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ABSTRACT
Model extraction attacks aim to duplicate a machine learning model
through query access to a target model. Early studies mainly focus
on discriminative models. Despite the success, model extraction
attacks against generative models are less well explored. In this
paper, we systematically study the feasibility of model extraction
attacks against generative adversarial networks (GANs). Specif-
ically, we first define fidelity and accuracy on model extraction
attacks against GANs. Then we study model extraction attacks
against GANs from the perspective of fidelity extraction and accu-
racy extraction, according to the adversary’s goals and background
knowledge. We further conduct a case study where the adversary
can transfer knowledge of the extracted model which steals a state-
of-the-art GAN trained with more than 3 million images to new
domains to broaden the scope of applications of model extraction at-
tacks. Finally, we propose effective defense techniques to safeguard
GANs, considering a trade-off between the utility and security of
GAN models.
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1 INTRODUCTION
Over the past few years, machine learning, deep learning in par-
ticular, has gained significant advances in a variety of areas, such
as computer vision [6, 32, 33, 63] and natural language processing
(NLP) [15, 35]. In general, machine learning models are often con-
sidered as the intellectual property of model owners and are closely
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safeguarded. The reasons are from at least two aspects. First, obtain-
ing a practical deep learning model is non-trivial. This is because
training a model requires a large number of training data, intensive
computing resources and human resources [7, 15, 33, 55, 63, 71].
Second, deep learning models themselves are confidential, and ex-
posure of deep learning models to potential adversaries poses a
threat to security and privacy [42, 43, 51, 56, 60, 64]. However,
model extraction attack — a novel attack surface targeting at du-
plicating a model only through query access to a target model, has
recently emerged and gained significant attention from the research
community.

In the early study, Tramèr et al. [64] first attempt model extrac-
tion on traditional machine learning models and shallow neural
networks, such as logistic regression, decision tree, support vector
machine and multilayer perceptrons. Since then, Jagielski et al. [27]
further mount the attack against a million of parameters model
trained on billions of Instagram images [44], which makes model
extraction attack more practical. In addition to model extraction
on deep convolutional neural networks about image classification,
there are some works studying the problem of model extraction in
NLP tasks [34, 61]. For instance, with the assumption that victim
models are trained based on the pretrained BERT model, Krishna
et al. [34] show that an adversary can effectively extract language
models whose performance is only slightly worse than that of the
victim models. However, to the best of our knowledge, these model
extraction attacks mainly focus on discriminative models. The at-
tack against generative models, GANs in particular, is still an open
question.

Comparing to model extraction attacks on discriminative mod-
els, we observe that there exist some differences for generative
models. First, adversaries can leverage output information from tar-
get models such as labels, probabilities and logits, to mount model
extraction attacks on discriminative models [27, 42, 49, 64], while
generative models do not provide such information but only return
images. Second, model extraction attacks on discriminative models
are evaluated on a test dataset. In contrast, unsupervised generative
models aiming to learn the distribution of training data are evalu-
ated by quantitative measures such as Fréchet Inception Distance
(FID) [23] and multi-scale structural similarity (MS-SSIM) [48], or
qualitative measures such as preference judgment [26, 72]. There-
fore, these differences indicate that model extraction strategies,
evaluations and defenses on generative models are very different
from these on discriminative models.

In this paper, we aim to systematically study the feasibility of
model extraction attacks against GANs from the perspective of
fidelity extraction and accuracy extraction. First, we define fidelity
and accuracy of model extraction on GANs. More specifically, when
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an adversary mounts model extraction attacks against GANs, fi-
delity measures the difference of data distribution between the
attack model and the target model, while accuracy ensures the dis-
tribution of the attack model is consistent with the distribution of
the training set of the target model. In the next step, according to
the adversary’s goals and the background information that they can
have access to (see Figure 2), we systematically study two different
types of attacks on GANs: fidelity extraction attack and accuracy
extraction attack, which are shown in Figure 1.
Fidelity Extraction Attack.Adversaries mounting fidelity extrac-
tion focus on fidelity and they aim to steal the distribution of a target
model. For this attack, we assume adversaries have no knowledge of
the architecture of target models, and they either obtain a batch of
generated data that the model owner has publicly released or query
the target model to obtain generated data. It can be considered as a
black-box fidelity extraction. After obtaining the generated data,
adversaries can train a copy of the target GANmodel. We study two
different target models: Progressive GAN (PGGAN) [31] and Spec-
tral Normalization GAN (SNGAN) [47]. Extensive experimental
evaluations show that fidelity extraction can achieve an excellent
performance with only about 50K queries (i.e., 50K generated sam-
ples). When we continue to increase the number of queries, we
find that it cannot bring significant improvement of the accuracy
of attack models. This is mainly because the discriminator of a
target GAN model is often better than its corresponding generator
and it is very hard to reach global optimum [3]. In other words,
directly querying the target model enables the attack model to be
more consistent with the target generator rather than the real data
distribution of the target model (see Figure 5 for an example). There-
fore, it motivates us to perform accuracy extraction to improve the
accuracy of attack models.
Accuracy Extraction Attack. Adversaries mounting accuracy ex-
traction concentrate on accuracy and they target at stealing the
distribution of the training set of a target model. In order to achieve
a high accuracy model extraction attack, we propose to utilize sub-
sampling techniques where generated samples far away from the
true distribution are rejected and only samples that are closer to the
true distribution are retained (see Figure 5). To achieve this goal, we
assume that adversaries can obtain more background knowledge.
In particular, we assume adversaries can obtain the discriminator
from the target GAN model and partial real data. We utilize the dis-
criminator to subsample generated samples. These refined samples
are more close to real data distribution, compared to samples are
directly generated by the target model (see Figure 5(e)). Then, we
use these refined samples and partial real data to train our attack
model. Extensive experimental evaluations show that our accuracy
extraction attack indeed brings improvement of the accuracy of
attack models, compared to fidelity extraction attacks (Figure 6).
This indicate that the risks of partially releasing training data can
be further exacerbated under this type of attack.
Case Study.We perform one case study to further demonstrate the
impact of model extraction attacks on a large-scale scenario. In this
case study — model extraction based transfer learning (Section 7),
we show that stealing a state-of-the-art GAN model can enable
adversaries to enhance the performance of their own GAN model
by transfer learning. Specifically, for the target model StyleGAN

trained on the 3 million bedroom images [71], the adversary first
launches fidelity extraction attack, and the attack performance with
4.12 FID on fidelity and 6.97 FID on accuracy can be achieved under
50K queries. Furthermore, the adversary transfers the extracted
knowledge to new domains, and experimental evaluations show
that compared with training from scratch on LSUN-Classroom
dataset with 20.34 FID [31], model extraction based transfer learning
achieves 16.47 FID, which is the state-of-the-art performance on
the LSUN-Classroom dataset.
Defenses. Both fidelity extraction and accuracy extraction attacks
on GANs compromise the intellectual property of model providers.
In particular, accuracy extraction aiming to steal the distribution of
the training set of a target model can further severely breach the
privacy of the training set. Therefore, we propose possible defense
techniques by considering two aspects: fidelity and accuracy (Sec-
tion 8). In terms of fidelity of model extraction, limiting the number
of queries is an effective method. In terms of accuracy of model
extraction, we believe that a high accuracy attack model requires
adversaries to have access to generated data which can be much
closer to real data distribution. The performance of model extrac-
tion attacks will be attenuated if adversaries only obtain a partial
or distorted distribution of generated data. Thus, we propose two
types of perturbation-based defense strategies: input and output
perturbation-based approaches, to reveal less distribution informa-
tion by increasing the similarity of samples or lowering the quality
of samples [2]. The input perturbation-based approaches include
linear and semantic interpolation perturbation while the output
perturbation-based approaches include random noise, adversarial
example noise, filtering and compression perturbation. Extensive
experimental evaluations show that, compared to queries from the
prior distribution of the target model, the equal amount of queries
by perturbation-based defenses can effectively degrade the accuracy
of attack models (Figure 8).
Summary of Contributions. Our contributions in the current
work are threefold:

(1) we conduct the first systematic study of model extraction
attacks against GANs and devise fidelity extraction attacks
and accuracy extraction attacks for GANs;

(2) we preform one case study to illustrate the impact of model
extraction attacks against GANs on a large-scale scenario;

(3) we propose new effective defense measures to mitigate
model extraction attacks against GANs.

Organization. The rest of the paper is organized as following. The
next section 2 reviews related work. Section 3 introduces the pre-
liminary knowledge, and Section 4 taxonomizes the space of model
extraction attacks on GANs. Section 5 and Section 6 introduce the
fidelity extraction and accuracy extraction, respectively. Section 7
presents one case study. In Section 8, we discuss possible defense
mechanisms. Section 9 concludes this paper.

2 RELATEDWORK
Generative Adversarial Networks (GANs). GANs have
achieved impressive performance in a variety of areas, such
as image synthesis [6, 31–33, 39, 47, 53, 57], image-to-image
translation [40, 52, 73], and texture generation [37, 69], since a



Stealing Machine Learning Models: Attacks and Countermeasures for Generative Adversarial Networks ACSAC ’21, December 6–10, 2021, Virtual Event, USA

framework of GAN was first proposed by Goodfellow et al. in
2014 [19]. For image synthesis tasks, the current state-of-the-art
GANs [6, 31, 32, 47] are able to generate highly realistic and
diverse images. For instance, SNGAN [47] generates realistic
images by a spectral normalization method to stabilize the training
process. PGGAN [31] proposed by Karras et al. is the first GAN that
successfully generates real-like face images at a high resolution
of 1024 × 1024, applying a progressive training strategy. Unlike
the PGGAN training in an unsupervised method, BigGAN [6]
proposed by Brock et al. aims to generate high-quality images
from a multi-class dataset by conditional GANs which leverage
information about class labels. Recently, StyleGAN [32] has further
improved the performance of GANs on high-resolution images
through adding neural style transfer [25]. In this paper, we choose
SNGAN and PGGAN as the target models to be attacked by model
extraction, considering their impressive performance on image
generation. StyleGAN is also used as a target model in a case study
in Section 7.

Model ExtractionAttacks.With the availability ofmachine learn-
ing as a service (MLaaS), model extraction attack has received much
attention from the research community [9, 14, 27, 34, 64], which
aims to duplicate (i.e., ‘steal’) a machine learning model. This type
of attack can be categorized into two classes: accuracy model ex-
traction and fidelity model extraction. In terms of accuracy model
extraction, it was first proposed by Tramèr et al. [64], where the ob-
jective of the attack is to gain similar or even better performance on
the test dataset for the extracted model. Since then, various methods
attempting to reduce the number of queries have been developed
for further improving the attack efficiency, such as model extraction
using active learning [12, 50] or semi-supervised learning [27]. In
terms of fidelity model extraction, it requires the attack model to
faithfully reproduce predictions of the target model, including the
errors which occur in the target model. Typical works includemodel
reconstruction from model explanation [45], functionally equiva-
lent extraction [27] and cryptanalytic extraction [9]. In addition to
model extraction attacks on images, there are several work about
model extraction in natural language processing [34, 61]. Krishna et
al. [61] mount model extraction attacks against BERT-based models
and the performance of the extracted model is slightly worse than
that of the target model. Overall, these studies mainly focus on
discriminative models, such as regression and convolutional neural
networks for classification, and recurrent neural networks for nat-
ural language processing. Unlike the existing studies, our work aims
to study model extraction attacks against GANs.

In addition to model extraction attacks, there are other types of
attacks in relation to privacy and security [10, 22, 68, 70], such
as membership inference attacks [13, 20, 56, 59, 60] and prop-
erty inference attacks [18]. Some efforts have been also made to
investigate membership inference attacks against GANs, where
queries to a GAN model can reveal information about the training
dataset [13, 20, 24]. Overall, these studies mainly focus on privacy
on the training dataset, while model extraction attacks in our paper
concentrate on machine learning model itself.

Model Extraction Defenses. Defense for model extraction can be
broadly classified into two categories: restricting the information re-
turned by models [36, 64] and differentiating malicious adversaries

from normal users [30]. Tramèr et al. propose a defense where
the model should only return class labels instead of class proba-
bilities [64]. Recently, a technique PRADA has proposed to guard
machine learningmodels by detecting abnormal query patterns [30].
Watermarking ML models as a passive defense mechanism recently
has been proposed to claim model’s ownership [8, 29, 38]. However,
these defense techniques are used to protect discriminative models
where models return probabilities or labels. In this paper, we focus
on defense approaches safeguarding generative adversarial networks
where models return images.

3 PRELIMINARIES
In this section, we begin with the general structure of GANs. Then,
we proceed with discussing model extraction attacks in a general
machine learning setting. Finally, we describe datasets used in this
paper.

3.1 Generative Adversarial Networks
GAN is a generative model where it adversarially learns the un-
known true distribution 𝑝𝑟 on the training data X. As shown in
Figure 2, a GAN generally consists of two components: a generator
𝐺 and a discriminator 𝐷 . 𝐺 is responsible for generating fake data
𝑥𝑔 = 𝐺 (𝑧), where the latent code 𝑧 is sampled from a prior distribu-
tion 𝑝𝑧 , such as Gaussian distribution or uniform distribution, while
𝐷 takes the role of a binary classifier which differentiates real-like
samples 𝑥𝑔 from real samples 𝑥𝑟 ∈ X as accurately as possible. The
seminal GAN [19] is trained through optimizing the following loss
functions:

𝐿𝐷 = −E𝑥∼𝑝𝑟 [log𝐷 (𝑥)] − E𝑧∼𝑝𝑧 [1 − log𝐷 (𝐺 (𝑧))] (1)

𝐿𝐺 = −E𝑧∼𝑝𝑧 [log𝐷 (𝐺 (𝑧))] (2)
If 𝐷 and𝐺 converge and reach global equilibrium, then 𝑝𝑟 (𝑥) =

𝑝𝑔 (𝑥), where 𝑝𝑔 (𝑥) is the generator’s distribution. For a fixed 𝐺 ,
the optimal discriminator 𝐷∗ can be obtained by:

𝐷∗ (𝑥) = 𝑝𝑟 (𝑥)
𝑝𝑟 (𝑥) + 𝑝𝑔 (𝑥)

(3)

In the course of employment, only 𝐺 is utilized to produce new
synthetic data while 𝐷 is usually discarded.

3.2 Model Extraction Attacks against Machine
Learning Models

A machine learning model is essentially a function 𝑓 that maps
input data X to output data Y: Y = 𝑓 (X). In general, machine
learningmodels can be categorized as two classes [4]: discriminative
models and generative models. For discriminative models on image
classification tasks, the input data corresponds to an image while
the output data can be interpreted as a probability distribution
over categorical labels. A key goal of discriminative models is to find
an optimal set of parameters which minimizes the errors on the test
dataset. For generative models on image generation tasks, the input
data is represented by a latent code and the output data is an image.
A core goal of generative models is to adjust the parameters to learn
a distribution which is similar to the training data distribution 𝑝𝑟 .

A model extraction attack in the machine learning setting
emerges when an adversary aims to obtain a copy model 𝑓 through
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Table 1: Dataset description

Dataset LSUN-Bedroom LSUN-Kitchen CelebA
Size of dataset 3,033,042 2,212,277 202,599

Dataset LSUN-Classroom LSUN-Church
Size of dataset 168,103 126,277

Table 2: Notations

Notation Description

𝑝𝑟 distribution of training set of a GAN
𝑝𝑔 implicit distribution of a target generator
𝑝𝑔 implicit distribution of an attack generator
fidelity FID (𝑝𝑔 , 𝑝𝑔)
accuracy FID (𝑝𝑔 , 𝑝𝑟 )

querying the target model 𝑓 . In general, there are two types of
attacks around model extraction based on adversary’s objective:
accuracy extraction and fidelity extraction [27]. For discriminative
models, accuracy extraction requires the extracted model to match
or exceed the accuracy of the target model on the test dataset, while
fidelity extraction requires the extracted model not only to achieve
the same accuracy as the target model on the test dataset but also to
replicate the errors of the target model. The limit of fidelity extrac-
tion is the functionally-equivalent model extraction [27]. Consider-
ing different goals and evaluations between discriminative models
and generative models, we redefine model extraction on GANs in
Section 4.1.

3.3 Dataset Description
We utilize five different datasets in this paper, which are all widely
adopted in image generation. Among them, four datasets are from
the LSUN dataset [71] which includes 10 scene categories and 20
object categories and we define them as LSUN-Bedroom, LSUN-
Church, LSUN-Classroom, and LSUN-Kitchen, respectively. CelebA
dataset [41] consists of about 200K high-quality human face images.
Datasets including LSUN-Bedroom, LSUN-Classroom, and LSUN-
Kitchen are only used in Section 7 to illustrate the attack effects in
a case study. The details of the datasets are shown in Table 1.

4 TAXONOMY OF MODEL EXTRACTION
AGAINST GANS

In this section, we start with adversary’s goal and formally elab-
orate on our attacks. Next, we illustrate adversary’s background
knowledge where an adversary can mount attacks according to the
obtained information. Finally, we detail the metrics to evaluate the
attack performance.

4.1 Adversary’s Goals
In general, model extraction based on adversary’s goals can be cate-
gorized into either fidelity extraction or accuracy extraction. Unlike
supervised discriminative models aiming at minimizing errors on
a test set, unsupervised generative models target at learning the
distribution of a data set.

Therefore, for model extraction attacks on GANs, fidelity extrac-
tion aims to minimize the difference of data distribution between
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Figure 1: Fidelity extraction and accuracy extraction.

attack models and target models, while accuracy extraction aims to
minimize the distribution between attack models and the training
set of target models.

Specifically, as shown in Figure 1, the goal of fidelity extraction
is to construct a �̃� minimizing 𝑆 (𝑝𝑔, 𝑝𝑔), where 𝑆 is a similarity
function, 𝑝𝑔 is the implicit distribution of the attack generator �̃� ,
and 𝑝𝑔 is the implicit distribution of the target generator 𝐺 . In
contrast, accuracy extraction’s goal is to construct a �̃� minimizing
𝑆 (𝑝𝑔, 𝑝𝑟 ), where 𝑝𝑟 is the distribution of the training set of the target
generator𝐺 . In this work, we use Fréchet Inception Distance (FID)
to evaluate the similarity between two data distributions, mainly
considering its computational efficiency and robustness [23]. It
is elaborated in Section 4.3. In our work, we study the fidelity
extraction in Section 5, and accuracy extraction in Section 6.

4.2 Adversary’s Background Knowledge
Adversaries can mount model extraction attacks at different levels
based on their obtained information about the target GAN. The
more background knowledge adversaries acquire, themore effective
they should be in achieving their goal. In general, four components
of a GAN can be considered by an adversary. As shown in Figure
2, they are respectively: (1) generated data; (2) latent codes used
by interactively querying a generator; (3) partial real data from the
training dataset of the target GAN; (4) a discriminator from the
target GAN.

In the following attack settings, we assume an adversary ob-
tains different levels of background knowledge to achieve accuracy
extraction or fidelity extraction.

real data

discriminator

generated 
data

latent code 
z

Fake
or

Real 

generator

datasetdataset

Figure 2: Adversary’s background knowledge.

4.3 Metrics
Metrics for GANs.We use the widely adopted FID [23] to evaluate
the performance of GANs. FID measures the similarity between
𝑝𝑔 and 𝑝𝑟 . Specifically, on the basis of features extracted by the
pretrained Inception network 𝜙 , it models 𝜙 (𝑝𝑟 ) and 𝜙 (𝑝𝑔) using
Gaussian distribution with mean 𝜇 and covariance Σ, and the value
of FID between real data 𝑝𝑟 and generated data 𝑝𝑔 in convolutional
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features is computed as: FID(𝑝𝑟 , 𝑝𝑔) =
����𝜇𝑟 − 𝜇𝑔 ����2 +𝑇𝑟 (Σ𝑟 + Σ𝑔 −

2(Σ𝑟Σ𝑔)1/2), where 𝑇𝑟 refers to the trace of a matrix in linear al-
gebra. A lower FID indicates that the distribution’s discrepancy
between the generated data and real-world data is smaller and the
generated data is more realistic. In our work, FID is computed with
all real samples and 50K generated samples.
Metrics for Attack Performance. In this work, we use two FID-
based metrics: fidelity and accuracy, to evaluate the attack perfor-
mance. Fidelity measures the consistency between 𝑝𝑔 which is an
implicit distribution of a target generator and 𝑝𝑔 which is an im-
plicit distribution of an attack generator. Note that, fidelity not only
measures how close the attack model and the target model are,
but also indicates how well the performance of model itself is. In
contrast, accuracy measures the consistency of data distribution
between 𝑝𝑟 and 𝑝𝑔 . Similar to FID, the smaller the fidelity and ac-
curacy values are, the better performance attack models achieve.
When it is clear from the context, we refer to accuracy and fidelity
as accuracy value and fidelity value, respectively. The summarized
notations can be seen in Table 2.

Fidelity extraction focuses on fidelity and adversaries aim to steal
the distribution of a target model. After obtaining an attack model
which steals from a target model, they can directly utilize it to gen-
erate new samples. Additionally, they can also transfer knowledge
of the stolen model to their own domains through transfer learn-
ing. In contrast, accuracy extraction concentrates on accuracy and
adversaries target at stealing the distribution of the training set of
a target model. This type of attacks can severely violate the privacy
of the training data and it also means that adversaries may steal
valuable commercial datasets from a trained GAN. Additionally,
adversaries can utilize the stolen high-accuracy model to mount
other novel attacks and we leave it for future work.

5 FIDELITY EXTRACTION
In this section, we instantiate our fidelity extraction attack strat-
egy. we assume that adversaries have access to either generated
samples provided by the model producer or querying the target
model to obtain data (see Figure 2). We start with target models and
attack models. Then, we describe our attack performance. Next, we
study the effect of the number of queries. In the end, we perform
experiments to deeply understand model extraction on GANs.

5.1 Target Models and Attack Models
We choose representative GANs: Progressive GAN (PGGAN) [31]
and Spectral Normalization GAN (SNGAN) [47] as our target mod-
els, which both show pleasing performances in image generation.
The implementation details can be seen in Appendix A.1. For train-
ing sets LSUN-Church and CelebA, we first resize them to 64 × 64
and use all records of each dataset to train our target models. As
shown in Table 3, target GAN models achieve an excellent perfor-
mance on these dataset and the performance of PGGAN is better
than that of SNGAN.

We use GANs as our attack models to extract target models. In
practice, adversaries may not know the target model’s architecture.
Therefore, we study the performance of attack models with dif-
ferent architectures. Specifically, we choose SNGAN and PGGAN
as our attack models. There are four different situations for their

Table 3: Performance of target GANs.

Target model Dataset FID

SNGAN LSUN-Church 12.72
SNGAN CelebA 7.60
PGGAN LSUN-Church 5.88
PGGAN CelebA 3.40

combinations. For simplification, we define each situation as an
attack-target model pair, and they are respectively SNGAN-SNGAN,
SNGAN-PGGAN, PGGAN-SNGAN and PGGAN-PGGAN. The rea-
son why we choose SNGAN and PGGAN as the research object
is that: 1) they both show good performance in image generation;
and 2) they have significant difference in the aspects of training,
loss function and normalization, which all facilitate us to study the
performance of attack models with different architectures.

5.2 Methodology
As shown in Figure 1, for fidelity extraction, we assume that an
adversary obtains the generated data by the model provider or
querying the target GAN. This scenario is practical, because some
model owners need to protect their models through providing the
public with some generated data or a black-box GAN model API. In
this case, the adversary uses the generated data to retrain a GAN to
extract the target model. We do not distinguish whether generated
data is from queries or model providers, because our approach
only relies on these generated data. However, in Appendix A.3, we
also present the attack performance on queries with different prior
distributions.

Note that model extraction on GANs is different from machine
learning on GANs. This is because machine learning on GANs
requires users to train a GAN on real samples which are collected
from the real world. In contrast, model extraction on GANs enables
users to train a GAN on generated data from a target GANmodel. In
essence, model extraction on GANs approximates the target GAN
which is a much simpler deterministic function, compared to real
samples which usually represents a more complicated function.

5.3 Results
5.3.1 Attack Performance on Different Models. Table 4
shows the fidelity extraction’s performance with 50K queries to the
target model. In general, attack models can achieve an excellent
performance1. For instance, our attack performance of PGGAN-
PGGAN on the CelebA achieves 1.02 FID on fidelity, which means
that the attack model can achieve a perfect extraction attack for the
target model. It is noticeable that the the attack model achieves such
performance only on 50K generated images while the target model
is trained on more than 200K images. In Section 7, our case study
further illustrates that even for a GAN model trained on 3 million
samples, our attack still can achieve 4.12 fidelity with only 50K
queries. In other words, adversaries are able to obtain a good GAN
model only by access to the generated data from the target model

1We say model extraction attacks achieve an excellent performance because we choose
the state-of-the-art StyleGAN [32] trained on the LSUN-Bedroom dataset as a reference,
where it has the lowest FID 2.65.
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Table 4: The performance of fidelity extraction with 50K
queries to the target model.

Target model Attack model Dataset Fidelity Accuracy

FID(𝑝𝑔 , 𝑝𝑔) FID (𝑝𝑔 , 𝑝𝑟 )

PGGAN

SNGAN LSUN-Church 6.11 14.05
SNGAN CelebA 4.49 9.29
PGGAN LSUN-Church 1.68 8.28
PGGAN CelebA 1.02 4.93

SNGAN

SNGAN LSUN-Church 8.76 30.04
SNGAN CelebA 5.34 17.32
PGGAN LSUN-Church 2.21 14.56
PGGAN CelebA 1.39 9.57

instead of collecting their own data which is usually labor-intensive
and time-consuming.

For the target model PGGAN, if the attack model is SNGAN, we
observe that the performance of model extraction is very efficient
on both CelebA and LSUN-Church dataset and the attack model
SNGAN can learn more from the target model PGGAN, compared to
the SNGAN-SNGAN case, which indicates that attacking a state-of-
the-art GAN is valuable and viable for an adversary. Furthermore,
this case SNGAN-PGGAN is the most common situation in the
actual attack scenarios, because generally we implicitly assume
that performance of the adversary’s model may often be weaker
than that of the target model and the structure of the attack model
is inconsistent with that of the target model.

We also report accuracy in Table 4 and find that for model ex-
traction on GAN models, the accuracy of attack models is always
higher than that of target model, in which accuracy of attack models
represents similarity between distribution of real dataset 𝑝𝑟 and dis-
tribution of the attack model 𝑝𝑔 and for accuracy of a target model,
also called FID of target model, it represents similarity between dis-
tribution of real dataset 𝑝𝑟 and distribution of the target model 𝑝𝑔 .
For example, when the target model SNGAN has 12.72 FID on the
LSUN-Church dataset, accuracy of the attack model SNGAN will
increase to 30.04. Even for the PGGAN-PGGAN case, its accuracy
increases from 3.40 to 4.93 on the CelebA dataset. This is mainly
because although theoretically, the distribution of the target model
𝑝𝑔 is equal to that of the real training dataset 𝑝𝑟 , it is actually not
equal because GAN cannot achieve the global optimum. However,
we will discuss how to reduce accuracy values and achieve high
accuracy extraction in Section 6.

For the target model SNGAN, if the attack model is PGGAN,
the fidelity of model extraction is lower than that of the attack
model SNGAN. It is mainly because the PGGAN model itself is
stronger and able to more accurately approximate the target model.
Similarly, PGGAN as an attack model has more lower accuracy, in
contrast with SNGAN as an attack model. For instance, compared
to SNGAN-SNGAN with 17.32 of accuracy on CelebA dataset, the
accuracy of PGGAN-SNGAN is only 9.57, which largely improves
the attack performance on accuracy. This indicates that using an
attack model which is larger than the target model is an efficient
approach to improve attack performance.

Overall, fidelity extraction can achieve an excellent performance
in terms of fidelity. In general, adversaries can steal an fidelitymodel,
and then use the extracted model for their own purpose. However,
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Figure 3: Attack performance on the number of queries.

unlike discriminative models where adversaries can directly utilize
their extracted model, the extracted model of a GAN only generates
target model’s images. Therefore, in Section 7, we will perform a
case study where adversaries can effectively leverage the extracted
model to generate images for their own applications rather than
target GANs’ images through transfer learning.

5.3.2 Attack Performance on the Number of Queries. We
choose PGGAN trained on CelebA dataset as the target model
to study the effect of the number of queries due to the best perfor-
mance among our target models. Figure 3 plots the attack perfor-
mance with respect to the number of queries which are also the size
of training dataset of attack models. As expected, we observe that
the attack performance increases with an increase in the number
of queries. This indicates that releasing a small number of data by
the model owner or restricting the number of queries is a relatively
safe measure.

We estimate the monetary cost of the number of queries. Taking
the Google Cloud Vision API2 as an example, the price is $1.50
per 1K queries with the first 1K queries are free for each month.
Thus, the price of the number of queries from 10K to 90K is from
$13.50 to $133.50. Although the attack cost is not high in our attacks,
designing a more powerful attack to reduce the number of queries
is still an interesting research direction. We leave it as future work.

5.3.3 Understanding Fidelity Extraction on GANs In-depth.
We further dissect the difference of distributions between target
models and attack models to understand the nature of model ex-
traction on GANs. Specifically, we first transform the training data
into 2048-dimension feature vectors by the pretrained Inception-
v3 model3 which is widely utilized in the evaluation of a GAN
model [23]. Then these feature vectors are clustered into 𝑘 classes
by a standard 𝐾-means algorithm. Finally, we calculate the propor-
tions of each class, which can be also considered as a distribution of
the training data [5, 54]. The blue bar in Figure 4 shows the distri-
bution of the training data where we set 𝑘 to 30. For target models
and attack models, we query the model to obtain 50K images, then
perform the same procedures as the training data.

Figure 4 shows distribution differences among the training data,
the target model PGGAN and attack models. We observe that for the
high proportions of classes, which can be considered as prominent
features of a distribution, target models can learn more features
about these classes while attack models further learn more features
by querying the target models. In contrast, for the low proportions
of classes, target models learn less features about these classes while

2https://cloud.google.com/vision/pricing
3https://pytorch.org/hub/pytorch_vision_inception_v3/

https://cloud.google.com/vision/pricing
https://pytorch.org/hub/pytorch_vision_inception_v3/
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Figure 4: Class distribution differences among the training
data, the target model PGGAN, and attack models.

Table 5: JS distances between models. A smaller value in-
dicates a better performance. The JS distance between the
training data and the target model PGGAN is 4.14×10−3. The
JS values below show a consistent trend with Figure 4.

Target model Attack model JSfidelity (×10−3) JSaccuracy (×10−3)

PGGAN SNGAN 5.88 15.95
PGGAN 1.83 9.10

attack models further learn less features about these classes. This is
one reason why attack models always have higher accuracy values
than target models. In terms of fidelity, we observe that there is a
consistent trend on proportions of classes for target models and
attacks models. This is the reason why we can achieve a satisfy-
ing performance about fidelity. We also analyze the target model
SNGAN, and similar results are shown in Figure 9 in Appendix.

We also summarize this difference in a single number by com-
puting the Jensen-Shannon (JS) divergence on this representation
of distributions, which is shown in Table 5. Note that, based on
accuracy and fidelity defined in Section 4.1, we mark 𝐽𝑆fidelity as
the JS divergence between the target model and the attack model,
and 𝐽𝑆accuracy as the JS divergence between the training data and
the attack model.

6 ACCURACY EXTRACTION
In this section, we instantiate our accuracy extraction attack strat-
egy. In addition to fidelity extraction’s assumptions, we also as-
sume that adversaries have more background knowledge in order
to achieve accuracy extraction, such as partial real data and the
target model’s discriminator. We start with the motivation and
problem formulation of accuracy extraction. Then, we describe the
methodology of accuracy extraction. In the end, we present the
performance of accuracy extraction.

6.1 Motivation and Problem Formulation
As shown in Figure 1, fidelity extraction can be implemented
through querying the generator of the target GAN, because 𝑝𝑔 is
the generator’s distribution. As for accuracy extraction, it is much
more difficult due to the lack of availability of real data distribu-
tion 𝑝𝑟 . Although an approach is to use 𝑝𝑔 as an approximation
of 𝑝𝑟 , we observe that with the increase in the number of queries,
accuracy of attack models reaches its saturation point and is hard
to be improved, which is shown in Figure 3(b). For instance, as we

increase the number of queries from 50K to 90K for the PGGAN-
PGGAN case on CelebA dataset, accuracy of the attack model has
smaller and smaller improvements from 4.93 to 4.44, while the ideal
accuracy is 3.40 which is also the performance of the target model.
Note that the case PGGAN-PGGAN is the best for the attacker; the
attack will perform even worse if the attackers do not choose the
same architectures and hyperparameters as the target model.

The reason why there exists a gap between the attack model and
the target model in terms of accuracy is that the target GANmodel is
hard to reach global equilibrium and the discriminator is often better
than the generator in practice [3]. As a result, real data distribution
𝑝𝑟 is not completely learned by the generator of the target model,
which means that 𝑝𝑔 ≠ 𝑝𝑟 . Therefore, directly using the generator’s
distribution 𝑝𝑔 does not guarantee the high accuracy and it only
minimizes the distribution discrepancy between the attack model
and the target model. We explain this by a simple example on
Figure 5, which is popular in the GAN literature [3, 16, 65].

Figure 5(a) presents real samples drawn from a mixture of 25
two-dimensional Gaussian distributions (each with standard de-
viation 𝜎 of 0.05). Figure 5(b) - Figure 5(d) show samples which
are generated by a target GAN with different queries. We define
a generated sample as “high-quality" if its Euclidean distance to
its corresponding mixture component is within four standard de-
viations (4𝜎 = 0.2) [3]. The architecture and setup information of
the target GAN is shown in Appendix A.1. Overall, we can observe
that target GAN’s distribution is not completely the same as the
training set’s distribution, which means that directly extracting a
model from the generator of the target GAN makes its distribution
similar to the target model’s distribution rather than its training
dataset’s distribution.

Therefore, a natural approach to achieving accuracy extraction
is that the adversary can get more high-quality samples that are
closer to the real data distribution.

6.2 Methodology
Our approach to obtaining high-quality samples is based on sub-
sampling. The key insight here is that we can reject some poor
samples from generated samples based on some prior knowledge.
In order to achieve it, we suppose that adversaries can obtain ad-
ditional background information. This is a common assumption
that can be found in many works in relation to the security and
privacy of machine learning [20, 28, 60]. As shown in Figure 2, we
assume that adversaries can have limited auxiliary knowledge of
the discriminator of the target model and partial training samples.
This is because the discriminator from the target model can reveal
the distribution information of the training data [3]. Thus, using
the information provided by the discriminator, we can subsample
the generated data to make the obtained data closer to the real
dataset’s distribution, which improves accuracy extraction.

Specifically, for accuracy extraction, we first leverage the dis-
criminator of the target model to subsample the generated samples.
As a result, these refined samples are much closer to the true distri-
bution. In this work, we useMetropolis-Hastings (MH) subsampling
algorithm [65] to subsample the generated data. See Algorithm 1
in Appendix for details. MH subsampling algorithm utilizes the
discriminator through Metropolis-Hastings algorithm [62] to refine
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(a) Real Samples 50K (b) Direct Sampling 5k (c) Direct Sampling 10K (d) Direct Sampling 50K (e) MH Subsampling 50K

Figure 5: Difference of distribution between training data and generators. The percentage of “high-quality” samples for Fig-
ure 5(b), Figure 5(c), Figure 5(d) and Figure 5(e) is 94.36%, 94.31%, 94.15% and 95.64%, respectively. The more we query, the more
bad-quality samples we obtain, which affects the performance of model extraction. But if we reduce the number of queries,
the performance of attack models still be poor due to insufficient training samples.

samples which are generated by the generator. The discrimina-
tor generally needs to be calibrated by partial real samples from
training set of the target GAN model, considering that some dis-
criminators of GANs output a score rather than a probability. In
our experiments, all discriminators are calibrated through logistic
regression. Then we train the attack model on those refined sam-
ples. After the training process of the attack model is stable, we add
partial real data to further train the attack model.

In this scenario, although the number of queries will increase
due to subsampling samples, we assume that adversaries eventu-
ally obtain 50K refined samples in order to make a comparison
with fidelity extraction. Partial real samples used to calibrate the
discriminator are fixed to 10% of training data. In addition, these
partial real samples will be added into training process of the attack
models. Here, we refer the former where only refined samples are
used to train the attack model to MH accuracy extraction which
is also considered as an indicator to show how well these refined
samples are beneficial to accuracy. We refer the latter where both
refined samples and partial real data are used to train the attack
model to white-box accuracy extraction. We refer fidelity attack in
Section 5 to black-box fidelity extraction.

It is worth noting that we cannot directly choose the lowest
accuracy value in real attack scenarios due to unavailability of
training dataset from target models. Therefore, the accuracy value
reported in this paper is chosen when its corresponding fidelity
value is the lowest in the training process.

6.3 Results
Figure 6 plots not only the results of the MH accuracy extrac-
tion and the white-box accuracy extraction on both CelebA and
LSUN-Church datasets, but also the black-box fidelity extraction
for comparison. We can observe that MH subsampling is an effec-
tive approach to improve accuracy of attack models. For example,
when target model is SNGAN, the MH accuracy extraction can
significantly improve attack model’s accuracy on both datasets be-
cause MH subsampling algorithm selects high-quality samples from
generated samples of the target model SNGAN. For the MH accu-
racy extraction and the white-box accuracy extraction which both
leverage the refined samples in the training process, the white-box
accuracy extraction can further improve accuracy. This is because
partial real data can further correct the distribution of the attack
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Figure 6: Comparison on accuracy for different attack ap-
proaches.

model and make it closer to the real distribution. Similar to fidelity
extraction in Section 5.3.3, we also analyze distribution differences
for accuracy extraction, which is shown in Figure 10 in Appendix.

7 CASE STUDY: MODEL EXTRACTION BASED
TRANSFER LEARNING

In this section, we present one case studywhere the extractedmodel
serves as a pretrained model and adversaries transfer knowledge
of the extracted model to new domains by means of fine-tuning to
broaden the scope of applications based on extracted models. We
start with methods of transfer learning on GAN and demonstrate
how adversaries can benefit from model extraction, in addition to
directly leveraging the extracted model to generate images.

We consider the state-of-the-art GAN model StyleGAN [32] that
was trained on more than 3 million bedroom images as the target
model. StyleGAN produces high-quality images at a resolution
of 256 × 256, with 2.65 FID on LSUN-Bedroom dataset [71]. We
suppose adversaries only query the target model StyleGAN and
have no any other background knowledge, which is also called
black-box fidelity extraction in our paper. Although an adversary
can obtain an extracted model, the model only generates images
which are similar to the target model. In this case, the extracted
model can only generate bedroom images due to target model
trained on LSUN-Bedroom dataset. Therefore, the adversary’s goal
is to use the PGGAN as the attack model to extract the target model
StyleGAN and leverage transfer learning to obtain a more powerful
GAN which generates images that the adversary wishes. The attack
is successful if the performance of models training by transfer learning
based on the extracted GAN outperforms models training from scratch.
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Table 6: Comparison between transfer learning based on
model extraction and training from scratch. The target
model is StyleGAN trained on LSUN-Bedroom dataset, and
the attack model uses PGGAN.

Target dataset Methods FID

LSUN-Kitchen Transfer Learning 7.59
LSUN-Kitchen Training from Scratch 8.83
LSUN-Classroom Transfer Learning 16.47
LSUN-Classroom Training from Scratch 20.34

Transferring knowledge of models which steal the state-of-the-
art models to new domains where adversaries wish the GAN model
can generate other types of images can bring at least two benefits:
1) if adversaries have too few images for training, they can easily
obtain a better GAN model on limited dataset through transfer
learning; 2) even if adversaries have sufficient training data, they
can still obtain a better GAN model through transfer learning,
compared with a GAN model training from scratch. Therefore, we
consider two variants of this attack: one where the adversary owns
a small target dataset (i.e., about 50K images in our work) and the
other one where the adversary has enough images (i.e., about 168k
images in our work).

More specifically, after querying the target model StyleGAN
and obtaining 50K generated images, adversaries train their attack
model PGGAN on the obtained data, as illustrated in Section 5.2.
Here, fidelity of the attack model PGGAN is 4.12 and its accuracy
is 6.97. Then, we use the extracted model’s weights as an initial-
ization to train a model on adversary’s own dataset which is also
called target dataset in the section. We conduct the following two
experiments:

(1) We first randomly select 50K images from LSUN-Kitchen
dataset as a limited dataset. Then, we train the model on
these selected data by transfer learning and from scratch,
respectively.

(2) We train a model on the LSUN-Classroom dataset including
about 168k images by transfer learning and from scratch,
respectively.

Results. Table 6 shows the performance of models trained by trans-
fer learning and training from scratch. We can observe that the
performance of training by transfer learning is always better than
that of training from scratch on both large and small target dataset.
To be specific, on the limited LSUN-Kitchen dataset which contains
50K images, the FID of model trained by transfer learning decreases
from 8.83 to 7.59, compared with the model trained from scratch.
It indicates that the extracted model is useful for models trained
on other types of images. On the large LSUN-Classroom dataset
which contains more than 168k classroom images, the performance
of model significantly improves from model training from scratch
with 20.34 FID4 to training by transfer learning with 16.47 FID.
This is also the best performance for PGGAN on LSUN-Classroom
dataset, in contrast with 20.36 FID reported by Karras et al. [31].
We also plot the process of training for both settings on the two

4This value is not equal to 20.36 [31] due to randomness.
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Figure 7: Comparison between transfer learning based
on model extraction and training from scratch on LSUN-
Kitchen and LSUN-Classroom dataset.

datasets, which is shown in Figure 7. We can obviously and consis-
tently observe that training by transfer learning based on model
extraction is always better than training from scratch during the
training process, which indicates that the extracted model PGGAN
which duplicates the state-of-the-art StyleGAN on LSUN-Bedroom
dataset can play a significant role in other applications rather than
only on generating bedroom images. That reminds us that model
extraction on GANs severely violates intellectual property of the
model owners.

8 DEFENSES
Model extraction attacks on GANs leverage generated samples from
a target GAN model to retrain a substitutional GAN which has
similar functions to the target GAN. In this section, we introduce
defense techniques to mitigate model extraction attacks against
GANs.

According to adversary’s goals as defined in Section 4.1, we
discuss defense measures from two aspects: fidelity and accuracy.
In terms of fidelity of model extraction, it is difficult for model
owners to defend except for limiting the number of queries. This is
because adversaries can always design an attack model to learn the
distribution based on their obtained samples. The more generated
samples adversaries obtain, the more effective they achieve.

In terms of accuracy of model extraction, its effectiveness is
mainly because adversaries are able to obtain samples generated by
latent codes draw from a prior distribution of the target model, and
these samples generated through the prior distribution are close to
real data distribution [2]. However, if adversaries obtain some gen-
erated samples which are only representative for partial real data
distribution or a distorted distribution, accuracy of attack models
becomes poor. Based on this, we propose two types of perturbation-
based defense mechanisms: input perturbation-base and output
perturbation-based approaches. In the rest of this section, we focus
on defense approaches which are designed to mitigate accuracy of
attack models.

8.1 Methodology
8.1.1 Input Perturbation-base Defenses. For this type of defenses,
we propose two approaches based on perturbing latent codes: linear
interpolation defense and semantic interpolation defense.
Linear Interpolation Defense. For 𝑛 latent codes queried from
users, model providers randomly select two queried points and in-
terpolate 𝑘 points between the two points. This process is repeated
for ⌈𝑛/𝑘⌉ times to get𝑛modified latent codes. These modified latent
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Figure 8: The performance of attack model PGGAN under
various defenses.

codes are used to query the target model. In our experiments, we
interpolate 9 points. See Figure 14(a) in Appendix for visualization.
Semantic Interpolation Defense. Unlike linear interpolation de-
fense where target models return a batch of random images, se-
mantic interpolation defense returns various semantic images that
are predefined by model providers, which restricts the space of
images the adversary queries. Generally, semantic information can
be any information that humans can perceive. For instance, for a
human face image, it includes gender, age and hair style. We adopt
the semantic interpolation algorithm proposed by Shen et al. [58].
The details of this defense are presented in Appendix A.5.1. In our
experiments, we totally explore 12 semantic information on CelebA
dataset. See Figure 14(b) in Appendix for visualization.

8.1.2 Output Perturbation-base Defenses. Instead of perturbing la-
tent codes, this type of defenses directly perturbs the generated
samples. Specifically, we propose four approaches: random noise,
adversarial noise, filtering and compression. See Figure 15 in Ap-
pendix for visualization.
Random Noise. Adding random noises on generated samples is
a straightforward method. In our experiments, we use Gaussian-
distributed additive noises (mean = 0, variance = 0.001).
Adversarial Noise. We generate adversarial examples through
mounting targeted attacks where all images are misclassified into
a particular class by the classifier ResNet-50 trained on ImageNet
dataset. In our experiments, all face images are misclassified into the
class — goldfish and the C&W algorithm [11] based on 𝐿2 distance
are used.
Filtering. The Gaussian filter is used to process generated samples.
In our experiments, we use Gaussian filter (sigma = 0.4) provided
by the skimgae package [66].
Compression. The JPEG compression algorithm is used to process
generated samples. In our experiments, we use the JPEG compres-
sion (quality = 85) provided by the simplejpeg package [17].

8.2 Results
In this experiment, we choose PGGAN trained on CelebA dataset
as the target model to evaluate our defense techniques, consider-
ing its excellent performance among our target models. We only

show the effectiveness of defense techniques on black-box fidelity
extraction, considering its more practical assumption: adversaries
obtain samples by model providers or queries.

8.2.1 Defense on Black-box Fidelity Extraction. Figure 8
plots results of attack model PGGAN on defenses. We observe
that attack performance is weakened when the target model PG-
GAN uses these defense approaches, compared to the target model
without any defenses. Gaussian noise and semantic interpolation
defenses show stable performance while other defense techniques’
performance is gradually weakened with an increase in the num-
ber of queries. Figure 12 in Appendix also shows similar defense
performance for the attack model SNGAN. We further evaluate the
defense utility, i.e. the quality of generated images after deploying
defense measures. Our quantitative and qualitative measures show
that these defense techniques do not impact the visual quality of
generated images (see Figure 14, Figure 15 and Table 10). More
details are shown in Appendix A.5.2.

8.2.2 Discussion. The reason why input perturbation-based de-
fenses can work is at least explained from two aspects: increasing
the similarity of generated samples and a distribution mismatch
between latent codes produced by interpolation and drawn from
prior distribution. For the former, we can see that interpolation
operations increase the similarity of images from Figure 14. For
the latter, latent codes produced by interpolation operations are
different from latent codes drawn from the prior distribution that
the target model was trained on. This is because latent codes pro-
duced by linear operation do not obey the prior distribution of the
target model, which also bring a benefit in disguising the true data
distribution [2].

Output perturbation-based defenses can work because they di-
rectly perturb these generated samples. In practice, this type of
defense requires model providers to trade-off image quality and
the model’s security through magnitudes of changes. Although
Gaussian noise defense shows the best performance, it is possible
for adversaries to remove noise.

9 CONCLUSION
In this paper, we have systematically studied the problem of model
extraction attacks on generative adversarial networks, and devised,
implemented, and evaluated this attack from the perspective of fi-
delity extraction and accuracy extraction. For fidelity extraction, ex-
tensive experimental evaluations show that adversaries can achieve
an excellent performance with about 50K queries. For accuracy ex-
traction, adversaries further improve the accuracy of attack models
after obtaining additional background knowledge, such as partial
real data from the training set or the discriminator of the target
model. Furthermore, we have also performed a case study where
the attack model which steals a state-of-the-art target model can
be transferred to new domains to broaden the scope of applications
based on extracted models.

These effective attacks also motivate us to design two types of
defense techniques: input and output perturbation-based defense.
They mitigate model extraction attacks through perturbing latent
codes and generated samples, receptively. Extensive experimental
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evaluations show that semantic interpolation and Gaussian noise
defenses achieve stable performance.

Finally, we also identify a number of directions for future work.
Because GAN models generally are considered as intellectual prop-
erties of model owners, protecting GANs through verifying the
ownership is an interesting direction. In addition, stealing a GAN
model also means the leakage of distribution of the training set.
Therefore, training with differential privacy techniques can be uti-
lized to protect the privacy of training data of a model [1]. However,
training time and stability of the training process are big challenges
for GANs. For further work, we plan to design new methods based
on differential privacy techniques to mitigate accuracy of model
extraction.
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A APPENDIX
A.1 Implementation Details
We implement PGGAN5 and SNGAN6 based on following codes
indicated in the footnotes. We choose the ResNet architecture for
SNGAN and the architecture of PGGAN is the same as the official
implementation. We use hinge loss for SNGAN and WGAN-GP loss
for PGGAN. For target GAN on synthetic data in Figure 5, we use
four fully connected layers with ReLU activation for both generator
and discriminator and the prior is a 2-dimensional standard normal
distribution. The training data is a mixture of 25 2-D Gaussian
distributions (eachwith standard deviation of 0.05).We train it using
standard loss function [19]. In Section 7 about case study, we directly
use the pretrained StyleGAN7 trained on LSUN-Bedroom dataset as
our target model. We resize all images used in our paper to 64 × 64,
except for the case studywhere images with a resolution of 256×256
are used. The dimension of latent space of SNGAN, PGGAN and
StyleGAN is 256, 512 and 512, respectively, and their latent codes
are all draw from standard Gaussian distribution. For attack models,
we use suggested hyperparameters provided by original models
and only modify some related to computing resources.

In Section 8 about semantic interpolation defense, the seman-
tic information is from attributes of CelebA dataset8, which has
labeled for each image. we only choose 12 (male, smiling, wearing
lipstick, mouth slightly open, wavy hair, young, eyeglasses, wearing
hat, black hair, receding hairline, bald, mustache) out of 40 facial
attributes to learn semantic hyperplanes, because the number of
images for each attribute varies largely and some attributes is hard
to distinguish when they are applied in target GANmodel. We train
the prediction model for each attribute based on ResNet-50 model
pretrained on ImageNet9. The magnitude of semantic interpolation
is set as 3.

A.2 MH Algorithm
Algorithm 1 shows the MH subsampling algorithm [65]. Inputs
of this algorithm are a target generator (only used to query), a
white-box discriminator which is used to subsample generated
samples and partial real samples which are used to calibrate the
discriminator (Algorithm 1, line 2). Outputs are refined samples
whose distribution is much closer to distribution of real training
data.

A.3 Attack Performance on Queries From
Different Prior Distributions.

Adversaries can query the target model via trying common prior
distributions to generate latent codes if they do not know the prior
distribution of a target model. Gaussian distribution and uniform
distribution are widely used in almost all GANs [6, 31–33, 47, 53].
Table 7 shows the attack performance with two prior distributions.
We choose PGGAN trained on CelebA dataset with standard normal
prior distribution as the target model. From Table 7, we find that

5https://github.com/tkarras/progressive_growing_of_gans
6https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
7https://github.com/NVlabs/stylegan
8http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
9https://download.pytorch.org/models/resnet50-19c8e357.pth

Algorithm 1 MH subsampling
Input: target generator 𝐺 , target discriminator 𝐷 ,

partial real samples 𝑋𝑟 = {𝑥𝑟1, 𝑥𝑟2,. . . , 𝑥𝑟𝑚}
Output: 𝑁 refined images
1: Sample𝑚 fake images 𝑋𝑔 = {𝑥𝑔1, 𝑥𝑔2,. . . , 𝑥𝑔𝑚} from 𝐺

2: Train a calibrated classifier:
𝐶 ← 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛(𝐷 (𝑋𝑟 ), 𝐷 (𝑋𝑔))

3: 𝑖𝑚𝑎𝑔𝑒𝑠 ← ∅
4: while |𝑖𝑚𝑎𝑔𝑒𝑠 | < 𝑁 do
5: 𝑥 ← a real image from 𝑋𝑟
6: for 𝑖 = 1 to 𝐾 do
7: Sample 𝑥 ′ from 𝐺

8: Sample 𝑢 from Uniform(0, 1)
9: Compute real image’s density ratio:

𝑟 (𝑥) = 𝐶 (𝐷 (𝑥))
1−𝐶 (𝐷 (𝑥))

10: Compute fake image’s density ratio:
𝑟 (𝑥 ′) = 𝐶 (𝐷 (𝑥 ′))

1−𝐶 (𝐷 (𝑥 ′))
11: 𝑝 =𝑚𝑖𝑛(1, 𝑟 (𝑥

′)
𝑟 (𝑥) )

12: if 𝑢 ≤ 𝑝 then
13: 𝑥 ← 𝑥 ′

14: end if
15: end for
16: if 𝑥 is not a real images then
17: Append(𝑥, 𝑖𝑚𝑎𝑔𝑒𝑠)
18: end if
19: end while

Table 7: Performance of fidelity extraction attack with dif-
ferent prior distributions. We use standard normal distribu-
tion and uniform distribution over an interval -1 and 1 to
generate latent codes. The number of queries is fixed to 50K.

Attack model Prior distribution Fidelity Accuracy
FID(𝑝𝑔 , 𝑝𝑔) FID (𝑝𝑔 , 𝑝𝑟 )

SNGAN Gaussian 4.49 9.29
SNGAN Uniform 4.29 9.16
PGGAN Gaussian 1.02 4.93
PGGAN Uniform 0.98 4.85

adversaries can obtain a similar attack performance no matter what
the prior distribution of latent codes is.

A.4 Additional Results for Analyzing
Distribution Differences

A.4.1 Understanding Fidelity Extraction for the Target
Model SNGAN. Figure 9 shows distribution differences for the tar-
get model SNGAN trained on CelebA dataset. Table 8 summarizes
these differences statistically.

A.4.2 Understanding Accuracy Extraction on GANs In-
depth. Following the same procedure illustrated in Section 5.3.3,
we also dissect distribution differences for accuracy extraction.
Specifically, we choose the PGGAN-PGGAN case as an example (see
Figure 6) and the attack models is PGGAN. From the Figure 10, we
observe that for CelebA, white-box accuracy extraction which has

https://github.com/tkarras/progressive_growing_of_gans
https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
https://github.com/NVlabs/stylegan
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://download.pytorch.org/models/resnet50-19c8e357.pth
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Figure 9: Class distribution differences among the training
data, the target model SNGAN, and attack models.

Table 8: JS distances between models. For the JS distance
between training data and the target model, and the target
model SNGAN is 16.36×10−3. The JS value shows a consistent
trend with Figure 9.

Target model Attack model JSfidelity (×10−3) JSaccuracy (×10−3)

SNGAN SNGAN 8.90 34.12
PGGAN 1.60 18.56
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(a) The target model PGGAN trained on CelebA.
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(b) The target model PGGAN trained on LSUN-Church.

Figure 10: Distribution differences for accuracy extraction.

minimal accuracy values among these methods is more consistent
with the distribution of the training data by lowering the highest
proportions of classes. For LSUN-Church, similar results also can
be observed. Table 9 summarizes these differences statistically.

Table 9: JS distances between models. For the JS distance be-
tween training data and the target model, the target model
PGGANonCelebA is 4.14×10−3 and the targetmodel PGGAN
on LSUN-Church is 14.78 × 10−3.

Dataset Methods 𝐽𝑆𝑓 𝑖𝑑𝑒𝑙𝑖𝑡𝑦 (×10−3) 𝐽𝑆𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (×10−3)

CelebA
Black-box fidelity extraction 1.83 9.10
MH accuracy extraction 1.42 8.17
White-box accuracy extraction 1.17 7.53

LSUN-Church
Black-box fidelity extraction 2.32 19.14
MH accuracy extraction 2.28 19.89
White-box accuracy extraction 1.61 18.65
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Figure 11: Semantic interpolation defense.

A.5 Defense Techniques
A.5.1 Semantic Interpolation Defense. The process of semantic
interpolation defense is shown in Figure 11. Semantic interpola-
tion defense consists of two phases: finding semantic hyperplanes
and generating semantic images. In the first phase, we first train a
prediction model for each semantic information. Then the trained
prediction model is used to predict semantic score 𝑠 for each image
generated through latent code 𝑧. As a result, we get latent code-
score pairs and label the highest 𝑘 scores as positive and the lowest
𝑘 scores as negative. Finally, we train a linear support vector ma-
chine (SVM) on dataset where latent codes as training data and
scores as labels. A trained linear SVM contains a hyperplane which
separates one semantic information. In the second phase, we can
obtain a semantic image for each semantic hyperplane through
interpolation. A latent code interpolates points along the normal
vector of the hyperplane and corresponding semantic images can
be obtained.

In our experiments, we train each prediction model for each
semantic information, and prediction model is built on the basis of
ResNet-50 network [21] trained on ImageNet dataset [55].

A.5.2 Defense Utility. We quantitatively and qualitatively evaluate
the defense utility, i.e. the quality of generated images after de-
ploying defense measures. Figure 14 and Figure 15 show returned
images for input perturbation-based and output perturbation-based
defenses. Table 10 shows image quality scores. We use two widely-
adopted no-reference image quality scores: Naturalness Image Qual-
ity Evaluator (NIQE) [46] and Perception based Image Quality Eval-
uator (PIQE) [67]. Overall, our defense measures do not impact the
quality of generated images.
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Figure 13: Fidelity of attack models under different defenses
for black-box fidelity extraction scenarios. Fidelity values of
attack models can be largely decreased with an increase in
the number of queries.

Table 10: Defense utility. Each score is an average of 50K im-
age score. Lower is better.

Metrics No Defense Semantic Linear Gaussian Noise
NIQE 18.87 18.87 18.87 18.87
PIQE 42.66 40.04 42.62 23.64

Metrics JPEG Compression Gaussian Filter Adversarial Noise
NIQE 18.87 18.87 18.87
PIQE 35.99 47.80 37.91

A.5.3 Attack Performance for the Attack Model SNGAN under Var-
ious Defense Techniques. Figure 12 shows that the performance
of attack model SNGAN under various defenses for the black-box
fidelity extraction scenario.
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Figure 12: The performance of attack model SNGAN under
various defenses for the black-box fidelity extraction sce-
nario.

A.5.4 Fidelity on Various Defense Techniques. Figure 13 shows
fidelity of attack models under different defenses for black-box
fidelity extraction scenario. We observe that fidelity values of attack
models can be largely decreased with an increase in the number of
queries.
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Query 1    Linear interpolation      Query 2

(a) Linear interpolation defense. These linear interpolated images are returned.

Query Bald Black hair Eyeglasses
Mouth 

slightly open
Mustache

Receding 
hairline

Wavy hair
Wearing 

hat
Young Male Smiling

Wearing 
lipstick

(b) Semantic interpolation defense. For one latent code, 12 latent codes containing semantic information are generated through semantic interpolation and corresponding images are
shown above. These semantic interpolated images are returned.

Figure 14: Returned images after input perturbation-based defense techniques. Queried images and interpolated images both
show good quality in visual comparison, and images generated by linear interpolation show more similarity than that by
semantic interpolation.

(a) Output images. From top to bottom: generated images, Gaussian noise
images, Adversarial noise images, Gaussian filter images and JPEG compression
images.

(b) Noises. For the top two rows, they are Gaussian noises and adversarial
noises, respectively. For the third row, it is the differences between Gaussian
filter images and generated images. For the last row, it is the differences between
JPEG compression images and generated images.

Figure 15: Returned images after output perturbation-based defense techniques.


	Abstract
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Generative Adversarial Networks
	3.2 Model Extraction Attacks against Machine Learning Models
	3.3 Dataset Description

	4 Taxonomy of model extraction against GANs
	4.1 Adversary's Goals
	4.2 Adversary's Background Knowledge
	4.3 Metrics

	5 Fidelity extraction
	5.1 Target Models and Attack Models
	5.2 Methodology
	5.3 Results

	6 Accuracy extraction
	6.1 Motivation and Problem Formulation
	6.2 Methodology
	6.3 Results

	7 Case study: model extraction based transfer learning
	8 Defenses
	8.1 Methodology
	8.2 Results

	9 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Implementation Details
	A.2 MH Algorithm
	A.3 Attack Performance on Queries From Different Prior Distributions.
	A.4 Additional Results for Analyzing Distribution Differences
	A.5 Defense Techniques


