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Boolean networks provide robust, explainable, and predictive models of cellular dynamics, especially
for cellular differentiation and fate decision processes. Yet, the construction of such models is
extremely challenging, as it requires integrating prior knowledge with experimental observation of the
transcriptome, potentially relating thousands of genes. We present a general methodology for
integrating transcriptome data and prior knowledge on the underlying gene regulatory network in order
to generate automatically ensembles of Boolean networks able to reproduce the modeled qualitative
behavior. Our methodology builds on the software BoNesis, which implements the automatic
construction of Boolean networks from a specification of their expected structural and dynamical
properties. We show how to transform transcriptome data into such a qualitative specification, and
then how to exploit the generated ensembles of Boolean networks for identifying families of candidate
models, and for predicting robust cellular reprogramming targets. We illustrate the scalability and
versatility of our overall approach with two applications: the modeling of hematopoiesis from single-
cell RNA-Seq data, and modeling the differentiation of bone marrow stromal cells into adipocytes and
osteoblasts from bulk RNA-seq time series data. For this latter case, we took advantage of ensemble
modeling to predict combinations of reprogramming factors for trans-differentiation that are robust to
model uncertainties due to variations in experimental replicates and choice of binarization method.
Moreover, we performed an in silico assessment of the fidelity and efficiency of the reprogramming
and conducted preliminary experimental validation.

Mathematical models have demonstrated their utility in elucidating
experimental findings that might challenge intuitive comprehension.
Through meticulous depiction of interactions within intricate signaling
pathways and by contextualizing the dynamics of gene expression, these
models provide a systematic approach to unveil the regulatory mechanisms
that control cellular processes and their dysregulation in diseases. Among
the various mathematical formalisms, the Boolean network (Boolean net-
work) is a simple but expressive formalism that relies on pragmatic rules to

qualitatively simulate essential systems’ features. It is notably valuable in
poorly understood large-scale systems, as it can be employed for systems
with hundreds of components and as the inference of Boolean network
models, contrary to quantitative models (typically ordinary differential
equation (ODE)-based models), does not require kinetic parameters derived
from in-depth and often unavailable knowledge.

Consequently, Boolean networks are increasingly used to capture the
interaction dynamics within complex signaling pathways and regulatory
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mechanisms governing cellular behaviors. They have been inferred from
high-throughput data for modeling a range of biologically meaningful
phenomena such as the mammalian cell cycle!, cell differentiation and
specifications™, stress/aging-related cell behaviors™, cell apoptosis’, and
cancer cell functions'*". Recent endeavors have focused on enhancing the
quantitative interpretation of the resulting models, incorporating prob-
abilistic approaches to effectively simulate heterogeneous cell populations
and dynamical interacting populations'*"*, and introducing a semantics that
offers the formal guarantee of completely capturing any behavior achievable
by any quantitative model (multilevel or ODE) following the same logic'®.

A Boolean network consists of logical rules that are associated with each
variable and that predict how its state evolves with time. The regulators of a
variable are combined with logical connectors or, and, and not and define
conditions for a variable to be at 0 (false/inactive/absent) or (1/true/active/
present). Through structural and dynamic analyses along with simulations
under perturbations, Boolean networks provide versatile opportunities for
exploring mechanisms underlying biological phenomena. This versatility
allows them to serve as standalone informative tools but also, for specific
modeling contexts and needs, such as in systems pharmacology, to lay the
groundwork for more detailed pharmacokinetic/pharmacodynamic and
quantitative systems pharmacology (QSP) models using ODEs'"" .

One the prominent challenges for applications of Boolean networks in
biology is the design of their logical rules. Indeed, besides the inference of the
underlying gene regulatory network, the search for logical rules faces a
double combinatorial explosion: the number of possible logical rules for a
single variable is exponential with the number of its regulators, and checking
whether a candidate Boolean network possesses the desired dynamical
features (steady states, trajectories, ...) can involve analysis that take time and
memory exponential with the number of variables. Thus, in most applica-
tions of the literature, the Boolean networks have been manually designed
from expert knowledge and by re-utilizing previously published models.
Nevertheless, there has been recent progress on the inference of Boolean
models from data® ., These methods address the inference problem with
different restrictions, either on the type of data and their interpretation in
order to obtain simpler dynamical properties, or on restricting the set of
logical rules to those having a particular structure, in order to reduce the
combinatorics of candidate models. However, these methods remain diffi-
cult to scale above hundreds of variables, and typically enforce a rather
specific way of interpreting the experimental data in terms of Boolean
properties.

In this paper, we present a general methodology for the inference of
Boolean networks from knowledge, data, and expert interpretation of data,
and the computation of predictions from the resulting models. The meth-
odology, summarized in Fig. 1, builds on the following steps:

1. The modeling of the knowledge, essentially in terms of an admissible
structure for the models.

. The qualitative modeling of the data in terms of expected dynamical
properties of the model. This step depends on the biological expertise of
the system, and relies on data analysis, notably to classify gene
expression into binary values.

3. The tool BoNesis™, which integrates (1) and (2) and, using logic pro-
gramming and combinatorial optimization algorithms, infers ensem-
bles of Boolean networks that are compatible with modeled static and
dynamical properties.

. The analysis of sampled ensembles of models to perform predictions,
including key genes and reprogramming mutations.

The modeling steps 1 and 2, that define the inference problem, allow a
versatile pipeline, that is not tied to specific type of data, or a specific
interpretation of them. Indeed, our approach aims at moving the modeling
effort from the design of Boolean rules to the specification of the expected
features of the model. Then, BoNesis relies on state-of-the-art symbolic
artificial intelligence technologies to automatically construct models that
satisfy the desired properties.

We showcase the implementation of this methodology on two case
studies: the inference of Boolean networks from scRNA-seq data of
hematopoiesis, with the identification of key genes and the analysis of
families of candidate models; and the prediction of reprogramming targets
for adipocyte to osteoblast conversion from bulk RNA-seq time series data.

Compared to the current state of the art (see “Methods”), our meth-
odology enables a scalable data-driven approach from different types of
experimental datasets, including single-cell or bulk RNA sequencing. We
build on existing software bricks for data analysis, trajectory reconstruction,
gene activity classification and generic Boolean network inference from
qualitative specification. For the first case study, we leverage trajectory
reconstruction and scRNA-seq binarization methods to translate scRNA-
seq data into Boolean trajectory specification. The resulting ensemble of
models shows a substantial intersection with manually designed models.
Moreover, we show how Boolean networks can be clustered in order to
identify subfamilies of compatible models that could be distinguished by the
differences in the Boolean function complexity of a few genes. This
demonstrated that our methodology enables the data-driven automatic
identification of key genes in the hematopoietic process, as well as the ability
to access the diversity and subfamilies of compatible Boolean networks. For
the second case study, we show how we can take advantage of several bulk
RNA-seq binarization methods to generate diverse ensembles of Boolean
networks that reproduce differentiation processes observed in time series.
Additionally, we propose new methods and metrics for computing and

Fig. 1 | General principle of the conducted infer-
ence of ensembles of Boolean networks. By offer-
ing a generic modeling language, BoNesis enables
integrating prior knowledge on regulation
mechanisms with different types of experimental
data, after qualitative interpretation, which may
depend on biological hypotheses and experimental balk time series
systems. These inputs specify what an admissible multiple conditions
model is. Then, employing logic programming, - y
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ranking combinations of mutations for triggering attractor change from
such heterogeneous ensembles, aiming at predicting robust cellular repro-
gramming targets. Finally, we performed new scRNA-seq experiments to
validate these predictions.

Importantly, these case studies demonstrate that our approach is
scalable to TF-scale networks, by starting from complete TF-TF regulatory
networks and, through the inference of Boolean networks comprising
thousands of nodes, we are able to automatically identify subnetworks that
are sufficient to explain the observed dynamics. This scalability to TF-scale
network while accounting for complex dynamical properties is another
advantage of our approach compared to other state-of-the-art methods,
often limited to hundreds of genes.

Results

Case study 1: ensemble modeling of hematopoiesis from scRNA-
seq data

We applied our inference pipeline (Fig. 2A) to the identification of key genes
and Boolean rules that can explain the hematopoiesis observed in a mouse
sample using scRN A-seq data from Nestorowa et al.’. Employing trajectory
reconstruction and binarization methods, we derived a logical specification
of the differentiation dynamics. Then, using BoNesis, we considered any
Boolean network employing TF regulations referenced in the DoRothEA
database, and automatically identified the sparsest among them that are able
to reproduce the differentiation dynamics. We compared the selected genes
of importance with an export model of the literature, showing a substantial
overlap. Finally, we highlighted the advantage of the ensemble modeling by
analyzing the variability of Boolean models compatible with the input data.
We notably performed clustering of sampled models, resulting in clear
3 subfamilies of models that can be distinguished on specific features of
Boolean rules.

Hematopoiesis is a crucial differentiation process of blood cells for
immune system regeneration. It has been extensively studied, including with
mathematical and logic dynamical models™™".

We focused on data-driven modeling of the early differentiation of
mouse hematopoietic stem cells (HSCs) from scRNA-seq data of Nestorowa
et al’’. The data show heterogeneity of cells during HSCs differentiation,
including lympho-myeloid primed progenitors (LMPPs) and common
myeloid progenitors (CMPs), further differentiated into granulocyte-
monocyte progenitors (GMPs) and megakaryocyte-erythrocyte progeni-
tors (MEPs). We performed hyper-variable gene selection and trajectory
reconstruction using STREAM™. The resulting trajectory has the shape of a
tree with two bifurcations visible in Fig. 2B, having as root the endpoint that
concentrates the hematopoietic stem cells.

To transform obtained trajectories into properties over Boolean states,
we considered six states that must correspond to the start and end of
branches (named S0-S5 in Fig. 2B). Moreover, in order to reduce the sen-
sitivity bias of single-cell observations, we chose to consider observations
formed by the union of several cells. This resulted in six clusters of a few tens
to hundreds of cells, corresponding to initiation (root), two bifurcation
points, and three leaves, which we considered to be steady states of the
Boolean model. We classified the activity of each gene of each cluster using
PROFILE” on individual cells and an aggregation by majority of value
among 0, 1, and ND (not determined).

Then, we specified the expected dynamical properties of a Boolean
network corresponding to the data as follows. There must exist trajectories
linking with states following the STREAM trajectories: e.g., there must exist
a trajectory from a Boolean state corresponding to the root S1 to the Boolean
state matching with SO0, then from that later Boolean state to a Boolean state
matching with S2, and so forth. Moreover, we requested that the Boolean
states corresponding to the leaves (S2, S4, S6) must be a steady state of the
Boolean model, and that any steady state reachable from S3 must match
with S5 and S4, and any steady state reachable from the root state must
match with S2, $4, and S5. Fig. 2C summarizes the declared properties.

Besides the expected dynamical properties of the model, BoNesis
requires an a priori GRN from which it will reconstruct Boolean rules that

(1) employ only genes and regulations referenced in the input GRN, and
(2) form a Boolean network that possesses the expressed dynamical
properties. Moreover, BoNesis is able to identify the genes that can have a
constant binary expression towards the whole dynamics, and can thus be
ignored in the final model. In the scope of this case study, we took as a
priori GRN the full DOROTHEA TF regulation database™ with regula-
tion p to confidence level C, comprising 2777 regulations among 1001
genes, 849 of which have an expression measurement in our dataset. We
performed a multi-stage combinatorial optimization procedure to iden-
tify the largest number of TF genes that cannot be considered as constant,
and for each, there exists a Boolean network having the desired dynamical
properties. It resulted in the selection of 39 TF genes and 137 TF-TF
interactions shown in Supplementary Fig. 1. A gene set enrichment
analysis is performed with METASCAPE™, showing a clear enrichment
of terms related to hematopoiesis (Fig. 2D), with the top term being
hematopoiesis, followed by others representing more specific biological
processes included in hematopoiesis.

Moreover, we compared the data-driven selected genes with three
expert art logical models of hematopoiesis by Hamey et al.”, Collombet et al.*
and Moignard etal.’. These three models, composed 0f 20-31 genes, include
a total of 53 genes, and it is worth noticing that there is no consensus on the
interactions implied in the regulation of this process since only 2 genes are
common to these three models. The Venn diagram of Fig. 2E shows the
intersection between the components we have automatically selected thanks
to BoNesis and the three state-of-the-art hematopoiesis models. Each of the
state-of-the-art models shares 6 genes with our selection (for a total of 10
distinct genes in common):

 With Hamey et al.”: FLI1, GATA1, GFI1B, IKZF1, MYB, RUNX1;
+ with Moignard et al.”: FLI1, GATA1, GFI1B, IKZF1, MYB, SPI1;
« with Collombet et al.: CEBPA, EFB1, IKZF1, MEF2C, RUNX1, SPI1.

Case study 1: model variability analysis

From the TF-TF subnetwork extracted in the previous step (Supplementary
Fig. 1), we employed BoNesis to sample 1000 distinct Boolean networks that
all respect the qualitative dynamical properties described previously. The
sampling has been performed using heuristics to range over models with
diverse logical rules. Each of the sampled Boolean networks is able to
reproduce the qualitative differentiation dynamics. Moreover, the universal
constraints on the reachable steady states, ensured by design, ensure that all
trajectories from the root state end in one of the three observed differ-
entiated types. Furthermore, we verified a posteriori that none of the sam-
pled networks possess cyclic attractors.

For each selected gene, we analyzed how many Boolean functions have
been assigned to it in the sampled ensemble of 1000 Boolean networks
(Supplementary Fig. 2). It resulted that 12 genes always received the same
Boolean function, 12 other genes received only 2-3 distinct Boolean func-
tions. This suggests that a large part of the logic rules are highly preserved in
all compatible models. Most of the diversity in the sampled ensembles is
essentially focused on gene FOS (682 different Boolean functions) and
TRP53 (44 Boolean functions).

Clustering the models according to the similarity of their functions
can highlight different possible pathways for process regulation and also
point out some biologically irrelevant groups. We performed a multi-
dimensional scaling clustering (MDS) of sampled Boolean networks, using
distance based on the inequality of Boolean functions: given two Boolean
networks f and g of size n, d(f,g) = > ., 1 f.2g,- MDS results highlight
three groups of models (Supplementary Fig. 3). It should be kept in mind
that the number of models in each group does not reflect their biological
relevance, as the group size may result from underlying combinatorial
aspects of compatible models, and may also relate to which some close
solutions may be easier to find. The variability within each cluster in terms
of the number of Boolean functions and influence graph is summarized in
Fig. 3. We remark that cluster A (the one in red in Supplementary Fig. 3C)
shows a much sparser influence graph, with few regulators per node, and
thus has simple Boolean functions with little variability. On the other hand,
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A lllustration of the pipeline employed for the scRNA-seq hematopoiesis case study. DoRGThEA graphics is reproduced from Figure 1 of (21) (CC BY-NC)
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Fig. 2 | Overview of the case study on scRNA-seq data-driven modeling of
hematopoiesis. A Summary of the pipeline going from scRNA-seq data and
DoRothEA interaction database to node selection and Boolean network variability
analysis and clustering. B STREAM plot of scRNA-data after pseudo-trajectory
reconstruction. The circle illustrate the selected start and end of branches from

G0:2000144: positive regulation of DNA-templated transcription, initiation

<10* /
<10 automatic selection
<1010 39 genes

which cells where extracted and binarized. C Excerpt of the logical specification of
Boolean network dynamical properties, expressed in the BoNesis language. D Result
of gene ontology enrichment analysis on nodes selected by BoNesis. E Venn dia-
gram showing the overlap of nodes of 3 Boolean networks of the literature with the
nodes selected by BoNesis.

clusters B and C show a rather dense influence graph, witnessing much
more complex Boolean functions. Cluster B intra-variability resides mostly
in the diversity of functions of the FOS and TRP53 genes, while cluster C
also has variability of the Boolean functions of the MYC gene. Detailed
varijability comparison across the different clusters are provided in Sup-
plementary Figs. 4-6.

Case study 2: ensemble modeling of adipocyte to osteoblast
conversion from bulk RNA-seq time series data

This case study demonstrates a full pipeline going from experimental bulk
RNA-seq time series data and background knowledge on TF-TF networks
to the prediction of genetic mutations for trans-differentiation and pre-
liminary experimental validation. The predictions have been obtained by
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Fig. 3 | Variability of the influence graph with each of the Boolean network
clusters. The label of each node includes the number of different local Boolean
functions in the sampled Boolean network set. Orange indicates a unique shared
function, yellow only 2 different functions. Edge is labeled with the number of

Boolean networks that utilize the influence (over the 1000 sampled), with its
thickness scaled accordingly. Graphics A refers to the red cluster, B to the yellow
cluster, and C to the green cluster depicted in Supplementary Fig. 3.
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Fig. 4 | Illustration of the pipeline employed for case study 2. We combined prior
knowledge TF-TF interactions extracted from METACORE(r) database with var-
iants of Boolean dynamical properties extracted from time series bulk RNA-seq data.
We employed BoNesis to sample Boolean networks fulfilling these properties. Then,
we performed prediction of reprogramming determinants using CABEAN on a

Dynamical properties

data collection time

Binarizations with 2 different methods
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subset of these sampled models. The identified reprogramming determinants are
combinations of gene knock-outs and constitute activations. The predictions are
then assessed on the other sampled Boolean models using EnsembleMaBoSS
simulation, leading to a scoring in terms of fidelity and efficiency, and thus a ranking
of the most robust predictions.

combining inference of Boolean network ensembles with formal methods
for control and ensemble simulations for scoring (Fig. 4).

Bone marrow stromal progenitor cells (MSCs) are multipotent cells
capable of differentiating either into osteoblasts to form bone tissue or into
bone marrow adipocytes, which play an important role in the hormonal
homeostasis of the bone marrow™. These cells are reciprocal in their dif-
ferentiation, and a correct balance is important for bone health, with
increased adipogenesis observed in obesity and during aging. Previous

studies have sought to understand the gene regulatory networks underlying
MSC differentiation, and an improved understanding of these networks
could allow for the identification of efficient reprogramming targets and
better control of bone marrow cell composition”’. We have previously
performed transcriptomic profiling of ST2 cells, a mouse MSC cell line,
across multiple time points of parallel differentiations into adipocytes and
osteoblasts using RNA-seq”. Both differentiations were performed for 15
days, with RNA samples collected from undifferentiated cells (ST2D0) and
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at 5 different time points (D1, D3, D5, D9, and D15) of each differentiation.
Osteoblastogenesis (OD1-OD15) was performed with one composition of
differentiation medium for the entire duration of 15 days, while for adi-
pogenesis (AD1-AD15), two different media were used, with media com-
position changed on the third day of differentiation (AD3). In vitro
differentiations are known to vary between experiments” and therefore
three independent differentiation experiments were performed to capture
the robustly reproducible gene expression changes. Please see “Methods” for
further details. The obtained dataset formed a rich resource of dynamic gene
expression profiles towards two different trajectories from the same
starting point.

We employed two different binarization methods by classifying gene
activity with respect to background RNA-seq data on a range of tissues,
either by bootstrapping parametric distributions (RefBool), or by a simpler
statistical procedure applying gene-specific cutoffs, referred to as MUQ in
the following. Each gene of each time point is thus assigned to a Boolean or
undefined value for each binarization method and each replicate. In total,
1560 genes received a binary value in at least one binarization method and
one replicate. For a fixed binarization method, we observed opposite clas-
sifications between replicates for up to 29 genes, while up to only 2 genes
when comparing across binarization methods. This can be explained by the
fact that, in general, the RefBool classifies fewer genes than MUQ, and genes
classified by RefBool are classified by MUQ similarly. In order to account for
this variance in binarizations, we considered each of the 6 profiles (2
binarization methods times 3 replicates) as alternate model specifications.
Our rationale was to constitute ensembles of models for each of these
profiles and study the robustness of reprogramming prediction across them.

Our main modeling hypothesis was that the Boolean model must be able
to reproduce the observed maturation trajectories from fixed cellular envir-
onments. For instance, due to the change of treatment between days 1 and 3
of adipocyte culture, we did not impose the existence of a trajectory from AD1
to AD3. From the experimental protocol, this resulted in the specification of
two trajectories: the maturation of adipocytes, modeled as the existence of a
Boolean trajectory going through AD3 — AD5 — AD9 — AD15; and the
maturation of osteoblasts, modeled as the existence of a Boolean trajectory
going through OD1 — OD3 — OD5 — OD9 — OD15.

Moreover, we assumed that ST2D0, AD15,and OD15 are observations
of cells in steady states. At last, we modeled the observed cellular differ-
entiation process by denying the existence of trajectories across the two
branches, nor reverting to the precursor state: there must not exist a tra-
jectory from AD3 to OD15, from AD3 to ST2DO, from OD1 to AD15, nor
from OD1 to ST2DO.

We performed selection of genes and sampling of diverse ensembles of
Boolean networks from the qualitative modeling of RNA-seq data. We
followed a workflow similar to use case 1, that we repeated for each replicate
and for each binarization method. Then, as the gene selection resulted in
several optimal solutions, the sampling of Boolean networks has been
repeated on each of them.

The prior GRN consisting of TF-TF interactions extracted from the
METACORE" database from all the TFs of the RNA-seq dataset. It resulted
in a signed digraph comprising 1027 genes with 11,159 regulations, 169 of
which were with an undetermined sign. This prior GRN served to define the
set of candidate Boolean networks. Because several genes have more than
one hundred referenced regulators, we restricted ourselves to the Boolean
networks whose activation functions can be expressed with at most 32
disjunctive clauses, without any limit on the size of the clauses. Thus, while
we permit a gene to depend on all of its potential regulators, we limited the
number of activation contexts.

On the 1027 genes of the prior GRN, one can expect that only a fraction
of them are involved in the observed differentiation process. As in case study
1, we employed BONESIS to perform gene selection by identifying Boolean
networks reproducing the dynamics of as many genes as possible, while
assigning as many activation functions as possible to a constant value.

genes. Finally, we performed the diverse sampling of 264 distinct Boolean
networks for each of the six profiles, resulting in 1584 Boolean networks
verifying the qualitative dynamical properties corresponding to at least one
replicate and one binarization method, and using one of the optimal sets
of genes.

Case study 2: prediction of reprogramming targets with high
fidelity and efficiency

Our objective was to predict combinations of perturbations of gene
expression to trigger a transdifferentiation of adipocytes into osteoblasts. In
terms of the Boolean network, this corresponded to identifying control
strategies to enforce the reachability of the OD15 state from the AD15 state.
In order to account for candidate model heterogeneity, our approach was to
compute reprogramming targets on individual Boolean networks from a
subset of the sampled ensemble and evaluate them on the full ensemble. In
the end, we aimed at selecting the perturbations predicted to be most
effective on a range of models reconstructed from different binarization and
replicates.

We selected the CABEAN tool* to compute combinations of tem-
porary gene knock-out and constitutive activations enforcing the con-
vergence to OD15 state from AD15 state for a given individual Boolean
network. For each of the 6 qualitative profiles, we applied CABEAN on 24 of
the 264 Boolean networks sampled in the inference part. CABEAN failed on
15 of these 144 Boolean networks due to a memory issue. On the remaining
129 models, CABEAN identified combinations of up to 5 simultaneous
perturbations leading to a reprogramming from AD15 to OD1 5. Because we
are interested in perturbations that can be effective on as many models as
possible, we kept combinations of perturbations that have been identified in
at least 10% of the individual models given to CABEAN. This short list of
candidates contained 34 different combinations of 2-4 simultaneous
perturbations.

The reprogramming perturbations computed by CABEAN are guar-
anteed to be effective on their input individual Boolean network. Our
objective was to assess the robustness of these (combination of) perturba-
tions, the Boolean network ensembles inferred from different qualitative
interpretations of the data. To do so, we extended the MABOSS stochastic
Boolean network simulator to sample trajectories from the Boolean network
ensembles: each Boolean network of the ensemble is simulated k times from
the corresponding state corresponding to AD15 while enforcing the given
reprogramming perturbation. For each candidate combination of pertur-
bations, we obtain an estimation of the distribution of the steady states of
Boolean networks of the ensembles after enforcing the perturbation from
the AD15 state.

We defined scores to evaluate reprogramming candidates from their
simulation on Boolean network ensembles for their ability to reprogram to
the osteoblast phenotype, as observed at OD15. Inspired by usual cellular
reprogramming assessments, we considered two measures: the efficiency
relates to the proportion of cells (models) that show all the prior knowledge
adipocyte gene markers (ADIPOQ, FABP4, CEBPA, LPL) and none of the
osteoblast prior knowledge marker gene (ALPL, HEY1, SP7). Then, the
fidelity relates to the similarity of those cells to the full OD15 state.

For a given reprogramming perturbation, we write S the set of states
resulting from the ENSEMBLEMABOSS simulation, and for each state
s € S, we denote by p; its estimated steady state probability. Moreover, we
define 1o4(s) as being equal to 1 whenever each osteoblast marker gene is
active in s and each adipocyte marker gene is inactive is s, otherwise, 1og(s) is
equal to 0.

The reprogramming efficiency is computed from the estimated steady
state distribution after perturbation of Boolean network ensembles as the
fraction of simulations ending in a state having all the osteoblast marker
genes active and all the adipocyte marker genes inactive:

Depending on the replicate and binarization method, the optimization efficiency(S) = Z P 1og(s) (1)
results in different optimal sets of genes to preserve, ranging from 49 to 79 se$
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Fig. 5 | Specific TFs occur more often and with higher efficiency in the predicted reprogramming determinants. Frequency (y-axis) and maximal efficiency (x-axis) of the
TFs included in the predicted reprogramming determinants applying permanent stimulation are reported. Names of the most promising TFs are given.

The reprogramming fidelity employs a similarity measure between a
full Boolean state s € S and the binarized state Sop;5s of the corresponding
qualitative interpretation. Because the binary state of some genes of fop;s
can be non-determined, the similarity is defined as the proportion of
binarized genes in Sop; 5 that have the same value in s. In the end, the fidelity
is the expected similarity of the Osteoblast steady states of Boolean networks
in the ensemble after reprogramming from AD15:

se§

fidelity(S) = <Z D - Log(s) - similarity(s, /30D15)> /efficiency(S) (2)

Case study 2: validation of node selection and reprogramming
targets with literature
The TFs included in the predicted reprogramming determinants were
ranked by frequency and maximal predicted efficiency (Fig. 5). Analysis of
the literature related to the predicted top TFs revealed their existing asso-
ciation with the regulation of osteoblastogenesis, thereby providing indirect
validation for our approach. For example, HEY1, a well-known target of
Notch signaling” and a regulator of osteogenesis* was among the factors
with the highest predicted efficiency score. Similarly, CEBPA, SP1, and
TRP63 have been associated with adipogenesis, osteogenesis, and bone
formation"**, respectively. The repression of CEBPA is likely to reverse the
adipogenic gene expression program. Likewise, the repression of NR2F2 or
GATA3 was predicted to lead to high efficiency of conversion, something
that is also supported by literature***’. One of the top TFs included TCF7L2,
a mediator of WNT signaling (Fig. 5). Consistently, WNT signaling is
known to positively regulate osteoblastogenesis**, with the effect mediated
by TCF7L2%. Finally, MYC genes have been previously shown to contribute
to the reprogramming of fibroblasts towards osteoblasts****. However, some
of the well-established regulators of osteoblastogenesis, such as SP7 (also
known as Osterix) or RUNX2***, were not included among the predicted
reprogramming determinants. This could be related to, at least in the case of
RUNX2, its already abundant expression in undifferentiated ST2 cells™.
Based on the predicted combinatorial efficiencies, and the existing
literature evidence, three combinations of three determinants each were
selected for experimental validation. Reprogramming experiment 1 (REI)
involved upregulation of TRP63 and downregulation of CEBPA and SP1.
RE?2 involved upregulation of TCF7L2 and TRP63 and downregulation of

SP1. And RE3 involved upregulation of TCF7L2 and downregulation of
CEBPA and SP1.

Case study 2: preliminary experimental validation

In order to experimentally test the different combinations of reprogram-
ming determinants selected for REI, RE2 and RE3, we took advantage of
lentiviral overexpression in combination with siRNA-mediated gene
repression. Overexpression constructs were synthesized at Sirion Biotech
and were designed to coexpress either green fluorescent protein (GFP) and
red fluorescent protein (RFP) to confirm a successful lentiviral transduction
and to allow separation between different constructs (specifically, co-
transduction of TCF7L2 and TRP63). Day 9 adipocytes were transduced
with the lentivirus of interest, and 24 h later, were transfected with the
relevant siRNAs to achieve the respective combinations for each RE. In
parallel, control cells were transduced with a negative control virus over-
expressing only GFP and subsequently transfected with a scrambled control
siRNA (please see Methods for additional details). Using reverse tran-
scription real-time quantitative PCR (RT-qPCR) TCF7L2 and TRP63 were
confirmed to be 8- and 15-fold overexpressed in undifferentiated cells,
respectively, while siRNAs against SP1 and CEBPA led to 35-68% decrease
in their mRNA expression (Supplementary Fig. 7). Following transfections,
the adipocytes were cultured in osteoblast medium for 9 days before col-
lection of the cells for single cell RNA-sequencing (scRNA-seq). After the
sequencing and data processing, transduced cells were identified based on
the presence of the mRNA sequence encoding for GFP and/or RFP and the
relative changes in the transcriptomes were analyzed. Differentially
expressed genes (DEGs) were obtained in the single-cell expression data
based on the Wilcoxon rank-sum test with FDR < 0.05. Directionality of the
observed change was determined with the common language effect size,
with a >0.5 indicating up-regulation (see Supplementary Data 1). The
precision for the upregulated single-cell DEGs compared against the bulk
DEGs (Day 15: Adipocyte vs Osteoblast, adjusted p-value < 0.05) is 0.57,
0.51,and 0.33 for the three different reprogramming experiments REI-RE3.
This means that for REI 57% of the genes which were called upregulated in
the single-cell experiment were also upregulated in osteoblasts compared to
adipocytes in the bulk data®, indicating an initial consistent effect of the
applied reprogramming determinant. The respective hypergeometric
p-values for enrichment of the true positives in the single-cell DEGs are
4.4e — 14, 1.1e — 12, and 0.057, respectively. This promising tendency is
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also confirmed by visual inspection of the bulk RNA-seq data of DEGs
obtained in the single-cell experiment (for REI see Supplementary Figs.
8 and 9). The very low recall (<0.02) in all experiments, however, indicates
that only a few of the relevant genes responded to this perturbation in the
relatively short time frame of the experiment.

Discussion

Overview of the methodology

We demonstrated our methodology on two complementary case studies for
a combination of data-driven and expert-driven inference of Boolean
models from scRNA-seq and bulk RNA-seq data. The essence of our
approach is the explicit modeling of the inference problem, with the spe-
cification of the prior knowledge, typically extracted from databases of
TF-TF interactions, and the specification of the expected properties of the
model. These latter must reflect the expert and qualitative interpretation of
the experimental data. We relied on the BONESIS engine, which enables
specifying and combining a broad range of dynamical properties, notably
related to trajectories and steady states. Then, ensembles of compatible
models can be sampled and further analyzed. We took advantage of
ensemble modeling to analyze candidate model variability with model
clustering (case study 1), as well as to provide robust reprogramming pre-
dictions (case study 2).

The flexibility of the workflow facilitates the comparison of different
modeling choices and hypotheses. For instance, in case study 2, we con-
sidered different binarization methods and different replicates. We took
advantage of the variability to generate an ensemble of models spanning the
different hypotheses and identify consensus predictions. The choice of the
input GRN can also impact the results, and it could be assessed similarly.
Such an analysis is out of the scope of this paper, as our objective was not in
the benchmark of prior knowledge data nor binarization methods.

Remarkably, the inference pipeline was tractable on TF-scale networks.
By employing logic programming and relying on recent complexity break-
throughs in Boolean network analysis'®, we have been able to fully account
for thousands of transcription factors. Then, we took advantage of combi-
natorial optimization technologies to automatically prune non-necessary
variables and identify subnetworks that drive the observed dynamics.

Case study 1

With this case study, we leveraged ensemble modeling to analyze the
diversity of models that can explain the observed differentiation process.
The experimental scRNA-seq data has been processed with trajectory
inference methods from which we extracted both clusters of cells corre-
sponding to initiation, bifurcation, and differentiated states, and dynamical
properties related to existence of trajectories linking those states.

From a full TF-TF interaction database, we have been able to identify a
subset of core TFs from which Boolean networks can be drawn reproducing
the qualitative differentiation, which present some intersection with expert
models from the literature. By analyzing the ensemble of sampled models,
we identified three families of models that diverge by the complexity of their
logical rules. The variability analysis also emphasized model patterns that
are preserved across the ensemble. Such pinpointed model features could be
challenged with expert knowledge, and further experimental studies are
needed in order to discriminate among subfamilies of models.

As we performed a partial enumeration, we are not assured of not
missing models with characteristics different from those of the three high-
lighted groups. However, partial enumerations of 250 and 500 models
already highlight the three groups and suggest that increasing the number of
models only leads to an increase of the size of the 3 groups, without high-
lighting any new type of models. This motivates the chosen number of 1000
models. MDS done with 250 and 500 models are presented in Supple-
mentary Fig. 3A and Supplementary Fig. 3B.

This modeling of hematopoiesis from a causal network automatically
inferred from the dynamics of the data already provides avenues for further
exploration of the mechanisms of its regulation, with the possibility of
ensemble simulation of models with MaBoSS".

Case study 2

The applied pipeline yielded promising predictions for the reprogramming
of adipocytes to osteoblasts, as confirmed by our literature validation,
highlighting its utility in identifying novel targets from time-series RN A-seq
data. Notably, transcription factors such as SP1, HEY1, and TRP63 fre-
quently appeared in both temporary and permanent perturbation lists,
suggesting central roles for them in adipocyte-to-osteoblast conversion. The
successful prediction included factors like CEBPA and SP1, known to be
crucial for adipocyte and osteoblast functions as modulators of the activity of
the respective master regulators of these lineages, PPARG and SP7 (also
known as Osterix)**”’. These TFs’ selection as reprogramming targets is
consistent with their involvement in these regulatory networks, supported
by their high occurrence in prediction lists and established biological roles in
these processes*™.

The reliability of the predictive model is evidenced by its consistency
with existing literature on the differentiation of mesenchymal cells. Factors
such as ATF4 and NR2F2, previously implicated in positive and negative
control of osteoblast differentiation, respectively, are found among our
predictions*””. Similarly, the positive effect of HEY1 and TRP63 on bone
formation in the literature® highlights the utility of our approach. The
predictions also drew attention to the role of less commonly studied factors
like AHR and RARA, which are implicated in sensing the cellular micro-
environment crucial for differentiation. AHR, predicted for upregulation in
two combinations, is known to shift the gene regulatory network toward a
less specialized cell state, potentially facilitating the reprogramming
process”. Similarly, RARA, noted for its negative regulatory role in adipo-
genesis, is part of the reprogramming predictions®, suggesting that its
modulation could inhibit adipocyte traits while promoting osteoblast
characteristics.

Follow-up studies of our findings could benefit the understanding of
bone-related diseases like osteoporosis. By utilizing knowledge of specific
gene targets that promote osteoblast differentiation, new therapeutic ave-
nues may be explored that enhance bone regeneration and repair®*.
Additionally, manipulating adipocyte-to-osteoblast conversion could ben-
efit obesity-related diseases where abnormal adipogenesis is prevalent®’.

Nevertheless, for now, our validation experiments face limitations.
While gene expression changes upon reprogramming perturbations were
enriched for genes involved in osteoblastogenesis, as observed by scRNA-
seq, the overall efficiency of gene delivery and knockdown would need to be
improved to be able to better address the quality of our predictions. Usage of
stable and inducible systems that would be independent of chemicals such as
doxycycline, which might perturb cellular systems beyond intended effects,
should optimally be used. Additionally, the complexity of gene and protein
interactions, including the necessity of considering interaction partners like
beta-catenin with TCF7L2 or post-translational modifications like phos-
phorylation of factors like JUN and FOS, suggests a greater number of (also
non-genetic) perturbations may be required for effective reprogramming
than initially predicted. Integrating multi-omics data with transcriptomic
profiles could provide a more comprehensive understanding of the repro-
gramming processes, allowing for the examination of post-translational
modifications and protein activity states crucial in the transcriptional state
changes.

General recommendations for addressing a transcriptome
dataset

The presented methodology converts quantitative transcriptomic data into
Boolean states and trajectories through statistical analysis of the data. Thus,
the chosen binarization and trajectory inference method are sensitive
parameters, as a slight change in the qualitative specification may impact the
sets of compatible models. The case studies employed different methods,
which can be guided by the type of data. As shown in the second case study,
one may even consider modeling generated from different binarization
methods. In general, the binarization of a gene is performed with respect to a
reference dataset. This reference dataset can be limited to the studied dataset
of the experiment, in which case the binarization reflects qualitative changes
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within the studied dataset. Otherwise, the reference dataset can be con-
stituted of data from multiple tissues, in which case, the binarization reflects
a more absolute qualitative state of the gene with regard to other cellular
types. Another important parameter of binarization methods is their
binarization thresholds. Usually, the methods will classify a gene as either
active, inactive, or undetermined. Having too large a proportion of unde-
termined genes may leave too few constraints for building a relevant model.
On the other hand, too large a proportion of determined binary values may
be too sensitive to the employed method and make the inference problem
non-satisfiable™. Currently, BoNesis only identifies models that fully satisfy
the given binary observations. Future work may consider relaxing the
compatibility criteria, allowing for and minimizing mismatches between
inferred Boolean networks and input qualitative data.

The Boolean networks generated by BoNesis draw their regulation from
the given prior knowledge GRN, typically extracted from a database. Thus,
the quality of the results may be impacted when important regulations are
missing: either there can be no Boolean network reproducing the dynamics of
certain genes, or there can be more complex solutions that bypass the missing
regulation through other indirect regulations. Currently, it is impossible to
infer missing regulations from BoNesis. BoNesis offers the possibility to
identify genes whose behavior is impossible to model with the given PKN,
and ignore these genes in order to access the solutions for the other part of the
network. Another direction could be to complete the prior knowledge GRN
with the GRN inference method applied to the input dataset.

As underlined in the two case studies, and because the experimental
data typically covers a tiny fraction of the cellular dynamics, the solution
space of Boolean networks reproducing the observations is typically
intractable. To address this issue, we leverage the sampling capability of
BoNesis, which is based on dynamically tuning solving heuristics of the
underlying logical solver, to constitute ensembles of diverse Boolean
networks. Nevertheless, we emphasize that there is no theoretical guar-
antee that the sampled ensemble recapitulates the whole diversity of
compatible models. To partly circumvent this issue, future work may
consider extending BoNesis with the possibility of prioritizing certain
families of Boolean functions, such as those being canalizing or nested
canalizing®.

Accounting for the previously described limitations, the application of
the presented methodology to another transcriptomic dataset can follow a
similar workflow as case study 1 for the case of single-cell data, or case study
for the case of bulk data. Having chosen a qualitative interpretation of the
data and a source for the prior knowledge GRN, a first control point is the
gene enrichment and functional analysis of selected components (Auto-
mated component selection with BoNesis section), from which the
ensembles of Boolean networks will be generated. They constitute
the minimal and sufficient genes identified by BoNesis for reproducing the
specified cellular behavior. Another important control point is the com-
pletion of gene activities that were left undetermined in the binarization
process of selected cellular states. Indeed, whenever a gene is not categorized
as either active or inactive in a Boolean state, we consider that it can be
assigned to any value. Such an analysis can result in further constraints for
BoNesis, such as imposing value for marker genes missed by the binariza-
tion method, or imposing that certain genes should be at an identical
(but undetermined) value in several states, as used in case study 2.

Finally, regarding computational complexity and cost, the heaviest step
is the generation of ensembles using BoNesis. This is due to the complexity
of the tackled Boolean synthesis problem, which can be NP-complete or
even X} -complete decision problems* depending on the requested dyna-
mical properties” . Moreover, the employed logical solver CLINGO® has
few capabilities to exploit parallel computing, and thus has no particular
advantage in being run on a computing cluster. The runtime is also very
dependent on the specification, and can range from a few seconds to several
days. The component selection part of the inference process for case studies
1 and 2 was the most computationally extensive, requiring 3 days for case
study 1, and around 10h for case study 2 on a 2GHz CPU with
256 Gb of RAM.

Methods
Knowledge-based (bottom-up) and data-based (top-down)
Boolean network inference methods
The manual approach is a bottom-up modeling (also called forward
modeling) that designs a model through expert and literature-based
knowledge to determine the Boolean functions from known and suspected
interactions"**"*”°, The resulting model is validated or refined in an
iterative process according to the fitting between its dynamic features and
observations of the biological phenomenon (for example, its attractors
correspond to known phenotypes). This time-consuming approach requires
a deep understanding of the biological system and does not ensure that all
possible regulations leading to the observed behavior are explored. In con-
trast, methods have been developed to propose a top-down (reverse)
modeling approach that derives from experimental data both the topology of
the network, namely the causalities between the biological components, and
the logical rules of node activation, constituting the Boolean network™”"™”".
This purely data-based inference approach can suffer from overfitting to a
dataset and circular reasoning: a dataset generates a network, which then
predicts the dataset. It also confronts the vastness of the solution space
without considering prior knowledge about the phenomena. Consequently,
other methods have been developed midway between these previously
mentioned top-down and bottom-up modeling approaches™ ", which
encompasses the method presented here. The purpose is to leverage both
experimental observations and prior knowledge on interactions related to
the biological phenomenon to model. Each tool combining data- and
knowledge-based modeling considers as input both experimental data,
typically expression profiles, and a gene regulatory network (GRN) poten-
tially extended with some features. The GRN, also named influence graph or
regulation graph, structures the prior knowledge about interacting compo-
nents according to the following definition: a directed graph that represents
regulatory interactions between biological components, interactions cate-
gorized in the simplest case as activations and inhibitions™. A high number
of tools have been developed to address these issues because they perform the
Boolean network inference through different algorithms and are designed
for different types of experimental data and different biological interpreta-
tions of it. Exploring the space of possible Boolean networks and their
dynamics is a challenge because there can be millions of combinations of
logical rules that can be formulated. This is why, depending on the algorithm
implemented by the tool, the output models can be either Boolean networks
that exactly reproduce the desired properties or Boolean networks optimized
to best match these properties with no guarantee of optimality. In the first
case, the exploration of solutions can be exhaustive. It should also be taken
into account that this search for models (exact or by optimization) can be
limited to a subspace of solutions if Boolean function patterns are imposed. If
we focus on the way solutions are explored, we can distinguish between
optimization-based methods™*****"*’*” (heuristic, identify a Boolean net-
work that best aligns with the observations and prior knowledge, based on a
defined set of criteria or objective functions) and decision-based methods on
satisfiability problems™>”**” (exact, determine whether there exists a
Boolean network consistent with the observations and prior knowledge—
based on constraints on its topology and dynamics—and find such network
if it exists). The methodology we present in this paper, based on previously
published works”***, belongs to this latter category. According to the chosen
approach, some methods output (near-)optimal solutions with no guarantee
of reaching a global optimum, while others can theoretically explore the
solution space exhaustively to output the whole set of Boolean networks that
comply exactly with the biological constraints (in practice often limited to a
subset of these Boolean networks as the network size increases and the
number of solutions becomes tremendous). This latter ability of inferring an
ensemble of models is highly informative. It enables variability analysis
across the models to identify common patterns of interactions, supporting
the formulation of hypotheses that benefit both the modeling process and the
biological exploration of key components.

Beyond this distinction between categories of algorithms, limitations
on the formulation of the Boolean rules that are considered by the methods
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also impact which solutions are explored. It can be a fixed limit on the
number of regulators (e.g., a maximum of six regulators including four
activators and two inhibitors™”’) or a certain pattern of rules (e.g., a com-
ponent is expressed if all its activators are expressed and none of its inhi-
bitors, i.e., and logic gate between activators and or between inhibitors™”’).
Because of the combinatorial explosion, methods designed to consider all
possible Boolean functions can also offer a limit on the size of the Boolean
function to enable dealing with dozens of components and complex reg-
ulations. This limit can be on the number of regulators or, like the choice we
made, on the number of different combinations of regulators (i.e., a limit on
the number of clauses that can compose the Boolean functions). This latter
choice seems to be biologically consistent: the number of direct regulators
for a gene or protein can vary significantly, often being numerous. Whereas
the number of functional states, reflected by specific combinations of these
regulators, is typically more constrained, ensuring system resilience and
controlled responses to a manageable range of conditions.

Qualitative interpretations of experimental data

Regardless the implemented algorithm, the Boolean network inference tools
can also be judiciously compared by focusing on the types of data that they
can consider for the modeling: bulk or single-cell expression profiles, at
cellular steady states or covering cellular evolutions, linear evolutions, or
with bifurcations (e.g., lineage differentiation), observed with time series
limited to two time points or longer, with/out perturbations on components,
etc. This is directly linked to the dynamical features they are able to model.
Measurements acquired at assumed stable cellular states are commonly
interpreted as attractors in the Boolean network dynamics. On this basis,
some inference tools such as CelNOptR*, Griffin*’, and BONITA-RD* are
specifically designed for inferring Boolean networks that respect constraints
on their attractors (focusing mostly on fixed points), constraints that are
derived from a set of steady-state data.

A range of tools extends the modeling scope by addressing time series
of expression measurements, representing a succession of cellular states
ensuing one after the other. Among them is CelNOptR-dt*', which can fit
time course data using a synchronous updating scheme. The modeling of
this data is widened to asynchronous semantics with ASKEed” and
IQCELL” that model time series as trajectories in which the succession of
measurements constitutes a succession of transitions (reachability in a single
dynamic step). Caspo-TS™, also asynchronous, relaxes the constraint of
observing each transition as it considers the reachability property between
the observed cellular states. It is worth noting that none of these methods
takes into account the modeling of bifurcations/branching in the trajec-
tories. Among the methods specially designed for inferring Boolean net-
works from single-cell expression data, we can distinguish different
interpretations of their dynamical features. SCNS’, BTR” and SgpNet’
interpret the set of single-cell measurements as a state space reached from an
initial state in an asynchronous Boolean network. These tools seek, through
optimization, a Boolean network for which the set of states contained in its
transition graph (the “model state space”) is close to the set of binarized
expression data (the “data state space”). However, the strategy presented in
ref. 75 is based on another interpretation: the state of each single-cell
measurement is assumed to be a potential predecessor or successor of the
state of any other single-cell measurement coming from the same sample.
Consequently, a solution is here a synchronous Boolean network whose
dynamics matches a random set of two-time-point time series, namely,
couples of single-cell measurements. The previously mentioned IQCELL”
proposes a third interpretation of this data, considering a pseudo-time
ordering of the cells seen as a time series and searching for an asynchronous
Boolean network whose dynamics includes a sequence of states compatible
with the cell ordering.

A tool that can consider a diversity of dynamical features can exploit
different types of data and address the modeling of varied and complex
cellular behaviors. Three methods stand out for the complexity of the
behaviors that can be modeled. The tool BRE:IN** allows for more nuanced
and complex dynamic behaviors than the previously mentioned tools, as it

supports complex temporal logic specifications (CTL and LTL), both in
synchronous and asynchronous semantics. However, the high computa-
tional cost of checking these traces prevents scaling to networks of biological
interactions of dozens of components: the larger networks for benchmarks™
had 16 nodes with synchronous semantics and 11 with asynchronous
semantics. Similarly, Boolean network sketches® also performs the infer-
ence with the help of model-checking methods, in asynchronous semantics,
but with the richer logic HCTL (hybrid extension of the branching-time
temporal logic CTL), allowing more expressive specifications. Unlike
BRE:IN, the exploration of the Boolean functions is not limited by patterns,
and this method was tested in a network with more than 300 nodes.

Binarization of transcriptome data in case study 1

From the full scRNA-seq dataset, we employed PROFILE™ to classify in
each cell each gene to either 0, 1, or undetermined, by comparing its
expression to the distribution in all cells. Then, each cluster identified using
STREAM (see main text) has been binarized using a majority rule: a gene is
classified following the majority of values the gene has been classified to in
the individual cells of the cluster. Among the 4768 hyper-variable genes
selected by STREAM, 1519 have been classified with different binary values
in at least two different clusters, and 1369 are classified as binary values in all
clusters.

Binarization of transcriptome data in case study 2

We previously performed experiments for acquiring RNA sequencing data
in populations of ST2 cells at different stages of differentiation towards
adipocytes and osteoblasts™. Adipocyte differentiation was induced using a
medium of isobutylmethylxanthine, dexamethasone, and insulin for 2 days,
followed by a change of medium with rosiglitazone insulin (Sigma-Aldrich,
19278) until 9 days. Differentiation towards osteoblasts was induced using
bone morphogenetic protein-4 for 15 days. Each experiment has been
replicated 3 times. At days 0, 1, 3, 5, 9, 15, a subpopulation of the cells has
been sequenced genome-wide. In the scope of this project, we focused on the
activity of transcription factors (TFs) in the different stages of ST2 differ-
entiation. To enable building of qualitative models for the differentiation
process, an automated method was applied for transforming the quantita-
tive RNA-seq measurements of TF activities into a qualitative assessment of
their activity: active (1), inactive (0), or undetermined (intermediate). Two
different methods of binarization were employed and compared: RefBool*
for binarization with respect to background RNA-seq data collected in a
range of different cell types; and a statistical analysis developed in the scope
of the project, for binarization with respect to the collected RNA-seq data.
For this statistical analysis, representative background distributions of gene
expressions in 63 mouse tissues were generated from ArchS4* data [https://
maayanlab.cloud/archs4/, Kallisto raw read counts, retrieved 2019]. Inde-
pendent vertex sampling was performed per tissue to remove correlated
samples. Samples were further filtered for overall read counts between 10
and 100 Mio and a median > 1 to remove unusual distributions and outliers.
This background data was merged with our own data (after Kallisto
alignment) and then quantile normalized and converted to TPM (gene
length normalization and TPM scaling). The gene-specific background
distributions were then applied for the discretization of the own data as
follows: Gene expressed in own data below the median of the background
was discretized to 0, and above the upper quartile to 1. In addition, genes
with TPM < 1 are discretized to 0. Furthermore, genes with large expression
differences over all samples and time-points were identified via k-means
clustering (2 clusters), with a minimum threefold-change of centroid
locations, at least three data points per cluster, and fulfilling a f-test2
(MATLAB®) between the two clusters. Thirty-six genes were found
accordingly. The upper cluster was discretized to 1 and the lower cluster to 0.

Prior knowledge of gene regulation

For case study 1, we extracted TF-TF and TF-gene interactions referenced
in the DoRothEA database® with confidence levels A-C. It resulted in a
signed directed graph with 5186 components and 12,895 regulations. We
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filtered the components to keep only genes with classified binary values,
reducing to 1001 components and 2777 regulations.

For case study 2, we extracted from the METACORE® database (in
2019) all known interactions (Transcription regulation, Influence on
expression, and Binding) between TFs* and seven known marker genes
which show clear expression changes from adipocytes to osteoblasts in our
own expression data: Four high in adipocytes (ADIPOQ, FABP4, CEBPA,
LPL) and three high in osteoblasts (ALPL, HEY1, SP7). Only measured
nodes and their interactions were kept. This resulted in a network of 1027
nodes (almost only TFs) with 11,000 pairwise interactions.

Inference of Boolean networks from structural and dynamical
properties

The strategy behind BoNesis is to describe, in the form of a logical problem
to be solved, the search for a Boolean network compatible with a network
architecture and with given dynamic properties. To do so, BoNesis inte-
grates prior knowledge influence graph and observations within the same
logic program, so that any solution of this program is a Boolean network
made up of possible interactions given the PKN whose dynamic properties
are compatible with the behavior of the observations.

The logic program is written in Answer-Set Programming, It describes
the biological data (the prior influence graph as well as the observations and
the dynamical properties linking them) and the modeling formalism (the
Boolean network and the computation of its dynamics in Most Permissive
Semantics) via predicates and constraints. The constraints are necessary and
sufficient conditions that guarantee that any solution of the problem is a
Boolean network compatible with the biological data, i.e., a Boolean network
included in the architecture of the prior influence graph and whose dynamic
properties are compatible with the behavior of the observations. Solutions
are obtained using an answer-set solver, clasp®’: the models are the answer-
sets satisfying the logic program.

Automated component selection with BoNesis

Building a prior knowledge influence graph specific to a biological process is
a complex and delicate expert task. Yet, determining which interactions are
to be considered when building a model is an essential step in the pre-
paration of data before synthesizing models. It is important not to miss
components that are essential to the regulation mechanism in order to be
able to explain the observations, but also not to consider components that do
not play any role and hence penalize the construction and understanding of
the system. If the interaction graph contains components that are not
involved in the regulation of the observed biological behavior, many dif-
ferent functions can be attributed to these components without impacting
the compatibility of the Boolean network with the observations. These
components, without importance for the behavior, then strongly increase
the number of solutions without bringing any information. Conversely, if no
combination of functions can reproduce the data because key components
and interactions of the process are missing, no model can be found. The
complexity of this task currently limits the use of modeling.

With BoNesis, we propose a way to assist in the design of a relevant
interaction graph with regard to observations. It offers to select, among a
large interaction graph (as it can be extracted from a public interaction
database such as DoRothEA™ or Signor*), the components that can be
included in a model to explain the observations.

To this end, we set two optimization criteria. Firstly, we want the solver
to search for a compatible Boolean network that maximizes the number of
components in the models. An optimal solution is then the largest Boolean
network, composed of components coming from the large original inter-
action graph, that can reproduce the observations. Yet, we also want the
solution to maximize the number of components of a particular type, called
strong constants. A strong constant is a component to which a constant
function is assigned, and whose value remains constant to reproduce the
observations within the dynamics of the Boolean network. Thus, within a
Boolean network compatible with biological data, a node A is a strong
constantifand only if {A) = v with v € {—1, 1} and that within the dynamics

of the Boolean network it is possible to reproduce the data with the node A
always equal to v (all the configurations x associated with the observations
have x, = v). In other words, it is a component having neither activator nor
inhibitor and whose value can remain unchanged without preventing the
Boolean network from being compatible with the observations. The parti-
cularity of these strong constants is that they can be removed from the
domain without impacting compatibility with data behavior. Once the
domain of interactions has been reduced to components that can explain the
dynamics of the observations and that are not strong constants, we can limit
ourselves to the maximum strongly connected component of this graph,
which is particularly interesting to focus on the interactions that regulate the
observed process.

Automated model synthesis with BoNesis

BoNesis searches for all the Boolean networks of the same size as the input
interaction network and whose dynamics exactly reproduce those of the
data (via the defined dynamical constraints). Hence, when BoNesis is used
for model synthesis without optimization criteria, all the Boolean networks
output from BoNesis are models of the same relevance with respect to the
dynamics to be modeled. For biological applications, it is frequent that an
exhaustive enumeration of models is not judicious, given that biological
observations are rarely constraining enough considering a large-sized
interaction network. Indeed, it is sufficient that a few components have little
dynamic information to have an explosion in the number of models.

For case study 1, we first performed component selection (see previous
section) from the 1001 genes prior knowledge influence graph and the
dynamical constraints of Fig. 2C. We extracted the largest strongly con-
nected component of the resulting graph, leading to selecting 39 genes and
137 regulations. Then, from this 39-gene influence graph, we performed a
diverse sampling of 1000 Boolean networks fulfilling the dynamical con-
straints. For case study 2, as described in the main text, the dynamical
properties consisted of (1) the existence of trajectories, (2) the stability
properties, and (3) the absence of trajectories. Moreover, we add prior
knowledge markers of the two differentiated cellular types: ADIPOQ,
FABP4, CEBPA, LPL for adipocytes,and ALPL, HEY1, SP7 for osteoblasts.
In a first stage, we performed gene selection on the METACORE(r) prior
knowledge influence graph by identifying Boolean networks that maximize,
by decreasing priority, the inclusion of a prior knowledge markers, the
number of genes whose dynamics can be explained, and the number of
strong constants, that will be removed (see previous section). For this first
stage, we ignored constraints on the absence of a trajectory for complexity
reasons. We performed this gene selection for each replicate and each
binarization method. We then analyzed the binary values inferred by
BoNesis for the selected genes that have not been classified by binarization
methods in the stable phenotypes. We identified 19 genes (ATF2, CLOCK,
CTCF, CUX1, GATA6, NFYB, REL, RELA, SMAD1, SMAD2, SMAD4,
STAT3, TGIF1, TRP53, TTF1, USF1, USF2, YY1, ZFP148) that have
been inferred to have different binary states, while the data show no clear
statistical ground for supporting these different qualitative states. We again
performed the gene selection stage with the additional constraint that the
binary value of these 19 genes must be equal in all phenotypes. Depending
on the binarization method and replicates, different sets of genes have been
selected, with, in some cases, multiple optimal solutions. Then, for each
optimal solution, we extracted the sub-GRN consisting of the identified
non-constant genes, and performed diverse sampling of Boolean networks
taking into account the whole dynamical constraints, including the absence
of trajectories.

Boolean network clustering and complexity analysis (Case
study 1)

To explore the three highlighted groups, we study whether the complexity of
the functions of a model is characteristic of the group to which the model
belongs (Supplementary Figs. 4 and 5). Specifically, Supplementary Fig. 4
shows, for each group, the percentage of the functions of its models
according to the number of clauses constituting the functions.
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Supplementary Fig. 5 shows, for each group, the percentage of clauses
constituting its model functions according to the number of components in
the clauses. We observe that red models are significantly less complex than
those of the other two groups, with functions composed of a smaller number
of clauses, themselves composed of a smaller number of components,
compared to the orange and green group models.

Among the functions constituting the models, some are invarijant
between models of the same group, beyond the 12 invariable functions
which are common to all groups. We therefore have three sets of invariable
functions that seem to indicate three key patterns of interactions to repro-
duce the data dynamics. Supplementary Fig. 6 shows, for each group, the
percentage of its invariable functions according to their number of clauses.
Again, a clear difference in complexity between the red group and the others
is highlighted. All the functions shared by the red models have a single
clause, whereas they represent for green and orange models, respectively,
less than half and one third of the functions (some of their invariable
functions having even, respectively, up to 7 and 8 clauses). Hence, the red
group models appear to be more parsimonious explanations of the reg-
ulation mechanism of hematopoiesis than the other two groups.

Computational prediction of reprogramming determinants (case
study 2)

The prediction of the combinations of perturbations for case study 2 has
been performed via the software CABEAN™. CABEAN implements several
methods for the source-target control of asynchronous Boolean networks,
and these methods can be used to identify the minimal and exact control sets
of perturbations that ensure the inevitable reachability of the target attractor
from a given source attractor. Based on the application time of the pertur-
bations, CABEAN supports several types of controls: instantaneous control
applies perturbations instantaneously; temporary control applies pertur-
bations for a sufficient time and then releases them to retrieve the original
dynamics; and permanent control applies the control for all the following
time steps. All these control methods® are based on the computation of
strong and weak basins of attractors, which explore both the structure and
dynamical properties of asynchronous Boolean networks. More specifically,
an instantaneous control drives the network dynamics from the source
attractor to a state in the strong basin of the target attractor, from which
there only exist paths to the target attractor. On the other hand, temporary
control and permanent control can make use of the spontaneous evolutions
of the network dynamics by moving into the weak basin of the target
attractor, from which there exist paths to the target attractor. To ensure the
inevitable reachability of the target attractor, a temporary control should
drive the network dynamics to a state in the strong basin of the target
attractor at the end of control, while a permanent control stirs the network
from the source state to a state in the strong basin of the target attractor in the
resulting transition system under control. More recently, CABEAN® has
been extended with target control methods for asynchronous Boolean
networks®, which can be used to identify perturbations that can drive the
dynamics of a Boolean network from any initial state to the desired target
attractor.

In this way, CABEAN fits well with the objective for case study 2, i.e.,
enforcing the convergence to OD15 state from AD15 state. CABEAN was
applied to each inferred Boolean network from BoNesis to compute com-
binations of temporary perturbations (gene knock-out), and it identified
combinations of up to 5 simultaneous perturbations leading to a repro-
gramming from AD15 to OD15. We kept combinations of perturbations
that have been identified in at least 10% of the individual models given to
CABEAN. In the end, we have obtained 34 different combinations of 2 to
4 simultaneous perturbations, which are given as input for the next
analysis steps.

Stochastic simulations of ensembles of Boolean networks (case
study 2)

To perform simulations on our ensembles of models, we relied on the
software Ensemble-MaBoSS®, which extends the stochastic Boolean

simulator MaBoSS" to ensembles. MaBoSS usually takes a single Boolean
model and performs numerous simulations to obtain many stochastic tra-
jectories. It later uses this set of trajectories to compute time-dependent
probabilities for every visited Boolean state. During these simulations, it also
stores every fixed point observed and produces the set of fixed points
observed in all these simulations. To perform the simulation of an ensemble
of models, we need to compute an equal set of trajectories for every model of
the ensemble. We can then use the consolidated set of trajectories from all
the models and compute the time-dependent probabilities specific to the
whole ensemble of models. We can also produce the same list. To analyze
the composition of the ensemble, we also compute the time-dependent
probabilities for each model. This way, we get individual results that can
then be used for ensemble analysis, such as model clustering.

Case study 2: cell culture

The mouse bone marrow-derived stroma cell line ST2 was established from
Whitlock-Witte type long-term bone marrow culture of BC8 mice”. The
ST2 cells were cultured in growth medium: Roswell Park Memorial Institute
(RPMI) 1640 medium (Gibco, 32404-014) supplemented with 10% fetal
bovine serum (FBS) (Gibco, 10270-106) and 1% L-Glutamine (Lonza,
BE17-605E) at 37 °C, 5% CO,. All experiments were carried out with cells
less than 10 passages. For differentiation of adipocytes, ST2 cells were seeded
2 days before differentiation. The cells reached 100% confluency after 24 h of
culture, and were further maintained in growth medium for 24 h (Day 0).
Adipogenic differentiation was initiated on Day 0 by culturing in adipogenic
differentiation medium I consisting of growth medium, 0.5mM iso-
butylmethylxanthine (IBMX) (Sigma-Aldrich, 15879), 0.25puM dex-
amethasone (DEXA) (Sigma-Aldrich, D4902) and 5 ug/mL insulin (Sigma-
Aldrich, 19278). From Day 2, the cells were cultured in adipogenic differ-
entiation medium II consisting of growth medium, 500 nM rosiglitazone
(RGZ) (Sigma-Aldrich, R2408) and 5pg/mL insulin (Sigma-Aldrich,
19278). The adipogenic differentiation medium II was replaced every
second day.

For differentiation of osteoblasts, ST2 cells were seeded 2 days before
differentiation, reached 100% confluency after 24 h of culture, and were
further maintained in growth medium for 24 h (Day 0). Osteogenic dif-
ferentiation was initiated on Day 0 by culturing in osteogenic differentiation
medium consisting of growth medium and 100 ng/mL bone morphogenetic
protein-4 (BMP4) (PeproTech, 315-27). The osteogenic differentiation
medium was replaced every second day.

Case study 2: RNA extraction and cDNA synthesis

Total RNA was extracted from cells using Quick-RNATM MiniPrep (Zymo
Research, R1055). RNA concentration was measured by Nanodrop 2000c
(Thermo Fisher Scientific, E597). cDNA was synthesized with the following
cocktail: 1 pg total RNA, 0.5 mM dNTPs (Thermo Fisher Scientific, R0181),
2.5 uM oligo dT-primer (Eurofins GmbH), 1 U/uL Ribolock RNase inhi-
bitor (Thermo Fisher Scientific, EO0381), and 1 U/uL RevertAid Reverse
transcriptase (Thermo Fisher Scientific, EP0352). The cocktail was main-
tained at 42 °C for 1 h, followed by 70 °C for 10 min to stop the reaction.

Case study 2: reverse transcription real-time quantitative PCR
(RT-qPCR)

RT-qPCR was performed to measure the RNA expression using the Applied
Biosystems 7500 Fast Real-Time PCR System. Each reaction contained the
following cocktail: 5 uL of cDNA, 5 pL of primer mix (forward and reverse
primers, both in 2 uM concentration), and 10 uL of Absolute Blue gPCR
SYBR Green Low ROX Mix (Thermo Fisher Scientific, AB4322B). The PCR
reaction was the following: 95 °C for 15 min and repeating 40 cycles of 95 °C
for 15, 55 °C for 15 s, followed by 72 °C for 30 s. The gene expression level
was calculated using the 2~“*“) method”. The AACt refers to (ACt(target
gene) — ACt(housekeeping gene)) from the treatment — (ACt(target
gene) — ACt(housekeeping gene)) from the control. Rpl13a was used as the
housekeeping gene, and the primer sequences can be found in the Sup-
plementary Data 2.
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Case study 2: viral transduction

Day 9 adipocytes were transduced with lentivirus (Sirion Biotech GmbH;
details can be found in the Supplementary Data 2). For a 48-well plate, the
estimated cell number was 200,000. The amount of lentivirus was calculated
to achieve the expected multiplicity of infection (MOI). The transduction
cocktail was as follows: lentivirus stock diluted with RPKM and 8 pug/mL
polybrene transfection reagent (EMD Millipore, TR-1003-G) to achieve a
final volume of 100 pL. The culture medium was removed, and the cells were
washed once with 1XDPBS (Gibco, 14190-094), then supplemented with the
transduction cocktail. The cells were kept in the transduction cocktail for
6 h. After the 6-h transduction, the transduction cocktail was removed, and
the cells were supplemented with the growth medium. The transduction
efficiency was controlled by observing GFP and RFP levels by microscopy.

Case study 2: RNA interference

On Day 1 post-transduction (Day 1 PT), the cells were transfected with
siRNA according to the manufacturer’s recommendation (Horizon Dis-
covery; details can be found in the Supplementary Data 2). In brief, siRNA
was diluted to 5 pM solution in DNase/RNase free water (Invitrogen, 10977-
035). In separate tubes, siRNA and DharmaFECT 1 transfection reagent
(Horizon Discovery, T-2001-03) were diluted with RPMI. To prepare the
transfection cocktail for 1 well of a 48-well plate, in Tube 1, 25 uL of the
siRNA in serum-free medium was prepared by adding 1.25 uL of 5 uM
siRNA to 23.75 pL of RPMI. In Tube 2, 1 pL of the DharmaFECT 1 in
serum-free medium was prepared by adding 1 pL of DharmaFECT 1-24 uL
of RPMI. The mixture was incubated for 5 min, then the two tubes were
mixed following incubation for 20 min. After incubation, 200 pL of growth
medium was added to achieve a final volume of 250 pL. The culture medium
was removed, and the cells were supplemented with the transfection med-
ium for 24 h. For single and double siRNA transfection, the final con-
centration was maintained at 100 nM.

Case study 2: single-cell RNA-seq

The single-cell RNA-seq (scRNA-seq) was performed according to Chro-
minum Next GEM Single Cell 3’ Reagent Kits v3.1 Review D (CG000204).
The ChromiumTM Next GEM Single Cell 3’ GEM, Library Gel Bead Kit 3.1
(1000128) consisted the following: Chrominum Next GEM Single Cell 3/
Gel Bead Kit v3.1, 4 (1000129), Chromium Next GEM Single Cell 3’ GEM
Kit v3.1 (1000130), Chromium Next GEM Single Cell 3’ Library Kit v3.1
(1000158), Single Index Kit T SetA (1000213), DynabeadsTM MyOneTM
SILANE (2000048). To achieve a single cell suspension, the cells were first
treated with 1 mg/mL Collagenase A (Roche, 10103586001) for 15 min.
After Collagenase A treatment, the cells were trypsinized with 150 pL
Trypsin (Lonza, BE17-161E) for 5 min. The trypsin was quenched with
500 uL growth medium. Wide-bore tips (Thermo Scientific ART 1000G
Self-Sealing Barrier Pipet Tips, 2079G) were used to pipette up and down.
The suspension was centrifuged at 1000 rpm for 5 min, and the supernatant
was removed. Single cell suspension was achieved by adding 400 uL growth
medium and pipetting up and down with wide-bore tips. The cell number
was determined with C-CHIP (NanoEntek, DHC-NO1). The suspension
was centrifuged again at 1000 rpm for 5 min, and the supernatant was
removed and replaced with 1XDPBS + 0.04% BSA to achieve the target cell
number. The suspension was filtered through a 40 uM Flowmi Cell strainer
(Merck, BAH136800040-50EA). The cell number was determined again
with C-CHIP, which would be used to determine the input for scRNA-seq.
In brief, cells were loaded with a targeted recovery rate of 10,000 cells per
sample. scRNA-seq library quality was assessed by Agilent DNA High
sensitivity Bioanalyzer chip (Agilent, 5067-4626) and further sequenced on
a 150 cycles High Output Kit using Illumina NextSeqTM 500 with targeted
sequencing depth of 20,000 read pairs per cell.

Data availability

The software BoNesis, employed for Boolean network inference, is available at
https://bnediction.github.io/bonesis under the GPLv3-compatible free soft-
ware license CeCiLL. The software Cabean, employed for reprogramming

prediction, is available at https://satoss.uni.lu/software/ CABEAN. Both tools
are available through the CoLoMoTo Docker distribution * at https:/
colomoto.github.io/colomoto-docker/. Case study 1: data and scripts are
available at https://doi.org/10.5281/zenodo.16990754. Case study 2: The
scRNA-seq data have been deposited in the European Nucleotide Archive
(ENA) at EMBL-EBI under accession number PRJEB82479 (https://www.ebi.
ac.uk/ena/browser/view/PRJEB82479). Matlab code for statistical analysis
and binarization of bulk RNA-seq data, as well as data and scripts for Boolean
network inference and control predictions are available at https://doi.org/10.
5281/zenodo.16990770.
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