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Abstract—Real-world datasets often exhibit long-tailed distri-
butions, raising important questions about how privacy risks
evolve when machine learning (ML) models are applied to such
data. In this work, we present a comprehensive analysis of
membership inference attacks in long-tailed scenarios, revealing
significant privacy vulnerabilities in tail data. We begin by ex-
amining standard ML models trained on long-tailed datasets and
identify three key privacy risk effects: amplification, convergence,
and polarization. Building on these insights, we extend our
analysis to state-of-the-art long-tailed learning methods, such as
foundation model-based approaches, offering new perspectives
on how these models respond to membership inference attacks
across head to tail classes. Finally, we investigate the privacy risks
of ML models trained with differential privacy in long-tailed
scenarios. Our findings corroborate that, even when ML models
are designed to improve tail class performance to match head
classes and are protected by differential privacy, tail class data
remain particularly vulnerable to membership inference attacks.

Index Terms—Membership inference, class skewness, long-
tailed learning, privacy preservation.

I. INTRODUCTION

Real-world multi-class datasets often exhibit long-tailed
distributions, where most classes (i.e., tail classes) contain
only a few samples, while a small subset of classes (i.e., head
classes) have a large amount of data [38]. These long-tailed
distributions are ubiquitous across various domains, including
image recognition, medical diagnosis, fraud detection, and
multilingual text processing [58], [60]. For example, in med-
ical diagnosis, rare diseases such as specific cancer subtypes
are far less frequent compared to common non-cancerous
conditions, naturally resulting in imbalanced medical datasets
with long-tailed distributions [49]. Standard machine learning
(ML) models, typically designed for balanced datasets, tend
to perform well on head classes but often fail to effectively
generalize to tail classes (for example, see Figure 1).
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Long-tailed learning has been proposed to address the chal-
lenges posed by long-tailed datasets, aiming to improve the
representation performance on tail classes without compromis-
ing the accuracy of head classes [58]. Early approaches focus
on data-level strategies, such as re-sampling techniques where
tail classes are over-sampled or head classes are under-sampled
to re-balance the dataset [7], [31]. Subsequent research has
shifted toward algorithm-level solutions that emphasize rep-
resentation learning to develop more discriminative features
for tail classes. By leveraging the representational power of
deep neural networks, various loss functions [4], [20], [39],
[40], such as class-balanced loss [12] and logit adjustment
loss [33], have been designed to directly address data imbal-
ance during model training. In the current era of foundation
models, recent studies leverage large-scale pre-trained models
to tackle long-tailed learning challenges. Foundation models,
such as CLIP [37] and Vision Transformer [15], trained on
extensive and diverse datasets, possess rich feature represen-
tations that enhance tail class performance by providing better
initializations and transferable features. Building on founda-
tion models, various fine-tuning techniques [9], [21], [24],
such as Low-Rank Adapter (LoRA) [22] and Visual Prompt
Tuning (VPT) [24], have been integrated into long-tailed
learning frameworks to improve computational efficiency and
recognition performance, especially for tail classes.

Despite significant advancements in long-tailed learning, the
privacy risks remain largely unexplored. Previous studies [18],
[19] have investigated memorization issues in standard ML
models trained on long-tailed datasets using influence estima-
tion methods. However, these studies are limited to standard
ML models and do not extend to ML models that incorporate
long-tailed learning techniques. As foundation models gain
prominence, it remains unclear how privacy risks evolve when
long-tailed learning built on these architectures achieves high
performance, where the accuracy on tail classes rivals that of
head classes. To address this gap, we conduct a systematic
privacy analysis of long-tailed learning through the lens of
membership inference attacks [44]. Membership inference, a
primary type of privacy attack, seeks to determine whether a
data point is included in the training set, providing a practical
lower bound on the leakage of an ML model’s training set [36],
[45]. In this work, by focusing on membership inference at-
tacks, we analyze privacy risks from an attacker’s perspective,
addressing three key questions to provide new insights into
membership leakage in long-tailed scenarios.
Q1: How do standard ML models perform in terms of
privacy risks when trained on long-tailed datasets? We
begin by conducting an in-depth investigation of membership
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inference attacks against standard ML models trained on long-
tailed datasets (see Section IV). Within this context, we define
standard ML models as those that do not employ specific
techniques to address the challenges posed by long-tailed dis-
tributions. Through our analysis, we uncover novel privacy risk
effects hiding in tail classes from three different perspectives,
namely amplification, convergence, and polarization effects.

From a class distribution perspective, the amplification
effect reveals that as class size decreases from head to tail
classes, the true positive rate (TPR) at a low false positive
rate (FPR) significantly increases. This makes tail classes
considerably more vulnerable to membership inference attacks
compared to head classes. For example, in the CIFAR10-IF500
dataset (see Figure 1c), the TPR@0.1% FPR for tail class 9
reaches 100%, while for head class 0, it hovers around 1%,
with an increase of 100 times.

From an attack difficulty perspective, the convergence effect
shows that as FPR decreases (indicating a greater attack
difficulty), the TPR for head classes drops sharply, while
TPR for tail classes remains relatively stable or declines
only slightly. This leads to TPR convergence for tail classes,
thereby increasing their privacy risks. For instance, when FPR
decreases by 50 times, from 5.0% to 0.1% in the CIFAR10-
IF500 (see Figure 2c), the TPR for head class 0 decreases
by 12 times, from 12.50% to 1.00%, while the TPR for tail
class 9 remains steady.

From an imbalance degree perspective, the polarization
effect shows that as the imbalance factor increases in long-
tailed datasets, the TPR for head classes drops significantly,
while the TPR for tail classes rises dramatically. This polarizes
membership leakage risks, intensifying the vulnerability of tail
classes to membership inference. For example, in CIFAR10-
IF500, with an imbalance factor of 500 (see Figure 3), the
TPR@0.1% FPR for head class 0 drops by 17 times, from
17% in the balanced CIFAR10 dataset to 1%, while for tail
class 9, it increases by 11 times, from 9% to 100%.
Q2: When long-tailed learning techniques are employed to
enhance model generalization of tail classes, how does this
impact privacy risks? Building on the identified privacy risks
in long-tailed datasets, we extend our investigation to assess
the membership vulnerabilities in state-of-the-art long-tailed
learning methods (see Section V-A). We conduct extensive
experiments on foundation model-based long-tailed learning
using six different fine-tuning techniques, selected for their
proven effectiveness in addressing tail class challenges. The
foundation model leverages Vit-B/16 [15] as the backbone,
with fine-tuning methods including Classifier fine-tuning,
AdaptFormer [9], Adapter [21], Bias tuning [55], LoRA [22]
and VPT [24]. Our evaluation demonstrates that while foun-
dation model-based long-tailed learning significantly improves
accuracy across all classes, including tail classes, it does not
substantially mitigate the privacy risks associated with tail
classes. Compared to head classes, the reduction in privacy
risks for tail classes is only marginal. For instance, in the
CIFAR10-IF500 dataset, the test accuracy exceeds 90% across
all classes. However, the TPR@0.1% FPR for tail class 9 drops
by only 0.2 times, from 100% to 80%, while the TPR@0.1%
FPR for head class 0 decreases by 10 times.

Furthermore, we explore the privacy risks associated with
loss function-based long-tailed learning (see Section V-B),
as loss function design has received increasing attention for
tackling long-tailed challenges. We investigate six different
loss functions, including balanced Softmax loss [39], class
balanced loss [12], focal loss [40], logit adjustment loss [33],
label distribution disentangling loss [20], and label distribution
aware margin loss [4], using cross-entropy loss as the baseline.
Again, while loss function-based long-tailed learning methods
improve the performance of tail classes, they show limited
effectiveness in reducing privacy risks for these classes.
Q3: When differential privacy mechanisms are applied
to ML models trained on long-tailed datasets, how ef-
fective are they in mitigating privacy risks? Differential
privacy [16] is the gold standard defense mechanism for
mitigating membership inference attacks. To understand its ef-
fectiveness in long-tailed scenarios, we systematically evaluate
privacy risks for ML models trained with differentially private
stochastic gradient descent (DPSGD) [1]. First, we analyze
membership inference risks in standard ML models trained
with DPSGD (see Section VI-A). Our experimental results
show that DPSGD significantly reduces privacy risks across
all classes. For instance, under a privacy budget of ϵ ≈ 3, the
TPR@0.1% FPR drops by about 8 times for both head class 0
and tail class 9. However, tail classes continue to exhibit
higher privacy risks compared to head classes. Specifically,
TPR@0.1% FPR for tail class 9 is 12.62%, which is 120
times higher than the 0.13% for head class 0. This persistence
of the amplification effect under DPSGD indicates that while
DPSGD mitigates risk, privacy risks for tail classes are not
fully eliminated. Furthermore, this mitigation comes at the cost
of model utility, with most classes showing near-zero accuracy,
except for a few head classes like class 0 (see Figure 7).

To date, our investigation reveals that foundation model-
based long-tailed learning achieves substantial improvements
in tail class accuracy while DPSGD effectively mitigates
membership inference attacks. Leveraging the complementary
strengths of these approaches, we propose an innovative
integration of foundation model-based long-tailed learning
with DPSGD, referred to as fine-tuning DPSGD. Addition-
ally, we further assess the privacy risks of the fine-tuning
DPSGD model (see Section VI-B). Our experimental results
demonstrate that fine-tuning DPSGD significantly enhances
utility while maintaining privacy under a given privacy budget.
For example, under a privacy budget of ϵ ≈ 3, the fine-
tuning DPSGD model achieves the same TPR@0.1% FPR
as the DPSGD model trained from scratch, while achieving
a substantial increase in test accuracy, from 0% to 93% (see
Figure 8). However, the amplification effect on tail classes
remains. The TPR@0.1% FPR for tail class 9 rises to 25%,
250 times compared to 0.1% for head class 0, highlighting the
need for more advanced DPSGD training techniques, which
we leave for future work.

Contributions. In summary, our contributions are threefold:

(1) We conduct a systematic privacy risk analysis of ML
models in long-tailed scenarios, covering standard ML
models, foundation model-based long-tailed learning, loss
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function-based long-tailed learning, and models trained
with differential privacy mechanisms.

(2) We reveal three privacy risks hidden in the tail data
of ML models, demonstrating that membership leakage
in tail classes remains a significant concern, even when
test accuracy exceeds 90% in state-of-the-art foundation
model-based long-tailed learning.

(3) We achieve a new state-of-the-art performance for
privacy-preserving long-tailed learning, showing that
while privacy risks and test performance can be simulta-
neously improved in long-tailed scenarios, the amplified
privacy risks for tail classes necessitate novel privacy
mechanisms.

II. RELATED WORK

Long-tailed learning. Long-tailed data refers to datasets
where a few head classes have many data samples, while many
tail classes have few data samples. The objective of long-tailed
learning is to improve the performance of tail classes so that
it matches or closely approaches that of head classes [58].
Early methods in long-tailed learning usually focus on re-
balancing the dataset distribution through data resampling
techniques. Typical examples include under-sampling from the
head classes to reduce their dominance and over-sampling
from the tail classes to increase their representation [7], [17],
[31]. Beyond data resampling, data augmentation methods
have been explored to address long-tailed data issues. These
methods involve synthetically increasing the diversity of tail
class samples through various transformations or by generating
new data points [48], [56]. With the success of deep neural net-
works, researchers shifted their focus toward exploring novel
neural architectures, loss functions, and training protocols to
optimize the performance of tail classes. For instance, Ross et
al. [40] proposed a novel focal loss function that re-weights
the loss based on prediction probabilities. Kang et al. [27]
developed a decoupled training technique where the learning
process is divided into two stages: representation learning
and classification. In the era of foundation models, long-
tailed learning has achieved new state-of-the-art advancements.
Relying on the generalization capabilities of the foundation
model, researchers have been able to develop novel prompt
learning and fine-tuning techniques to improve performance
on long-tailed data [14], [43]. However, existing works pre-
dominantly focus on improving model accuracy across head
and tail classes, and privacy considerations have been largely
overlooked in the context of long-tailed learning. In this work,
we will provide a comprehensive privacy analysis to reveal
risks of membership leakage in long-tailed learning.
Membership inference attacks. Membership inference at-
tacks aim to determine whether a specific data point was
included in an ML model’s training set [6], [29], [41], [44],
[51]. Shokri et al. [44] introduced the first membership in-
ference attack on ML models, where a shadow model-based
method was developed to reveal membership information of
ML models. Since then, numerous attack methods have been
proposed based on different threat models, such as reducing
the number of shadow models [41], utilizing label infor-
mation [11], [30], exploiting gradient information [35], and

analyzing loss trajectories [32]. However, these efforts have
predominantly concentrated on membership inference attacks
against classification models trained on balanced datasets. In
contrast, our study investigates membership inference attacks
against ML models trained on long-tailed datasets, filling
a crucial gap in the current literature and extending the
understanding of these vulnerabilities within real-world long-
tailed distributions.

While several works have sought to explore the memo-
rization issues in standard ML models trained on long-tailed
data [18], [19], they have largely overlooked the privacy
vulnerabilities in long-tailed learning, where the performance
of the tail classes has been significantly improved. There is
one work [46] studying membership inference attacks against
standard ML models trained on long-tailed data. Similarly, this
work does not consider membership inference vulnerabilities
in long-tailed learning and a significant limitation of this work
lies in its use of average-case accuracy as the primary evalu-
ation metric. However, this metric has been shown to inade-
quately capture worst-case privacy vulnerabilities in member-
ship inference attacks [2], [5]. In addition, several works study
membership inference attacks against recommender systems
in which user data exhibit a long-tail distribution [57], [59].
However, they do not consider scenarios involving long-tailed
learning and differential privacy. Furthermore, although some
works have investigated the fairness concerns of standard ML
models trained on long-tailed datasets in the context of differ-
ential privacy [3], [46], our work reveals privacy issues and
analyzes the relationship between accuracy and privacy risks
of tail classes. In other words, our work provides a compre-
hensive privacy analysis in long-tailed scenarios through the
lens of membership inference attacks. Unlike previous studies,
we not only identify and quantify the privacy vulnerabilities
faced by models trained on long-tailed data, but also offer an
in-depth exploration of the relationship between accuracy and
privacy risks for both head and tail classes. Furthermore, we
extend our analysis to examine membership leakage in both
cutting-edge foundation model-based long-tailed learning and
classical long-tailed learning methods. Finally, our work also
pioneers the integration of foundation models with differential
privacy and existing long-tailed strategies, achieving state-of-
the-art performance in terms of both utility and privacy.

III. PRELIMINARIES

A. Machine Learning Notations
Consider a training dataset D = {(xi, yi)}Ni=1, where each

sample xi ∈ Rd represents a d-dimensional input vector,
and yi ∈ {1, 2, . . . , C} denotes the corresponding class label
where C represents the total number of classes, and N is
the total number of samples. We define Dk ⊂ D as the
subset of training samples belonging to class k, with |Dk|
indicating the number of samples in class k. Without loss
of generality, we assume classes are indexed in descending
order of sample size. Thus, for all k ∈ {1, 2, . . . , C − 1}, the
condition |Dk| ≥ |Dk+1| holds, ensuring that class D1 has
the largest number of samples and class DC the smallest.

For a balanced dataset, the number of samples per class is
approximately equal, i.e., |Dk| ≈ N

C for all k. In contrast, for a
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long-tailed dataset, we introduce an imbalance factor β, which
quantifies the degree of imbalances as the ratio of the largest
to the smallest class sizes: β = maxk |Dk|

mink |Dk| = D1

DC
. In such

datasets, the number of samples in class k can be calculated
by an exponential distribution:

|Dk| = |D1| × β− k−1
C−1 , (1)

where |D1| represents the number of samples of the largest
class. Common values for β include 50, 100, and 500. Based
on class size, we categorize classes with |Dk| ≥ 100 as head
classes and those with |Dk| ≤ 20 as tailed classes.

The objective of a classification model trained on D is to
learn a function f : Rd → {1, 2, . . . , C}, such that, for an
input xi, the predicted label ŷi = f(xi) closely approximates
the true label yi.

B. Membership Inference Attacks

Membership inference attacks aim to determine whether
a specific target sample x was part of a machine learning
model’s training dataset D. Given a trained classification
model f , an adversary seeks to devise an attack algorithm
A to infer whether x was included in D.

In this work, we adopt the Likelihood Ratio Attack (LiRA)
introduced by Carlini et al. [5], due to its demonstrated
effectiveness in membership inference attacks. LiRA operates
by first training shadow models to replicate the behavior
of the target model f . These shadow models are divided
into two categories: those trained on datasets that contain
the target sample x (referred to as IN models) and those
trained on datasets without the target sample x (referred to
as OUT models). Then, LiRA models the outputs of the
IN and OUT shadow models using two Gaussian distribu-
tions, N (µx,in, σ

2
x,in) and N (µx,out, σ

2
x,out), respectively. The

likelihood of a target sample x is computed based on these
distributions, leading to the following likelihood ratio:

A(f, x) =
N (f(x) | µx,in, σ

2
x,in)

N (f(x) | µx,out, σ2
x,out)

, (2)

where f(x) denotes the output of the classification model for
the target sample x. The adversary uses this ratio to make the
final membership decision.

The effectiveness of membership inference attacks is typ-
ically evaluated using metrics such as accuracy, logarithmic-
scale ROC curve, and true positive rate (TPR) at low false
positive rate (FPR). In this work, we primarily report TPR
at 0.1% FPR (denoted as TPR@0.1% FPR), as this metric
effectively captures privacy risks in the worst-case scenarios.

C. Threat Model

A threat model outlines the assumptions and capabilities
of adversaries. In this work, our threat model aligns with the
common practices widely used in prior works on membership
inference attacks [5], [41], [44]. Specifically, we assume that
adversaries have black-box access to the target ML model,
allowing them to query the model with input samples and
observe its outputs, such as the logit scores. Additionally, we

assume that adversaries possess shadow datasets that follow
the same distribution as the training set of the target model.
Furthermore, adversaries are assumed to have the knowledge
of the target model, such as the model’s architectures and
training protocols.

D. Datasets

In this work, we conduct experiments on the CIFAR10
and CIFAR100 datasets, as they allow us to control for
imbalance factors and computational efficiency, facilitating a
more comprehensive analysis. These datasets are also widely
used in the fields of privacy and long-tailed learning [2], [5],
[19], [28]. Specifically, we utilize CIFAR10 and CIFAR100
to construct both balanced and long-tailed versions. For long-
tailed datasets, we label them according to the dataset name
with the imbalance factor, such as CIFAR10-IF100. Further-
more, we set D1 = 2, 500 for CIFAR10 and D1 = 250
for CIFAR100. The number of samples in subsequent classes
is computed using Equation 1. For balanced datasets, we
maintain a total sample size approximately equal to that of
the long-tailed datasets while ensuring an equal number of
samples across all classes.

IV. MEMBERSHIP INFERENCE ON LONG-TAILED DATA

In this section, we explore membership inference attacks
against standard ML models trained on long-tailed data, which
seeks to answer question Q1. We begin by outlining experi-
mental settings and conclude with our findings, which reveal
three novel privacy effects: amplification, convergence, and
polarization.

In this work, a standard ML model refers to one trained
on a dataset — whether balanced or long-tailed — without
employing any specialized mechanisms to address the unique
challenges posed by long-tailed distributions.

A. Experimental Settings

Target models. We utilize the WideResNet architecture [54]
with a widening factor of 4 and a depth of 16 as the target
model. Optimization is performed using stochastic gradient
descent (SGD) with a learning rate of 0.1 and a weight decay
of 5× 10−4. The models are trained using cross-entropy loss
for 200 epochs, and the version achieving the highest test
accuracy is selected as the final target model. In this work,
these models are also referred to as standard ML models.

Attack configurations. Following the experimental setup of
previous work [5], we evaluate the test accuracy of target mod-
els using the official test splits of CIFAR10 and CIFAR100.
The remaining data are split equally: one half for training
the models (serving as member samples) and the other half as
nonmember samples. We randomly choose 64 subsets and train
a total of 64 ML models. One of these models is designated
as the target model, while the remaining 63 models serve
as shadow models. Attack performance is evaluated using an
equal number of member and nonmember samples, and TPRs
at low FPRs are reported. All reported values are averaged
over 10 different target models.
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(a) Balanced CIFAR10
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(b) Long-tailed CIFAR10-IF100
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(c) Long-tailed CIFAR10-IF500

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99
Classes

10 3

10 2

10 1

100

TP
R@

0.
1%

 F
PR

TPR@0.1% FPR

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y 
(%

)

Test Accuracy

(d) Long-tailed CIFAR100-IF50

Fig. 1: Attack performance and test accuracy across different classes. In CIFAR10, both test accuracy and TPR@0.1% FPR
exhibit balanced performance across classes (Figure 1a). However, in Figures 1b and 1c, test accuracy drops sharply while
TPR@0.1% FPR rises significantly from head to tail classes (i.e., from class 0 to class 9), indicating increased privacy risks.
A similar trend is observed in CIFAR100-IF50, and results on the balanced CIFAR100 are provided in the Supplementary
Material (Figure A.1). The gray bar represents the number of samples in each class. The reported TPR@0.1% FPR and test
accuracy are averaged over 10 target models.
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(b) Long-tailed CIFAR10-IF100
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(c) Long-tailed CIFAR10-IF500
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(d) Long-tailed CIFAR100-IF50.

Fig. 2: Attack performance and test accuracy across different FPRs. In the balanced dataset (Figure 2a), TPR decreases
fairly uniformly as FPR decreases. However, in the long-tailed dataset, TPR drops significantly in head classes compared to
tail classes. Results for the balanced CIFAR100 are shown in the Supplementary Material (Figure A.2).
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B. Results

1) Attack performance on different classes: Figure 1 il-
lustrates the attack performance and test accuracy of target
models across different classes for both balanced and long-
tailed versions of the CIFAR10 and CIFAR100 datasets. In
long-tailed datasets, we observe a significant drop in model
accuracy from head to tail classes, accompanied by an increase
in TPR values. Conversely, in the balanced datasets, both TPR
and accuracy exhibit relatively stable fluctuations in all classes.

As shown in Figure 1a, in the balanced CIFAR10
dataset, test accuracy stabilizes approximately at 80%, while
TPR@0.1% FPR remains around 16%, indicating consistent
performance across all classes without significant variation.
In contrast, in the long-tailed dataset, such as CIFAR10-
IF100 (Figure 1b), TPR@0.1% FPR shows a substantial
increase, rising from 0.47% in class 0 to 29.70% in class 9.
This is accompanied by a significant decline in test accuracy,
from 89.59% in class 0 to 34.99% in class 9. Furthermore, as
shown in Figure 1c, in the long-tailed CIFAR10-IF500 dataset
with an imbalance factor of 500, TPR@0.1% FPR escalates
dramatically from 1.00% in class 0 to an alarming 100.00% in
class 9. In contrast, test accuracy exhibits a sharp decline, from
92.59% in class 0 to a mere 3.50% in class 9. Similar trends are
observed in the CIFAR100 dataset, which contains 100 classes.
As depicted in Figure 1d, in the long-tailed CIFAR100-IF50,
as the number of samples per class decreases from class 0
to class 99, accuracy declines sharply from 88.50% to 2.90%,
while TPR@0.1% FPR rises markedly from 6.31% to 98.00%.
In contrast, in the balanced CIFAR100 dataset, test accuracy
and TPR@0.1% FPR fluctuate around 39.14% and 57.49%,
respectively, as shown in Figure A.1 in the Supplement.

We refer to this observation as the tail class privacy risk
amplification effect, or simply the amplification effect.

Amplification Effect

In a long-tailed dataset, as the number of sam-
ples per class decreases from head to tail classes,
the TPR at low FPR shows a notable increase,
thereby amplifying membership leakage risks of
tail classes.

2) Attack performance on different FPRs: Figure 2 shows
the attack performance and test accuracy of target models
across different FPRs on both balanced and long-tailed ver-
sions of CIFAR10 and CIFAR100 datasets. A lower FPR
indicates a higher level of attack difficulty, as it means that
adversaries must operate with fewer allowable mistakes. Over-
all, we observe that in long-tailed datasets, as FPR decreases,
TPR drops sharply in head classes but remains relatively high
in tail classes, leading to convergence. In contrast, in balanced
datasets, TPR declines more uniformly across all classes as
FPR decreases.

For example, as demonstrated in Figure 2b, in the CIFAR10-
IF100 dataset, TPR for head class 0 drops sharply from 8.31%
to 0.47% as FPR decreases from 5.00% to 0.10%. In contrast,
TPR for tail class 9 decreases modestly from 45.45% to
29.70% as FPR reduces from 5.00% to 2.00%, stabilizing at

around 29.70% as FPR continues to drop to 0.10%. Despite
a 50-fold decrease in the FPR, TPR for head class 0 falls
approximately 20-fold, while for tail class 9, it decreases by
only 0.65-fold. In the CIFAR10-IF500 dataset (Figure 2c),
these differences are even more pronounced. TPR for head
class 0 drops from 12.25% to 1.00% as FPR declines from
5.00% to 0.10%, while TPR for tail class 9 remains nearly
constant at 100.00%, showing minimal reduction even with
decreasing FPR.

A similar trend is observed in the CIFAR100-IF50 dataset,
as shown in Figure 2d. For head class 0, TPR decreases
significantly from 18.05% to 6.31%, a 3-fold reduction, as
FPR decreases from 5.00% to 0.10%. In contrast, TPR for tail
class 99 remains stable around 98.00%. In fact, TPR across
all tail classes (from class 60 to class 99, each with fewer
than 20 samples) remains nearly constant, showing minimal
sensitivity to decreasing FPR.

We refer to this observation as the tail class privacy risk
convergence effect, or simply the convergence effect.

Convergence Effect

In a long-tailed dataset, as the FPR decreases,
the TPR of head classes drops significantly,
while the TPR of tail classes decreases only
slightly or remains relatively stable, resulting in
a convergence of TPR among the tail classes.

3) Attack performance on different imbalance factors:
Figure 3 illustrates the attack performance and test accuracy
of target models across different imbalance factors on the
CIFAR10 dataset. We focus on three classes: class 0 with
thousands of samples (head class), class 4 with hundreds of
samples (medium class), and class 9 with tens of samples (tail
class). Overall, as the imbalance factor increases, we observe
distinct trends across these class groups: The TPR of head
classes decreases while their accuracy improves slightly; the
TPR of medium classes increases slightly with a minor decline
in accuracy; and the TPR of tail classes rises significantly as
their accuracy sharply drops.

Specifically, as shown in Figure 3a, the TPR@0.1% FPR
for head class 0 decreases significantly from 17.14% in the
balanced dataset (imbalance factor of 1) to 2.22% at an
imbalance factor of 50, and further drops to just 1.00% at an
imbalance factor of 500. In contrast, as illustrated in Figure 3c,
the TPR for tail class 9 rises sharply with imbalance factors,
rising from 9.69% at an imbalance factor of 1 to 60.69% at an
imbalance factor of 50, and eventually reaching 100.00% at an
imbalance factor of 500. Interestingly, even when the accuracy
for class 9 falls to just 3.50% at an imbalance factor of 500,
the TPR remains extremely high. Similarly, at an imbalance
factor of 200, the TPR reaches approximately 1.89%, despite
class 9 accuracy being only 21.51%. For medium class 4, as
depicted in Figure 3b, the TPR initially declines from 17.68%
at an imbalance factor of 1 to 8.80% at an imbalance factor of
50, but then fluctuates with increasing imbalance, eventually
rising to 26.84% at an imbalance factor of 500.

We term this the imbalance-induced tail class privacy risk
polarization effect, or simply the polarization effect.
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(b) Class 4
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(c) Class 9

Fig. 3: Attack performance and test accuracy across different imbalance factors. Three classes in CIFAR10 are selected
based on sample size. As imbalance factors increase, TPR@0.1% FPR decreases significantly for class 0, remains relatively
stable for class 4, and increases sharply for class 9.

Polarization Effect

In long-tailed datasets, as the imbalance factor
increases, the TPR of head classes declines sig-
nificantly, while the TPR of tail classes rises
sharply, leading to a polarization of membership
leakage risks between head and tail classes.

Takeaway. In summary, we answer question Q1 by identifying
three privacy risk effects related to tail classes in standard ML
models trained on long-tailed datasets, each from a unique
perspective. From the perspective of class distribution, the
amplification effect reveals that membership leakage risks
are significantly higher for tail classes than for head classes,
thereby amplifying privacy risks in tail classes. From the
perspective of attack difficulty, the convergence effect indi-
cates that as attack scenarios become stricter — requiring
fewer mistakes by adversaries (i.e., lower FPR) — TPR in
head classes decreases significantly more than in tail classes,
resulting in a convergence of TPR values in tail classes. From
the perspective of imbalance degrees, the polarization effect
illustrates that as the degree of imbalance increases, TPR in
head classes decreases while TPR in tail classes increases,
leading to polarization between head and tail classes.

V. MEMBERSHIP INFERENCE IN LONG-TAILED LEARNING

In this section, building on the insights discussed in Sec-
tion IV, we investigate membership inference attacks against
long-tailed learning, which focuses on answering question Q2.
We begin by exploring foundation model-based long-tailed
learning in Section V-A, given its state-of-the-art performance.
Additionally, in Section V-B, we investigate various loss
function-based methods for long-tailed learning, considering
their foundational significance and widespread application in
this field.

A. Foundation Model-based Long-tailed Learning

In the era of foundation models, fine-tuning methods for ad-
dressing long-tailed learning have gained significant attention.
In this subsection, we introduce common fine-tuning methods
for foundation model-based long-tailed learning and present
our experimental results.

1) Fine-tuning: Foundation models, such as CLIP [37] and
ViT [15], are typically trained on extensive datasets, with
CLIP, for instance, utilizing a dataset of 400 million image-
text pairs. Leveraging the Transformer architecture [15], [47],
these models demonstrate exceptional generalization capabil-
ities; however, with parameter sizes ranging from millions to
billions, they are highly computationally intensive. To address
this, fine-tuning methods have been proposed to effectively
adapt these models for various downstream applications.

Figure 4 provides an overview of the components of a
foundation model. The process begins by dividing the input
image into m patches, which are then passed through an
embedding layer to produce corresponding token representa-
tions. These embedded tokens are fed sequentially through a
series of transformer blocks, which progressively refine the
token representations, ultimately generating high-level feature
representations. These extracted features serve as the input to
a classifier for the final task-specific prediction. In this work,
we systematically explore six different fine-tuning methods, as
described below:

(1) Traditional fine-tuning. An intuitive method is to fine-
tune the last k layers of Transformer blocks, similar to
fine-tuning ResNet-based models. However, when applied to
foundation models, this method is computationally expensive
due to the large number of parameters. In this work, we
adopt a lightweight classifier fine-tuning method that freezes
all Transformer blocks and only fine-tunes the classifier.

In addition to the traditional fine-tuning, parameter-efficient
methods have been introduced to reduce the computational
costs by limiting the number of trainable parameters. In
this work, we consider five widely-used parameter-efficient
methods.

(2) Bias tuning. Zaken et al. [55] proposed fine-tuning only
the bias components of the foundation model, effectively
preserving learned representations while minimizing the num-
ber of parameters requiring updates. Specifically, given a
projection function at one layer XW + b, where W is the
weight matrix and b is the bias vector, bias tuning focuses on
optimizing b while keeping W fixed.

(3) Visual prompt tuning (VPT). Jia et al. [24] proposed
adding learnable prompts into the input space for fine-tuning
while keeping the Transformer blocks frozen. Formally, given
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Fig. 4: Components of a foundation model.

an input X at a layer, a learnable prompt p is prepended,
resulting in a modified input X ′ = [p,X]. In this work, we
adopt a deep version of VPT, where prompts are added to the
input space of every Transformer layer.
(4) Adapter. Houlsby et al. [21] introduced adapter modules
into each Transformer layer. For a given input X , the adapter
applies layer normalization LN and uses two weight matrices,
Wdown ∈ Rd×r and Wup ∈ Rr×d (where r ≪ d). The output
is computed as: Adapter(X) = ReLU(LN(X)Wdown)Wup.
The adapter serves as a bottleneck, allowing only the adapter
parameters to be updated during fine-tuning, while the rest of
the model remains fixed.
(5) Low-Rank Adapter (LoRA). Hu et al. [22] proposed the
low-rank adapter, which introduces trainable rank decompo-
sition matrices into each Transformer layer. Given a weight
matrix W0 ∈ Rd×k, the updated weights can be expressed
as: W ′ = W0 + WdownWup, where Wdown ∈ Rd×r and
Wup ∈ Rr×k with r ≪ min(d, k). During fine-tuning, LoRA
keeps the pre-trained W0 frozen and only updates the rank
decomposition matrices Wdown and Wup.
(6) AdaptFormer. Chen et al. [9] introduced AdaptFormer,
a parallel structure that replaces the traditional sequential
adapter. Formally, given a traditional adapter Adapter(X), the
final output is computed as: MLP(LN(X))+s ·Adapter(X)+
X, where s is a scaling parameter, either set manually or
learned during fine-tuning.

2) Long-tailed learning: In addition to the fine-tuning
methods discussed, effective long-tailed learning with foun-
dation models often integrates additional strategies to further
enhance the performance of tail classes.

As shown in Figure 4, foundation model-based long-tailed
learning typically involves selecting appropriate model back-
bones, classifier types, and loss functions during fine-tuning,
as well as incorporating post-processing methods during pre-
diction. In this work, we adopt the LIFT framework pro-
posed by Shi et al. [43] for foundation model-based long-
tailed learning. Specifically, we employ ViT-B/16 [15] as the
foundation model backbone. For classification, we utilize a
cosine classifier, defined as:zk = σ · w⊤

k f
∥wk∥2∥f∥2

, where zk
represents the prediction for class k, wk is the corresponding
class weight, f is the feature vector, and σ is a scaling
hyperparameter. Compared to a linear classifier, this cosine
classifier more effectively balances feature representations by
normalizing the classifier weights. During fine-tuning, we use
logit adjustment (LA) loss (see Table I), as it has been shown
to outperform cross-entropy loss by promoting more balanced

feature learning across the class distribution. In Section V-B,
we provide a detailed analysis of the effects of different loss
functions on accuracy and privacy. During prediction, we apply
random perturbations to each input to improve the model’s
generalization performance further.

3) Experimental settings: For target models, we train six
types of models using six different fine-tuning methods, in-
cluding traditional classifier fine-tuning and five parameter-
efficient fine-tuning methods: Adaptformer, Adapter, Bias tun-
ing, LoRA, and VPT. We adopt all recommended hyperparam-
eters from the LIFT framework proposed by Shi et al [43].
The cosine classifier is initialized using semantic knowledge
from CLIP, and the number of training epochs is set to 10. For
membership inference attacks, we follow the same settings and
procedures illustrated in Section IV-A.

4) Results: Figure 5 presents a comprehensive analysis
of foundation model-based long-tailed learning across six
different fine-tuning methods on the CIFAR10-IF500 dataset.
The baseline, depicted by the dashed lines, represents the
WideResNet model trained from scratch. Several key observa-
tions are as follows:
(a) Test accuracy. Foundation model-based long-tailed learn-
ing demonstrates significant test accuracy improvements
across all classes and all fine-tuning methods compared to
the baseline. For instance, as shown in Figure 5, the most
significant gains are observed in tail classes, such as class
9, where accuracy increases from 3.50% to over 90%, nearly
approaching head class performance levels. While head classes
see only modest increases in test accuracy, they remain stable
at around 90%, underscoring the positive impact of foundation
model-based long-tailed learning on model generalization,
particularly for tail classes.
(b) TPR@0.1% FPR. Across all classes and fine-tuning
methods, foundation model-based long-tailed learning shows
a general reduction in TPR@0.1% FPR compared to the base-
line, likely due to improved model generalization. The most
obvious decreases occur in head classes; for instance, in class
0, TPR@0.1% FPR drops by approximately 10 times, from
1.00% to 0.1%, effectively reaching random guessing levels
for adversaries. However, the decrease in TPR@0.1% FPR
for tail classes is less significant. For example, in the worst-
case scenario for adversaries, TPR in LoRA decreases only by
about half, from 100% to 54%, indicating that the tail class
privacy risk amplification effect persists, with membership
leakage for tail classes still up to 540 times greater than
for head classes. Additional results on CIFAR100-IF50 are
included in Supplementary Material (Figure A.3).
Takeaway. In summary, we tackle question Q2 by investi-
gating the state-of-the-art foundation model-based long-tailed
learning. We reveal that foundation model-based long-tailed
learning is highly effective for enhancing overall accuracy
across both head and tail classes, demonstrating strong gener-
alization capabilities. However, it does not adequately address
membership leakage risks in tail classes. Our work highlights
the privacy vulnerabilities in tail classes, emphasizing the
need for strategies that can enhance generalization while
simultaneously protecting against privacy attacks in long-tailed
learning.
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(c) Bias tuning
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(e) VPT
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(f) Classifier fine-tuning

Fig. 5: Attack performance and test accuracy in foundation model-based long-tailed learning on CIFAR10-IF500. All
fine-tuning methods enhance test accuracy for all classes but do not effectively reduce TPR for tail classes.

B. Loss Function-based Long-tailed Learning

In long-tailed learning, the design of loss functions has
received significant attention due to their critical role in
improving model performance on highly imbalanced datasets.
In this section, we systematically examine the privacy risks of
long-tailed learning across different loss functions.

1) Introduction: Standard ML models are typically trained
using the cross-entropy (CE) loss function, which is exten-
sively applied in various classification tasks. However, the
CE loss function does not account for class imbalance in
long-tailed datasets, often resulting in poor performance on
tail classes, as models tend to favor head classes with more
training samples. To address this, researchers have developed
various loss functions that explicitly or implicitly balance each
class’s contribution during training.

Consider a data sample x with predicted logits z and
corresponding softmax probabilities p. let zk and pk denote
the predicted logits and probabilities for class k, respectively,
πk represent the sample frequency for class y, defined as
πk = |Dk|

|D| . In this work, we explore six widely used loss
functions, summarized in Table I.

(1) Balanced Softmax (BS) loss [39]. BS loss adjusts the
predicted logits by scaling them with the corresponding label
frequencies πk, to mitigate class imbalance effectively.

(2) Class Balanced (CB) loss [12]. CB loss introduces a
re-weighting mechanism that is inversely proportional to the
effective number of samples for each class. This effective
number is calculated with an exponential function of the
training label counts.

(3) Focal loss [40]. Focal loss addresses class imbalance by
applying a modulating factor (1 − pk)

γ , which reduces the
loss for well-classified samples (often from head classes) and

emphasizes difficult-to-classify examples, typically found in
tail classes.
(4) Logit Adjustment (LA) loss [33]. LA loss incorporates
a margin parameter mi for each class, adjusting the softmax
operation to improve robustness against imbalanced data by
expanding margins for tail classes.
(5) Label Distribution Disentangling (LADE) loss [20].
LADE loss combines BS loss with a regularization term to
disentangle logits from the source label distribution, enhancing
the model’s generalization to tail classes.
(6) Label Distribution Aware Margin (LDAM) loss [4].
LDAM loss applies class-dependent adjustments based on the
training label frequencies, providing larger margins for tail
classes to address class imbalance and boost performance on
underrepresented classes.

TABLE I: Loss formulations. mk is a margin parameter
for class k. γ and τ are hyperparameters. LLADER is a
regularization term.

Loss Formulation
CE Loss LCE = − log (pk)

BS Loss LBS = − log

(
πk exp(zk)∑C

j=1 πj exp(zj)

)
CB Loss LCB = − 1−γ

1−γ|Dk| (log(pk))

Focal Loss LFocal = −(1− pk)
γ log(pk)

LA Loss LLA = − log

(
exp(zk−τ ·mk)∑C

j=1 exp(zj−τ ·mj)

)
LADE Loss LLADE = LBS + α · LLADER

LDAM Loss LLDAM = − log

(
|Dk|

1
4 exp(zk)∑C

j=1 |Dj |
1
4 exp(zj)

)

2) Experimental settings: In this section, we adopt the
WideResNet architecture as the target model. The models are
trained with various loss functions, as detailed in Table I.
Hyperparameters related to each loss function are chosen
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(b) CB Loss
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(c) Focal Loss
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(d) LA Loss
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(e) LADE Loss
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(f) LDAM Loss

Fig. 6: Attack performance and test accuracy in loss function-based long-tailed learning on CIFAR10-IF500. While
accuracy for tail classes has increased, their TPR shows only a minimal decrease.

according to the guidelines provided in their respective original
papers and codes. All other experimental settings, such as data
preprocessing and optimization strategies, remain consistent
across all configurations. The setup for membership inference
attacks follows the procedure outlined in Section IV-A.

3) Results: Figure 6 displays attack performance and
test accuracy for loss function-based long-tailed learning on
CIFAR10-IF500. Six different loss functions are evaluated,
with the baseline model, trained using cross-entropy loss,
serving as a benchmark. Overall, while loss functions designed
for long-tailed datasets (such as CB, LADE, and LDAM)
improve classification accuracy, particularly for tail classes,
they do not consistently reduce the associated privacy risks.
To illustrate, consider the BS loss function shown in Figure 6a.
For tail class 9, test accuracy improves substantially by 40%,
from approximately 3% to 43% compared to the baseline.
However, TPR@0.1% FPR remains at baseline levels, nearing
100%, indicating the privacy risks for tail classes remain
unmitigated. In fact, the amplification effect — where privacy
risks intensify for tail classes — persists across all evaluated
loss functions. Additional results for loss function-based long-
tailed learning on CIFAR100-IF50 are included in Supplemen-
tary Material (Figure A.4).

Takeaway. In summary, we seek to answer question Q2
through analyzing the classic loss function-based long-tailed
learning. We show that similar to foundation model-based
long-tailed learning, loss function-based long-tailed learning
improves accuracy for tail classes, demonstrating a beneficial
effect. However, the privacy risks of tail classes remain high in
these loss functions designed for long-tailed learning remain
high, comparable to those observed with the standard cross-
entropy loss function.

VI. MEMBERSHIP INFERENCE IN LONG-TAILED DATA
WITH DIFFERENTIAL PRIVACY

In this section, we focus on examining the privacy risks
of ML models trained with differential privacy in long-tailed
scenarios, which aims to address question Q3. We start with
investigating whether the privacy vulnerabilities identified in
previous sections persist under differential privacy. Further-
more, we present a privacy analysis of an innovative approach
that combines differential privacy with foundation model-
based long-tailed learning.

A. Models Trained from Scratch using DPSGD

1) Introduction: Differential privacy [16] is a primary de-
fense mechanism against privacy attacks, providing strong
theoretical guarantees for data protection. In this work, we
focus on the differentially private stochastic gradient de-
scent (DPSGD) [1], as it is widely adopted for training ML
models in both academic research and industrial applications.
While several heuristic defenses have been proposed to miti-
gate membership inference attacks [8], [10], [23], [34], recent
work [2] demonstrates that DPSGD remains the most robust
and effective defense. Moreover, unlike heuristic methods,
DPSGD offers formal privacy guarantees under the differential
privacy framework, enabling rigorous theoretical analysis of
privacy preservation.

2) Experimental settings: We implement DPSGD using the
Opacus library [53], a widely used framework for training ML
models with differential privacy. We adopt the augmentation
multiplicity technique, which has demonstrated improvements
in the utility-privacy trade-off in recent works [13], [42]. We
utilize the WideResNet architecture and train three versions of
models using DPSGD, each with different privacy budgets ϵ:
ϵ ≈ 3, ϵ ≈ 10, and ϵ ≈ 107. The first two budgets,
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(a) ϵ ≈ 3
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(b) ϵ ≈ 10
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(c) ϵ ≈ 107

Fig. 7: Attack performance and test accuracy across different privacy budgets on CIFAR10-IF500. Results for CIFAR100-
IF50 are presented in the Supplement (Figure A.5). TPR@0.1% FPR and test accuracy are averaged over 10 target models.

ϵ ≈ 3 and ϵ ≈ 10, represent typical privacy-preserving
settings commonly used in prior works [1], [42]. In contrast,
the extreme budget of ϵ ≈ 107 simulates a scenario with
minimal privacy constraints, allowing us to assess privacy
risks under high utility conditions. For experiments conducted
under standard privacy settings, we apply a noise multiplier
of 1.2, while for the high-utility setting, the noise multiplier
is significantly reduced to 0.00625. Across all configurations,
the privacy parameter δ is fixed at 10−5. The gradient clipping
norm and augmentation factor are set to 1.0 and 8, respectively.
We use cross-entropy loss and optimize the models with SGD,
with a learning rate of 4. Training is terminated once the target
privacy budget is reached.

3) Results: Figure 7 illustrates attack performance and test
accuracy across three different privacy budgets using DPSGD
on CIFAR10-IF500. In each scenario, the baseline is the
target model trained without DPSGD. Overall, we observe the
following key points:
(a) As expected, compared to the baseline, TPR@0.1% FPR
for models trained with DPSGD decreases significantly across
all classes, which indicates that DPSGD can effectively mit-
igate privacy risks. However, this also results in a marked
decline in overall test accuracy, dropping to approximately 0%
in most classes and leading to considerable utility loss.
(b) Despite using DPSGD, the privacy risk amplification effect
in tail classes remains pronounced. For example, in the model
with ϵ ≈ 3 (Figure 7a), TPR@0.1% FPR increases by about
100 times, from 0.13% in head class 0 to 12.62% in tail class
9. This demonstrates that adversaries targeting head classes
achieve only random guessing performance, while their ability
to infer membership in tail classes is amplified approximately
120 times relative to random guessing. This highlights ongoing
privacy risks in tail classes.
(c) Test accuracy decreases across almost all classes, as
DPSGD inherently causes utility loss. However, test accuracy
for the head class (class 0) remains consistently high, exceed-
ing 90%, with no substantial decline. In contrast, the remaining
classes experience significant drops. For example, accuracy in
tail class 9 falls to 0%, indicating a failure in classification.
(d) Both tail and head classes show a notable decrease in
TPR@0.1% FPR. For example, when ϵ ≈ 3, TPR@0.1% FPR
for head class 0 decreases by about 8 times, from 1.00% to
approximately 0.13%, approaching random guessing levels.
For tail class 9, TPR decreases by about 8 times as well, from

100% to 12.62%.
(e) As the privacy budget increases (from Figure 7a to Fig-
ure 7c), head class accuracy improves noticeably. However,
this increase in utility comes at the cost of heightened privacy
risks in tail classes. For instance, when ϵ increases to 107, head
class accuracy (e.g., classes 0, 1, 2, 3) approaches that of the
non-private model, but tail class privacy risks (e.g., classes 6,
7, 8, 9) escalate, as indicated by significantly increased TPR
values.

Takeaway. In summary, we approach question Q3 by means
of studying models trained with DPSGD. We demonstrate that
while DPSGD effectively reduces privacy risks, the amplifi-
cation effect persists, with tail classes remaining more vul-
nerable to membership inference attacks even under DPSGD.
In addition, as the privacy budget increases, head classes
experience gains in both privacy and utility, while tail classes
face increased privacy risks and utility loss. This highlights
a fundamental challenge within the DPSGD mechanism —
achieving balanced privacy protection across all data classes
in long-tailed datasets.

B. Fine-tuning Models using DPSGD

1) Introduction: In Section V-A, we show that test accuracy
for all classes improves via foundation model-based long-
tailed learning. However, privacy risks for tail classes remain
rather high. Similarly, in Section VI-A, we illustrate that while
DPSGD effectively mitigates membership inference attacks
across all classes, it results in low accuracy for most classes.
In this section, we present the first exploration of combining
foundation model-based long-tailed learning with DPSGD to
address both utility performance and privacy concerns.

By integrating these two complementary methods, we seek
to determine whether a model can achieve comparable levels
of privacy and utility across both head and tail classes in long-
tailed scenarios. This also provides insights into how DPSGD
interacts with foundation model-based long-tailed learning to
mitigate privacy risks across long-tailed datasets.

2) Experimental settings: We use the ViT-B/16 as the
foundation model backbone and apply the classifier fine-tuning
method. DPSGD is implemented using the Opacus library,
with the privacy budget ϵ set to 2.95. We employ the LA
loss function with a learning rate of 0.005, a noise multiplier
of 1.2, and an augmentation factor of 1. All other DPSGD and
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(a) Fine-tuning DPSGD vs. Non-DPSGD
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(b) Fine-tuning DPSGD vs. DPSGD
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(c) Fine-tuning, DPSGD vs. non-DPSGD

Fig. 8: Attack performance and test accuracy on foundation model-based long-tailed learning with DPSGD on CIFAR10-
IF500. Results for CIFAR100-IF50 are presented in the Supplementary Material (Figure A.6).

foundation model hyperparameters follow the specifications in
Section VI-A and Section V-A.

3) Results: Figure 8 presents a comparative analysis of
attack performance and test accuracy for three methods: foun-
dation model-based long-tailed learning with DPSGD (fine-
tuning DPSGD), foundation model-based long-tailed learning
without DPSGD (fine-tuning non-DPSGD) and the WideRes-
Net model with DPSGD on CIFAR10-IF500. Overall, the
experimental results demonstrate that integrating foundation
model-based long-tailed learning with DPSGD significantly
improves both utility and privacy preservation.
(a) As shown in Figure 8a, the fine-tuning DPSGD model
not only significantly achieves higher accuracy but also sub-
stantially reduces privacy risks, far outperforming the model
trained from scratch without DPSGD. Accuracy for head class
0 reaches approximately 99%, with TPR@0.1% FPR dropping
to around 0.17%. In contrast, for tail class 9, accuracy im-
proves by 90%, from roughly 3% to 93%, with TPR@0.1%
FPR decreasing by 75%, from 100% to approximately 25%.
(b) As depicted in Figure 8b, with a privacy budget of approxi-
mately 3, the fine-tuning DPSGD model significantly enhances
utility across all classes compared to the model trained from
scratch with DPSGD. Both models exhibit similar TPR values
at 0.1% FPR, this is somehow expected, given their shared
DPSGD mechanism and similar privacy budgets. Notably, the
fine-tuning DPSGD model shows a substantial improvement
in overall accuracy, especially in classes 2 through 9. This
demonstrates the dual advantages of integrating the two com-
plementary methods, enhancing accuracy while maintaining
robust privacy. While accuracy variations exist across different
classes in the fine-tuning DPSGD model, these are attributed
to the inherent gradient clipping and noise addition in DPSGD.
We plan to explore more advanced private training strategies
to mitigate this issue in future work.
(c) As described in Figure 8c, where both models utilize
foundation model-based long-tailed learning with the same
classier fine-tuning, TPR@0.1% FPR in fine-tuning DPSGD
decreases significantly across all classes, with only a modest
reduction in accuracy. This outcome reflects the characteristic
trade-off in DPSGD, highlighting the balance between privacy
and utility, a principle analogous to the No Free Lunch
Theorem in optimization [52].

4) Overhead analysis: To evaluate the computational over-
head, we compare the training time of a standard DPSGD

model trained from scratch with that of a fine-tuned DPSGD
model. The standard DPSGD model adopts the WideResNet
architecture. As it is trained from scratch, the number of
trainable parameters is equal to the total number of parameters
in the network, which amounts to 2.75 million. The fine-
tuned DPSGD model leverages the ViT-B/16 as its backbone.
A small subset of 7.68 thousand parameters is fine-tuned in
the fine-tuned DPSGD model, while it contains a total of
149.63 million parameters. Both models are trained with a
target privacy budget of approximately ϵ = 3. The experiments
are conducted on a workstation running Ubuntu 22.04.3 LTS,
equipped with a single NVIDIA A100 80GB PCIe GPU.

We report the average training time over five indepen-
dent runs for both configurations. The standard DPSGD
model takes 83.93 seconds on average, whereas the fine-tuned
DPSGD model reduces this overhead, taking 40.05 seconds.
Recall that under this privacy budget, the accuracy of the
fine-tuned DPSGD model across all classes, particularly the
tail classes, is significantly improved, as shown in Figure 8b.
This highlights that the fine-tuning DPSGD model offers
both computational efficiency and improved model utility in
privacy-preserving scenarios.
Takeaway. In summary, we answer question Q3 by diving into
the privacy analysis of fine-tuning models using DPSGD. We
show that foundation model-based long-tailed learning with
DPSGD preserves privacy while improving accuracy across all
classes. However, privacy risks remain higher for tail classes
compared to head classes, motivating future research into
specialized private training strategies for long-tailed data or
the development of a new privacy preservation mechanism.

VII. DISCUSSION

In this section, we analyze the effect of shadow dataset
distribution on membership inference attacks and investigate
why samples from tail classes are more vulnerable. We further
present experimental results on text classification tasks, exam-
ine the effects of confidence intervals on attack performance,
and discuss potential mitigation strategies.

A. Effect of Shadow Dataset Distribution

In this section, we investigate how the distribution of
shadow datasets affects membership leakage risks across dif-
ferent classes in the long-tailed scenarios. While most prior
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Fig. 9: Effect of shadow dataset distribution. The attack
performance shows a decrease with increasing distributional
discrepancies between the shadow and target datasets. Head
classes exhibit a greater decrease in membership inference risk
compared to tail classes.

works [5], [41], [44] assume that the shadow datasets share
the same distribution as the target dataset, we also examine
how distributional discrepancies between shadow and target
datasets influence membership leakage in long-tailed scenar-
ios, particularly from head classes to tail classes.

We choose the model trained on the CIFAR10-IF500 dataset
as the target model. To assess the effect of distribution mis-
match in shadow datasets, we construct three distinct shadow
datasets with varying class distributions: 1) shadowIF500:
this dataset has the same distribution of the target model
(imbalance factor of 500) and serves as the baseline. 2) shad-
owIF300: this dataset adopts a long-tailed distribution with
a different imbalance factor of 300, representing a moderate
distributional shift. 3) shadowBalance: this dataset follows
a balanced distribution (imbalance factor of 1), where each
class contains an equal number of samples. This configuration
simulates a scenario where adversaries lack prior knowledge of
the target dataset’s distribution and default to using a balanced
shadow dataset.
Results. Figure 9 illustrates the effect of shadow dataset
distribution on membership inference performance. We ob-
serve that the TPRs for head classes decline substantially
as the distribution discrepancies increase. In contrast, the
TPRs for tail classes exhibit only marginal decreases. This
shows that distribution mismatches in shadow datasets mainly
reduce attack effectiveness on head classes, while tail classes
remain consistently vulnerable. Overall, tail class samples
exhibit higher membership leakage compared to head class
samples, even when the shadow datasets have distributional
discrepancies from the target dataset. Additional results under
different FPRs are provided in the Supplementary Material
(Figure A.7).

B. Why Are Samples from Tail Classes More Vulnerable?
In this section, we investigate why samples from tail classes

exhibit higher membership inference risks compared to those
from head classes in long-tailed scenarios. Prior work [50]
shows that high importance data samples in a dataset are more
vulnerable to membership inference attacks. Motivated by this,
we analyze the increased membership inference risks in tail
classes through the lens of data importance.
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Fig. 10: Correlation between Shapley values and member-
ship scores across classes on CIFAR10. In the balanced
dataset, samples do not exhibit strong positive correlations
across classes. In contrast, in the long-tailed dataset, samples
from tail classes show stronger positive correlation than those
from head classes. Pearson and Spearman denote the Pearson
and Spearman correlation coefficients, respectively.

We quantify data importance using Shapley values, where
a higher value indicates a greater contribution to the model’s
performance. Specifically, we adopt the efficient and scalable
KNN-Shapley method [25] to compute the Shapley values.
To quantify membership inference vulnerability, we adopt
Equation 2 to compute membership scores, which serve as a
proxy metric derived from membership inference attacks. We
then assess the correlation between the Shapley values and
membership scores using Pearson and Spearman correlation
coefficients. A strong positive correlation provides evidence
that data importance is a key explanatory factor for member-
ship inference vulnerability.

Results. Figure 10 illustrates the correlation between Shapley
values and membership scores across head and tail classes in
CIFAR10. We observe that samples from tail classes in the
long-tailed CIFAR10-IF500 dataset exhibit stronger positive
correlations between membership scores and Shapley values
compared to those in the balanced CIFAR10 dataset. This
indicates that in tail classes, samples with higher Shapley
values, i.e., those more influential to the model, are also more
susceptible to membership inference attacks.

In other words, samples from tail classes are more likely to
be inferred as members because they are more important to
the model. Their higher Shapley values reflect their greater
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Fig. 11: Results on text classification.

influence on the model’s decisions. This aligns with prior
work [50], which shows that samples with higher Shapley
values are more vulnerable to membership inference attacks. In
addition, the scarcity of samples in tail classes naturally leads
to greater memorization. This is because the model has few
examples from which to learn under tail classes. To achieve
near-optimal generalization, it is compelled to rely heavily on
each individual sample, leading to a degree of memorization or
overfitting on these specific data points. This is consistent with
theoretical insights from [18], which demonstrate that memo-
rization of certain examples is often necessary for achieving
almost optimal generalization performance.

Overall, class skewness in the long-tail scenarios acts as a
membership inference vulnerability amplifier. By forcing the
model to treat scarce tail-class data as highly influential points,
it simultaneously increases their importance to the model’s
predictive accuracy and their susceptibility to membership
leakage. Additional results on CIFAR100 are provided in the
Supplementary Material (Figure A.8).

C. Results on Text Classification

In addition to image classification, we extend our study to
text classification to demonstrate the generalizability of our
findings in natural language tasks.

Specifically, we utilize the 20 Newsgroups dataset [26],
which comprises approximately 20,000 documents across 20
categories. For our experiments, we create a long-tailed ver-
sion with an imbalance factor of 50, where the largest class
contains 600 samples. The corresponding shadow datasets
follow the same class distribution. For text preprocessing,
we convert the documents into numerical feature vectors
using Term Frequency-Inverse Document Frequency (TF-IDF)
representations. To capture different levels of textual gran-
ularity, we experiment with two n-gram configurations: 1)
Unigrams, which consider individual words, and 2) Bigrams,
which capture consecutive two-word phrases. The resulting
TF-IDF vectors are then input into a four-layer fully connected
neural network with an architecture of 256-128-64-20. ReLU
activation functions and Batch Normalization are applied after
each hidden layer. Dropout regularization is used with rates
of 0.4 after the first two layers and 0.3 after the third.

Results. Figure 11 presents the membership inference attack
performance on the 20 Newsgroups dataset. Similar to image
classification, tail class samples exhibit significantly higher
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Fig. 12: Effects of confidence intervals on CIFAR10. CI
refers to the confidence interval.

TPR values compared to head classes, indicating greater
membership leakage in the tail regions. We also investigate
the effect of different n-gram configurations. While changing
from unigrams to bigrams affects the model’s test accuracy,
the TPR@0.1% FPR remains high and continues to increase
from head to tail classes. This indicates that, regardless of fea-
ture granularity, the long-tail distribution inherently amplifies
membership inference risks in text classification tasks.

D. Effects of Confidence Intervals

Figure 12 presents the TPR@0.1%FPR and test accuracy
with 95% confidence intervals on both balanced CIFAR10 and
long-tailed CIFAR10-IF500 datasets. All results are averaged
over 10 runs to ensure statistical robustness. We observe
that both TPR@0.1%FPR and test accuracy exhibit narrow
confidence intervals, indicating stable membership inference
performance and classification accuracy across classes.

In the balanced CIFAR10, the confidence intervals for
TPRs remain consistently tight with minimal variance among
classes. In contrast, for CIFAR10-IF500, tail classes exhibit
much smaller confidence intervals than head classes, indicating
that membership leakage on tail class samples is not only
higher but also more stable. Additional results on CIFAR100
are provided in the Supplementary Material (Figure A.9).

E. Potential Mitigation

The exacerbated privacy risks in long-tailed scenarios high-
light the urgent need for mitigation. In this section, we discuss
several potential strategies.

Privacy equalization via dataset rebalancing. A direct and
effective mitigation strategy is to rebalance the training dataset
to alleviate class skewness. Our experiments (See Figure 1)
show that the TPR values of membership inference attacks
on a balanced dataset remain uniform across classes, in
stark contrast to the heightened risks observed in long-tailed
settings. This means that mitigating class skewness at the data
level can reduce class-specific privacy vulnerabilities.

Privacy diffusion via class taxonomy expansion. Another
mitigation strategy involves intentionally expanding the class
taxonomy to redistribute privacy risks. Given that membership
leakage is more pronounced in tail classes, the purposeful
introduction of new auxiliary classes, designed to function as
additional tail classes, can diffuse the concentration of privacy
vulnerabilities. By expanding the class taxonomy, the model’s
dependency on existing tail class samples can be reduced, thus
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lowering per-class vulnerability. This risk redistribution mech-
anism offers a novel perspective for managing privacy leakage,
particularly in application domains where the incorporation of
auxiliary semantic classes is feasible.

Privacy reinforcement via differentially private fine-tuning.
Leveraging foundation models combined with DPSGD private
training presents a promising pathway for mitigating privacy
risks. Our experiments in Section VI-B show that this method
provides formal privacy guarantees and reduces the member-
ship inference vulnerabilities of tail classes. However, despite
these improvements, challenges still remain. For instance, the
privacy risks of tail classes persistently exceed those of head
classes. This highlights the need for further advancements
in privacy-preserving fine-tuning techniques, making this an
important direction for future research.

Privacy enhancement via hybrid strategy integration.
Given the diverse nature of real-world applications, a one-
size-fits-all mitigation strategy may be insufficient. In practice,
combining the aforementioned strategies, such as rebalancing
dataset distributions, expanding class taxonomies to diffuse
risks, and employing differentially private fine-tuning training
strategies, can yield a more robust privacy-preserving solution.
Tailoring these hybrid methods to specific application scenar-
ios allows for flexible trade-offs between privacy, utility, and
resource constraints.

VIII. CONCLUSION AND FUTURE WORK

We have made a significant advancement by conducting
a comprehensive privacy analysis of long-tailed scenarios
through membership inference attacks. (1) Prior studies [18],
[19] make a foundational claim that memorization is necessary
to achieve close-to-optimal generalization error in standard
ML models via influence estimation methods. However, our
work leverages black-box membership inference attacks, i.e.,
access to the logit outputs, to advance the understanding of
membership inference vulnerabilities in long-tail data from
different perspectives. Three privacy effects related to tail data
are revealed for standard ML models trained on long-tailed
datasets, showing that tail classes are extremely vulnerable
to membership inference attacks compared to head classes.
(2) Moving beyond standard ML models, we additionally
demonstrate that even when state-of-the-art long-tailed learn-
ing techniques are employed — yielding substantial perfor-
mance improvements for tail classes to match those of head
classes — tail classes remain markedly more vulnerable to
membership leakage. (3) Furthermore, our work also reveals
that, even with DPSGD protection in place, tail classes exhibit
over 100 times higher privacy risks than head classes under a
privacy budget of 3.

Our work has primarily focused on unveiling privacy risks
in long-tailed data via membership inference attacks. Build-
ing on our work, it is interesting to investigate other types
of privacy attacks, such as model inversion and embedding
inversion attacks. Given the observed variability in accuracy
across classes in foundation model-based long-tailed learning
with DPSGD, developing more stable gradient clipping and
noise addition mechanisms within DPSGD presents a valuable

avenue. In addition, designing a novel DPSGD training mech-
anism specifically for tail classes can help balance privacy
risks across all classes. Finally, beyond DPSGD, exploring
new privacy protection mechanisms to specifically address
the amplified privacy risks in tail classes offers an intriguing
direction for future research.
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