DAG-Based Attack and Defense Modeling;:
Don’t Miss the Forest for the Attack Trees."

Barbara Kordy®"* Ludovic Piétre-Cambacédés®, Patrick Schweitzer®

@ University of Luxembourg, SnT
6, rue Coudenhove-Kalergi, 1359 Luzembourg
YIRISA, INSA Rennes
Campus Beaulieu, 35042 Rennes, France
¢EDF France, Research and Development Department
1, avenue Général de Gaulle, 92141 Clamart, France

Abstract

This paper presents the current state of the art on attack and defense modeling approaches that are
based on directed acyclic graphs (DAGs). DAGs allow for a hierarchical decomposition of complex scenarios
into simple, easily understandable and quantifiable actions. Methods based on threat trees and Bayesian
networks are two well-known approaches to security modeling. However there exist more than 30 DAG-based
methodologies, each having different features and goals.

The objective of this survey is to summarize the existing methodologies, compare their features, and
propose a taxonomy of the described formalisms. This article also supports the selection of an adequate
modeling technique depending on user requirements.

Keywords: graphical models for security; attack trees; Bayesian networks; attack and defense modeling;
quantitative and qualitative security assessment; security measures.

1. Introduction

Graphical security models provide a useful method to represent and analyze security scenarios that
examine vulnerabilities of systems and organizations. The great advantage of graph-based approaches lies
in combining user friendly, intuitive, visual features with formal semantics and algorithms that allow for
qualitative and quantitative analysis. Over the course of the last two decades, graphical modeling has
attracted the attention of numerous security and formal methods experts. It has quickly become a stand-
alone research area with dedicated dissemination events [144] as well as related national and international
research projects [265, 289, 14, 18, 3, 300, 260, 58|. Graphical models constitute a valuable support tool
to facilitate threat assessment and risk management of real-life systems. Thus, they have also become
popular in the industrial sector. Notable application domains of graphical models include security analysis of
supervisory control and data acquisition (SCADA) systems [47, 285, 284], voting systems [158, 34|, vehicular
communication systems [107, 4], Internet related attacks [287, 164], secure software engineering [127], and
socio-technical attacks [20, 84, 242].

ONOTICE: this is the author’s version of a work that was accepted for publication in Computer Science Review. Changes
resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control
mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for
publication. A definitive version was subsequently published in Barbara Kordy, Ludovic Piétre-Cambacédés, Patrick Schweitzer,
DAG-Based Attack and Defense Modeling: Don’t Miss the Forest for the Attack Trees, Computer Science Review (2014), DOI:
10.1016/j.cosrev.2014.07.001, available at http://www.sciencedirect.com/science/article/pii/S1574013714000100.

*Corresponding author, tel: +352 466 644 5506

Email addresses: barbara.kordy@uni.lu (Barbara Kordy), ludovic.pietre-cambacedes@edf.fr (Ludovic
Piétre-Cambacédes), patrick.schweitzer@uni.lu (Patrick Schweitzer)

Preprint submitted to Computer Science Review August 12, 2014

http://www.sciencedirect.com/science/article/pii/S1574013714000100

In this paper we focus on graphical methods for analysis of attack and defense scenarios. We understand
attack and defense scenarios in a general sense: they encompass any malicious action of an attacker who
wants to harm or damage another party or its assets as well as any defense or countermeasure that could
be used to prevent or mitigate such malicious actions. In 1991, Weiss [313] introduced threat logic trees as
the first graphical attack modeling technique. The obvious similarity of threat logic trees to fault trees [296]
suggests that graph-based security modeling has its roots in safety modeling. Weiss’ approach can be seen
as the origin of numerous subsequent models, including attack trees [252, 257] which are nowadays one of
the most popular graphical security models.

Today, more than 30 different approaches for analysis of attack and defense scenarios exist. Most of
them extend the original model of threat logic trees in one or several dimensions which include defensive
components, timed and ordered actions, dynamic aspects, and different types of quantification. Moreover,
methods for computation of various security related parameters, such as the cost, the impact or likelihood of
an attack, the efficiency of necessary protection measures, or the environmental damage of an attack, have
been developed or adapted.

Legend
g)(s)ta.in O objectives
Privlirllenglés A\ disjunctive refinement
A conjunctive refinement
Access Obtain
System Admin.
Console Password
Enter Look Over Trojan
Computer | ST | puena | [S Admin [sore sa | [0 R
Center pera /L)\ Shoulder Account Js- i
Break In \ Obtain Encounter
to Comp. Unthﬁithd ed Password Guessable
Center — File Password

Figure 1: A threat logic tree taken from [313]: Obtaining administrator privileges on a UNIX system.

This survey concentrates on formalisms based on directed acyclic graphs (DAGs), rather than on ar-
bitrary graphs. Described approaches can be divided into two main classes: formalisms derived from or
extending threat trees, and formalisms based on Bayesian networks. The model creation in all threat tree-
based methodologies starts with the identification of a feared event represented as the root node. Then, the
event’s causes or consequences, depending on the specific approach, are deduced and depicted as refining
nodes. The refinement process is illustrated in Figure 1, which recreates the first threat tree model proposed
by Weiss [313]. The DAG structure allows to use refinements with a customizable level of detail. The root
of a DAG is refined as long as the refining children provide useful and adequate information about the mod-
eled scenario. Refinements paired with the acyclic structure allow for modularization which in turn allows
different experts to work in parallel on the same model. This is highly appreciated in case of large-scale,
complex models, where analysis of different parts requires different types of expertise. A big advantage of
the DAG-based approaches is that they are fairly scalable. They do not suffer from the state space explosion
problem, which is common for models based on general graphs with cycles. In the case of trees, most of the
analysis algorithms are linear with respect to the number of nodes of the model. Due to multiple incoming
edges, this property is no longer true for DAGs and the complexity of analysis methods might, in theory,
be exponential. However in practice, this is still acceptable, since the exponents can be kept small due to
the underlying cycle-free structure. This is, for instance, the case for Bayesian inference algorithms used
for the analysis of security models based on Bayesian networks. Figure 2 depicts a simple Bayesian attack

2

graph borrowed from [234] and illustrates how to compute the unconditional probability of a vulnerability
exploitation.

Legend

threat sources and
O internal states

C | Pr(A) | Pr(—A)
1.00 0.00

e 0| 065 0.35
oo Probability of 1| 100 | 000
successful exploit

ﬁ local conditional 0 | 0.00 . 0.00
probability distribution Pr(A) =0.61

Root / FTP Server

o = = =3
—

Matu FTP BOF Remote BOF on SSH daemon
(requires no privilege) (requires no privilege)
B C
D | Pr(B) | Pr(=B) D | Pr(C) | Pr(—=C)

1 0.85 0.15 1 0.70 0.30
0 0.00 1.00 0 0.00 1.00

Pr(B) = 0.60 Pr(C) =0.49
Pr(D) | Pr(=D)

Remove attacker 0.70 0.30

Pr(D) = 0.70

Figure 2: Bayesian attack graph taken from [234]: A test network with local conditional probability distri-
butions (tables) and updated unconditional probabilities (below each table).

This paper surveys DAG-based graphical formalisms for attack and defense modeling. These formalisms
provide a systematic, intuitive, and practical representation of a large amount of possible attacks, vul-
nerabilities and countermeasures, while at the same time allowing for an efficient formal and quantitative
analysis of security scenarios. The contribution of this work is to provide a complete overview of the field
and systematize existing knowledge. More specifically, the survey

e presents the state of the art in the field of DAG-based graphical attack and defense modeling;
e identifies relevant key aspects allowing to compare different formalisms;
e proposes a taxonomy of the presented approaches, which helps in selecting an appropriate formalism;

e lays a foundation for future research in the field, with the goal to prevent reinvention of already existing
features.

In Section 2, we introduce terminology used in the field of graph-based security modeling and provide a
template for the description of the formalisms. Section 3 is the main part of the survey and presents existing
DAG-based attack and/or defense modeling approaches. In Section 4, we provide a concise tabular overview
of the presented formalisms. We illustrate how to use the tables in order to select the most relevant model-
ing technique, depending on the application requirements. Section 5 briefly mentions alternative graphical
security models. We close the survey with concluding section, which summarizes our findings and proposes
future research directions in the field.

2. Preliminaries

In this section we introduce our terminology and make a link to existing definitions and concepts. We
then present and define the aspects on the basis of which we have analyzed the different formalisms. We
conclude with a detailed description of how formalisms from Section 3 are described.

2.1. Keywords and Terminology

When examining different models in the same context, it is imperative to have a common language. Over
the last 20 years, numerous concepts and definitions have emerged in the field of graphical security modeling.
This section is intended to introduce the language used in this paper, and to serve as quick reference guide
over the most commonly occurring concepts. Our goal here is not to point out the differences in definitions
or other intricate details.

Attack and defense modeling. By techniques for attack and defense modeling we understand formalisms that
serve for representation and analysis of malicious behavior of an attacker and allow to reason about possible
defending strategies of the attacker’s opponent, called the defender. In our survey we use attacks in a very
broad sense. Attacks can also be thought of as threats, obstacles, and vulnerabilities. Contrary, defenses can
appear in form of protections, mitigations, responses, and countermeasures. They oppose, mitigate or prevent
attacks.

Nodes. Nodes, also called vertices, are one of the main components of graph-based security models. They
are used to depict the concept that is being modeled. Nodes may represent events, goals, objectives, and
actions. Depending on whether the models are constructed in an inductive or deductive way, nodes may also
exXpress causes Or COnsSequences.

Root node. In a rooted DAG (and therefore in any tree) the root is the single designated node that does
not have any predecessor. From it all other nodes can be reached via a directed path. This distinguished
node usually depicts the entire concept which is being modeled. In the context of security models, various
existing names for this special node include top event, main goal, main consequence, main objective or main
action.

Leaf nodes. In a DAG, nodes that do not have any children are called leaves. They usually display an atomic
component of a scenario that is no longer refined. They are also called primary events, basic components,
elementary attacks, elementary components or basic actions.

Edges. Edges are the second main component of graph-based security models. They link nodes with each
other and, in this way, determine relations between the modeled concepts. Edges are also called arcs, arrows,
or lines. In some models, edges may have special semantics and may detail a cause-consequence relation, a
specialization or some other information.

Connectors. Connectors usually specify more precisely how a parent node is connected with its children.
A connector might be a set of edges or a node of a special type. Connectors are also called refinements or
gates. Some examples include: AND, OR, XOR, k-out-of-n, priority AND, triggers, etc.

Priority AND. A priority AND (PAND) is a special kind of AND connector which prescribes an order in
which the nodes are to be treated. The origin of the prescribed order is usually time or some priority criterion.
The PAND is also called an ordered-AND, an O-AND or a sequential AND. Sometimes the underlying reason
behind the priority is specified as in the case of the time-based AND.

Attributes. Attributes represent aspects or properties that are relevant for quantitative analysis of security
models. Examples of attributes, sometimes also called metrics, include: impact of an attack, costs of necessary
defenses, risk associated with an attack etc. Proposed computation methods range from versatile approaches
that can be applied for evaluation of a wide class of attributes, to specific algorithms developed for particular
measures. An example of the former is the formalization of an attribute domain proposed in [178], which is
well suited for calculation of any attribute whose underlying algebraic structure is a semi-ring. An example
of the latter are the specific methods for probability computation proposed in [324].

2.2. Examined Aspects

One of the goals of this paper is to provide a classification of existing formalisms for attack and defense
modeling. Thus, all approaches described in Section 3 were analyzed based on the same 13 criteria, which
we refer to as aspects and define in this section.

The formalisms are grouped according to the following two main aspects:

1. Attack and/or defense modeling: Attack modeling techniques are focused on an attacker’s actions
and vulnerabilities of systems; defense modeling techniques concentrate on defensive aspects, such as
detection, reaction, responses, and prevention.

2. Static or sequential approaches: Sequential formalisms take temporal aspects, such as dynamics
time variations, and dependencies between considered actions, such as order or priority, into account;
static approaches cannot model any of such relations.

The above two aspects provide a partition of all considered approaches. Furthermore, they correspond to
questions that a user selecting a suitable formalism is most likely to ask, namely What do we want to
model?’ and "How do we want to model?’. The proposed classification allows a reader to easily make a
primary selection and identify which formalisms best fit his needs.

Besides the two main aspects, each formalism is analyzed according to additional criteria, listed in
Table 1. All aspects taken into account in our work, can be grouped into three categories:

e Aspects relating to the formalism’s modeling capabilities, i.e., what we can model: attack or defense
modeling, sequential or static modeling, quantification, main purpose, extensions.

e Aspects relating to the formalism’s characteristics, i.e., how we can model: structure, connectors,
formalization.

e Aspects related to the formalism’s maturity and usability: tool availability, case study, external use,
paper count, year.

In Table 1, we define all 13 aspects in form of questions and provide possible values that answer the
questions.

Table 1: Table summarizing aspects taken into account in formalism description.

Aspect Aspect Description 52;511321(3 Value Explanation
Is the formalism Attack Only attack modeling
offensively or defensively =~ Defense Only defense modeling
oriented? Both Integrates attack and defense modeling
Static or Can the formalism deal Static Does not support any dependencies
. with dependencies and
sequential t . - o
1me varylng scenarios: Sequential Supports time and order dependencies
Versatile Suppprts numerous generic and diverse
. metrics
Can numerical values be
Quantification computed using the Specific Dedicated, tailored for (a couple of) specific
formalism? metrics
No Does not support quantification
Sec. mod. General security modeling
5

Why was the formalism

Main purpose .
purp invented?

Table 1: Table summarizing aspects taken into account in formalism description.

. L. Possible .
Aspect Aspect Description Values Value Explanation
Unification Unification of existing formalisms
Quantitative Prov1d§ better methods for quantitative
analysis
Risk Support risk assessment
Soft. dev. Support secure software development

Table 1: Table summarizing aspects taken into account in formalism description.

e . Possible .
Aspect Aspect Description Values Value Explanation
Automated intrusion detection and re-
Int. det. .
sponse analysis
Req. eng. Support security requirements engineering
Structural New connectors, extended graph structure
. How the formalism handles computations
Computational
(e.g., top down)
What are ad(.:led fegtures Quantitative Which co'mputat'ions can be performed
. of the formalism with (e.g., specific attributes)
Extensions
respect to the state of the The formalism can handle time dependen-
art? Time .
cies
The formalism can handle order dependen-
Order .
cies
New formalism Entirely new formalism
Tree Tree (possibly with repeated nodes)
Structure Wthh graph.lcal structure DAG Directed acyclic graph
is the formalism based on? It i ‘fied whether th del
Unspecified t 1s not specified whether the models are
DAGs or trees
AND, OR, trigger, sequential AND,
Connectors What type of connectors List of ordered-AND, priority AND, k-out-of-n,
does the formalism use? connectors OWA nodes, split gate, countermeasures,
counter leaves, dependence edges
Defined using a mathematical framework;
Formal . .
with clear syntax and semantics
Formalization Is the formalism formally . Parts of the definitions are given
defined? Semi-formal .
verbally, parts are precise
Informal Models only verbally described
Commercial A commercial software tool exists
Does a software tool
Tool availability supporting the formalism Prototype A prototype tool exists
exist? No No implementation exists
Real (istic) Real or realistic case study has been docu-

Case study

Do papers or reports
describing case studies
exist?

mented

Toy case study

Toy case study has been described

No

No documented case study exist

Table 1: Table summarizing aspects taken into account in formalism description.

. L. Possible .
Aspect Aspect Description Values Value Explanation
Independent People and institutions who did not invent
P the formalism have used it
Do papers or reports The formalism has been used by external
having a disjoint set of Collaboration researchers and institutions in collabora-
External use . 1 e
authors from the tion with its inventors

formalism inventors exist? The formalism has only been used by its

No inventors or within the institution where it
was invented

How many papers on the Number Number of papers that have been identi-

P t . .
aper coun formalism exist? fied?

What year was the

formalism first published? Year Before 2013

Year

2.8. Template of the Formalism Descriptions

The description of each formalism presented in Section 3 complies with the following template.

General presentation. The first paragraph mentions the name of the formalism, its authors, as well as it
lists main related papers. The year when the approach was proposed is given. Here we also present the main
purpose for which the technique was introduced. If nothing is indicated about the formalism structure, it
means that it is a generic DAG. If the structure is more specifically a tree, then it is indicated either in the
formalism’s name or in the first paragraph of the description.

Main features. In the second paragraph, we briefly explain the main features of the formalism, in particular
what its added features are with respect to the state of the art at the time of its invention. Moreover,
we state whether the modeling technique is formalized, i.e., whether it complies with proper mathematical
definitions.

Quantification. Next, we focus on quantitative aspects of the considered methodology. We explain whether
the formalism is tailored for a couple of specific parameters or metrics, or whether a general framework has
been introduced to deal with computations. In the first case, we list relevant attributes, in the second case,
we briefly explain the new algorithms or calculation procedures.

Practical aspects. When relevant, we mention industrialized or prototype software tools supporting the
described approach. We also indicate when real or realistic scenarios have been modeled and analyzed with
the help of the described approach. In this paragraph, we also refer to large research projects and Ph.D.
theses applying the methodology. This paragraph is optional.

Additional remarks. We finish the formalism description by relating it to follow-up methodologies. We point
out the formalism’s limitations that have been identified by its authors or other researchers from the field. In
this part we also point out various other peculiarities related to the formalism. This paragraph is optional.

! Different versions of the same paper (e.g., an official publication and a corresponding technical report) have been counted
as the same publication.

3. Description of the Formalisms

This section constitutes the main part of this survey. It describes numerous DAG-based approaches for
graphical attack and defense modeling according to the template outlined in Section 2.3. Models gathered
within each subsection are ordered chronologically, with respect to the year of their introduction.

3.1. Static Modeling of Attacks

3.1.1. Attack Trees

Inspired by research in the reliability area, Weiss [313] in 1991 and Amoroso [9] in 1994 proposed to
adopt a tree-based concept of visual system reliability engineering to security. Today, threat trees [9, 282,
114, 174, 291], threat logic trees [313], cyber threat trees [212], fault trees for attack modeling [279], and the
attack specification language [287] can be subsumed under attack trees, which are AND-OR tree structures
used in graphical security modeling. The name attack trees was first mentioned by Salter et al. in 1998 [252]
but is often only attributed to Schneier and cited as [257, 258].

In the attack tree formalism, an attacker’s main goal (or a main security threat) is specified and depicted
as the root of a tree. The goal is then disjunctively or conjunctively refined into sub-goals. The refinement is
repeated recursively, until the reached sub-goals represent basic actions. Basic actions correspond to atomic
components, which can easily be understood and quantified. Disjunctive refinements represent different
alternative ways of how a goal can be achieved, whereas conjunctive refinements depict different steps an
attacker needs to take in order to achieve a goal [240]. In 2005, Mauw and Oostdijk formalize attack trees by
defining their semantics and specifying tree transformations consistent with their framework [178]. Kienzle
and Wulf present an extensive general procedure for tree construction [139] while other researchers are
engaged in describing how to generate attack tree templates using attack patterns [196, 165]. Most recently,
the problem of automated generation of attack trees has started to attract the attention of scientific as well
as industrial communities [298, 280].

Quantification of security with the help of attack trees is a very active topic of research [315]. A first
simple procedure for quantification using attack trees was proposed by Weiss [313] and is based on a bottom-
up algorithm. In this algorithm, values are provided for all leaf nodes and the tree is traversed from the
leaves towards the root in order to compute values of the refined nodes. Depending on the type of refinement,
different functional operators are used to combine the values of the children. This procedure allows to analyze
simple aspects, such as the costs of an attack, the time of an attack or the necessary skill level [313, 9, 252,
257, 47, 108, 101, 178, 22, 324, 81, 251, 107, 163, 1, 19, 284, 315]. Whenever more complicated attributes,
such as probability of occurrence, probability of success, risk or similar measures are analyzed, additional
assumptions, for example mutual independence of all leaf nodes, are necessary, or methods different from the
bottom-up procedure have to be used [257, 47, 32, 81, 324, 130, 107, 163, 36, 1, 39, 212, 40, 173, 305, 243,
248, 326|. Propagation of fuzzy numbers that model fuzzy preference relations has initially been proposed
in [26] and extended in [38]. Using Choquet integrals it is possible to take interactions between nodes into
account.

Commercial software for attack tree modeling, such as SecurITree [7] from Amenaza or AttackTree+ [119]
from Isograph provides a large database of attack tree templates. Academic tools, including SeaMonster [188]
developed within the SHIELDS project [265] offer visualization and library support. Attack trees may occur
in the Security Quality Requirements Engineering (SQUARE) methodology [185]. The entire methodology
and therefore visualization of attack trees are supported by the SQUARE tool [49]. AttackDog [157] was
developed as a prototype software tool for managing and evaluating attack trees with voting systems in mind
but is believed to be much more widely applicable to evaluating security risks in systems [2]. Numerous case
studies [196, 287, 47, 56, 88, 108, 31, 101, 185, 4, 137, 285, 54, 103, 175, 205, 218, 242, 251, 107, 164,
198, 48, 92, 181, 182, 286, 84, 158, 197, 255, 311, 281, 326] account for the applicability of the attack tree
methodology. Attack trees are used in large international research projects [89, 265, 289]. They have been
focus of various Ph.D. and Master theses [138, 239, 195, 95, 256, 214, 134, 80, 86, 109, 169, 104, 128, 226,
245, 203, 215, 254, 327, 37, 141, 235, 220]. Attack tree modeling goes beyond the academic world and is
finding its way in industrial practices, especially those related to critical sectors [292, 87].

Since attack trees only focus on static modeling and only take an attacker’s behavior into account, numer-
ous extensions that include dynamic modeling and a defender’s behavior, exist. Except for formalisms involv-
ing Bayesian inference techniques, all other DAG-based formalisms refer back to the attack tree methodology.
They point out a need for modeling defenses, dynamics, and ordered actions, as well as propose computa-
tion procedures for probability or highly specified key figures. Neither the name attack trees, nor the initial
formalization of Mauw and Oostdijk is universally accepted. Some researchers consider attack trees, threat
trees or fault trees to essentially be the same [293, 199, 277, 11, 115, 279] while other researchers point
out specific differences [163, 192]. As common ground all mentioned methodologies use an AND-OR tree
structure but are divided on what the tree can actually model (attacks, vulnerabilities, threats, failures,
ete.)

3.1.2. Augmented Vulnerability Trees

Vulnerability trees [297] have been proposed by Vidalis and Jones in 2003 to support the decision making
process in threat assessment. Vulnerability trees are meant to represent hierarchical interdependence between
different vulnerabilities of a system. In 2008, Patel, Graham, and Ralston [219] extended this model to
augmented vulnerability trees which combine the concepts of vulnerability trees, fault tree analysis, attack
trees, and cause-consequence diagrams. The aim of augmented vulnerability trees is to express the financial
risk that computer-based information systems face, in terms of a numeric value, called “degree of security”.

The root of a vulnerability tree is an event that represents a vulnerability; the branches correspond to
different ways of exploiting it. The leaves of the tree symbolize steps that an attacker may perform in order
to get to the parent event. The model, which is not formally defined, uses only AND and OR connectors
depicted as logical gates. Vulnerability trees are very similar to attack trees, they differ in how the root event
is defined (vulnerability event vs. an attacker’s goal). A step-wise methodology consisting of a sequence of
six steps is proposed in [219] to create an augmented vulnerability tree and analyze security related indexes.

The authors of [297] propose a number of attributes on vulnerability trees, including: complexity value
(the smaller number of steps that an attacker has to employ in order to achieve his goal), educational
complexity (qualifications that an attacker has to acquire in order to exploit a given vulnerability), and
time necessary to exploit a vulnerability. However, the paper [297] does not detail how to compute these
attributes. In [219], the model is augmented with two indexes: the threat-impact index and the cyber-
vulnerability index. The first index, represented by a value from [0, 100], expresses the financial impact of a
probable cyber threat. The lower the index, the smaller is the impact from a successful cyber attack. The
second index, also expressed by a value from [0, 100], represents system flaws or undesirable events that
would help an intruder to launch attacks. The lower this index, the more secure the system is.

In [284], the augmented vulnerability tree approach has been used to evaluate risks posed to a SCADA
system exposed to the mobile and the Internet environment.

3.1.8. Augmented Attack Trees

In 2005, Ray and Poolsappasit? first developed augmented attack trees to provide a probabilistic measure
of how far an attacker has progressed towards compromising a system [241]. This tree-based approach was
taken up by H. Wang et al. in 2006 and extended to allow more flexibility in the probabilistic values provided
for the leaf nodes [301]. When again publishing in 2007, Poolsappasit and Ray used a different definition of
augmented attack trees to be able to perform a forensic analysis of log files [233]. Using the second definition of
augmented attack trees, J. Wang et al. performed an analysis of SQL injection attacks [303] and Distributed
Denial of Service (DDoS) attacks [302]. They also extended augmented attack trees further to measure the
quality of detectability of an attack [304]. The authors of [72] and [73] formalized attack trees as AND-OR
structure where every node is interpreted to answer a specific binary question. This formalization is then
again extended to augmented attack trees by adding to every node an indicator variable and an additional
value with the help of which the residual damage is computed. On the enhanced structure they are able to
optimize how to efficiently trade-off between spent money and residual damage.

2In early papers spelled Poolsapassit [241, 233]

10

The various ways of defining augmented attack trees are based on attack trees (Section 3.1.1). In the first
definition, attack trees are augmented by node labels that quantify the number of compromised subgoals
on the most advanced attack path as well as the least-effort needed to compromise the subgoal on the most
advanced path to be able to compute the probability of attack [241]. H. Wang et al. generalized this definition
from integer values to general weights. Both approaches include tree pruning and tree trimming algorithms
to eliminate irrelevant nodes with respect to intended operations (behavior) of a user [301]. In the second
definition, attack trees are augmented by descriptive edge labels and attack signatures. Each edge defines
an atomic attack which is described by the label and represents a state transition from a child node to the
corresponding parent. An attack signature is a sequence of groups of incidents, from which a sequence of
incidents can be formed, which constitutes an atomic attack. The sequences are then exploited to filter log
files for relevant intrusion incidences [233] and used to describe state transitions in SQL injection attacks
using regular expressions [303]. Moreover they are exploited to model state transition in DDoS attacks [302]
and adapted to provide a measure for quality of service detection, called quality of detectability [304]. In
an extension of the third definition [73] the system administrator’s dilemma is thoroughly examined. The
purpose of this extension is to be able to compute a bounded minimization of the cost of the security
measures while also keeping the residual damage at a minimum.

Augmented attack trees were designed with a specific quantitative purpose in mind. The first formal-
ization of augmented attack trees was introduced to compute the probability of a system being successfully
attacked. Additionally to increasing the descriptive capabilities of the methodology, the second definition
is accompanied by several algorithms that help compute the quality of detectability in [304]. As mentioned
before, the third definition targets solving the system administrator’s dilemma. This is achieved by using a
simplistic cost model and a multi-objective optimization algorithm which guides the optimization process
of which security hardening measures best to employ.

The authors of the first formalism state that attempts by system administrators to protect the system will
not change the outcome of their analysis. A similar shortcoming is suggested for the second formalization.

3.1.4. OWA Trees

In 2005, Yager proposed to extend the AND and OR nodes used in attack trees by replacing them with
ordered weighted averaging (OWA) nodes. The resulting formalism is called OWA trees [324] and it forms
a general methodology for qualitative and quantitative modeling of attacks.

Regular attack trees make use of two (extreme) operators only: AND (to be used when all actions need
to be fulfilled in order to achieve a given goal) and OR (to be used when the fulfillment of at least one
action is sufficient to reach a desired result). OWA operators represent quantifiers such as most, some, half
of, etc. Thus, OWA trees are well suited to model uncertainty and to reason about situations where the
number of actions that need to be satisfied is unknown. OWA trees are static in the sense that they do
not take interdependencies between nodes into account. They have been formally defined in [324] using the
notion of an OWA weighting vector. Since AND and OR nodes can be seen as special cases of OWA nodes,
mathematically, attack trees form a subclass of OWA trees. Therefore, algorithms proposed for OWA trees
are also suitable for the analysis of attack trees.

In [324], Yager provides sound techniques for the evaluation of success probability and cost attributes
on OWA trees. For the probability attribute, he identifies two approaches that can be explained using
two different types of attackers. The first approach assumes that the attacker is able to try all available
actions until he finds one that succeeds. Since in most situations such an assumption is unrealistic, the
author proposes a second model, where an attacker simply chooses the action with the highest probability
of success. Furthermore, [324] presents two algorithms for computing the success probability attribute:
one assumes independent actions which leads to a simpler calculation procedure, the other can deal with
dependent actions. Finally, the author discusses how to join the two attributes together, in order to correctly
compute the cheapest and most probable attack.

In [26], Bortot, Fedrizzi, and Giove proposed the use of Choquet integrals in order to reason about OWA
trees involving dependent actions.

11

3.1.5. Parallel Model for Multi-Parameter Attack Trees

In 2006, Buldas, Laud, Priisalu, Saarepera, and Willemson initiated a series of papers on rational choice
of economically relevant security measures using attack trees. The proposed model is called multi-parameter
attack trees and was first introduced in [32]. Between 2006 and 2013, researchers from different research
institutes in Estonia published seven follow-up papers [34, 129, 130, 316, 131, 204, 33|, extending and
improving the original model proposed in [32].

Most approaches for quantitative analysis using attack trees, prior to [32], focus on one specific attribute,
e.g., cost or feasibility of an attack. In reality, interactions between different parameters play an important
role. The aim of the mentioned series of papers was to study how tree computations must be done when
several interdependent parameters are considered. The model of multi-parameter attack trees assumes that
the attacker behavior is rational. This means that attacks are considered unlikely if their costs are greater
than the related benefits and that the attacker always chooses the most profitable way of attacking. The
parallel model for multi-parameter attack trees has been studied in [32, 34, 129, 130, 131, 128]. This model
assumes that all elementary attacks take place simultaneously, thus the attacker does not base his decisions
on success or failure of some of the elementary attacks.

Multi-parameter attack trees concentrate on the attribute called expected attacker’s outcome. This out-
come represents a monetary gain of the attacker and depends on the following parameters: gains of the
attacker in case the attack succeeds, costs of the attack, success probability of the attack, probability of
getting caught and expected penalties in case of being caught. First, a game theoretical model for estima-
tion of the expected attacker’s outcome was proposed by Buldas et al. [32], where values of all parameters
are considered to be precise point estimates. In [129], Jiirgenson and Willemson extend the computation
methods proposed in [32] to the case of interval estimations. Later it turned out that the computational
model from [32] was imprecise and inconsistent with the mathematical foundations of attack trees intro-
duced in [178]. Hence, an improved approach for the parallel attack tree model was proposed by Jiirgenson
and Willemson [130]. Since this new approach requires exponential running time to determine possible ex-
pected outcome of the attacker, an optimization solution, based on a genetic algorithm for fast approximate
computations, has been proposed by the same authors in [131].

In [34], Buldas, and Migi applied the approach developed in [32] to evaluate the security of two real
e-voting schemes: the Estonian E-voting System in use at the time (EstEVS) and the Secure Electronic
Registration and Voting Experiment (SERVE) performed in the USA in 2004. A detailed description of this
case study is given in the Master thesis of Mégi [169]. A prototype computer tool supporting the security
analysis using the multi-parameter attack trees has been implemented [12] and described in [13].

In Section 3.2.9, we describe the serial model for multi-parameter attack trees, which extends the parallel
model with an order on the set of elementary components.

3.1.6. Extended Fault Trees

Extended fault trees (EFTs) were presented by Masera et al. at the ESREL conference in 2007 [176] and
published in an extended version as a journal paper [96] issued in 2009. The formalism aims at combining
malicious deliberate acts, which are generally captured by attack trees (Section 3.1.1), and random failures,
which are often associated with classical fault trees (Section 3.1.1).

Extended fault trees and attack trees are structurally similar. The main difference between the two
formalisms is in the type of basic events that can be modeled. In EFT basic events can represent both non-
malicious, accidental failures as well as attack steps or security events. Basic events of attack trees usually
correspond to malicious attacker’s actions only. Logical AND and OR gates are explicitly represented in the
same way as in classical fault trees. A step-by-step model construction process is described in [96], defining
how existing fault-trees can be extended with attack-related components to form extended fault tree models.
The modeling technique complies with proper mathematical foundations, directly issued from fault trees as
defined in the safety and reliability area.

Quantification capabilities are focused on the computation of the probability of occurrence of the top-
event (root node). Generic formulas from fault tree quantitative analysis are recalled in [96], including
treatment of independent or mutually exclusive events. However, no concrete examples of quantification are
provided.

12

A simple example, analyzing the different failure and attack scenarios leading to the release of a toxic
substance by a chemical plant, is described in [96]. No particular tool has been developed to support extended
fault trees, however, all classical fault tree tools may be used directly.

One of the limitations explicitly stressed by the inventors of extended fault trees is that they do not take
into account time dynamics.

3.2. Sequential Modeling of Attacks

3.2.1. Cryptographic DAGSs

Meadows described cryptographic DAGs in 1996 (proceedings published in 1998), in order to provide a
simple representation of an attack process [186]. The purpose of the formalism is limited to visual description.
The attack stages of the overall attack process correspond to the nodes of a DAG. The difficulty of each stage
is shown by a color code. In 1996, the novelty of cryptographic DAGs was to provide a simple representation
technique of sequences and dependencies of attack steps towards a given attacker’s objective.

From a modeling point of view, each stage (represented as a colored box) contains a textual description
of atomic actions needed for the realization of the stage. Arrows represent dependencies between the boxes.
A simple arrow indicates that one stage is needed to realize another stage. Two arrows fanned out symbolize
that one stage enables another one repeatedly. More generally speaking, cryptographic DAGs are an informal
formalism targeted at high level system descriptions.

Cryptographic DAGs do not support any type of quantification.

Cryptographic DAGs have been used in [186] to demonstrate attacks on cryptographic protocols (with
SSL and Needham-Schroeder scheme as use cases), however this representation technique may be used to
model other types of attacks as well.

This formalism allows the representation of sequences of attack steps, and dependencies between those
steps, but cannot capture static relations like AND and OR. Moreover, the clarity and usability of the
models depends heavily on the text inside the boxes, which is not standardized.

3.2.2. Fault Trees for Security

Fault tree analysis was born in 1961 and has initially been developed into a safety, reliability, and risk
assessment methodology [312, 296, 278, 118]. A short history of non-security related fault trees was published
by Ericson II [85] in 1999. Fault trees have also been used for software analysis [162, 161, 105, 106] and
were even equated with attack trees by Steffen and Schumacher [279]. In 2003, however, Brooke, and Paige
adopted fault trees for security, extending the classical AND-OR structure of attack trees (Section 3.1.1), to
include well-known concepts from safety analysis [30].

Based on an AND-OR structure, three additional connectors (priority AND, exclusive OR and inhibit),
specific node types (basic, conditioning, undeveloped, external, and intermediate), as well as transfer symbols
(transfer in, transfer out) to break up larger trees are adopted from fault tree analysis in its widest sense.
Fault trees for security are an aid to the analysis of security-critical systems, where first an undesired (root)
event is identified. Then, new events are constructed by inserting connectors that explicitly identify the
relationship of the events to each other. Several rules, like the “no miracle” rule, the “complete the gate”
rule, and the “no gate to gate” rule are adopted directly from fault trees. Construction stops when there are
no more uncompleted intermediate events. In the end, a completed fault tree serves as an “attack handbook”
by providing information about the interactions by which a security critical system fails.

In [30], Brooke, and Paige state that in computer security “it is difficult to assign useful probabilities to
the events”. Consequently probabilistic quantitative analysis is debatable. Instead the authors recommend
to perform risk analysis which answers how the system fails based on the primary events (leaf nodes).

While [30] only provides a toy example, the authors state that any tool used in fault tree analysis can
be used. They refer to [71] as a good overview of available programs.

3.2.8. Bayesian Networks for Security
Starting in 2004, different researchers proposed, seemingly independently, to adopt Bayesian networks,
whose origin lies in artificial intelligence, as a security modeling technique [221, 222, 202, 122]|. Bayesian

13

networks are also known as belief network or causal network. In Bayesian networks, nodes represent events
or objects and are associated with probabilistic variables. Directed edges represent causal dependencies
between nodes. Mathematical algorithms developed for Bayesian networks are suited to solve probabilistic
questions on DAG structures. They are aimed at keeping the exponent small when the computing algorithm
is exponential and reduce to polynomial algorithms if the DAG is actually a tree.

According to Qin and Lee, the objective of Bayesian networks for security is to “use probabilistic inference
techniques to evaluate the likelihood of attack goals and predict potential upcoming attacks” [240]. They
proposed the following procedure that converts an attack tree into a Bayesian network. Every node in the
attack tree is also present in the Bayesian network. An OR relationship from an attack tree is modeled in the
Bayesian network with edges pointing from refining nodes that represent causes into the corresponding refined
nodes that represent consequences. Deviating from regular attack trees, an AND relationship is assumed
to have an explicit (or implicit) order in which the actions have to be executed. The AND relationship
can thus be modeled by a directed path, which starts from the first (according to the order) child and
ends with the parent node. Dantu et al. follow a different strategy when using Bayesian networks to model
security risk management starting from behavior-based attack graphs® [68, 65, 66, 67]. When processing
multi-parameter attack trees with estimated parameter values (Section 3.1.5) Jiirgenson and Willemson
use Qin and Lee’s conversion of an attack tree to a Bayesian network [129]. An et al. propose to add a
temporal dimension and to use dynamic Bayesian networks for intrusion detection without specifying how
the graph is set up [10]. Althebyan and Panda use knowledge graphs and dependency graphs as basis for the
construction of a Bayesian network [6]. They analyze a specific type of insider attack and state that their
computational procedures were inspired by Dantu et al. Another approach involving Bayesian networks is
described by Xie et al. who analyze intrusion detection systems [321]. They state that the key to using
Bayesian networks is to “correctly identify and represent relevant uncertainties” which governs their setup
of the Bayesian network.

Bayesian networks are used to analyze security under uncertainty. The DAG structure is of great value
because it allows to use efficient algorithms. On the one hand there exist efficient inference algorithms
that compute a single query (variable elimination, bucket elimination and importance, which are actually
equivalent according to Pouly and Kohlas [236]) and on the other hand there are inference algorithms that
compute multiple queries at once (bucket tree algorithm and Lauritzen-Spiegelhalter algorithm). In fact, the
efficiency of these algorithms can be seen as main reason to the success of Bayesian networks, since querying
general graphs is an NP-hard problem [16, 25]. Another strength of Bayesian networks is their ability to
update the model, i.e., compute a posteriori distribution, when new information is available.

We have not found any dedicated tools for analysis of Baysian networks for security. However, numerous
tools exist that allow a visual treatment of standard Bayesian networks. One such tool is the Graphical
Network Interface (GeNIE) that uses the Structural Modeling, Inference, and Learning Engine (SMILE) [70].
It was, for example, used in [201] to analyze the interoperability of a very small cluster of services and
mentioned as hypothetical use in [97]. Another one, called MulVAL [217], was actually developed for attack
graphs (Section 5.2), but used in [321] to implement a Bayesian network model. A third tool, tailored to
statistical learning with Bayesian networks is bnlearn [259].

There also exist isolated papers that promote the use of Bayesian networks in security without any relation
to attack trees or attack graphs. Houmb et al. quantify security risk level from Common Vulnerability
Scoring System (CVSS) estimates of frequency and impact using Bayesian networks [113]. Feng and Xie
also use Bayesian networks and provide an algorithm of how to merge two sources of information, expert
knowledge, and information stored in databases, into one graph [91]. Note that in this section we have
gathered approaches that rely on Bayesian networks whose construction starts from graphs that do not
contain any cycles. Graphical models that make use of Bayesian networks and that initially contain cycles
are treated in Section 3.2.4, formalisms including defenses are described in Section 3.4.3.

3The authors do not appear to make a distinction between attack trees and attack graphs. Since their methodology is only
applicable to cycle-free structures and they do not mention how to deal with cycles, we assume that the methodology is actually
based on attack DAGs or attack trees.

14

3.2.4. Bayesian Attack Graphs

Bayesian Attack Graphs combine (general) attack graphs (Section 5.2), with computational procedures
of Bayesian networks (Section 3.2.3). However, since Bayesian inference procedures only work on cycle-free
structures, the formalism includes instructions on how to remove any occurring cycles. Hence any final
Bayesian attack graph is acyclic. After the elimination of cycles, Bayesian attack graphs model causal
relationships between vulnerabilities in the same way as Bayesian networks (Section 3.2.3) Bayesian attack
graphs were first proposed by Liu and Man in order to analyze network vulnerability scenarios with the help
of Bayesian inference methods in 2005 [167]. Therefore the formalism advances computational methods in
security where uncertainty is considered.

The formalism of Man and Liu is not the only fusion of attack graphs and Bayesian networks. Starting
in 2008 a group of researchers including Frigault, Noel, Jajodia, and Wang published a paper on a modified
version of Bayesian attack graphs. Their goal was to be able to calculate general security metrics regarding
information system networks which also contain probabilistic dependencies [210, 99]. Later they extended
the formalism, using a second copy of the model as time slice, to also capture dynamic behavior in so called
dynamic Bayesian networks [100]. In 2012, Poolsappasit et al. revisited the framework to be able to deal with
asset identification, system vulnerability, and connectivity analysis, as well as mitigation strategies [234].
All three approaches eliminate cycles that possibly exist in the underlying attack graph. A shortcoming of
Liu and Man is that they do not provide a specific procedure on how to achieve this. The group including
Frigault refers to a paper on attack graphs [306] which removes cycles through an intricate procedure.
Poolsappasit et al. state that they rather analyze “why an attack can happen” and not “how an attack can
happen”, and therefore “cycles can be disregarded using the monotonicity constraint” mentioned in [8].

Since Bayesian attack graphs are cycle-free, evaluation on them can make use of Bayesian inference tech-
niques. For this it is necessary to provide probabilistic information. The three approaches differ in how they
compute quantitative values. Liu and Man provide edge probabilities [167], Frigault et al. give conditional
probability tables for nodes which are estimated according to the CVSS score [99] and Poolsappasit et al.
use (local) conditional probability distributions for nodes [234]. Furthermore, Poolsappasit et al. augment
Bayesian attack graphs with additional nodes and values representing hardening measures (defenses). On
the augmented structure they propose a genetic algorithm that solves a multiobjective optimization problem
of how to assess the risk in a network system and select optimal defenses [234].

The research group including Wang uses a Topological Vulnerability Analysis (TVA) tool [121, 206] to
create the attack graphs that serve as basis for constructing Bayesian attack graphs. Poolsappasit et al.
have developed an unreferenced in-house tool that allows them to compute with conditional probability
distributions.

Wang et al. [99, 100] state that their work is also based on a paper by An et al. [10], who use Bayesian
networks without cycles for modeling risks of violating privacy in a database.

3.2.5. Compromise Graphs

McQueen et al. introduced compromise graphs in 2006 [184]. Compromise graphs are based on directed
graphs®, and are used to assess the efficiency of various technical security measures for a given network
architecture. The nodes of a compromise graph represent the phases of an attack, detailing how a given
target can get compromised. The edges are weighted according to the estimated time required to complete
the corresponding phase for this compromise. The overall time needed for the attacker to succeed is computed
and compared along different defensive settings, providing a metric to assess and compare the efficiency of
these different defensive settings.

The formalism has a sound mathematical formalization: a time to compromise (TTC) metric is modeled
for each edge as a random process combining three sub-processes. Each of these processes has a different
probability distribution (mixing exponential, gamma, and beta-like distributions). The value for the process
model parameters are based on the known vulnerabilities of the considered component and the estimated

4The authors do not state whether these directed graphs are acyclic or not, but the description of compromise graphs and
their examples led us to consider compromise graphs as DAGs.

15

skill of the attacker. A complete description and justification of such a stochastic modeling is provided by
the same authors in a previous paper [183]. In compromise graphs, five types of stages, corresponding to the
vertices of the graph, are modeled: recognition, breaching the perimeter, penetration, escalation of privilege,
damage.

Compromise graphs are used to evaluate the efficiency of security measures, such as system hardening,
firewalls or enhanced authentication. This is achieved by comparing the shortest paths (in terms of TTC)
of compromise graphs with and without such measures in place.

The approach is illustrated in [184] by modeling attacks on a SCADA system.

Leversage and Byres adopt a very similar approach in [160, 159], called state-time estimation algorithm
(STEA), directly inspired by McQueen et al. They combine a slightly modified TTC calculation approach
with a decomposition of the attack according to the architectural areas of the targeted system. A recent
paper by Nzoukou et al. [211] improves the models of McQueen and Leversage even further. The paper
proposes to link the mean TTC to the CVSS metric values [191] of specific vulnerabilities, which makes the
employment of easily available inputs possible. To derive the overall mean TTC, the results of individual
vulnerabilities are then aggregated using Bayesian networks. This allows us to lift the assumption that all
attacking steps are independent.

3.2.6. Enhanced Attack Trees

Enhanced attack trees have been introduced by Camtepe and Yener to support an intrusion detection
engine by modeling complex attacks with time dependencies. This model was first described in a technical
report [51] in 2006. One year later, corresponding conference publication [52] was published.

In addition to classical OR and AND gates, enhanced attack trees rely on the use of a new gate, the
“ordered-AND”, which allows to capture sequential behavior and constraints on the order of attack steps.
The model of enhanced attack trees has sound mathematical foundations. Additionally to the formalism
description, [52] devises a new technique for detection of attacks. The new technique is based on automata
theory and it allows to verify completeness of enhanced attack tree models with respect to the observed
attacks.

The quantification capabilities described in [52] are directly related to intrusion detection (probability of
a given attack occurring based on a set of observed events). A confidence attribute measured in percent is
defined for subgoals as “the chance of reaching the final goal of the attacker when a subgoal is accomplished”.
It is computed as the ratio of all accomplished events until a subgoal is realized, over all events of the
modeled scenario. This attribute aims at supporting an early warning system, supporting decision-making
and reaction before actual damages occur. Moreover, [52] introduces an original parameter called “time to
live” which allows to express that some steps are only available in a given time window.

In [193], Mishra et al. also make use of ordered-AND operators, referring to [52]. The authors visually
describe Stuxnet and similar attacks, but do not use Camtepe and Yener’s rigorous formalization to analyze
the models.

3.2.7. Vulnerability Cause Graphs

Vulnerability cause graphs (VCGs) were invented in 2006 by Ardi, Byers, and Shahmehri as a key element
of a methodology that supports security activities throughout the entire software development lifecycle [15].

The formalism can be seen as a root cause analysis for security-related software failures, because it relates
vulnerabilities with their causes. In a VCG, every node except for one, has an outgoing directed edge. The
single node without a successor is called the exit node and represents the considered vulnerability. All other
nodes represent causes. The predecessor-successor (parent-child) relationship shows how certain conditions
(nodes) might cause other conditions (nodes) to be a concern. In an improved version of VCGs [43], nodes can
be simple, compound or conjunctions. Simple nodes represent conditions that may lead to a vulnerability.
Compound nodes facilitate reuse, maintenance, and readability of the models. Conjunctions represent groups
of two or more nodes. Contrary, disjunctions occur if a node has two or more predecessors. In this case, the
original nodes might have to be considered if either of its predecessors might have to be considered. Finally,
if the causes have to follow a certain order, they are modeled as sequences of nodes. To construct a VCG,
the exit node is used as a starting point and refined with causes.

16

In VCGs, nodes can be annotated as “blocked” if the underlying causes are mitigated. The “blocked” flag
allows the user to compute whether the underlying vulnerability (exit node) is also mitigated. VCGs are also
equipped with a notion of graph transformations that do not change whether the vulnerability is mitigated
or not. The transformations include conversions of conjunctions, reordering of sequences, combination of
nodes, conversion to compound nodes, as well as derived transformations.

In [43] the vulnerability CVE-2003-0161, in [44] the vulnerability CVE-2005-2558, and in [171] the vul-
nerability CVE-2005-3192 is analyzed with the help of VCGs. Furthermore, [53| contains an additional three
case studies on common software vulnerabilities which have been performed using VCGs. The SHIELDS
project [265] has developed a software tool GOAT [264] to be used in conjunction with VCGs.

VCGs were developed as part of a comprehensive methodology to reduce software vulnerabilities that
arise in ad hoc software development. They are the starting point to build security activity graphs (Sec-
tion 3.3.4). By introducing compound nodes, the inventors of the formalism have created a model that allows
different layers of abstraction, which in turn introduced a problematic design decision of how many layers
of abstraction are needed.

3.2.8. Dynamic Fault Trees for Security

In 2009, Khand [136] adapted several dynamic fault tree [76, 77] gates to attack trees, in order to add
a dynamic dimension to classical attack trees. The aim of the formalism is similar to that of attack trees
(Section 3.1.1).

To overcome limitations of static fault trees, dynamic fault trees [76, 77] were invented by Dugan et al.
in the early 1990s. They aim at combining the dynamic capacities of Markovian models with the “look and
feel” of fault trees. To achieve this, four dynamic gates are used: the “priority-AND” (PAND), the “sequence
gate” (SEQ), the “functional dependency gate” (FDEP), and the “cold spare gates” (CSP). Khand reuses
directly the three first gates (although renaming FDEP gates by CSUB, for Conditional Subordination,
gates), leaving out the CSP gates. The PAND gate reaches a success state if all of its input are realized in
a pre-assigned order (from left to right in the graphical notation). The SEQ gate allows to model that a
series of events occurs in a particular order (from left to right in the graphical notation). Once all the input
events are realized, the gate is verified. The CSUB gate models the need of the realization of a trigger event
to allow a possible realization of others events. Dynamic fault trees combine dynamic gates with classical
logical gates (AND, OR). Dynamic gates are formally defined with truth tables in [136], and by Markov
processes in the general definitions of dynamic fault trees from the safety literature [76, 77] (although the
description is still incomplete [27]).

There is no quantification aspects developed in [136]. In safety studies, quantifications associated with
dynamic fault trees are usually made using Markovian analysis techniques; those might be used here as well,
although nothing is said about computational aspects.

The paper by Khand does not specify which tool to use in order to treat the models, but several tools
exist for dynamic fault trees in the reliability area, e.g., Galileo [78].

The work of Khand, and especially the use of dynamic gates, has inspired Ivanc and Klobuc¢ar to propose
the enhanced structural model for attack analysis and education, that is able to reflect the reality better
than a pure AND-OR tree [120].

3.2.9. Serial Model for Multi-Parameter Attack Trees

In 2010, the parallel model for multi-parameter attack trees (Section 3.1.5) has been extended by adding
a temporal order on the set of elementary attacks [316]. This new methodology is called serial model for
multi-parameter attack trees and was studied further in [128, 204] and [35].

The model described in [128] and [204] assumes that an adversary performs the attacks in a given
prescribed order. In [35], the authors introduce so called fully-adaptive adversary model, where an attacker
is allowed to try atomic attacks in an arbitrary order which is not fixed in advance and can be modified based
on the results of the previous trials. In both cases, the serial approach allows for a more accurate modeling of
an attacker’s behavior than the parallel approach. In particular, the attacker can skip superfluous elementary
attacks and base his decisions on success or failure of the previously executed elementary attacks.

17

In [316], an efficient algorithm for computing an attacker’s expected outcome assuming a given order of
elementary attacks is provided. Taking temporal dependencies into account allows the attacker to achieve
better expected outcome than when the parallel model (Section 3.1.5) is used. As remarked in [131], finding
the best permutation of the elementary attacks in the serial model for multi-parameter attack trees may
turn computing the optimal expected outcome into a super-exponential problem. In [204], Niitsoo proposed
a decision-theoretical framework which makes possible to compute the maximal expected outcome of a goal
oriented attacker in linear time. In [35], Buldas and Stepanenko propose a game theoretical framework to
compute upper bounds of the utility of fully-adaptive adversaries. Inspired by the upper bound concept
introduced in [35], the authors of [33] propose a new fully adaptive computational model for attack trees.
This model allows the adversary to repeat atomic attacks that have failed and to continue attacking even
after having been caught. The paper introduces methods to compute a precise value of the adversarial utility
and an approximation of the utility upper bound.

A prototype computer tool supporting the security analysis using the serial model of multi-parameter
attack trees has been implemented [12] and described in [13].

A thorough comparison of the parallel and the serial model for multi-parameter attack trees has been
given in the Ph.D. thesis of Jiirgenson [128]. Baca and Petersen mention that in order to use parametrized
attack trees, the user needs to have a good understanding of the motivations of the attacker [19]. To overcome
this difficulty cumulative voting is used in countermeasure graphs (Section 3.3.7).

3.2.10. Improved Attack Trees

Improved attack trees aim at dealing with security risks that arise in space-based information systems.
They were proposed by Wen-ping and Wei-min [314] in 2011 to more precisely describe attack on the
information transmitting links, acquisitions systems, and ground-based supporting and application systems.

The formalism is based on attack trees and explicitly incorporates the use of the sequential AND operator.
It is not defined in a formal way. Improved attack trees rely heavily on the description by Schneier and only
detail how to specifically compute the system risk.

Improved attack trees provide a specific formula to evaluate a risk value for each leaf node. Starting from
these risk values, the risk rate and the risk possibility are computed and multiplied to compute the overall
system risk. The formulas distinguish between OR, AND and sequential AND nodes.

3.2.11. Time-Dependent Attack Trees

In 2014, Arnold et al. introduced a novel model for attack trees, that we refer to as time-dependent attack
trees. The goal of this new computational framework is to evaluate the probability of an attack as a function
of time [17].

The model of Arnold et al. improves upon previously proposed, time-abstract analysis techniques, such as
the standard bottom-up algorithm, which only consider the probability of an attack taking place eventually.
Time-dependent attack trees make use of standard AND and OR connectors. In addition, they also allow
for SEQ connectors (sequential AND) that encode the order in which conjunctively connected actions need
to be performed. The model is formally defined.

Every leaf of a time-dependent attack tree is annotated with a cumulative distribution function (CDF)
representing the time needed for the corresponding attack step to be successful. The CDF corresponding
to the entire attack tree is then derived by composing the CDFs in the leaves with maximum (for AND
nodes), minimum (for OR nodes), and convolution (for SEQ nodes) operations along the tree structure. In
general, it is fairly complex to compose the distributions, however, the authors of [17] solved this problem
by transforming the attack tree into an acyclic phase-type distribution (APH) expression. APH expressions
can be efficiently minimized (compressed) and analyzed by model checkers. The output of such analysis is a
CDF of the probability of success over time for the entire attack scenario.

A method to generate and manipulate acyclic phase-type distribution representations, together with the
compression algorithm have been implemented in a tool suite called APHzip. APHzip is wrapped in a web-
based interface and is accessible on-line [238]. The effectiveness of the approach presented in this section has
been illustrated on three toy case studies that are described in [17]. They demonstrate that the algorithm

18

implemented in APHzip yields significant state space compressions so that even complex scenarios can be
analyzed efficiently.

3.8. Static Modeling of Attacks and Defenses

3.3.1. Anti-Models

Anti-models [294] have been introduced by van Lamsweerde et al. in 2003. They are closely related to
AND-OR goal-refinement structures [295] (sometimes called goal models) used for goal analysis in require-
ments engineering. Anti-models extend such AND-OR goal-refinement structures with the possibility to
model malicious and intentional obstacles to security goals, called anti-goals. They can be used to generate
subtle attacks, discard non-realizable or unlikely ones, and derive more effective customized resolutions.

In [294] and later in an extended version [293], van Lamsweerde et al. provide a six steps procedure for
a systematic construction of anti-models. First, anti-goals, representing an attacker’s goals, are obtained by
negating confidentiality, privacy, integrity, availability, authentication or non-repudiation requirements. For
each anti-goal, the questions “who” and “why” are asked to identify potential classes of attackers and their
higher-level anti-goals. An AND-OR refinement process is then applied to reach terminal anti-goals that are
realizable by the attackers. The resulting AND-OR anti-models relate “attackers, their anti-goals, referenced
objects and anti-operations (necessary to achieve their anti-goals) to the attackees, their goals, objects,
operations, and vulnerabilities.” The construction of anti-models is only informally presented in [294]. Formal
techniques developed for AND-OR goal-refinement structures (such as refinement obstacle trees) [295] can be
used for the generation and analysis of anti-models. In particular, real-time temporal logic can be employed to
model anti-goals as sets of attack scenarios. After identifying possible anti-goals, countermeasures expressed
as epistemic extensions of real-time temporal logic operators are selected based on severity or likelihood of the
corresponding threat and non-functional system goals that have been identified earlier. Possible resolutions
tactics, inspired by solutions proposed for analysis of non-functional requirements in software engineering,
are described in [295] and [293]. Applying resolution operators yields new security goals to be integrated
in the model. These new goals are then again refined with the help of AND-OR structures. These, in turn,
may require a new round of anti-model construction and analysis.

Anti-models do not include quantitative analysis of security goals or anti-goals.

3.8.2. Defense Trees

Defense trees® are attack trees where leaf nodes are decorated with a set of countermeasures. They have
been introduced by Bistarelli et al. in 2006 [23]. The approach combines qualitative and quantitative aspects
and serves general security modeling purposes.

The approach proposed by Bistarelli et al. was a first step towards integrating a defender’s behavior
into models based on attack trees. The analysis methodology for defense trees proposed in [23] and [22]
uses rigorous and formal techniques, such as calculation of economic indexes and game theoretical solution
concepts. However, the model itself is only introduced verbally and a formal definition is not given.

In [23], the return on attack (ROA) and return on investment (ROI) indexes are used for quantitative
analysis of defense trees from the point of view of an attacker and a defender, respectively. The calculation
of ROI and ROA is based on the following parameters: costs, impact, number of occurrences of a threat
and gain. The indexes provide a useful method to evaluate IT security investments and to support the risk
management process. In [22], game theoretical reasoning was introduced to analyze attack—defense scenarios
modeled with the help of defense trees. In this paper, a defense tree represents a game between two players:
an attacker and a defender. The ROI and ROA indexes, are used as utility functions and allow to evaluate
the effectiveness and the profitability of countermeasures. The authors of [22] propose using Nash equilibria
to select the best strategy for the players.

In [24], defense trees have been extended to so called CP-defense trees, where modeling of preferences
between countermeasures and actions is possible. Transforming CP-defense trees into answer set optimization
(ASO) programs, allows to select the most suitable set of countermeasures, by computing the optimal answer

5Papers by Bistarelli et al. use British English, thus originally, the name of their formalism is defence trees.

19

set of the corresponding ASO program. Formalisms such as attack—defense trees (Section 3.3.6), and attack
countermeasure trees (Section 3.3.5) extended defense trees by allowing defensive actions to be placed at
any node of the tree and not only at the leaf nodes.

3.3.3. Protection Trees

Protection trees are a tree-based formalism which allow a user to allocate limited resources towards the
appropriate defenses against specified attacks. The methodology was invented by Edge et al. in 2006, in
order to incorporate defenses in the attack tree methodology [81].

Protection trees are similar to attack trees since both decompose high level goals into smaller manageable
pieces by means of an AND-OR tree structure. The difference is that in protection tree the nodes represent
protections. A protection tree is generated from an already established attack tree by finding a protection
against every leaf node of the attack tree. Then the attack tree is traversed in a bottom-up way and new
protection nodes are added to the protection tree if the protection nodes do not already cover the parent
attack node.

The AND-OR structure of protection trees is enriched with three metrics, namely probability of success,
financial costs, and performance costs on which the standard bottom-up approach is applied [81, 82, 80].
In [63], an additional metric, the impact, helps to further prioritize where budget should be speunt.

The formalism has been investigated in case studies on how the U.S. Department of Homeland Security
can allocate resources to protect their computer networks [81], how an attack on an online banking system
can be mitigated cost-efficiently [82], how to cheaply protect against an attack on computer and RFID
networks [63] as well as a mobile ad hoc network [80]. When evaluating which defenses to install, the
authors propose to first prune the tree according to the attacker’s assumed capabilities. A larger, more
applied case study to “evaluate the effectiveness of attack and protection trees in documenting the threats
and vulnerabilities present in a generic Unmanned Aerial Systems (UAS) architecture” was performed by
Cowan et al. [57].

In [82] a slightly different algorithm for the creation of a protection tree was proposed. Here a designer
starts by finding defenses against the root of an attack tree instead of the leaves, as in [81, 80]. An approach
similar to protection trees has been proposed in [250] to deal with the problem of threat modeling in
software development. The paper uses so called identification trees to identify threats in software design
and introduces the model of mitigation trees to describe countermeasures for identified threats. Despite an
obvious modeling analogy between protection trees and mitigation trees, no connection between the two
models has been made explicit in the literature.

3.8.4. Security Activity Graphs

In 2006, Ardi, Byers, and Shahmehri introduced a formalism called security activity graphs (SAGs). The
methodology was invented in order to “improve security throughout the software development process” [15].
SAGs depict possible vulnerability cause mitigations and are algorithmically generated from vulnerability
cause graphs (Section 3.2.7).

SAGs are a graphical representation of first order predicate calculus and are based very loosely on ideas
from fault tree analysis. In [15] the root of a SAG is associated with a vulnerability, taken from a vulnerability
cause graph. The vulnerability mitigations are modeled with the help of activities (leaf nodes). The syntax
furthermore consists of AND-gates, OR-gates, and split gates. The AND and OR-gates strictly follow Boolean
logic, whereas the split gate allows one activity to be used in several parent activities, essentially creating a
DAGs structure. The syntax of SAGs was changed in [45] for a more concise illustration of the models. Split
gates no longer appear in the formalism. The functionality that simple activities can be distinguished from
compound activities (complex activities that may require further breakdown) was added. Moreover cause
references (possible attack points) serve as placeholders for a different SAG associated with a particular
cause.

In the SAG model, Boolean variables are attached to the leaves of the SAG. A Boolean variable corre-
sponding to an activity is true when it “is implemented perfectly during software development” otherwise,
it is false. Then a value corresponding to the root of the SAG is deduced in a bottom-up fashion according
to Boolean logic.

20

Visual representation of SAGs is supported by SeaMonster [189] and GOAT [264]. Furthermore, SAGs
have been used in [45, 44| to model the vulnerability CVE-2005-2558 in MySQL that leads to “denial of
service or arbitrary code execution”.

Even though the model was devised in order to aid the software development cycle, the authors explicitly
state that SAGs “lend themselves to other applications such as process analysis.” SAGs are the middle step
of a broader 3-steps approach for secure software development, with vulnerability cause graphs as a first
step, and process component definition as a final step. In 2010 SAGs were replaced by security goal models
(Section 3.4.8)

3.8.5. Attack Countermeasure Trees

In 2010, Roy, Kim, and Trivedi proposed attack countermeasure trees (ACTs) [246, 247] as a methodology
for attack and defense modeling which unifies analysis methods proposed for attack trees (Section 3.1.1) with
those introduced on defense trees (Section 3.3.2). The main difference of ACTs with respect to defense trees
is that in ACTs defensive measures can be placed at any node of the tree. Also, the quantitative analysis
proposed for defense trees is extended by incorporating probabilistic analysis into the model. ACTs were
first introduced in [247] and then further developed in [248].

ACTs may involve three distinct classes of events: attack events, detection events, and mitigation events.
The set of classical AND and OR nodes, as defined for attack trees, is extended with the possibility of using
k-out-of-n nodes. Generation and analysis of attack countermeasure scenarios is automated using minimal
cut sets (mincuts). Mincuts help to determine possible ways of attacking and defending a system and to
identify the system’s most critical components.

A rigorous mathematical framework is provided for quantitative analysis of ACTs in [247] and [248]. The
evaluation of the ROI and ROA attributes, as proposed for defense trees (Section 3.3.2), has been extended by
adding the probability of attack, detection, and mitigation events. The authors of [248] provide algorithms for
probability computation on trees with and without repeated nodes. With the help of probability parameters,
further metrics, including cost, impact, Birnbaum’s importance measure, and risk, are evaluated. The use of
the Birnbaum’s importance measure (also called reliability importance measure, in the case of fault trees)
is used to prioritize defense mechanisms countering attack events. Furthermore, in [248], Roy et al. propose
a cubic algorithm to select an optimal set of countermeasures for an ACT. This addresses the problem
of state-space explosion that the intrusion response and recovery engine based on attack-response trees
(Section 3.4.5) suffers from. Finally, in [249] the problem of selecting an optimal set of countermeasures with
and without having probability assignments has been discussed.

The authors of [248] implemented a module for automatic description and evaluation of ACTs in a
modeling tool called Symbolic Hierarchical Automated Reliability and Performance Evaluator [290]. This
implementation uses already existing algorithms for analysis of fault trees and extends them with algorithms
to compute costs, impact, and risk. Case studies concerning attacks on the Border Gateway Protocol (BGP),
SCADA systems, and malicious insider attacks have been performed using ACTs, as described in the Master
thesis of Roy [245].

The model of attack countermeasure trees is very similar to attack—defense trees. The main differences
between the two models are listed in Section 3.3.6.

3.8.6. Attack—-Defense Trees

Attack—defense trees (ADTrees) were proposed by Kordy et al. in 2010 [145]. They allow to illustrate
security scenarios that involve two opposing players: an attacker and a defender. Consequently it is possible
to model interleaving attacker and defender actions qualitatively and quantitatively. ADTrees can be seen
as merging attack trees (Section 3.1.1) and protection trees (Section 3.3.3) into one formalism.

In ADTrees, both types of nodes, attacks and defenses, can be conjunctively as well as disjunctively
refined. Furthermore, the formalism allows for each node to have one child of the opposite type. Children
of opposite type represent countermeasures. These countermeasures can be refined and countered again.
Two sets of formal definitions build the basis of ADTrees: a graph-based definition and an equivalent term-
based definition. The graph-based definition ensures a visual and intuitive handling of ADTree models.
The term-based representation allows for formal reasoning about the models. The formalism is enriched

21

through several semantics that allow to define equivalent ADTree representations of a scenario [146]. The
necessity for multiple semantics is motivated by diverse applications of ADTrees, in particular unification of
other attack tree related approaches and suitability for various kinds of computations. In [148], the authors
showed that, for a wide class of semantics (i.e., every semantics induced by a De Morgan lattice), ADTrees
extend the modeling capabilities of attack trees without increasing the computational complexity of the
model. In [146] the most often used semantics for ADTrees have been characterized by finite axiom schemes,
which provides an operational method for defining equivalent ADTree representations. The authors of [143],
have established a connection between game theory and graphical security assessment using ADTrees. More
precisely, ADTrees under a semantics derived from propositional logics are shown to be equally expressive
as two-player binary zero-sum extensive form games.

The standard bottom-up algorithm for quantitative evaluation, formalized for attack trees in [178], has
been extended to ADTrees in [146]. This required the introduction of four new operators (two for conjunction
and disjunction of defense nodes and two for countermeasure links) [146]. Together with the two standard
operators (for conjunctions and disjunctions of attack nodes) and a set of values, the six operators form
an attribute domain. Specifying attribute domains allows the user to quantify a variety of security relevant
parameters, such as time of attack, probability of defense, scenario satisfiability, and environmental costs.
The authors of [146] show that every attribute for which the attribute domain is based on a semi-ring can be
evaluated on ADTrees using the bottom-up algorithm. How to properly specify attribute domains in terms
of questions in natural language was presented in [147]. Unfortunately, the bottom-up algorithm can only be
applied for the evaluation of the probability attribute under the assumption that all actions in the analyzed
ADTree are mutually independent. To lift this assumption, the authors of [149] have proposed a framework
that integrates the security model of ADTrees with Bayesian networks and makes possible the computation
of the probability of an attack—defense scenario in the presence of dependencies.

An extensive case study on an existing, real-life RFID goods management system was performed by
academic and industrial researchers with different backgrounds [20]. The case study resulted in specific
guidelines about the use of attributes on ADTrees. A software tool, called the ADTool [150, 151], supporting
the attack—defense tree methodology, has been developed as one of the outcomes of the ATREES and the
TREsPASS projects [18, 289]. The main features of the tool are easy creation, efficient editing, and quan-
titative analysis of ADTrees [142]. Since from a formal perspective, attack trees (Section 3.1.1), protection
trees (Section 3.3.3), and defense trees (Section 3.3.2) are instances of attack—defense trees, the ADTool also
supports all these formalisms. For an exhaustive overview of the research results related to ADTrees, we
refer to the Ph.D. thesis of Schweitzer [220].

Finally, ADTrees can be seen as a natural extension of defense trees (Section 3.3.2), where defenses
are only allowed as leaf nodes. The ADTree formalism is quite similar to attack countermeasure trees
(Section 3.3.5), however, there exist a couple of fundamental differences between the two models. On the one
hand, in ADTrees defense nodes can be refined and countered, which is not possible in attack countermeasure
trees. On the other hand, attack countermeasure trees distinguish between detection and mitigation events
which are both modeled with defense nodes in ADTrees. Another difference is that attack countermeasure
trees are well suited to compute specific parameters, including probability, return on investment (ROI) and
return on attack (ROA). ADTrees, in turn, focus on general methods for attribute computation. A different
formalism, also called attack—defense trees, was used by Du et al. in [75] to perform a game-theoretic analysis
of Vehicular ad-hoc network security by utilizing the ROA and ROI utility functions. Despite sharing the
same name with the formalism introduced in [145], the attack—defense tree approach used in [75] is built
upon defense trees (Section 3.3.2) and does not contain the possibility to refine countermeasures. Moreover
it does not consider any formal semantics.

3.8.7. Countermeasure Graphs

Countermeasure graphs provide a DAG-based structure for identification and prioritization of counter-
measures. They were introduced by Baca and Petersen [19] in 2010 as an integral part of the “countermeasure
method for security” which aims at simplifying countermeasure selection through cumulative voting.

To build the graphical model, actors, goals, attacks, and countermeasures are identified. Actors are the
ones that attack the system, goals explain why actors attack a system, attacks detail how the system could

22

get attacked and countermeasures describe how attacks could be prevented. When the representing events
are related, edges are drawn between goals and actors, actors and attacks, as well as between attacks and
countermeasures. More specifically, an edge is drawn between a goal and an actor if the actor pursues the
goal. An edge is inserted between an actor and an attack, if the actor is likely to be able to execute the
attack. Finally, an edge is drawn between an attack and a countermeasure if the countermeasure is able to
prevent the attack. Priorities are assigned to goals, actors, attacks, and countermeasures according to the
rules of hierarchical cumulative voting [21]. The higher the assigned priority is, the higher is the threat level
of the corresponding event.

With the help of hierarchical cumulative voting [21] the most effective countermeasures can be deduced.
Clever normalization and the fact that countermeasures that prevent several attacks contribute more to the
final result than isolated countermeasures guarantee that the countermeasure with the highest computed
value is most efficient and should therefore be implemented.

The methodology is demonstrated on an open source system, a first person shooter called Code 43 [19].

3.4. Sequential Modeling of Attacks and Defenses
3.4.1. Insecurity Flows

In 1997, Moskowitz and Kang described a model called insecurity flows to support risk assessment [200].
It combines graph theory and discrete probability theory, offering both graphical representation and quan-
tification capabilities to analyze how an “invader can penetrate through security holes to various protective
security domains”. This analysis aims at identifying the most vulnerable paths and the most appropriate
security measures to eliminate the vulnerabilities of the system.

From a high level perspective, insecurity flows are similar to reliability block diagrams [117] used in
reliability engineering. The source corresponds to the starting point of the attacker, the sink corresponds
to the objective of the attacker, and the asset under protection. An insecurity flow diagram is a circuit
connecting security measures, as serial or in parallel, from the sink to the source. Serial nodes must be
passed by the attacker one after another, whereas for parallel nodes, only one out of n must be passed
to continue on the path to the sink. The graph is used to identify insecurity flows and quantify them
using probabilistic calculations. The paper provides a sound description of the formalism and the associated
quantifications.

Based on the circuit, the probability that the insecurity flow can pass through the modeled security
measures of a given system or architecture can be computed. Probability computation formulas for simple
serial and parallel patterns are provided, whereas reduction formulas are proposed for more elaborated
circuits (decomposing them into the simple patterns). Several defensive architectures can be compared
along this metric.

3.4.2. Intrusion DAGs

Intrusion DAGs (I-DAGs) have been introduced by Wu et al. [319] as the underlying structure for attack
goals representation in the Adaptive Intrusion Tolerant System, called ADEPTS in 2003. The global goal of
ADEPTS is to localize and automatically respond to detected, possibly multiple, and concurrent intrusions
on a distributed system.

I-DAGs are directed acyclic graphs representing intrusion goals in ADEPTS. I-DAGs are not necessarily
rooted DAGs, i.e., they may have multiple roots. The nodes of an I-DAG represent (sub-)goals of an attack
and can be associated with an alert from the intrusion detection framework described in [320]. A goal
represented by a node can only be achieved if (some of) the goals of its children are achieved. To model the
connection, I-DAGs use standard AND and OR refinement features similar to the refinements in attack trees.
Each node stores two information sets: a cause service set (including all services that may be compromised in
order to achieve the goal) and an effect service set (including all services that are taken to be compromised
once the goal is achieved). The method presented in [319] allows to automatically trigger a response of
appropriate severity, based on a value which expresses the confidence that the goal corresponding to a node
has been achieved. This provides dynamic aspects to the ADEPTS methodology.

Three algorithms have been developed in order to support automated responses to detected incidents.
The goal of the first algorithm is to classify all nodes as candidates for responses as follows. A bottom-up

23

procedure assigns the compromised confidence index to each node situated on the paths between the node
representing a detected incident and a root node. Then, a value called threshold is defined by the user and is
used by a top down procedure to label the nodes as strong, weak, very weak or non-candidates for potential
responses. The second algorithm assigns the response index to nodes. The response index is a real number
used to determine the response to be taken for a given node in the I-DAG. Finally, the third algorithm is
based on so called effectiveness index. It is responsible for dynamically deciding which responses are to be
taken next. Intuitively, the effectiveness index of a node is reduced for every detected failure of a response
action and increased for every successful deployment.

A lightweight distributed e-commerce system has been deployed to serve as a test bed for the ADEPTS
tool. The system contained 6 servers and has 26 nodes in the corresponding I-DAG. The results of the
experiments and analysis are described in [319].

In [94] and [318], the authors extend the model of intrusion DAGs to intrusion graphs (I-GRAPHs).
The main difference is that, contrary to [-DAGs, I-GRAPHs may contain cycles. Nodes of an I-GRAPH
do not need to be independent. All dependencies between the nodes are depicted by the edges between
nodes. Additionally to AND and OR refinements, I-GRAPHSs also make use of quorum edges. A value called
minimum required quorum is assigned to quorum edges and represents the minimal number of children that
need to be achieved in order to achieve the parent node.

3.4.3. Bayesian Defense Graphs

In a series of papers starting in 2008, Sommestad et al. construct a Bayesian network for security
(Section 3.2.3) that includes defenses to perform enterprise architecture analysis [97, 274, 275, 83, 277].
Their model, explicitly called Bayesian defense graphs in [275], is guided by the idea to depict what exists
in a system rather than what it is used for [275]. This philosophy was adapted from [125]. Bayesian defense
graphs are inspired by defense trees (Section 3.3.2) and therefore add countermeasures to Bayesian networks.
As a result, the formalism supports a holistic system view including attack and defense components.

Bayesian defense graphs build upon extended influence diagrams (Section 5.4), including utility nodes,
decision nodes, chance nodes, and arcs. Chance nodes and decision nodes are associated with random vari-
ables that may assume one of several predefined and mutually exclusive sates. The random variables are
given as conditional probability tables (or matrices). Utility nodes express the combination of states in
chance nodes and decision nodes. Countermeasures, which are controllable elements from the perspective
of the system owner, are represented as chance nodes with adapted conditional probability tables. Finally,
causal arcs (including an AND or OR label) are drawn between the nodes indicating how the conditional
probabilities are related. A strength of Bayesian defense graphs is that they allow to trade-off between
collecting as much data as possible and the degree of accuracy of the collected data. Through the use of
iterative refinement, it is possible to reduce the complexity of the model [275].

Like all formalisms that involve Bayesian statistics, Bayesian defense graphs use conditional probability
tables to answer “How do the security mechanisms influence each other?” and “How do they contribute
to enterprise-wide security?”’ [274]. The authors of [274] exemplify how to compute the expected loss for
both the current scenario and potential future scenarios. In [97], a suitable subset of a set of 82 security
metrics known as Joint Quarterly Readiness Review (JQRR) metrics has been selected and adapted to
Bayesian Defense graphs. The metrics serve as “a posteriori indicators on the historical success rates of
hostile attacks” or “indicate the current state of countermeasures”. The formalism can handle causal and
uncertainty measurements at the same time, by specifying how to combine the conditional probability tables.

With the help of a software tool for abstract models [125], Bayesian defense graphs were applied by
Sommestad et al. to analyze enterprise architectures on numerous occasions. In [83], ongoing efforts on
Bayesian defense graphs within the EU research project VIKING [299] are summarized. The methodology
is expanded in three follow-up papers that illustrate security assessment based on an enterprise architecture
model [274, 275] and information flow during a spoofing attack on a server [97]. In [277], a real case study
was performed with a power distribution operator to assess the security of wide-area networks (WANS)
used to operate electrical power systems. Since the results could not be published the methodology was
demonstrated on a fictitious example assessing the security of two communication links with the help of
conditional probability tables [277].

24

A similar but less developed idea of using random variables, defenses, and an inference algorithm to
compute the expected cost of an attack is presented by Mirembe and Muyeba [192].

3.4.4. Security Goal Indicator Trees

Peine, Jawurek, and Mandel devised security goal indicator trees (SGITs) in 2008, in order to support
security inspections of software development and documents [223].

A SGIT is a tree which combines negative and positive security features that can be checked during an
inspection, in order to see if a security goal (e.g., secure password management) is met. With this objective
in mind, “indicators” can be linked in the resulting tree structure by three types of relations: Conditional
dependencies are represented by a special kind of edge, Boolean combinations are modeled by OR and AND
gates, a “specialization” relation is represented by a UML-like inheritance symbol. Moreover, a notion of
“polarity” is defined for each node, attributing positive or negative effect of a given property on security.
The definition of SGITs is semi-formal.

The formalism does not support quantitative evaluations.

SGITs are implemented in a prototype tool mentioned in [223]. They are used to formalize security
inspection processes for a distributed repository of digital cultural data in an e-tourism application in [127].
The formalism is extended to dependability inspection in [140].

3.4.5. Attack-Response Trees

In 2009, Zonouz, Khurana, Sanders, and Yardley introduced attack-response trees (ARTSs) as a part of
a methodology called response and recovery engine (RRE), which was proposed to automate the intrusion
response process. The goal of the RRE is to provide an instantaneous response to intrusions and thus
eliminate the delay which occurs when the response process is performed manually. The approach is modeled
as a two-player Stackelberg stochastic game between the leader (RRE) and the follower (attacker). Attack-
response trees have been used in [328], for the first time. This paper constitutes a part of the Ph.D. thesis
of Zonouz [327].

ARTS are an extension of attack trees (Section 3.1.1) that incorporate possible response actions against
attacks. They provide a formal way to describe the system security based on possible intrusion and response
scenarios for the attacker and the response engine, respectively. An important difference between attack
trees and attack-response trees is that the former represent all possible ways of achieving an attack goal and
the latter are built based on the attack consequences®. In an attack-response tree, a violation of a security
property, e.g., integrity, confidentiality or availability, is assigned to the root node (main consequence).
Refining nodes represent sub-consequences whose occurrence implies that the parent consequence will take
place. Some consequence nodes are then tagged by response nodes that represent response actions against
the consequence to which they are connected.

The goal of attack-response trees is to probabilistically verify whether the security property specified
by the root of an attack-response tree has been violated, given the sequence of the received alerts and the
successfully taken response actions. First, a simple bottom-up procedure is applied in the case when values 0
and 1 are assigned to the leaf nodes. More precisely, when a response assigned to a node v is activated
(i.e., is assigned with 1), the values in the subtree rooted in v are reset to 0. Second, [328] also discusses
the situation when uncertainties in intrusion detections and alert notifications render the determination of
Boolean values impossible. In this case, satisfaction probabilities are assigned to the nodes of attack-response
trees and a game-theoretic algorithm is used to decide on the optimal response action. In [329], the RRE
has been extended to incorporate both IT system-level and business-level metrics to the model. Here, the
combined metrics are used to recommend optimal response actions to security attacks.

The RRE has been implemented on top of the intrusion detection system (IDS) Snort 2.7, as described
in [327]. A validation of the approach on a SCADA system use case [328] and a web-based retail company
example [329] has shown that this dynamic method performs better than static response mechanisms based

6 A reader may notice that what the authors of [328] call “sub-consequences” are in fact the causes of the main consequence.

25

on lookup tables. The RRE allows to recover the system with lower costs and is more helpful than static
engines when a large number of IDS alerts from different parts of the system are received.

As pointed out in [247], the approach described in this section suffers from the state space explosion
problem. To overcome this problem, attack countermeasure trees (Section 3.3.5) have been introduced.
Their authors propose efficient algorithms for selecting an optimal set of countermeasures.

3.4.6. Boolean Logic Driven Markov Process

Boolean logic driven Markov processes (BDMPs) are a general security modeling formalism, which can
also complete generic risk assessment procedures. The formalism was invented by Bouissou and Bon in 2003
in the safety and reliability area [28] and was adapted to security modeling by Piétre-Cambacédés and
Bouissou in 2010 [229, 228] 7. Its goal is to find a better trade-off between readability, modeling power, and
quantification capabilities with respect to the existing formalisms in general and attack trees in particular.

BDMPs combine the readability of classical attack trees with the modeling power of Markov chains. They
change the attack tree semantics by augmenting it with links called triggers. In a first approach, triggers
allow modeling of sequences and simple dependencies by conditionally “activating” sub-trees of the global
structure. The root (top event) of an BDMP is the objective of the attacker. The leaves correspond to
attack steps or security events. They are associated to Markov processes, dynamically selected in function
of the states of some other leaves. They can be connected by a wide choice of logical gates, including AND,
OR, and PAND gates, commonly used in dynamic fault trees (Section 3.2.8). The overall approach allows
for sequential modeling in an attack tree-like structure, while enabling efficient quantifications. BDMPs for
security are well formalized [228].

Success or realization parameters (mean time to success or to realization) are associated to the leaves,
depending on the basic event modeled. Defense-centric attributes can also be added, reflecting detection
and reaction capabilities (the corresponding parameters are the probability or the mean-time to detection
for a given leaf, and the reduction of chance of success in case of detection). BDMPs for security allow
for different types of quantification. These quantifications include the computation of time-domain metrics
(overall mean-time to success, probability of success in a given time, ordered list of attack sequences leading
to the objectives), attack tree related metrics like costs of attacks, handling of Boolean indicators (e.g.,
specific requirements), and risk analysis oriented tools like sensibility graphs by attack step or event [231],
ete.

The model construction and its analysis are supported by an industrial tool, called KB3 [79]. In [231],
implementation issues and user feedback are discussed and analyzed. BDMPs are used in [230, 123, 153] to
integrate safety and security analyses while [154] develops a realistic use case based on the Stuxnet attack.

In several papers [229, 228, 231], the authors point out the intrinsic limits of BDMPs to model cyclic
behaviors and loops, as well as the difficulties to assign relevant values for the leaves.

3.4.7. Cyber Security Modeling Language

The cyber security modeling language (CySeMoL) [276, 273, 272] has been developed in 2010, by the
researchers from the Royal Institute of Technology (KTH) in Sweden. The goal of the language is to estimate
the cyber security of enterprise-level system architectures, with a special focus on SCADA systems. This
probabilistic relational model [98] specifies how to construct a Bayesian network from an object model.

The big advantage of CySeMoL is that it already includes information on how attacks and defenses relate
quantitatively. In order to enable calculations, a user has only to model the system’s architecture and some
characteristics of the assets involved. The computational procedures of the model assume that the attacker
is a professional penetration tester who has fixed, limited time (one work-week) to carry out the attack.
Following the work of Sommestad et al., Holm extended CySeMoL into predictive, probabilistic cyber security
modeling language P?CySeMoL [110]. This extended language has been implemented in the predictive,
probabilistic architecture modeling framework [124]. The main improvements introduced in P?CySeMoL
are: more flexible and useful computations compared to those implemented in CySeMol. and a possibility

"The original idea was introduced in an abstract by the same authors in 2009 [227]

26

of modeling assets, attack steps, and defenses that are common for enterprise architectures which are not
necessarily SCADA-related. Furthermore, P2CySeMoL allows the user to manually specify the amount
of time that one or more attackers have in order to perform the attack. CySeMoL and P2CySeMoL are
formalized using the framework of Bayesian networks.

Literature reviews, analysis of empirical studies, as well as surveys involving domain experts have been
conducted to populate CySeMoL and P2CySeMoL models with qualitative information, representing causal
relationships between the modeled elements, and quantitative data expressing how likely different attacks
are to succeed given the presence or absence of different defenses. This is why computations within CySeMoL
or P2CySeMoL can be performed automatically and do not require any personalized input from the user.
Based on their computations, the models rank the vulnerabilities of the analyzed systems. In the case of
P2CySeMolL, a color encoding on a scale green-yellow-red is used to visualize the obtained quantitative
results.

Dedicated tools supporting CySeMoL [42] and P2CySeMoL [41] have been implemented. The practical
utility of CySeMoL has been validated in three case studies, focusing on Sweden’s three largest electrical
power utilities and one of the world’s most commonly used electrical power management systems. The
sensibility of CySeMoL’s assessments has been validated with a variant of the Turing test. P2CySeMoL
has been tested in two different case studies, in terms of usability and ease of use. We refer to the Ph.D.
thesis of Sommestad [272] for a detailed description of the CySeMoL language, tool, and validation results.
An exhaustive presentation of P2CySeMoL and the related literature can be found in the Ph.D. thesis of
Holm [110].

3.4.8. Security Goal Models

In 2010, Security goal models (SGMs) were formalized by Byers and Shahmehri in order to identify
the causes of software vulnerabilities and model their dependencies [46]. They were introduced as a more
expressive replacement for attack trees (Section 3.1.1), security goal indicator trees (Section 3.4.4), vulner-
ability cause graphs (Section 3.2.7), and security activity graphs (Section 3.3.4). The root goal of a SGM
corresponds to a vulnerability. “Starting with the root, subgoals are incrementally identified until a complete
model has been created” [261].

In SGMs, a goal can be anything that affects security or some other goal, e.g., it can be a vulnerability,
a security functionality, a security-related software development activity or an attack. SGMs have two types
of goal refinements: one type represents dependencies and one type modeling information flow. Dependency
nodes are connected with solid edges (dependence edge) and are depicted by white nodes for contributing
subgoals and by black nodes for countering subgoals. Information edges are displayed with dashed edges.
The formalism consists of a syntactic domain (elements that make up the model), an abstract syntax (how
elements can be combined), a visual representation (used graphical symbols) and a semantic transformation
from the syntactic domain to the semantic domain. The syntactic domain consists of the root, subgoals
(contributing or counteracting), dependency edges, operators AND and OR that express the connection of
dependency edges, annotation connected to nodes by annotation edges, stereotype (usually an annotation
about a dependency edge), ports that model information flow, and information edges that connect ports.
The abstract syntax is defined in a UML class diagram [261].

It is possible to evaluate whether a security goal was successfully reached or not. To do this, each cause
is defined with a logical predicate (true/false). Then the predicates are composed using Boolean logic and
taking the information from the information edges into account.

SGM were used in a case study about passive testing vulnerability detection, i.e., examining the traces
of a software system without the need for specific test inputs. In a four step testing procedure vulnerabilities
are first modeled using SGMs. In the next step, causes are formally defined before SGMs are converted
into vulnerability detection conditions (VDC). In the final step vulnerabilities are checked based on the
VDCs. In [261] this procedure is performed on the xine media player [322] where an older version contained
the CVE-2009-1274 vulnerability. The case study is executed with the help of “TestInv-Code”, a program
developed by Montimage that can handle VDCs.

In [46], the authors explicitly state that they have defined transformations to and from attack trees
VCGs, SAGs, and SGITs so that SGMs can be used with possibly familiar notation. (The transformations,

27

however, were omitted due to space restrictions.)

3.4.9. Unified Parameterizable Attack Trees

In 2011, Wang, Whitley, Phan, and Parish introduced unified parameterizable attack trees® [305]. As the
name suggests, the formalism was created as a foundation to unify numerous existing extensions of attack
trees (Section 3.1.1). The formalism generalizes the notions of connector types, edge augmentations, and
(node) attributes. With the help of these generalizations it is possible to describe other extensions of attack
trees as structural extensions, computational extensions or hybrid extensions.

Unified parameterizable attack trees are defined as a 5-tuple, consisting of a set of nodes, a set of edges, a
set of allowed connectors (O-AND i.e., a time or priority based AND, U-AND i.e., an AND with a threshold
condition and OR), a set of attributes, and a set of edge augmentation structures that allows to specify edge
labels. Using this definition, the authors of [305] identify defense trees (Section 3.3.2), attack countermeasure
trees (Section 3.3.5), attack-response trees (Section 3.4.5), attack—defense trees (Section 3.3.6), protection
trees (Section 3.3.3), OWA trees (Section 3.1.4), and augmented attack trees (Section 3.1.3) as structure-
based extensions of attack tree that are covered by unified parameterizable attack trees. They classify
multi-parameter attack trees (Section 3.1.5 and 3.2.9) as a computational extension of attack trees.

The formalism classifies attributes into the categories of “attack accomplishment attributes”, “attack
evaluation attributes”, and “victim system attributes”, but does not specify how to perform quantitative
evaluations.

Unified parameterizable attack trees are primarily built upon augmented attack trees (Section 3.1.3). In
fact, the authors indicate how to instantiate the node attributes, the edge augmentation, and the connector
type to obtain an augmented attack tree.

4. Summary of the Surveyed Formalisms

In this section, we provide a consolidated view of all formalisms introduced in Section 3. Tables 2—4
characterize the described methodologies (ordered alphabetically) according to the 13 aspects presented in
Table 1. The aspects are grouped into formalism features and capabilities (Table 2), formalism characteristics
(Table 3), and formalism maturity and usability factors (Table 4). This tabular view allows the reader to
compare the features of the formalisms more easily, it stresses their similarities and differences. Furthermore,
the tables support a user in selecting the most appropriate formalism(s) with respect to specific modeling
needs and requirements. We illustrate such a support on an exemplary situation.

FEzample 1. Let us assume that during a risk assessment, analysts want to investigate and compare the
efficiency of different defensive measures and controls, with respect to several attack scenarios. Thereto,
they need quantitative elements to support the analysis technique they will choose. Furthermore, a soft-
ware tool and pre-existing use cases are required to facilitate their work. Using the corresponding columns
from Tables 24 (i.e., attack or defensive, quantification, tool availability, case study) and choosing the
formalisms characterized by appropriate values (respectively: both, versatile or specific, industrial or proto-
type, real(istic)), would help the analysts to pre-selected attack countermeasure trees, attack—defense trees,
BDMPs, CySeMoL & P2CySeMoL, intrusion DAGs, and security activity graphs as potential modeling and
analysis techniques. The most suitable methodology could then be selected based on more detailed infor-
mation provided in Section 3. For instance, let us assume that the analysis requires the use of measures for
probability of success, the attacker’s costs, and the attacker’s skills. Checking descriptions of the pre-selected
formalisms, given in Section 3, would convince the analysts that security activity graphs and intrusion DAGs
would not allow them to compute the desired quantitative elements. Therefore it would reduce the choice to
attack countermeasure trees, attack—defense trees, CySeMoL & P?CySeMoL, and BDMPs. A more thorough
investigation of the computational procedures and algorithms described in the referred papers would help
the analysts to make the final decision on the formalism that best fits their needs.

8Wang et al. use British English, thus originally, the name of their formalism is unified parametrizable attack trees.

28

Table 2: Aspects relating to the formalism’s modeling capabilities

Name of formalism Attack or Sequen'tlal Qufmtlﬁ- Main Extension
defense or static cation Purpose

Anti-models . .
(Section 3.3.1) Both Static No Req. eng. New formalism
Attack countermeasure . . Structural
trees (Section 3.3.5) Both Static Specific Sec. mod. Computational
Attack—defense trees . . Structural
(Section 3.3.6) Both Static Versatile | Sec. mod. Computational
Attack-response trees . . Structural
(Section 3.4.5) Both Sequential Specific Int. det. Quantitative
Attack trees (Section 3.1.1) | Attack Static Versatile | Sec. mod. New formalism
Augmented attack trees . . Structural
(Section 3.1.3) Attack Static Specific Sec. mod. Computational
Augmented vulnerabil- . . . S
ity trees (Section 3.1.2) Attack Static Specific Risk Quantitative
Bayesian attack graphs . . . Structural
Section 3.2.4 Attack Sequential Specific Risk Combutational
(p
Bayesian defense graphs . . . Structural
(Section 3.4.3) Both Sequential Specific Risk Computational
Bayesian networks for . . . Structural
security (Section 3.2.3) Attack Sequential Specific Risk Computational
BDMPs (Section 3.4.6) Both Sequential Versatile | Sec. mod. g;iir
Compromise graphs
(Section 3.2.5) Attack Sequential Specific Risk New formalism
Countermeasure graphs . . Structural
(Section 3.3.7) Both Static Specific Sec. mod. Computational
Cryp‘Fographlc DAGs Attack Sequential No Risk New formalism
(Section 3.2.1)
CySeMoL & P2CySeMoL
(Section 3.4.7) Both Sequential Specific Risk New formalism
Defense trees . . Structural
(Section 3.3.2) Both Static Specific Sec. mod. Computational
Dynamic fault trees for . Order
security (Section 3.2.8) Attack Sequential No Sec. mod. Time
Enhanced attack trees . . Order
(Section 3.2.6) Attack Sequential Specific Int. det. Time
Extended fault trees
(Section 3.1.6) Attack Static Specific Unification Structural
Fault trees for security .
(Section 3.2.2) Attack Sequential No Sec. mod. Order
Improved attack trees . . . Structural
(Section 3.2.10) Attack Sequential Specific Risk Computational
Insecurity flows
(Section 3.4.1) Both Sequential Specific Risk New formalism
Intrusion DAGs . . Structural
(Section 3.4.2) Both Sequential Specific Int. det. Computational

29

Table 2: Aspects relating to the formalism’s modeling capabilities

Name of formalism Attack or Sequen'tlal Qufmtlﬁ- Main Extension
defense or static cation Purpose

OWA trees (Section 3.1.4) | Attack Static Specific Quantitative gtorr?l(;)tt?‘f:tlional
Parallel model for Quantitative
multi-parameter attack Attack Static Specific Quantitative Computational
trees (Section 3.1.5) P
Protection trees . . .
(Section 3.3.3) Defense Static Specific Sec. mod. New formalism
Security activity graphs . . .
(Section 3.3.4) Both Static Specific Soft. dev. New formalism
Security goal indicator . .
trees (Section 3.4.4) Defense Sequential No Soft. dev. New formalism
Security goal models Structural
(Section 3.4.8) Both Sequential Specific Unification Computational
Serial model for multi- Computational
parameter attack trees Attack Sequential Specific Quantitative Or deI;
(Section 3.2.9)
Time-dependent attack . . e Time
trees (Section 3.2.11) Attack Sequential Specific Quantitative Order
Unified parameterizable
attack trees (Section 3.4.9) Both Sequential Versatile | Unification Structural
Vulnerability cause graphs . . Structural
(Section 3.2.7) Attack Sequential Specific Soft. dev. Order

Table 3: Aspects relating to the formalism’s characteristics
Name of formalism Structure |Connectors Formalization
Anti-models .
(Section 3.3.1) Tree AND, OR Semi-formal
Attack cou.ntermeasure Tree AND, OR, k-out-of-n, counter leaves Formal
trees (Section 3.3.5)
Attac.k—defense trees Tree AND, OR, countermeasures Formal
(Section 3.3.6)
Attack-response trees
(Section 3.4.5) Tree AND, OR, responses Formal
Attack trees (Section 3.1.1) | Tree AND, OR Formal
Augmented attack trees
(Section 3.1.3) Tree AND, OR Formal
Augmented vulnerabil-
ity trees (Section 3.1.2) Tree AND, OR Informal
Bayesian attack graphs AND, OR, conditional
(Section 3.2.4) DAG probabilities Formal
Bayesian defense graphs AND, OR, conditional
(Section 3.4.3) DAG probabilities Formal
Bayesian networks for AND, OR, conditional
security (Section 3.2.3) DAG probabilities Formal

30

Table 3: Aspects relating to the formalism’s characteristics

Name of formalism Structure |Connectors Formalization
BDMPs (Section 3.4.6) DAG AND, OR, PAND, approx. OR, triggers Formal
Compromise graphs .

(Section 3.2.5) Unspecified |None Formal
Countermeasure graphs

(Section 3.3.7) DAG Countermeasures Informal
Cryptographic DAGs

(Section 3.2.1) DAG Dependence edges Informal
CySeMoL & P2CySeMoL .
(Section 3.4.7) DAG Dependence edges, defenses Semi-formal
Defense trees .
(Section 3.3.2) Tree AND, OR, counter leaves Semi-formal
Dynamic fault trees for |5y AND, OR, PAND, SEQ, FDEP, CSP | Informal
security (Section 3.2.8)

Fnhanced attack trees | gy, AND, OR, ordered-AND Formal
(Section 3.2.6)

Extended fault trees

(Section 3.1.6) Tree AND, OR, merge gates Formal
Fault trees for security |y AND, OR, PAND, XOR, inhibit Tnformal
(Section 3.2.2)

Improved attack trees .

(Section 3.2.10) Tree AND, OR, sequential AND Informal
Insecurity flows .

(Section 3.4.1) Unspecified |None Formal
Intrusion DAGs .
(Section 3.4.2) DAG AND, OR Semi-formal
OWA trees (Section 3.1.4) | Tree OWA operators Formal
Parallel model for

multi-parameter attack Tree AND, OR Formal
trees (Section 3.1.5)

Protection trees

(Section 3.3.3) Tree AND, OR Informal
Security activity graphs . .
(Section 3.3.4) DAG AND, OR, split gate Semi-formal
Security goal indicator Tree AND, OR, dependence Semi-formal
trees (Section 3.4.4) edge, specialization edge

Security goal models AND, OR, dependence edge, information

(Section 3.4.8) DAG edge Formal
Serial model for multi-

parameter attack trees Tree AND, OR, ordered leaves Formal
(Section 3.2.9)

Time-dependent attack

trees (Section 3.2.11) DAG AND, OR, SEQ Formal
Unified parameterizable Tree AND, OR, PAND, time-based AND, Formal
attack trees (Section 3.4.9) threshold AND

Vulnerability cause graphs DAG AND, OR, sequential AND Informal

(Section 3.2.7)

31

Table 4: Aspects related to the formalism’s maturity and usability

Name of formalism Z:I):illabili ty Case study External use cpoalﬁ)r?tr Year
?srétclt_grﬁlgs.n No No No 3 2006
trees (Secion 35) _|Prototvpe | Reallstic) [N 1 a0
fﬁiﬁﬁff;%sf frees Prototype Real(istic) Collaboration |8 2010
gﬁiﬁﬁfﬁﬂ?e e Prototype Toy case study | No 3 2009
Attack trees (Section 3.1.1) | Commercial Real(istic) Independent > 100 1991
giigsztgi;t)tack rees INo Real(istic) Independent 6 2005
ﬁ; gtlriizt? g ezgi)r;e?];i; No Real(istic) Independent 3 2003
éag;e:i:;n;‘;i)ck graphs Commercial Toy case study |Independent 10 2005
gl{;i?in;fg?se BPRS Prototype Real(istic) No 5 2008
iiiisign(gszggzk;?g) Commercial Real(istic) Independent 14 2004
BDMPs (Section 3.4.6) Commercial Real(istic) Independent 6 2010
%:éltlijézn?ii;%g)mphs No Real(istic) Collaboration 3 2006
(CS()eLértlltsrrlngle;S?L;re B 1N Toy case study | No 1 2010
Ejsreyclzfgirgghi; pAGs No No No 1 1996
gyeifil\fg%if?lizcyseMOL Prototype Real(istic) No 6 2010
%2%321 t?fe;sé) No No No 3 2006
soonrty (Section 328 | No No 1 2009
gtiiifégtg?Ck T N No No 1 2007
](ES);tci?gEC}%f fu(lsl)t e No No No 1 2007
](;‘Saeuclttl(:flegSQf(; Y| Commercial | Real(isti) Independent 3 2003
?S?eirt(i)gzd?)jtf(b)c)k e No No No 1 2011
igiiifféiof)v i No No No 1 1997
%Etei‘iféinﬁg?s Prototype Real(istic) No 2 2003
OWA trees (Section 3.1.4) |No No No 2 2005

32

Table 4: Aspects related to the formalism’s maturity and usability

Name of formalism Tool Case study External use CP;IE)I?:

availability Year

Parallel model for
multi-parameter attack Prototype Real(istic) Collaboration 5 2006
trees (Section 3.1.5)
Protection trees

(Section 3.3.3) No Toy case study |No 4 2006
Security activity graphs ..
(Section 3.3.4) Prototype Real(istic) No 2 2006
Security goal indicator .
trees (Section 3.4.4) Prototype Real(istic) No 3 2008
Security goal models No Real(istic) No 5 2010

(Section 3.4.8)
Serial model for multi-
parameter attack trees Prototype No No 4 2010
(Section 3.2.9)
Time-dependent attack

trees (Section 3.2.11) Prototype Toy case study | No 1 2014
Unified parameterizable

attack trees (Section 3.4.9) No No No 1 2011
Vulnerability cause graphs Commercial Real(istic) Independent | 2006

(Section 3.2.7)

5. Alternative Methodologies

We close this survey with a short overview of alternative methodologies for graphical security modeling
and analysis. The formalisms described here are outside the main scope of this paper, because they were
not originally introduced for the purposes of attack and defense modeling or they are not based on the DAG
structure. However, for the sake of completeness, we find important to briefly present those approaches as
well. The objective of this section is to give pointers to other existing methodological tools for security
assessment based on graphical models, rather than to perform a thorough overview of all related formalisms.
This explains why the description of the formalisms given here is less complete and structured than the
information provided in Section 3.

5.1. Petri Nets for Security

During the mid 1990s, models based on Petri nets have been applied for security analysis [155, 59].
In 1994, Kumar and Spafford [155] adopted colored Petri nets for security modeling. They illustrate how
to model reference scenarios for an intrusion detection device. Also in 1994, Dacier [59] used Petri nets in
his Ph.D. thesis as part of a larger quantification model that describes the progress of an attacker taking
over a system. A useful property of Petri nets is their great modeling capability and in particular their
ability to take into account the sequential aspect of attacks, the modeling of concurrent action and various
forms of dependency. Petri nets are widely used and have various specific extensions. To corroborate this
statement, we list a few existing ones. Kumar and Spafford’s work relies on colored Petri nets [155], Dacier’s
on stochastic Petri nets [59], McDermott’s on disjunctive Petri nets [179], Horvath and Dorges’ on reference
nets [112], Dalton II et al.’s on generalized stochastic Petri nets [64], Pudar et al.’s on deterministic time
transition Petri nets [237], and Xu and Nygard’s on aspect-oriented Petri nets [323]. Several articles on Petri
nets merge the formalism with other approaches. Horvath and Dorges combine Petri nets with the concept

33

of security patterns [112] while Dalton II et al. [64], and more thoroughly Pudar et al. [237], combine Petri
nets and attack trees.

In 1994, Dacier embedded Petri nets into a higher level formalism called privilege graphs. They model
an attacker’s progress in obtaining access rights for a desired target [59, 60]. In a privilege graph, a node
represents a set of privileges and an edge a method for transferring these privileges to the attacker. This
corresponds to the exploitation of a vulnerability. The model includes an attacker’s “memory” which forbids
him to go through privilege states that he has already acquired. In addition, an attacker’s “good sense” is
modeled which prevents him from regressing. In [61], Dacier et al. proposed to transform a privilege graph
into a Markov chain corresponding to all possible successful attack scenarios. The method has been applied
to help system administrators to monitor the security of their systems.

In [325], Zakrzewska and Ferragut presented a model extending Petri nets in order to model real-time
cyber conflicts. This formalism is able to represent situational awareness, concurrent actions, incomplete
information, and objective functions. Since it makes use of stochastic transitions, it is well suited to reason
about stochastic non-controlled events. The formalism is used to run simulations of cyber attacks in order
to experimentally analyze cyber conflicts. The authors also performed a comparison of their extended Petri
nets model with other security modeling techniques. In particular, they showed that extended Petri nets are
more readable and more expressive than attack graphs, especially with respect to the completeness of the
models.

5.2. Attack Graphs

The term attack graph has been first introduced by Phillips and Swiler [225, 283 in 1998, and has
extensively been used ever since. The nodes of an attack graph represent possible states of a system during
the attack. The edges correspond to changes of states due to an attacker’s actions. An attack graph is
generated automatically based on three types of inputs: attack templates (generic representations of attacks
including required conditions), a detailed description of the system to be attacked (topology, configurations of
components, etc.), and the attacker’s profile (his capability, his tools, etc.). Quantifications, such as average
probabilities or time to success, can be deduced by assigning weights to the edges and by finding shortest
paths in the graph.

Starting in 2002, Sheyner et al. 263, 262] made extensive contributions to popularize attack graphs by
associating them with model checking techniques. To limit the risk of combinatorial explosion, a large number
of methods were developed. Ammann et al. [8] restricted the graphs by exploiting a monotony property,
thereby eliminating backtracking in terms of privilege escalation. Noel, Jajodia, and others [209, 121] took
configuration aspects into account. A complete state of the art concerning the contributions to the field
between 2002 and 2005 can be found in [166]. In 2006, Wang et al. introduced a relational model for attack
graphs [310]. The approach facilitates interactive analysis of the models and improves its performance.
Ou et al. [216] optimized the generation and representation of attack graphs by transforming them into
logical attack graphs of polynomial size with respect to the number of components of the computer network
analyzed. During the same year, Ingols et al. [116] proposed multiple-prerequisite graphs, which also severely
reduce the complexity of the graphs. In [187], Mehta et al. proposed an algorithm for the classification of
states in order to identify the most relevant parts of an attack graph. In 2008, Malhotra et al. [170] did the
same based on the notion of an attack surface described in [172]. The vast majority of the authors mentioned
have also worked on visualization aspects [208, 207, 317, 111]. Kotenko and Stepashkin [152] described a
complete software platform for implementing concepts and metrics of attack graphs. On a theoretical level,
Braynov and Jadliwala [29] extended the model to several attackers.

Starting in 2003, the problem of quantitative assessment of the security of networked systems using
attack graphs has been extensively studied [209, 307, 308, 309, 306]. The work presented in [209] and [307]
focuses on minimal cost of removing vulnerabilities in hardening a network. In [308], the authors introduced
a metric, called attack resistance, which is used to compare the security of different network configurations.
The approach was then extended in [309] into a general abstract framework for measuring various aspects
of network security. In [306], Wang et al. introduced a metric incorporating probabilities of the existence of
the vulnerabilities considered in the graph.

34

In his master thesis, Louthan IV [168] proposed extensions to the attack graph modeling framework to
permit modeling continuous, in addition to discrete, system elements and their interactions.

In [306], Wang et al. addressed the problem of likelihood quantification of potential multi-step attacks
on networked environments, that combine multiple vulnerabilities. They developed an attack graph-based
probabilistic metric for network security and proposed heuristics for efficient computation. In [210], Noel et al.
used attack graphs to understand how different vulnerabilities can be combined to form an attack on a
network. They simulated incremental network penetration and assessed the overall security of a network
system by propagating attack likelihoods. The method allows to give scores to risk mitigation options
in terms of maximizing security and minimizing cost. It can be used to study cost/benefit trade-offs for
analyzing return on security investment.

Dawkins and Hale [69] developed a concept similar to attack graphs called attack chains. The model
is based on a deductive tree structure approach but also allows for inductive reasoning using goal-inducing
attack chains, to extract scenarios leading to a given aim. These models are also capable of generating attack
trees, which may be quantified by conventional methods. Aspects concerning software implementation are
described in [55].

In [253], Samarji et al. introduce a new formal approach called simultaneous attacks graphs. Contrary
to previous work on attack graphs restricted to individual attacks, as in [263], simultaneous attacks graphs
model individual, coordinated, as well as concurrent attacks. Samarji et al. show how to automatically
generate simultaneous attacks graphs using the situation calculus formalism [232]. The objective is to sup-
port response systems in the estimation of risk inferred from simultaneous ongoing attacks, and to choose
appropriate responses.

5.8. Approaches Derived from UML Diagrams

We start this section with a short description of two formalisms derived from UML diagrams, namely
abuse cases of McDermott and Fox [180] and misuse cases of Sindre and Opdahl [268, 269, 271, 5, 270] which
were later extended by Rgstad in [244]. These techniques are not specifically intended to model attacks but
rather to capture threats and abusive behavior which have to be taken into account when eliciting security
requirements (for misuse cases) as well as for design and testing (for abuse cases). The flexibility of misuse and
abuse cases allows for expressive graphical modeling of attack scenarios without mathematical formalization
that supports quantification.

In [93], Firesmith argues that misuse and abuse cases are “highly effective ways of analyzing security
threats but are inappropriate for the analysis and specification of security requirements”. The reasoning is
that misuse cases focus on how misusers can successfully attack the system. Thus they often model specific
architectural mechanisms and solutions, e.g., the use of passwords, rather than actual security requirements,
e.g., authentication mechanisms. To specify security requirements, he suggested to use security use cases.
Security use cases focus on how an application achieves its goals. According to Firesmith, they provide “a
highly-reusable way of organizing, analyzing, and specifying security requirements” [93].

Diallo et al. presented a comparative evaluation of the common criteria [50], misuse cases, and attack
trees [74]. Opdahl and Sindre [213] compared usability aspects and modeling features of misuse cases and
attack trees. UML-based approaches can be combined with other types of models. The combination of mis-
use cases and attack trees appears not only to be simple but also useful and relevant [288, 190]. In [133],
Karpati et al. adapted use case maps to security as misuse case maps. Katta et al. [135] combined UML
sequence diagrams with misuse cases in a new formalism called misuse sequence diagrams. A misuse sequence
diagram represents a sequence of attacker interactions with system components and depicts how the com-
ponents were misused over time by exploiting their vulnerabilities. The authors of [135] performed usability
and performance comparison of misuse sequence diagrams and misuse case maps. In [224], Karpati et al.
integrated five different representation techniques in a method called hacker attack representation method
(HARM). The methodologies used in HARM are: attack sequence descriptions (summarizing attacks in nat-
ural language), misuse case maps (depicting the system architecture targeted by the attack and visualizing
the traces of the exploits), misuse case diagrams (showing threats in relation to the wanted functionality),
attack trees (representing the hierarchical relation between attacks), and attack patterns (describing an

35

attack in detail by adding information about context and solutions). Combining such diverse representation
techniques has two goals. First, it provides “an integrated view of security attacks and system architecture”.
Second, the HARM method is especially well suited when different stakeholders, including non-technical
people preferring informal representations are involved in modeling a security scenario.

In [267], Sindre adapted UML activity diagrams to security. The resulting mal-activity diagrams con-
stitute an alternative for misuse cases when the author considers the latter to be unsuitable. This is for
instance the case in situations where a large numbers of interactions need to be specified within or outside
a system. Case studies mainly concern social engineering attacks [132].

5.4. Isolated Models

In this section we gather a number of isolated models. Most of them contain cycles and therefore are
outside of the main scope of this paper. However, we mention them because they build upon one of the
formalisms described in Section 3.

The stratified node topology was proposed by Daley et al. [62] as an extension of attack trees, in 2002.
The formalism consists of a directed graph which is aimed at providing a context sensitive attack modeling
framework. It supports incident correlation, analysis, and prediction and extends attack trees by separating
the nodes into three distinct classes based on their functionality: event-level nodes, state-level nodes and top-
level nodes. The directed edges between the nodes are classified into implicit and explicit links. Implicit links
allow individual nodes to imply other nodes in the tree; explicit links are created when an attack provides a
capability to execute additional nodes, but does not actually invoke a new instance of a node. As in attack
trees, the set of linked nodes can be connected disjunctively as well as conjunctively. In comparison with
attack trees, the authors drop the requirement of a designated root node, along with the requirement that
the graphs have to be acyclic. Due to the functional distinction of the nodes, the stratified node topology
can keep the vertical ordering, even if the modeled scenario is cyclic.

In 2010, Abdulla et al. [1] described a model called attack jungles. When trying to use attack trees as
formalized by Mauw and Oostdijk in [178] to illustrate the security of a GSM radio network, the authors
of [1] encountered modeling problems related to the presence of cycles as well as analysis problems related
to reusability of nodes in real life scenarios. This led them to propose attack jungles, which extend attack
trees with multiple roots, reusable nodes, and cycles that allow for modeling of attacks which depend on
each other. Attack jungles are formalized as multigraphs and their formal semantics extend the semantics
based on multisets proposed in [178]. In order to find possible ways of attacking a system, a backwards
reachability algorithm for analysis of attack jungles was described. Moreover, the notion of an attribute
domain for quantitative analysis, as proposed for attack trees in [178], is extended to fit the new structure of
attack jungles. By dividing attack components (nodes) into reusable and not reusable ones, it is possible to
better analyze realistic scenarios. For instance, in an attack jungle it si possible to indicate that a component
used once can be reused multiple times without inducing any extra cost.

Extended influence diagrams [126] form another related formalism which is not based on a DAG structure.
Extended influence diagrams are built upon influence diagrams, introduced by Matheson and Howard in the
1960s [177], which, in turn, are an extension of Bayesian networks. Influence diagrams are used to provide
a high-level visualization of decision problems under uncertainty [90]. Extended influence diagrams allow to
model the relationships between decisions, events, and outcomes of an enterprise architecture. They employ
the following three types of nodes: ellipses which represent events (also known as chance nodes), rectangles
which depict decision nodes and diamonds which represent utility nodes (or outcomes). In addition the
formalism allows to specify how a node is defined, how well it can be controlled, and how the nodes relate
to each other. The latter is achieved using different types of edges. Moreover, transformation rules between
graphs govern switching between different levels of abstraction of a scenario (expanding and collapsing).
The rules also ensure that graphs do not contradict each other. In [156], the authors show how to elicit
knowledge from scientific texts, generating extended influence diagrams and in [83] the authors outline how
extended influence diagrams can be used for cyber security management.

36

6. Conclusion

This work presents a complete and methodical overview of DAG-based techniques for modeling attack and
defense scenarios. Some of the described methodologies have extensively been studied and are widely used
to support security and risk assessment processes. Others emerged from specific, practical developments and
have remained isolated methods. This survey provides a structured description of the existing formalisms,
gives pointers to related papers, tools, and projects and proposes a general classification of the presented
approaches. To classify the formalisms, we have used 13 aspects concerning graphical, formal, and usability
characteristics of the analyzed models.

Two general trends can be observed in the field of graphical security modeling: unification and specifi-
cation. The objective of the methodologies developed within the first trend is to unify existing approaches
and propose general solutions that can be used for analysis of a broad spectrum of security scenarios. The
corresponding formalisms are well suited for reasoning about situations involving diversified aspects, such as
digital, physical and social components, simultaneously. Such models usually have sound formal foundations
and are extensively studied from a theoretical point of view. They are augmented with formal semantics
and a general mathematical framework for quantitative analysis. Examples of such models developed within
the unification trend are attack—defense trees, unified parameterizable attack trees, multi-parameter attack
trees, OWA trees, Bayesian attack graphs, and Bayesian defense graphs.

The second observed trend, i.e., the specification trend, aims at developing methodologies for addressing
domain specific security problems. Studied domains include intrusion detection (e.g., attack-response trees,
intrusion DAGs), secure software development (e.g., security activity graphs, security goal indicator trees),
and security requirements engineering (e.g., anti-models). Formalisms developed within this trend are often
based on empirical studies and practical needs. They concentrate on domain specific metrics, such as the
response index, which is used for the analysis of intrusion DAGs. These approaches often remain isolated
and seldom relate to or build upon other existing approaches.

The multitude of methodologies presented in this survey shows that graphical security modeling is a
young but very rapidly growing area. Thus, further development is necessary and new directions need to be
explored before security assessment can fully benefit from graphical models. One of the research questions
which has not yet received enough attention is building graphical models from pre-existing attack templates
and patterns. Addressing this question would make automatic model creation possible and replace the
tedious, error-prone, manual construction process. It would therefore strongly relieve the industrial sector
when building large-scale practical models.

The idea of reusing attack patterns is not new. It has already been mentioned in 2001 by Moore et al. [196].
An excellent initiative was taken by the FP7 project SHIELDS [265], in which the Security Vulnerability
Repository Service (SVRS) has been developed. The SVRS is an on-line library of various security models
including attack trees [266]. A natural follow-up step is to propose methods for automatic or semi-automatic
construction of complex, specific models from general attack or vulnerability patterns. This would require
developing algorithms for correct composition and comparison of models, standardizing employed node labels
and introducing an agent-based view into the formalisms.

Using security patterns makes threat analysis more efficient and accurate. Generating a general model
from existing libraries constitutes a good starting point for further model refinement and analysis. Further-
more, although new technological opportunities arise every day, empirical studies show that most attackers
reuse the same attack vectors with little or no modification. Often the same company is attacked several
times by an intruder exploiting the same already known vulnerability.

There still exists a gap between theoretical research and practical employment of graphical security mod-
els. Tighter interaction between the scientific and industrial security communities would be very beneficial
for the future of the field. Having this goal in mind, the First International Workshop on Graphical Models
for Security (GraMSec) has been set up and took place in April 2014 [102]. The objective of GraMSec
is to allow practitioners to better understand the capabilities of theoretical models and give scientists an
opportunity to learn what the practical and industrial needs are. Next edition of the workshop has already
been planned and it is the organizers’ intention to make GraMSec a yearly event providing a platform for
the exchange of ideas, collaboration, and result dissemination in the field.

37

Once a bridge between the scientific and the industrial community is built, a natural next step will be
to include graphical models into standardized and commonly used auditing and risk assessment tools and
practices. Due to the sound formal foundations of the graphical models as well as their user friendliness, this
would greatly improve the quality and usability of the currently used, mostly table-based, practical risk and
auditing methodologies.

7. Acknowledgments

The authors would like to thank Sjouke Mauw, Marc Bouissou, and Pieter Hartel for their comments on
a preliminary version of this survey, which helped them to considerably improve the paper. The research
leading to these results has received funding from the Fonds National de la Recherche Luzrembourg under
the grants C08/1S/26 and PHD-09-167 and the FEuropean Commission’s Seventh Framework Programme
(FP7/2007 — 2013) under the grant agreement 318003 (TREsPASS). This publication reflects only the
authors’ views and the funding bodies are not liable for any use that may be made of the information
contained herein.

References

[1] Abdulla, P. A., Cederberg, J., Kaati, L., 2010. Analyzing the Security in the GSM Radio Network Using Attack Jungles.
In: Margaria, T., Steffen, B. (Eds.), ISoLA (1). Vol. 6415 of LNCS. Springer, pp. 60-74.

[2] ACCURATE, 2007. A Center for Correct Usable Reliable Auditable and Transparent Elections: Annual Report 2006.
http://accurate-voting.org/wp-content/uploads/2007/02/AR.2007 .pdf.

[3] ADT2P, 2014-2017. Attack—Defense Trees: Theory Meets Practice, project funded by the Fonds National de la
Recherche, Luxembourg under grant C13/IS/5809105.

URL http://www.fnr.lu/en/Research-Programmes/Funding-by-Call-Type/Projects/Attack-Defense-Trees-Theory-Meets-Practice-.

[4] Aijaz, A., Bochow, B., Détzer, F., Festag, A., Gerlach, M., Kroh, R., Leinmiiller, T., 2006. Attacks on Inter Vehicle
Communication Systems - an Analysis. In: 3rd International Workshop on Intelligent Transportation. pp. 189-194.

[5] Alexander, I., 2003. Misuse cases: Use cases with hostile intent. IEEE software 20 (1), 58-66.

[6] Althebyan, Q., Panda, B., 2008. A Knowledge-Based Bayesian Model for Analyzing a System after an Insider Attack.
In: Jajodia, S., Samarati, P., Cimato, S. (Eds.), Proceedings of The Ifip Tc 11 23rd International Information Secu-
rity Conference. Vol. 278 of IFIP International Federation for Information Processing. Springer Boston, pp. 557-571,
10.1007/978-0-387-09699-5_36.

URL http://dx.doi.org/10.1007/978-0-387-09699-5_36

[7] Amenaza, 2001-2013. SecurITree. http://www.amenaza.com/.

[8] Ammann, P., Wijesekera, D., Kaushik, S., Nov. 2002. Scalable, graph-based network vulnerability analysis. In: Proceedings
of the 9th ACM Conference on Computer and ommunications Security (CCS’02). Washington, DC, USA, pp. 217-224.

[9] Amoroso, E. G., 1994. Fundamentals of Computer Security Technology. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA.

URL http://portal.acm.org/citation.cfm?id=179237

[10] An, X., Jutla, D., Cercone, N., Aug. 2006. Privacy intrusion detection using dynamic Bayesian networks. In: Proceedings
of the 8th International Conference for Electronic Commerce (ICEC’06). Fredericton, Canada, pp. 208-215.

[11] Anderson, R. J., 2001. Security engineering - a guide to building dependable distributed systems, 1st Edition. Wiley.

[12] Andrusenko, A., 2008. AForest. http://research.cyber.ee/~alexander/.

URL http://research.cyber.ee/ alexander/

[13] Andrusenko, A., 2010. Riindepuude Metoodika Ja Seda Toetav Tarkvaraline Raamistik. Master’s thesis, Tallinn Univer-
sity, available at http://www.cyber.ee/publikatsioonid/20-magistri- ja-doktoritood/loputoeoede-failid/Andrusenko-MA.pdf
(in Estonian).

[14] ANIKETOS, 2010-2014. ANIKETOS: Ensuring Trustworthiness and Security in Service Composition, FP7 project, grant
agreement 257930.

URL http://www.aniketos.eu/

[15] Ardi, S., Byers, D., Shahmehri, N., 2006. Towards a structured unified process for software security. In: Proceedings of
the 2006 international workshop on Software engineering for secure systems. SESS ’06. ACM, New York, NY, USA, pp.
3-10.

URL http://doi.acm.org/10.1145/1137627.1137630

[16] Arnborg, S., 1985. Efficient algorithms for combinatorial problems on graphs with bounded decomposability — A survey.
BIT Numerical Mathematics 25, 1-23, 10.1007/BF01934985.

URL http://dx.doi.org/10.1007/BF01934985

[17] Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M., 2014. Time-Dependent Analysis of Attacks. In: Abadi, M.,
Kremer, S. (Eds.), POST. Vol. 8414 of LNCS. Springer, pp. 285-305.

38

http://accurate-voting.org/wp-content/uploads/2007/02/AR.2007.pdf
http://www.fnr.lu/en/Research-Programmes/Funding-by-Call-Type/Projects/Attack-Defense-Trees-Theory-Meets-Practice-ADT2P
10.1007/978-0-387-09699-5_36
http://dx.doi.org/10.1007/978-0-387-09699-5_36
http://www.amenaza.com/
http://portal.acm.org/citation.cfm?id=179237
http://research.cyber.ee/~alexander/
http://research.cyber.ee/~alexander/
http://www.cyber.ee/publikatsioonid/20-magistri-ja-doktoritood/loputoeoede-failid/Andrusenko-MA.pdf
http://www.aniketos.eu/
http://doi.acm.org/10.1145/1137627.1137630
http://dx.doi.org/10.1007/BF01934985

(18]

(19]
[20]

[21]

22]

23]
[24]

25]

[26]

27]
28]
[29]

(30]

[31]
32]
[33]
34]
(35]
[36]

[37]
(38]

39]
[40]
[41]
[42]
[43]
[44]

[45]

[46]

ATREES, 2009-2012. Attack Trees, project funded by the Fonds National de la Recherche, Luxembourg under grants
C08/1S/26 and PHD-09-167.

URL http://satoss.uni.lu/projects/atrees/

Baca, D., Petersen, K., 2010. Prioritizing Countermeasures through the Countermeasure Method for Software Security
(CM-Sec). In: Babar, M. A., Vierimaa, M., Oivo, M. (Eds.), PROFES. Vol. 6156 of LNIBP. Springer, pp. 176-190.
Bagnato, A., Kordy, B., Meland, P. H., Schweitzer, P., 2012. Attribute Decoration of Attack—Defense Trees. International
Journal of Secure Software Engineering, Special Issue on Security Modeling 3 (2), 1-35.

Berander, P., Svahnberg, M., May 2009. Evaluating two ways of calculating priorities in requirements hierarchies - An
experiment on hierarchical cumulative voting. Journal of Systems and Software 82 (5), 836—850.

URL http://dx.doi.org/10.1016/5.jss.2008.11.841

Bistarelli, S., Dall’Aglio, M., Peretti, P., 2006. Strategic Games on Defense Trees. In: Dimitrakos, T., Martinelli, F., Ryan,
P. Y. A, Schneider, S. A. (Eds.), FAST. Vol. 4691 of LNCS. Springer, pp. 1-15.

URL http://wuw.springerlink.com/content/83115122h9007685/

Bistarelli, S., Fioravanti, F., Peretti, P., 2006. Defense Trees for Economic Evaluation of Security Investments. In: ARES.
IEEE Computer Society, pp. 416-423.

Bistarelli, S., Peretti, P., Trubitsyna, I., 2008. Analyzing Security Scenarios Using Defence Trees and Answer Set Pro-
gramming. Electron. Notes Theor. Comput. Sci. 197 (2), 121-129.

Bodlaender, H. L., 1993. A linear time algorithm for finding tree-decompositions of small treewidth. In: Proceedings of
the twenty-fifth annual ACM symposium on Theory of computing. STOC ’93. ACM, New York, NY, USA, pp. 226-234.
URL http://doi.acm.org/10.1145/167088.167161

Bortot, S., Fedrizzi, M., Giove, S., Aug. 2011. Modelling fraud detection by attack trees and Choquet integral. DISA
Working Papers 2011/09, Department of Computer and Management Sciences, University of Trento, Italy.

URL http://ideas.repec.org/p/trt/disawp/2011-09.html

Bouissou, M., Jun. 2007. A Generalization of Dynamic Fault Trees through Boolean logic Driven Markov Processes
(BDMP). In: Proceedings of the 16th European Safety and Reliability Conference (ESREL’07). Stavanger, Norway.
Bouissou, M., Bon, J.-L., Nov. 2003. A new formalism that combines advantages of fault-trees and Markov models:
Boolean logic driven Markov processes. Reliability Engineering & System Safety 82 (2), 149-163.

Braynov, S., Jadliwala, M., 2003. Representation and analysis of coordinated attacks. In: Proceedings of the 2003 ACM
Workshop on Formal Methods in Security Engineering (FMSE’03). Washington, D.C., USA, pp. 43-51.

Brooke, P. J., Paige, R. F., 2003. Fault trees for security system design and analysis. Computers & Security 22 (3),
256-264.

URL http://wuw.sciencedirect.com/science/article/pii/S0167404803003134

Buckshaw, D. L., Parnell, G. S., Unkenholz, W. L., Parks, D. L., Wallner, J. M., Saydjari, O. S., 2005. Mission Oriented
Risk and Design Analysis of Critical Information Systems. Military Operations Research 10 (2), 19-38.

Buldas, A., Laud, P., Priisalu, J., Saarepera, M., Willemson, J., 2006. Rational Choice of Security Measures Via Multi-
Parameter Attack Trees. In: Lopez, J. (Ed.), CRITIS. Vol. 4347 of LNCS. Springer, pp. 235-248.

Buldas, A., Lenin, A., 2013. New Efficient Utility Upper Bounds for the Fully Adaptive Model of Attack Trees. In: Das,
S. K., Nita-Rotaru, C., Kantarcioglu, M. (Eds.), GameSec. Vol. 8252 of LNCS. Springer, pp. 192-205.

Buldas, A., Magi, T., 2007. Practical Security Analysis of E-Voting Systems. In: [194], pp. 320-335.

URL http://aeolus.ceid.upatras.gr/scientific-reports/2nd_year_reports/practical_e_voting_final.pdf
Buldas, A., Stepanenko, R., 2012. Upper Bounds for Adversaries’ Utility in Attack Trees. In: Grossklags, J., Walrand,
J. C. (Eds.), GameSec. Vol. 7638 of LNCS. Springer, pp. 98-117.

Buoni, A., Aug. 2010. Fraud Detection: From Basic Techniques to a Multi-Agent Approach. In: Management and Service
Science (MASS), 2010 International Conference on. pp. 1-4.

Buoni, A., 2012. Fraud Detection in the Banking Sector. Ph.D. thesis, Abo Akademi University, Finland.

Buoni, A., Fedrizzi, M., 2012. Consensual Dynamics and Choquet Integral in an Attack Tree-based Fraud Detection
System. In: Filipe, J., Fred, A. L. N. (Eds.), ICAART (1). SciTePress, pp. 283-288.

Buoni, A., Fedrizzi, M., Mezei, J., 2010. A Delphi-Based Approach to Fraud Detection Using Attack Trees and Fuzzy
Numbers. In: Proceeding of the IASK International Conferences. pp. 21-28.

Buoni, A., Fedrizzi, M., Mezei, J., 2011. Combining Attack Trees and Fuzzy Numbers in a Multi-Agent Approach to
Fraud Detection. International Journal of Electronic Business 9 (3), 186-202.

Buschle, M., Johnson, P., Shahzad, K., 2013. The Enterprise Architecture Analysis Tool - Support for the Predictive,
Probabilistic Architecture Modeling Framework. In: AMCIS. Association for Information Systems.

Buschle, M., Ullberg, J., Franke, U., Lagerstrom, R., Sommestad, T., 2011. A Tool for Enterprise Architecture Analysis
Using the PRM Formalism. In: Soffer, P., Proper, E. (Eds.), CAiSE Forum. Vol. 72 of LNBIP. Springer, pp. 108—-121.
Byers, D., Ardi, S., Shahmehri, N., Duma, C., Sep. 2006. Modeling software vulnerabilities with vulnerability cause
graphs. In: Proceedings of the International Conference on Software Maintenance (ICSM’06). pp. 411-422.

Byers, D., Shahmehri, N.; Apr. 2007. Design of a Process for Software Security. In: Second International Conference on
Availability, Reliability and Security (ARES’07). pp. 301-309.

Byers, D., Shahmehri, N., 2008. A Cause-Based Approach to Preventing Software Vulnerabilities. In: Proceedings of the
Third International Conference on Availability, Reliability and Security (ARES’08). IEEE Computer Society, Washington,
DC, USA, pp. 276-283.

Byers, D., Shahmehri, N., 2010. Unified modeling of attacks, vulnerabilities and security activities. In: SESS ’10: Pro-
ceedings of the 2010 ICSE Workshop on Software Engineering for Secure Systems. ACM, New York, NY, USA, pp.
36-42.

39

http://satoss.uni.lu/projects/atrees/
http://dx.doi.org/10.1016/j.jss.2008.11.841
http://www.springerlink.com/content/83115122h9007685/
http://doi.acm.org/10.1145/167088.167161
http://ideas.repec.org/p/trt/disawp/2011-09.html
http://www.sciencedirect.com/science/article/pii/S0167404803003134
http://aeolus.ceid.upatras.gr/scientific-reports/2nd_year_reports/practical_e_voting_final.pdf

[47]

(48]

[49]
[50]
[51]
[52]
[53]
[54]

[55]

[56]

[57]

(58]
[59]

[60]

[61]
[62]

[63]

[64]
[65]
[66]

[67]

[68]
[69]

[70]
[71]

[72]

[73]

Byres, E. J., Franz, M., Miller, D., Dec. 2004. The Use of Attack Trees in Assessing Vulnerabilities in SCADA Systems. In:
International Infrastructure Survivability Workshop (IISW’04), Institute of Electrical and Electronics Engineers, Lisbon.
Vol. . p. .

URL http://blogfranz.googlecode.com/files/SCADA-Attack-Trees-IISW.pdf

Cagalaban, G., Kim, T., Kim, S., 2010. Improving SCADA control systems security with software vulnerability analysis.
In: Proceedings of the 12th WSEAS international conference on Automatic control, modelling & simulation. AC-
MOS’10. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, pp. 409-414.
URL http://dl.acm.org/citation.cfm?id=1844174.1844250

Carnegie Mellon University, 2004-2009. SQUARE: System Quality Requirements Engineering.
https://www.cert.org/sse/square-tool.html.

CC, 2012. Common Criteria for Information Technology Security Evaluation (version 3.1, revision 4). ISO/IEC 15408.
URL http://wuw.commoncriteriaportal.org/files/ccfiles/CCPART1V3. 1R4.pdf

Camtepe, S. A., Yener, B., 2006. A Formal Method for Attack Modeling and Detection. Tech. Rep. TR-06-01, Rensselaer
Polytechnic Institute, Troy, NY, USA.

Camtepe, S. A., Yener, B., Sep. 2007. Modeling and detection of complex attacks. In: Proceedings of the 3rd International
Conference on Security and Privacy in Communications Networks (SecureComm 2007). Nice, France, pp. 234-243.
Chaufette, N., Haag, T., 2007. Vulnerability Cause Graphs: A Case of Study.
http://www.ida.liu.se/"TDDD17/oldprojects/2007/projects/3.pdf.

Clark, K., Singleton, E., Tyree, S., Hale, J., Oct. 2008. Strata-Gem: risk assessment through mission modeling. In:
Proceedings of the 4th ACM Workshop on Quality of Protection (QoP’08). Alexandria, Virginia, USA, pp. 51-58.
Clark, K., Tyree, S., Dawkins, J., Hale, J., Jun. 2004. Qualitative and quantitative analytical techniques for network
security assessment. In: Proceedings of the 5th IEEE Systems, Man and Cybernetics Information Assurance Workshop
(TAW’04). West Point, USA, pp. 321-328.

Convery, S., Cook, D., Franz, M., Feb. 2004. An Attack Tree for the Border Gateway Protocol. IETF Internet Draft:
http://tools.ietf.org/html/draft-ietf-rpsec-bgpattack-00.

Cowan, R., Grimaila, M., Patel, R., Apr. 2008. Using Attack and Protection Trees to Evaluate Risk in an Embedded
Weapon System. In: Proceedings of the 3rd International Conference on Information Warfare and Security (ICIW 2008).
Omaha, Nebraska, USA, pp. 97-108.

CRUTIAL, 2006-2009. CRitical UTility InfrastructurAL resilience, IST-FP6-STREP project, grant agreement 027513.
URL http://crutial.rse-web.it

Dacier, M., 1994. Vers une évaluation quantitative de la sécurité informatique. Ph.D. thesis, Laboratoire d’Analyse et
d’Architecture des Systémes du CNRS (LAAS).

Dacier, M., Deswarte, Y., 1994. Privilege graph: An extension to the typed access matrix model. In: Gollmann, D. (Ed.),
ESORICS’1994. Vol. 875 of LNCS. Springer, pp. 319-334.

URL http://dx.doi.org/10.1007/3-540-58618-0_72

Dacier, M., Deswarte, Y., Ka&niche, M., 1996. Models and tools for quantitative assessment of operational security. In:
Katsikas, S. K., Gritzalis, D. (Eds.), SEC. Vol. 54 of IFIP Conference Proceedings. Chapman & Hall, pp. 177-186.
Daley, K., Larson, R., Dawkins, J., 2002. A Structural Framework for Modeling Multi-Stage Network Attacks. In: ICPP
Workshops. IEEE Computer Society, pp. 5-10.

Dalton II, G. C., Edge, K. S., Mills, R. F., Raines, R. A., 2010. Analysing security risks in computer and Radio Frequency
Identification (RFID) networks using attack and protection trees. International Journal of Security and Networks 5 (2),
87-95.

Dalton II, G. C., Mills, R. F., Colombi, J. M., Raines, R. A., 2006. Analyzing Attack Trees using Generalized Stochastic
Petri Nets. In: Information Assurance Workshop, 2006 IEEE. West Point, NY, pp. 116-123.

Dantu, R., Kolan, P., 2005. Risk Management Using Behavior Based Bayesian Networks. In: Kantor, P. B.; Muresan, G.,
Roberts, F., Zeng, D. D., Wang, F.-Y., Chen, H., Merkle, R. C. (Eds.), ISI. Vol. 3495 of LNCS. Springer, pp. 115-126.
Dantu, R., Kolan, P., Akl, R., Loper, K., 2007. Classification of attributes and behavior in risk management using bayesian
networks. In: IEEE Intelligence and Security Informatics. pp. 71-74.

Dantu, R., Kolan, P., ao W. Cangussu, J., 2009. Network risk management using attacker profiling. Security and Com-
munication Networks 2 (1), 83-96.

URL http://dx.doi.org/10.1002/sec.58

Dantu, R., Loper, K., Kolan, P., april 2004. Risk management using behavior based attack graphs. In: International
Conference on Information Technology: Coding and Computing (ITCC’04). Vol. 1. pp. 445-449.

Dawkins, J., Hale, J., Apr. 2004. A systematic approach to multi-stage network attack analysis. In: Proceedings of the
2nd IEEE International Information Assurance Workshop (IAWA’04). Charlotte, NC, USA, pp. 48-56.

Decision Systems Laboratory, University of Pittsburgh, 1996-2013. GeNle & SMILE. http://genie.sis.pitt.edu/.
Department of Engineering, University of Maryland, ca. 2004. Fault Tree Analysis Programs.
http://www.enre.umd.edu/tools/ftap.htm.

Dewri, R., Poolsappasit, N., Ray, I., Whitley, D., 2007. Optimal security hardening using multi-objective optimization
on attack tree models of networks. In: Proceedings of the 14th ACM Conference on Computer and Communications
Security. CCS ’07. ACM, New York, NY, USA, pp. 204-213.

URL http://doi.acm.org/10.1145/1315245.1315272

Dewri, R., Ray, 1., Poolsappasit, N., Whitley, D., Jun. 2012. Optimal security hardening on attack tree models of networks:
a cost-benefit analysis. Int. J. Inf. Secur. 11 (3), 167-188.

URL http://dx.doi.org/10.1007/s10207-012-0160-y

40

http://blogfranz.googlecode.com/files/SCADA-Attack-Trees-IISW.pdf
http://dl.acm.org/citation.cfm?id=1844174.1844250
https://www.cert.org/sse/square-tool.html
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf
http://www.ida.liu.se/~TDDD17/oldprojects/2007/projects/3.pdf
http://tools.ietf.org/html/draft-ietf-rpsec-bgpattack-00
http://crutial.rse-web.it
http://dx.doi.org/10.1007/3-540-58618-0_72
http://dx.doi.org/10.1002/sec.58
http://genie.sis.pitt.edu/
http://www.enre.umd.edu/tools/ftap.htm
http://doi.acm.org/10.1145/1315245.1315272
http://dx.doi.org/10.1007/s10207-012-0160-y

[74] Diallo, M. H., Romero-Mariona, J., Sim, S. E., Alspaugh, T. A., Richardson, D. J., Jun. 2006. A Comparative Evaluation of
Three Approaches to Specifying Security Requirements. In: Proceedings of the 12th International Working Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ 2006). Luxembourg, Grand-Duchy of Luxembourg.

[75] Du, S., Li, X., Du, J., Zhu, H., 2012. An attack-and-defence game for security assessment in vehicular ad hoc networks.
Peer-to-Peer Networking and Applications , 1-14, 10.1007/s12083-012-0127-9.

URL http://dx.doi.org/10.1007/s12083-012-0127-9

[76] Dugan, J. B., Bavuso, S. J., Boyd, M. A., Jan. 1990. Fault Trees and Sequence Dependencies. In: Proceedings of the
Reliability and Maintainability Annual Symposium (RAMS’90). Los Angeles, CA, USA, pp. 286-293.

[77] Dugan, J. B., Bavuso, S. J., Boyd, M. A., 1992. Dynamic fault tree models for fault tolerant computer systems. IEEE
Transactions on Reliability 41 (3), 363-377.

[78] Dugan, J. B., Sullivan, K. J., Coppit, D., 2000. Developing a Low-Cost, High-Quality Software Tool for Dynamic Fault
Tree Analysis. IEEE Transactions on Reliability 49 (1), 49-59.

[79] EDF R & D, 2011-2012. KB3 Platform tools. http://research.edf .com/research-and-the-scientific-community/software/kb3-44337.

[80] Edge, K. S., Jul. 2007. A Framework for Analyzing and Mitigating the Vulnerabilities of Complex Systems via Attack
and Protection Trees. Ph.D. thesis, Air Force Institute of Technology, Wright Patterson AFB, OH, USA.

[81] Edge, K. S., Dalton II, G. C., Raines, R. A., Mills, R. F., 2006. Using Attack and Protection Trees to Analyze Threats
and Defenses to Homeland Security. In: MILCOM. IEEE, pp. 1-7.

[82] Edge, K. S., Raines, R. A., Grimaila, M., Baldwin, R., Bennington, R., Reuter, C., Jan. 2007. The Use of Attack and
Protection Trees to Analyze Security for an Online Banking System. In: 40th Annual Hawaii International Conference
on System Sciences, 2007. (HICSS 2007). p. 144b.

[83] Ekstedt, M., Sommestad, T., Mar. 2009. Enterprise architecture models for cyber security analysis. In: Proceedings of
the IEEE/PES Power System Conference and Exposition (PSCE’09). Seattle, USA, pp. 1-6.

[84] Eom, J.-H., Park, M.-W., Park, S.-H., Chung, T.-M., Feb. 2011. A framework of defense system for prevention of insider’s
malicious behaviors. In: 13th International Conference on Advanced Communication Technology (ICACT’11). pp. 982—
987.

[85] Ericson II, C. A., Aug. 1999. Fault Tree Analysis - A History. In: Proceedings of the 17th International System Safety
Conference (ISSC’99). Orlando, FL, USA.

[86] Espedalen, J. H., 2007. Attack Trees Describing Security in Distributed Internet-Enabled Metrology. Master’s thesis,
Gjovik University.

[87] EUROCAE (European Organisation for Civil Aviation Equipment), 2010. ED-202 — Airworthiness Security Process
Specification.

[88] Evanms, S., Heinbuch, D., Kyule, E., Piorkowski, J., Wallner, J., 2004. Risk-based systems security engineering: stopping
attacks with intention. IEEE Security and Privacy 2 (6), 59-62.

[89] EVITA, 2008—2011. E-safety vehicle intrusion protected applications: FP7 project, grant agreement 224275.

URL http://wuw.evita-project.org/

[90] Ezell, B. C., Bennett, S. P., von Winterfeldt, D., Sokolowski, J., Collins, A. J., 2010. Probabilistic risk analysis and
terrorism risk. Risk analysis an official publication of the Society for Risk Analysis 30 (4), 575-589.

URL http://www.ncbi.nlm.nih.gov/pubmed/20522198

[91] Feng, N., Xie, J., 2012. A Bayesian networks-based security risk analysis model for information systems integrating the
observed cases with expert experience. Scientific Research and Essays 7 (10), 1103-1112.

[92] Fernandes, P., Basso, T., Moraes, R., Jino, M., Nov. 2010. Attack Trees Modeling for Security Tests in Web Applications.
In: Brazilian Workshop on Systematic and Automated Software Testing. pp. 3—12.

[93] Firesmith, D. J., May 2003. Security Use Cases. Journal of Object Technology 2 (3), 53-64.

URL http://wuw.jot.fm/issues/issue_2003_05/columné

[94] Foo, B., Wu, Y.-S., Mao, Y.-C., Bagchi, S., Spafford, E., June-1 July 2005. ADEPTS: adaptive intrusion response
using attack graphs in an e-commerce environment. In: International Conference on Dependable Systems and Networks
(DSN’05). pp. 508-517.

[95] Foster, N. L., 2002. The application of software and safety engineering techniques to security protocol development. Ph.D.
thesis, University of York.

[96] Fovino, I. N., Masera, M., Cian, A. D., Sep. 2009. Integrating cyber attacks within fault trees. Reliability Engineering &
System Safety 94 (9), 1394-1402.

URL http://dx.doi.org/10.1016/j.ress.2009.02.020

[97] Franke, U., Sommestad, T., Ekstedt, M., Johnson, P., Dec. 2008. Defense Graphs and Enterprise Architecture for Infor-
mation Assurance Analysis. In: Proceedings of the 26th Army Science Conference. Orlando, Florida, USA.

[98] Friedman, N., Getoor, L., Koller, D., Pfeffer, A., 1999. Learning probabilistic relational models. In: In IJCAI. Springer-
Verlag, pp. 1300-1309.

[99] Frigault, M., Wang, L., 28 2008-aug. 1 2008. Measuring Network Security Using Bayesian Network-Based Attack Graphs.
In: The 32nd Annual IEEE International Conference on Computer Software and Applications (COMPSAC 08). pp.
698-703.

[100] Frigault, M., Wang, L., Singhal, A., Jajodia, S., Oct. 2008. Measuring network security using dynamic Bayesian network.
In: Proceedings of the 4th ACM Workshop on Quality of Protection (QoP’08). Alexandria, Virginia, USA, pp. 23-30.

[101] Fung, C., Chen, Y.-L., Wang, X., Lee, J., Tarquini, R., Anderson, M., Linger, R., 2005. Survivability Analysis of Dis-
tributed Systems Using Attack Tree Methodology. In: MILCOM. Atlantic City, NJ, pp. 583-589.

[102] GraMSec, 2014. The First International Workshop on Graphical Models for Security.
URL http://gramsec.uni.lu/

41

http://dx.doi.org/10.1007/s12083-012-0127-9
http://research.edf.com/research-and-the-scientific-community/software/kb3-44337.html
http://www.evita-project.org/
http://www.ncbi.nlm.nih.gov/pubmed/20522198
http://www.jot.fm/issues/issue_2003_05/column6
http://dx.doi.org/10.1016/j.ress.2009.02.020
http://gramsec.uni.lu/

[103] Grunske, L., Joyce, D., 2008. Quantitative risk-based security prediction for component-based systems with explicitly
modeled attack profiles. Journal of Systems and Software 81 (8), 1327—-1345.

[104] Harrington, P. D., 2010. Noncooperative potential Games to improve network security. Ph.D. thesis, Oklahoma State
University, USA.

[105] Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L., Lutz, R., Dec. 2002. A Software Fault Tree Approach to
Requirements Analysis of an Intrusion Detection System. Journal of Requirements Engineering 7 (4), 207-220.

[106] Helmer, G., Wong, J., Slagell, M., Honavar, V., Miller, L., Wang, Y., Wang, X., Stakhanova, N., 2007. Software fault
tree and coloured Petri net-based specification, design and implementation of agent-based intrusion detection systems.
International Journal of Information and Computer Security 1 (1/2), 109-142.

[107] Henniger, O., Apvrille, L., Fuchs, A., Roudier, Y., Ruddle, A., Weyl, B., 2009. Security requirements for automotive
on-board networks. In: 9th International Conference on Intelligent Transport Systems Telecommunications,(ITST). Lille,
pp. 641-646.

[108] Higuero, V., Unzilla, J. J., Jacob, E., Saiz, P., Luengo, D., Sep. 2004. Application of ‘Attack Trees’ Technique to Copyright
Protection Protocols Using Watermarking and Definition of a New Transactions Protocol SecDP (Secure Distribution Pro-
tocol). In: Proceedings of the 2nd International Workshop on Multimedia Interactive Protocols and Systems (MIPS’04),
LNCS 3311. Grenoble, France, pp. 264—275.

[109] Hogganvik, I., 2007. A graphical approach to security risk analysis. Ph.D. thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo.

URL http://heim.ifi.uio.no/"ketils/kst/Theses/2007.Hogganvik.pdf

[110] Holm, H., 2014. A Framework and Calculation Engine for Modeling and Predicting the Cyber Security of Enterprise
Architectures. Ph.D. thesis, Industrial Information and Control Systems.

[111] Homer, J., Varikuti, A., Ou, X., McQueen, M. A., Sep. 2008. Improving Attack Graph Visualization through Data
Reduction and Attack Grouping. In: Proceedings of the 5th international Workshop on Visualization For Computer
Security (VizSEC’08). Cambridge, MA, USA, pp. 68-79.

[112] Horvath, V., Dérges, T., 2008. From security patterns to implementation using petri nets. In: Proceedings of the fourth
international workshop on Software engineering for secure systems. SESS ’08. ACM, New York, NY, USA, pp. 17-24.
URL http://doi.acm.org/10.1145/1370905.1370908

[113] Houmb, S. H., Franqueira, V. N. L., Engum, E. A., 2009. Quantifying security risk level from CVSS estimates of frequency
and impact. Journal of Systems and Software 83 (9), 1662-1634.

URL http://wuw.sciencedirect.com/science/article/pii/S0164121209002155

[114] Howard, M., LeBlanc, D., 2002. Writing Secure Code, 2nd Edition. Microsoft Press.

[115] Ingoldsby, T. R., 2004. Understanding Risk Through Attack Tree Analysis. Computer Security Journal 20 (2), 33-59.
URL http://wuw.scopus.com/inward/record.url?eid=2-s2.0-2542453149&partnerID=40&md5=a06d3f£56d42229c9dd48cdecc74428db

[116] Ingols, K. W., Lippmann, R., Piwowarski, K., Dec. 2006. Practical Attack Graph Generation for Network Defense. In:
Proceedings of the 22nd Annual Computer Security Applications Conference (ACSAC’06). Washington, DC, USA, pp.
121-130.

[117] International Electrotechnical Commission (IEC), Jan. 2006. Analysis techniques for dependability — Reliability block
diagram and boolean methods. IEC 61078, 2nd Ed.

[118] International Electrotechnical Commission (IEC), Dec. 2006. Fault tree analysis. IEC 61025, 2nd Ed.

[119] Isograph, 2004-2005. AttackTree+. http://www.isograph-software.com/atpover.htm.

[120] Ivanc, B., Klobucar, T., 2014. Use of the Enhanced Structural Model for Attack Analysis and Education. In: NATO
Advanced Research Workshop on "Managing Terrorism Threats to Critical Infrastructure — Challenges for South Eastern
Europe".

[121] Jajodia, S., Noel, S., O’Berry, B., 2005. Managing Cyber Threats: Issues, Approaches, and Challenges. Springer US, Ch.
Topological Analysis of Network Attack Vulnerability, pp. 247-266, editor = Kumar, Vipin and Srivastava, Jaideep and
Lazarevic, Aleksandar.

[122] Jensen, F. V., Nielsen, T. D., 2007. Bayesian Networks and Decision Graphs, 2nd Edition. Springer Publishing Company,
Incorporated.

[123] Johnson, C. W., 2011. Using Assurance Cases and Boolean logic Driven Markov Processes to Formalise Cyber Security
Concerns for Safety-Critical Interaction with Global Navigation Satellite Systems. ECEASST 45, 1-18.

[124] Johnson, F., Ullberg, J., Buschle, M., Franke, U., Shahzad, K., 2013. P2AMF: Predictive, Probabilistic Architecture
Modeling Framework. In: van Sinderen, M., Luttighuis, P. O., Folmer, E., Bosems, S. (Eds.), IWEL Vol. 144 of LNBIP.
Springer, pp. 104-117.

[125] Johnson, P., Johansson, E., Sommestad, T., Ullberg, J., 2007. A Tool for Enterprise Architecture Analysis. In: EDOC.
IEEE Computer Society, pp. 142—-156.

[126] Johnson, P., Lagerstrom, R., Narman, P., Simonsson, M., Jul. 2007. Enterprise architecture analysis with extended
influence diagrams. Information Systems Frontiers 9 (2-3), 163-180.

[127] Jung, C., Elberzhager, F., Bagnato, A., Raiteri, F., Feb. 2010. Practical Experience Gained from Modeling Security Goals:
Using SGITs in an Industrial Project. In: International Conference on Availability, Reliability, and Security (ARES’10).
pp- 531-536.

[128] Jiirgenson, A., 2010. Efficient Semantics of Parallel and Serial Models of Attack Trees. Ph.D. thesis, Tallinn University of
Technology, Faculty of Information Technology, Department of Informatics, available at http://digi.lib.ttu.ee/i/7496.

[129] Jiirgenson, A., Willemson, J., 2007. Processing Multi-Parameter Attacktrees with Estimated Parameter Values. In: [194],
pp. 308-319.

[130] Jiirgenson, A., Willemson, J., 2008. Computing Exact Outcomes of Multi-parameter Attack Trees. In: Meersman, R.,

42

http://heim.ifi.uio.no/~ketils/kst/Theses/2007.Hogganvik.pdf
http://doi.acm.org/10.1145/1370905.1370908
http://www.sciencedirect.com/science/article/pii/S0164121209002155
http://www.scopus.com/inward/record.url?eid=2-s2.0-2542453149&partnerID=40 &md5=a06d3ff5d42229c9dd48cdecc74428db
http://www.isograph-software.com/atpover.htm
http://digi.lib.ttu.ee/i/?496

[131]

[132]

[133]

[134]

[135]

[136]
[137]
[138]

[139]

[140]

[141]
[142]

[143]

[144]
[145]

[146]

[147]
[148]
[149]
[150]
[151]
[152]

[153]

[154]

[155]
[156]

[157]
[158]

Tari, Z. (Eds.), OTM Conferences (2). Vol. 5332 of LNCS. Springer, pp. 1036-1051.

Jirgenson, A., Willemson, J., 2010. On Fast and Approximate Attack Tree Computations. In: Proceedings of the 6th
international conference on Information Security Practice and Experience. ISPEC’10. Springer-Verlag, Berlin, Heidelberg,
pp. 56-66.

URL http://dx.doi.org/10.1007/978-3-642-12827-1_5

Karpati, P., Sindre, G., Matulevicius, R., 2012. Comparing Misuse Case and Mal-Activity Diagrams for Modelling Social
Engineering Attacks. IJSSE 3 (2), 54-73.

Karpati, P., Sindre, G., Opdahl, A. L., Jun. 2010. Visualizing cyber attacks with misuse case maps. In: Proceedings of the
16th International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2010).
Essen, Germany, pp. 262-275.

Karppinen, K., 2005. Security Measurement Based on Attack Trees in a Mobile Ad Hoc Network Environment. Master’s
thesis, VI'T and University of Oulu, available at http://wuw.vtt.fi/inf/pdf/publications/2005/P580.pdf.

Katta, V., Karpati, P., Opdahl, A. L., Raspotnig, C., Sindre, G., 2010. Comparing Two Techniques for Intrusion Visual-
ization. In: van Bommel, P., Hoppenbrouwers, S., Overbeek, S., Proper, E., Barjis, J. (Eds.), PoOEM. Vol. 68 of Lecture
Notes in Business Information Processing. Springer, pp. 1-15.

Khand, P. A., Feb. 2009. System level security modeling using attack trees. In: Proceedings of the 2nd International
Conference on Computer, Control and Communication (IC4). Karachi, Pakistan, pp. 1-6.

Khand, P. A., Seong, P. H., Oct. 2007. An Attack model development process for the Cyber Security of Safety Related
Nuclear Digital 1&C Systems. In: Proceedings of the Korean Nucleary Society (KNS) Fall meeting. Korea.

Kienzle, D. M., 1998. Practical Computer Security Analysis. Ph.D. thesis, School of Engineering and Applied Science,
University of Virginia, USA.

Kienzle, D. M., Wulf, W. A., 1997. A Practical Approach to Security Assessment. In: Proceedings of the 1997 New
Security Paradigms Workshop. NSPW ’97. ACM, New York, NY, USA, pp. 5-16.

URL http://doi.acm.org/10.1145/283699.283731

Kloos, J., Elberzhager, F., Eschbach, R., Sep. 2010. Systematic Construction of Goal Indicator Trees for Indicator-Based
Dependability Inspections. In: 36th EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA’10). pp. 279-282.

Koot, L., 2012. Security of mobile TAN on smartphones. Ph.D. thesis, Radboud University Nijmegen, Faculty of Science,
The Netherlands.

Kordy, B., Kordy, P., Mauw, S., Schweitzer, P., 2013. ADTool: Security Analysis with Attack—Defense Trees. In: Joshi,
K. R., Siegle, M., Stoelinga, M., D’Argenio, P. R. (Eds.), QEST. Vol. 8054 of LNCS. Springer, pp. 173-176.

Kordy, B., Mauw, S., Melissen, M., Schweitzer, P., 2010. Attack—Defense Trees and Two-Player Binary Zero-Sum Extensive
Form Games Are Equivalent. In: Alpcan, T., Buttyan, L., Baras, J. S. (Eds.), GameSec. Vol. 6442 of LNCS. Springer,
pp. 245-256.

Kordy, B., Mauw, S., Pieters, W. (Eds.), 2014. Proceedings First International Workshop on Graphical Models for
Security, GraMSec 2014, Grenoble, France, 12th April, 2014. Vol. 148 of EPTCS.

Kordy, B., Mauw, S., Radomirovi¢, S., Schweitzer, P., 2010. Foundations of Attack—Defense Trees. In: Degano, P., Etalle,
S., Guttman, J. D. (Eds.), FAST. Vol. 6561 of LNCS. Springer, pp. 80-95.

Kordy, B., Mauw, S., Radomirovi¢, S., Schweitzer, P., 2014. Attack—Defense Trees. Journal of Logic and Computation
24 (1), 55-87.

URL http://logcom.oxfordjournals.org/content/24/1/55

Kordy, B., Mauw, S., Schweitzer, P., 2012. Quantitative Questions on Attack—Defense Trees. In: ICISC. Vol. 7839 of
LNCS. Springer, pp. 49-64.

Kordy, B., Pouly, M., Schweitzer, P., 2011. Computational Aspects of Attack—Defense Trees. In: Security & Intelligent
Information Systems. Vol. 7053 of LNCS. Springer, pp. 103—116.

Kordy, B., Pouly, M., Schweitzer, P., 2014. A Probabilistic Framework for Security Scenarios with Dependent Actions. In:
Albert, E., Sekerinski, E. (Eds.), iFM’14. Vol. 8739 of LNCS. Springer International Publishing Switzerland, pp. 256-271.
Kordy, P., Schweitzer, P., 2012. ADTool. http://satoss.uni.lu/projects/atrees/adtool.

Kordy, P., Schweitzer, P., 2012. The ADTool Manual. http://satoss.uni.lu/software/adtool/manual.pdf.

Kotenko, I., Stepashkin, M., 2006. Analyzing Network Security using Malefactor Action Graphs. International Journal
of Computer Science and Network Security 6 (6), 226-235.

Kriaa, S., Bouissou, M., Colin, F., Halgand, Y., Piétre-Cambacédés, L., 2014. Safety and security interactions modeling
using the BDMP formalism: case study of a pipeline. In: Bondavalli, A., Giandomenico, F. D. (Eds.), Safecomp 2014.
Vol. 8666 of LNCS. Springer International Publishing Switzerland, pp. 326-341.

Kriaa, S., Bouissou, M., Piétre-Cambacédés, L., Oct. 2012. Modeling the Stuxnet Attack with BDMP: Towards More
Formal Risk Assessments. In: Martinelli, F., Lanet, J.-L., Fitzgerald, W. M., Foley, S. N. (Eds.), Proceedings of the 7th
International Conference on Risks and Security of Internet and Systems (CRiSIS 2012). Cork, Ireland, pp. 1-8.

Kumar, S., Spafford, E. H., Oct. 1994. A Pattern-Matching Model for Misuse Intrusion Detection. In: Proceedings of the
17th National Computer Security Conference (NCSC’94). Baltimore, USA, pp. 11-21.

Lagerstrom, R., Johnson, P., Narman, P., 2007. Extended Influence Diagram Generation. In: Jardim-Gongalves, R.,
Miiller, J. P., Mertins, K., Zelm, M. (Eds.), IESA. Springer, pp. 599-602.

Lazarus, E. L., 2010-2011. AttackDog. https://decisionsmith.com/doc/adog.

Lazarus, E. L., Dill, D. L., Epstein, J., Hall, J. L., Aug. 2011. Applying a Reusable Election Threat Model at the County
Level. In: Proceedings of the 2011 Conference on Electronic voting Technology/Workshop on Trustworthy Elections.
EVT/WOTE’11. USENIX Association, Berkeley, CA, USA, pp. 1-14.

43

http://dx.doi.org/10.1007/978-3-642-12827-1_5
http://www.vtt.fi/inf/pdf/publications/2005/P580.pdf
http://doi.acm.org/10.1145/283699.283731
http://logcom.oxfordjournals.org/content/24/1/55
http://satoss.uni.lu/projects/atrees/adtool
http://satoss.uni.lu/software/adtool/manual.pdf
https://decisionsmith.com/doc/adog

[159]

[160]

[161]
[162]

[163]

[164]
[165]
[166]

[167]

[168]
[169]

[170]

[171]

[172]
[173]
[174]
[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

Leversage, D. J., Byres, E. J., Sep. 2007. Comparing Electronic Battlefields: Using Mean Time-To-Compromise as a
Comparative Security Metric. In: Proceedings of the 4th International Conference on Methods, Models, and Architectures
for Network Security (MMM-ACNS’07), CCIS 1. St Petersburg, Russia, pp. 213-227.

Leversage, D. J., Byres, E. J., Jan. 2008. Estimating a System’s Mean Time-to-Compromise. IEEE Security and Privacy
6, 52-60.

URL http://dl.acm.org/citation.cfm?id=1344235.1344300

Leveson, N. G., Apr. 1995. Safeware: System Safety and Computers. Addison-Wesley Professional.

URL http://www.worldcat.org/isbn/0201119722

Leveson, N. G., Harvey, P. R., 1983. Software fault tree analysis. Journal of Systems and Software 3 (2), 173—-181.

URL http://www.sciencedirect.com/science/article/pii/0164121283900304

Li, X., Liu, R., Feng, Z., He, K., 2009. Threat modeling-oriented attack path evaluating algorithm. Transactions of Tianjin
University 15 (3), 162-167.

URL http://wuw.springerlink.com/content/v76g872558787214/

Lin, X., Zavarsky, P., Ruhl, R., Lindskog, D., Aug. 2009. Threat Modeling for CSRF Attacks. In: International Conference
on Computational Science and Engineering (CSE’09). Vol. 3. pp. 486-491.

Linger, R. C., Moore, A. P., October 2001. Foundations for Survivable System Development: Service Traces, Intrusion
Traces, and Evaluation Models. Tech. Rep. CMU/SEI-2001-TR~029, Software Engineering Institute.

Lippmann, R., Ingols, K. W., Mar. 2005. An annotated review of past papers on attack graphs. Project Report ESC-
TR-2005-054, Massachusetts Institute of Technology (MIT), Lincoln Laboratory.

Liu, Y., Man, H., Mar. 2005. Network vulnerability assessment using Bayesian networks. In: Proceedings of SPIE Data
Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005. Vol. 5812. Orlando, FL, USA,
pp. 61-71.

Louthan IV, G. R., 2011. Hybrid Attack Graphs for Modeling Cyber-physical Systems. Master’s thesis, University of
Tulsa, USA.

Magi, T, 2007. Practical Security Analysis of E-voting Systems. Master’s thesis, Tallin University of Technology, Faculty
of Information Technology, Department of Informatics, Estonia, available at http://triinu.net/e-voting/.

Malhotra, S., Bhattacharya, S., Ghosh, S. K., Jul. 2008. A Vulnerability and Exploit Independent Approach for Attack
Path Prediction. In: Proceedings of the IEEE 8th International Conference on Computer and Information Technology
Workshops. Sydney, Australia, pp. 282-287.

Mammar, A., Cavalli, A., Montes de Oca, E., Ardi, S., Byers, D., Shahmehri, N., Jun. 2009. Modélisation et détection
formelles de vulnérabilités logicielles par le test passif. In: 4éme Conférence sur la Sécurité des Architectures Réseaux et
des Systémes d’Information (SAR-SSI). p. 12pp.

Manadhata, P. K., Dec. 2008. An Attack Surface Metric. Ph.D. thesis, Carnegie Mellon University.

Manikas, T. W., Thornton, M. A., Feinstein, D. Y., 2011. Using Multiple-Valued Logic Decision Diagrams to Model
System Threat Probabilities. IEEE International Symposium on Multiple-Valued Logic 0, 263-267.

Marback, A., Hyunsook, D., He, K., Kondamarri, S., Xu, D., May 2009. Security test generation using threat trees. In:
Automation of Software Test, 2009. AST ’09. ICSE Workshop on. pp. 62—69.

Marshall, C., 2008. Attack Trees and Their Uses in BGP and SMTP Analysis.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.3609.

Masera, M., Fovino, I. N., Cian, A. D., 2007. Integrating cyber attacks within fault trees. In: Aven, T., Vinnem, J. E. (Eds.),
Risk, Reliability and Societal Safety (Proceedings of the 16th European Safety and Reliability Conference (ESREL’07).
Taylor & Francis Group, London, pp. 1-8.

Matheson, J. E., Howard, R. A., 1968. An Introduction to Decision Analysis. Strategic Decisions Group, Menlo Park,
CA.

Mauw, S., Oostdijk, M., 2005. Foundations of Attack Trees. In: Won, D., Kim, S. (Eds.), ICISC. Vol. 3935 of LNCS.
Springer, pp. 186-198.

URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.1056

McDermott, J. P., Sep. 2000. Attack net penetration testing. In: Proceedings of the 2000 Workshop on New Security
Paradigms (NSPW’00). Cork, Ireland, pp. 15-21.

McDermott, J. P.; Fox, C., Dec. 1999. Using abuse case models for security requirements analysis. In: Proceedings of the
15th Annual Computer Security Applications Conference (ACSAC’99). Phoenix, USA, pp. 55-64.

McLaughlin, S., Podkuiko, D., McDaniel, P., 2010. Energy theft in the advanced metering infrastructure. In: Proceedings
of the 4th International Conference on Critical Information Infrastructures Security. CRITIS’09. Springer-Verlag, Berlin,
Heidelberg, pp. 176-187.

URL http://dl.acm.org/citation.cfm?id=1880551.1880566

McLaughlin, S., Podkuiko, D., Miadzvezhanka, S., Delozier, A., McDaniel, P., Dec. 2010. Multi-vendor penetration testing
in the advanced metering infrastructure. In: Proceedings of the 26th Annual Computer Security Applications Conference
(ACSAC’10). Austin, Texas, USA,, pp. 107-116.

McQueen, M. A., Boyer, W. F., Flynn, M. A., Beitel, G. A., Sep. 2005. Time-to-compromise model for cyber risk reduction
estimation. In: Proceedings of the 1st Workshop on Quality of Protection (QoP’05). Milan, Italy, pp. 49-64.

McQueen, M. A., Boyer, W. F., Flynn, M. A., Beitel, G. A., Jan. 2006. Quantitative Cyber Risk Reduction Estimation
Methodology for a Small SCADA Control System. In: Proceedings of the 39th Annual Hawaii International Conference
on System Sciences (HICSS-39). Vol. 9. Hawaii, USA, pp. 226-237.

Mead, N. R., Hough, E. D., Stehney II, T. R., 2005. Security Quality Requirements Engineering (SQUARE) Methodology.
Tech. Rep. CMU/SEI-2005-TR~009, Carnegie Mellon University.

44

http://dl.acm.org/citation.cfm?id=1344235.1344300
http://www.worldcat.org/isbn/0201119722
http://www.sciencedirect.com/science/article/pii/0164121283900304
http://www.springerlink.com/content/v76g872558787214/
http://triinu.net/e-voting/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.3609
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.1056
http://dl.acm.org/citation.cfm?id=1880551.1880566

[186]
[187]
[188]
[189]

[190]

[191]

[192]

[193]

[194]

[195]
[196]

[197]

[198]
[199]
[200]

[201]

[202]
[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

Meadows, C., Dec. 1996. A representation of Protocol Attacks for Risk Assessment. In: Proceedings of the DIMACS
Workshop on Network Threats. New Brunswick, NJ, USA, pp. 1-10.

Mehta, V., Bartzis, C., Zhu, H., Clarke, E., Wing, J., Sep. 2006. Ranking Attack Graphs. In: Proceedings of the 9th
International Symposium on Recent Advances in Intrusion Detection (RAID’06), LNCS 4219. Hamburg, Germany, pp.
127-144.

Meland, P. H., 2007-2010. SeaMonster. https://sourceforge.net/projects/seamonster/.

Meland, P. H., Spampinato, D. G., Hagen, E., Baadshaug, E. T., Krister, K.-M., Velle, K. S., 2008. SeaMonster: Providing
tool support for security modeling. In: Norsk Informasjonssikkerhetskonferanse (NISK’08).

Meland, P. H., Tgndel, I. A., Jensen, J., Feb. 2010. Idea: Reusability of Threat Models - Two Approaches with an
Experimental Evaluation. In: International Symposium on Engineering Secure Software and Systems(ESSoS). Pisa, Italy,
pp. 114-122.

Mell, P., Scarfone, K., Romanosky, S., 2006. Common Vulnerability Scoring System. IEEE Security & Privacy 4 (6),
85-89.

Mirembe, D. P., Muyeba, M., 2008. Threat Modeling Revisited: Improving Expressiveness of Attack. In: EMS ’08:
Proceedings of the 2008 Second UKSIM European Symposium on Computer Modeling and Simulation. IEEE Computer
Society, Washington, DC, USA, pp. 93-98.

Mishra, S., Kant, K., Yadav, R. S., Jul. 2012. Multi tree view of complex attack — stuxnet. In: Proceedings of the ACITY
2012 Conference. Chennai, India, pp. 171-188.

Miyaji, A., Kikuchi, H., Rannenberg, K. (Eds.), 2007. Advances in Information and Computer Security, Second In-
ternational Workshop on Security, IWSEC 2007, Nara, Japan, October 29-31, 2007, Proceedings. Vol. 4752 of LNCS.
Springer.

Moberg, F., 2000. Security Analysis of an Information System Using an Attack Tree-based Methodology. Master’s thesis,
Chalmers University of Technology.

Moore, A. P.; Ellison, R. J., Linger, R. C., Mar. 2001. Attack Modeling for Information Security and Survivability.
Technical Note CMU/SEI-2001-TN-001, Carnegie Mellon University.

Morais, A., Cavalli, A., Martins, E., 2011. A Model-Based Attack Injection Approach for Security Validation. In: Pro-
ceedings of the 4th International Conference on Security of Information and Networks. SIN ’11. ACM, New York, NY,
USA, pp. 103-110.

URL http://doi.acm.org/10.1145/2070425.2070443

Morais, A. N. P., Martins, E., Cavalli, A. R., Jimenez, W., 2009. Security Protocol Testing Using Attack Trees. In: CSE
(2). IEEE Computer Society, pp. 690-697.

Morikawa, I., Yamaoka, Y., Sep. 2011. Threat Tree Templates to Ease Difficulties in Threat Modeling. In: 14th Interna-
tional Conference on Network-Based Information Systems (NBiS’11). pp. 673-678.

Moskowitz, 1. S., Kang, M. H., Sep. 1997. An insecurity flow model. In: Proceedings of the 1997 Workshop on New
Security Paradigms (NSPW’97). Langdale, Cumbria, UK, pp. 61-74.

Néarman, P., Johnson, P., Lagerstrom, R., Franke, U., Ekstedt, M., Mar. 2009. Data Collection Prioritization for System
Quality Analysis. Electron. Notes Theor. Comput. Sci. 233, 29-42.

URL http://dx.doi.org/10.1016/j.entcs.2009.02.059

Neapolitan, R. E., 2003. Learning Bayesian Networks. Prentice Hall.

Nielsen, J. R., Mar. 2011. Evaluating Information Assurance Control Effectiveness on An Air Force Supervisory Con-
trol And Data Acquisition (SCADA) System. Master’s thesis, US Air Force Institute of Technology, available at
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA541615.

Niitsoo, M., 2010. Optimal adversary behavior for the serial model of financial attack trees. In: Proceedings of the
5th International Conference on Advances in Information and Computer Security. IWSEC’10. Springer-Verlag, Berlin,
Heidelberg, pp. 354-370.

URL http://dl.acm.org/citation.cfm?id=1927197.1927228

Ning, Z., Xin-yuan, C., Yong-fu, Z., Si-yuan, X., Dec. 2008. Design and Application of Penetration Attack Tree Model
Oriented to Attack Resistance Test. In: International Conference on Computer Science and Software Engineering. Vol. 3.
pp. 622-626.

Noel, S., Elder, M., Jajodia, S., Kalapa, P., O’Hare, S., Prole, K., 2009. Advances in Topological Vulnerability Analysis.
In: Proceedings of the 2009 Cybersecurity Applications & Technology Conference for Homeland Security. CATCH ’09.
IEEE Computer Society, Washington, DC, USA, pp. 124-129.

Noel, S., Jacobs, M., Kalapa, P., Jajodia, S., Oct. 2005. Multiple coordinated views for network attack graphs. In:
Proceedings of the 2005 IEEE Workshop on Visualization for Computer Security (VizSEC 05). Minneapolis, USA, pp.
99-106.

Noel, S., Jajodia, S., Oct. 2004. Managing attack graph complexity through visual hierarchical aggregation. In: Proceed-
ings of the 2004 ACM workshop on Visualization and data mining for computer security (VizSEC’04). George Mason
University, Fairfax, VA, USA, pp. 109-118.

Noel, S., Jajodia, S., O’Berry, B., Jacobs, M., Dec. 2003. Efficient Minimum-cost Network Hardening via Exploit Depen-
dency Graphs. In: Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC’03). Las Vegas,
NV, USA, pp. 86-95.

Noel, S., Jajodia, S., Wang, L., Singhal, A., 2010. Measuring Security Risk of Networks Using Attack Graphs. IINGC
1 (1), 135-147.

Nzoukou, W., Wang, L., Jajodia, S., Singhal, A., 2013. A Unified Framework for Measuring a Network’s Mean Time-to-
Compromise. In: SRDS. IEEE, pp. 215-224.

45

https://sourceforge.net/projects/seamonster/
http://doi.acm.org/10.1145/2070425.2070443
http://dx.doi.org/10.1016/j.entcs.2009.02.059
 http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA541615
http://dl.acm.org/citation.cfm?id=1927197.1927228

[212]
[213]
[214]
[215]
[216]
[217]

[218]
[219]
[220]
[221]
[222]
[223]
[224]
[225]
[226]
[227]
(228
[229]
[230]

[231]

[232]

[233]

[234]
[235]

[236]
[237]

[238]
[239]
[240]

[241]

Ongsakorn, P., Turney, K., Thornton, M. A., Nair, S., Szygenda, S. A., Manikas, T., Apr. 2010. Cyber threat trees for
large system threat cataloging and analysis. In: 4th Annual IEEE Systems Conference. pp. 610-615.

Opdahl, A. L., Sindre, G., 2009. Experimental comparison of attack trees and misuse cases for security threat identifica-
tion. Information & Software Technology 51 (5), 916-932.

Opel, A., Mar. 2005. Design and Implementation of a Support Tool for Attack Trees. Master’s thesis, Technische Uni-
versiteit Eindhoven, Otto-von-Guericke University, Magdeburg, Germany.

Ostler, R. T., 2011. Defensive Cyber Battle Damage Assessment through Attack Methodology Modeling. Master’s thesis,
Air Force Institute of Technology, Department of Electrical and Computer Engineering, USA.

Ou, X., Boyer, W. F., McQueen, M. A., Nov. 2006. A scalable approach to attack graph generation. In: Proceedings of the
13th ACM conference on Computer and Communications Security (CCS’06). Alexandria, Virginia, USA, pp. 336-345.
Ou, X., Govindavajhala, S., Appel, A. W., 2005. MulVAL: A logic-based network security analyzer. In: 14th USENIX
Security Symposium. pp. 113-128.

Park, G.-Y., Lee, C. K., Choi, J. G., Choi, D. H., Lee, Y. J., Kwon, K.-C., Oct. 2008. Cyber Security Analysis by Attack
Trees for a Reactor Protection System. In: Proceedings of the Korean Nuclear Society (KNS) Fall Meeting. Pyeong
Chang, Korea.

Patel, S. C., Graham, J. H., Ralston, P. A. S., Dec. 2008. Quantitatively assessing the vulnerability of critical information
systems: A new method for evaluating security enhancements. International Journal of Information Management 28 (6),
483-491.

Patrick Schweitzer, 2013. Attack—Defense Trees. Ph.D. thesis, University of Luxembourg.

Pearl, J., 1986. Fusion, propagation, and structuring in belief networks. Artificial Intelligence 29 (3), 241-288.

URL http://wuw.sciencedirect.com/science/article/pii/000437028690072X

Pearl, J., 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann.
Peine, H., Jawurek, M., Mandel, S., 2008. Security Goal Indicator Trees: A Model of Software Features that Supports
Efficient Security Inspection. In: HASE ’08: Proceedings of the 2008 11th IEEE High Assurance Systems Engineering
Symposium. IEEE Computer Society, Washington, DC, USA, pp. 9-18.

Péter Karpati and Guttorm Sindre and Andreas L. Opdahl, 2010. Towards a Hacker Attack Representation Method. In:
Proceedings of the 5th ICSOFT Conference. pp. 92-101.

Phillips, C., Swiler, L. P., Sep. 1998. A graph-based system for network-vulnerability analysis. In: Proceedings of the
1998 Workshop on New Security Paradigms (NSPW’98). Charlottesville, Virginia, USA, pp. 71-79.

Piétre-Cambacédeés, L., 2010. Des relations entre siireté et sécurité. Ph.D. thesis, Télécom ParisTech.
Piétre-Cambacédés, L., Bouissou, M., Jun. 2009. The promising potential of the BDMP formalism for security modeling.
In: Proceedings of the 39th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2009), Supplemental Volume. Estoril, Portugal, fast Abstract track.

Piétre-Cambacédeés, L., Bouissou, M., 2010. Attack and Defense Modeling with BDMP. In: Kotenko, I., Skormin, V.
(Eds.), Computer Network Security. Vol. 6258 of LNCS. Springer, pp. 86-101.

URL http://wuw.springerlink.com/content/47gl0v2158m85340/

Piétre-Cambacédeés, L., Bouissou, M., Apr. 2010. Beyond attack trees: dynamic security modeling with Boolean logic
Driven Markov Processes (BDMP). In: Proceedings of the 8th European Dependable Computing Conference (EDCC-8).
Valencia, Spain, pp. 199-208.

Pi¢tre-Cambacédeés, L., Bouissou, M., Oct. 2010. Modeling safety and security interdepedencies with BDMP (Boolean
logic Driven Markov Processes). In: IEEE International Conference on Systems, Man, and Cybernetics (SMC 2010).
Istanbul, Turkey, pp. 2852-2861.

Piétre-Cambacédeés, L., Deflesselle, Y., Bouissou, M., May 2011. Security modeling with BDMP: from theory to imple-
mentation. In: 6th IEEE International Conference on Network and Information Systems Security (SAR-SSI 2011). La
Rochelle, France, pp. 1-8.

Pinto, J. A., 1994. Temporal reasoning in the situation calculus. Ph.D. thesis, University of Toronto, Ontario, Canada,
AAINNO92616.

Poolsapassit, N., Ray, I., 2007. Investigating Computer Attacks Using Attack Trees. In: Craiger, P., Shenoi, S. (Eds.),
Advances in Digital Forensics III. Vol. 242 of IFIP International Federation for Information Processing. Springer Boston,
pp. 331-343.

URL http://dx.doi.org/10.1007/978-0-387-73742-3_23

Poolsappasit, N., Dewri, R., Ray, 1., Jan-Feb 2012. Dynamic Security Risk Management Using Bayesian Attack Graphs.
IEEE Transactions on Dependable and Secure Computing 9 (1), 61-74.

Posea, S., Aug. 2012. Renewal Periods for Cryptographic Keys. Master’s thesis, Eindhoven University of Technology,
Department of Mathematics and Computer Science, Eindhoven, The Netherlands.

Pouly, M., Kohlas, J., 2011. Generic Inference: A Unifying Theory for Automated Reasoning. John Wiley & Sons, Inc.
Pudar, S., Manimaran, G., Liu, C.-C., May 2010. PENET": a practical method and tool for integrated modeling of security
attacks and countermeasures. Computers & Security 28 (8), 754-771.

Pulungan, R., Hermanns, H., 2013. APHzip. http://depend.cs.uni-saarland.de/tools/aphzip/.

Pumfrey, D., Sep. 1999. The Principled Design of Computer System Safety Analyses. Ph.D. thesis, Department of
Computer Science, University of York, York, UK.

URL http://www.cs.york.ac.uk/~djp/publications/Thesis16.pdf

Qin, X., Lee, W., Dec. 2004. Attack plan recognition and prediction using causal networks. In: 20th Annual Computer
Security Applications Conference. pp. 370-379.

Ray, 1., Poolsapassit, N., 2005. Using Attack Trees to Identify Malicious Attacks from Authorized Insiders. In: di Vimer-

46

http://www.sciencedirect.com/science/article/pii/000437028690072X
http://www.springerlink.com/content/47gl0v2158m85340/
http://dx.doi.org/10.1007/978-0-387-73742-3_23
http://depend.cs.uni-saarland.de/tools/aphzip/
http://www.cs.york.ac.uk/~djp/publications/Thesis16.pdf

[242]

[243]

[244]

[245]

[246]

[247]

[248]
[249]
[250]

[251]
[252]
[253]
[254]
[255]
[256]

[257]

[258]
[259]

[260]

[261]

[262]

[263]

[264]
[265]

[266]

[267]

[268]

cati, S., Syverson, P., Gollmann, D. (Eds.), ESORICS’2005. Vol. 3679 of LNCS. Springer Berlin / Heidelberg, pp. 231-246.
URL http://dx.doi.org/10.1007/11555827_14

Reddy, K., Venter, H. S., Olivier, M., Currie, 1., Oct. 2008. Towards Privacy Taxonomy-Based Attack Tree Analysis for
the Protection of Consumer Information Privacy. In: Proceedings of the 6th Annual Conference on Privacy, Security and
Trust (PST ’08). New Brunswick, Canada, pp. 56—64.

Reinhardt, A., Seither, D., Konig, A., Steinmetz, R., Hollick, M., 2012. Protecting IEEE 802.11s Wireless Mesh Networks
Against Insider Attacks. In: LCN. IEEE, pp. 224-227.

Rgstad, L., Jun. 2006. An extended misuse case notation: Including vulnerabilities and the insider threat. In: Proceedings
of the 12th International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ
2006). Luxembourg, Grand-Duchy of Luxembourg, pp. 33-43.

Roy, A., 2010. Attack Countermeasure Trees: A Non-state-space Approach Towards Analyzing Security and Finding
Optimal Countermeasure Sets. Master’s thesis, Duke University, Department of Electrical and Computer Engineering,
USA.

Roy, A., Kim, D. S., Trivedi, K. S., Mar. 2010. ACT: Attack Countermeasure Trees for Information Assurance Analysis.
In: Proceedings of INFOCOM IEEE Conference on Computer Communications Workshops. San Diego, CA, USA, pp.
1-2.

Roy, A., Kim, D. S., Trivedi, K. S., 2010. Cyber security analysis using attack countermeasure trees. In: Proceedings of
the Sixth Annual Workshop on Cyber Security and Information Intelligence Research. CSIIRW ’10. ACM, New York,
NY, USA, pp. 28:1-28:4.

URL http://doi.acm.org.proxy.bnl.lu/10.1145/1852666.1852698

Roy, A., Kim, D. S., Trivedi, K. S., 2012. Attack Countermeasure Trees (ACT): towards unifying the constructs of attack
and defense trees. Security and Communication Networks 5 (8), 929-943.

Roy, A., Kim, D. S., Trivedi, K. S., 2012. Scalable optimal countermeasure selection using implicit enumeration on attack
countermeasure trees. In: Swarz, R. S., Koopman, P., Cukier, M. (Eds.), DSN. IEEE Computer Society, pp. 1-12.

Ruiz, G., Heymann, E., César, E., Miller, B. P., Sep. 2012. Automating Threat Modeling through the Software Develop-
ment Life-Cycle.

Saini, V., Duan, Q., Paruchuri, V., 2008. Threat Modeling Using Attack Trees. Journal of Computing Small Colleges
23 (4), 124-131.

URL http://portal.acm.org/citation.cfm?id=1352100

Salter, C., Saydjari, O. S., Schneier, B., Wallner, J., Sep. 1998. Toward a secure system engineering methodology. In:
Proceedings of the 1998 Workshop on New Security Paradigms (NSPW ’98). Charlottesville, Virginia, United States, pp.
2-10.

Samarji, L., Cuppens, F., Cuppens-Boulahia, N., Kanoun, W., Dubus, S., 2013. Situation Calculus and Graph Based
Defensive Modeling of Simultaneous Attacks. In: Wang, G., Ray, 1., Feng, D., Rajarajan, M. (Eds.), CSS. Vol. 8300 of
LNCS. Springer, pp. 132-150.

Sameer, K. C., 2011. Attack Generation From System Models. Master’s thesis, Technical University of Denmark, Denmark.
Sanford, M., Woodraska, D., Xu, D., 2011. Security Analysis of FileZilla Server Using Threat Models. In: SEKE. Knowl-
edge Systems Institute Graduate School, pp. 678—682.

Schechter, S. E., May 2004. Computer Security Strength and Risk - A Quantitative Approach. Ph.D. thesis, Harvard
University, Cambridge, Massachusetts.

Schneier, B., 1999. Attack Trees: Modeling Security Threats. Dr. Dobb’s Journal of Software Tools 24 (12), 21-29.
URL http://wuw.ddj.com/security/184414879

Schneier, B., 2004. Secrets & Lies: Digital Security in a Networked World. Wiley, Indianapolis, Ind.

Scutari, M., Jul. 2010. Learning Bayesian Networks with the bnlearn R Package. Journal of Statistical Software 35 (3),
1-22.

SESAMO, 2012-2015. Security and Safety Modelling, ARTEMIS JU Project N. 295354.

URL http://sesamo-project.eu/

Shahmehri, N., Mammar, A., de Oca, E. M., Byers, D., Cavalli, A., Ardi, S., Jimenez, W., 2012. An advanced approach
for modeling and detecting software vulnerabilities. Information and Software Technology 54 (9), 997-1013.

URL http://wuw.sciencedirect.com/science/article/pii/S0950584912000535

Sheyner, O., 2004. Scenario Graphs and Attack Graphs. Ph.D. thesis, Carnegie Mellon University (CMU), Pittsburgh,
PA.

Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J. M., May 2002. Automated generation and analysis of attack
graphs. In: Proceedings of the IEEE Symposium on Security and Privacy (S&P’02). Oakland, California, USA, pp.
273-284.

SHIELDS, 2008-2010. GOAT. https://www.ida.liu.se/divisions/adit/security/goat/.

SHIELDS, 2008-2010. SHIELDS: Detecting known security vulnerabilities from within design and development tools,
FP7 project, grant agreement 215995.

URL http://wuw.shields-project.eu/

SHIELDS, 2010. Final SHIELDS approach guide - Deliverable D1.4.

URL http://www.shields-project.eu/files/docs/D1.4%20Final’20SHIELDSY,20Approach’%20Guide . pdf

Sindre, G., Jun. 2007. Mal-Activity Diagrams for Capturing Attacks on Business Processes. In: Proceedings of the 13th
International Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2007), LNCS
4542, Trondheim, Norway, pp. 355-366.

Sindre, G., Opdahl, A. L., Nov. 2000. Eliciting Security Requirements by Misuse Cases. In: Proceedings of 37th In-

47

http://dx.doi.org/10.1007/11555827_14
http://doi.acm.org.proxy.bnl.lu/10.1145/1852666.1852698
http://portal.acm.org/citation.cfm?id=1352100
http://www.ddj.com/security/184414879
http://sesamo-project.eu/
http://www.sciencedirect.com/science/article/pii/S0950584912000535
https://www.ida.liu.se/divisions/adit/security/goat/
http://www.shields-project.eu/
http://www.shields-project.eu/files/docs/D1.4%20Final%20SHIELDS%20Approach%20Guide.pdf

[269]

[270]

[271]

[272]
[273]

[274]

[275]

[276]
[277]

[278]

[279]
[280]

[281]

[282]
[283]

[284]

[285]
[286]
[287]

(288
289)]
[290]
[201]

[292]

[293]

ternational Conference on Technology of Object-Oriented Languages and Systems (TOOLS-PACIFIC 2000). Sydney,
Australia, pp. 120-131.

Sindre, G., Opdahl, A. L., Jun. 2001. Templates for misuse case description. In: Proceedings of the 7th International Work-
ing Conference on Requirements Engineering: Foundation for Software Quality (REFSQ 2001). Interlaken, Switzerland,
pp. 125-136.

Sindre, G., Opdahl, A. L., 2005. Eliciting security requirements with misuse cases. Journal of Requirements Engineering
10, 3444, 10.1007/s00766-004-0194-4.

URL http://dx.doi.org/10.1007/s00766-004-0194-4

Sindre, G., Opdahl, A. L., Brevik, G. F., Oct. 2002. Generalization/specialization as a structuring mechanism for misuse
cases. In: Proceedings of the 2nd Symposium on Requirements Engineering for Information Security (SREIS’02). Raleigh,
NC, USA.

Sommestad, T., 2012. A framework and theory for cyber security assessments. Ph.D. thesis, Industrial Information and
Control Systems, QC 20121018.

Sommestad, T., Ekstedt, M., Holm, H., 2013. The Cyber Security Modeling Language: A Tool for Assessing the Vulner-
ability of Enterprise System Architectures. IEEE Systems Journal 7 (3), 363-373.

Sommestad, T., Ekstedt, M., Johnson, P., Sep. 2008. Combining defense graphs and enterprise architecture models for
security analysis. In: Proceedings of the 12th IEEE International Conference on Enterprise Distributed Object Computing
(EDOC’08). Miinchen, Germany, pp. 349-355.

Sommestad, T., Ekstedt, M., Johnson, P., Jan. 2009. Cyber Security Risks Assessment with Bayesian Defense Graphs
and Architectural Models. In: Proceedings of the 42nd Annual Hawaii International Conference on System Sciences
(HICSS-42). Hawaii, USA, pp. 1-10.

Sommestad, T., Ekstedt, M., Johnson, P., 2010. A Probabilistic Relational Model for Security Risk Analysis. Computers
& Security 29 (6), 659-679.

Sommestad, T., Ekstedt, M., Nordstrom, L., Oct. 2009. Modeling security of power communication systems using defense
graphs and influence diagrams. IEEE Transactions on Power Delivery 24 (4), 1801-1808.

Stamatelatos, M., Vesely, W., Dugan, J., Fragola, J., Minarick III, J., Railsback, J., Aug. 2002. Fault Tree
Handbook with Aerospace Applications. U.S. National Aeronautics and Space Administration (NASA) Handbook:
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf, version 1.1.

Steffan, J., Schumacher, M., Mar. 2002. Collaborative attack modeling. In: Proceedings of the 2002 ACM Symposium on
Applied Computing (SAC’02). Madrid, Spain, pp. 253-259.

Stéphane Paul, 2014. Towards Automating the Construction & Maintenance of Attack Trees: a Feasibility Study. In:
Kordy, B., Mauw, S., Pieters, W. (Eds.), GraMSec. Vol. 148 of EPTCS. pp. 31-46.

Suleiman, H., Svetinovic, D., 2012. Evaluating the effectiveness of the security quality requirements engineering
(SQUARE) method: a case study using smart grid advanced metering infrastructure. Requirements Engineering , 1-
29, 10.1007/s00766-012-0153-4.

URL http://dx.doi.org/10.1007/s00766-012-01563-4

Swiderski, F., Snyder, W., 2004. Threat modeling. Microsoft Press, Redmond.

URL http://books.google.lu/books?id=xawLAAAACAAJ

Swiler, L. P., Phillips, C., Ellis, D., Chakerian, S., 2001. Computer-attack graph generation tool. DARPA Information
Survivability Conference and Exposition II (DISCEX’01) 2, 307-321.

Tanu, E., Arreymbi, J., 2010. An examination of the security implications of the supervisory control and data acquisition
(SCADA) system in a mobile networked environment: An augmented vulnerability tree approach. In: Proceedings of
Advances in Computing and Technology, (AC&T) The School of Computing and Technology 5th Annual Conference.
University of East London, School of Computing, Information Technology and Engineering, pp. 228-242.

URL http://hdl.handle.net/10552/994

Ten, C.-W., Liu, C.-C., Manimaran, G., Jun. 2007. Vulnerability Assessment of Cybersecurity for SCADA Systems Using
Attack Trees. In: Proceedings of the IEEE Power Engineering Society General Meeting. Tampa, USA, pp. 1-8.

Ten, C.-W., Manimaran, G., Liu, C.-C., Jul. 2010. Cybersecurity for Critical Infrastructures: Attack and Defense Mod-
eling. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 40 (4), 853-865.

Tidwell, T., Larson, R., Fitch, K., Hale, J., Jun. 2001. Modeling Internet Attacks. In: Proceedings of the 2nd IEEE
Systems, Man and Cybernetics Information Assurance Workshop (IAW ’01). West Point, USA, pp. 54-59.

Tgndel, I. A., Jensen, J., Rgstad, L., 2010. Combining Misuse Cases with Attack Trees and Security Activity Models. In:
International Conference on Availability, Reliability and Security. IEEE Computer Society, Los Alamitos, CA, USA, pp.
438-445.

TREsPASS, 2012-2016. Technology-supported Risk Estimation by Predictive Assessment of Socio-technical Security,
FPT7 project, grant agreement 318003.

URL http://wuw.trespass-project.eu/

Trivedi, K. S., Sahner, R., Mar. 2009. SHARPE at the age of twenty two. SIGMETRICS Perform. Eval. Rev. 36 (4),
52-57.

URL http://doi.acm.org/10.1145/1530873.1530884

U.S. Department of Defense (DoD), Jun. 1988. Standard Practice For System Safety. MIL-STD-882D.

U.S. Nuclear Regulatory Commission (NRC), Jan. 2010. Cyber Security Programs For Nuclear Facilities. Regulatory
Guide 5.71.

van Lamsweerde, A., May 2004. Elaborating security requirements by construction of intentional anti-models. In: 26th
International Conference on Software Engineering (ICSE’04). pp. 148-157.

48

http://dx.doi.org/10.1007/s00766-004-0194-4
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://dx.doi.org/10.1007/s00766-012-0153-4
http://books.google.lu/books?id=xawLAAAACAAJ
http://hdl.handle.net/10552/994
http://www.trespass-project.eu/
http://doi.acm.org/10.1145/1530873.1530884

[204]

[295]
[296]
[297]
[298]
[299]
[300]
[301]
[302]
[303]

[304]

[305]

[306]

[307]

[308]

[309]

[310]

[311]
[312]
[313]

[314]

[315]

[316]

(317

(318

van Lamsweerde, A., Brohez, S., Landtsheer, R. D., Janssens, D., 2003. From System Goals to Intruder Anti-Goals:
Attack Generation and Resolution for Security Requirements Engineering. In: Proceedings of RHAS’03. pp. 49-56.

van Lamsweerde, A., Letier, E., Oct. 2000. Handling Obstacles in Goal-Oriented Requirements Engineering. IEEE Trans.
Softw. Eng. 26, 978-1005.

URL http://dl.acm.org/citation.cfm?id=357525.357521

Vesely, W. E., Goldberg, F. F., Roberts, N. H., Haasl, D. F., 1981. Fault Tree Handbook. Tech. Rep. NUREG-0492, U.S.
Regulatory Commission.

URL http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf

Vidalis, S., Jones, A., 2003. Using vulnerability trees for decision making in threat assessment. Tech. Rep. CS-03-02,
School of Computing, University of Glamorgan, Pontypridd, Wales, UK.

Vigo, R., Nielson, F., Nielson., H. R., 2014. Automated Generation of Attack Trees. In: CSF’14. IEEE, (to appear).
VIKING, 2008-2011. FP7 project, grant agreement 225643.

URL http://wuw.vikingproject.eu

VISPER, 2007-2011. VISPER: The VIrtual Security PERimeter for digital, physical, and organisational security, project
funded by the Sentinels programme.

URL http://wuw.sentinels.nl/en/content/visper

Wang, H., Liu, S., Zhang, X., 2006. An improved model of attack probability prediction system. Wuhan University
Journal of Natural Sciences 11, 1498-1502.

URL http://dx.doi.org/10.1007/BF02831806

Wang, J., Phan, R. C.-W., Whitley, J. N., Parish, D. J., Jun. 2010. Augmented Attack Tree Modeling of Distributed
Denial of Services and Tree Based Attack Detection Method. In: Proceedings of the 10th IEEE International Conference
on Computer and Information Technology (CIT 2010). Bradford, UK, pp. 1009-1014.

Wang, J., Phan, R. C.-W., Whitley, J. N., Parish, D. J., Apr. 2010. Augmented attack tree modeling of SQL injection
attacks. In: Proceedings of the 2nd IEEE International Conference on Information Management and Engineering (ICIME).
Chengdu, China, pp. 182-186.

Wang, J., Phan, R. C.-W., Whitley, J. N., Parish, D. J., London, UK 2010. Quality of detectability (QoD) and QoD-aware
AAT-based attack detection. In: Proceedings of the 2010 International Conference for Internet Technology and Secured
Transactions (ICITST). Nov., pp. 1-6.

Wang, J., Whitley, J. N., Phan, R. C.-W., Parish, D. J., 2011. Unified Parametrizable Attack Tree. International Journal
for Information Security Research 1 (1), 20-26.

Wang, L., Islam, T., Long, T., Singhal, A., Jajodia, S., Jul. 2008. An Attack Graph-Based Probabilistic Security Metric.
In: Proceeedings of the 22nd Annual IFIP WG 11.3 Working Conference on Data and Applications Security (DAS’2008),
LNCS 5094. London, UK, pp. 283-296.

Wang, L., Noel, S., Jajodia, S., Nov. 2006. Minimum-cost network hardening using attack graphs. Comput. Commun.
29 (18), 3812-3824.

URL http://dx.doi.org/10.1016/j.comcom.2006.06.018

Wang, L., Singhal, A., Jajodia, S., 2007. Measuring the Overall Security of Network Configurations Using Attack Graphs.
In: Barker, S., Ahn, G.-J. (Eds.), Data and Applications Security XXI. Vol. 4602 of LNCS. Springer Berlin / Heidelberg,
pp. 98-112, 10.1007/978-3-540-73538-0_9.

URL http://dx.doi.org/10.1007/978-3-540-73538-0_9

Wang, L., Singhal, A., Jajodia, S., 2007. Toward measuring network security using attack graphs. In: Proceedings of the
2007 ACM workshop on Quality of protection. QoP ’07. ACM, New York, NY, USA, pp. 49-54.

URL http://doi.acm.org/10.1145/1314257.1314273

Wang, L., Yao, C., Singhal, A., Jajodia, S., 2006. Interactive Analysis of Attack Graphs Using Relational Queries. In:
Damiani, E., Liu, P. (Eds.), Data and Applications Security XX. Vol. 4127 of LNCS. Springer Berlin Heidelberg, pp.
119-132.

URL http://dx.doi.org/10.1007/11805588_9

Warren, M., Leitch, S., Rosewall, 1., 2011. Attack vectors against social networking systems : the Facebook example . In:
Proceedings of The 9th Australian Information Security Management Conference. SECAU - Security Research Centre.
URL http://hdl.handle.net/10536/DR0O/DU: 30041837

Watson, H. A., 1961. Launch Control Safety Study. Vol. 1. Bell Labs, Murray Hill, NJ.

Weiss, J. D., 1991. A system security engineering process. In: 14th Annual NCSC/NIST National Computer Security
Conference. pp. 572-581.

Wen-ping, L., Wei-min, L., Nov. 2011. Space Based Information System Security Risk Evaluation Based on Improved
Attack Trees. In: Third International Conference on Multimedia Information Networking and Security (MINES’11). pp.
480-483.

Whitley, J. N., Phan, R. C.-W., Wang, J., Parish, D. J., 2011. Attribution of attack trees. Computers & Electrical
Engineering 37 (4), 624-628.

Willemson, J., Jiirgenson, A., 2010. Serial Model for Attack Tree Computations. In: Lee, D., Hong, S. (Eds.), ICISC. Vol.
5984 of LNCS. Springer, pp. 118-128.

URL http://research.cyber.ee/~jan/publ/serialattack.pdf

Williams, L., Lippmann, R., Ingols, K. W., Oct. 2007. An interactive attack graph cascade and reachability display.
In: Proceedings of the 2007 Workshop on Visualization for Computer Security (VizSEC’07). Sacramento, CA, USA, pp.
221-236.

Wu, Y.-S., Foo, B., Mao, Y.-C., Bagchi, S., Spafford, E., 2005. Automated Aaptive Intrusion Containment in Systems

49

http://dl.acm.org/citation.cfm?id=357525.357521
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.vikingproject.eu
http://www.sentinels.nl/en/content/visper
http://dx.doi.org/10.1007/BF02831806
http://dx.doi.org/10.1016/j.comcom.2006.06.018
10.1007/978-3-540-73538-0_9
http://dx.doi.org/10.1007/978-3-540-73538-0_9
http://doi.acm.org/10.1145/1314257.1314273
http://dx.doi.org/10.1007/11805588_9
http://hdl.handle.net/10536/DRO/DU:30041837
http://research.cyber.ee/~jan/publ/serialattack.pdf

of Interacting Services. Tech. Rep. Paper 68, Purdue University, School of Electrical and Computer Engineering, West
Lafayette, IN 47907-2035.

[319] Wu, Y.-S., Foo, B., Matheny, B., Olsen, T., Bagchi, S., Dec. 2003. ADEPTS: Adaptive Intrusion Containment and
Response using Attack Graphs in an E-commerce Environment. Tech. rep., Purdue University, School of Electrical and
Computer Engineering.

URL http://wuw.ece.purdue.edu/ sbagchi/Research/Papers/adepts_dsn04_submit.pdf

[320] Wu, Y.-S., Foo, B., Mei, Y., Bagchi, S., 2003. Collaborative Intrusion Detection System (CIDS): A Framework for
Accurate and Efficient IDS. In: ACSAC. IEEE Computer Society, pp. 234-244.

[321] Xie, P., Li, J. H., Ou, X., Liu, P., Levy, R., 28 2010-july 1 2010. Using Bayesian networks for cyber security analysis. In:
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN’10). pp. 211-220.

[322] xine project, T., 2002-2012. xine multimedia engine.

URL http://wuw.xine-project.org/home

[323] Xu, D., Nygard, K. E., 2006. Threat-driven modeling and verification of secure software using aspect-oriented Petri nets.
IEEE Transactions on Software Engineering 32 (4), 265-278.

[324] Yager, R. R., 2006. OWA trees and their role in security modeling using attack trees. Inf. Sci. 176 (20), 2933-2959.

[325] Zakrzewska, A. N., Ferragut, E. M., april 2011. Modeling cyber conflicts using an extended Petri Net formalism. In:
Computational Intelligence in Cyber Security (CICS), 2011 IEEE Symposium on. pp. 60-67.

[326] Zhao, C., Yu, Z., 2012. Quantitative Analysis of Survivability Based on Intrusion Scenarios. In: Jin, D., Lin, S. (Eds.),
Advances in Electronic Engineering, Communication and Management Vol.2. Vol. 140 of LNEE. Springer Berlin Heidel-
berg, pp. 701-705, 10.1007/978-3-642-27296-7_105.

URL http://dx.doi.org/10.1007/978-3-642-27296-7_105

[327] Zonouz, S. A., 2011. Game-theoretic Intrusion Response and Recovery. Ph.D. thesis, University of Illinois at Urbana-
Champaign, USA, available at https://www.ideals.illinois.edu/bitstream/handle/2142/29667/AliariZonouz_Saman.pdf?sequence=1.

[328] Zonouz, S. A., Khurana, H., Sanders, W. H., Yardley, T. M., July 2009. RRE: A game-theoretic intrusion Response and
Recovery Engine. In: IEEE/IFIP International Conference on Dependable Systems Networks (DSN’09). pp. 439-448.

[329] Zonouz, S. A., Sharma, A., Ramasamy, H. V., Kalbarczyk, Z. T., Pfitzmann, B., McAuliffe, K., Iyer, R. K., Sanders, W. H.,
Cope, E., Jun. 2011. Managing business health in the presence of malicious attacks. In: IEEE/IFIP 41st International
Conference on Dependable Systems and Networks Workshops (DSN-W’11). pp. 9-14.

50

http://www.ece.purdue.edu/~sbagchi/Research/Papers/adepts_dsn04_submit.pdf
http://www.xine-project.org/home
10.1007/978-3-642-27296-7_105
http://dx.doi.org/10.1007/978-3-642-27296-7_105
https://www.ideals.illinois.edu/bitstream/handle/2142/29667/AliariZonouz_Saman.pdf?sequence=1

	Introduction
	Preliminaries
	Keywords and Terminology
	Examined Aspects
	Template of the Formalism Descriptions

	Description of the Formalisms
	Static Modeling of Attacks
	Attack Trees
	Augmented Vulnerability Trees
	Augmented Attack Trees
	OWA Trees
	Parallel Model for Multi-Parameter Attack Trees
	Extended Fault Trees

	Sequential Modeling of Attacks
	Cryptographic DAGs
	Fault Trees for Security
	Bayesian Networks for Security
	Bayesian Attack Graphs
	Compromise Graphs
	Enhanced Attack Trees
	Vulnerability Cause Graphs
	Dynamic Fault Trees for Security
	Serial Model for Multi-Parameter Attack Trees
	Improved Attack Trees
	Time-Dependent Attack Trees

	Static Modeling of Attacks and Defenses
	Anti-Models
	Defense Trees
	Protection Trees
	Security Activity Graphs
	Attack Countermeasure Trees
	Attack–Defense Trees
	Countermeasure Graphs

	Sequential Modeling of Attacks and Defenses
	Insecurity Flows
	Intrusion DAGs
	Bayesian Defense Graphs
	Security Goal Indicator Trees
	Attack-Response Trees
	Boolean Logic Driven Markov Process
	Cyber Security Modeling Language
	Security Goal Models
	Unified Parameterizable Attack Trees

	Summary of the Surveyed Formalisms
	Alternative Methodologies
	Petri Nets for Security
	Attack Graphs
	Approaches Derived from UML Diagrams
	Isolated Models

	Conclusion
	Acknowledgments

