
Kolmogorov-Arnold Network for Gene
Regulatory Network Inference

Tsz Pan Tong1,2[0000−0001−8111−5886], Aoran Wang1[0000−0001−7809−0622], George
Panagopoulos1[0000−0001−7731−9448], and Jun Pang1,2[0000−0002−4521−4112]

1 Department of Computer Science, University of Luxembourg, Luxembourg
2 Institute for Advanced Studies, University of Luxembourg, Luxembourg
{tszpan.tong,aoran.wang,georgios.panagopoulos,jun.pang}@uni.lu

Abstract. Gene regulation is central to understanding cellular pro-
cesses and development, potentially leading to the discovery of new treat-
ments for diseases and personalized medicine. Inferring gene regulatory
networks (GRNs) from single-cell RNA sequencing (scRNA-seq) data
presents significant challenges due to its high dimensionality and com-
plexity. Existing tree-based models, such as GENIE3 and GRNBOOST2,
demonstrated scalability and explainability in GRN inference, but they
cannot distinguish regulation types nor effectively capture continuous
cellular dynamics. In this paper, we introduce scKAN, a novel model
that employs a Kolmogorov-Arnold network (KAN) with explainable AI
to infer GRNs from scRNA-seq data. By modeling gene expression as
differentiable functions matching the smooth nature of cellular dynam-
ics, scKAN can accurately and precisely detect activation and inhibition
regulations through explainable AI and geometric tools. We conducted
extensive experiments on the BEELINE benchmark, and scKAN sur-
passes and improves the leading signed GRN inference models ranging
from 5.40% to 28.37% in AUROC and from 1.97% to 40.45% in AUPRC.
These results highlight the potential of scKAN in capturing the under-
lying biological processes in gene regulation without prior knowledge of
the graph structure.

Keywords: Gene Regulatory Networks · scRNA-seq data · Kolmogorov-
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1 Introduction

Genes hold the key information needed for the growth and functioning of liv-
ing organisms. Gene regulation involves controlling the expression of genes that
are vital for cell growth, development, and maintenance. Thus, reconstructing
gene regulatory networks (GRNs) is essential to uncover the mechanisms behind
biological processes and diseases and to promote the development of precision
medicine [61] and personalized treatments [6, 10]. With the advance of sequenc-
ing technology, single-cell RNA sequencing (scRNA-seq) has made it possible to
capture the gene expression distribution across individual cells at discrete sam-
pling points. The high data volume of the scRNA-seq assay provides fertile soil
for the development of sophisticated and precise GRN models.
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GENIE3 [22] and GRNBOOST2 [38] are two remarkable state-of-the-art tree-
based GRN inference models in the era of scRNA sequencing. They are rec-
ognized as the most robust and recommended GRN inference models in the
BEELINE benchmark [45], and were integrated into the popular SCENIC+
pipeline [2, 4]. Their success can be attributed to the One-vs-Rest (OvR) for-
mulation, where each gene is modeled and reconstructed as a function of other
genes. This formulation enables model scalability to thousands of genes and
explainability through the learned importance scores in the tree models.

Despite their effectiveness, GENIE3 and GRNBOOST2 are tree models,
which inherently introduce discontinuities in reconstructed gene expressions due
to stacked decision boundaries. At the molecular level, the ligand-receptor cou-
pling and transcription factor binding are discrete events that occur in seconds,
which can be modeled by chemical master equations (CMEs) [31, 46, 17]. How-
ever, the majority of the measurement resolution is limited to hours or days at
the cellular level, and all stochastic events are averaged, exhibiting a continuous
process. Thus, using ODEs that match continuous dynamics is a more common
choice [36, 59, 52]. In addition, neither model can distinguish between the activa-
tion and inhibition of the regulations, limiting their application in the biological
context. Moreover, both models give an averaged regulatory strength, which
ignores differences in cell lineages and buries signals from rare cell types [65].

Motivated by this, we propose a novel model, scKAN, to infer GRNs from
scRNA-seq data with Kolmogorov-Arnold networks (KAN) [32]. KAN can guar-
antee a continuous model and has shown promising results in regression tasks
with limited parameters [56]. Our scKAN model is third-order differentiable,
outlines a meaningful Waddington landscape [62] from the learned geometry.
Subsequently, we employ an explainable AI (XAI) method based on the gra-
dients of the learned geometry to reconstruct the directed GRNs with regula-
tion types. By evaluating the model gradient at different cells, we can group
cells by subtype or lineage, extracting a local view of the GRN for each group-
ing. Our model achieves attractive results, especially in precision, on the BEE-
LINE benchmark [45]. All codes and reproducibility instructions are available at
https://github.com/1250326/scKAN.

Contributions. Our contributions in this work are summarized as follows:

– We generalize the tree-based GRN inference models with a differentiable
KAN to match the underlying smooth biochemical processes.

– Our model infers activation and inhibition regulations with the XAI tech-
nique for arbitrary groups of cells and the whole population.

– We conducted more than 2,300 experiments using the BEELINE benchmark,
showing scKAN surpasses the second-best signed GRN inference models from
5.40% to 28.37% in AUROC and from 1.97% to 40.45% in AUPRC.

– We further demonstrated the scalability of scKAN on two networks consist-
ing of 71 and 104 nodes, respectively.

– We analyze the weakness of GENIE3 and GRNBOOST2 in furcating GRNs
and give an intuitive example and proof.
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2 Related Work

Understanding GRN is challenging due to data heterogeneity [42], technical
noise [24], and the complexity of biological systems [1]. Various statistical mod-
els are developed for GRN inference to pursue stability and explainability. In-
formation theory-based models search for and screen out regulation patterns via
mutual information (MI) [35, 15], information decomposition [7] and causal infer-
ence [47, 11]. Correlation-based models quantify the strength of relationships to
model the GRN [28, 57]. Different tree algorithms are also used to directly model
the dynamics of cell differentiation [22, 23, 38, 34]. The learned importance scores
are interpreted as the regulation strengths. Other models include regression [18,
44], ordinary differential equation [36, 3], matrix/tensor factorization [13, 43],
time series modeling [49] and in-silico knockout [25]. Despite the variety of GRN
inference models, no single model is universally superior and performance varies
between synthetic and real-world datasets [71]. Interested readers can refer to
various GRN benchmarking papers [9, 45, 42, 71].

Recently, deep learning models have been applied to GRN inference. Convo-
lutional neural networks (CNN) derived from image processing are used to treat
gene expression joint distributions as images [68, 8, 69, 66, 48]. However, all listed
CNN models, different from the traditional GRN models, are supervised mod-
els that require a list of known regulations as training input. The dependency
on known interactions limits the application of these models in real-world sce-
narios, as known interactions are incomplete and potentially misleading. Other
deep learning models, such as time series models [70, 39], variational autoencoder
(VAE) models [54, 60], and explainable AI models [26], can distill GRN struc-
tures during training without prior knowledge, and have also shown promise in
GRN inference. However, deep learning models lack scalability and interpretabil-
ity and rely heavily on the quality and quantity of training data [12]. This urges
the development of a new, scalable and explainable GRN inference model that
can be trained on limited samples yet provide accurate and precise results.

Among existing approaches, we are particularly interested in tree-based mod-
els, such as GENIE3 [22] and GRNBOOST2 [38]. GENIE3 is the pioneer that
treats scRNA-seq data as tabular data, discards temporal information, and mod-
els gene expression levels as functions of other genes. GENIE3 was the best
performer in the DREAM4 multifactorial challenge [50] and demonstrated com-
petitiveness in the BEELINE benchmark [45]. GENIE3 uses random forest as the
predictive function and the learned importance scores are interpreted as the regu-
lation strengths. This method converts the unsupervised GRN inference problem
into a supervised regression problem, leveraging the power of machine learning
algorithms while maintaining scalability and interpretability. GENIE3 method-
ology was extended to various models, such as Jump3 [23], dynGENIE3 [21],
and GRNBOOST2. GRNBOOST2 is a similar model to GENIE3, but it uses
gradient boosting as the predictive function. Jump3 and dynGENIE3 model the
change in expression levels for each cell over time, but this change is inaccessible
during the destructive scRNA-seq assay.
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The advantages of tree-based models are their scalability and explainability.
Since tree-based models treat each gene as a separate model, they can be easily
parallelized and scaled to thousands of genes. Using tree methods for predic-
tion makes the model explainable, but this is also a limitation as they attempt
to use piecewise continuous functions to model the smooth dynamics of cell
differentiation. In addition, since importance scores are calculated based on in-
formation gain, the score must be positive, and the activation and inhibition of
the regulations cannot be distinguished. Moreover, information gain is a statis-
tical summary that ignores the effect of cell subtypes, lineages, and stages. This
motivates us to develop a new GRN inference model that follows the ideas of
tree-based models, maintaining scalability and explainability, but can capture
the continuous cellular dynamics and distinguish the activation and inhibition
of the regulations.

3 Preliminaries

3.1 Notations and Problem Definition

For an scRNA-seq dataset, we denote the number of genes and cells as g and c,
respectively. The gene expression matrix is denoted as X ∈ Rg×c, where xp ∈ Rg

and Xi ∈ Rc are the p-th column and i-th row vectors of X, respectively. xp can
be perceived as a point of cell state in the gene space V ⊂ Rg. The gene space
and the expression matrix after removing the gene i are represented by V\i ⊂
Rg−1, X\i ∈ Rg−1×c, respectively. We denote x\i,p = (. . . , Xi−1,p, Xi+1,p, . . . , )

T

as the expression of cell p with the gene i removed.
A GRN can be represented by a weighted directed graph G = (V, E , w), where

V is the set of g nodes (genes), E ⊂ V ×V is the set of directed edges (regulatory
relationship), and w : E → R \ {0} is the weight function (regulation strength).
The adjacency matrix A ∈ Rg×g is a matrix representation of the regulatory
graph G, where Ai,j = w(i, j) if (i, j) ∈ E and Ai,j = 0 otherwise.

We formulate our research problem as finding the adjacency matrix that best
recovers the underlying GRN from the observed scRNA-seq gene expression data
without prior knowledge of the network structure.

3.2 Formulation of One-vs-Rest Models

All tree-based models, such as GENIE3, Jump3, dynGENIE3 and GRNBOOST2
can be formulated as regression problems summarized as:

X̂i,p = fi(x\i,p) (1)

where i ∈ {1, . . . , g}, p ∈ {1, . . . , c}, and fi : V\i → R is a tree model. X̂i,p is the
expression level for GENIE3 and GRNBOOST2, and the change in expression
level for Jump3 and dynGENIE3. The learned importance score for gene j in
model i is denoted as I(fi, j), and is interpreted as the strength of the regulation
of gene j on gene i. We collectively refer to models formulated in the form of
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Eq. (1) as One-vs-Rest (OvR) models in the following sections. Our model is
built on the formulation of the OvR model, and we replace the tree model fi
with a Kolmogorov-Arnold network model.

3.3 Kolmogorov-Arnold Networks

Kolmogorov-Arnold network (KAN) [32] is a recent advance in neural network
research, potentially offering a new alternative to traditional multi-layer percep-
trons (MLP). Both of them have a similar theoretical foundation. According to
the Universal Approximation Theorem [20] and the Kolmogorov-Arnold repre-
sentation theorem [29], feed-forward neural networks and KANs can both ap-
proximate any continuous function under mild constraints. There are extensive
debates on the performance of KAN compared to MLP across different tasks.
Multiple works show that KAN generally excels in symbolic regression [67] and
graph regression tasks [5] and performs better with limited parameters [55].
Compared with the usual MLP models, KAN models are also more expressive
with the same number of layers and offer higher convergent rates [63].

A MLP layer fMLPℓ
with ni inputs and ni+1 outputs consists of a weight

matrix Wℓ ∈ Rni+1×ni , a bias vector bℓ ∈ Rni+1 and an activation function
σℓ : Rni+1 → Rni+1 :

fMLPℓ
(x) = σℓ(Wℓ x+ bℓ), (2)

where input features are aggregated by linear combinations with nonlinear acti-
vations. A MLP model fMLP is a composition of L MLP layers:

fMLP(x) = fMLPL
◦ fMLPL−1

◦ · · · ◦ fMLP1
(x). (3)

Unlike MLP, KAN defines activation functions ϕ : R → R to aggregate
input features, which contains k-th order B-splines Bi with grid size G, a SiLU
nonlinearity and scalar weights wb, wi:

ϕ(x) = wb SiLU(x) +
G+k−1∑

i=0

wiBi(x). (4)

A KAN layer Φℓ : Rni → Rni+1 with ni inputs and ni+1 outputs is an operator
consisting of a matrix of activation functions:

Φℓ =

 ϕℓ,1,1 . . . ϕℓ,1,ni

...
. . .

...
ϕℓ,ni+1,1 . . . ϕℓ,ni+1,ni

 , ϕℓ,q,p : R → R. (5)

The KAN model fKAN : Rn → R with input x is a composition of L KAN layers:

fKAN(x) = ΦL ◦ ΦL−1 ◦ · · · ◦ Φ1(x). (6)
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Fig. 1. A graphical summary of scKAN. For each gene i, we remove its gene expres-
sion and train an independent model fKAN,i to recover its expression. We extract the
gradients from the models to infer the GRN after standardization and sparsification.

4 Methodology

Our method consists of the following three steps.
Preprocessing. We start by creating a copy of the gene expression matrix for
each gene i, and removing the i-th gene from the matrix. This design ensures
scalability by parallelizing the training process.
Modeling. We follow the formulation of OvR models in Eq. (1) to build indi-
vidual models for each gene. We replace the predictor fi with a KAN model,
which can approximate any continuous function under mild constraints. Hence,
assuming that such a function fi exists, our replacement of the neural network
can also approximate fi effectively using the Kolmogorov-Arnold representation
theorem. The formulation of scKAN is given as follows:

X̂i,p = fKAN,i(x\i,p), (7)

where i ∈ {1, . . . , g}, p ∈ {1, . . . , c}, and fKAN,i : V\i → R.
We set the spline order as 3 and grid size as 10 for each ϕℓ,q,p. The former

ensures the continuity of the gradients and third-order differentiability of the
KAN predictor fKAN,i, while the latter balances the model granularity.

ScRNA-seq datasets are often high-dimensional with limited samples. An
expressive MLP model often requires a deep structure with a large number of
parameters [63], which is prone to overfitting. Thus, the shallow KAN model is a
better choice for modeling small datasets while assisting explainability. To limit
the number of parameters in scKAN, we use only 3 hidden layers. Following
Liu et al.’s recommendation [32], the number of neurons in each hidden layer
is set to 2d + 1, 2(2d + 1) + 1, and 2d + 1, respectively, where d = g − 1. In
this configuration, a single KAN predictor in a 7-gene data set only requires 75
seconds of training time. The model run times for different numbers of genes can
be found in Fig. 4.
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Constructing GRN. We quantify the importance scores of the trained predic-
tors based on the gradient ∇fKAN,i, which can be interpreted as the slope on the
Waddington landscape. The gradient evaluated at each data point x\i,p ∈ V\i
can be easily retrieved using automatic differentiation. The positive (negative)
gradient of fKAN,i with respect to gene j indicates the activation (inhibition) of
gene j on gene i, while the magnitude of the gradient indicates the regulation
strength. However, the signals hidden under the gradients are sensitive to the
data noise and overfitting. Assuming a sparse GRN, the targeted gene i is reg-
ulated by a few genes, and their magnitudes of the gradients are significantly
larger than those of the others. Thus, we detect signals from the gradients’ mag-
nitude across genes via standardization:

sj,i,p =
|∇jfKAN,i(x\i,p)| − mean(|∇fKAN,i(x\i,p)|)

std(|∇fKAN,i(x\i,p)|)
, (8)

for all p ∈ {1, . . . , c}, where sj,i,p is the z-score of the gradient magnitude,
∇jfKAN,i is the gradient of fKAN,i with respect to gene j, and mean(·) and
std(·) are the mean and standard deviation functions on genes, respectively.

Since sj,i,p is generally nonzero, simply averaging the gradients across cells
will give a fully connected GRN. To sparsify the GRN, we count the portion of
cells where the standard score sj,i,p is greater than 1. Since the sign indicates the
type of regulation, we use majority voting to determine the type of regulation.
The adjacency matrix A is then constructed by sparsification:

Aj,i = mode(sign(∇jfKAN,i(x\i,p))) ·
1

c
·
∑
p

1si,j,p>1, (9)

where i, j ∈ {1, . . . , g}.
Under this construction, the diagonal elements of the adjacency matrix are

zero because gene i is not a variable of fKAN,i. In addition, the adjacency matrix
is asymmetric because the entries Ai,j and Aj,i are calculated from the gradients
of fKAN,j and fKAN,i, respectively. An illustration of scKAN is shown in Fig. 1.

5 Experiments

We evaluated scKAN on the BEELINE benchmark [45], which is the de facto
benchmark for GRN inference models based on scRNA-seq data without prior
knowledge [16, 53]. It contains 6 types of synthetic networks, namely linear (LI,
g = 7), linear long (LL, g = 18), cyclic (CY, g = 6), bifurcating (BF, g = 7),
bifurcating converging (BFC, g = 10), and trifurcating (TF, g = 8), which
capture different cell differentiation processes. It also contains 4 types of cu-
rated networks, namely mCAD (g = 5), VSC (g = 8), HSC (g = 11), and
GSD (g = 19), extracted from reported biological processes. For each network
type, BEELINE used BoolODE [45] to generate simulated scRNA-seq datasets.
BoolODE is a popular scRNA-seq simulator that generates synthetic datasets
with given Boolean functions describing the regulation mechanisms. Then, it
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applies the Hill equation [19] and the chemical Langevin equation [30] to form a
system of ODEs and simulate the gene expression data. In this study, we used
10 datasets with c = 2000 cells for each type of network.

We compare our model with the GRN baselines on the BEELINE benchmark,
including PPCOR [28], LEAP [57], SCODE [36], GRISLI [3], GRNVBEM [49],
SINCERITIES [44], SINGE [11], PIDC [7], Scribe [47], GENIE3 [22], and GRN-
BOOST2 [38]. Among all listed baselines, only SCODE, GRNVBEM, SINCER-
ITIES and our scKAN can further determine the sign of edges (activation and
inhibition). Here, we excluded SCNS [64] as it requires prior knowledge of GRN,
which is not consistent with our research problem.

5.1 Experiment Setup

In the following experiments, the random train-test split ratio is set to 8 : 2.
Models were trained with 3,000 epochs using the Adam optimizer with a 10−4

learning rate and gradient clipping at 100. Mean squared error was used as the
loss function. Early stopping was applied when the gap between train and test
loss exceeded 0.0005 for 10 epochs. Although test loss was used in the decision
of early stopping, this does not cause label leakage because test loss is used to
detect overfitting and quantify the quality of fit on gene expression levels, and
the ground-truth GRN used for evaluation is still unseen by the model. Our
models were trained on a single NVIDIA V100 SXM2 GPU with 16GB memory,
while all baseline models were run on a 4.90 GHz 20 threads Intel i7-12700 CPU
with 64GB memory. We trained and tested our model on 10 different datasets
generated by BoolODE. For each cell p, we calculate the gradient of the learned
predictor and sparsify the adjacency matrix. The entries in the adjacency matrix
are calculated following Eqs. (8,9).

To align our research with the BEELINE benchmark, we used the same
datasets and optimized hyperparameter sets in all baseline models.

We evaluated all models using the AUROC and AUPRC following the BEE-
LINE setting. For a model output A ∈ Rg×g and a ground-truth network G ∈
[0, 1]g×g, we can count the true positive TP (t), true negative TN(t), false positive
FP (t) and false negative FN(t) edges under different thresholds t in A. AUROC
is defined by the area under the curve of true positive rate TPR(t) = TP (t)

TP (t)+FN(t)

against false positive rate FPR(t) = FP (t)
FP (t)+TN(t) ; Similarly, AUPRC is defined

by the area under the curve of precision P (t) = TP (t)
TP (t)+FP (t) against recall

R(t) = TP (t)
TP (t)+FN(t) :

AUROC =

∫ 1

0

TPR(FPR) dFPR, AUPRC =

∫ 1

0

P (R) dR, (10)

AUROC measures the model’s accuracy, while AUPRC measures the predic-
tion precision. Both range from 0 to 100%, with higher values indicating better
performance. A random model has an AUROC of 50%, and an AUPRC equal
to the network density.
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Fig. 2. Average AUROC (left) and AUPRC (right) of directed GRN inference models
with unsigned ground-truth on different datasets out of 10 runs. Synthetic and curated
datasets are separated by a vertical line.

5.2 Results

Directed unsigned GRNs. The performance comparison of the directed GRN
inference models with unsigned ground-truth on the BEELINE benchmark is
shown in Fig. 2. We observed that scKAN outperforms all other models in terms
of AUROC and AUPRC in most of the synthetic datasets, and scKAN has the
best average AUROC and AUPRC in all datasets. Notably, our model has much
higher AUPRC values in linear (LI) and linear long (LL) datasets, surpassing the
second-best model by 22.2% and 21.56%, respectively, suggesting that scKAN is
strong in identifying long-range dependencies. In curated datasets, scKAN also
reaches top-tier performance in AUROC and AUPRC.

Directed signed GRNs. The performance comparison of the directed GRN in-
ference models with signed ground-truth on the BEELINE benchmark is shown
in Fig. 3. We notice that SCODE and SINCERITIES generally have poor pre-
cision in most datasets. In contrast, scKAN demonstrates the highest accuracy
and precision in LI, LL, CY, and all curated datasets, surpassing the second-best
model from 5.40% to 28.37% in AUROC and from 1.97% to 40.45% in AUPRC.
However, scKAN faced difficulties in furcating (BF, BFC, TF) datasets. In Sec-
tion 6.2, we will justify that all OvR models are weak in furcating datasets with
concrete examples.

Scalability. We extracted the consensus GRN from the CollecTRI [41] database
and retained two communities with 71 and 104 genes. We used BoolODE to
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Fig. 3. Average AUROC (left) and AUPRC (right) of directed GRN inference models
with signed ground-truth on different datasets out of 10 runs.

Table 1. Average and standard deviation AUROC and AUPRC of directed GRN
inference models with unsigned and signed ground-truths in the scalability study out
of 10 runs. The best models in each dataset and metric are boldfaced.

Models AUROC (in %) AUPRC (in %)

71 genes 104 genes 71 genes 104 genes

Unsigned ground-truth

PPCOR 66.14±1.42 60.51±1.88 7.96±0.31 4.61±0.25
LEAP 74.44±0.62 63.86±0.88 15.46±0.48 3.82±0.07
SCODE 51.70±2.20 47.98±1.84 3.79±0.63 2.13±0.31
GRNVBEM 54.44±1.78 53.89±1.06 3.99±0.25 2.54±0.15
SINCERITIES 49.94±3.30 50.30±3.96 3.41±3.30 2.25±0.35
PIDC 74.39±1.12 66.53±0.92 16.46±0.54 9.78±0.29
Scribe 50.78±1.59 50.93±1.55 3.60±0.33 2.15±0.25
GENIE3 77.46±0.37 73.53±0.24 18.43±0.38 11.78±0.35
GRNBOOST2 75.74±1.42 67.59±1.00 15.77±0.96 7.62±0.46
scKAN (Ours) 69.65±1.33 69.68±1.29 13.92±0.63 7.25±0.67

Signed ground-truth

SCODE 45.87±1.58 45.42±1.86 1.65±0.19 0.99±0.08
GRNVBEM 48.26±2.40 51.14±1.57 1.81±0.15 1.23±0.07
SINCERITIES 55.26±1.77 53.20±1.95 2.10±0.36 1.23±0.11
scKAN (Ours) 63.80±1.06 62.55±1.39 8.09±0.42 4.27±0.46

generate 10 datasets for each community with 2,000 cells and compared scKAN
with the baselines in these datasets. GRISLI and SINGE hit memory and time
constraints and are excluded from the comparison.

The average and standard deviation of the AUROC and AUPRC are shown in
Table 1. We observed that SCODE, GRNVBEM, SINCERITIES, and Scribe are
not scalable to large datasets, as their AUROC and AUPRC values are close to
the random model. The performance of PPCOR, LEAP, and PIDC significantly
drops when scaling to 104 genes, while all OvR models perform similarly in two
large datasets. This validates the scalability of OvR models in large datasets.
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Fig. 5. Average AUROC (left) and AUPRC (right) of models in the ablation study on
different datasets out of 10 runs.

GENIE3 is the best performer of both metrics in the two datasets, but it
cannot infer edge types. scKAN is the only model that can infer edge types
(signs) among OvR models, and is the most scalable model among all signed
models with an AUROC of 63.18% and AUPRC of 6.18% on average. This again
showcases the scalability and accuracy of the family of OvR models.

We further summarize the model run times in Fig. 4. Because of each model’s
stochastic nature, model run times vary significantly for the same number of
genes and do not strictly increase as the number of genes increases. Our model
has a run-time of 176 seconds for datasets with 104 genes, similar to LEAP, and
is trendwise more scalable than GRNVBEM, SINCERITIES, and Scribe.
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5.3 Ablation Study

Compared with other OvR models, our model replaces the tree model with a
KAN model, an alternative to MLP, and replaces the importance score with
the predictor’s gradient. We conducted an ablation study to prove the neces-
sity of these modifications. Model performances under different configurations
of inferring directed and signed ground-truth networks are shown in Fig. 5.
KAN vs. MLP. We first compare a KAN predictor with an MLP predictor with
the same architecture, labeled ‘MLP (same arch.)’. For a fair comparison, we also
compare the KAN predictor with an MLP predictor with a similar number of
parameters by adjusting the layer width and depth, labeled as ‘MLP (width-
wise)’ and ‘MLP (depth-wise)’, respectively in Fig. 5. We observed a consistent
weakness in furcating datasets for all compared models in line with the claim in
Section 5.2, and nearly all MLP models are slightly inferior to the KAN model in
AUROC and AUPRC. In addition, the KAN model is more promising in curated
datasets, suggesting that the KAN model can better capture complex cellular
dynamics. This observation aligns with Wang et al. [63]’s conclusion that KAN
is more expressive than MLP under the same number of layers.
Gradient vs. explainable AI. Various XAI tools have been developed to
account for the contribution of each feature to the model prediction. Gradients
are fundamental in many XAI tools [58, 51, 27, 40]. In contrast, Shapley additive
explanations (SHAP) [33] is another popular model-agnostic tool that explains
the importance of each feature in model prediction. We replaced the calculated
gradient with SHAP values using the deep explainer and gradient explainer in
the SHAP library. Their performances are labeled ‘KAN (SHAP, deep)’ and
‘KAN (SHAP, grad)’ in Fig. 5.

Compared with scKAN explained by raw gradient values, although the deep
explainer is more accurate in furcating datasets, it is less precise and significantly
inferior in other datasets. This suggests that the predictor gradient is a better
choice than the SHAP values.

6 Discussion and Limitations

6.1 GRNs for Rare Cell Subtypes

Identifying GRNs in rare cell subtypes is highly valuable for pathology, as it
allows mechanistic understanding, diagnostic refinement, and therapeutic target
discovery for disease-driving cell populations. However, the low abundance of
these subtypes in scRNA-seq data makes it challenging to identify their GRNs.
GRNs inferred by GENIE3 and GRNBOOST2, in particular, are often domi-
nated by the majority cell types, leading to a loss of information on rare sub-
types. Conversely, we can evaluate the gradient at any cell sample from the
learned geometry of our scKAN model and obtain the GRN at single-cell resolu-
tion. Since our model gives a smooth geometry of the gene expression landscape,
the gradients preserve both global and local information about the dynamics.
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Fig. 6. UMAP visualization of the gene expression and gradient pattern colored by
pseudotime and gradient cluster. Inferred cell-type specific GRNs are shown in (c).

We visualized gene expression and gradient patterns in the bifurcating con-
verging (BFC) dataset using UMAP [37] in Fig. 6. We clustered the gradients
with DBSCAN [14] into 9 clusters as shown in Fig. 6(d), and the outliers are
isolated in group ‘-1’. We colored gene expression by clusters in Fig. 6(c), and it
shows that gradient clusters can identify different cell stages. For each cluster,
we inferred a cell-type-specific GRN and visualized the GRN in Fig. 6(c). Cell-
type-specific GRNs are significantly different in each cluster and identify key
drivers for bifurcating cell fates. This technique can be applied to the analysis of
rare cell types, providing a new perspective on the mechanism of rare cell types.

6.2 Weakness of OvR Models

We empirically demonstrated the capability and scalability of scKAN to infer
directed GRNs with activation and inhibition edges accurately and precisely.
Nevertheless, we observed a consistent weakness of GENIE3, GRNBOOST2 and
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Fig. 7. (a) Simulations of gene expression with blue and red branches. (b) Underlying
GRN of the 3-gene toy example.

scKAN in furcating datasets. In the following, we will justify that such weakness
is due to the nature of the OvR model.

Consider the following 3-gene toy example with cells on red (x, yr, zr) and
blue (x, yb, zb) branches visualized in Fig. 7(a):

yr = x+ ϵr, yb = −x+ ϵb, (11)

where x ∈ [0, 1] and ϵr, ϵb, zr, zb ∼ N (0, 0.1) are normal distributed. Genes x
and y are interrelated while gene z is isolated, so both branches have the same
GRN shown in Fig. 7(b).

For the dataset with both branches and the dataset with the red branch,
GENIE3 infers GRN both,GRN r, respectively:

GRN both =

 0 0.48 0.47
0.92 0 0.53
0.08 0.52 0

 , GRN r =

 0 0.92 0.58
0.92 0 0.42
0.08 0.08 0


We can observe that only GRN r is confident (> 0.9) for the regulations

x → y and y → x, while GRN both only identifies the regulation y → x. If we
only consider the red cells in Fig. 7(a), cells form a line from the x-y and y-x
planes, and GENIE3 can accurately capture the linear relationships. However,
when considering both red and blue cells, cells form a V-shape from the y-x
plane and a ‘<’-shape from the x-y plane. The former can be modeled by a
proper function, while the latter cannot because a single value x corresponds to
multiple y values. This explains why GRN both cannot detect x → y regulation.

Abstractly speaking, in an OvR model, the predictor fi is trained to predict
the expression of gene gi based on the expression of all other genes in the space
V\i. V\i can be viewed as the ‘shadow’ of the gene expression space V projected
on the i-th axis, and the OvR model fits a function to recover the height from the
shadow. In furcating datasets, the distribution of the expression data is divided
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into multiple branches, and the shadows of different branches overlap. For points
in this overlapping region, the gene expression of the i-th gene corresponds to
different values at each branch, which violates the function definition. This leads
to a consistent weakness of the OvR models in all furcating datasets.

6.3 Model Limitations

Despite the shared weakness of OvR models, we also acknowledge the following
limitations. First, we evaluated the performance of scKAN only on synthetic and
curated datasets, excluding real-world datasets. BEELINE relies on BoolODE
to generate the datasets, and the expression is not zero-inflated. Catering to
zero inflation requires special designs in our model. In addition, scKAN, as well
as other OvR models, cannot detect self-loops because the expression value of
gene i is excluded from the predictor fi. More importantly, OvR models ignore
the temporal information such as sampling time points and pseudotime, and the
inferred biological system is not identifiable. Prudence should be taken when
interpreting the inferred GRNs.

7 Conclusion and Future Work

In this work, we introduce a novel model, scKAN, to infer GRNs from scRNA-
seq data without prior knowledge. Our model is a generalization of the GENIE3
and GRNBOOST2 models. Our approach replaces the piecewise continuous tree
models with continuous KAN neural networks, which align with the Wadding-
ton landscape, capture the characteristics of the intrinsic data generation process
and ensure the continuity and smoothness of the gradients. Moreover, our model
allows inferring directed GRNs with activation and inhibition edges, which is in-
capable for current OvR models and most state-of-the-art GRN inference models.
We evaluated our model against other baselines on the BEELINE benchmark.
scKAN has achieved top-tier performance across various datasets, which shows
its capability, robustness and scalability. Furthermore, scKAN excels in precision
and inferring long-range dependencies, which are the primary challenges in GRN
inference. In addition, we also noticed the weakness of OvR models in furcating
datasets, and gave an intuitive example and explanations.

In the future, we will utilize higher-order derivatives of the predictors, which
encode more information from the cell dynamics, to infer GRNs. Besides, we will
evaluate our model on real-world zero-inflated gene expression and compare its
performance with other state-of-the-art models.

The code and datasets used in this study are publicly available at https:
//github.com/1250326/scKAN.
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