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Abstract. Attack–defense trees are a novel methodology for graphical
security modeling and assessment. They extend the well known formal-
ism of attack trees by allowing nodes that represent defensive measures to
appear at any level of the tree. This enlarges the modeling capabilities of
attack trees and makes the new formalism suitable for representing inter-
actions between an attacker and a defender. Our formalization supports
different semantical approaches for which we provide usage scenarios. We
also formalize how to quantitatively analyze attack and defense scenarios
using attributes.
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1 Introduction

It is a well-known fact that the security of any sufficiently valuable system is
not static. In order to keep a system secure, it has to be defended against a
growing number of attacks. As better defensive measures get deployed, more
sophisticated attacks are developed, leading to an endless arms race and an
increasingly complex system.

A mature, large, and complex system poses several challenges. How can it
be decided whether a costly defensive measure implemented in the distant past
is still necessary today? What are the best defensive measures worth currently
investing in? How can newly discovered attacks and implemented defenses be
efficiently and systematically documented?

In 1999, Schneier popularized attack trees as a tool to evaluate the security
of complex systems [Sch99]. An attack tree is a tree-like representation of an
attack scenario. The root of an attack tree corresponds to an attacker’s goal.
The children of a node in the tree are refinements of the node’s goal into sub-
goals. The leaves of the tree are the actions to be executed by the attacker.

⋆ This is a pre-print version of the article published by Oxford Journals in The Journal
of Logic and Computation 2012; doi: 10.1093/logcom/exs029. The official publication
can be accessed via http://logcom.oxfordjournals.org/cgi/reprint/exs029?

ijkey=mh36BNzlgzljoDt&keytype=ref. A preliminary version of this work has ap-
peared in the proceedings of FAST 2010.



An obvious limitation of attack trees is that they cannot capture the interac-
tion between attacks carried out on a system and the defenses that could be put
in place to fend off the attacks. This consequently limits the precision with which
the best defensive strategies can be analyzed, since it does not take into account
the effects of potential defensive measures which would need to be overcome by
new attacks. Similarly, a regular attack tree does not allow for the visualization
and consideration of the evolution of a system’s security, because the evolution
can only be understood in view of both, the attacker’s, as well as the defender’s,
actions.

These limitations can be overcome by introducing defensive actions as coun-
termeasures to attacks. In order to model the ongoing arms race between attacks
and defenses, it is necessary to allow for alternation between these two types of
actions. We therefore introduce attack–defense trees as a graphical representa-
tion of possible measures an attacker might take in order to attack a system and
the defenses that a defender can employ to protect the system.

The contributions of this paper are as follows:

1. We develop an extension of attack trees with defense nodes.
The new formalism is called attack–defense trees. It generalizes and unifies
existing approaches to extend attack trees.

2. We formalize the meaning of an attack–defense tree.
We propose a framework in which a variety of semantics can be defined.
This is motivated by the fact that different applications require different
interpretations of attack–defense trees. We develop the following semantics:

– The class of semantics induced by De Morgan lattices.
This class contains the propositional semantics which is the most fre-
quently used semantics for attack trees.

– Multiset semantics.
This class extends the semantics proposed for attack trees in [MO05] to
attack–defense trees.

– The class of equational semantics.
Equational semantics are defined by sets of equations over attack–defense
trees. They constitute therefore a very general class of semantics and aid
in establishing relations between different semantics for attack–defense
trees.

We provide a complete axiomatization for the propositional and the multiset
semantics.

3. We introduce the notion of an attribute for attack–defense trees.
The introduction of attributes enables a quantitative analysis of attack–
defense scenarios. It requires the formalization of a compatibility condition,
which guarantees that the evaluation of an attribute on two semantically
equal attack–defense trees results in the same value for both trees.

The paper is structured as follows. In Section 2 we formally introduce attack–
defense trees, give an example, and define attack–defense terms which are a

2



formal representation of attack–defense trees. We present various semantics for
attack–defense trees in Section 3. We show how to compare different semantics
introduced in this paper in Section 4 where we also provide complete axiomati-
zations for the propositional and the multiset semantics. In Section 5, we study
how to quantitatively analyze attack–defense trees with the help of attributes.
We review related work in Section 6 and conclude in Section 7.

2 Attack–Defense Trees

2.1 Terminology

An attack–defense tree (ADTree) is a node-labeled rooted tree describing the
measures an attacker might take in order to attack a system and the defenses that
a defender can employ to protect the system. ADTrees have nodes of two opposite
types: attack nodes and defense nodes, which correspond to an attacker’s and a
defender’s (sub-)goals, respectively.

The two key features of an ADTree are the representation of refinements and
countermeasures. Every node may have one or more children of the same type
representing a refinement into sub-goals of the node’s goal. If a node does not
have any children of the same type, it is called a non-refined node. Non-refined
nodes represent so called basic actions.

Every node may also have one child of opposite type, representing a counter-
measure. Thus, an attack node may have several children which refine the attack
and one child which defends against the attack. The defending child in turn may
have several children which refine the defense and one child that is an attack
node and counters the defense.

The refinement of a node of an ADTree is either disjunctive or conjunctive.
The goal of a disjunctively refined node is achieved when at least one of its
children’s goals is achieved. The goal of a conjunctively refined node is achieved
when all of its children’s goals are achieved.

The purpose of ADTrees is to model attack–defense scenarios. An attack–de-
fense scenario can be seen as a game between two players, the proponent (denoted
by p) and the opponent (denoted by o). The root of an ADTree represents the
main goal of the proponent. When the root is an attack node, the proponent
is an attacker and the opponent is a defender. Conversely, when the root is a
defense node, the proponent is a defender and the opponent is an attacker.

When drawing ADTrees, we depict attack nodes by circles and defense nodes
by rectangles, as shown in Figure 1. Refinement relations are indicated by solid
edges between nodes, and countermeasures are indicated by dotted edges. We
depict a conjunctive refinement of a node by an arc over all edges connecting
the node and its children of equal type.

2.2 Example

To demonstrate the features of ADTrees, we consider the following fictitious
scenario concerning data confidentiality in a data hosting center. The ADTree
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representing the scenario is shown in Figure 1. Its root node is a defense, thus
the main goal expressed by the tree is the protection of data confidentiality.
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Fig. 1. An ADTree for protecting data confidentiality.

To protect the confidentiality of costumer data, the hosting company needs
to invest in network security as well as in physical security measures. These
measures break up into several aspects that need to be taken care of. However,
even if both of physical and network security were to be infallible, the company’s
employees would still be a weak point. Two common options to subvert a com-
pany through its employees are corruption and social engineering. These attacks
can be mitigated through employee screenings and sensitivity training for social
engineering techniques.

Network security is a very complex problem, and it is beyond the purpose
of this introductory example to show all possible defenses. Some standard mea-
sures employed towards network security are firewalls, intrusion detection and
access control systems. Of these, we are displaying the evolution of access con-
trol through the use of passwords. In many access controlled services, passwords
used to be free of any restrictions regarding the type of characters they need
to contain. Consequently, a significant number of passwords chosen consisted
of a name or dictionary word, since these are much easier to remember than a
random sequence of characters. This has led to access control breaches through
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so-called dictionary attacks. In order to prevent these attacks, computer systems
nowadays require “strong” passwords, which are to consist of letters, numbers,
and non-alphanumeric characters. This mechanism, however, induces people to
write up their passwords on easily accessible sticky notes or to reuse the same
strong password for different accounts and services. Thus, the strong password
required for the data center may be recovered by attacking an unrelated and
possibly weaker system the target user has an account on.

Regarding physical security, a building can be broken into through back
doors, windows or fire escapes. It is therefore common to reinforce windows
and to protect other entrances with locks. The locks can be circumvented by
forcing them open or by obtaining a key. It is therefore increasingly common to
employ security guards to monitor the building. In order to effectively monitor
the building, a security guard will typically have the keys not only to the building
itself, but also to all rooms in the building. This makes the security guard a
possible attack vector. He could be bribed or overpowered, or his keys could
be stolen in some manner. To overpower the guard, it would be necessary to
outnumber him and threaten him with weapons. To prevent these three attacks,
video cameras with remote surveillance could be employed.

The scenario as described thus far is obviously incomplete. It is clear, how-
ever, that for any addition to the scenario, it would be very simple to extend the
ADTree shown in Figure 1 with new attacks and defenses.

2.3 Formal Representation

In order to formally analyze ADTrees, we define an abstract syntax which we call
attack–defense terms. Attack–defense terms are typed terms over a particular
signature called the AD–signature. To define the AD–signature, we make use of
the notion of an unranked function. An unranked function F with domain D and
range R denotes a family of functions (Fk)k∈N, where Fk : D

k → R, for k > 0.
Given a set S, we denote by S∗ the set of all finite strings over S and by ε the
empty string.

Definition 1. The AD–signature is a pair Σ = (S,F), where

– S = {p, o} is a set of types, and

– F = {(∨p
k)k∈N, (∧

p
k)k∈N, (∨

o
k)k∈N, (∧

o
k)k∈N, c

p, co} ∪ B
p ∪ B

o is a set of func-
tion symbols, such that {(∨p

k)k∈N, (∧
p
k)k∈N, (∨

o
k)k∈N, (∧

o
k)k∈N, c

p, co}, Bp and
B
o are pairwise disjoint.

Every function symbol F ∈ F is equipped with a mapping rnk: F → S∗×S, called
rank. The rank of a function symbol F is a pair rnk(F ) = (arity(F ), type(F )),
where the first component describes the arity of F and the second specifies its
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type. For the function symbols in F and k ∈ N, we define

rnk(b) = (ε, p), for b ∈ B
p, rnk(b) = (ε, o), for b ∈ B

o,

rnk(∨p
k) = (pk, p), rnk(∨o

k) = (ok, o),

rnk(∧p
k) = (pk, p), rnk(∧o

k) = (ok, o),

rnk(cp) = (p o, p), rnk(co) = (o p, o).

The elements of Bp and B
o are typed constants, which we call basic actions of the

proponent’s type and basic actions of the opponent’s type, respectively. We denote
the set of all basic actions by B = B

p ∪ B
o. The unranked functions ∨p,∧p,∨o,

and ∧o represent disjunctive (∨) and conjunctive (∧) refinement operators for
the proponent and the opponent, respectively. We set p = o and o = p. The
binary functions cs, for s ∈ S, connect actions of type s with actions of the
opposite type s.

Definition 2. Typed ground terms over the AD–signature Σ are called attack–
defense terms (ADTerms). The set of all ADTerms is denoted by TΣ.

For s ∈ {p, o}, we denote by T
s
Σ the set of all ADTerms with the head symbol of

type s. We have TΣ = T
p
Σ∪To

Σ . The elements of Tp
Σ and T

o
Σ are called ADTerms

of the proponent’s and of the opponent’s type, respectively. The ADTerms of
the proponent’s type constitute a formal representation of attack–defense trees.
Attack trees are formally represented by ADTerms of the proponent’s type that
are built exclusively from basic actions of the proponent’s type and functions ∨p

and ∧p.
In the remaining part of this section, we give a formal definition of attack–

defense trees and we show how attack–defense trees correspond to attack–defense
terms.

The definition of an attack–defense tree is based on the notion of a finite
ordered tree, as introduced in [CDG+07]. A finite ordered tree T over a set of
labels L is a function T : Pos(T ) → L, where Pos(T ) is a prefix-closed subset of
(N\{0})∗, called the set of positions of T . We depict T as a graph in the following
manner. The positions in Pos(T ) are drawn as nodes labeled with elements of L.
The position ε is the root node of the graph, depicted as the topmost node. The
positions pi, where i ∈ {1, . . . , k} for some k > 0, are the children of the node
corresponding to the position p. Since T is ordered, the node corresponding to
the position pi is drawn left of the node depicting position pj, for all i < j.

An attack–defense tree is then formally defined as follows.

Definition 3. An attack–defense tree (ADTree) is a finite ordered tree T over
the set of labels LT = B

p ∪ B
o ∪ {∨p,∧p,∨o,∧o}, together with a function

λ : Pos(T ) → { , } which satisfies the following two conditions for every
p ∈ Pos(T ).

1. If there exists i ∈ N \ {0}, such that pi ∈ Pos(T ) and λ(pi) = λ(p), then

T (p) ∈

{

{∨p,∧p} if λ(p) = λ(ε),

{∨o,∧o} else,
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otherwise

T (p) ∈

{

B
p if λ(p) = λ(ε),

B
o else.

2. For every i ∈ N \ {0}, if λ(pi) 6= λ(p), then ∀j > i pj 6∈ Pos(T ).

The function λ allows us to distinguish between attack nodes ( ) and defense
nodes ( ). Value λ(ε) determines for the considered tree which player (attacker
or defender) is the proponent and which is the opponent. By comparing the
values of λ applied to a parent node with the values of λ applied to its children
we can decide which nodes are refined and which non-refined. A node p is refined
if it has at least one child pi such that λ(p) = λ(pi). A non-refined node can have
at most one child p1, and this child needs to satisfy λ(p) 6= λ(p1). Condition 1
of Definition 3 guarantees that each node p of an ADTree is either refined in a
conjunctive or disjunctive way (T (p) ∈ {∨p,∧p,∨o,∧o}) or is a non-refined node
(T (p) ∈ B

p ∪ B
o). Condition 2 states that each node p may only have one child

of the opposite type. Moreover, if such a child exists, it is always depicted as the
rightmost child node of p.

In the formal definition of ADTrees, refined nodes are labeled with the as-
sociated refining symbols. In practice, such nodes are typically labeled with
descriptive names of the (sub-)goals they represent, as shown in Figure 1.

Tables 1 and 2 show how to obtain the ADTerm corresponding to an ADTree
and vice versa. Given an ADTree T , we denote by ι(T ) the ADTerm represent-
ing T . Given an ADTerm t, we denote by I(t) the corresponding ADTree. In
Tables 1 and 2, we assume that the proponent is an attacker. If the proponent is
a defender, circular nodes have to be replaced with rectangular nodes and vice
versa. To condense the presentation even further, we leave out the arcs, denoting
conjunctions, in the cases where f = ∧s, for s ∈ {p, o}.

Example 1. The ADTerm representing the sub-tree of the ADTree in Figure 1,
rooted at the Security Guard node, is the following

cp
(

SecGuard, co
(

∨o
(

Bribe,∧o(Outnumb,Weapons), StealKeys
)

,Cameras
)

)

.

Note that the names of refined nodes in the ADTree, such as “Defeat Guard” and
“Overpower”, do not appear in the ADTerm. Instead, these nodes are represented
with the corresponding refining symbols ∨o and ∧o.

2.4 Design choices

When designing the ADTree formalism, we have deliberately made the following
modeling choices in order to keep a balance between usability, complexity, and
representational impact.

1. Refinements and countermeasures. An ADTree node is refined either
conjunctively or disjunctively. Refinement operators are unranked. Each
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T b b f

T1 · · · Tk

f

T1 · · · Tk

where where where where
b ∈ B

p b ∈ B
o f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

ι(T ) b b f(ι(T1), . . . , ι(Tk)) f(ι(T1), . . . , ι(Tk))

T b

T1

b

T1

f

T1 · · · Tk T ′

f

T1 · · · Tk T ′

where where where where
b ∈ B

p b ∈ B
o f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

ι(T ) cp(b, ι(T1)) c
o(b, ι(T1)) c

p(f(ι(T1), . . . , ι(Tk)), ι(T
′)) co(f(ι(T1), . . . , ι(Tk)), ι(T

′))

Table 1. Transformation from ADTrees to ADTerms.

ADTree node may only have one child of opposite type. These choices were
made in order for ADTrees to reflect as closely as possible a description of
an attack–defense scenario in natural language.
These choices do not limit the expressiveness of the formalism. We would
obtain an equally expressive formalism by restricting ADTrees to binary
refinements, by allowing nodes with multiple countermeasures, or by allowing
nodes that are conjunctively and disjunctively refined at the same time.

2. ADTrees versus parse trees of ADTerms. The ADTree corresponding
to an ADTerm of the form t = cp(t1, t2) differs from the parse tree of t. We
depict the root of the tree corresponding to t2 as a child of the root node of
the tree corresponding to t1. In this manner we illustrate that t2 represents a
countermeasure for the scenario depicted by t1. Such an illustration helps us
to model interactions between the two players involved in an attack–defense
scenario in an intuitive and understandable way.

3. Finite trees. We consider only finite ADTrees in this paper for the sake of
simplicity. Infinite ADTrees are conceivable, for instance, to model recursive
goals, such as obtaining keys to a locked box which contains the keys. Infinite
ADTrees would also be a useful tool to study the limit case of evolving
attack–defense scenarios, such as automated attacks and defenses.

4. Ordered trees. We define ADTrees to be ordered trees. This choice makes
ADTrees suitable for the analysis of scenarios in which the order between
actions is relevant. This could, for instance, be the case when temporal re-
lations are taken into account.

5. Trees versus directed acyclic graphs. We use trees instead of directed
acyclic graph (DAG) for simplicity of the formalism. DAGs are more ex-
pressive because they can be used to indicate dependencies between nodes.
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t b ∈ B
p b ∈ B

o f(t1, . . . , tk), where f(t1, . . . , tk), where
f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

I(t) b b f

I(t1) · · · I(tk)

f

I(t1) · · · I(tk)

t cp(b, t′), co(b, t′), cp(t0, t
′), where co(t0, t

′), where
b ∈ B

p b ∈ B
o t0 = f(t1, . . . , tk) and t0 = f(t1, . . . , tk) and

f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

I(t) b

I(t′)

b

I(t′)

f

I(t1) · · · I(tk) I(t′)

f

I(t1) · · · I(tk) I(t′)

t cp(t0, t
′), where co(t0, t

′), where
t0 = cp(t1, t2) t0 = co(t1, t2)

I(t) ∨p
1

I(t0) I(t′)

∨o
1

I(t0) I(t′)

Table 2. Transformation from ADTerms to ADTrees.

For instance, the two nodes labeled “Window” in Figure 1 could be replaced
by a single node in order to express that they concern the same physical
window or that all attacks to one window also apply to the other window.
Since such shared nodes give rise to different possible interpretations and to
a more complicated semantical treatment, we leave the extension to DAGs
for future research.

3 Semantics for Attack–Defense Terms

3.1 Definition of semantics

ADTerms represent attack–defense scenarios. Depending on how ADTerms are
interpreted, syntactically different terms may be considered equivalent. A se-
mantics for ADTerms defines such equivalence classes. Terms that belong to the
same equivalence class represent the same scenario.

Definition 4. A semantics for ADTerms is an equivalence relation on TΣ that
preserves types.

Depending on the semantics, the most natural ADTerm for a scenario may not
be the simplest possible.
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Example 2. Consider an attack scenario in which three different doors need to be
opened with the same key. The scenario can be represented by the ADTerm t =
∧p(OpenDoor,OpenDoor,OpenDoor). If it is only the feasibility of the scenario
which is of interest, the number of doors to be opened is irrelevant. In this case,
t represents the same scenario as t′ = OpenDoor.

An essential feature of the ADTree methodology is that ADTerms can be
equipped with multiple semantics. Different applications require the use of dif-
ferent semantics. The two terms t and t′ in Example 2 are equivalent if the
feasibility of the attack scenario is examined. However, t and t′ are no longer
equivalent if the attacker is interested in how much time is required to achieve
his attack. The choice of an appropriate semantics becomes crucial when a quan-
titative analysis of an attack–defense scenario is to be performed. We will discuss
this issue in Section 5.

3.2 Propositional Semantics

Attack trees are often seen as representations of and-or formulæ. Thus, one
of the most frequently used semantics for attack trees is the propositional se-
mantics [KMMS10,KMRS10,WJ10,RSF+09]. In this section, we extend this se-
mantics to ADTerms. When the propositional semantics is used, ADTerms are
interpreted as propositional formulæ. The satisfiability of the formula interpret-
ing an ADTerm t models the feasibility of the scenario represented by t. The
propositional semantics is well-suited to evaluate whether a system is vulnerable
to an attack, in how many different ways a system can be successfully attacked,
or whether special equipment is needed to perform an attack.

We assign a propositional variable xb to every basic action b ∈ B. We assume
that different basic actions give rise to different propositional variables. In par-
ticular, since the sets of basic actions of the proponent’s and of the opponent’s
type are disjoint, we have

{xb | b ∈ B
p} ∩ {xb | b ∈ B

o} = ∅.

A propositional formula tP , called a propositional ADTerm, is associated with
every ADTerm t as follows. Let t1, t2, . . . , tk ∈ TΣ , s ∈ {p, o} and k > 0. Then

bP = xb, for b ∈ B, (∨s
k(t

1, . . . , tk))P = t1P ∨ · · · ∨ tkP ,

(cs(t1, t2))P = t1P ∧ ¬t2P , (∧s
k(t

1, . . . , tk))P = t1P ∧ · · · ∧ tkP .

Every assignment of Boolean values (0 standing for false and 1 standing for
true) to the propositional variables xb, for b ∈ B, which satisfies a propositional
ADTerm tP , describes a way to achieve the proponent’s goal represented by the
ADTerm t.

Example 3. Consider the ADTerm t = cp(b,∧o(d, e)), where b ∈ B
p and d, e ∈

B
o. The corresponding propositional ADTerm tP is xb∧¬(xd∧xe). The formula

tP is satisfied if and only if variable xb is set to 1 and at least one of the variables
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xd or xe is set to 0. This models the fact that, in order to achieve his goal, the
proponent needs to execute action b while at least one of the two actions d and
e must not be executed by the opponent.

By ≈ we denote the canonical equivalence relation on propositional formulæ.
Recall that two propositional formulæ ψ and ψ′ are equivalent (ψ ≈ ψ′) if and
only if, for every assignment ν of Boolean values to propositional variables, we
have ν(ψ) = ν(ψ′).

Definition 5. The propositional semantics for ADTerms is the equivalence re-
lation ≡P on TΣ defined, for all t, t′ ∈ TΣ, by

t ≡P t′ if and only if tP ≈ t′P .

The following example illustrates the use of the propositional semantics.

Example 4. Consider the ADTerm t = cp(b,∧o(d, e)), introduced in Example 3
and the ADTerm t′ = cp(∧p(b, b),∧o(d, e)). Due to the idempotency of the propo-
sitional conjunction, the corresponding propositional ADTerms are equivalent
formulæ, i.e., tP = xb ∧ ¬(xd ∧ xe) ≈ (xb ∧ xb) ∧ ¬(xd ∧ xe) = t′P . Therefore, we
have t ≡P t′.

3.3 Semantics Induced by a De Morgan Lattice

In the propositional semantics, ADTerms are interpreted as propositional for-
mulæ. Such an interpretation limits the usefulness of the propositional semantics
to those applications which take only binary properties into account. Examples
of such properties are feasibility or presence of an attack. This implies that the
propositional semantics is not well suited to reason about properties, such as ef-
fectiveness or usefulness of an attack’s components, which may have more than
two states. In order to overcome this limitation of the propositional semantics,
we propose the use of semantics induced by De Morgan lattices. In a semantics
induced by a De Morgan lattice, ADTerms are interpreted as functions whose
range is the De Morgan lattice.

Let 〈A,+,×〉 be an algebraic structure defined over a non-empty set A with
two binary operations + and ×. The structure 〈A,+,×〉 is called a distributive
lattice if the operators + and × are associative and commutative and if the
following laws hold: a× (a+b) = a, a+(a×b) = a (absorption) and a× (b+c) =
(a× b) + (a× c) (distributivity of × over +). It is a basic fact in lattice theory
that the last condition is equivalent to its dual, i.e., a+(b×c) = (a+b)× (a+c).
Furthermore, it is well-known that if 〈A,+,×〉 is a lattice it can always be
equipped with a canonical partial order, defined for all a, b ∈ A, by

a � b if and only if a+ b = b. (�)

This order is monotonic with respect to the operations + and ×, see [DP90].
To introduce the notion of a De Morgan lattice, we extend a distributive

lattice 〈A,+,×〉 with a unary operation, denoted by ¬, satisfying De Morgan’s
laws and double negation.
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Definition 6. An algebraic structure 〈A,+,×,¬〉 is called a De Morgan lattice
if the sub-structure 〈A,+,×〉 is a distributive lattice and, for all a, b ∈ A, we
have

¬(a+ b) = (¬a)× (¬b), ¬(a× b) = (¬a) + (¬b), ¬(¬a) = a.

We assume that every De Morgan lattice 〈A,+,×,¬〉 contains the neutral ele-
ments 0 for + and 1 for ×. This is not a significant restriction, since using a
result of Pouly [Pou08], it can be easily shown that 〈A,+,×,¬〉 can always be
adjoined with such elements.

De Morgan lattices are well-suited to represent outcomes requiring more than
just the two Boolean values 0 and 1.

Example 5. The tuple 〈{F, M, T},max,min,¬〉, where F ≤ M ≤ T and ¬F = T,
¬M = M and ¬T = F is a De Morgan lattice1. The values T, M and F, for in-
stance, could allow us to distinguish between fully effective, partially effective
and ineffective actions, respectively.

Furthermore, De Morgan lattices are more general than Boolean algebras, as
shown in the following example.

Example 6. Consider the De Morgan lattice 〈{T, M, F},max,min,¬〉 introduced
in Example 5. Note that F and T are neutral elements for max and min, respec-
tively. However, this De Morgan lattice is not a Boolean algebra. It does not
satisfy the laws of complements, because max{M,¬M} = M 6= T and min{M,¬M} =
M 6= F.

We now introduce De Morgan valuations which are functions represented by
ADTerms when a semantics induced by a De Morgan lattice is used. As in the
case of the propositional semantics, we assign a propositional variable xb to every
action b ∈ B. Given a set V ⊆ {xb | b ∈ B}, we denote by x ∈ {0, 1}V a function
that associates a value x(xb) ∈ {0, 1} with every variable xb ∈ V . In other words,
every such function x ∈ {0, 1}V represents an assignment of Boolean values to
the variables in V .

Definition 7. Let 〈A,+,×,¬〉 be a De Morgan lattice and let V ⊆ {xb | b ∈ B}
be a set of propositional variables. A De Morgan valuation f with domain V is
a function f : {0, 1}V → A assigning a value f(x) ∈ A to each x ∈ {0, 1}V .

Example 7. The propositional Boolean algebra 〈{0, 1},∨,∧,¬〉 is an example of
a De Morgan lattice. In this case, the De Morgan valuations are simply Boolean
functions, i.e., functions of the form f : {0, 1}V → {0, 1}.

Given a function x ∈ {0, 1}V , we denote by x
↓W the projection of x to a

subset W ⊆ V . This notation allows us to define the sum and the product of De
Morgan valuations. Let 〈A,+,×,¬〉 be a De Morgan lattice and let f and g be

1 One can show that order ≤ coincides with the canonical order given by (�) for
+ = max.
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two De Morgan valuations with domains V and U , respectively. The sum of f
and g (denoted by f + g) and the product of f and g (denoted by f × g) are De
Morgan valuations with domain V ∪ U , defined for every x ∈ {0, 1}V ∪U by

(f + g)(x) = f(x↓V ) + g(x↓U ) and (f × g)(x) = f(x↓V )× g(x↓U ).

The negation of the De Morgan valuation f (denoted by ¬f) is the De Morgan
valuation with domain V , defined for every x ∈ {0, 1}V by (¬f)(x) = ¬(f(x)).

Example 8. Consider the De Morgan lattice 〈{T, M, F},max,min,¬〉 introduced
in Example 5. Let f : {0, 1}{y} → {T, M, F} and g : {0, 1}{z} → {T, M, F} be two
De Morgan valuations, given by

f(y = 0) = F, g(z = 0) = F,

f(y = 1) = M, g(z = 1) = T.

Negations of f and g are defined as

¬f(y = 0) = T, ¬g(z = 0) = T,

¬f(y = 1) = M, ¬g(z = 1) = F.

Table 3 illustrates the sum of f and g as well as their product. Note that, in this
case + = max and × = min.

y z f + g = max{f, g} f × g = min{f, g}

0 0 F F

0 1 T F

1 0 M F

1 1 T M

Table 3. Sum and product of two De Morgan valuations

In order to define a semantics induced by a De Morgan lattice 〈A,+,×,¬〉,
we first associate, with every ADTerm t, a De Morgan valuation ft. If t = b and
b is a basic action, then ft is a De Morgan valuation with domain {xb}, i.e., a
function of the form fb : {0, 1}

{xb} → A. With the help of fb, we express how the
value assigned to action b changes, depending on whether this action is present
(xb = 1) or absent (xb = 0). De Morgan valuations associated with composed
ADTerms are then defined recursively, as follows. For s ∈ {p, o}, k > 0, we set 2

f∨s(t1,...,tk) =

k
∑

i=1

fti , f∧s(t1,...,tk) =

k
∏

i=1

fti , fcs(t1,t2) = ft1 × ¬ft2 .

2
∑

and
∏

stand for extensions of sum and product of two valuations to any finite
number of valuations. They are well-defined by associativity of + and ×.
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Note that the same De Morgan lattice may induce several semantics. In
fact, each semantics induced by a De Morgan lattice is fully determined by
a De Morgan lattice 〈A,+,×,¬〉 and a given set of De Morgan valuations
{fb : {0, 1}

{xb} → A | b ∈ B}. Modification of at least one De Morgan valua-
tion fb results in a different semantics induced by the lattice 〈A,+,×,¬〉.

The purpose of a semantics for ADTerms is to define which ADTerms are
equivalent. This is achieved with the help of equivalent De Morgan valuations.
Consider a De Morgan lattice 〈A,+,×,¬〉 and two subsets of propositional vari-
ables V,U ⊆ {xb | b ∈ B}. Two De Morgan valuations f and g, with respective
domains V and U , are said to be equivalent (denoted by f ≡ g) if and only if,
for every x ∈ {0, 1}V ∪U , we have f(x↓V ) = g(x↓U ).

Definition 8. The semantics for ADTerms induced by a De Morgan lattice
〈A,+,×,¬〉 and a set of De Morgan valuations {fb : {0, 1}

{xb} → A | b ∈ B}
is the equivalence relation ≡DM on TΣ defined, for all t, t′ ∈ TΣ, by

t ≡DM t′ if and only if ft ≡ ft′ .

Since every Boolean algebra satisfies the properties of a De Morgan lattice,
the propositional semantics introduced in Section 3.2 is a semantics induced by
a De Morgan lattice.

Remark 1. The propositional semantics for ADTerms is the semantics induced
by the Boolean algebra 〈{0, 1},∨,∧,¬〉, where a basic action b ∈ B represents the
Boolean function fb : {0, 1}

{xb} → {0, 1}, given by fb(xb = v) = v, for v ∈ {0, 1}.

We end this section with a discussion showing how a semantics induced
by a De Morgan lattice different from the Boolean algebra 〈{0, 1},∨,∧,¬〉 ex-
tends the expressive capabilities of the propositional semantics. Boolean func-
tions interpreting basic actions in the propositional semantics are of the form
fb(xb = v) = v. Such an interpretation does not allow us to differentiate between
the execution of an action and its effectiveness. In other words, the propositional
semantics assumes that actions which are executed are always fully effective.
However, this is rarely the case in a real life scenario. For instance, the exe-
cution of a dictionary attack to guess a password does not guarantee that the
password will be found. The following example illustrates how to more accu-
rately model such an attack by using a semantics induced by the De Morgan
lattice 〈{F, M, T},max,min,¬〉.

Example 9. Let us consider the De Morgan lattice introduced in Example 5
and let t = cp(b,∧o(d, e)) be the ADTerm in Example 3. We use De Morgan
valuations to describe efficiency levels of actions b, d and e. We assume that when
actions b, d and e are not executed (xi = 0, i ∈ {b, d, e}), they are ineffective (F)

fb(xb = 0) = F, fd(xd = 0) = F, fe(xe = 0) = F.

Moreover, executing actions b and e (xi = 1, i ∈ {b, e}) ensures their full effec-
tiveness (T), but executing action d guarantees its partial effectiveness only (M)

fb(xb = 1) = T, fd(xd = 1) = M, fe(xe = 1) = T.
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Analyzing the De Morgan valuation associated with t, given by ft(xb, xd, xe) =
min{fb(xb),¬(min{fd(xd), fe(xe)})}, allows us to reason about effectiveness of
the scenario represented by t. We have

ft(0, 0, 0) = F ft(0, 1, 0) = F ft(1, 0, 0) = T ft(1, 1, 0) = T

ft(0, 0, 1) = F ft(0, 1, 1) = F ft(1, 0, 1) = T ft(1, 1, 1) = M.

From f−1
t ({M, T}), we deduce that the scenario is at least partially effective for

the proponent if action b is executed, independent of actions d and e.

3.4 Multiset Semantics

In every semantics considered so far, the refining symbols ∨s and ∧s, for s ∈
{p, o}, have been interpreted with idempotent operators. Therefore, all these
semantics assume that the multiplicity of a sub-goal is irrelevant. This assump-
tion, however, might not be intended in all applications of ADTrees. It might,
for instance, depend on whether the components can be reused or not.

Example 10. Consider the scenario illustrated in Figure 1. In order to deprive
the attacker of the possibilities to break in through the back door and to break
in through the main door, the defender has to install locks on both doors. Since
the two doors are in two physically distinct locations, a reuse of locks is not
possible in this case.

The multiset semantics, introduced in this section, allows us to distinguish be-
tween multiple occurrences of the same actions. Thus, it is suitable for analyzing
scenarios in which such multiple occurrences of the same sub-goal are significant,
as in Example 10. The multiset semantics has initially been defined for attack
trees in [MO05]. Our construction extends this framework to ADTrees.

Given a set H, we use 2H to denote the power set of H, and M(H) to denote
the set of all multisets of elements in H. We use {|a1, . . . , an|} to denote a multiset
composed of (not necessarily distinct) elements a1, . . . , an. The symbol ⊎ stands
for the multiset union.

In the multiset semantics, ADTerms are interpreted as a set of pairs of the
form (P,O) ∈ M(Bp)×M(Bo), called bundles. A bundle (P,O) encodes how the
proponent can achieve his goal: the proponent must perform all actions present
in P while the opponent must not perform any of the actions in O. The set of
bundles corresponding to an ADTerm t is an element of 2M(Bp)×M(Bo), denoted
by tM. It represents alternative possibilities for the proponent to achieve his
goal. A basic action b of the proponent’s type is interpreted as a singleton bM =
{({|b|}, ∅)}, because in order to achieve his goal it is sufficient for the proponent to
execute action b. A basic action b of the opponent’s type is interpreted as bM =
{(∅, {|b|})}, because in order for the proponent to be successful, action b must
not be executed by the opponent. In order to obtain the multiset interpretation
of the composed ADTerms, we use the union of sets of bundles (∪) and the
distributive product of sets of bundles (⊗). The distributive product of two sets
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of bundles S and Z is defined as the set of bundles

S ⊗ Z = {(PS ⊎ PZ , OS ⊎OZ) | (PS , OS) ∈ S and (PZ , OZ) ∈ Z}.

The distributive product can be extended to any finite number of sets of bundles.
The multiset interpretation tM of a composed ADTerm t is then given by

(∨p
k(t

1, . . . , tk))
M

= t1M ∪ · · · ∪ tkM, (∨o
k(t

1, . . . , tk))M = t1M ⊗ · · · ⊗ tkM,

(∧p
k(t

1, . . . , tk))
M

= t1M ⊗ · · · ⊗ tkM, (∧o
k(t

1, . . . , tk))M = t1M ∪ · · · ∪ tkM,

(cp(t1, t2))M = t1M ⊗ t2M, (co(t1, t2))M = t1M ∪ t2M.

Let t be an ADTerm and let t′ be one of its sub-terms. Note that the set
of bundles t′M encodes how the proponent of term t can be successful in the
situation described by sub-term t′, regardless of the type of t′. In particular, in
order to achieve a disjunctive goal, the proponent has to achieve at least one of
the corresponding sub-goals. Similarly, in order to successfully prevent a con-
junctive countermeasure of the opponent, it is sufficient for the proponent to
prevent at least one of the corresponding sub-countermeasures. An analogous
reasoning holds for a goal of the proponent which is conjunctively refined and
a disjunctively refined countermeasure of the opponent. This is the reason why
the operator used to define the multiset interpretation of a disjunctively refined
goal for one player is the same as the operator used to define the multiset inter-
pretation of a conjunctively refined goal for the other player.

Definition 9. The multiset semantics for ADTerms is an equivalence relation
on TΣ, denoted by ≡M and defined for all t, t′ ∈ TΣ by

t ≡M t′ if and only if tM = t′M.

Example 11 shows that the multiset semantics takes into account multiple oc-
currences of the same actions.

Example 11. The ADTerms t = cp(b,∧o(d, e)) and t′ = cp(∧p(b, b),∧o(d, e))
from Example 4 have been shown to be equivalent with respect to the proposi-
tional semantics. The multiset interpretation of t is tM = {({|b|}, {|d|}), ({|b|}, {|e|})}
and the multiset interpretation of t′ is t′M = {({|b, b|}, {|d|}), ({|b, b|}, {|e|})}. Since
tM 6= t′M, the ADTerms t and t′ are not equivalent with respect to the multiset
semantics.

By comparing Examples 4 and 11, we deduce that the partition of TΣ defined
by the multiset semantics does not coincide with the partition defined by the
propositional semantics. A more detailed comparison of these two semantics is
presented in Section 4.1.

3.5 Equational Semantics

As discussed in previous sections, the choice of an appropriate semantics depends
on the requirements imposed by the domain the ADTrees are applied to. Such
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requirements can frequently be modeled as mathematical properties. For exam-
ple, if the order in which sub-goals of conjunctively refined goals are executed is
irrelevant, we should model the conjunctive refinement using an operator which
is commutative. Similarly, if executing the same action twice is in practice the
same as executing it only once, the corresponding operator should be idempo-
tent. In this section, we show how to construct a semantics for ADTerms which
takes a given set of properties into account. The idea is to specify an equivalence
relation on ADTerms through a set of equations expressing the desired proper-
ties. This approach covers a concept described by Mauw and Oostdijk in [MO05],
which uses a specific set of rewrite rules to encode allowed tree transformations.
Our framework is more general in that we allow any set of equations to define
an equivalence relation on ADTerms.

Let VAR = VAR
p ∪VAR

o be a set of typed variables. We use capital letters
such as X,Xi, Y, Yi, to denote elements of VAR. We extend the set TΣ to the
set T

VAR
Σ of typed ADTerms over the variables in VAR. An equation is a pair

(t, t′) ∈ T
VAR
Σ × T

VAR
Σ , where t and t′ have the same type. In the remainder

of this paper, equation (t, t′) is denoted by t = t′. An algebraic specification
for ADTerms is a pair (Σ,E), where Σ is the AD–signature and E is a set of
equations. Given an algebraic specification (Σ,E), we define the set of syntactic
consequences of E as the smallest subset of TVAR

Σ ×T
VAR
Σ containing E and being

closed under reflexivity, symmetry, transitivity, substitutions and contexts. In
other words, the equation t = t′ is a syntactic consequence of E (denoted by
E ⊢ t = t′) if it can be derived from E by using the following rules

– if t = t′ ∈ E, then E ⊢ t = t′,
– for every t ∈ T

VAR
Σ , E ⊢ t = t,

– if E ⊢ t = t′, then E ⊢ t′ = t,
– if E ⊢ t = t′ and E ⊢ t′ = t′′, then E ⊢ t = t′′.
– if ρ : VAR → T

VAR
Σ is a substitution, and E ⊢ t = t′, then E ⊢ ρ(t) = ρ(t′),

– if E ⊢ t = t′, and C[ ] is a context (i.e., a term with a hole of the same type
as t), then E ⊢ C[t] = C[t′].

In the following definition we introduce the notion of equational semantics
for ADTerms.

Definition 10. The equational semantics for ADTerms induced by an algebraic
specification (Σ,E) is the equivalence relation ≡E on TΣ, defined by

t ≡E t′ if and only if E ⊢ t = t′.

Example 12 illustrates the use of equational semantics.

Example 12. Let Symk denote the set of all bijections from {1, . . . , k} to itself.
Consider the equational semantics induced by an algebraic specification (Σ,E),
where

E = {∨p(X1, . . . , Xk) = ∨p(Xσ(1), . . . , Xσ(k)) | σ ∈ Symk}.

The equations in E encode the commutativity of the disjunctive operator for
the proponent. Thus, for the ADTerms t1 = ∨p(a, b) and t2 = ∨p(b, a), we have
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t1 ≡E t2, i.e., t1 and t2 model the same situation when the semantics ≡E is used.
In contrast, t′1 = ∧p(a, b) 6≡E t′2 = ∧p(b, a), because the commutativity of the
conjunctive operator for the proponent is not modeled by E.

The importance of defining a semantics, given a set of equations, is twofold.
First, equations allow us to encode many of the mathematical properties desired
for analysis of ADTrees. Second, the equations in E model all possible transfor-
mations of ADTerms, which preserve the semantics ≡E . In the next section, we
use the notion of equational semantics to axiomatize the propositional and the
multiset semantics for ADTerms.

4 Axiomatization of Semantics for ADTerms

4.1 Complete Set of Axioms

We start by providing a definition of a complete set of axioms for a semantics
for ADTerms.

Definition 11. Let (Σ,E) be an algebraic specification and let ≡ be a semantics
for ADTerms. Set E is a complete set of axioms for the semantics ≡ if and only
if ≡ is equal to the equational semantics induced by the algebraic specification
(Σ,E).

Remark 2. It follows directly from Definition 11 that E is a complete set of
axioms for the equational semantics induced by an algebraic specification (Σ,E).

The importance of a complete set of axioms for a semantics of ADTerms is
manifold. First, having complete sets of axioms unifies the treatment of differ-
ent semantics for ADTrees. Instead of having to argue within different domains,
such as sets of multisets or propositional logics, we can reason with ADTerms
over the AD–signature. Second, the equations of a complete set of axioms state
important properties modeled by a semantics, as shown in Example 12. We see
in Section 5 that this helps us to formally define how to quantitatively ana-
lyze attack–defense scenarios using attributes. Third, knowing a complete set of
axioms is a crucial step in developing algorithms which assign unique represen-
tatives to every equivalence class arising from a semantics. This simplifies the
development of a computer tool supporting the ADTree methodology. Finally,
we can use complete sets of axioms to facilitate a comparison between different
semantics. In the remainder of this section we take a closer look at this issue.

In order to decide whether properties of ADTerms interpreted using one se-
mantics can be exported to reason about ADTerms within a different semantics,
we need to compare the corresponding partitions of the set of ADTerms. To
this end, we define the notions of finer and coarser semantics. Intuitively, given
two semantics, we say that one is finer than the other if it partitions the set of
ADTerms in a finer way.

Definition 12. Let ≡1 and ≡2 be two semantics for ADTerms. The semantics
≡1 is finer than the semantics ≡2 if and only if ≡1⊆≡2, i.e., for t, t′ ∈ TΣ,
t ≡1 t

′ ⇒ t ≡2 t
′. If ≡1 is finer than ≡2, we say that ≡2 is coarser than ≡1.
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The fact that ADTerms which are equivalent according to a semantics which is
finer are also equivalent according to any semantics which is coarser, allows us
to import properties of a finer semantics into any coarser semantics.

In general, given two semantics for ADTerms, it is not easy to decide whether
they are comparable, and if so, which one is finer. However, this task may become
trivial, if we are able to appropriately axiomatize both semantics using complete
sets of axioms.

Theorem 1. Let ≡1 and ≡2 be two semantics for ADTerms with complete sets
of axioms E1 and E2, respectively. If E1 ⊆ E2, then ≡1 is finer than ≡2.

Proof. An immediate consequence of E1 ⊆ E2 is that every equation derivable
from E1 is also derivable from E2, which proves the theorem. ⊓⊔

In Sections 4.2 and 4.3, we construct complete sets of axioms for the propo-
sitional and the multiset semantics, respectively. These sets help us to compare
the two semantics. For instance, the idempotency laws hold in the propositional
but not in the multiset semantics. The relationship between the propositional
and the multiset semantics is captured by the following theorem.

Theorem 2. The multiset semantics for ADTerms is finer than the proposi-
tional semantics for ADTerms.

Proof. It is sufficient to consider the complete sets of axioms EP for the propo-
sitional semantics and EM for the multiset semantics, that we introduce in
Theorems 3 and 5, respectively. We observe that EM ⊆ EP , which according to
Theorem 1 finishes the proof. ⊓⊔

To conclude this section, we remark that the propositional semantics is not
finer than the multiset semantics, as shown by Examples 4 and 11. Thus, these
two semantics are not equal.

4.2 Complete Set of Axioms for ≡P

We give a complete set of axioms for the propositional semantics in Theorem 3.
This set of axioms is then used to compare the propositional semantics to other
semantics induced by De Morgan lattices, as shown in Theorem 4.

Theorem 3. Let s ∈ {p, o} and X,Y,Xi, Yj ∈ VAR, for i, j ≥ 1 and k, n ∈
N \ {0}. Moreover, let Symk denote the set of all bijections from {1, . . . , k} to
itself. The following set of equations, denoted by EP , is a complete set of axioms
for the propositional semantics.3

3 Note that the set of axioms given in Theorem 3 is in fact an axiom scheme. This is
unavoidable, because the AD–signature contains infinitely many function symbols
modeled using unranked functions.
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∨s (X1, . . . , Xk) = ∨s(Xσ(1), . . . , Xσ(k)), ∀σ ∈ Symk (Es
1)

∧s (X1, . . . , Xk) = ∧s(Xσ(1), . . . , Xσ(k)), ∀σ ∈ Symk (Es
2)

∨s (X1, . . . , Xk,∨
s(Y1, . . . , Yn)) = ∨s(X1, . . . , Xk, Y1, . . . , Yn) (Es

3)

∧s (X1, . . . , Xk,∧
s(Y1, . . . , Yn)) = ∧s(X1, . . . , Xk, Y1, . . . , Yn) (Es

4)

∨s (X) = X (Es
5)

∧s (X) = X (Es
6)

∨s (X,∧s(X,X1, . . . , Xk)) = X (Es
7)

∧s (X,∨s(X,X1, . . . , Xk)) = X (Es
8)

∨s (X,∧s(X1, . . . , Xk)) = ∧s(∨s(X,X1), . . . ,∨
s(X,Xk)) (Es

9)

∧s (X,∨s(X1, . . . , Xk)) = ∨s(∧s(X,X1), . . . ,∧
s(X,Xk)) (Es

10)

∨s (X,X,X1, . . . , Xk) = ∨s(X,X1, . . . , Xk) (Es
11)

∧s (X,X,X1, . . . , Xk) = ∧s(X,X1, . . . , Xk) (Es
12)

cs(∨s(X1, . . . , Xk), X) = ∨s(cs(X1, X), . . . , cs(Xk, X)) (Es
13)

cs(∧s(X1, . . . , Xk), X) = ∧s(cs(X1, X), . . . , cs(Xk, X)) (Es
14)

cs(X,∨s(X1, . . . Xk)) = ∧s(cs(X,X1), . . . , c
s(X,Xk)) (Es

15)

cs(X,∧s(X1, . . . Xk)) = ∨s(cs(X,X1), . . . , c
s(X,Xk)) (Es

16)

cs(cs(X,X1), X2) = cs(X,∨s(X1, X2)) (Es
17)

cs(X, cs(X1, X2)) = ∨s(cs(X,X1),∧
s(X,X2)) (Es

18)

∨s (cs(X1, Y ), X2, . . . , Xk) = cs(∨s(X1, . . . , Xk), c
s(Y,∨s(X2, . . . , Xk))) (Es

19)

∧s (cs(X1, Y ), X2, . . . , Xk) = cs(∧s(X1, . . . , Xk), Y ) (Es
20)

∨s (cs(X,Y ), X) = X (Es
21)

∧s (cs(X,Y ), X) = cs(X,Y ). (Es
22)

Proof. In order to prove Theorem 3, we define the notion of a complete set of
axioms for a set of propositional formulæ. We transform the problem of finding
a complete set of axioms for the propositional semantics into the problem of
finding a complete set of axioms for the set of all propositional ADTerms. The
outline of the remaining part of the proof runs as follows.

1. By reformulating equations in EP , we define a complete set G of axioms for
the set of propositional ADTerms.

2. We show using axioms in G that every propositional ADTerm can be trans-
formed into a disjunctive form.

3. We transform the obtained disjunctive forms further into minimal disjunctive
forms.

4. We prove that these minimal disjunctive forms are unique modulo associa-
tivity and commutativity.

The above considerations help us to conclude that two ADTerms are equivalent
with respect to the propositional semantics if and only if the minimal disjunctive
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forms for the corresponding propositional ADTerms are equal modulo associativ-
ity and commutativity. This finishes the proof of Theorem 3, due to the fact that
each axiom in G constitutes a propositional interpretation of an axiom scheme
in EP . ⊓⊔

In the remainder of this section, we give details for Steps 1–4.

1. We first define a grammar that generates all propositional ADTerms, which
are defined in Section 3.2. Let XG = {xb | b ∈ B

p} and Y G = {xb | b ∈ B
o}

be two sets of propositional variables that correspond to basic actions in the
propositional semantics. We have XG ∩ Y G = ∅. Consider the propositional
formulæ over XG ∪ Y G generated by the following grammar, denoted by G,
where xbi ∈ XG, ybj ∈ Y G and ψ ⋆ φ = ψ ∧ ¬φ:

P : xbi | P ∨ P | P ∧ P | P ⋆ N

N : ybj | N ∨N | N ∧N | N ⋆ P.

Often we write that ψ ∈ G if ψ is generated by G. Thus, we abuse notation
and let G denote both the grammar and the set of formulæ generated by the
grammar. It is easy to see that t ∈ T

p
Σ (resp. To

Σ) if and only if there exists
a formula P ∈ G (resp. N ∈ G), such that tP = P (resp. tP = N) modulo
associativity.

Let A be a set of equations of the form ξ = ζ, where ξ and ζ are propositional
formulæ and let A be a set of propositional formulæ. We say that A is a complete
set of axioms for A if and only if two propositionally equivalent formulæ in
A can be transformed into each other by applying substitutions and context
to equations in A. The problem of finding a complete set of axioms for the
propositional semantics can be reduced to finding a complete set of axioms for
the set of propositional formulæ generated by G.

Lemma 1 (Complete set of axioms for G). Let X,Y, Z be propositional
variables. The following set G is a complete set of axioms for G.4

X ∨ Y = Y ∨X X ∧ Y = Y ∧X

X ∨ (Y ∨ Z) = (X ∨ Y ) ∨ Z X ∧ (Y ∧ Z) = (X ∧ Y ) ∧ Z

∨ (X) = X ∧ (X) = X

X ∨ (X ∧ Y ) = X X ∧ (X ∨ Y ) = X

X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ (X ∨ Z) X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z)

X ∨X = X X ∧X = X

(X ∨ Y ) ⋆ Z = (X ⋆ Z) ∨ (Y ⋆ Z) (X ∧ Y ) ⋆ Z = (X ⋆ Z) ∧ (Y ⋆ Z)

X ⋆ (Y ∨ Z) = (X ⋆ Y ) ∧ (X ⋆ Z) X ⋆ (Y ∧ Z) = (X ⋆ Y ) ∨ (X ⋆ Z)

(X ⋆ Y ) ⋆ Z = X ⋆ (Y ∨ Z) X ⋆ (Y ⋆ Z) = (X ⋆ Y ) ∨ (X ∧ Z)

(X ⋆ Y ) ∨ Z = (X ∨ Z) ⋆ (Y ⋆ Z) (X ⋆ Y ) ∧ Z = (X ∧ Z) ⋆ Y

(X ⋆ Y ) ∨X = X (X ⋆ Y ) ∧X = (X ⋆ Y ).

4 Note that contrary to the set EP , the set G is finite. The reduction of the number of
equations is made possible, because the unranked function symbols ∨s and ∧s, for
s ∈ {p, o}, are interpreted with the associative operators ∨ and ∧.
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Proof. For every axiom ξ = ζ in G, we have ξ ≈ ζ. Therefore, if a formula ψ′ is
obtained from a formula ψ by using axioms in G, we have ψ ≈ ψ′. This proves
soundness.

Proving completeness is done by showing that, using axioms in G, every
formula ψ ∈ G can be transformed into a minimal disjunctive form, denoted
by mdf(ψ). In Steps 2–4 below, we prove that this minimal disjunctive form is
unique up to commutativity and associativity of ∨ and ∧, denoted by =AC . In
other words, we show that, for ψ,ψ′ ∈ G,

ψ ≈ ψ′ if and only if mdf(ψ) =AC mdf(ψ′) (1)

holds. ⊓⊔

2. Note that for all P,N ∈ G, we have that P 6≈ N , because XG ∩ Y G = ∅.
To define minimal disjunctive forms for the formulæ in G, we first introduce a
grammar B generating propositional formulæ in disjunctive form, and we show
that every formula generated by G can be transformed, using axioms in G, into
an equivalent formula in disjunctive form, generated by B. We later use these
disjunctive forms to obtain minimal forms.

Let the following grammar be denoted by B:

KP : xbi | KP ∧KP

DN : ybj | DN ∨DN

BP : KP | KP ⋆ DN | BP ∨BP

KN : ybj | KN ∧KN

DP : xbi | DP ∨DP

BN : KN | KN ⋆ DP | BN ∨BN .

It is clear that every formula generated by B is also generated by G. To prove the
converse, we show that, for every P ∈ G (resp. N ∈ G), there exists an equivalent
disjunctive formula, denoted by df(P ) (resp. df(N)) of the form BP ∈ B (resp.
BN ∈ B). The formula df(P ) (resp. df(N)) is obtained from P (resp. N) by
using axioms in G. This is proven by induction on the structure of P (resp. N),
by using the following two statements, for S ∈ {P,N}.

– If BS
1 , B

S
2 ∈ B, then BS

1 ∧BS
2 can be transformed, using axioms in G, into a

formula of the form BS ∈ B.
– If BS

1 , B
S
2 ∈ B, then BS

1 ⋆ B
S
2 can be transformed, using axioms in G, into a

formula of the form BS ∈ B.

The statements themselves can easily be proven by structural induction. The
technical details are omitted.

Let I ⊆ N be a non-empty, finite index set. From B we see that every formula
df(P ) is in the following disjunctive form

df(P ) = BP =
∨

k∈I

αk ⋆ βk,
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where αk = (xbk1
∧· · ·∧xbku

) and βk = (ybk1
∨· · ·∨ybkl

), for some xbk1
, . . . , xbku

∈
XG, ybk1

, . . . , ybkl
∈ Y G, ku ≥ 1 and kl ≥ 0. (A similar disjunctive form exists

for NP .)

3. Our goal is now to minimize the obtained disjunctive forms. We show that,
using axioms in G, we can transform every P ∈ G into an equivalent formula,
denoted by mdf(P ), which is of the form

mdf(P ) =
∨

k∈I

αk ⋆ βk (2)

where αk = (xbk1
∧ · · · ∧ xbku

), βk = (ybk1
∨ · · · ∨ ybkl

), and for all k, k′ ∈ I,
k 6= k′ we have αk′ ⋆βk′ does not imply αk ⋆βk and for i 6= j we have xbki

6= xbkj

and ybki
6= ybkj

. We proceed by contraposition. We already know that, by using
axioms in G, every P ∈ G can be transformed into the formula df(P ) = BP ∈ B.
Assume that df(P ) =

∨

k∈I αk ⋆ βk is not minimal. This means that either there
exist k, k′ ∈ I, such that αk′ ⋆βk′ implies αk ⋆βk or there exists k ∈ I and i 6= j,
such that xbki

= xbkj
or ybki

= ybkj
. In the latter case, we minimize the formula

with the help of the idempotency axiom. From [KPS11], we know that every P
represents a monotone Boolean function, hence the former case may only happen
if, for αk = (xbk1

∧ · · · ∧ xbku
), βk = (ybk1

∨ · · · ∨ ybkl
), αk′ = (xbk′

1
∧ · · · ∧ xbk′

u
)

and βk′ = (ybk′
1
∨· · ·∨ybk′

l
), it holds that {xbk1

, . . . , xbku
} ⊆ {xbk′

1
, . . . , xbk′

u
} and

{ybk1
, . . . , ybkl

} ⊆ {ybk′
1
, . . . , ybk′

l
}. We now sketch how to minimize df(P ), using

axioms in G, in all possible cases. For ease of notation, we assume that αk = xb,
αk′ = xb ∧ xb′ , βk = yb and βk′ = yb ∨ yb′ , unless otherwise stated.

a) If αk ⋆ βk = αk′ ⋆ βk′ , then (αk ⋆ βk) ∨ (αk′ ⋆ βk′) can be reduced to αk′ ⋆ βk′

by using idempotency of ∨.
b) If {ybk1

, . . . , ybkl
} 6= ∅, the following scheme can be used:

(αk ⋆ βk) ∨ (αk′ ⋆ βk′) =

= (xb ⋆ yb) ∨ ((xb ∧ xb′) ⋆ (yb ∨ yb′))

= (xb ⋆ yb) ∨ ((xb ⋆ (yb ∨ yb′)) ∧ (xb′ ⋆ (yb ∨ yb′)))

= (xb ⋆ yb) ∨ ((xb ⋆ yb) ∧ ((xb ⋆ yb′) ∧ (xb′ ⋆ yb) ∧ (xb′ ⋆ yb′)))

= (xb ⋆ yb) = αk ⋆ βk.

c) If {ybk1
, . . . , ybkl

} = ∅ and {ybk′
1
, . . . , ybk′

l
} 6= ∅, the following scheme can be

used:

αk ∨ (αk′ ⋆ βk′) = xb ∨ ((xb ∧ xb′) ⋆ yb) = xb ∨ ((xb ⋆ yb) ∧ (xb′ ⋆ yb))

= (xb ∨ (xb ⋆ yb)) ∧ (xb ∨ (xb′ ⋆ yb)) = xb ∧ (xb ∨ (xb′ ⋆ yb))

= xb = αk.

d) If {ybk1
, . . . , ybkl

} = ∅ and {ybk′
1
, . . . , ybk′

l
} = ∅, the following scheme can be

used:
αk ∨ αk′ = xb ∨ (xb ∧ xb′) = xb = αk.
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4. It remains to be shown that two minimal disjunctive forms are propositionally
equivalent if and only if they are equal modulo associativity and commutativity.
This follows from the fact that formulæ generated by grammar G represent
monotone Boolean functions, which have a unique minimal DNF representation
modulo associativity and commutativity (see [CH11]). Hence formulæ in minimal
disjunctive forms are in fact unique modulo associativity and commutativity.
This ends the proof of (1) and hence the proof of Lemma 1.

The complete set of axioms EP introduced in Theorem 3 allows us to compare
the propositional semantics with other semantics induced by De Morgan lattices.

Theorem 4. Let ≡P be the propositional semantics and let ≡DM be a semantics
induced by a De Morgan lattice. The propositional semantics is finer than ≡DM.

Proof. It is sufficient to notice that every equation in the complete set of axioms
EP for the propositional semantics is also valid for ≡DM. According to Theo-
rem 1, this proves that ≡P is finer than ≡DM. ⊓⊔

In other words, Theorem 4 states that the propositional semantics is the finest
amongst all semantics induced by De Morgan lattices.

4.3 Complete Sets of Axioms for ≡M

In Theorem 5, we give a complete set of axioms for the multiset semantics. We
employ a standard proof strategy by transforming the equations into a rewriting
system and showing its strong termination as well as confluence. The proof
mainly discusses ADTerms before linking ADTerms to the multiset semantics.
The proof is constructive in that it can easily be turned into an algorithm that
assigns a unique representative to every equivalence class defined by the multiset
semantics.

Theorem 5. Let the prerequisites of Theorem 3 hold. The following set, denoted
by EM, is a complete set of axioms for the multiset semantics

{(Es
1), (E

s
2), (E

s
3), (E

s
4), (E

s
5), (E

s
6), (E

o
9), (E

p
10), (E

p
11), (E

o
12),

(Ep
13), (E

p
16), (E

p
17), (E

p
18), (E

o
19), (E

p
20)}.

Note that contrary to the equations in the set EP , some of the equations in EM

only hold for either the proponent, e.g., (Ep
10), or the opponent, e.g., (Eo

9).

Proof. We make use of class rewriting by setting up an equational rewriting
system. Then, we show that the system is strongly terminating and class con-
fluent, which guarantees that the system has unique normal forms modulo the
given equations, see [Pla93]. Finally we show how the normal forms can be used
to prove completeness of the axioms. The proof is structured into the following
steps:

1. We transform EM into an equational term rewriting system R.
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2. We provide expressions which describe the normal forms of R.
3. We show strong termination of R.
4. We show confluence of R.
5. We prove that the expressions given in Step 2 describe the normal forms of
R.

6. Using the normal forms, we show that the multiset semantics (≡M) is equal
to the equational semantics induced by EM (≡EM

).

1. In order to define the equational term rewriting system (ETRS), see [FJN93],
we divide the equations in EM into two parts. Equations (Es

1)–(Es
6) express

commutativity and associativity of the operators ∨s and ∧s and serve in our
system as equations. The remaining ten equations we turn into rewrite rules
by directing them from left to right. By R we denote the ETRS composed of
equations (Es

1) – (Es
6) and directed rewrite rules corresponding to the equations

(Eo
9), (E

p
10), (E

p
11), (E

o
12), (E

p
13), (E

p
16), (E

p
17), (E

p
18), (E

o
19), (E

p
20).

2. We introduce the operator Cp to ease notation. LetM = {|t1, . . . , tm|}, ti ∈ T
p
Σ ,

for i ∈ {1, . . . ,m} and m ∈ N\{0}, be a multiset of ADTerms of proponent type
and M ′ = {|t′1, . . . , t

′
l|}, t

′
j ∈ T

o
Σ , for j ∈ {1, . . . , l} and l ∈ N, be a multiset of

ADTerms of opponent type. The operator Cp is defined by

Cp : M(Tp
Σ)×M(To

Σ) → T
p
Σ ,

(M,M ′) 7→ cp(∧p(t1, . . . , tm),∨o(t′1, . . . , t
′
l)).

With the help of this operator, we define expressions which serve as normal forms
for R. Let I ⊆ N be a nonempty index set. For every k ∈ I, let Bk be a finite
multiset of basic actions of the proponent, such that |Bk| ≥ 1, and let Ck be a
finite multiset of basic actions of the opponent, such that |Ck| ≥ 0. Then, the
following expressions represent ADTerms which are in normal form with respect
to R

∨p

k∈I

Cp(Bk, Ck), (3)

where
∨p

represents the unranked function symbol (∨p
k)k∈I . Moreover, we re-

quire that, for k 6= k′, we have (Bk, Ck) 6= (Bk′ , Ck′).

3. We prove strong termination of R with the help of the AProVE tool [Aac].
AProVE can handle equational TRS, but it cannot handle unranked functions. In
order to overcome this problem, we use currying (see [Sch24]). We create curried
versions of ∨s and ∧s, which are unary functions, denoted as ∨s

cu and ∨s
cu, respec-

tively. A specific list of arguments of an unranked function would, for example, be
encoded in the following way: for ∨s(a, b, c), we write ∨s

cu(v(v(u(a), u(b)), u(c))).
Therefore, due to currying, we add the following rewrite rules ∨s

cu(v(x, y)) →
∨s(∨s

cu(x),∨
s
cu(y)) and ∨s

cu(u(x)) → u and similar rules for ∧s.
We input the equational TRS in AProVE using the syntax of the WST

competitions (see [MRZ]). Due to input restrictions in AProVE, the syntax,
given in Fig. 2, uses the transformations a = ∨p, b = ∨o, c = ∧p, d = ∧o, e =
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(VAR x y z)

(THEORY (AC a b c d))

(RULES

g(v(x, y)) → a(g(x), g(y)) h(v(x, y)) → b(h(x), h(y))

k(v(x, y)) → c(k(x), k(y)) l(v(x, y)) → d(l(x), l(y))

g(u(x)) → x h(u(x)) → x

k(u(x)) → x l(u(x)) → x

c(x, a(y, z)) → a(c(x, y), c(x, z)) b(x, d(y, z)) → d(b(x, y), b(x, z))

a(x, x) → x d(x, x) → x

e(e(x, y), z) → e(x, b(y, z)) c(x, e(y, z)) → e(c(x, y), z)

e(a(x, y), z) → a(e(x, z), e(y, z)) e(x, d(y, z)) → a(e(x, y), e(x, z))

e(x, f(y, z)) → a(e(x, y), c(x, z)) b(x, f(y, z)) → f(b(x, y), e(z, x))

)

Fig. 2. ETRS in WST syntax

cp, f = co, g = ∨p
cu, h = ∨o

cu, k = ∧p
cu, l = ∧o

cu. The line “THEORY” together
with the first four lines of rewrite rules correspond to equations (Es

1)–(Es
6) and

represent associativity, commutativity and currying of the operators ∨s and ∧s.
The other rules correspond to the remaining ten equations. Strong termination
of R is shown by multiple application of polynomial interpretation and removal
of redundant rewrite rules.

4. To prove confluence of R, it suffices to show that all critical pairs are joinable.
We prove the joinability with the help of the tool TTT2, see [KSZM]. Unfortu-
nately TTT2 cannot handle equational rewriting. We circumvent this problem by
adding one rewrite rule for commutativity and two for associativity for each of
the binary operators, as shown in Fig. 3. As output we obtain that all critical
pairs are joinable.

a(x, y) → a(y, x) a(x, a(y, z)) → a(a(x, y), z) a(a(x, y), z) → a(x, a(y, z))

b(x, y) → b(y, x) b(x, b(y, z)) → b(b(x, y), z) b(b(x, y), z) → b(x, b(y, z))

c(x, y) → c(y, x) c(x, c(y, z)) → c(c(x, y), z) c(c(x, y), z) → c(x, c(y, z))

d(x, y) → d(y, x) d(x, d(y, z)) → d(d(x, y), z) d(d(x, y), z) → d(x, d(y, z))

Fig. 3. Additional rewrite rules, due to conversion of equation into rewrite rules.
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5. We show that all ADTerms represented by (3) are irreducible and that all
other ADTerms are reducible.

If the symbol ∨p exists in an ADTerm represented by (3), it is always the
head symbol. For these ADTerms, it is easily seen that, the only rewrite rule
corresponding to equation (Ep

11) has ∨p as the head symbol on the left-hand
side. However, an ADTerm can only be rewritten using this rewrite rule if the
arguments of ∨p are not distinct, which is specifically excluded in the ADTerms
represented by (3).

The ADTerms represented by (3) that do not contain ∨p, have either ∧p or
cp as the head symbol. In the former case, the expressions are in normal form. In
the latter case, the rewrite rules corresponding to equations (Ep

13), (E
p
16), (E

p
17)

and (Ep
18) may be applicable, because they contain ∨p. In these rules the other

occurring operators are cp,∨p,∧o and co, respectively. None of these, however,
appear in the ADTerms represented by (3). Hence, we conclude that none of the
ADTerms represented by (3) can be rewritten.

Now we show that every ADTerm, which is not represented by (3), can
be rewritten. First, we remark that the ADTerms represented by (3) are of
proponent type only. Hence, if an ADTerm is of opponent type, we know that it
is a sub-term of an ADTerm of proponent type. Since the cp is the only operator
that takes an ADTerm of opponent type and outputs an ADTerm of proponent
type, we know that if we discover a sub-term of opponent type, the complete
ADTerm must contain cp. We classify the ADTerms with respect to the number
of (not necessarily distinct) constants they contain.

ADTerms with one constant can be divided into two classes: ADTerms of pro-
ponent type and ADTerms of opponent type. The former are in normal form,
the latter do not represent any ADTree, due to our remark above.

ADTerms with two constants we also subdivide into ADTerms of opponent type
and ADTerms of proponent type. The ADTerms in the first class do not represent
any ADTree. In the second class, an ADTerm is either in normal form or it is
of the form ∨p(b, b). Then, the rewrite rule corresponding to equation (Ep

11) can
be used.

ADTerms with three or more constants are classified as follows:

a) ADTerms that contain co or ∧o are either of opponent type or can be rewrit-
ten.

b) If an ADTerm contains a nested ∨p, it is either of opponent type or it can be
rewritten or its head symbol is ∨p.

c) If an ADTerm contains a cp which is not preceded by a ∨p operator, it is
either of opponent type or can be rewritten.

d) All remaining ADTerms are in normal form or contain only the same func-
tional symbol ◦ in {∨p,∧p,∨o}. In the case were ◦ = ∨o the ADTerm is of
opponent type, in case ◦ = ∧p it is in normal form and in case ◦ = ∨p it can
be rewritten if and only if the rewrite rule corresponding to equation (Ep

11)
can be applied.
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6. Together Steps 1–5 show that R is a convergent ETRS with the unique normal
forms represented by (3). It remains to be shown that the equations EM, are
sound and complete with respect to the multiset semantics. We can easily verify
soundness by proving that every equation in EM holds in the multiset semantics.
In other words, for all t, t′ ∈ T

p
Σ , it holds that from t ≡EM

t′ it follows that
tM = t′M. This is essentially due to the fact 〈M,∪,⊗〉 forms a semi-ring. For
example, equation (Ep

20) concretely yields

∧p(x, cp(y, z))M = xM ⊗ (yM ⊗ zM) = (xM ⊗ yM)⊗ zM = cp(∧p(x, y), z)M

All other cases are similar.
Finally, we prove completeness by showing that, for t, t′ ∈ T

p
Σ , from tM = t′M

it follows that t ≡EM
t′. To facilitate reasoning, let NF(t) and NF(t′) denote

the normal forms obtained by R, given as expression in (3), in other words,
NF(t) ≡EM

t and NF(t′) ≡EM
t′. Since the elements considered for the multiset

semantics are sets of pairs of multisets, there exists a 1-1 correspondence between
such sets of pairs of multisets and the normal forms given by the ADTerm
represented by the expression given in (3): Each pair of multisets is mapped
to a pair (Bk, Ck) which corresponds to ADTerms in normal form, as shown
in Steps 2–5. The pairs (Bk, Ck) are mutually different for different indexes k,
because we map sets which do not have multiple occurrences of the same element.
We conclude that given tM = t′M, it follows that NF(t) = NF(t′). Consequently,
from tM = t′M, it follows that t ≡EM

NF(t) = NF(t′) ≡EM
t′, which concludes

the proof of Theorem 5. ⊓⊔

5 Attributes

5.1 Bottom-up Evaluation

Attributes are used to quantitatively analyze attack–defense scenarios repre-
sented by ADTerms. An attribute expresses a particular property of a scenario,
such as the minimal cost of an attack or the expected impact of a defensive mea-
sure. Schneier [Sch99] sketched an intuitive bottom-up algorithm for calculating
the value of an attribute on an attack tree. His procedure was formalized by
Mauw and Oostdijk [MO05]. In this section, we extend the bottom-up approach
for evaluation fo attributes to ADTerms. We start by introducing the notion of
an attribute domain which formally specifies an attribute.

Definition 13. An attribute domain for ADTerms is a tuple

Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α),

where Dα is a set of values and, for s ∈ {p, o},

– ∨s
α, ∧s

α are unranked functions on Dα,
– cs are binary functions on Dα.
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Example 13. Attribute domain Asat = ({0, 1},∨,∧,∨,∧, ⋆, ⋆), where x ⋆ y =
x ∧ ¬y, for all x, y ∈ {0, 1}, can be used to decide whether the proponent’s goal
modeled by the root of an ADTerm t is satisfied or not.

Since attack trees only have one type of nodes — the proponent’s nodes —
an attribute domain in case of attack trees is a triple Aα = (Dα,∨

p
α,∧

p
α). In

this case, the bottom-up evaluation of an attribute works as follows: first the
values in Dα are assigned to the leaf nodes of an attack tree and then the values
for the remaining nodes are deduced in a bottom-up way, with the help of the
operations ∨p

α and ∧p
α. In order to extend this procedure to ADTrees, we first

assign values in Dα to all non-refined nodes of an ADTree, then we compute the
values corresponding to all its sub-trees by using the operations ∨s

α,∧
s
α and csα

for s ∈ {p, o}.
Let Aα = (Dα,∨

p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) be an attribute domain for ADTerms.

We now formalize the bottom-up computation of attribute values on ADTerms.
A function βα : B → Dα, which assigns to every basic action a value in the set
Dα, is called a basic assignment. The function α : TΣ → Dα, which assigns to
every ADTerm t the value of an attribute, is defined recursively as follows

α(t) =



















βα(t), if t ∈ B,

∨s
α(α(t1), . . . , α(tk)), if t = ∨s(t1, . . . , tk),

∧s
α(α(t1), . . . , α(tk)), if t = ∧s(t1, . . . , tk),

csα(α(t1), α(t2)), if t = cs(t1, t2),

(4)

where s ∈ {p, o} and k > 0. The following example illustrates the bottom-up
evaluation of attribute values.

Example 14. Consider the ADTerm t = cp(∧p(a, b), co(d, e)), where a, b, e ∈
B
p and d ∈ B

o. The objective is to calculate the proponent’s minimal cost
necessary to achieve his goal. We use the attribute domain Acost = (R+ ∪
{+∞},min,+,+,min,+,min) and the following basic assignment: βcost(a) = 5,
βcost(b) = 7, βcost(e) = 6 and βcost(d) = +∞. These values express the mini-
mal investment required of the proponent to execute the corresponding action.
Since the opponent’s basic action d is not under control of the proponent, we
set βcost(d) = +∞. By countering the opponent’s action d with the proponent’s
action e, and by using appropriate operators cpcost = + and cocost = min, we
can compute the actual minimal cost for the proponent to succeed in the sce-
nario. Using function α = cost, as defined by (4), we calculate the proponent’s
minimal cost in the scenario as follows: cost(t) = cost(cp(∧p(a, b), co(d, e))) =
+(+(5, 7),min(6,+∞)) = +(12, 6) = 18.

Example 14 demonstrates how to calculate the proponent’s minimal cost to
achieve his goal in a scenario. Since the opponent’s cost has no influence on the
proponent’s cost, the values associated with the opponent’s basic actions express
the cost from the proponent’s point of view rather than the actual cost for the
opponent. To reflect this fact, every basic action of the opponent is assigned
+∞, which is the absorbing element for the operation cpα = + and the neutral
element for the operation coα = min.
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5.2 Semantics Preserving Attribute Domains

In our framework, we consider equivalent ADTrees to be indistinguishable. Thus,
the evaluation of attributes on equivalent ADTerms should be consistent, i.e.,
should yield the same values. However, as shown in the example below, this is
not always the case.

Example 15. The ADTerm t = cp(∧p(a, b), co(d, e)), considered in Example 14,
is equivalent to the ADTerm t′ = cp(∧p(a, a, b), co(d, e)), if the propositional
semantics is used. However, the evaluation of the proponent’s minimal cost in
t′, gives cost(t′) = +(+(5, 5, 7),min(6,+∞)) = 23 6= 18 = cost(t).

The problem of consistent bottom-up evaluation of attribute values has already
been discussed in the case of attack trees (see [JW08,MO05]). The authors
of [MO05] identify a sufficient condition guaranteeing that, when the multi-
set semantics is used, the bottom-up evaluation of attributes on attack trees is
performed in a consistent way. In the current paper, we generalize this result
to any semantics for ADTerms, by introducing the notion of compatibility of an
attribute domain with a semantics for ADTerms. Compatibility constitutes a suf-
ficient condition for consistent bottom-up evaluation of attributes on equivalent
ADTrees.

Consider an attribute domain Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) and the set

T
VAR
Σ of typed ADTerms over the variables in VAR, as introduced in Section 3.5.

Given an ADTerm t ∈ T
VAR
Σ , we denote by tα an expression built from the

elements of B∪VAR and operators ∨s
α,∧

s
α, c

s
α, for s ∈ {p, o}, recursively defined

as follows. Let t1, . . . , tk ∈ T
VAR
Σ and k > 0. Then

tα = t, if t ∈ B ∪ VAR, (∨s(t1, . . . , tk))α = ∨s
α(t

1
α, . . . , t

k
α),

(cs(t1, t2))α = csα(t
1
α, t

2
α), (∧s(t1, . . . , tk))α = ∧s

α(t
1
α, . . . , t

k
α). (5)

Note that in the expressions tα the elements of B ∪ VAR are variables ranging
over Dα.

Definition 14. An attribute domain Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) is com-

patible with a semantics ≡ for ADTerms if and only if, for all t, t′ ∈ TΣ, the
semantical equivalence t ≡ t′ implies that the equality tα = t′α holds in Dα.

Example 16. Consider two terms t = cp(b,∧o(d, e)) and t′ = cp(∧p(b, b)∧o(d, e)).
In Example 4, we have shown that t ≡P t′. By using the attribute domain Asat =
({0, 1},∨,∧,∨,∧, ⋆, ⋆), where x ⋆ y = x ∧ ¬y, for all x, y ∈ {0, 1}, introduced in
Example 13, and the procedure described by (5), we define the expressions tsat
and t′sat as follows

tsat = b ∧ ¬(d ∧ e) and t′sat = (b ∧ b) ∧ ¬(d ∧ e).

Due to the idempotency of ∧, we obtain that the equality tsat = t′sat holds in
Dsat = {0, 1}.
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From Definitions 12 and 14 we can easily deduce that if an attribute domain
is compatible with a semantics for ADTerms it is also compatible with every
semantics which is finer.

In most cases, due to the infinite number of equivalent ADTerms, employing
Definition 14 is impractical. The next proposition overcomes this obstacle. It
follows directly from (5) and Definitions 14 and 11.

Proposition 1. Let E be a complete set of axioms for a semantics ≡ for AD-
Terms. An attribute domain Aα = (Dα,∨

p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) is compatible with

the semantics ≡ if and only if, for every equation t = t′ in E, the equality tα = t′α
holds in Dα.

Proposition 1 shows that a complete set of axioms is a powerful tool to ensure
the practical usability of semantics for ADTerms. By making use of a complete
set of axioms, Proposition 1 gives us a simple and efficient procedure for checking
compatibility of a given attribute domain with a considered semantics.

Example 17. Using Proposition 1, we can easily prove that the attribute do-
main Acost, used in Examples 14 and 15 to compute the proponent’s minimal
cost, is not compatible with the propositional semantics. Indeed, according to
Theorem 3, the axiom

∧p(X,X,X1, . . . , Xk) = ∧p(X,X1, . . . , Xk)

holds for the propositional semantics, but in R ∪ {+∞} we have

(∧p(X,X,X1, . . . , Xk))cost =+ (X,X,X1, . . . , Xk) 6=

+ (X,X1, . . . , Xk) = (∧p(X,X1, . . . , Xk))cost,

because + is not idempotent. This explains why the evaluation of the propo-
nent’s minimal cost on two equivalent ADTerms in the propositional semantics,
presented in Example 15, gives two different results.

We now prove that semantically equivalent ADTerms always yield equal at-
tribute values over compatible attribute domains.

Lemma 2. Consider an attribute domain Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α), a

basic assignment βα : B → Dα and two ADTerms t and t′. If tα = t′α holds in
Dα, then α(t) = α(t′).

Proof. Since tα = t′α holds in Dα, we have σ(tα) = σ(t′α), for every substitution
σ : B ∪VAR → Dα. Thus, it suffices to show that for every ADTerm t, we have

βα(tα) = α(t). (6)

The proof of (6) is by induction on the structure of t. If t ∈ B, then tα = t, thus
βα(tα) = βα(t) = α(t). Suppose now that (6) holds for all ADTerms composing
t, and let t = ∨p(t1, . . . , tk). We have

βα(tα) = βα(∨
p
α(t

1
α, . . . , t

k
α)) = ∨p

α(βα(t
1
α), . . . , βα(t

k
α))

= ∨p
α(α(t

1), . . . , α(tk)) = α(t).
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The proof for the remaining composed ADTerms is similar.

Using (6), we obtain that, if tα = t′α holds in Dα, then α(t) = βα(tα) =
βα(t

′
α) = α(t′), which finishes the proof. ⊓⊔

From (4), Definition 14 and Lemma 2, we obtain the following result.

Theorem 6. Let Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) be an attribute domain com-

patible with a semantics ≡ for ADTerms. If t ≡ t′, then, given any basic assign-
ment βα : B → Dα, we have α(t) = α(t′).

5.3 Attribute Domains Compatible with the Multiset Semantics

While performing various case studies using the ADTree methodology, we have
noticed that most of the useful attribute domains for ADTrees admit a structure
Aα = (Dα,⊞,⊠,⊠,⊞,⊠,⊞), where (Dα,⊞,⊠) forms an idempotent semi-ring5,
i.e., the operations ⊞ and ⊠ are both commutative and associative, ⊠ distributes
over ⊞, operator ⊞ is idempotent and Dα contains a neutral element w.r.t. ⊞
which is absorbing w.r.t. ⊠. This is, for instance, the case for the attribute do-
main Aα = (R+ ∪ {+∞},min,+,+,min,+,min) which is used to calculate the
minimal cost or the minimal time necessary for the proponent to achieve his main
goal. This also holds for Aα = (R≥0∪{−∞,+∞},min,max,max,min,max,min)
which can be used to calculate the minimal skill level necessary for the proponent
to perform an attack. A third example is Aα = ({0, . . . , k},min, ⋆, ⋆,min, ⋆,min),
where ⋆(a, b) = min{a + b, k}, which helps us to model which goals of the pro-
ponent are executable in less than k units of time. Theorem 7 shows that the
evaluation of this type of attributes is consistent with the multiset semantics. It
therefore implies that the multiset semantics is one of the most important and
useful semantics for ADTerms.

Theorem 7. Every attribute domain of the form Aα = (Dα,⊞,⊠,⊠,⊞,⊠,⊞),
where (Dα,⊞,⊠) forms an idempotent semi-ring, is compatible with the multiset
semantics for ADTerms.

Proof. Let us consider the complete set of axioms EM for the multiset seman-
tics, given in Theorem 5. According to Proposition 1, it is sufficient to show that
for every l = r ∈ EM, the equality lα = rα holds in Dα. The equalities corre-
sponding to axioms (Es

1), (Es
2) result from the commutativity of ⊞ and ⊠. The

equalities corresponding to (Es
3), (Es

4), (Ep
17) and (Ep

20) hold due to associativ-
ity of both operations. Distributivity of ⊠ over ⊞ guarantees that the equalities
corresponding to (Eo

9), (Ep
10), (Ep

13), (Ep
16), (Ep

18) and (Eo
19) are satisfied in Dα.

Finally, the equalities corresponding to (Ep
11) and (Eo

12) result from the idempo-
tency of ⊞. Note that axioms (Es

5), (Es
6) are purely syntactical and are needed

for technical reasons, only. ⊓⊔

5 Due to the commutativity of ⊠, the structure (Dα,⊞,⊠) is usually called a commu-
tative semi-ring.
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The authors of [MO05] show that, in the case of attack trees, every at-
tribute domain which is a semi-ring is compatible with the multiset semantics.
Theorem 7 extends this result from attack trees to ADTrees. Note that the re-
sult proven in [MO05] only holds for idempotent semi-rings. Indeed, equations
(Ep

1 ), (E
p
2 ), (E

p
3 ), (E

p
4 ), (E

p
5 ), (E

p
6 ), (E

p
10) and (Ep

11) axiomatize the multiset se-
mantics for attack trees. Thus, if the attribute domain forms a semi-ring which
is not idempotent (as for instance in the case of the algebraic semi-ring, i.e.,
(R,+,×)), the computation of attribute values on two equivalent attack trees,
such as t = ∨p(a, a) and t′ = a, does not yield the same result.

6 Related Work

The idea of using AND-OR trees for security assessment takes its origins from the
field of safety analysis. As early as in the 60s, Vesely et al. [VGRH81] proposed
fault trees to evaluate safety of critical infrastructures and analyze associated
risks. In early 90s, inspired by fault trees, Weiss [Wei91] and Amoroso [Amo94]
developed threat trees to model vulnerabilities that complex systems, such as
hospital information systems, are subject to. The notion of attack trees is due
to Schneier who introduced them in 1999 as a visual and systematic methodol-
ogy for security assessment [Sch99]. In 2005, Mauw and Oostdijk [MO05] aug-
mented attack trees with semantics, providing a solid, formal and methodolog-
ical framework for security analysis. Since then, the attack tree methodology
has been taken up by numerous researchers. An excellent summary about the
history of formal graphical security models, including attack trees, is given by
Piètre-Cambacédès and Bouissou [PCB10]. Attack trees constitute a very pop-
ular method for security modeling in both both in industrial and academic
environment. They have been adopted as a support tool in a number of in-
ternational research projects, for instance SHIELDS [SHI], EVITA [EVI], and
ANIKETOS [ANI]).

Several authors have proposed to augment attack trees with a notion of
defense, in the past [BPT08,RKT11,PCB10,BP10,ACK10,ZKSY09]. Different
approaches, ranging from adding defenses to the leaf nodes of the attack tree,
over extending attack trees with various types of defensive measures, such as
mitigation, response or detection nodes, to also considering a separate tree that
describes possible protection scenarios and relates to the root of the attack tree,
have been considered.

Edge et al. [EDRM06] have shown how to compute the cost or the probability
of an attack from an attacker’s as well as from a defender’s point of view. Mod-
eling the defender’s point of view was made possible by creating a protection
component, for every leaf of an attack tree, and then constructing protection
trees by using these components as leaf nodes.

It is also possible to unite the attacker’s and the defender’s points of view and
create a single framework, instead of keeping two separated models for the at-
tacker and the defender. Bistarelli et al. [BPT08,BDP06] have proposed so-called
defense trees, where defensive measures are added to the leaves of attack trees.
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Furthermore, they use methods from game theory and answer set programming,
to deduce which defensive measures should be selected.

Roy et al. [RKT11] have introduced attack countermeasure trees, where coun-
termeasures, such as detection and mitigation, are allowed at any level of the
tree. They have studied consequences of adding countermeasures in a border
gateway protocol attack, an attack on a supervisory control and data acqui-
sition system and a malicious insider attack. The practical feasibility of their
approach was illustrated by computing the impact and the cost of a successful
attack as well as the system’s risk to a particular attack scenario.

Piètre-Cambacédès and Bouissou [PCB10] have used Boolean logic Driven
Markov Processes (BDMPs) to assign a new semantics to attack trees. The
general idea of BDMPs is to associate a Markov process to each leaf of an attack
tree. Since BDMPs are dynamic, their use allows for the modeling of attack
sequences. Moreover, BDMPs can also model dynamic defensive aspects, such
as detections or mitigations.

Another extension of attack trees is described by Baca and Petersen [BP10].
Instead of focusing on the identification of attacks, they propose to prioritize
and evaluate countermeasures, which are again only assigned to the leaves of
the attack trees. Since they allow countermeasures to counter several attacks,
their formalism is based on DAGs. Cost and effectiveness of countermeasures
are evaluated and then depicted in a two-dimensional graph. The approach has
been applied on an open source system, called Code 43. The case study showed
that the described method identifies the most effective and cost-efficient coun-
termeasures.

Extending attack trees with defenses or countermeasures is not the only way
of enriching the attack tree formalism. In [Yag06], Yager introduces ordered
weighted averaging trees (OWA trees) by allowing attack trees with additional
refinement of operators. By ordering the children of nodes it is possible to model
how many children of a node must be satisfied, in order to satisfy the parent
node. The introduced OWA nodes even allow probabilistic uncertainty of the
number of children that need to be satisfied, so that the parent node is satisfied.

In [WJ10], Willemson and Jürgenson also consider ordered attack trees. Their
novelty is to introduce an order on the set of leaves of an attack tree, which
allows them to select the best attack option represented by the tree. Moreover,
the authors generalize their framework from tree structures to directed acyclic
graphs (DAGs).

Abdulla et al. [ACK10] take generalizing the tree structure even further by
defining attack jungles, allowing for multiple roots, cycles and nodes representing
reusable assets. The authors have implemented a prototype tool and used it to
evaluate the security in the GSM radio network using attack jungles.

The ADTree methodology extends attack trees as formalized in [MO05], in
two ways. It introduces defenses and it generalizes the notions of semantics and
attributes. Consequently, our formalism provides a single framework covering
concepts developed in [WJ10,EDRM06,SDP08,RSF+09,MMCJ09].
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The ADTrees formalism has proven to be useful in theoretical considerations.
In [KMMS10], the relation between ADTrees and game theory has been studied.
This work shows that ADTrees interpreted with the propositional semantics and
binary zero-sum two-player extensive form games can be converted into each
other. Both formalisms have their advantages. On the one hand, ADTrees provide
easily understandable and intuitive representation of attack–defense scenarios.
On the other hand, the game theoretic approach benefits from the well-studied
methodology used in games such as solution concepts, which can be used to find
optimal strategies for involved players.

Computational aspects of ADTrees have been studied in [KPS11]. The paper
describes semantics for which attack–defense trees extend attack trees to a richer
formalism without increasing the computational complexity of the model. This is
the case for the propositional semantics and more generally for every semantics
induced by a De Morgan lattice. In other words, the authors of [KPS11] show
that when ADTrees are interpreted with De Morgan valuations, the analysis of
ADTrees does not require more computational power than the analysis of regular
attack trees, as ADTrees can be processed by algorithms developed for attack
trees. This, in particular, implies that all queries which can be efficiently solved
on attack trees can also be efficiently solved on ADTrees.

Finally, the applicability of the attack–defense tree methodology for quantita-
tive analysis of vulnerability scenarios has been tested in a case study described
in [BKMS12]. In this work, a denial of service attack for an RFID-based goods
management system has been analyzed. An extensive ADTree modeling a consid-
ered DoS attack have been created and a number of useful attributes have been
evaluated. The case study resulted in a definition of precise guidelines specifying
how to use ADTrees in practice.

7 Conclusion and Future Work

We have introduced attack–defense trees as a new formal approach for security
assessment. The ADTrees provide an intuitive and visually appealing representa-
tion of interactions between an attacker and a defender of a system. Furthermore,
due to the countermeasure operators which connect the opponent’s actions to
the proponent’s actions, ADTrees can be used to represent the evolution of the
security mechanisms and vulnerabilities of a system.

The attack–defense language is based on ADTerms, i.e., the term algebra for
ADTrees. We have introduced several semantics for ADTerms, demonstrating
their versatility. Our semantics are defined through equivalence relations on the
set of ADTerms. This unifies different approaches [MO05,WJ10,EDRM06] to
attack trees that have been proposed in the literature, because they all rely
upon an underlying equivalence relation.

We have introduced attributes for ADTerms and an evaluation algorithm
for ADTerms allowing us to analyze attack–defense scenarios modeled with
ADTrees. This extends the approach proposed for attack trees in [MO05]. More-
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over, we have formulated and proved sufficient conditions under which the eval-
uation of an attribute on equivalent ADTerms results in the same value.

To be able to demonstrate the applicability of ADTrees on real-world exam-
ples, we are currently developing a computer tool. The tool will facilitate the
construction of large ADTrees, support their graphical representation, and as-
sist in the quantitative analysis of attack–defense scenarios. Furthermore, the
complete axiomatization of semantics, as introduced in this paper, constitutes a
first step towards automated equivalence checking for ADTrees.

In the future, we plan to extend our framework from attack–defense trees
to attack–defense DAGs. Using DAGs we can model dependencies between the
sub-goals. This issue is crucial when taking the execution order of sub-goals into
account or when analyzing an attack–defense scenario from a probabilistic point
of view.
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