
Verification of Functional and Non-functional
Requirements of Web Service Composition ?

Manman Chen1,Tian Huat Tan1, Jun Sun2,Yang Liu3, Jun Pang4, Xiaohong Li5

1 School of Computing, National University of Singapore
{chenman,tianhuat}@comp.nus.edu.sg
2 Singapore University of Technology and Design

sunjun@sutd.edu.sg
3 Nanyang Technological University

yangliu@ntu.edu.sg
4 Université du Luxembourg

jun.pang@uni.lu
5 Tianjin University

xiaohongli@tju.edu.cn

Abstract. Web services have emerged as an important technology nowadays.
There are two kinds of requirements that are crucial to web service composition,
which are functional and non-functional requirements. Functional requirements
focus on functionality of the composed service, e.g., given a booking service,
an example of functional requirements is that a flight ticket with price higher
than $2000 will never be purchased. Non-functional requirements are concerned
with the quality of service (QoS), e.g., an example of the booking service’s non-
functional requirements is that the service will respond to the user within 5 sec-
onds. Non-functional requirements are important to web service composition, and
are often an important clause in service-level agreements (SLAs). Even though
the functional requirements are satisfied, a slow or unreliable service may still not
be adopted. In our paper, we propose an automated approach to verify combined
functional and non-functional requirements directly based on the semantics of
web service composition. Our approach has been implemented and evaluated on
the real-world case studies, which demonstrate the effectiveness of our method.

1 Introduction

Based on Service Oriented Architecture (SOA), Web services make use of open stan-
dards, such as WSDL [1] and SOAP [2], that enable the interaction among hetero-
geneous applications. A real-world business process may contain a set of services. A
web service is a single autonomous software system with its own thread of control. A
fundamental goal of web services is to have a collection of network-resident software
services, so that it can be accessed by standardized protocols and integrated into appli-
cations or composed to form complex services which are called composite services. A

? This research is supported in part by Research Grant IDD11100102 of Singapore University of
Technology and Design, IDC and MOE2009-T2-1-072 (Advanced Model Checking Systems).

composite service is constructed from a set of component services. Component services
have their interfaces and functionalities defined based on their internal structures. While
the technology for creating services and interconnecting them with a point-to-point ba-
sis has achieved a certain degree of maturity, there is a challenge to integrate multi-
ple services for complex interactions. Web service composition standards have been
proposed in order to address this challenge. The de facto standard for Web service
composition is Web Services Business Process Execution Language (WS-BPEL) [3].
WS-BPEL is an XML-based orchestration business process language. It provides basic
activities such as service invocation, and compositional activities such as sequential and
parallel composition to describe composition of web services. BPEL is inevitably rich
in concurrency and it is not a simple task for programmers to utilize concurrency as
they have to deal with multi-threads and critical regions. It is reported that among the
common bug types concurrency bugs are the most difficult to fix correctly, the statistic
shows that 39% of concurrency bugs are fixed incorrectly [4]. Therefore, it is desirable
to verify web services with automated verification techniques, such as model check-
ing [5].

There are two kinds of requirements of web service composition, i.e., functional
and non-functional requirements. Functional requirements focus on the functionalities
of the web service composition. Given a booking service, an example of functional re-
quirement is that a flight ticket with price higher than $2000 will never be purchased.
The non-functional requirements are concerned with the Quality of Service (QoS).
These requirements are often recorded in service-level agreements (SLAs), which is
a contract specified between service providers and customers. Given a booking service,
an example of non-functional requirements is that the service will respond to the user
within 5 ms. Typical non-functional requirements include response time, availability,
cost and so on. However, it is difficult for service designers to take the full considera-
tion of both functional and non-functional requirements when writing BPEL programs.

Model checking is an automatic technique for verifying software systems [5], which
helps find counterexamples based on the specification at the design time so that it could
detect errors and increase the reliability of the system at the early stage. Currently, in-
creasing number of complex service processes and concurrency are developed on web
service composition. Hence, model checking is a promising approach to solve this prob-
lem. Given functional and non-functional requirements, existing works [6–9] only focus
on verification of one aspect, and disregard the other, even though these two aspects are
inseparable. Different non-functional properties might have different aggregation func-
tions for different compositional structures, and this poses a major challenge to integrate
the non-functional properties into the functional verification framework.

In this work, we propose a method to verify BPEL programs against combined func-
tional and non-functional requirements. A dedicated model checker is developed to sup-
port the verification. We make use of the labeled transition systems (LTSs) directly from
the semantics of BPEL programs for functional verification. For non-functional prop-
erties, we propose different strategies to integrate different non-functional properties
into the functional verification framework. We focus on three important non-functional
properties in this work, i.e., availability, cost and response time. To verify availabil-
ity and cost, we calculate them on-the-fly during the generation of LTS, and associate

calculated values to each state in the LTS. Verification of response time requires an ad-
ditional preprocessing stage, before the generation of LTS. In the preprocessing stage,
response time tag is assigned to each activity that is participated in the service com-
position. With such integration, we are able to support combined functional and non-
functional requirements.

The contributions of our work are summarized as follows.
1. We support integrated verification of functional and non-functional properties for

Web service composition. To the best of our knowledge, we are the first work on
such integration.

2. We capture the semantics of web service composition using labeled transition sys-
tems (LTSs) and verify the web service composition directly without building inter-
mediate or abstract models before applying verification approaches, which makes
our approach more suitable for general web service composition verification.

3. Our approach has been implemented and evaluated on the real-world case studies,
and this demonstrates the effectiveness of our method.

Paper Outline. The rest of paper is structured as follows. Section 2 describes the BPEL
running example. Section 3 introduces QoS compositional model. Section 4 shows how
to verify functional and non-functional propeties. Section 5 provides the evaluation of
our work. Section 6 reviews the related work. Finally, Section 7 concludes the paper
and outlines our future work.

2 Motivating Example

In our work, we assume that composite services are specified in the BPEL language.
BPEL is the de facto standard for implementing composition of existing services by
specifying an executable workflow using predefined activities. BPEL is an XML-based
orchestration business process language for the specification of executable and abstract
business processes. It supports control flow structures such as sequential and concur-
rency execution. In the following, we introduce the basic BPEL notations.<receive>,
<invoke>, and <reply> are the basic communication activities which are defined
to receive messages, execute component services and return messages respectively for
communicating with component services. There are two kinds of<invoke> activities,
i.e., synchronous and asynchronous invocation. Synchronous invocation activities are
invoked and the process waits for the reply from the component service before moving
on to the next activity. Asynchronous invocation activities are invoked and moving on
to the next activity directly without waiting for the reply. The control flow of compos-
ite services is specified using the activities like <sequence>, <while>, <if> and
<flow>. <sequence> is used to define the sequential ordering structure, <while>
is used to define the loop structure,<if> is used to define the conditional choice struc-
ture, and <flow> is used to implement concurrency structure.

2.1 Computer Purchasing Services (CPS)
In this section, we introduce the computer purchasing service (CPS), which is designed
to allow users to purchase a computer online using credit cards. The workflow of CPS
is illustrated in Figure 1.

Personal Billing
Service (PBS)

Corporate Billing
Service (CBS)

is non-corporate is corporate

Receive from user
(fu)

Manufacture Service
(MS)

Shipper Service
(SS)

Reply user
(ru)

Fig. 1. Computer Purchasing Service

CPS has four component web services, namely Personal Billing Service (PBS), Cor-
porate Billing Service (CBS), Manufacture Service (MS), Shipper Service (SS). CPS is
initialized (donated by) upon receiving the request from the customer (fu) with the
information of the customer and the computer that he wishes to purchase for. Subse-
quently, an <if> activity (donated by) is used for checking whether the customer
is a corporate customer or non-corporate customer. If it is a corporate customer, CBS
is invoked synchronously to bill the corporate customer, otherwise, PBS is invoked
synchronously to bill the non-corporate customer with credit card information. Upon
receiving the reply, a <flow> activity (donated by) is triggered and MS and SS are
invoked concurrently. MS is invoked synchronously to notify manufacture department
for manufacturing the purchased computers. SS is invoked synchronously to schedule
shipment for the purchased computers. Upon receiving the reply message from SS and
MS, reply user (ru) is called to return the result of the computer purchasing to the
customer. Then, the workflow of CPS has ended (donated by).

A property that CPS must fulfill is that it must invoke reply user (ru) within 5 ms.
Notice that this property combines the functional (must invoke reply user (ru)) and
non-functional (within 5ms) requirements.

2.2 BPEL Notations

In order to present BPEL syntax compactly, we define a set of BPEL notations below:

– rec(S) and reply(S) are used to denote “receive from” and “reply to” a service S;

QoS Attribute PBS CBS MS SS

Response Time(ms) 1 2 3 1

Availability(%) 90 80 80 80

Cost($) 3 2 2 2

Table 1. QoS Attribute Values

– sInv(S) (resp. aInv(S)) is used to denote synchronous (resp. asynchronous) in-
vocation of a service S;

– P1||P2 is used to denote <flow> activity, i.e., the concurrent execution of BPEL
activities P1 and P2;

– P1 / b . P2 is used to denote <if> activity, where b is a guard condition. Activity
P1 is executed if b is evaluated true. Otherwise, activity P2 will be executed;

– P1 → P2 is used to denote <sequence> activity, where P1 is executed followed
by P2.

We denote activities that contain other activities as composite activities, they are P1||P2,
P1/b.P2 and P1 → P2. For activities that do not contain any other activities, we denote
them as atomic activities, they are rec(S), reply(S), sInv(S) and aInv(S).

3 QOS-AWARE COMPOSITIONAL MODEL

In this section, we define the QoS compositional model used in this work and briefly
introduce the semantics of BPEL, captured by labeled transition systems (LTSs). We
introduce some definitions used in the semantic model in the following.

3.1 QoS Attributes

In this work, we deal with quantitative attributes that can be quantitatively measured
using metrics. There are two classes of QoS Attributes, positive and negative attributes.
Positive attributes (e.g., availability) have a good effect on the system, and therefore,
they need to be maximized. Availability of the service is the probability of the service
being available. Negative attributes (e.g., response time, cost) need to be minimized as
they have the negative impact on the system. Response time of the service is defined as
the delay between sending a request and receiving the response and cost of the service is
defined as the money spent on the service. In this work, we assume the unit of response
time, availability and cost to be millisecond (ms) , percentage (%) and dollar ($). Table 1
shows the information of response time, availability and cost of each component service
for the CPS example as described in Section 2.1.

Given a component service swith nQoS attributes, we use a vectorQs = 〈q1(s), . . . ,
qn(s)〉 to represent QoS attributes of the service s , where qi(s) represents the value of
ith attribute of the component service s. Similarly, Q′cs = 〈q1(cs)′, . . . , qn(cs)′〉 is used
to denote the QoS attributes of the composite service cs, where qi(cs)′ represents the
ith attribute of the composite service cs.

QoS Attribute Sequential Parallel Loop Conditional

Response
Time

n∑
i=1

q(si)
n

max
i=1

q(si) k ∗ (q(s1))
n

max
i=1

q(si)

Availability
n∏

i=1

q(si)
n∏

i=1

q(si) (q(s1))
k

n

min
i=1

q(si)

Cost
n∑

i=1

q(si)
n∑

i=1

q(si) k ∗ (q(s1))
n

max
i=1

q(si)

Table 2. Aggregation Function

3.2 QoS for Composite Services

A composite service S is constructed using a finite number of component services
to reach a business goal. Let C = 〈s1, s2, . . . , sn〉 be the set of all component services
that are used by S. The QoS of composite services is aggregated from the QoS of the
component services, based on the service internal compositional structure, and the type
of QoS attributes. Table 2 shows the aggregation functions for each compositional struc-
ture. We consider three types of QoS attributes: response time, availability and cost. For
response time, in sequential composition, the response time of the composite service is
aggregated by summing up the response time of each component service. As for paral-
lel composition, the response time of the composite service is the maximum response
time among that of each participating component service. For loop composition, the
response time of the composite service is obtained by summing up the response time of
the participating component service for k times, where k is the number of maximum it-
eration of the loop. And for conditional composition, the response time of the composite
service is the maximum response time of n participating component services since it is
not known that which guard is satisfied at the design phase. For availability, in sequen-
tial composition, the availability of the composite service is the product of that of all
component services in the sequence because it means all component services are avail-
able during the sequential execution. It is similar to parallel and loop composition for
aggregation of availability of the composite services. For conditional availability of the
composite service, since one component service will be chosen at execution, therefore,
we denote the availability as the minimum availability among all component services
participated in the conditional composition. For cost, in sequential composition, the
cost of the composite service is decided by the total cost of component services. For
the conditional composition, the cost of the composite service is the maximum cost of
n participating component services. Other common QoS attribute types can be aggre-
gated in the similiar way with these three attributes. For example, QoS attributes like
reliability share the same aggregation function with availability.

3.3 Labeled Transition Systems

The QoS-aware composite model in this work is defined using labeled transition sys-
tems (LTS). In the following we define various terminologies that will be used in this
work.

Definition 1 (System State). A system state s is a tuple (P, V,Q), where P is the com-
posite service process and V is a (partial) variable valuation that maps variables to
their values, Q is a vector which represents QoS attributes of the composite service.

Two states are equivalent iff they have the same process P , the same valuation V and
the same QoS vectors Q. Given a system state s = (P, V,Q), Q = 〈r, a, c〉 is a vector
with three elements, where r, a, c ∈ R≥0, and 0 ≤ a ≤ 1. r, a, c represent the response
time, availability, and cost of the state s. The response time, availability, and cost are
calculated from the execution that starts at initial state s0 up to the state s. Henceforth,
we use the notation Q(ResponseT ime), Q(Availability) and Q(Cost) to denote the
value of r, a, and c of QoS vector Q, respectively.

Definition 2 (Composite Service Model). A composite service model M is a tuple
(Var, P0, V0, F), where Var is a finite set of variables, P0 is the composite service pro-
cess, and V0 is an initial valuation that maps each variable to its initial value. F is a
function which maps component services to their QoS attribute vectors.

Given a composite service (Var, P0, V0, F), an example of valuation V is {var1 7→
1, var2 7→⊥}, where var1,var2 ∈ Var, and var2 7→⊥ is used to denote that var2 is
undefined.

Definition 3 (LTS). An LTS is a tuple L = (S, s0, Σ,→), where

– S is a set of states,
– s0 ∈ S is the initial state,
– Σ is a set of actions,
– → : S ×Σ × S is a transition relation.

For convenience, we use s a→ s′ to denote (s, a, s′) ∈ → and we denote the LTS of
a BPEL serviceM as L(M). Given a composite service modelM = (Var, P0, V0, F),
L(M) =(S, (P0, V0, Q0), Σ,→). Q0 is the QoS attribute vector of the initial state,
where the availability is 1, cost and response time are equal to 0. Give a state s ∈
S, Enable(s) is denoted as the set of states reachable from s by one transition; for-
mally, Enable(s) = {s′|s′ ∈ S ∧ a ∈ Σ ∧ s a→ s′ ∈ →}. An execution π of L is a
finite alternating sequence of states and actions 〈 s0, a1, s1, . . . , sn−1, an, sn 〉, where
{s0, . . . , sn} ∈ S and si

ai+1→ si+1 for all 0 ≤ i < n. We denote the execution π by
s0

a1→ s1
...→ sn−1

an→ sn. A state s is called reachable if there is an execution that ends
in s and starts in an initial state.

Assume a composite service model is M = (Var, P0, V0, F) and the LTS of M
is L(M) =(S, s0, Σ,→). Every action a ∈ Σ is triggered by an atomic activity. The
atomic activities used in this work are rec(S), reply(S), sInv(S), and aInv(S), where
S is the component service that the atomic activities are communicated with. For activ-
ities rec(S) and sInv(S), they are required to wait for reply from component service

s0:(i1 / b . i2 → i3||i4, Q0)

s1:(i3||i4, Q1) s2:(i3||i4, Q2)

s3:(i4, Q3) s4:(i3, Q4) s5:(i4, Q5) s6:(i3, Q6)

s7:(stop,Q7) s8:(stop,Q8)

if else

Fig. 2. LTS of CPS where i1 is sInv(PBS), i2 is sInv(CBS), i3 is sInv(MS) and i4 is sInv(SS)

S before continuing, therefore their availability, cost and response time are equiva-
lent to the availability, cost and response time of component service S. For activities
reply(S) and aInv(S), they are not required to wait reply from the component ser-
vice S, therefore they are regarded as internal operations. We assume the availability,
cost and response time for an internal operations as 100%, $0 and 0 ms respectively
(see Section 4.3 for discussion). Given two states s = (P, V,Q), s′ = (P ′, V ′, Q′),
where s, s′ ∈ S, s a→ s′ ∈ →, and a ∈ Σ, we use the function AtomAct(a) to denote
the atomic activity that triggers the action a. As an example, given s = (sInv(S) →
rec(S), V,Q) and s′ = (rec(S), V,Q), the function AtomAct(a) returns the activity
sInv(S). We define the function ResponseT ime(a), Availability(a) and Cost(a) to
map the action a to the response time, availability, and cost of the activity returned by
AtomAct(a). Using the previous example, ResponseT ime(a) is the response time of
activity sInv(S), which is essentially the response time of component service S.

The LTS of CPS as discussed in Section 2 is shown in Figure 2, where we omit the
Receive from user(fu),Reply user(ru), all actions a ∈ Σ, and component V in the
state for the reason of brevity. From state s0, conditional activity i1 / b . i2 is enabled.
Given that {b 7→⊥}, either i1 or i2 might be executed, therefore states s1 and s2 are
evolved from state s0. Noted that if guard b is defined, then only one branch is explored
in the LTS. From state s1, the flow activity i3||i4 is enabled, and both activities i3 and
i4 are allowed to execute. This leads to states s3 and s4, respectively. State s3 evolves
into state s7 after activity i4 is executed. stop activity in state s7 is a special activity
which does nothing. Other states in LTS could be reasoned similarly. We assume that
the upper bound on the number of iterations for loop activities is known, therefore, there
is no recursive activities in BPEL.

4 Verification of Functional and Non-Functional Requirements

This section is devoted to discuss how to verify combined functional and non-functional
requirements based on the LTS semantics of web service composition. Current works
only verify one aspect of requirements, either functional or non-functional requirement,
however, these two aspects are inseparable. For example, some property such as in the
CPS example is required to reply the user within 5 ms, involves both functional and non-
functional requirements. Therefore, we propose an approach to combine functional and
non-functional requirements.

4.1 Verification of Functional Requirement

To verify functional requirements of a BPEL program, LTS of the BPEL program is
built from composite service model. We support the verification of deadlock-freeness,
reachability of a state. To verify the LTL formulae, we make use of automata-based
on-the-fly verification algorithm [10], by firstly translating a formula to a Büchi au-
tomaton and then checking emptiness of the product of the system and the automaton.
For fairness checking, we utilize the on-the-fly parallel model checking based on Tarjan
strongly connected components (SCC) detection algorithms similar to [11].

4.2 Integration of Non-Functional Requirement

In this section, we present our approach in integrating the non-functional requirements
into verification framework. Different non-functional properties might have different
aggregation functions for different compositional structures, and this poses a major
challenge to integrate the non-functional properties into the functional verification frame-
work. In the following, we adopt two different strategies in integrating the non-functional
requirements. We first discuss our approach in integration of availability and cost, and
following that, we discuss the integration of response time.

Integration of Availability and Cost In this section, we present our approach to in-
tegrate the availability and cost to the verification framework. Given two states s =
(P, V,Q), s′ = (P ′, V ′, Q′), where s, s′ ∈ S, s a→ s′ ∈ →, and a ∈ Σ, the availability
and cost of state s′ is calculated using the following formulae:{

s′.Q(availability) = s.Q(availability) ∗Availability(a)
s′.Q(cost) = s.Q(cost) + Cost(a)

(1)

Example. We illustrate the integration using the LTS of CPS as shown in Figure 3.
In state s0, it has the initial availability of 1 and initial cost of $0. From state s0, it
evolves into state s1 after invocation of i1. Since i1 has availability of 0.9 and cost of
$3 (refer to Table 1), therefore the resulting QoS vector of state s1 is 〈r1, 1 ∗ 0.9, 0 +
3〉 = 〈r1, 0.9, 3〉. From state s1, it evolves into state s3 after the invocation of i3, and
since i3 has availability of 0.8 and cost of $2, the resulting QoS vector of state s3 is
〈r3, 1 ∗ 0.9 ∗ 0.8, 0 + 3 + 2〉 = 〈r3, 0.72, 5〉. Other states are calculated similarly.

In general, given an execution π = s0
a1→ s1

...→ sn−1
an→ sn in L(M), where

{s0, . . . , sn} ∈ S and si
ai+1→ si+1 ∈ →, for all 0 ≤ i < n

si+1.Q(availability) = s0.Q(availability)∗
i∏

m=1
Availability(am)

si+1.Q(cost) = s0.Q(cost)+
i∑

m=1
Cost(am)

(2)

with s0.Q = 〈0, 1, 0〉.

s0:(i1 / b . i2 → i3||i4, 〈0, 1, 0〉)

s1:(i3||i4, 〈r1, 0.9, 3〉) s2:(i3||i4, 〈r2, 0.8, 2〉)

s3:(i4, 〈r3, 0.72, 5〉) s4:(i3, 〈r4, 0.72, 5〉) s5:(i4, 〈r5, 0.64, 4〉) s6:(i3, 〈r6, 0.64, 4〉)

s7:(stop, 〈r7, 0.576, 7〉) s8:(stop, 〈r8, 0.512, 6〉)

if else

Fig. 3. LTS of CPS with Availability and Cost, where i1 is sInv(PBS), i2 is sInv(CBS), i3 is
sInv(MS) and i4 is sInv(SS)

Integration of Response Time One might naively think that we can adopt the method
of calculating the cost as the method for calculating the response time. However, this
would result in incorrect result. Refer to Figure 3, the value of response times r2, r5,
r6, and r8 will be 2 ms, 5 ms, 3 ms, and 6 ms respectively by using the method of
calculating the cost in Section 4.2. In such case the value of r8 is incorrect. The reason
is that it should be calculated as maximum of value of r5 and r6, since parallelism
allows both i3 and i4 to be executed simultaneously, and the total time for the response
time is decided by the maximum response time of i3 and i4. A challenge to evaluate
the maximum time in state s8 is that the information of parallism in state s2 (i3||i4)
is removed in state s5 and state s6 (only left with i3 or i4). In order to retain this
information, we preprocess the BPEL service model M to associate with a time tag
which will be used to calculate the response time in the LTS generation stage.

Algorithm 1 presents the main algorithm for preprocessing. Given a BPEL pro-
cess P0, TagT ime(P0, x) returns the process P ′0 which is the process P0 with its
internal activities associated with time tags. Given each activity Acv ∈ P0, a value
timetag ∈ R≥0 is associated with Acv, denoted as Acv.timetag. Acv.timetag repre-
sents the total time delay from the start of process P0, up to the completion of activity
Acv. In the following, we describe the Algorithm 1. The function TagT ime(P0, x) is
used to calculate the total time delay from the start of process P0 up to the completion
of activity Acv. Variable x ∈ R≥0 is the the total time delay from the start of process
P0 to the point just before the execution of activity Acv. Lines 1, 5, 9 and 11 are used
to detect the structure of the activities. At line 1, if P is detected to be a sequential
activity, activity A will be tagged with the delay x (line 2) as A is triggered once P
is triggered. Subsequently, activity B will be tagged. Since activity B is executed after
the completion of activity A, therefore the x is set to be the value of A.timetag (line
3). Finally, the timetag of P is the same as timetag of B, since the completion of
activity B implies the completion of execution of process P (line 4). At line 5, if P
is detected to be a concurrent or conditional activity, activity A and activity B will be
tagged with value x (lines 6 and 7), since A and B are triggered at the same time once
P is triggered. At line 8, the timetag of P is the maximum value of timetag of A and
B (refer to Section 3.2 for details). If P is detected to be a synchronous receive activity
or invocation activity, the timetag of P is set to the sum of x and ResponseT ime(P)
(line 10).

Algorithm 1: Algorithm TagTime(P, x)
input : P, the BPEL process
input : x, the delay from the start to execution of process P
output: P’, process P with time tag

1 if P is A→ B then
2 TagT ime(A, x);
3 TagT ime(B,A.timetag);
4 P.timetag ← B.timetag ;

5 else if P is A||B or A / b . B then
6 TagT ime(A, x);
7 TagT ime(B, x);
8 P.timetag ← max(A.timetag,B.timetag) ;

9 else if P is rec(S) or sInv(S) then
10 P.timetag ← x+ResponseT ime(P);

11 else if P is reply(S) or aInv(S) then
12 P.timetag ← x;

s0:([[[i1]
1 / b . [i2]

2]2 → [[i3]
5||[i4]3]5]5, 〈0, 1, 0〉)

s1:([[i3]
5||[i4]3]5, 〈2, 0.9, 3〉) s2:([[i3]

5||[i4]3]5, 〈2, 0.8, 2〉)

s3:([[i4]
3]5, 〈5, 0.72, 5〉) s4:([[i3]

5]5, 〈3, 0.72, 5〉) s5:([[i4]
3]5, 〈5, 0.64, 4〉) s6:([[i3]

5]5, 〈3, 0.64, 4〉)

s7:(stop, 〈5, 0.576, 7〉) s8:(stop, 〈5, 0.512, 6〉)

if else

Fig. 4. LTS of CPS with Response Time, Availability and Cost, where i1 is sInv(PBS), i2 is
sInv(CBS), i3 is sInv(MS) and i4 is sInv(SS)

Example. In the following, we use an example to illustrate how to calculate the re-
sponse time for each state in the LTS. Given initial service process P0 = sInv(PBS)/
b . sInv(CBS)→ (sInv(MS)||sInv(SS)) , we denote P ′0 = TagT ime(P0, 0) and

P ′0 = [[[sInv(PBS)]1 / b . [sInv(CBS)]2]2 → [[sInv(MS)]5||[sInv(SS)]3]5]5

where for each activity A ∈ P , [A]t is used to denote the activity A with A.timetag =
t. Next, in the LTS generation stage, Algorithm 2 is used to calculate the response time
for each state.

Given the process P of some state s ∈ S, CalculateT ime(P) in Algorithm 2 re-
turns the total response time t ∈ R≥0 from the initial state s0 to s′. The value t is
assigned to Q(responseT ime) for state s′. Lines 1, 6, 11 are used to detect the struc-
ture of the activities. We introduce a special activity skip to denote the completion
of execution of an atomic activity. skip is used for the purpose of calculating the re-

Algorithm 2: Algorithm CalculateTime(P)
input : P , BPEL process with time tagged
output: t ∈ R≥0, the time delay from the start of initial process P0 to the completion of P

1 if P is A→ B then
2 if A is skip then
3 return A.timetag;

4 else
5 return CalculateT ime(A);

6 else if P is A||B or A / b . B then
7 if A is skip and B is skip then
8 return P.timetag;

9 else
10 return CalculateT ime(PreviousActive(P));

11 else if P is skip then
12 return P.timetag;

sponse time, and it will be removed after the calculation. At line 1, if P is detected
to be a sequential activity, the activity A is then checked whether it is a skip activ-
ity. If it is (line 2), which implies that activity A has finished execution, A.timetag is
returned (line 3). Otherwise, CalculateT ime(A) is invoked in order to determine the
response time (line 5). At line 6, if P is detected to be a concurrent activity or con-
ditional activity, A and B will be determined whether both are skip activities. If it is
(line 7), which implies that P has finished execution, P.timetag is returned (line 8).
Otherwise, CalculateT ime(PreviousActive(P)) is invoked in order to obtain the re-
sponse time (line 10) where PreviousActive(P) is used to denote previous execution
activity. For example, given s = (i1||i2, V,Q), s′ = (skip||i2, V ′, Q′) , and s a→ s′ ∈
→, PreviousActive(skip||i2) will return AtomAct(a) = i1. At line 11, P is deter-
mined to be a skip activity implies that P has finished execution, therefore, P.timetag
is returned (line 12). The value of timetag for each BPEL process is obtained using
Algorithm 1.
Example. In Figure 4, given the initial state s0, there are two branches due to the con-
ditional process. If sInv(PBS) is executed, it will evolved into state s1 with process P ′1
where

P ′1 = [[[skip]1]2 → [[sInv(MS)]5||[sInv(SS)]3]5]5

By running the Algorithm 2 for PBS to get the response time of PBS, it will re-
turn the value 2, therefore state s1 has the response time of 2 ms. After the calcu-
lating the response time, the skip are removed from P ′1, which result in process P1 =
[[sInv(MS)]5||[sInv(SS)]3]5 as shown in Figure 4. The calculation of other states is
similar.

Services Property Result #State #Transition Time(s)

CPS

(replyUser ∧ (responseTime>5)) invalid 21 29 0.0087

� responseTime≤5 valid 26 36 0.0089

� availability>0.6 valid 26 36 0.0083

LS
Reach (replyUser ∧ (responseTime>6)) invalid 106 241 0.0584

� responseTime≤6 valid 242 572 0.1866

TAS

Reach (replyUser ∧ (responseTime>3)) invalid 128 287 0.0631

� responseTime≤3 valid 264 622 0.0642

Reach (replyUser ∧ (availability≤0.3)) invalid 128 287 0.0437

Table 3. Experiment Results

4.3 Discussion

If a system is verified that it does not satisfy the requirement that the response time
is less than a ms in a state s, where a ∈ R≥0, it does not necessarily mean that such
constraint will be violated in the state s during the execution. The response time is
served as an estimated reference value. Furthermore, we do not take the response time,
cost, and availability of internal operations into account. In reality, such information
can be estimated using runtime monitoring method [12].

5 Evaluation

We evaluate our approach using three case studies. Each case study is a composite ser-
vice represented as a BPEL process. The experiment data was obtained on a system
using Intel Core I7 3520M CPU with 8GB RAM. The experimental results are summa-
rized in Table 3.

5.1 Computer Purchasing Service (CPS)

As described in Section 2, CPS is used for allowing users to purchase a computer online
using credit cards. The workflow of CPS is illustrated in Figure 1. The property Reach
(replyUser ∧ (responseT ime>5)) is to verify whether the activity reply user (ru)
can be reached with response time more than 5 ms. The result is invalid as shown
in Table 3, which implies that if the reply user (ru) is reached, it will be always be less
than 5ms, which is the intended outcome we need. Properties � reponseT ime≤5 and
� availability>0.6 are LTL formulas, which are invariant properties denoted that the
CPS’s response time must always be less than two milliseconds and the CPS’s availabil-
ity is always larger than 50%. These two properties are both verified to be valid in the
CPS system. The number of visited states, total transitions and time used for verification
are listed in Table 3.

5.2 Loan Service (LS)

The goal of a Loan Service (LS) is to provide users for applying loans. The loan ap-
proval system has several component systems, Loan Record Service (RS), Loan Ap-
proval Service (LAS), Customer Details Service (CDS), Customer Loan History Ser-
vice (CLHS), Customer Credit Card History Service (CCHS), Customer Employment
Information Service (CES) and Customer Property Information Service (CPIS). Upon
receiving the request from a customer, CDS will be invoked synchronously. If the re-
quested load amount is less than $10000, CES is invoked and then RS is invoked
to record the customer’s loan information. After that, loan approval message will be
replied to the customer. Otherwise, if the requested amount is not less than $10000,
CLHS, CCHS, CES and CPIS are invoked concurrently to obtain more detailed infor-
mation about the customer. Upon receiving all replies, LAS is invoked to determine
whether to approve the load request of the customer or not. If the request is approved,
RS is invoked synchronously and then loan approval message will be replied to the cus-
tomer, otherwise, loan failure message will be replied to the customer. Two properties
are verified for LS as listed in Table 3, we omit the discussion of the properties as they
are similar to the properties of CPS.

5.3 Travel Agency Service (TAS)

Travel Agency Service (TAS) provides a service that helps users to arrange the flight,
hotel, transport, etc., for a trip. Once the request is received from the user, Hotel Book-
ing Service (HBS), Fight Booking Service (FBS), Local Transport Service (LoTS) and
Local Agent Service (LAS) are triggered to search for available hotel, flight, local trans-
portation and local travel agent concurrently that fulfill the user’s requirements. If all
four services have returned non-empty results, Record Booking Information Service
(RBS) and Notify Agent Service (NAS) are invoked concurrently to store detailed book-
ing information into the system and notify the agent about the customer’s details. Fi-
nally, TAS replies the detailed booking information to the user. Otherwise, TAS replies
booking failure result to the user. Three properties are verified for TAS as listed in Ta-
ble 3. PropertiesReach (reply User∧(responseT ime>3)) and � responseT ime≤3
are similar to the properties verified in CPS, therefore we omit discussion of these
two properties here. Property Reach (replyUser ∧ (availability≤0.3)) is to verify
whether reply user (ru) can be reached with the availability less than 0.3. The result
is invalid as shown in Table 3, which implies that if the reply user (ru) is reached, the
availability is always greater than 0.3, which is the intended result that we need.

The experiment shows that our approach can be used to verify the combined func-
tional and non-functional property for real-world BPEL program efficiently.

6 Related Work

A number of approaches have been proposed to deal with requirements of web service
composition. These work can be divided into two major directions. One direction is
to transform WS-BPEL processes into intermediate formal models specified in some

formal languages and then verify the functional behaviors of the service composition
based on the formal models. Foster et al. [13] translate BPEL processes into finite state
processes notation. Qian et al. [14] transform BPEL processes into timed automata,
and then use Uppaal as the model checker to verify the functional properties of the
TA model, such as reachability. In [9, 15], the authors transform BPEL processes into
Promela models and then use SPIN to verify the models. In [16], Yu et al. present a a
lightweight specification language called PROPOLS to describe the temporal logic in
a BPEL process. In [17], we translate processes into a new formal language proposed
with formal operational semantics by themselves. Different from these approaches, our
current approach verifies functional properties of BPEL processes based on its seman-
tics, thus it does not need to be translated into any other formal languages since there are
some disadvantages of using intermediate models as mentioned in Section 1. More im-
portant, our work combines verification of functional and non-functional requirements
while works above only consider functional verification, which cannot verify functional
and non-functional requirements at the same time.

Another direction has its focus on the non-functional aspect of BPEL processes.
In [8], Koizumi and Koyama propose a performance model to estimate the processing
execution time by integrating a Timed Petri Net model and statistical models. However,
it only focuses on one type of non-functional requirements and does not consider the
functional behaviors. In [7], Fung et al. propose a message tracking model to support
QoS end-to-end management of BPEL processes. This work is based on the run-time
data, which needs the deployment of the services, in addition, it does not consider the
functional requirements of BPEL processes. Our approach verifies both functional and
non-functional requirements at design time, which can detect errors at the early stage. In
[18], Xiao et al. propose a framework to use the simulation technique to verify the non-
functional requirements before the service deployment, which is similar to our work.
While their work only focus on non-functional aspect, our work supports verification
of combined functional and non-functional properties. In [19], we propose a fully au-
tomatic approach for synthesis the local time requirement based on the given global
time requirement of Web service composition. Different from them, our work focuses
on checking LTL constraint satisfaction. And to the best of our knowledge, our work is
the first one to verify combined functional and non-functional properties.

7 Conclusion

In this paper, we have illustrated our approach to verify combined functional and non-
functional requirements (i.e., availability, response time and cost) for web service com-
position. Furthermore, our experiments show that our approach can work on real-world
BPEL programs efficiently. We plan to further improve and develop the technique pre-
sented in this paper. Firstly, we will consider various heuristics that could be used to re-
duce the number of states and transitions. Secondly, we will investigate applying state
reduction techniques, such as partial order reduction [20], to improve the efficiency
of our approach. Lastly, our work could be extended to other domains such as sensor
networks.

References

1. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web services description language
(WSDL) version 2.0. (http://www.w3.org/TR/wsdl20/)

2. Gudgin, M., Hadley, M., Mendelsohn, N., Moreau, J.J., Nielsen, H.F., Karmarkar, A., Lafon,
Y.: Simple object access protocol (SOAP) version 1.2. (http://www.w3.org/TR/soap12/)

3. Committee, O.W.S.B.P.E.L.W.T.: Web Services Business Process Execution Language Ver-
sion 2.0. http://www.oasis-open.org/specs/#wsbpelv2.0 (2007)

4. Yin, Z., Yuan, D., Zhou, Y., Pasupathy, S., Bairavasundaram, L.: How do fixes become bugs?
In: ESEC/FSE ’11, ACM (2011) 26–36

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
6. Foster, H., Uchitel, S., Magee, J., Kramer, J.: WS-Engineer: A model-based approach to

engineering web service compositions and choreography. In: Test and Analysis of Web
Services. (2007) 87–119

7. Fung, C.K., Hung, P.C.K., Wang, G., Linger, R.C., Walton, G.H.: A study of service compo-
sition with qos management. In: ICWS ’05. (2005) 717–724

8. Koizumi, S., Koyama, K.: Workload-aware business process simulation with statistical ser-
vice analysis and timed petri net. In: ICWS ’07, IEEE CS (2007) 70–77

9. Nakajima, S.: Lightweight formal analysis of web service flows. Progress in Informatics 2
(2005) 57–76

10. Courcoubetis, C., Vardi, M., Wolper, P., Yannakakis, M.: Memory-efficient algorithms for
the verification of temporal properties. Form. Methods Syst. Des. 1 (1992) 275–288

11. Sun, J., Liu, Y., Dong, J.S., Pang, J.: Pat: Towards flexible verification under fairness. In:
CAV’09. (2009) 709–714

12. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring and service adaptation for
ws-bpel. In: WWW’08, ACM (2008) 815–824

13. Foster, H., Uchitel, S., Magee, J., Kramer, J.: WS-Engineer: A model-based approach to
engineering web service compositions and choreography. In Baresi, L., Nitto, E.D., eds.:
Test and Analysis of Web Services. Springer (2007) 87–119

14. Qian, Y., Xu, Y., Wang, Z., Pu, G., Zhu, H., Cai, C.: Tool support for bpel verification in
activebpel engine. In: ASWEC ’07. (2007) 90–100

15. Li, B., Zhou, Y., Pang, J.: Model-driven automatic generation of verified bpel code for web
service composition. In: APSEC’09, IEEE CS (2009) 355–362

16. Yu, J., Manh, T.P., Han, J., Jin, Y., Han, Y., Wang, J.: Pattern based property specification
and verification for service composition. In: WISE’06. (2006) 156–168

17. Sun, J., Liu, Y., Dong, J.S., Pu, G., Tan, T.H.: Model-based methods for linking web service
choreography and orchestration. In: APSEC ’10, IEEE CS (2010) 166–175

18. Xiao, H., Chan, B., Zou, Y., Benayon, J.W., O’Farrell, B., Litani, E., Hawkins, J.: A frame-
work for verifying sla compliance in composed services. In: ICWS ’08. (2008) 457–464

19. Tan, T.H., André, É., Sun, J., Liu, Y., Dong, J.S., Chen, M.: Dynamic synthesis of local time
requirement for service composition. In: ICSE’13. (2013) 542–551

20. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking software.
In: POPL ’05, ACM (2005) 110–121

