stream is executed via a group of 32
threads, called a warp. Threads within a warp are bounded together, i.e., they
always execute the same instruction. Therefore, branch divergence can occur
within a warp: if one thread within a warp moves to the ‘if’ branch of an ‘if-
then-else’ sentence and the others choose the ‘else’ branch, then actually all
the 32 threads will “execute” both branches, i.e., the thread moving to the ‘if’
branch will wait for other threads when they execute the ‘else’ branch and vice
versa. If both branches are long, then the performance penalty is huge. There-
fore, branches should be avoided as much as possible in terms of performance.
Moreover, the data accessing pattern of the threads in a warp should be taken
care of as well. We consider the access pattern of shared memory and global
memory in this work. Accessing shared memory is most efficient if all threads in
a warp are fetching data in the same position or each thread is fetching data in
a different position. Otherwise, the speed of accessing shared memory is reduced
by the so-called bank conflict. Accessing global memory is most efficient if all
threads in a warp are fetching data in a coalesced pattern, i.e., all threads in
a warp are reading data in adjacent locations in global memory. In principle,
the number of threads in a block should always be an integral multiple of the
warp size due to the SIMT architecture; and the number of blocks should be
an integral multiple of the number of MPs since each block can only be executed
in one MP.

An important task for GPU programmer is to hide latency. This can be done
via the following four ways:

1. increase the number of active warps;
2. reduce the access to global memory by caching the frequently accessed data

in fast memory, or in constant memory or texture memory, if the access
pattern is suitable;

3. reduce bank conflict of shared memory access;
4. coalesce accesses to the global memory to use the bandwidth more efficiently.
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Fig. 2: Workflow of steady-state analysis using trajectory-level parallelisation.

However, the above four methods often compete with one another due to the
restrictions of the hardware resources. For example, using more shared memory
would restrict the number of active blocks and hence the number of active warps
is limited. Therefore, a trade-off between the use of fast memory and the number
of threads has to be considered carefully. We discuss this problem and provide
our solution to it in Section 3.2.

3 PBN Simulation in GPU

In this section, we present how simulation of a PBN is performed in a GPU,
while addressing the problems identified at the end of Section 2.

3.1 Trajectory-level parallelisation

In general, there are two ways for parallelising the PBN simulation process. One
way is to update all nodes synchronously, i.e., each GPU thread only updates
one node of a PBN; the other way is to simulate multiple trajectories simul-
taneously. The first way requires synchronisation among the threads, which is
time-consuming in the current GPU architecture. Therefore, in our implemen-
tation, we take the second way to simulate multiple trajectories concurrently.
Samples from multiple trajectories can be merged together to compute steady-
state probabilities of a PBN using a combination of the two-state Markov chain
approach [6] and the Gelman & Rubin method [7]. A detailed description for this
combination can be found in [8]. Note that merging is performed in a CPU and
no synchronization is required. We show in Figure 2 the workflow for computing
steady-state probabilities based on trajectory-level parallelisation.

Each blue box represents a kernel to be parallelised in a GPU. The first and
second blue boxes perform the same task except that trajectories in the first
blue box are abandoned while those in the second blue box are stored in global
memory. This is due to the requirement of the Gelman & Rubin method [7] that
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Algorithm 1 Simulate one step of a PBN in a GPU

1: procedure SimulateOneStep(n, F, extraF, p, S)
2: perturbed := false;
3: for (i := 0; i < n; i++) do
4: if rand() < p then perturbed := true; S[i/32] := S[i/32]⊕ (1� (i%32));
5: end if //the result of i/32 is 〈〈
6: end for
7: if perturbed then return S;
8: else
9: set array nextS to 0;

10: for (i := 0; i < n; i++) do
11: index := nextIndex(i); //sample the Boolean function index for node i
12: compute the entry of the Boolean function based on index and S;
13: v := F [index ];
14: if entry > 31 then //entry starts with 0
15: get index of the Boolean function in extraF ; //see Section 3.3
16: v := extraF [index ]; entry := entry%32;
17: end if
18: v := v � entry ; nextS[i/32] := nextS[i/32] | ((v&1)� (i%32));
19: end for
20: end if
21: S := nextS; return S.
22: end procedure

only the second half samples are used for computing steady-state probabilities.
Based on the last k samples simulated in the second blue box, the third blue box
computes the meta state information required by the two-state Markov chain
approach [6]. The two-state Markov chain approach determines whether the
samples are large enough based on the meta state information. If not enough,
the last (forth) kernel is called again to simulate more samples; otherwise, the
steady-state probability is computed.

The key part of the four kernels is the simulation process. We describe in
Algorithm 1 the process for simulating one step of a PBN in a GPU. The four
inputs of this algorithm are respectively the number of nodes n, the Boolean
functions F , the extra Boolean functions extraF and the current state S. The
extra Boolean functions are generated due to that we optimise the storage of
Boolean functions and split them into two parts in order to save memory (see
Section 3.3 for details). Due to this optimisation, an ‘if’ sentence (lines 14 to 17)
has to be added. This ‘if’ sentence fetches the Boolean function stored in the
second part (extraF ). The probability that this sentence is executed is very small
due to the way we split the Boolean functions and the time cost of executing
this sentence is also very small. Therefore, by paying a small penalty in terms of
computational time, we are able to store Boolean functions in fast memory and
gain much more speedups with the use of fast memory.
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data data type stored in

random number generator CUDA built in registers

node number integer constant memory

perturbation rate float constant memory

cumulative number of functions short array constant memory

selection probabilities of functions float array constant memory

indices of positive nodes integer array constant memory

indices of negative nodes integer array constant memory

cumulative number of parent nodes short array shared memory

Boolean functions integer array shared memory

indices for extra Boolean functions short array shared memory

parent nodes indices for each function short array shared/texture memory

current state integer array registers/global memory

next state integer array registers/global memory

Table 1: Frequently accessed data arrangement.

3.2 Data arrangement

As mentioned in Section 2.2, suitable strategy for hiding latency should be care-
fully considered for a GPU program. Since the simulation process requires ac-
cessing the PBN information (in a random way) in each simulation step and
the latency cost for frequently accessing data in slow memory is really huge,
caching those information in fast and special memory results in a more efficient
computation comparing to allowing more active warps. Therefore, we first try
to arrange all frequently accessed data in fast and special memory as much as
possible; then based on the remaining resources we calculate the optimal num-
ber of threads and blocks to launch. Since the size of fast memory is limited and
the memory required to store a PBN varies from PBN to PBN, a suitable data
arrangement policy is necessary. In this section, we discuss how we dynamically
arrange the data in different GPU memories for different PBNs.

In principle, frequently accessed data should be put in fast memory as much
as possible. We list all the frequently used data and how we arrange them in
GPU memories in Table 1. As the size of the fast memory is limited and has
different advantages for different data accessing modes, we save different data
in different memories. Namely, those read-only data that are always or most
likely to be accessed simultaneously by all threads in a warp, are put in constant
memory; other read-only data are put in shared memory if possible; and the
rest of the data are put in registers if possible. Since the memory required to
store the frequently used data varies a lot from PBN to PBN, we propose to use
a dynamic decision process to determine how to arrange some of the frequently
accessed data, i.e., the data shown in the last four rows of Table 1. The dynamic
process calculates the memory required to store all the data for a given PBN,
and determines where to put them based on their memory size. If the shared
memory and registers are large enough, all the data will be stored in these two
fast memories. Otherwise, they will be placed in the global memory. For the
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data stored in the global memory, we use two ways to speed up their access.
One way is to use texture memory to speed up the access for read-only data,
e.g., the parent node indices for each function. The other way is to optimise the
data structure to allow a coalesced accessing pattern, e.g., the current state. We
explain this in details in Section 3.3. This dynamical arrangement of data allows
our program to explore the computation ability of a GPU as much as possible,
leading to faster speedups for relatively small sparse networks.

3.3 Data optimisation

As mentioned in Section 2.2, a GPU usually has a very limited size of fast
memory and the latency can vary a lot when accessing the same memory in
a different way, e.g., accessing shared memory with or without bank conflict.
Therefore, we optimise the data structure of two important data, i.e., the Boolean
functions (stored as truth tables) and the states of a PBN, to save space and to
maximise the access speed.

Optimisation on Boolean functions. A direct way to store a truth table is to
use a Boolean array, which consumes one byte to store each element. Accessing
an element of the truth table can be directly made by providing the index of the
Boolean array. Instead, we propose to use a primitive 32-bit integer (4 bytes) type
to store the truth table. Each bit of an integer stores one entry of the truth table
and hence the memory usage can be reduced by 8 in maximum: 4 bytes compared
to 32 bytes of a Boolean array. A 32-bit integer can store a truth table of at most
32 elements, corresponding to a Boolean function with max. 5 parent nodes.
Since for real biological systems the number of parent nodes is usually small [9],
in most cases one integer is enough for storing the truth table of one Boolean
function. In the case of a truth table with more than 32 elements, additional
integers are needed. In order to save memory and quickly locate a specific truth
table, we save the additional integers in a separate array. More precisely, we
use a 32-bit integer array F of length M to store the truth tables for all the
M Boolean functions and the ith (i ∈ [0,M − 1]) element of F stores only the
first 32 elements of the ith truth table. If the ith truth table contains more than
32 elements, the additional integers are stored in an extra integer array extraF .
In addition, two index arrays extraFIndex and cumExtraFIndex are needed to
store the index of the ith truth table in extraF . Each element of extraFIndex
stores one index value of the truth table which requires additional integers. The
length of extraFIndex is at most M . Each element of cumExtraFIndex stores the
cumulative number of additional required integers for all the truth tables whose
indices are stored in extraFIndex .

As an example, we show how to store a truth table with 128 elements in
Figure 3. We assume that this 128-element truth table is the ith one among
all M truth tables and that it is the jth one among those m truth tables that
require additional integers to store. Therefore, its first 32 (0-31th) elements are
stored in the ith element of F and its index i is stored in the jth element of
extraFIndex , denoted as ej . The jth element of cumExtraFIndex , denoted as
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Fig. 3: Demonstration of storing Boolean functions in integer arrays.

cj , stores the total number of additional integers required to store the j − 1
truth tables whose indices are stored in the first j − 1 elements of extraFIndex .
Let cumExtraFIndex[j] = k. The kth, (k + 1)th, and (k + 2)th elements of
extraF store the 32-127th elements of the ith truth table. After storing the
truth tables in this way, accessing the tth element of the ith truth table can
be performed in the following way. When t ∈ [0, 31], F [i] directly provides the
information, and when t ∈ [32, 127], three steps are required: 1) search the array
extraFIndex to find the index j such that extraFIndex [j] equals to i, 2) fetch
the jth value of array cumFIndex and let k = cumFIndex [j], 3) the integer
extraF [k + (t − 32)%32] contains the required information. Since in most cases
the number of parent nodes is very limited, the array extraFIndex is very small.
Hence, the search of the index j in the first step can be finished very quickly.
In the rare case where the extraFIndex array would be large, e.g., M is large
and the length of extraFIndex would be close to M , it is preferable to store
extraFindex as an array of length M and let extraFindex [i] store the entry in
cumFIndex for the ith truth table so that the search phase of the first step is
eliminated. The required memory for storing this truth table is reduced from
128 bytes (stored as Boolean arrays) to 20 bytes (6 integers to store the truth
table and 2 shorts to store the index). In addition to saving memory, the above
optimisation can also reduce the chances of bank conflict in shared memory due
to the fact that accessing any entry of a truth table is performed by fetching
only one integer in array F in most cases. Accessing the elements in extraFIndex
requires additional memory fetching; however, as mentioned before, the chance
for such cases to happen is very small in a real-life PBN and the gained memory
space and improved data fetching pattern can compensate for this penalty.

Optimisation on PBN states. The optimisation of the data structure for
states is similar to that for Boolean functions, i.e., states are stored as integers
and each bit of an integer represent the value of a node. Therefore, a PBN with
n nodes requires dn/32e integers (4 ∗ dn/32e bytes) to be stored, compared to n
bytes when stored as a Boolean array. During the simulation process, the current
state and the next state of a PBN have to be stored. As shown in Table 1, the
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S τ00 τ10 ... τ310
... τT−1

0 τ01 ... τT−1
1

... τ0` ... τT−1
`

threads in one warp 0 1 ... 31

... fetching values of the first 32 nodes
for threads 0-31 in one transaction

T consecutive integers

Fig. 4: Storing states in one array and coalesced fetching for threads in one warp.

states are put in registers whenever possible, i.e., when the number of nodes is
smaller than 129. In the case of a PBN with nodes number equal to or larger
than 129, the global memory has to be used due to the limited register size
(shared memory are used to store other data and would not be large enough to
store states in this case). To reduce the frequency of accessing global memory,
one register (32 bits) is used to cache the integer that stores the values of 32
nodes. Updating of the 32 node values is performed via the register and stored
in the global memory with a single access only once after all the 32 node values
are updated in the register. Moreover, states for all the threads are stored in one
large integer array S in the global memory and we arrange the content of this
array to allow for a coalesced accessing pattern. More specifically, starting from
the 0th integer, every consecutive T integers store the values of 32 nodes in the
T threads (assuming there are T threads in total). Figure 4 shows how to store
states of a PBN with n nodes for all the T threads in an integer array S and
how the 32 threads in the first warp fetch the first integer in a coalesced pattern.
We denote τ ji as the ith integer to store values of 32 nodes for thread j and let
` = dn/32e. For threads in one warp, accessing the values of the same node can
be performed via fetching the adjacent integers in the array S. This results in
a coalesced accessing pattern of the global memory. Hence, all the 32 threads in
one warp can fetch the data in a single data transaction.

4 Evaluation

We evaluate our GPU-based parallelisation framework for computing steady-
state probabilities of PBNs in both randomly generated networks and a real-life
biological network. All the experiments are performed on a high performance
computing (HPC) machines, each of which contains a CPU of Intel Xeon E5-
2680 v3 @ 2.5 GHz and an NVIDIA Tesla K80 Graphic Card with 2496 cores
@824MHz. The program is written in a combination of both Java and C, and the
initial and maximum Java virtual machine heap size is set to 4GB and 11.82GB,
respectively. The C language is used to program operations on GPUs due to the
fact that no suitable Java library is currently provided for operations on NVIDIA
GPUs. When launching the GPU kernels, the kernel configurations (the number
of threads and blocks) are dynamically determined as mentioned in Section 3.2.
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Fig. 5: Speedups of GPU-accelerated steady-state computation.

4.1 Randomly generated networks

The evaluation on randomly generated networks is performed on 380 PBNs,
which are generated using the tool ASSA-PBN [10]. The nodes number of these
networks ranges in the set {100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650,
700, 750, 800, 850, 900, 950, 1000}. For each of the 380 networks, we compute one
steady-state probability using both the sequential two-state Markov chain ap-
proach and our GPU-accelerated parallelisation framework. We set the three
precision requirements of the two-state Markov chain approach, i.e., the confi-
dence level s, the precision r, and the steady-state convergence parameter ε to
0.95, 5× 10−5, and 10−10 respectively. The computation time limit is set to 10
hours. In the end, we obtain 366 pairs of valid results. The 14 invalid pairs are
due to that the sequential version two-state Markov chain approach is timed out
(the parallel version is not). Among the 366 results, 355 (96.99%) are compara-
ble, i.e., the differences of computed probabilities satisfy the specified precision
requirement. This result meets our confidence level requirement.

We compute the speedups of the GPU-accelerated parallelisation framework
with respect to the sequential two-state Markov chain approach for those 366

valid results with the formula speedup =
spa/tpa
sse/tse

, where spa and tpa are respec-

tively the sample size and time cost of the parallelisation framework, and sse
and tse are respectively the sample size and time cost of the sequential approach.
The speedups are ploted in Figure 5. As can be seen from this figure, we obtain
speedups approximately between 102 and 405. There are some small gaps with
respect to the densities of those networks, e.g., no networks with density between
5 and 6. Those gaps are due to the way how those networks are randomly gener-
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node # density
probability

sample size
(million)

time (s)
speedup

seq. par. seq. par. seq. par.

100 2.53 0.24409 0.24401 350 367 2637.06 6.84 405

100 9.32 0.36221 0.36217 426 427 3429.06 13.04 264

400 2.75 0.12003 0.12002 316 318 7615.72 26.77 286

400 8.98 0.04657 0.04660 135 137 3908.25 20.79 190

700 2.64 0.05800 0.05794 259 261 8567.52 39.27 220

700 9.41 0.10632 0.10634 438 441 16541.79 121.60 137

1000 2.73 0.14675 0.14673 838 839 30626.44 184.44 166

1000 8.81 0.00298 0.00293 20 21 792.86 8.10 103

Table 2: Speedups of GPU-accelerated steady-state computation of 8 randomly
generated networks. seq. is short for the sequential two-state Markov chain ap-
proach; while par. is short for the GPU-accelerated parallel approach.

ated, i.e., one cannot force the ASSA-PBN tool to generate a PBN with a fixed
density, but can only provide the following information to affect the density: the
number of nodes, the maximum (minimum) number of functions for each node,
and the maximum (minimum) number of parent nodes for each function. How-
ever, even with the gaps, the tendency of the changes of speedups with respect to
densities can be well observed. In fact, this observation is similar to that of the
network size. With the network size decreasing and the density decreasing, our
GPU-accelerated parallelisation framework gains higher speedups. This is due
to our dynamic way of arranging data for different size PBNs: data for relatively
small3 and sparse networks can be arranged in the fastest memory.

To demonstrate the computation details, we select 8 pairs among the 366
results and show in Table 2 the computed probabilities, the sample size (in
millions) and the time cost (in seconds) for computing the steady-state prob-
abilities using both the sequential two-state Markov chain approach and the
GPU-accelerated parallelisation framework. The two approaches generated com-
parable results using similar length of samples while our GPU-accelerated par-
allelisation framework shows speedups of more than two orders of magnitude.
All detailed results for the 380 networks can be found at http://satoss.uni.

lu/software/ASSA-PBN/benchmark/.

4.2 An apoptosis network

We have analysed a PBN model of an apoptosis network using the sequential
two-state Markov chain approach in [6]. The apoptosis network was originally
published in [?] as a BN model and cast into the PBN framework in [5]. The PBN
model (as shown in Figure 6) contains 91 nodes and 107 Boolean functions. The
selection probabilities of the Boolean functions were fitted to experimental data

3 In fact all the networks used in this subsection should be called large-size PBNs
since the network with the smallest size has already contained 2100 ≈ 1030 states.
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Fig. 6: The wiring of the probabilistic Boolean model of apoptosis in [5].

in [5]. We took the 20 best fitted parameter sets and performed the influence
analyses for them. Although we managed to finish this analysis in an affordable
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steady-state
R C F

probability
sample size

(million)
time (s)

speedup
seq. par. seq. par. seq. par.

0 1 1 0.003236 0.003237 589.05 590.77 3866.04 9.28 417.81

1 1 1 0.990053 0.990046 1809.27 1811.71 11476.00 28.08 409.20

1 0 1 0.005592 0.005590 1015.95 1021.07 6662.26 15.89 421.47

1 1 0 0.001082 0.001080 197.80 200.12 1281.45 3.27 396.60

* 1 1 0.993289 0.993288 1222.83 1241.06 7967.42 19.30 418.99

* 1 0 0.001082 0.001087 197.29 206.37 1096.90 3.36 341.62

* 0 1 0.005614 0.005624 1021.87 1039.35 6725.25 16.17 422.98

Table 3: Speedups of GPU-accelerated steady-state computation of a real-life
apoptosis network.

amount of time due to an efficient implementation of a sequential PBN simulator,
the analysis was still very expensive in terms of computation time since the
required trajectories were very long and we needed to compute steady-state
probabilities for a number of different states.

In this work, we re-perform part of the influence analyses from [6] using
our GPU-accelerated parallel two-state Markov chain approach. In the influ-
ence analysis, we consider the PBN with the best fitted values and we aim to
compute the long-term influences on complex2 from each of its parent nodes:
RIP-deubi, complex1, and FADD, in accordance with the definition in [11]. In
order to compute this long-term influence, seven different steady-state proba-
bilities are required. We show in the first column of Table 3 the values of the
seven steady-states. The three numbers or “*” with two numbers respectively
represent the steady-state values of the three genes RIP-deubi, complex1, and
FADD: 0 represents active; 1 represents inactive; and “*” represents irrelevant.
We compute those seven different steady-state probabilities using both the se-
quential two-state Markov chain approach and the GPU-accelerated paralleli-
sation framework. We show in Table 3 the computed steady-state probabilities,
the sample size (in millions), the time cost (in seconds), and the speedups we
obtain for this computation. The confidence level s, precision r, and the steady-
state convergence parameter ε of this computation are set to 0.95, 5× 10−6, and
10−10 respectively. The density of the network is approximately 1.78. The two
approaches compute comparable steady-state probabilities with similar trajec-
tory lengths; while our GPU-accelerated parallelisation framework reduces the
time cost by approximately 400 times. The total time cost for computing the
seven probabilities is reduced from about 11 hours to approximately 1.5 minutes.

5 Conclusion and Future Works

In this paper, we have proposed a trajectory-level parallelisation framework to
accelerate the computation of steady-state probabilities for large PBNs with the
use of GPUs. Our work contributes in three aspects in maximising the perfor-
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mance of a GPU when computing the steady-state probabilities. First, we reduce
the time consuming synchronisation cost between GPU cores by allowing each
core to simulate all nodes of one trajectory. Secondly, we propose a dynamical
data arrangement mechanism for handling different size PBNs with a GPU. This
leads to large speedups for handling relatively small-size PBNs. Lastly, we de-
velop a specific way of storing predictor functions of a PBN and the state of the
PBN in the GPU memory to save space and to accelerate the memory accessing.
We show with experiments that our GPU-based parallelisation gains a speedup of
more than two orders of magnitudes. Evaluation on a real-life apoptosis network
shows that our GPU-based parallelisation obtains a speedup of approximately
400 times.

There are two directions for our future works. One is to apply our work to
analyse large realistic biological models. The other one is to optimise the current
structure to better handle very dense and huge networks.
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