Attack–Defense Tree Methodology for Security Assessment

Barbara Kordy

Joint work with Patrick Schweitzer, Sjouke Mauw, Saša Radomirović

Outline

2 Semantics

- 3 Quantitative analysis
- 4 Computational complexity

Barbara Kordy, UL

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

Outline

- 2 Semantics
- 3 Quantitative analysis
- 4 Computational complexity
- 5 Attack-defense trees in practice

Barbara Kordy, UL

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

Definition Attack tree (ATree) – tree-like representation of an attacker's goal recursively refined into conjunctive or disjunctive sub-goals.

Methodology to describe security weaknesses of a system

• Proposed by Schneier

Attack trees: Modeling Security Threats, '99

Formalized by Mauw and Oostdijk

Foundations of Attack Trees [ICISC'05]

Example: attacking a bank account

- Only attacker's point of view
- No defensive measures
- No attacker/defender interactions
- No evolutionary aspects

Definition Attack-defense tree (ADTree) – attack tree extended with possibly refined or countered defensive actions.

Introduced by Kordy et al. in Foundations of Attack–Defense Trees [FAST'10]

Example: attacking and defending a bank account

- Equivalent representations of the same scenario (semantics)
- Quantitative analysis (attributes)
- Computational complexity of ATrees and ADTrees (querying)
- Practical applications (case studies)

Outline

2 Semantics

3 Quantitative analysis

4 Computational complexity

Barbara Kordy, UL

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

Semantics define which ADTrees represent the same scenario.

Definition Semantics for ADTrees – equivalence relation on ADTrees.

- Propositional semantics
- Semantics induced by a De Morgan lattice
- Multiset semantics
- Equational semantics

Propositional semantics for ADTrees

In the propositional semantics

ADTrees represent Boolean functions.

Example: propositional interpretation of an ADTree

 $f = (\mathsf{pin} \land \mathsf{card}) \lor (\mathsf{online} \land \neg((\mathsf{key \ fobs} \lor \mathsf{pin \ pad}) \land \neg\mathsf{malware}))$

In the propositional semantics

ADTress represent the same scenario if the corresponding Boolean functions are equivalent.

Example: propositionally equivalent ADTrees

The two trees are equivalent in the propositional semantics, because in propositional logics we have absorption law

 $(hammer \lor key) \land hammer \equiv hammer$

ADTrees are interpreted as sets of multisets. Each multiset represents a possible way of attacking.

In the multiset semantics

ADTrees represent the same scenario if the corresponding sets of multisets are equal.

Example: ADTrees not equivalent in the multiset semantics

{{hammer, hammer}, {key, hammer}} { { hammer } }

The two trees are not equivalent in the multiset semantics, because { $\{\|hammer, hammer\}, \|key, hammer\}$ } \neq { $\|hammer\}$ }.

Different semantics - different equivalence classes

The choice of an appropriate semantics

depends on considered applications and assumptions.

Outline

2 Semantics

3 Quantitative analysis

④ Computational complexity

Barbara Kordy, UL

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

Quantitative analysis of an attack-defense scenario

- Standard questions
 - What is the minimal cost of an attack?
 - What is the expected impact of a considered attack?
 - Is special equipment required to attack?
- Bivariate questions
 - How long does it take to secure a system, when the attacker has a limited budget?
 - How does the scenario change if both, the attacker and the defender are affected by a power outage?

Calculation of attributes

Bottom-up algorithm

- Basic assignment values assigned to basic actions
- Attribute domain operators specifying how to compute values for other nodes

Intuitive idea of Schneier

Attack trees: Modelling Security Threats, '99

- Formalization by Mauw and Oostdijk for attack trees Foundations of Attack Trees, [ICISC'05]
- Extension to attack-defense trees by Kordy et al. Foundations of Attack-Defense Trees, [FAST'10]

Attribute: minimal time of an attack

Question:

What is the minimal time needed to achieve a considered attack?

Attribute domain:

- Values from $\mathbb{N} \cup \{\infty\}$
- $\infty =$ action not under control of the attacker
- $(\vee^A, \wedge^A, \vee^D, \wedge^D, \mathsf{c}^A, \mathsf{c}^D) = (\min, +, +, \min, +, \min)$

Attribute domain for minimal time

Example: computation of minimal time on an ADTree

$$(\vee^{A}, \wedge^{A}, \vee^{D}, \wedge^{D}, \mathsf{c}^{A}, \mathsf{c}^{D}) = (\mathsf{min}, +, +, \mathsf{min}, +, \mathsf{min})$$

Semantics and attribute domains

Recall: t and t' are equivalent in the propositional semantics.

- Problem: $t \equiv_{\mathcal{P}} t'$, but $time(t) \neq time(t')$
- Solution: Compatibility notion

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

Compatibility of an attribute with a semantics

Compatibility defines which semantics should be used in combination with which attribute.

Definition Attribute α is compatible with semantics \equiv for ADTrees iff $\forall t, t' \in ADTrees, t \equiv t' \implies \alpha(t) = \alpha(t').$

- Problem: How to check compatibility?
- Solution: Complete set of axioms for a semantics.

▶ Details

Definition

A set E of ADTree transformations is a complete set of axioms for a semantics for ADTrees iff equivalent ADTrees can be obtained from each other by application of transformations from E.

- Problem: How to find a complete set of axioms for a semantics?
- Solution: This is difficult...

We have identified complete sets of axioms for

- the propositional semantics (44 transformations)
 - using minimal DNF representation of propositional formulas
- the multiset semantics (22 transformations)
 - using term rewriting techniques

Details can be found in Attack-Defense Trees (to appear in JLC'12).

Axiomatization and compatibility

Using a complete set of axioms, compatibility can be decided by performing a finite number of easy checks.

Outline

- 2 Semantics
- 3 Quantitative analysis
- 4 Computational complexity
- 5 Attack-defense trees in practice

Barbara Kordy, UL

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

- ADTrees enrich modeling capabilities of ATrees.
- How much computational power do they require w.r.t. ATrees?

Boolean functions represented by ATrees and ADTrees

In Computational Aspects of Attack–Defense Trees [SIIS'11], we show

Lemma

ATrees represent positive Boolean functions.

2 ADTrees represent monotone Boolean functions.

Theorem

Every monotone Boolean function, which is not positive, can be brought into a positive form in linear time.

Corollary (Kordy, Pouly, Schweitzer [SIIS'11])

When the propositional semantics is used, the computational complexity of ADTrees is the same as the computational complexity of ATrees.

When the propositional semantics is used

- ADTrees can be processed by algorithms developed for ATrees.
- Complexity of query evaluation on ADTrees is the same as the corresponding complexity on ATrees.
- Queries that can efficiently be solved on ATrees can also efficiently be solved on ADTrees.

Limitations of the propositional semantics

$$b f(b) = b b f(b) = b$$

- The Boolean function f: {0,1}^b → {0,1} corresponding to a non-refined node b is of the form f(b = v) = v, where v ∈ {1,0}.
- This means that the propositional semantics assumes that each component which is present is fully effective.
- Problem: Such strong assumption is not always desirable.

Example: modeling effectiveness level of an attack

Let $\{F, M, T\}$ be a set of effectiveness levels, where F < M < T.

- Boolean function given by f(d = 1) = 1 and f(d = 0) = 0 is not well suited to model effectiveness level of a dictionary attack.
- We need a function of the form $f: \{0,1\}^{\{d\}} \rightarrow \{F, M, T\}$, where f(d = 1) = M and f(d = 0) = F.

In semantics induced by a De Morgan lattice L

ADTrees represent functions of the form $f: \{0,1\}^X \to L$, where X is a set of propositional variables.

- De Morgan lattices allow us to use more than only two values 0 and 1.
- Semantics induced by De Morgan lattices allow for more accurate analysis, with respect to the propositional semantics.

▶ Details

Theorem

When a semantics induced by a De Morgan lattice is used, the computational complexity of ADTrees is the same as the computational complexity of ATrees.

When ADTrees represent functions of the form

- $f: \{0,1\}^X \to \{0,1\}$
- $f: \{0,1\}^X \to L$, with L a De Morgan lattice

enriching the attack tree formalism with defense nodes is not done at the expense of computational complexity.

Outline

- 2 Semantics
- 3 Quantitative analysis
- 4 Computational complexity

Case study

- Objectives: checking usefulness of the ADTree methodology
 - test define tool requirements
 - validate improve the formalism
- Partners:
 - SINTEF, Norway (Per Håkon Meland)
 - TXT e-solutions, Italy (Alessandra Bagnato)
- Results: Attribute Decoration of Attack–Defense Trees [IJSSE'12]

Case study scenario

DoS in RFID-based goods management system

- ADTree of 97 nodes
- Taking into account multiple aspects:
 - physical access,
 - social engineering attacks,
 - digital attacks.
- Evaluation of 10 attributes: *cost, time, detectability, penalty, skill level, impact, difficulty, profitability*

Case study outcomes

• Guidelines explaining how to use ADTrees in practice

• Requirements for an ADTree software

ADTool

Software tool supporting the ADTree methodology.

- Implemented in Java.
- Compatible with multiple platforms.
- Graphical user interface.
- Supports attribute evaluation on ADTrees.

- Creation of ADTrees.
- Modular display of ADTrees necessary in case of large trees.
- Evaluation of predefined attributes, including:
 - minimal cost of an attack,
 - minimal skill of the winner,
 - satisfiability of an attack,
 - cheapest satisfiable attack,
 - minimal attack time,
 - attack satisfiable in less than 10 minutes.
- Possibility of defining new attributes.

Quantitative analysis

4 Computational complexity

Barbara Kordy, UL

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

Research questions

- Probabilistic analysis: ADTrees & Bayesian networks
- Access control analysis: ADTrees & policy trees
- Further testing and development of ADTool
 - Release planned for summer 2012
- Future projects: ADTrees for socio-technical security
 - EU: TREsPASS
 - CORE-FNR: STAST

Thank you for your attention!

Barbara Kordy, UL

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

References

[FAST'10] Kordy, Mauw, Radomirović and Schweitzer Foundations of Attack–Defense Trees. In Proceedings of FAST 2010, volume 6561 of LNCS. Springer 2011.
[GameSec'10] Kordy, Mauw, Melissen and Schweitzer Attack-defense trees and two-player binary zero-sum extensive form games are equivalent. In Proceedings of GameSec 2010, volume 6442 of LNCS. Springer, 2010.
[SIIS'11] Kordy, Pouly and Schweitzer Computational Aspects of Attack–Defense Trees. In Proceedings of SIIS 2011, volume 7053 of LNCS. Springer, 2011.
[JLC'12] Kordy, Mauw, Radomirović and Schweitzer Attack–Defense Trees. To appear in Journal of Logic and Computation.
[IJSSE'12] Bagnato, Kordy, Meland and Schweitzer Attribute Decoration of Attack–Defense Trees. To appear International Journal of Secure Software Engineering Special Issue on Security Modeling

Complementary slides

APPENDIX

ADTrees as Boolean functions

Example: computation of minimal time on an ADTree

$$(\vee^{A}, \wedge^{A}, \vee^{D}, \wedge^{D}, \mathsf{c}^{A}, \mathsf{c}^{D}) = (\min, +, +, \min, +, \min)$$

▶ Back

$\alpha\text{-expressions}$ for ADTrees

Given an attribute domain $\alpha = (\mathbb{D}, \vee^A, \wedge^A, \vee^D, \wedge^D, \mathsf{c}^A, \mathsf{c}^D)$ we set

Barbara Kordy, UL

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

Example: *minimal_time*-expressions for ADTrees

$$time = (\mathbb{N} \cup \{\infty\}, \min, +, +, \min, +, \min)$$

 $t_{time} = t'_{time}$ in $\mathbb{N} \cup \{\infty\}$ because + is commutative on $\mathbb{N} \cup \{\infty\}$

Barbara Kordy, UL

ATREES project funded by National Research Fund CORE grant No. C08/IS/26

Definition

Attribute domain $\alpha = (\mathbb{D}, \vee^A, \wedge^A, \vee^D, \wedge^D, \mathsf{c}^A, \mathsf{c}^D)$ is compatible with semantics \equiv if and only if

$$\forall t, t' \in ADT$$
rees, $t \equiv t' \Rightarrow t_{\alpha} = t'_{\alpha}$ holds in \mathbb{D} .

Theorem

If an attribute domain is compatible with a semantics, then equivalent ADTrees yield the same attribute values.

Example: incompatibility of *minimal time* with $\equiv_{\mathcal{P}}$

 $time = (\mathbb{N} \cup \{\infty\}, \min, +, +, \min, +, \min)$

time is not compatible with the propositional semantics $\equiv_{\mathcal{P}}$ • $(a \lor^{p} b) \land^{p} a \equiv_{\mathcal{P}} a$, since $(a \lor b) \land a \approx a$ • but $(a \min b) + a \neq a$ in $\mathbb{N} \cup \{\infty\}$.

Checking compatibility

Definition

Attribute domain $\alpha = (\mathbb{D}, \vee^A, \wedge^A, \vee^D, \wedge^D, \mathsf{c}^A, \mathsf{c}^D)$ is compatible with semantics \equiv if and only if

$$\forall t,t' \in \textit{ADTrees}, \ t \equiv t' \Rightarrow t_{lpha} = t'_{lpha} \ \mathsf{holds} \ \mathsf{in} \ \mathbb{D}.$$

- Problem: How to find all t, t', such that $t \equiv t'$?
- Solution: Axiomatization of semantics

▶ Back

De Morgan lattice

- L non-empty set
- $+, \times$ binary operations on L
- \neg unary operation on L

Definition

 $\langle L, +, \times, \neg \rangle$ is a De Morgan lattice if $\langle L, +, \times \rangle$ is a distributive lattice and, for all $a, b \in L$, we have

$$\neg(a+b) = (\neg a) \times (\neg b), \quad \neg(a \times b) = (\neg a) + (\neg b), \quad \neg(\neg a) = a.$$

Example

De Morgan lattice $\langle \{F, M, T\}, \max, \min, \neg \rangle$, with

•
$$F < M < T$$
,

•
$$\neg F = T$$
, $\neg M = M$, $\neg T = F$,

may represent effectiveness levels.

Semantics induced by a De Morgan lattice

 $X = \text{finite set of propositional variables} \\ \langle L,+,\times,\neg\rangle = \text{De Morgan lattice}$

Definition

A De Morgan valuation (DMV) with domain d is a function of the form $f: \{0,1\}^X \to L$.

ADTrees form a representation language for De Morgan valuations:

$$f_b(X_b = v) = I_v \qquad f_{\vee^s(t_1,...,t_k)} = \sum_{i=1}^{\kappa} f_{t_i},$$

$$f_{\wedge^s(t_1,...,t_k)} = \prod_{i=1}^{k} f_{t_i}, \qquad f_{\mathsf{c}^s(t_1,t_2)} = f_{t_1} \times \neg f_{t_2},$$

where $v \in \{1,0\}$, $I_v \in L$ and $s \in \{A,D\}$. Back

