
Game-Based Verification of Multi-Party

Contract Signing Protocols

Ying Zhang1,2, Chenyi Zhang1, Jun Pang1, and Sjouke Mauw1

1 University of Luxembourg, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg
2 Shandong University, Jinan, 250101 China

Abstract. A multi-party contract signing (MPCS) protocol is used for a
group of signers to sign a digital contract over a network. We analyse the
protocols of Mukhamedov and Ryan (MR), and of Mauw, Radomirović
and Torabi Dashti (MRT), using the finite-state model checker Mocha.
Mocha allows for the specification of properties in alternating-time tem-
poral logic (ATL) with game semantics, and the model checking problem
for ATL requires the computation of winning strategies. This gives us an
intuitive interpretation of the verification problem of crucial properties of
MPCS protocols. We analyse the MR protocol with up to 5 signers and
our analysis does not reveal any flaws. MRT protocols can be generated
from minimal message sequences, depending on the number of signers.
We discover an attack in a published MRT protocol with 3 signers, and
present a solution for it. We also design a number of MRT protocols
using minimal message sequences for 3 and 4 signers, all of which have
been model checked in Mocha.

1 Introduction

The goal of a multi-party contract signing (MPCS) protocol is to allow a number
of parties to sign a digital contract over a network. Such a protocol is designed
as to ensure that no party is able to withhold his signature after having received
another party’s signature. A simple way to achieve this is to involve a trusted
third party (T). This trusted third party simply collects the signatures of all
signers and then distributes them to all parties. A major drawback of this ap-
proach is that the trusted third party easily becomes a bottleneck, since it will
be involved in all communications for all contracts. This problem is addressed
by the introduction of, so-called, optimistic multi-party contract signing proto-
cols [1]. The idea is that involvement of the trusted third party is only required
if something goes wrong, e.g. if one of the parties tries to cheat or if a non-
recoverable network error occurs. If all parties and the communication network
behave correctly, which is considered the optimistic case, the protocol terminates
successfully without intervention of the trusted third party.

MPCS protocols are supposed to satisfy three properties: fairness, abuse-
freeness and timeliness. Fairness means that each signer who sends out his sig-
nature has a means to receive all the other signers’ signatures. Abuse-freeness

guarantees that no signer can prove to an outside observer that he is able to

determine the result of the protocol. Timeliness ensures that each signer has the
capability to end infinite waiting.

Several optimistic contract signing protocols have been proposed, most of
which only focus on the special case of two parties [2, 3]. In 1999, Garay and
Mackenzie proposed the first optimistic contract signing protocol [4] with multi-
ple parties, which we call the GM protocol. Chadha, Kremer and Scedrov found
a flaw in the GM protocol for n ≥ 4, where n is the number of signers. They
revised the GM protocol by modifying one of its sub-protocols and proposed a
fixed protocol [5] in 2004 (which we call the CKS protocol).

Mukhamedov and Ryan later showed that the CKS protocol fails to satisfy
the fairness property for n ≥ 5 by giving a so-called abort-chaining attack. They
proposed a fixed protocol [6] in 2008 based on the CKS protocol (which we call
the MR protocol). Mukhamedov and Ryan proved that their protocol satisfies
fairness and claimed that it satisfies abuse-freeness and timeliness as well. They
also gave a formal analysis of fairness in the NuSMV model checker for 5 signers.

Using the notion of abort-chaining attacks, Mauw, Radomirović and Torabi
Dashti analysed the message complexity of MPCS protocols [7]. Their results
made it feasible to construct MPCS protocols excluding abort-chaining attacks
but with minimal messages, which we call the MRT protocols, based on so-called
signing sequences. They also gave an example protocol with 3 signers. However,
they only provided a verification of the protocol at a conceptual level.

In this paper, we follow the approach of Chadha, Kremer and Scedrov [5] to
model check the two recently proposed protocols, the MR and MRT protocols,
in Mocha [8]. Mocha can be used to model check properties specified in ATL [9].
This allows us to have a precise and natural formulation of desired properties
of contract signing, as the model checking problem for ATL requires the com-
putation of winning strategies. We model the MR protocol with up to 5 signers
and verify both fairness and timeliness properties, while Mukhamedov and Ryan
only analysed fairness of their protocol with 5 signers.

We clarify how to construct an MRT protocol from a minimal signing se-
quence. According to this methodology, we design a number of MRT protocols
for 3 and 4 signers, all of which have been model checked in Mocha. In particular,
we discover a fairness attack on the published MRT protocol with 3 signers [7]
and we present a solution to it. The fixed protocol is shown to satisfy fairness.

2 Preliminaries

This section describes the basic structure of an optimistic contract signing pro-
tocol with its underlying assumptions. A few cryptographic primitives are em-
ployed in such protocols which we only briefly introduce. We also explain the
security requirements associated with MPCS protocols.

2.1 Basic notions

An optimistic MPCS protocol generally involves a group of signers P1, . . . , Pn,
who want to sign a contract monitored by a trusted third party T . A signer

may be honest and thus strictly follow the protocol, or he may be dishonest
and deviate from the protocol in order to collude with other dishonest signers
to get undesirable advantages over the remaining signers. The structure of a
protocol consists of a main protocol and one or several sub-protocols. The main
protocol is executed by signers to exchange their promises at different levels and
signatures without the intervention from the trusted third party T . The sub-
protocols, which usually include an abort protocol and a resolve protocol, are
launched by a user Pi on contacting T to deal with awry situations.

Once having contacted T by initiating a sub-protocol, the signers would never
be allowed to proceed the main protocol any more. T makes a decision on basis
of the information contained in a request provided by a signer as well as all
previous requests that have been sent by other participants. A request consists
of the promises that the requesting signer has received so far, serving as a clue for
T to judge the signer’s position in the current protocol execution. On making a
decision, T presumes that all the signers are honest, unless the received requests
contradict, showing that someone has lied. A reply from T can be either an abort

confirmation or a contract signed by all the participants. After T has sent an
abort reply, she may later overturn that abort and reply with a signed contract
to subsequent requests if T detects that all the signers who have previously
contacted T are dishonest.3 However, once T has sent a signed contract, she will
have to stick to that decision for all subsequent requests. Without launching a
sub-protocol, a signer Pi quits a protocol if he simply follows the main protocol
till the end. Otherwise, Pi quits the protocol once a reply from T is received.

An important assumption of optimistic contract signing protocols is that all
communication channels between the signers and the trusted third party are
resilient, which means that messages sent over the channels are guaranteed to
be delivered eventually.

2.2 Cryptographic primitives

An optimistic MPCS protocol usually employs zero-knowledge cryptographic
primitives, private contract signatures (PCS) [4]. We write PCSPi

((c, τ), Pj , T)
for a promise made by Pi to Pj (i 6= j) on contract c at level τ , where τ indicates
the current level of a protocol execution where Pi makes the promise. A promise
is assumed to have the following properties.

– PCSPi
((c, τ), Pj , T) can only be generated by Pi and Pj .

– Only Pi, Pj and T can verify PCSPi
((c, τ), Pj , T).

– PCSPi
((c, τ), Pj , T) can be transformed into Pi’s signature only by Pi and T .

Intuitively, PCSPi
((c, τ), Pj , T) acts as a promise by Pi to Pj to sign the con-

tract c at level τ . However, the properties guarantee that Pj cannot use it to
prove to anyone except T that he has this promise. This is essential to achieve
abuse-freeness for MPCS protocols. Since these properties sufficiently describe
the purpose and use of this primitive, we will not discuss its implementation.

3 Otherwise T ’s overturn decision may impair fairness of an honest signer who has
previously received an abort reply.

2.3 Desirable properties

All contract signing protocols are expected to satisfy three security properties [6],
viz. fairness, abuse-freeness and timeliness.

Fairness. At the end of the protocol, either each honest signer gets all the others’
signatures, or no signer gets any signature. Fairness ensures that no signer can
get any valuable information without sending out his signature, and once a
signer sends out his signature, he will eventually get all the others’ signatures.
An abort chaining [6] is a sequence of abort and resolve messages to T in a
particular order, such that it enforces T to return an abort reply to an honest
user who has already sent out his signature. Abort-chaining attacks are a major
challenge to fairness, and were instrumental to deriving the resolve-impossibility

result for a trusted third party for a certain class of MPCS protocols [6].

Abuse-freeness. At any stage of the protocol, any set of signers are unable to
prove to an outside observer that they have the power to choose between aborting
the protocol and getting the signature from another signer who is honest and
optimistically participating in the protocol. Intuitively, a protocol not being
abuse-free implies that some of the signers have an unexpected advantage over
other signers, and therefore they may enforce others to compromise on a contract.

Timeliness. Each signer has a solution to prevent endless waiting at any time.
That means no signer is able to force anyone else to wait forever.

3 Formal Model

In this section, we discuss how to model protocols in Mocha using a concurrent
game structure, and how to express specifications for the desired properties in
alternating-time temporal logic (ATL) with game semantics. We start with the
introduction of concurrent game structures and ATL [9].

3.1 Concurrent game structures and ATL

A (concurrent) game structure is a tuple S = 〈k,Q,Π, π, d, δ〉 with components:

– k ∈ N
+ is the number of players, identified with the numbers 1, . . . , k.

– Q is a finite set of states.
– Π is a finite set of propositions.
– π : Q → 2Π is a labeling function. For each state q ∈ Q, a set π(q) ⊆ Π of

propositions are true.
– d : {1, . . . , k}×Q → N

+. da(q) represents the number of available moves for
player a ∈ {1, . . . , k} at state q ∈ Q. We identify the moves of player a at
state q with the numbers 1, . . . , da(q).

– δ is a transition function. For each q ∈ Q and each move vector 〈j1, . . . , jk〉,
δ(q, j1, . . . , jk) is the state that results from q if every player a ∈ {1, . . . , k}
chooses move ja ≤ da(q).

The temporal logic ATL (Alternating-time Temporal Logic) is defined with
respect to a finite set Π of propositions and a finite set Σ = {1, . . . , k} of players.
An ATL formula is one of the following:

– p for propositions p ∈ Π.
– ¬φ or φ1 ∨ φ2, where φ, φ1, and φ2 are ATL formulas.
– 〈〈A〉〉# φ, 〈〈A〉〉2φ, or 〈〈A〉〉φ1Uφ2, where A⊆ Σ is a set of players, and φ, φ1

and φ2 are ATL formulas.

We interpret ATL formulas over the states of a concurrent game structure
S that has the same propositions and players. The labeling of the states of S
with propositions is used to evaluate the atomic formulas of ATL. The logical
connectives ¬ and ∨ have the standard meaning.

In order to give the definition of the semantics of ATL, we first give the
notion of strategies. Consider a game structure S = 〈k,Q,Π, π, d, δ〉. A strategy

for player a ∈ Σ is a mapping fa : Q+ → N such that λ is a non-empty
finite state sequence and fa(λ) ≤ da(q) if λ’s last state is q. In other words, a
strategy fa represents a set of computations that player a can enforce. Hence,
FA = {fa | a ∈ A} induces a set of computations that all the players in A can
cooperate to enforce. Given a state q ∈ Q, out(q, FA) is the set of computations
enforced by the set of players A applying strategies in FA. Write λ[i] for the i-th
state in the sequence λ starting from 0.

We are now ready to give the semantics of ATL. We write S, q |= φ to indicate
that the state q satisfies the formula φ in the structure S. And if S is clear from
the context we can omit S and write q |= φ. The satisfaction relation |= is defined
for all states q of S inductively as follows:

– q |= p, for propositions p ∈ Π, iff p ∈ π(q).
– q |= ¬φ iff q 6|= φ.
– q |= φ1 ∨ φ2 iff q |= φ1 or q |= φ2.
– q |= 〈〈A〉〉# φ iff there exists a set FA of strategies, one for each player in A,

such that for all computations λ ∈ out(q, FA), we have λ[1] |= φ.
– q |= 〈〈A〉〉2φ iff there exists a set FA of strategies, one for each player in A,

such that for all computations λ ∈ out(q, FA) and for all positions i ≥ 0, we
have λ[i] |= φ.

– q |= 〈〈A〉〉φ1Uφ2 iff there exists a set FA of strategies, one for each player
in A, such that for all computations λ ∈ out(q, FA), there exists a position
i ≥ 0 such that λ[i] |= φ2 and for all positions 0 ≤ j < i, we have λ[j] |= φ1.

Note that 3φ can be defined as true Uφ. The logic ATL generalises Computation
Tree Logic (CTL) [10] on game structures, in that the path quantifiers of ATL
are more general: the existential path quantifier ∃ of CTL corresponds to 〈〈Σ〉〉,
and the universal path quantifier ∀ of CTL corresponds to 〈〈∅〉〉.

3.2 Modelling MPCS protocols in Mocha

Mocha [8] is an interactive verification environment for the modular and hierar-
chical verification of heterogeneous systems. Its model framework is in the form

of reactive modules [11]. The states of a reactive module are determined by vari-
ables and are changed in a sequence of rounds. Mocha can check ATL formulas,
which express properties naturally as winning strategies with game semantics.
This is the main reason we choose Mocha as our model checker in this work.

Mocha provides a guarded command language to model the protocols, which
uses the concurrent game structures as its formal semantics. The syntax and
semantics of this language can be found in [8]. Intuitively, each player a ∈ Σ
conducts a set of guarded commands in the form of guardξ → updateξ. The
update step is executed by each player choosing one of its commands whose
boolean guard evaluates to true. The next state combines the outcomes of the
guarded commands chosen by the players.

We now describe how to model MPCS protocols in detail, following [5]. Each
participant is modelled as a player using the above introduced guarded command
language. In order to model that a player could be either honest or malicious,
for each player Pi we build a process PiH, which honestly follows the steps of
his role in the protocol, and another process Pi, which is allowed to cheat. An
honest signer only sends out a message when the required messages according
to the protocol are received, i.e., he faithfully follows the protocol all the time.
A dishonest signer may send out a message if he gets enough information for
generating the message. He can even send messages after he is supposed to stop.
The trusted third party T is modelled to be honest throughout the time. We
express the communicational messages as shared boolean variables. The variables
are false by default and set to true when they are sent out by the signers.

For signers Pi and Pj , a variable Pi Sj represents that Pi has got Pj ’s sig-
nature. Since Pi continues to hold Pj ’s signature once Pi gets it, we model that
once Pi Sj is set to true its value would never be changed thereafter. For each
Pi, a variable Pi stop models whether signer Pi has quitted the protocol. Since
¬Pi stop is one of conditions within each Pi’s guarded command, Pi would never
change any of its variables once Pi stop is set to true. The integer Pr i j L = τ
represents that Pi has sent out his τ -th level promise to Pj . In particular for
MRT protocols, the integer Pr i k j L = τ represents that Pi has forwarded
Pk’s τ -th level promise to Pj . All Mocha models can be found at [12].

3.3 Expressing properties of MPCS protocols in ATL

We formalise both fairness and timeliness as in [5].

Fairness. A protocol is fair for signer Pi can be expressed as: if any signer obtains
Pi’s signature, then Pi has a strategy to get all the others’ signatures. In ATL,
it can be formalised as follows:

fairnessPi ≡ ∀2 ((
∨

1≤j 6=i≤n

Pj Si) ⇒ 〈〈PiH〉〉3 (
∧

1≤j 6=i≤n

Pi Sj)).

Timeliness. At any time, every signer has a strategy to prevent endless waiting.
Signer Pi’s timeliness is expressed as:

timelinessPi ≡ ∀2 (〈〈PiH〉〉3 Pi stop).

Chadha, Kremer and Scedrov also gave an invariant formulation of fairness
for Pi as follows:

invfairnessPi ≡ ∀2 (Pi stop ⇒ ((
∨

1≤j 6=i≤n

Pj Si) ⇒ (
∧

1≤j 6=i≤n

Pi Sj)))

They proved that if a contract signing protocol interpreted as a concurrent game
structure satisfies timelinessPi for Pi then the protocol satisfies fairnessPi iff it
satisfies invfairnessPi [5, Thm. 3].4

4 Model Checking the MR Protocol

In this section, we give the description of the MR protocol [6] proposed by
Mukhamedov and Ryan. We build models using a program for any number n of
signers, and model check both fairness and timeliness for the models with up to
5 signers in Mocha.

4.1 Description of the MR protocol

The MR protocol is based on PCSs and consists of one main protocol, one abort

sub-protocol and one resolve sub-protocol.

Main protocol The main protocol consists of ⌈n/2⌉ + 1 rounds for n signers,
and requires n(n − 1)(⌈n/2⌉ + 1) messages for the optimistic execution. In each
round τ (τ ≤ ⌈n/2⌉), a signer Pi starts with waiting for the τ -level promises from
lower signers Pj (j < i). After receiving all the lower signers’ promises, he sends
out his τ -level promise to all the higher signers Pk (k > i) and then waits for the
promises from higher signers. On receipt of all higher signers’ promises, Pi then
sends out his own τ -level promise to lower signers and finishes his current round.
If Pi has received the (⌈n/2⌉ + 1)-th level promises and signatures from all the
lower signers, he broadcasts his (⌈n/2⌉+1)-th level promise and signature to all
the other signers.

If Pi does not receive all the expected messages, he may quit the protocol, or
send an abort or a resolve request to the trusted third party T , according to his
current position in the main protocol. The abort request has the following form:

SPi
((c, Pi, (P1, . . . , Pn), abort))

The resolve request is as follows:

SPi
({PCSPj

((m, τj), Pi, T)}j∈{1,...,n}\{i}, SPi
(m, 0))

where for j > i, τj is the maximal level promise received from all the signers Pj′

such that j′ > j; for j < i, τ is the maximal level promise received from all the
signers Pj′ such that j′ < j.

4 For MRT protocols with 4 signers, we verify invfairnessPi instead of fairnessPi on
their Mocha models after we have successfully checked timeliness for Pi.

τj=

{

max{τ | ∀j′ > i, Pi has received PCSPj′ ((m,τ),Pi,T)} if j > i

max{τ | ∀j′ < i, Pi has received PCSPj′ ((m,τ),Pi,T)} if j < i

Sub-protocols T maintains a boolean variable validated to indicate whether
T has ever replied with a full signed contract. T uses a set S(c) to record all
the signers which have contacted T and received an abort reply. T also controls
two variables hi(c) and ℓi(c) for each Pi to record Pi’s executing position at the
moment Pi contacts T . The variable hi(c) indicates the highest level promise Pi

has sent to all the signers Pj where j > i, and ℓi(c) indicates the highest level
promise Pi has sent to all the signers Pj where j < i.

Abort sub-protocol. When receiving an abort request from Pi, T first checks if
she has ever sent a signed contract. If not, i.e., validated is false, T adds i into
S(c), sends Pi an abort reply, and stores the reply. Besides, T sets hi(c) = 1 and
ℓi(c) = 0. Otherwise, T sends a signed contract to Pi.

Resolve sub-protocol. When receiving a resolve request form Pi, T checks if it is
the first request she has ever received. If it is, T simply replies Pi with a signed
contract and sets validated to true. T judges Pi’s current execution position and
updates hi(c) and ℓi(c) according to that position. If it is not the first request,
T checks if she has ever sent a signed contract by checking if validated is true.
(1) If yes, T sticks to the decision and replies Pi with a signed contract and
updates hi(c) and ℓi(c). (2) If not, that means T has ever replied an abort to
some signer. In order to make a decision on whether to stick to the abort or to
overturn it, T checks if it is the case that all signers in S(c) are cheating. That
is, for each j ∈ S(c), T compares τj from Pi’s request and hj(c) and ℓj(c) from
T ’s record to check if Pj continues the main protocol after receiving an abort
reply. If all j ∈ S(c) are dishonest, T overturns her abort decision, and replies
Pi with a signed contract, at the same time updating hi(c) and ℓi(c). Otherwise,
T sticks to her abort reply to Pi and updates hi(c) and ℓi(c).

4.2 Automatic analysis

We now give the analysis results of the MR protocol. We have verified fairness
and timeliness of the MR protocol with 2, 3 and 4 signers, and our analysis did
not reveal any flaw.

In our analysis of the MR protocol with 5 signers, timeliness can be checked
in Mocha. While for fairness, it seems infeasible for Mocha to verify. So instead
of building one entire model covering all possible behaviours, we built a number
of specific models, each of which focuses on one certain possible abort-chaining
attack scenario. For instance, in order to check if there is an abort-chaining
attack in which P1 aborts first and cooperates with P2, P3 and P4 to get honest
P5’s signature, we built a model where only P5 is honest, P1 will abort firstly
and the other dishonest signers only resolve rather than abort. In this way, we
reduce the size of the state space significantly when checking fairness.5

5 In the future, we want to apply this technique to even larger protocol instances.

We explain that the above checks can cover all possible abort-chaining scenar-
ios (in case of 5 signers). As mentioned in Sect. 2.3, an abort-chaining attack is
achieved by collaborative malefactors to enforce an aborting outcome after they
obtain the honest signer’s signature. We use Mi (i ∈ N) to indicate a set consist-
ing of dishonest signers. Intuitively, if M1 ⊆ M2, and M2 is not able to achieve an
abort-chaining attack, then neither is M1. So for the MR protocol with 5 signers,
we only need to check scenarios where one of the signers is the victim, and all
the other 4 signers are dishonest and collude to cheat. If there does not exist
an abort-chaining attack for such scenario, then there does not exist an abort-
chaining attack for a scenario with fewer dishonest signers. Since each abort-
chaining attack starts with some dishonest signer contacting T with an abort
reply, and ends up with the victim signer sending out his signature, we choose
one signer to abort in our model, and choose another signer to be the victim
from the last 4 signers. For the MR protocol with 5 signers, only signers P1, P2,
P3 and P4 have the possibility to abort. We use iAjH(i ∈ [1, 4], j ∈ [1, 5], i 6= j)
to indicate a model in which Pi aborts and Pj is the victim. So, in total we get
16 possible attack scenarios to check. Ultimately, the analysis result shows that
no abort-chaining attack is detected for the MR protocol with 5 signers.

If no one aborts, an honest signer can always get other signers’ signature by
simply sending a resolve request to T . This means our analysis of fairness in
Mocha is exhaustive. A formal correctness argument of our reasoning is post-
poned for future research.

Mukhamedov and Ryan have shown that the CKS protocol [5] fails to satisfy
the property of fairness with n ≥ 5. They propose a new protocol [6] and give
its formal analysis in the model checker NuSMV [13] for 5 signers. They split
fairness into two sub-properties in order to cover all possible scenarios, for which
it is necessary to go through a number of cases. ATL has the advantage to express
fairness in terms of strategies, so that our fairness specifications turn out more
natural than are definable in CTL [10]. Comparing to Mukhamedov and Ryan’s
work, we reduce the verification problem of fairness on the system model level
instead of decomposing specifications.

5 Model Checking MRT Protocols

The main result of Mauw, Radomirović and Torabi Dashti [7] makes it feasible
to construct MPCS protocols excluding abort-chaining attacks with minimal
communication messages. We first describe a methodology for designing an MRT
protocol in Sect. 5.1. The description of the message order in the derived protocol
is fully determined as in [7]. However, since Mauw, Radomirović and Torabi
Dashti only gave a high-level description of the message contents, we make the
underlying assumptions precise. In Sect. 5.2, we design a family of MRT protocols
and give their analysis in Mocha. Our model checking results reveal an abort-
chaining attack on an example protocol with 3 signers described in [7, Sect. 7],
for which we propose a fix based on an important assumption that was not made
explicit in the original paper.

Fig. 1. MRT protocols with 3 signers (the left one is based on the signing sequence
12 | 3121 | 3212, the right one describes the protocol in [7]).

5.1 Design methodology of MRT protocols

An MRT protocol defines a sequence of messages m1,m2, . . . ,mℓ to be exchanged
between a group of n signers in the main protocol, where every mi is supposed
to be received before mj is sent out if i < j. The principles of MRT protocols are
exactly those of MR, except that we have the following additional assumptions.

1. In each step a signer sends out message mi (1 ≤ i ≤ ℓ) to another signer.
2. The receiver of mi is the sender of mi+1, where i < ℓ.
3. The receiver of each message is allowed to have the most recent promises

(signatures) of all the other signers, provided that they have ever sent out
promises (signatures). That is, a sender may need to forward up to n − 2
promises of other signers besides his own promise.

Based on the assumptions, an MRT protocol can be regarded as a list of the
indices of the signers in which order they send their messages. Such a list is
called a signing sequence.

A signing sequence α for an MRT protocol with signers P1, . . . , Pn can be
divided into three phases. In the initial phase, the first n − 1 signers send out
their promises according to the first n − 1 distinct elements of α. The middle

phase is initiated by a (first level) promise of the signer who was missed out in
the initial phase, followed by a sequence of numbers indicating the particular
order of further promise exchanges. In the end phase the signers exchange their
signatures. A typical signing sequence for n = 5 is of the following form.

1234 | 543212345432 | 12345123

From the example one may easily observe that the end phase needs to be at
least of length 2n− 2, in that the first n numbers (as a permutation) are for all
the signers to send out their signatures, and the remaining n − 2 messages are

necessary to further distribute the signatures. The last receiver is implicit in a
sequence but can be uniquely determined, e.g., signer P4 in the above example.

An MRT protocol does not explicitly distinguish abort and resolve, i.e., every
request to the trusted third party T is a resolve. It is obvious that if a signer in
the initial phase sends a request to T , an abort will always be replied. However in
the middle phase and end phase, T will have to make a decision based on whether
all the previously requested signers have been dishonest. A major contribution
of [7] is showing that a protocol generated by a signing sequence α is free of abort
chaining attacks iff α’s middle phase together with the first n elements from its
end phase contains all permutations of the set {1, . . . , n}. Therefore, finding the
shortest sequence containing all permutations yields a solution to minimize the
number of message exchanges in this particular class of protocols.

To design an MRT protocol for n signers, we first find a shortest sequence α
containing all permutations of the set {1, . . . , n}, using Adleman’s algorithm [14].
This sequence serves as the middle phase and partial end phase of a signing
sequence. To complete the end phase, we append more indices of the signers at
the end of α such that the end phase is able to distribute all the signatures to all
signers. The initial phase can be obtained simply by pre-pending a sequence of
length n − 1 to α to construct a full permutation at the beginning. There exist
7 (isomorphically) distinct shortest sequences which contain all permutations in
{1, 2, 3} and they are presented below.6

➊ 3123 | 123 ➋ 3121 | 321 ➌ 3123 | 132 ➍ 31323 | 13
➎ 31321 | 31 ➏ 3123 | 213 ➐ 3121 | 312

The symbol ‘|’ is used to separate different phases in the final signing sequence.
Taking sequence ➋ as an example. First we complete the end phase by appending
a 2 in the end. After adding the initial phase 12 at the beginning, we get a
complete signing sequence 12 | 3121 | 3212. The main protocol derived from this
signing sequence is depicted in the left-hand side of Fig. 1.7 Note that a shortest
sequence containing all permutations does not necessarily give rise to a protocol
with minimal messages: sequence ➍ requires appending two numbers in the end
phase for completing the final signature distribution. For 4 signers, there are 9
distinct sequences modulo isomorphism:

➀ 42314234 | 1243 ➁ 42314234 | 1234 ➂ 42314234 | 1324
➃ 42314324 | 1234 ➄ 42314324 | 1342 ➅ 42314324 | 1324
➆ 42312432 | 1423 ➇ 42312432 | 1432 ➈ 42312432 | 1342

Fig. 2 shows a protocol designed from sequence ➁.

5.2 Design and verification of MRT protocols

In this section, we design a number of MRT protocols based on the methodology
in Sect. 5.1. Each MRT protocol consists of a main protocol and a resolve sub-

6 Sequence ➊ determines the example protocol in [7, Sect. 7].
7 We circle the positions where a signer is allowed to send a request to T . prτ (c, i) and

s(c, i) denote Pi’s τ -level promise and Pi’s signature on c, respectively.

Fig. 2. An MRT protocol with 4 signers based on the sequence 123 | 42314234 | 123432.

protocol. Similar to the MR protocol, the MRT protocols assume resilient com-
munication channels and private contract signatures (PCS). We have modelled
and verified fairness and timeliness properties of the MRT protocols generated
from all 7 shortest sequences for 3 signers. As for 4 signers, we verified the proto-
cols generated from sequence ➁, sequence ➃ and sequence ➆ as aforementioned.
We briefly present our modelling of MRT protocols as follows.

Main protocol. The signers send and receive messages in the order specified
by a signing sequence which is generated from a shortest sequence containing
all permutation as introduced before. Upon receipt of a message containing all
required information, a signer Pi generates a message consisting of all the up-
to-date promises and signatures and sends it to the next designated receiver. If
Pi does not receive the expected message, he may quit the protocol if he has
not sent out any messages yet, or he may start the resolve protocol by sending
a resolve request to T . The request is in the form of {dispute, i,Hi, c}i, where
dispute is a reserved keyword indicating Pi is contacting T for intervention, and
Hi is Pi’s history including all the messages he has sent or received so far, which
gives T sufficient information to judge Pi’s current position in an execution.
The identifier c is meant to uniquely identify this contract signing session that
includes the contract, the signing partners and the contract text. Pi’s request
does not indicate whether Pi asks T to abort or resolve. It is T ’s responsibility
to make a decision and to reply with an abort or a signed contract.

Resolve Sub-protocol. T maintains a tuple 〈c, status〉 in her database indicating
a list of signers who have requested so far. Together with the history Hi of each

received request, T is able to make a decision on whether to reply with an abort
or a signed contract. The reasoning patterns of T in the sub-protocols of MRT
are very similar to that of the MR protocol: a signer is considered dishonest if
he is shown by another signer’s request to have continued in the main protocol
after having sent a request to T . However in the MRT protocols, different signers
may have different promise levels at a particular position, which are induced by
the signing sequences of the main protocols. As a consequence, a sub-protocol
of MRT has to be slightly adjusted from that of MR, and the sub-protocols may
differ from each other.

5.3 An attack on the example protocol

Our analysis in Mocha reveals an abort chaining attack in the example MRT pro-
tocol with 3 signers in [7]. This is due to that the protocol does not strictly follow
the methodology as described in Sect. 5.1. Here we also present a simple fix.

The protocol with its attack scenario is depicted in Fig. 1 (right). The abort-
chaining attack is highlighted as shadowed circles. In this scenario, P1 and P3

are dishonest and collude to obtain P2’s signature. The attack is achieved as
follows, where promτ (c, i) denotes the τ -level promise of Pi on contract c:

– P1 sends his first message out, and then contacts T with H1 = {prom1(c, 1)},
by which T presumes P1 is in the initial phase, and replies with an abort at
the same time storing 〈c, (1 : {prom1(c, 1)})〉 into her database. After having
contacted T , P1 continues in the main protocol till the end.

– P3 contacts T at the position of the first highlighted R circle with H3 =
{prom1(c, 1), prom1(c, 2), prom1(c, 3)}. This message does not reveal that
P1 is continuing the main protocol, thus T also replies with an abort and
stores 〈c, (3 : {prom1(c, 1), prom1(c, 2), prom1(c, 3)})〉 into her database. Af-
ter having contacted T , P3 continues in the main protocol up to the receipt
of P2’s signature.

– P2 faithfully follows the main protocol till the end. After sending out his
signature, P2 will never receive P3’s signature. Then P2 contacts T with H2 =
{prom1(c, 1), prom1(c, 2), prom1(c, 3), prom2(c, 1), prom2(c, 2), sig(c, 1),
sig(c, 2)}. On receipt of such a request, T is able to deduce that P1 has been
dishonest. However, T is unable to conclude that P3 is cheating, because
P3’s second level promise was not forwarded by P1 according to the protocol
design as shown in [7, Sect. 7].

The flaw of this protocol is due to a violation of assumption 3 in Sect. 5.1.
In order to fix the problem, we change P1’s last message from {sig(c, 1)} into
{sig(c, 1), prom2(c, 3)}, i.e., P1 is required to forward all the up-to-date promises
and signatures in his hand to P2. With P3’s second level promise in H2, T is able
to find out that P3 is dishonest. Therefore, T can overturn her abort decision
and guarantee fairness for P2.

6 Discussion and Conclusion

In this paper, we have used the model checker Mocha to analyse two types of
MPCS protocols – the MR protocol [6] and a number of MRT protocols [7].8

Mocha allows one to specify properties in ATL which is a branching-time tempo-
ral logic with game semantics, and the model checking problem for ATL requires
the computation of winning strategies. Thus the use of Mocha allows us to have
a precise and natural formulation of desired properties of contract signing.

Mukhamedov and Ryan showed that the CKS protocol is not fair for n ≥ 5
by giving an abort-chaining attack. The fairness of their fixed protocol [6] has
been analysed in NuSMV for 5 signers. Instead, we modelled the MR protocol
in Mocha with up to 5 signers and both fairness and timeliness properties have
been checked. The formulation of fairness in ATL as winning strategies is model
independent, while Mukhamedov and Ryan have to split fairness into two CTL
sub-properties in order to cover all possible scenarios, for which it is necessary
to go through a number of cases (see [6], Sect. 7).

The main result of Mauw, Radomirović and Torabi Dashti [7] made it feasible
to construct fair MPCS protocols with a minimal number of messages. Their
main theorem [7] states that there is a fair signing sequence of length n2 − n +
3, where n is the number of signers in an MPCS protocol. This fair sequence
must contain all permutations of {1, . . . , n} as sub-sequences, and it can be
transformed back into an MPCS protocol of length n2+1. However, the resulting
MPCS protocol is only free of abort-chaining attacks, and it is merely conjectured
that this implies fairness. We described how to derive an MR protocol from a
minimal signing sequence explicitly. Following this methodology, we designed a
number of MRT protocols for 3 and 4 signers, all of which have been checked in
Mocha. In particular, we discovered an abort-chaining attack in the published
MRT protocol with 3 signers [7]. The flaw is due to a mistake in the protocol
design. We also presented a solution to it, and the fixed protocol is shown to
satisfy fairness in Mocha.

Chadha, Kremer and Scedrov used Mocha to check abuse-freeness in the GM
protocol and the CKS protocol, and found a vulnerability in the first protocol [5].
The vulnerability is due to the fact that T ’s reply to a signer’s abort or resolve
request contains additional information, which can be used by the signer as a
proof for an outside challenger. Their fix is to exclude the additional information
from T ’s replies. The MR protocol uses similar abort and resolve sub-protocols.
Mukhamedov and Ryan claimed that their protocol is abuse-free because of the
use of PCS. However, the situation with MRT protocols is different: a single
signer not only sends out his own promise to the intended receiver, but forwards
the other signers’ promises. It might give a coalition of signers an advantage
to the remaining signers. However, the advantage has to be provable. How to
formalise abuse-freeness in a precise and correct way is a challenging research
topic [15–17]. Our immediate future work is to analyse abuse-freeness in the
MRT protocols; either we prove the designed MRT protocols abuse-free or we

8 All Mocha models and ATL properties can be found at [12].

can use the built models to identify a point that a coalition of signers have a
provable advantage against an honest signer. In this paper, we have verified pro-
tocols with a quite limited number of signers (up to five), and the verification of
timeliness properties in Mocha usually took minutes while for fairness properties
it might need a number of days. Another future direction is to study abstract
interpretation [18] in order to analyse the models in Mocha with more signers.

Acknowledgement. We thank Saša Radomirović for many helpful discussions.

References

1. Asokan, N., Waidner, M., Schunter, M.: Optimistic protocols for fair exchange. In:
Proc. CCS, ACM (1997) 7–17

2. Asokan, N., Shoup, V., Waidner, M.: Optmistic fair exchange of digital signatures.
Selected Areas in Communications 18(4) (2000) 591–606

3. Kremer, S., Markowitch, O., Zhou, J.: An intensive survey of fair non-repudiation
protocols. Computer Communications 25(17) (2002) 1606–1621

4. Garay, J.A., MacKenzie, P.D.: Abuse-free multi-party contract signing. In: Proc.
PODC. LNCS 1693., Springer (1999) 151–165

5. Chadha, R., Kremer, S., Scedrov, A.: Formal analysis of multi-party contract
signing. J. Autom. Reasoning 36(1-2) (2006) 39–83

6. Mukhamedov, A., Ryan, M.D.: Fair multi-party contract signing using private
contract signatures. Inf. Comput. 206(2-4) (2008) 272–290

7. Mauw, S., Radomirović, S., Torabi Dashti, M.: Minimal message complexity of
asynchronous multi-party contract signing. In: Proc. CSF, IEEE CS (2009) 13–25

8. Alur, R., Henzinger, T.A., Mang, F.Y.C., Qadeer, S., Rajamani, S.K., Tasiran,
S.: Mocha: Modularity in model checking. In: Proc. CAV. LNCS 1427., Springer
(1998) 521–525

9. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5) (2002) 672–713

10. Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer
Science (B), MIT Press (1990) 955–1072

11. Alur, R., Henzinger, T.A.: Reactive modules. Formal Methods in System Design
15(1) (1999) 7–48

12. Zhang, Y., Zhang, C., Pang, J., Mauw, S.: Game-based verification of multi-party
contract signing protocols – Mocha models and ATL properties (2009) Available
at http://satoss.uni.lu/members/jun/mpcs/.

13. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: An open source tool for symbolic
model checking. In: Proc. CAV. LNCS 2404., Springer (2002) 359–364

14. Adleman, L.: Short permutation strings. Discrete Mathematics 10 (1974) 197–200
15. Chadha, R., Mitchell, J.C., Scedrov, A., Shmatikov, V.: Contract signing, opti-

mism, and advantage. J. Log. Algebr. Program. 64(2) (2005) 189–218
16. Kähler, D., Küsters, R., Wilke, T.: A Dolev-Yao-based definition of abuse-free

protocols. In: Proc. ICALP. LNCS 4052., Springer (2006) 95–106
17. Cortier, V., Küsters, R., Warinschi, B.: A cryptographic model for branching time

security properties - the case of contract signing protocols. In: Proc. ESORICS.
LNCS 4734., Springer (2007) 422–437

18. Henzinger, T.A., Majumdar, R., Mang, F.Y.C., Raskin, J.F.: Abstract interpreta-
tion of game properties. In: Proc. SAS. LNCS 1824., Springer (2000) 220–239

