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Abstract

For many people, mobile apps have already become an indispensable part
of modern life. Apps entertain, educate, assist us in our daily routines and
help us connect with others. However, the advanced capabilities of modern
devices running the apps and sensitive user data make mobile devices also
an attractive attack target. To get access to sensitive data, adversaries tend
to conceal malicious functionality in freely distributed legitimately-looking
apps.

The problem of low-quality and malicious apps, spreading at an enor-
mous scale, is especially relevant for one of the biggest software repositories
— Google Play. The Android apps distributed through this platform un-
dergo a validation process by Google. However, that is insufficient to confirm
their good nature. To identify dangerous apps, novel frameworks for testing
and app analysis are being developed by the Android community.

Code coverage is one of the most common metrics for evaluating the
effectiveness of these frameworks, and it is used as an internal metric to guide
code exploration in some of them. However, when analyzing apps without
source code, the Android community relies mostly on method coverage since
there are no reliable tools for measuring finer-grained code coverage in 3rd-
party Android app testing.

Another stumbling block for testing frameworks is the inability to test
an app exhaustively. While code coverage measurement can indicate an
improvement in testing, it is neither possible to reach 100% coverage nor to
identify the maximum reachable coverage value for the app. Despite testing,
the app still contains high amounts of not executed code, which makes it
impossible to confirm the absence of potentially malicious code in the part of
the app that has not been tested. The existing static debloating approaches
aim at app size minimization rather than security and simply debloat not
reachable code. However, there is currently no approach to debloat apps
based on dynamic analysis information, i.e. to cut out not-executed code.

In this dissertation, we solve these two problems by, first, proposing an
efficient approach and a tool to measure code coverage at the instruction
level, and second, a dynamic binary shrinking methodology for deleting not
executed code from the app. We support our solutions by the following
contributions:
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• An instrumentation approach to measure code coverage at the instruc-
tion level. Our technique instruments smali representation of Android
bytecode to allow code coverage measurement at the finest level.

• An implementation of the instrumentation approach. ACVTool is a
self-contained package containing 4K lines of Python code. It is pub-
licly available and can be integrated into different testing frameworks.

• An extensive empirical evaluation that shows the high reliability and
versatility of our approach. ACVTool successfully executes on 96.9%
of apps from our dataset, introduces a negligible instrumentation time
and runtime overheads, and its results are complaint to the results of
JaCoCo (source code coverage) and Ella (method coverage) tools.

• A detailed study on the influence of code coverage metric granularity
on automated testing. We demonstrate the usefulness of ACVTool for
automated testing techniques that rely on code coverage data in their
operation.

• A dynamic debloating approach based on ACVTool instruction cover-
age. We propose Dynamic Binary Shrinking System, a novel methodol-
ogy created to shrink 3rd-party Android apps towards observed benign
functionality on executed code.

• An implementation of the dynamic debloating technique incorporated
into the ACVCut tool. The tool demonstrates the viability of the
Dynamic Shrinking System on two examples. It allows us to cut out
not executed code and, thus, provide 100% instruction coverage on
explored app behaviors.
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Chapter 1

Introduction

This chapter introduces the reader into the subject of this dis-
sertation. We discuss the role of code coverage measurement in
automated testing of Android apps and the possibility to shrink
apps basing on the code coverage information. We formulate re-
search questions to be answered and list our contributions to this
dissertation.
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1.1. Android Apps

1.1 Android Apps

In the last ten years, the software development community supported by
the hardware manufacturers brought up a new generation of software —
applications (apps for short) for mobile devices. The mobile apps quickly
became a permanent part of modern life, wherein people not only communi-
cate and entertain themselves but also perform their work tasks from mobile
devices [LL19]. Not surprisingly, mobile traffic has more than tripled since
2013, while from the beginning of 2017 mobile devices consistently generate
around 50% of web traffic [Cle20a].

Nowadays, an average user spends a significant amount of time during
the day with a smartphone in his hand. The popularity of devices also
changed the way traditional retail companies work. People buy products on
the fly, consume virtual content (including advertisements) and buy virtual
services using mobile devices. Companies actively integrate new technologies
such as NFC, GPS and geofencing to improve their services.

Currently, Android and iOS are the main competitive operating systems
on the mobile market. While iOS accounts for 14% of the market, Android
takes remaining 86% [IDC20]. Both mobile systems have central market
places for apps — App Store and Google Play, respectively, where any app
developer can publish their app. To develop an app, the developer relies
on sophisticated documentation, tools and SDKs explicitly created for these
operating systems. In the Android OS, moreover, a user can benefit from
alternative app markets such as Amazon Appstore and F-Droid and even
install an app just downloaded from the Internet.

No doubt, the apps that daily help people, make mobile devices so impor-
tant for our society. Google Play is filled with millions of apps that billions
of people use every day. Shortly after its release, Android has gained pop-
ularity and a large user base. However, it has also quickly become a target
for attackers.

Anyone can create an Android app and publish it on Google Play, but
Google that controls this marketplace has no access to source code of sub-
mitted apps and no control over the development process. Considering the
huge number of submitted apps, it is very challenging for Google to com-
prehensively analyse and completely eliminate malicious third-party appli-
cations. A famous example of Android malware spread through Google
Play is one of the largest mobile botnet campaigns called NotCompatible.C
[Str14]. It comprised the possibility to run spam campaigns, bulk ticket
purchasing, bruteforce attacks on Wordpress and C99 shell control. The
malware infected over four million Android devices. There are and have
been many more malware families targeting Android, as discussed by Tam
et al. [TFA+17].

Still, Google is making a serious effort to protect the market from low

2
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Figure 1.1: Number of apps on Google Play in 2009-2020 (Statista [Cle20b]).

quality and malicious apps. Figure 1.1 demonstrates the number of uploaded
apps since the opening of Google Play [Cle20b]. We could see stable growth
of Google Play followed by the unexpected drop in 2018. While the Google
filtering mechanisms are not always transparent, Wang et al. report on the
main reasons for app removal [WLL+18]. The deleted apps include apps
demonstrating high privacy risks, fake apps, spamming apps, malware and
ad-blocking apps.

Another significant achievement that Google recently fulfilled in terms of
Android trustworthiness is the certification of Google Pixel 3/3XL devices
as compliant to Common Criteria1. Certification allowed strict-policy enter-
prises and government institutions to use Google phones trustfully. Besides
the devices, the validation report certified Android 9.0, and mentioned new
libraries and rich APIs for app development.

However, 3rd-party Android apps are not the target of evaluation in this
certification. To regulate potentially malicious apps, the enterprise version of
Android introduced a Mobile Device Management (MDM) system capable of
remote control of apps and phone settings [Goo20a]. Still, vulnerabilities and
developed attacks continue to threaten the Android ecosystem [LVBEV17,
TFA+17, FBR+16]. Despite all the security improvements of the Android
system, Google and external researchers continue to investigate techniques
for ensuring security and reliability of 3rd-party Android apps.

Indeed, the Android community continuously studies new techniques to
analyze such apps. Novel frameworks for automated testing and analysis of
3rd-party apps are being developed by the community. Many of these frame-

1https://www.niap-ccevs.org/Product/Compliant.cfm?PID=10941
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1.2. Code Coverage Measurement in Automated Testing

works are being evaluated based on the code coverage achieved in testing
[ANKS16, ZPG+15]. Novel frameworks for automated testing of 3rd-party
apps have been developed, where code coverage is one of the most com-
mon metrics for evaluating the effectiveness of these frameworks [ANKS16,
ZPG+15] or use code coverage as part of a fitness function for guiding evolu-
tionary, mutation and fuzzy testing techniques [KLG+18, MMM14, MHJ16,
WDS+19, WJL+20].

1.2 Code Coverage Measurement in Automated
Testing

Code coverage measurement is an essential element of software development
and quality assurance cycles for all programming languages and ecosys-
tems, including Android. It is routinely applied by developers, testers,
and analysts to understand the degree to which the system under test
has been evaluated [AO16], to generate test cases [YLW09], to compare
test suites [GGZ+15], and to maximize fault detection by prioritizing test
cases [YH12]. In the context of Android application analysis, code coverage
has become a critical metric. Fellow researchers and practitioners evaluate
the effectiveness of tools for automated testing [CGO15, MHJ16, KLG+18,
WLY+18] and security analysis [MEK+12, HCLT15] using code coverage,
among other metrics. It is also used as a fitness function to guide appli-
cation exploration in testing [MHJ16, SMC+17, KSM+18]. However, there
are no reliable tools for measuring fine-grained code coverage in 3rd-party
Android app testing.

Unfortunately, the Android ecosystem introduces a particular challenge
for security and reliability analysis: Android apps submitted to markets
(e.g., Google Play) have been already compiled and packaged, and their
source code is often unavailable for inspection. Measuring code coverage
achieved in testing and analysis is not a trivial endeavor in this setting.
This is why some third-party app testing systems, e.g., [SJM17, CNS13,
MHH+19], use open-source apps for experimental validation, whereby the
source code coverage could be measured by popular tools developed for Java,
such as EMMA [Rub06] or JaCoCo [JaC18]. These, and other systems will
benefit from a reliable tool for measuring code coverage in testing third-
party Android apps. In this thesis, we aim to close this gap with measuring
fine-grained code coverage in third-party app testing. To achieve this and
to propose a tool that will be a useful addition to the Android app testing
and analysis ecosystem, we will address the following research question.

Research question 1: How to measure instruction coverage when test-
ing Android apps?

4



Chapter 1. Introduction

In the absence of source code, code coverage is usually measured by in-
strumenting the bytecode of applications [LMOD13]. Within the Java com-
munity, the problem of code coverage measurement at the bytecode level
is well-developed and its solution is considered to be relatively straightfor-
ward [THB+16, LMOD13]. However, while Android applications are written
in Java, they are compiled into bytecode for the register-based Dalvik Vir-
tual Machine (DVM), which is quite different from the Java Virtual Machine
(JVM). Thus, there are significant disparities in the bytecode for these two
virtual machines.

Since the arrangement of the Dalvik bytecode complicates the instrumen-
tation process [HCLT15], there have been so far only few attempts to track
code coverage for Android applications at the bytecode level [ZLZ+16], and
they all still have limitations. The most significant one is the coarse gran-
ularity of the provided code coverage metric. For example, ELLA [ELL16],
InsDal [LWD+17] and CovDroid [YH15] measure code coverage only at the
method level. Another limitation of the existing tools is the low percent-
age of successfully instrumented apps. For instance, the tools by Huang et
al. [HCLT15] and Zhauniarovich et al. [ZPG+15] support fine-grained code
coverage metrics, but they could successfully instrument only 36% and 65%
of applications from their evaluation samples, respectively. Unfortunately,
such instrumentation success rates are prohibitive for these tools to be widely
adopted by the Android community. Furthermore, the existing tools suffer
from limited empirical evaluation, with a typical evaluation dataset being
less than 100 apps. Sometimes, research papers do not even mention the per-
centage of failed instrumentation attempts (e.g., [LWD+17, CR17a, YH15]).
Thus, it is important not only to unlock the new approach to measure code
coverage as we stated in RQ1 but also it is necessary to evaluate the impact of
the chosen approach on the app functioning and confirm its non-prohibitive
nature for testing purposes. We will address this goal with the next research
question.

Research question 2: How reliable and versatile is the developed instru-
mentation approach?

Remarkably, in the absence of reliable fine-grained code coverage reporting
tools, some frameworks integrate their own black-box code coverage mea-
surement libraries, e.g., [MHJ16, SQH17, CR17a, MHH+19, LR19]. How-
ever, as code coverage measurement is not the core contribution of these
works, the authors do not provide detailed information about the rates of
successful instrumentation, as well as other details related to the code cov-
erage performance of these libraries. Since the various automated testing
frameworks use method coverage provided by Ella or their own implementa-
tion for code coverage, when testing apps without source code, the following

5
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question appears.
Having a reliable and efficient approach to measure fine-grained code

coverage will benefit many automated testing and analysis tools by proving
them a way to benchmark their achieved coverage in a straightforward way.
Developers of tools like Sapienz [MHJ16] and Stoat [SMC+17] will be able
to use the same code coverage metrics on third-party apps and in this way
establish the advantages of their innovations. It is still an open question,
however, whether usage of some particular code coverage metrics within the
fitness functions used in fuzzy or evolutionary testing will have a positive
effect on the testing process quality. In this thesis we aim to make the first
step in investigating this question by answering the following research ques-
tion.

Research question 3: What is the impact of the granularity of the code
coverage metric on the quality of the testing process?

The novel fine-grained code coverage tool is to be readily used with vari-
ous dynamic analysis and automated testing tools, e.g., IntelliDroid [WL16],
CopperDroid [TKFC15], Sapienz [MHJ16], Stoat [SMC+17], Dyn-
oDroid [MTN13], CuriousDroid [CML+17], PATDroid [SJM17], Pal-
adin [MHH+19], to mention a few, to measure code coverage.

1.3 Dynamic Binary Shrinking

The security measures such as Google Play Protect, Mobile Device Man-
agement system (appeared in the enterprise version of Android), security
improvements on Android APIs permissions that Google constantly intro-
duce in Android drive the system to be more secure. However, attacks also
evolved into more sophisticated and targeted [TFA+17, FBR+16].

Logic bombs are a great example of a popular targeted attack. A logic
bomb-driven attack may target people with certain powers or secrets up
to state-sponsored attacks [FBR+16]. Another example of a logic bomb
is cryptojacking. Recently, in the wake of an increased interest in cryp-
tocurrencies, Android markets have seen the rise of cryptojacking — apps
mine cryptocurrencies secretly from the device owner. Remarkably, attack-
ers more actively used devices at full capacity during the owner’s inactive
hours and when charging [DZG+20].

Researchers and practitioners developed many approaches for analyzing
Android apps as we have mentioned earlier. However, the problem of reliably
detecting security issues or crashes in unknown 3rd party apps is still an open
one.

Currently, sandboxing [JZ16, BLL18] is a solution on the frontier to re-
strict not observed functionality. Still, this approach continues evolving, e.g.
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Le et al. suggested to enhance original sensitive APIs restriction by limiting
also parameter values in the API calls [LBL+18], which, however, misses
malicious behaviors in at least 5% of apps in their experiments. Android
apps need a simple, ready-to-go solution to verify existing behaviors, restrict
not observed potentially malicious ones, and give a guarantee with a simple
metric. A more radical path we propose in this work is the removal of not
tested code from the app. This raises the next research question.

Research question 4: Is it possible to eliminate not-executed code to
achieve full code coverage?

We present a novel approach, called Dynamic Binary Shrinking. It al-
lows to monitor app behavior while exploring the app and eventually cut it
towards the tested benign code. We incorporated our shrinking technique
into the ACVCut tool, that is based on the ACVTool instruction cover-
age. Thus, we cut the app towards the executed code, and the shrunk app
will, therefore, achieve 100% instruction coverage on the tested functional-
ity. Comparing to the sandboxing, our approach limits the app functionality
in a more radical way — by removing not executed (potentially malicious)
code.

Yet, the shrunk app loses not explored features including not explored
hidden functionality such as logic bombs. With respect to the observed and
acceptable behaviors, the app stays fully functioning.

1.4 Contributions

We summarize the contributions of this dissertation as follows:

• An instrumentation approach to measure coverage of 3rd-
party Android apps. We propose a novel approach to track exe-
cution of app instructions by inserting probes into Android app that
does not have source code. The technique works on the smali repre-
sentation of the Dalvik bytecode and allows to track execution of app
instruction that helps us to achieve the finest granularity of a cover-
age metric for Android apps. Our approach is fully self-contained and
transparent to the testing environment. The proposed approach an-
swers the Research Question 1 by proposing a fine-grained coverage
measurement approach for Android apps.

• An implementation of the instrumentation approach in ACV-
Tool. The tool can be integrated with any testing or dynamic analysis
framework. Our tool presents the coverage measurements and infor-
mation about encountered crashes as handy reports that can be either
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visually inspected by an analyst, or processed by an automated testing
environment. It consists of 4K lines of Python code.

• An extensive empirical evaluation that shows the high relia-
bility and versatility of our approach.

– While previous works [HCLT15, ZPG+15] have only reported
the number of successfully instrumented apps2, we also verified
whether apps can be successfully executed after instrumentation.
We report that 96.9% have been successfully executed on the
Android emulator, which is only 0.9% less than the initial set of
successfully instrumented apps.

– In the context of automated and manual application testing,
ACVTool introduces only a negligible instrumentation time
overhead. In our experiments ACVTool required on average
33.3 seconds to instrument an app.

– The runtime overhead introduced by ACVTool is very
low for real apps: in experiments with real Android apps the
mean CPU overhead introduced by ACVTool is 0.53%.

– We have evaluated whether ACVTool reliably measures the byte-
code coverage by comparing its results with those reported by
JaCoCo [JaC18] and ELLA [ELL16]. Our results show that the
ACVTool results can be trusted, as code coverage statistics re-
ported by ACVTool, JaCoCo and ELLA are highly correlated.

This study answers the Research Question 2 by concluding the
compliance of our instruction coverage to the existing code coverage
tool JaCoCo and method coverage tool ELLA.

• A detailed study on the influence of code coverage metric
granularity on automated testing. By integrating ACVTool with
Sapienz [MHJ16], an efficient automated testing framework for An-
droid, we demonstrate that our tool can be useful as an integral
part of an automated testing or security analysis environment. With
ACVTool, we were able to compare how different coverage metrics
fare in bug finding with Sapienz. We show that code coverage indeed
makes the difference while searching for bugs and that different cov-
erage granularities do not tend to find the same crashes, but none
of them clearly outperforms the others. Also, we observed that the
instruction-, method- and class- code coverage metrics are highly cor-
related to each other. These results demonstrate the interchangeability
of the coverage metrics when an automated tool relies only on the ab-
solute coverage value. Thus, this study answers Research Question
3.

2For ACVTool, it is 97.8% out of 1278 real-world Android apps.
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• Dynamic debloating approach based on ACVTool instruction
coverage. To answer Research Question 4, we propose the Dy-
namic Binary Shrinking System, a novel methodology created to shrink
3rd-party Android apps towards the observed benign functionality on
executed code. We present a sophisticated technique for removal of
not executed code from the app. We demonstrate that apps tend to
keep significant amounts of not used code. More than 80% of apps
code stayed not executed in our two samples. The shrinking technique
did not lead to crashes or a change in their behavior.

• An implementation of the dynamic debloating technique in-
corporated into the ACVCut tool. The tool allows app producers
and security analysts to cut potentially malicious functionality by re-
moving not tested code from the app. Therefore, the testing may
achieve 100% coverage on the shrunk app. It is based on top of ACV-
Tool and contains 2K more lines of Python code.

1.5 List of Publications

The above mentioned contributions led to the following scientific output.

1. [PZG18] — Pilgun, A., Zhauniarovich, Y. and Gadyatskaya, O., 2018.
Artifact. ACVTool: Fine-grained Code Coverage for a 3rd-party An-
droid app. Zenodo, Github, URL: https://github.com/pilgun/acvtool.

2. [PGD+18] — Pilgun, A., Gadyatskaya, O., Dashevskyi, S., Zhau-
niarovich, Y. and Kushniarou, A., 2018, October. An effective An-
droid code coverage tool. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS) (pp.
2189-2191).

3. [DGPZ18] — Dashevskyi, S., Gadyatskaya, O., Pilgun, A. and Zhau-
niarovich, Y., 2018. The influence of code coverage metrics on au-
tomated testing efficiency in Android. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS) (pp. 2216-2218).

4. [PGZ+20] — Pilgun, A., Gadyatskaya, O., Zhauniarovich, Y., Da-
shevskyi, S., Kushniarou, A. and Mauw, S., 2020. Fine-grained code
coverage measurement in automated black-box Android testing. ACM
Transactions on Software Engineering and Methodology (TOSEM),
29(4), pp.1-35.

5. [Pil20b] — Pilgun, A., 2020. Artifact. ACVCut: Dynamic Binary
Shrinking for a 3rd-party Android app. Zenodo, Github. URL:
https://github.com/pilgun/acvcut.
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6. [Pil20a] — Pilgun, A., 2020. Don’t Trust Me, Test Me: 100% Code
Coverage for a 3rd-party Android app. (accepted at 27th Asia-Pacific
Software Engineering Conference (APSEC), in press).

Articles not included in this dissertation.

• [DZG+20] — Stanislav Dashevskyi, Yury Zhauniarovich, Olga Gady-
atskaya, Aleksandr Pilgun, Hamza Ouhssain. 2020, March. Dissecting
Android Cryptocurrency Miners. In Proceedings of the Tenth ACM
Conference on Data and Application Security and Privacy (pp. 191-
202).

1.6 Thesis outline

This dissertation presents the results achieved by unlocking of fine-grained
app instrumentation that allowed us to measure code coverage Android apps
at the instruction level. We further studied the impact of our instrumen-
tation approach on the app performance and behavior, how such coverage
is compliant to the other code coverage tools and how different coverage
metrics influence automated testing. Finally, we made use of the high cov-
erage granularity in our dynamic shrinking approach. We demonstrated its
viability on two apps by showing that the shrunk apps produce 100% code
coverage under selected tests.

This dissertation is based on the scientific output we listed above. Chap-
ters 3, 4 and 5 are parts of our ACVTool CCS demo paper [PGD+18] and
the TOSEM article [PGZ+20]. Moreover, Chapter 5 (and our TOSEM ar-
ticle [PGZ+20]) rejects the initial hypothesis expressed in our CCS poster
[DGPZ18] regarding the influence of different coverage granularity on the
efficiency of automated testing tools. Chapter 6 elaborates on the novel
work which was recently accepted at APSEC’20.

With respect to this description, the dissertation is structured as follows.
Chapter 2 discusses the technical background necessary to understand

this work. First, we introduce the reader to the internals of Android apps.
Then we describe how the instrumentation works and is used in Android
apps. Further, we give background on the automated testing techniques
used for 3rd-party Android apps. Finally, we give an overview of the notion
of debloating in Android.

In Chapter 3, we describe our technique on instrumenting Android apps
to measure code coverage. We start from the code instrumentation details
and further continue on ACVTool design. In the end of this chapter we
discuss the related work on Android code coverage measurement.

Chapter 4 evaluate the effectiveness and efficiency of ACVTool and as-
sesses how the coverage data reported by ACVTool is compliant to the data
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measured by the JaCoCo system on the source code and Ella without source
code. We present an evaluative comparison with related work in the end of
this chapter.

Chapter 5 presents our results on integrating ACVTool with the Sapienz
automated testing framework, evaluates the impact of ACVTool instrumen-
tation on app runtime behavior, and discusses the contribution of code cov-
erage data to bug finding in Android apps.

In Chapter 6, we propose the Dynamic Binary Shrinking System, a novel
methodology created to shrink Android apps towards only executed code.
This Chapter also presents the implementation of our approach in the ACV-
Cut tool. We further demonstrate the viability of our cutting approach on
two examples.

Finally, in Chapter 7, we conclude this dissertation and discuss the novel
research directions and future works emerging from the results of this thesis.
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Chapter 2

Background

This Chapter discusses the technical background necessary to un-
derstand this work. First, we introduce the reader to the internals
of Android apps. Then we describe how instrumentation works
and is used in Android apps. Further, we give background on the
automated testing techniques used for 3rd-party Android apps.
Finally, we give an overview of debloating in Android.

Contents
2.1 Android . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Android App Internals . . . . . . . . . . . . . . . 14
2.3 Code Coverage . . . . . . . . . . . . . . . . . . . . 16
2.4 Protection from Malicious Apps . . . . . . . . . 18
2.5 Program Analysis . . . . . . . . . . . . . . . . . . 19
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2.1 Android

Android is a modern mobile operating system, that was released with the
first Android mobile device in 2008 by Google. Android now is an open
source project run by Google, which consistently updates the operating sys-
tem and releases it into Android Open Source Project (AOSP). Google has
released 30 Android versions (by API level) with the latest release of An-
droid 11 (API 30) on September 8, 2020. Although the original image of
Android OS is run on a few devices, 3rd-party vendors make changes and
maintain their own images of Android for their devices with specific (often
proprietary) hardware drivers. However, such devices need to pass the Com-
patibility Test Suite, so the developers can rely on this compatibility when
writing apps [MSBK19].

Figure 2.1 highlights five layers in modern Android. First of all, Android
is based on the Linux Kernel. At this lowest level Android runs system-level
services and drivers. The next layer is Hardware Abstraction Layer that
serves as a middle layer between the device hardware capabilities and the
higher-level Java API framework. The Libraries and Android Runtime (or
Dalvik virtual machine prior to API level 21) layer hosts Android system
libraries. Android Runtime (ART), in turn, is in charge of running Android
apps in their own processes. The next layer is for the Java API Framework
that includes reusable components for building Android apps. Finally, the
System Apps layer provides a set of core apps included with the platforms
that have a special status (e.g. an SMS messaging app and a calendar app).
Developers can create their own apps for Android devices using its APIs,
but they can also use other third-party components.

2.2 Android App Internals

Android apps are distributed as apk packages that contain the resource files,
native libraries (*.so), compiled code files (*.dex), manifest (AndroidMani-
fest.xml), and developer’s signature. Typical application resources are user
interface layout files and multimedia content (icons, images, sounds, videos,
etc.). Native libraries are compiled C/C++ modules that are often used for
speeding up computationally intensive operations.

Android apps are usually developed in Java and, more recently, in Kotlin
– a JVM-compatible language [Cle17]. Upon compilation, code files are
first transformed into Java bytecode files (*.class), and then converted
into a Dalvik executable file (classes.dex) that can be executed by the
Dalvik/ART Android virtual machine (DVM). Usually, there is only one
dex file, but Android also supports multiple dex files. Such apps are called
multidex applications.

In contrast to most JVM implementations that are stack-based, DVM
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Chapter 2. Background

Figure 2.1: Android platform architecture.
Android Developers, Platform Architecture: https://developer.android.com/guide/platform (image source).
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is a register-based virtual machine. It assigns local variables to registers,
and the DVM instructions (opcodes) directly manipulate the values stored
in the registers. Each application method has a set of registers defined in
its beginning, and all computations inside the method can be done only
through this register set. The method parameters are also a part of this
set. The parameter values sent into the method are always stored in the
registers at the end of the method’s register set. For more details, we refer
the interested reader to the official Android documentation about the Dalvik
bytecode internals [Goo17a] and the presentation by Bornstein [Bor08].

Since raw Dalvik binaries are hard to understand for humans, several
intermediate representations have been proposed that are more analyst-
friendly: smali [Ben18, Goo18b] and Jimple [VRH98]. In this dissertation,
we work with smali, a low-level programming language for the Android
platform. Smali is supported by Google [Goo18b], and it can be viewed and
manipulated using, e.g., the smalidea plugin for the IntelliJ IDEA/Android
Studio [Ben18].

The Android manifest file is used to set up various parameters of an
app (e.g., whether it has been compiled with the debug flag enabled), to list
its components, and to specify the set of declared and requested Android
permissions. The manifest provides a feature that is very important for
the purpose of this work: it allows one to specify the instrumentation class
that can monitor at runtime all interactions between the Android system
and the app. We rely upon this functionality to enable the code coverage
measurement, and to intercept the crashes of an app and log their details.

Before an app can be installed onto a device, it must be cryptograph-
ically signed with a developer’s certificate (the signature is located under
the META-INF folder inside an .apk file) [ZGC+14]. The purpose of this
signature is to establish the trust relationship between the apps of the same
signature holder: for example, it ensures that the application updates are
delivered from the same developer. Still, these signatures cannot be used to
verify the authenticity of the developer of an application being installed, as
other parties can modify the contents of the original application and re-sign
it with their own certificates. Our approach relies on this possibility of code
re-signing to instrument the apps.

2.3 Code Coverage

The notion of code coverage refers to the metrics that help developers to
estimate the portion of the source code or the bytecode of a program exe-
cuted at runtime, e.g., while running a test suite [AO16]. Coverage metrics
are routinely used in the white-box testing setting, when the source code
is available. They allow developers to estimate the relevant parts of the
source code that have never been executed by a particular set of tests, thus
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facilitating, e.g., regression-testing and improvement of test suites. Further-
more, code coverage metrics are regularly applied as components of fitness
functions that are used for other purposes: fault localization [THB+16],
automatic test generation [MHJ16], and test prioritization [THB+16].

In the Android realm, not only application developers are interested in
measuring code coverage. For example, Google tests all submitted (already
packaged) apps to ensure that they meet the security standards1. For inde-
pendent testers and analysts it is important to understand how well a third-
party app has been exercised [KLG+18], and various third-party app testing
and analysis tools are routinely evaluated with respect to the achieved code
coverage [HCLT15, KLG+18, CGO15, WLY+18].

There exist several levels of granularity at which the code coverage can be
measured. Statement coverage, basic block coverage, and function (method)
coverage are very widely used. Other coverage metrics exist as well: branch,
condition, parameter, data-flow, etc [AO16]. However, these metrics are
rarely used within the Android community, as they are not widely sup-
ported by the most popular coverage tools for Java and Android source
code, namely JaCoCo [JaC18] and EMMA [Rub06]. On the other hand, the
Android community often uses the activity coverage metric, that counts the
proportion of executed activities [MHJ16, AN13, ZLZ+16, CML+17] (classes
of Android apps that implement the user interface), because this metric is
useful and is relatively easy to compute.

There is an important distinction in measuring the statement coverage
of an app at the source code and at the bytecode levels: the instructions and
methods within the bytecode may not exactly correspond to the instructions
and methods within the original source code. For example, a single source
code statement may correspond to several bytecode instructions [Bor08].
Also, a compiler may optimize the bytecode so that the number of methods
is different, or the control flow structure of the app is altered [THB+16,
LMOD13].

It is not always possible to map the source code statements to the cor-
responding bytecode instructions without having the debug information.
Therefore, it is practical to expect that the source code statement coverage
cannot be reliably measured within the third-party app testing scenario,
and in this work we resort to measuring the bytecode instruction coverage.
We call the third-party app testing scenario black-box testing, to emphasize
the absence of source code and implementation details. This terminology is
standard in the Android community [KLG+18].

1https://www.android.com/security-center/

17

https://www.android.com/security-center/


2.4. Protection from Malicious Apps

2.4 Protection from Malicious Apps

Taking into account the tremendous number and diversity of Android apps
published by third-party developers on Google Play and beyond, the pro-
tection of Android users from malicious apps becomes a harsh task. Google,
other industry security specialists and researchers yet do significant effort
studying and patching the Android system.

Thus, according to the National Information Assurance Partnership
(NIST), Google certified two models of their Google Pixel 3/3XL phones2 as
Protection Profile compliant to Common Criteria for Information Technol-
ogy Security Evaluation (version 3.1, revision 5, April 2017). The document
[Par20], particularly, mentions new libraries for secure app development,
added in Android 9.0, rich APIs and the Mobile Device Management (MDM)
system capable of remotely controlling phone settings. Indeed, certification
allows government institutions, enterprises and individual users to trustfully
use Pixel devices. Such devices seem the first Android candidates to be used
in strictly secure environments.

However, the Common Criteria standard is expensive to implement, can
not provide security guarantees, but rather specifies a set of security require-
ments [Jac07, Kar12]. For example, Beckert, Bruns and Grebing in their
discussion paper, claim vague interpretation of Common Criteria standard
(high level of policies abstraction in from specification can be interpreted in
different ways in the implementation) and offer to strengthen the quality of
software by using formal verification instead of functional testing since the
effort their implementation is comparable [BBG10]. Moreover, the valida-
tion report on Google Pixel 3/3XL clearly states that Target of Evaluation
(TOE) does not include the user apps running on top of the operating sys-
tem [oSTA19]. Finally, the Enterprise version of Android is very new and
it has not gained yet an interest from users and researchers (no alternative
security analyses available yet).

According to Google, Android security is based on a multi-party consent
model and includes the following principles [MSBK19].

• Actors control access to the data they create.

• Consent is informed and meaningful.

• Safe by design/default.

• Defense in depth.

The security principles implementation imposes security by design, de-
clares requirements on the Android components and restricts the user from
access to sensitive components. Furthermore, Android ensures user’s consent

2Selected models are Google Pixel 3 (blueline) and Google Pixel 3 XL (crosshatch)
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regarding the system actions or an app taking on the device. However, in
practice, app developers find plenty of ways to circumvent Android security
mechanisms and leak the end-user’s data [RFW+19].

An app communicates with the Android OS through the application
framework to perform various actions using Android APIs. Sensitive An-
droid APIs cover such functions as obtaining user location or sending an
SMS and stay behind a user-controlled permission mechanism [BBD+16].
At any time, the user can grant or take away the permission from the app.

On Android, sensitive APIs restricted by permissions are one of the main
targets to both defenders and attackers [ZG16, FBR+16]. Indeed, early
works focused on enforcing correct permissions usage in apps [BKLTM12].
Although permissions may be granted correctly, an attacker may use benign
functionality declared in the app for malicious purposes. One of the mech-
anisms is to inject a logic bomb — malicious code that triggers only under
peculiar conditions. Such code is, therefore, invisible under normal usage
[FBR+16].

One approach to enforce user safety from malicious apps comes from
the idea to turn the incompleteness of dynamic analysis into a guaran-
tee [JvSRZ16, BLL18]. It offers a sandbox that restricts the app to-
wards only explored behaviors. Another approach aims to remove the
dead code (and decrease the attack surface) using static analysis [JZWL16,
JWL16, JBW+18, HLPN18] or dynamically measuring traces of executed
code [AJWK+19, ALN19, QHA+19].

2.5 Program Analysis

Researchers and practitioners continue improving static and dynamic tech-
niques to identify malware. Both techniques however have their challenges,
e.g. static analysis suffers from over-approximation, incompleteness of code,
code obfuscation, while dynamic analysis — from incompleteness of testing
[JvSRZ16]. Many researchers believe that hybrid analysis combining both
static and dynamic benefits is more efficient [OAM+18].

Static analysis of 3rd-party Android apps often relies on the
Soot [VRCG+10] framework, which converts app binaries into Jimple in-
termediate representation and provides vast capabilities for code analy-
sis. Several use Soot and Jimple to cut excessive code from the apps
[JZWL16, JWL16, JBW+18]

Smali is another intermediate representation for Android apps. It is
supported by Google [Goo18b] and precisely reflects Android bytecode in-
structions into smali instructions making app bytecode human readable.
Hence, smali representation gained significant popularity when reverse en-
gineering, repackaging and hacking Android apps.

The goal of dynamic analysis is to report on the activities the app per-
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formed when running. A number of automated testing tools such as Droid-
Mate [JZ16], Droidmate-2 [BJHZ18], Droidbot [LYGC17] and simple Mon-
key [Goo18d] emerged to automate testing routines for different purposes.
For example, Monkey is a simple input generator that allows us to quickly
generate and inject UI events into the app, while Sapienz aims at the same
time to maximize code coverage and the number of faults found when test-
ing.

Unfortunately the current state of automated tools does not allow to
fully test the app, while some tools managed to achieve pretty good results
[BJHZ18]. Systematic literature review by Kong et al. provides an in-depth
overview on automated testing tools [KLG+18].

The idea of restricting app behaviors by combining program analysis,
sandboxing, and test generation tools for Android apps first appeared in the
keynote by Zeller [Zel15]. He presented the definition of test complement
exclusion term — disallowing behavior not seen during testing [Zel15]. The
talk turned into the Mining Sandboxes paper by Jamrozik et al. [JvSRZ16].
The work presented BOXMATE — a tool for automated extraction of a
sandbox from an Android app. The full report is available in the doctoral
dissertation written by Jamrozik [Jam18].

Another outcome of Mining sandboxes are DroidMate [JZ16] and
DroidMate-2 [BJHZ18] automated testing tools that consequently grew up
from the BOXMATE tool. These automated testing tools help to observe
behaviors in 3rd-party apps and the authors claim DroidMate-2 outper-
forms other popular automated tools — Droidbot [LYGC17] and Monkey
[Goo18d].
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ACVTool: Instruction
Coverage

Instruction coverage is a fine-grained code coverage metric, that
we unlocked for Android apps in this work. We further elaborate
on basic code coverage metrics relevant for a 3rd-party Android
app and their implementation.
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3.1 Code Instrumentation

In this section, we describe the bytecode instrumentation approach used
in ACVTool. In the literature, Huang et al. [HCLT15] propose two ap-
proaches for measuring bytecode coverage: (1) direct instrumentation by
placing probes right after the instruction that has to be monitored for cov-
erage (this requires using additional registers); (2) indirect instrumentation
by wrapping probes into separate functions. The latter instrumentation
approach introduces significant overhead in terms of added methods that
could potentially lead to reaching the upper limit of method references per
.dex file (65536 methods, see [Goo18a]). Thus, we built ACVTool upon the
former approach.

1 private void updateElements() {
2 boolean updated = false;
3 while (!updated) {
4 updated = updateAllElements();
5 }
6 }

Listing 3.1: Java code example.

1 .method private updateElements()V
2 .locals 1
3 const/4 v0, 0x0
4 .local v0, "updated":Z
5 :goto_0
6 if−nez v0, :cond_0
7 invoke−direct {p0}, Lcom/demo/Activity;−>updateAllElements()Z
8 move−result v0
9 goto :goto_0

10 :cond_0
11 return−void
12 .end method

Listing 3.2: Smali representation of the original Java code example.

3.1.1 Bytecode Representation

To instrument Android apps, ACVTool relies on the apkil library [Yan18]
that creates a tree-based structure of smali code. The tree generated by
apkil contains classes, fields, methods, and instructions as nodes. It also
maintains relations between instructions, labels, try–catch and switch
blocks. We use this tool for two purposes: (1) apkil builds a structure
representing the code that facilitates bytecode manipulations; (2) it main-
tains links to the inserted probes, allowing us to generate the code coverage
report.

22



Chapter 3. ACVTool: Instruction Coverage

1 .method private updateElements()V
2 .locals 4
3 move−object/16 v1, p0
4 sget−object v2, Lcom/acvtool/StorageClass;−>Activity1267:[Z
5 const/16 v3, 0x1
6 const/16 v4, 0x9
7 aput−boolean v3, v2, v4
8 const/4 v0, 0x0
9 goto/32 :goto_hack_4

10 :goto_hack_back_4
11 :goto_0
12 goto/32 :goto_hack_3
13 :goto_hack_back_3
14 if−nez v0, :cond_0
15 goto/32 :goto_hack_2
16 :goto_hack_back_2
17 invoke−direct {v1}, Lcom/demo/Activity;−>updateAllElements()Z
18 move−result v0
19 goto/32 :goto_hack_1
20 :goto_hack_back_1
21 goto :goto_0
22 :cond_0
23 goto/32 :goto_hack_0
24 :goto_hack_back_0
25 return−void
26 :goto_hack_0
27 const/16 v4, 0x4
28 aput−boolean v3, v2, v4
29 goto/32 :goto_hack_back_0
30 :goto_hack_1
31 const/16 v4, 0x5
32 aput−boolean v3, v2, v4
33 goto/32 :goto_hack_back_1
34 :goto_hack_2
35 const/16 v4, 0x6
36 aput−boolean v3, v2, v4
37 goto/32 :goto_hack_back_2
38 :goto_hack_3
39 const/16 v4, 0x7
40 aput−boolean v3, v2, v4
41 goto/32 :goto_hack_back_3
42 :goto_hack_4
43 const/16 v4, 0x8
44 aput−boolean v3, v2, v4
45 goto/32 :goto_hack_back_4
46 .end method

Listing 3.3: Instrumented smali code example. The highlighted lines mark
the added instructions.

The original apkil library has not been maintained since 2013. There-
fore, we adapted it to enable support for more recent versions of Android.
In particular, we added annotation support for classes and methods, which
has appeared in the Android API 19, and has been further extended in the
API 22. Our modifications specify the .annotation word and its structure
for classes and methods for the apkil smali parser. Other our additions
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to apkil contain 4 new instructions: filled-new-array, invoke-custom,
filled-new-array/range and invoke-custom/range. We added them to
the list of 35c and 3rc Dalvik instruction formats1. For parsing, apkil
finds such instructions by name as they have a different format compared
to other instructions [Goo18a]. Thus, the apkil library evolves according
to ACVTool’s needs, and it is maintained within the ACVTool project.

Tracking the bytecode coverage requires not only to insert the probes
while keeping the bytecode valid, but also to maintain the references between
the original and the instrumented bytecode. For this purpose, when we
generate the apkil representation of the original bytecode, we annotate
the nodes that represent the original bytecode instructions with additional
information about the probes we inserted to track their execution. We then
save this annotated intermediate representation of the original bytecode into
a separate serialized .pickle file as the instrumentation report.

3.1.2 Register Management

To exemplify how our instrumentation works, Listing 3.1 gives an exam-
ple of a Java code fragment, Listing 3.2 shows its smali representation,
and Listing 3.3 illustrates the corresponding smali code instrumented by
ACVTool.

The probe instructions that we insert are simple aput-boolean opcode
instructions (e.g., Line 7 in Listing 3.3). These instructions put a boolean
value (the first argument of the opcode instruction) into an array identified
by a reference (the second argument), to a certain cell at an index (the third
argument). Therefore, to store these arguments we need to allocate three
additional registers per app method.

The addition of these registers is not a trivial task. We cannot simply use
the first three registers in the beginning of the stack because this will require
modification of the remaining method code and changing the corresponding
indices of the registers. Moreover, some instructions can address only 16
registers [Goo18a]. Therefore, the addition of new registers could make
these instructions malformed. Similarly, we cannot easily use new registers
at the end of the stack because method parameter registers must always be
the last ones.

To overcome this issue, we use the following approach. We allocate three
new registers, however, in the beginning of a method we copy the values of
the argument registers to their corresponding places in the original method.
For instance, in Listing 3.3 the instruction at Line 3 copies the value of
the parameter p0 into the register v1 that has the same register position
as in the original method (see Listing 3.2). Depending on the value type,

1See https://source.android.com/devices/tech/dalvik/instruction-formats for more de-
tails about instruction formats.
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we use different move instructions for copying: move-object/16 for objects,
move-wide/16 for paired registers (Android uses register pairs for long and
double types), move/16 for others. Then we update all occurrences of pa-
rameter registers through the method body from p names to their v aliases
(compare Line 7 in Listing 3.2 with Line 17 in Listing 3.3). Afterwards,
the last 3 registers in the stack are safe to use for the probe arguments (for
instance, see Lines 4-6 in Listing 3.3).

3.1.3 Probes Insertion

Apart from moving the registers, there are other issues that must be ad-
dressed for inserting the probes correctly. First, it is impractical to insert
probes after certain instructions that change the the execution flow of a pro-
gram, namely return, goto (line 21 in Listing 3.3), and throw. If a probe
was placed right after these instructions, it would never be reached during
the program execution.

Second, some instructions come in pairs. For instance, the invoke-*
opcodes, which are used to invoke a method, must be followed by the ap-
propriate move-result* instruction to store the result of the method execu-
tion [Goo18a] (see Lines 17-18 in Listing 3.3). Therefore, we cannot insert a
probe between them. Similarly, in case of an exception, the result must be
immediately handled. Thus, a probe cannot be inserted between the catch
label and the move-exception instruction.

These aspects of the Android bytecode mean that we insert probes after
each instruction, but not after the ones modifying the execution flow, and
not after the first command in the paired instructions. These excluded
instructions are untraceable for our approach, and we do not consider them
to be part of the resulting code coverage metric. Note that in case of a
method invocation instruction, we log each invoked method, so that the
computed method code coverage will not be affected by this.

The VerifyChecker component of the Android Runtime that checks the
code validity at runtime poses additional challenges. For example, a Java
synchronized block, which allows a particular code section to be executed
by only one thread at a time, corresponds to a pair of the monitor-enter
and monitor-exit instructions in the Dalvik bytecode. To ensure that
the lock is eventually released, this instruction pair is wrapped with an
implicit try–catch block, where the catch part contains an additional
monitor-exit statement. Therefore, in case of an exception inside a lock,
another monitor-exit instruction will unlock the thread. VerifyChecker
ensures that the monitor-exit instruction will be executed only once, so
it does not allow to add any instructions that may potentially raise an ex-
ception. To overcome this limitation, we insert the goto/32 statement to
redirect the flow to the tracking instruction, and a label to go back after the
tracking instruction was executed. Since VerifyChecker examines the code
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Figure 3.1: ACVTool workflow

sequentially, and the goto/32 statement is not considered as a statement
that may throw exceptions, our approach allows the instrumented code to
pass the code validity check.

3.2 ACVTool Design

ACVTool allows one to measure and analyze the degree to which the code
of a closed-source Android app is executed during testing, and to collect
crash reports occurred during this process. We have designed the tool to be
self-contained by embedding all dependencies required to collect the runtime
information into the application under test (AUT). Therefore, our tool does
not require to install additional software components, allowing it to be effort-
lessly integrated into any existing testing or security analysis pipeline. For
instance, we have tested ACVTool with the random input event generator
Monkey [Goo18d], and we have integrated it with the Sapienz tool [MHJ16]
to experiment with fine-grained coverage metrics (see details in Section 5.1).
Furthermore, for instrumentation ACVTool uses only the instructions avail-
able on all current Android platforms. The instrumented app is thus com-
patible with all emulators and devices. We have tested whether the instru-
mented apps work using an Android emulator and a Google Nexus phone.

Figure 3.1 illustrates the workflow of ACVTool that consists of three
phases: offline, online and report generation. At the time of the offline
phase, the app is instrumented and prepared for running on a device or
an emulator. During the online phase, ACVTool installs the instrumented
app, runs it and collects its runtime information (coverage measurements
and crashes). At the report generation phase, the runtime information of
the app is extracted from the device and used to generate a coverage report.
Below we describe these phases in detail.
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3.2.1 Offline Phase

The offline phase of ACVTool is focused on app instrumentation. In a nut-
shell, this process consists of several steps depicted in the upper part of Fig-
ure 3.1. The original Android app is first decompiled using apktool [WT17].
Under the hood, apktool uses the smali/backsmali disassembler [Ben18]
to disassemble .dex files and transform them into smali representation.
To track the execution of the original smali instructions, ACVTool inserts
special probe instructions after each of them. These probes are invoked
right after the corresponding original instructions, allowing us to precisely
track their execution at runtime. After the instrumentation, ACVTool
compiles the instrumented version of the app using apktool and signs it
with apksigner. Thus, by relying on native Android tools and some well-
supported tools provided by the community, ACVTool is able to instrument
almost every app. We present the details of our instrumentation process in
Section 3.1.

In order to collect the runtime information, we used the approach pro-
posed in [ZPG+15] and developed a dedicated Instrumentation class. ACV-
Tool embeds this class into the app code, allowing the tool to collect the
runtime information. After the app has been tested, this class serializes the
runtime information (represented as a set of boolean arrays) into a binary
representation, and saves it to the external storage of an Android device.
The Instrumentation class also collects and saves the data about crashes
within the AUT, and registers a broadcast receiver. The receiver waits for a
special event notifying that the process collecting the runtime information
should be stopped. Therefore, various testing tools can use the standard
Android broadcasting mechanism to control ACVTool externally.

ACVTool makes several changes to the Android manifest file (decompiled
from binary to normal xml format by apktool). First, to write the runtime
information to the external storage, we additionally request the WRITE_-
EXTERNAL_STORAGE permission. Second, we add a special instrument tag
that registers our Instrumentation class as an instrumentation entry point.

After the instrumentation is finished, ACVTool assembles the instru-
mented package with apktool, re-signs and aligns it with standard Android
utilities apksigner and zipalign. Thus, the offline phase yields an instru-
mented app that can be installed onto a device and executed.

It should be mentioned that we sign the application with a new signature.
Therefore, if the application checks the validity of the signature at runtime,
the instrumented application may fail or run with reduced functionality, e.g.,
it may show a message to the user that the application is repackaged and
may not work properly.

Along with the instrumented apk file, the offline phase produces an in-
strumentation report. It is a serialized code representation saved into a
binary file with the pickle extension that is used to map probe indices in a
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binary array to the corresponding original bytecode instructions. This data
along with the runtime report (described in Section 3.2.2) is used during
the report generation phase. By default, ACVTool instruments an appli-
cation to collect instruction-, method- and class-level coverage information.
It is also possible to instrument an app to collect only method- and class-
level coverage data, in case only a coarser-grained coverage information is
required.

3.2.2 Online Phase

During the online phase, ACVTool installs the instrumented app onto a de-
vice or an emulator using the adb utility, and initiates the process of collect-
ing the runtime information by starting the Instrumentation class. This
class is activated through a command issued to adb. Developers can then
test the app manually, run a test suite, or interact with the app in any other
way, e.g., by running tools, such as Monkey [Goo18d], IntelliDroid [WL16],
or Sapienz [MHJ16]. ACVTool’s data collection does not influence the app
execution. If the Instrumentation class has been not activated, the app
can still be run in a normal way.

After the testing is over, ACVTool generates a broadcast that instructs
the Instrumentation class to stop the coverage data collection. Upon re-
ceiving the broadcast, the class consolidates the runtime information into a
runtime report and stores it on the external storage of the testing device.
Additionally, ACVTool keeps the information about all crashes of the AUT,
including the timestamp of a crash, the name of the class that crashed, the
corresponding error message and the full stack trace. By default, ACVTool
is configured to catch all runtime exceptions in an AUT without stopping its
execution – this can be useful for collecting the code coverage information
right after a crash happens, helping to pinpoint its location.

3.2.3 Report Generation Phase

The runtime report is a set of boolean vectors (with all elements initially set
to False); each of these vectors corresponds to one class of the app. Every
element of a vector maps to a probe that has been inserted into the class.
Once a probe has been executed, the corresponding vector’s element is set
to True, meaning that the associated instruction has been covered. To build
the coverage report that shows what original instructions have been executed
during the testing, ACVTool uses data from the runtime report, showing
what probes have been invoked at runtime, and from the instrumentation
report that maps these probes to original instructions.

Currently, ACVTool generates reports in the html and xml formats.
These reports have a structure similar to the reports produced by the Ja-
CoCo tool [JaC18]. While html reports are convenient for visual inspection,
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Figure 3.2: ACVTool html report

Figure 3.3: Covered smali instructions highlighted by ACVTool

xml reports are more suitable for automated processing. Figure 3.2 shows an
example of a html report. Analysts can browse this report and navigate the
hyperlinks that direct to the smali code of individual files of the app, where
the covered smali instructions are highlighted (as shown in Figure 3.3).

3.2.4 Interface

ACVTool is a standalone Python package that can be introduced in other
software such as automated software testing tools. ACVTool contains a
number of functions to instrument, sign, build, install, measure code cover-
age and generate the code coverage report. We made source code available
at the GitHub, which allows users to modify it and interfere in the code
coverage measurement procedure at any step.

Furthermore, ACVTool provides its command line interface for manual
use. We list the full set of capabilities in the Table 3.1 and Table 3.2. From
the terminal ACVTool may be run as follows.

$ acv <command> <argument> <options>

Each command of the command line interface reflects on the ACVTool
workflow presented in Figure 3.1. instrument command covers the de-
compilation of the APK, injecting the probes and modifying the Android
Manifest file. After execution of this command ACVTool generates signed
APK and the instrumentation report. Thus, this command covers the of-
fline phase of ACVTool workflow. We additionally distinguished the sign
command to give a user more flexibility, when using the tool. Further, com-
mands install/uninstall duplicate the install/uninstall functionality of
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Table 3.1: ACVTool command line interface.

Command Argument Description Options
instrument path_to_apk Instruments an APK --wd, -r, -i,

--dbgstart,
--dbgend

install path_to_apk Installs an APK
uninstall path_to_apk Uninstalls an APK
start package_name Starts runtime coverage

data collection
stop package_name Stops runtime coverage

data collection
report package_name Produces a report -p, -o, -ec
sign apk_path Signs and alignes an APK

the adb tool (with an additional flag). Commands start and stop launch
and finalize the code coverage measurement process. The report command
generates html and xml code coverage reports.

Debug capabilities. Along to the required options (Table 3.2), ACV-
Tool offers the dbgstart and dbgend options that allow to instrument only
selected methods or a part of the app, e.g. a half of all methods. This
functionality mainly created for debug purposes to help in finding methods
where ACVTool instrumentation breaks the app. The argument takes the
number of a method in the app that we would like to instrument.

When the instrumented app did not work at the device anymore, we
used the debug functionality to find the exact broken method and improve
our approach. In this case, we would notice a crash instead of the demon-
strated original behavior (e.g. the app could not launch anymore). There-
fore, we would instrument only a part of the app, install it again and check
if it still crashes. Thus, we could find the exact broken method leading to
the crash. We automated the procedure of instrumenting, installing/unin-
stalling, launching of an app and catching a crash from the logcat, and
we used the binary search algorithm to simplify the search of the broken
method. Further, we would carefully investigate the insertion of probes in
the particular method to reveal the reason of the crash.

3.3 Related Work

Literature on Software Testing [AO16, Mat13, KFN99] usually refers to code
coverage in the context of a metric for white-box testing since it works on the
source code. Developers traditionally use code coverage to measure quality
of the code or completeness of unit and integration tests. On the contrary to
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Table 3.2: ACVTool options for the commands listed in the Table 3.1

Option Argument Description
-h, --help - Shows help message and exits
--version - Shows program’s version number and

exits
--wd result_directory Path to the directory where the

working data is stored (default:
./smiler/acvtool_working_dir)

--dbgstart methods_number For troubleshooting purposes. The
number of the first method to be instru-
mented. Only methods from DBGSTART
to DBGEND will be instrumented

-r, --r - Working directory (-wd) will be over-
written without asking

-i, --i - Installs the application immediately af-
ter instrumenting

-p pickle_file Path to the Pickle file, that was gener-
ated during the instrumentation process
(required)

-o output_dir Output directory
-ec ec_dir The directory with the code coverage bi-

nary files pre-loaded from the emulator

white-box, grey-box and black-box testing do not have access to source code.
Although the grey-box testing utilizes knowledge of app internals, black-
box testing works without even this information. Therefore, code coverage
term normally is not associated with grey-box nor with black-box testing.
However, in the absence of source code we still can measure the proportion of
(binary) code that was executed. In this case, coverage metric is frequently
used to evaluate effectiveness and efficiency of automated testing tools that
may operate in black-box or grey-box manner [HYWH15, ZPG+15, YH15,
PGZ+20, PGD+18, DGPZ18]. On that occasion, many researchers and
practitioners still refer to this measurement as code coverage, sometimes
calling it black-box code coverage to indicate the lack of access to the app
source code. Other terms may include binary instrumentation coverage,
instruction coverage, binary coverage.

When an automated tool actually relies on code coverage measurements
in its operation (utilizing it as a fitness function), we can talk about grey-
box testing. The app may not have source code but the tool leverages
information retrieved from the app internals. The tool would disassemble,
read and analyze and even understand the app structure. Since the An-
droid research community usually does not make a distinction between the
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black-box and the grey-box settings, considering them both to be "black-
box" [ZPG+15, PGZ+20, HYWH15, YH15], we will adopt this terminology.
Further, we discuss the most popular examples of tools for white-box cover-
age measurement on Android, and then review the state of the art for the
black-box testing approaches.

3.3.1 White-box Coverage Measurement

Code coverage measurement tools for white-box testing are included into
the Android SDK maintained by Google [Goo18c]. Supported coverage li-
braries are JaCoCo [JaC18], EMMA [Rub06], and the IntelliJ IDEA coverage
tracker [s.r17]. These tools are capable of measuring fine-grained code cov-
erage, but require that the source code of an app is available. This makes
them suitable only for testing apps at the development stage.

3.3.2 Coverage Measurement in Black-box

Several frameworks for measuring black-box code coverage of Android apps
already exist, however, they have many drawbacks and are inadequate for
large-scale automated testing, as we discuss in this section. Notably, these
frameworks often measure code coverage at coarser granularity. For exam-
ple, ELLA [ELL16], InsDal [LWD+17], CovDroid [YH15], and the tool by
Horvath et al. [HBG+14] measure code coverage only at the method level.

ELLA [ELL16] is arguably one of the most popular tools to measure
Android code coverage in the black-box setting, however, it is no longer sup-
ported. ELLA relies on the same approach to app instrumentation as ACV-
Tool (at the method level): it inserts probes at the beginning of methods,
manipulates registers and tracks probe execution [ELL16]. The difference
in coverage measurement approaches appears in the reporting procedure.
While executed, an app instrumented by ELLA sends identifiers of executed
methods via a socket to the ELLA server.

Huang et al. [HCLT15] proposed an approach to measure code coverage
for dynamic analysis tools for Android apps. Their high-level approach is
similar to ours: an app is decompiled into smali files, and these files are
instrumented by placing probes at every class, method and basic block to
track their execution. However, the authors reported a forbidding success
rate – only 36% of apps could be instrumented. Such a low instrumentation
rate makes it impossible to use this tool at large scale. Unfortunately, the
authors stopped there and did not report on the reasons and possible fixes
of appeared issues. The opposite, with ACVTool we performed an extensive
reverse engineering work on failing apps to fix and generalize our ACVTool
approach.

From the tool description Huang et al. implemented logging of the in-
serted probes by printing specific identifiers into logcat on the fly. To com-
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Table 3.3: Coverage frameworks for black-box analysis

Tool References Coverage
granularity

Target rep-
resentation

Code
available

ELLA [ELL16,
WLY+18]

method smali Y

Huang et
al.

[HCLT15] class, method,
basic block,
instruction

smali N

BBoxTester [ZPG+15] class, method,
basic block

Java Y

InsDal [LWD+17,
YWYZ16,
LWY+16]

class, method smali N

CovDroid [YH15] method smali N
Asc [SQH17] basic block Jimple Y

ABCA [HYWH15] class, method,
instruction

Jimple N

Horvath
et al.

[HBG+14] method Java bytecode N

Sapienz [MHJ16] activity smali Y
DroidFax [CR17a,

CMRY18,
CR17b]

instruction Jimple Y

AndroCov [BGZ18,
Li16]

method,
instruction

Jimple Y

ACVTool this work class, method,
instruction

smali Y
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pare, ACVTool registers probe execution in the binary array (Section 6.3)
and saves a coverage file when testing is over. Therefore, Huang’s approach
may be heavy for an app and the Android system but also requires parsing
Android log for coverage calculation. Unfortunately, Hunag et al. tool is
not available for experimenting.

BBoxTester [ZPG+15] is another tool for measuring black-box code cov-
erage. Its workflow includes app disassembling with apktool and decompi-
lation of the dex files into Java jar files using dex2jar [Pan17]. The jar
files are instrumented using EMMA [Rub06], and assembled back into an
apk.

The InsDal tool [LWD+17] instruments apps for class and method-level
coverage logging by inserting probes in the smali code, and its workflow is
similar to ACVTool. The tool has been applied for measuring code coverage
in the black-box setting with the AppTag tool [YWYZ16], and for logging
the number of method invocations in measuring the energy consumption of
apps [LWY+16].

CovDroid [YH15], another black-box code coverage measurement system
for Android apps, transforms apk code into smali-representation using the
smali disassembler [Ben18] and inserts probes at the method level. The
coverage data is collected using an execution monitor, and the tool is able
to collect timestamps for executed methods.

Alternative approaches to Dalvik instrumentation focus on performing
detours via other languages, e.g., Java or Jimple. For example, Bartel et
al. [BKM+12] worked on instrumenting Android apps for improving their
privacy and security via translation to Java bytecode. Zhauniarovich et
al. [ZPG+15] translated Dalvik into Java bytecode in order to use EMMA’s
code coverage measurement functionality, while Horvath et al. [HBG+14]
used translation into Java bytecode to use their own JInstrumenter library
for jar files instrumentation. The limitation of such approaches, as reported
in [ZPG+15], is that not all apps can be retargeted into Java bytecode.

The instrumentation of apps translated into the Jimple representation
has been used in, e.g., Asc [SQH17], DroidFax [CR17a], ABCA [HYWH15],
and AndroCov [Li16, BGZ18]. Jimple is a suitable representation for sub-
sequent analysis with Soot [ARB17], yet, unlike smali, it does not belong
to the “core” Android technologies maintained by Google. Moreover, Ar-
natovich et al. [ATD+14] in their comparison of different intermediate rep-
resentations for Dalvik bytecode advocate that smali is the most accurate
alternative to the original Java source code and therefore is the most suitable
for security testing.

Remarkably, in the absence of reliable fine-grained code coverage report-
ing tools, some frameworks [MHJ16, SQH17, CR17a, LYGC17, CML+17,
MHH+19, LR19] integrate their own black-box coverage measurement li-
braries. Many of these papers do note that they have to design their own
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code coverage measurement means in the absence of a reliable tool. ACV-
Tool addresses this need of the community. As the coverage measurement
is not the core contribution of these works, the authors have not provided
enough details on the implementation of their coverage measurement tech-
niques.
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Chapter 4

ACVTool Evaluation

In this chapter, we evaluate effectiveness and efficiency of our
instrumentation approach and compare it to other tools.
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4.1 Introduction

Our code coverage tracking approach modifies the app bytecode by adding
probes and repackaging the original app. This approach could be deemed
too intrusive to use with the majority of third-party applications. To prove
the validity and the practical usefulness of our tool, we have performed an
extensive empirical evaluation of ACVTool with respect to the following
criteria:

Effectiveness. We report the instrumentation success rate of ACVTool,
broken down in the following numbers:

• Instrumentation success rate. We report how many apps from our
datasets have been successfully instrumented with ACVTool.

• App health after instrumentation. We measure the percentage of in-
strumented apps that can run on an emulator. We call these apps
healthy1. To report this statistic, we installed the instrumented apps
on the Android emulator and launched their main activity. If an app
is able to run for 3 seconds without crashing, we count it as healthy.

Efficiency. We assess the following characteristics:

• Instrumentation-time overhead. Traditionally, the preparation of apps
for testing is considered to be an offline activity that is not time-
sensitive. Given that the testing process may be time-demanding (e.g.,
Sapienz [MHJ16] tests each application for hours), our goal is to ensure
that the instrumentation time is insignificant in comparison to the
testing time. Therefore, we have measured the time ACVTool requires
to instrument apps in our datasets.

• Runtime overhead. Tracking instructions added into an app introduce
their own runtime overhead, what may be a critical issue in testing.
Therefore, we evaluate the impact of the ACVTool instrumentation on
app performance and codebase size. We quantify the runtime overhead
measured as the CPU utilization overhead on a subset of applications
and on the benchmark PassMark application [Sof18] by comparing
executions of original and instrumented app versions. We also measure
the increase in the .dex file size.

Compliance with other tools. We compare the coverage data re-
ported by ACVTool with the coverage data measured by JaCoCo [JaC18]
that relies on the white-box approach and requires source code, and by
Ella [ELL16], which does not require source code, but measures coverage

1To the best of our knowledge, we are the first to report the percentage of instrumented
apps that are healthy.
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only at the method level. This comparison allows us to draw conclusions
about the reliability of the coverage information collected by ACVTool.

To the best of our knowledge, this is the largest empirical evaluation
of a code coverage tool for Android done so far. In the remainder of this
section, after presenting the benchmark application sets used, we report on
the results obtained in dedicated experiments for each of the above criteria.
The experiments were executed on an Ubuntu server (Xeon 4114, 2.20GHz,
128GB RAM).

4.2 Benchmark

We downloaded 1000 apps from the Google Play sample of the AndroZoo
dataset [ABKT16]. These apps were selected randomly among apps built
after Android API 22 was released, i.e., after November 2014. These are real
third-party apps that may use obfuscation and anti-debugging techniques,
and could be more difficult to instrument.

Among the 1000 Google Play apps, 168 could not be launched: 12 apps
were missing a launchable activity, 1 had encoding problem, and 155 crashed
upon startup. These crashes could appear due to some misconfigurations in
the apps, but also due to the fact that we used an emulator. Android emu-
lators lack many features present in real devices. We have used the emula-
tor, because we subsequently test ACVTool together with Sapienz [MHJ16]
(these experiments are reported in the next section). We excluded these
unhealthy apps from our sample. In total, our Google Play benchmark
contains 832 healthy apps. The apk sizes in this set range from 20KB to
51MB, with an average apk size of 9.2MB.

As one of our goals is to evaluate the reliability of the coverage data
collected by ACVTool comparing to JaCoCo as a reference, we need to have
some apps with the available source code. To collect such apps, we use the
F-Droid2 dataset of open source Android apps (1330 application projects
as of November 2017). We could git clone 1102 of those, and found that
868 apps used Gradle as a build system. We have successfully compiled 627
apps using 6 Gradle versions3.

To ensure that all of these 627 apps can be tested (healthy apps), we
installed them on an Android emulator and launched their main activity for
3 seconds. In total, out of these 627 apps, we obtained 446 healthy apps
that constitute our F-Droid benchmark. The size of the apps in this
benchmark ranges from 8KB to 72.7MB, with an average size of 3.1MB.

2https://f-droid.org/
3Gradle versions 2.3, 2.9, 2.13, 2.14.1, 3.3, 4.2.1 were used. Note that the apps that

failed to build and launch correctly are not necessarily faulty, but they can, e.g., be built
with other build systems or they may work on older Android versions. Investigating these
issues is out of the scope of our study, so we did not follow up on the failed-to-build apps.
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Table 4.1: ACVTool performance evaluation

Parameter Google Play F-Droid Totalbenchmark benchmark
Total # healthy apps 832 446 1278
Instrumented apps 809 (97.2%) 442 (99.1%) 1251 (97.8%)

Healthy instrumented apps 799 (96.0%) 440 (98.7%) 1239 (96.9%)
Avg. instrumentation time 36.6 sec 27.4 sec 33.3 sec

4.3 Effectiveness

4.3.1 Instrumentation Success Rate

Table 4.1 summarizes the main statistics related to the instrumentation
success rate of ACVTool.

Before instrumenting applications with ACVTool, we first reassembled,
repackaged, rebuilt (with apktool, zipalign, and apksigner) and installed
every healthy Google Play and F-Droid app on a device. From the Google
Play sample, one repackaged app crashed upon startup, and apktool could
not repackage 22 apps, raising AndrolibException. From the F-Droid sam-
ple, apktool was unable to repackage only one app. These apps were ex-
cluded from subsequent experiments, and we consider them as failures for
ACVTool (even though ACVTool instrumentation did not cause these fail-
ures).

Besides the 24 apps that could not be repackaged in both app sets,
ACVTool has instrumented all remaining apps from the Google Play bench-
mark. Yet, it failed to instrument 3 apps from the F-Droid set. The
found issues were the following: in 2 cases apktool raised an exception
ExceptionWithContext declaring an invalid instruction offset, in 1 case
apktool threw ExceptionWithContext stating that a register was invalid
and must be between v0 and v255.

4.3.2 App Health after Instrumentation

From all successfully instrumented Google Play apps, 10 applications
crashed at launch and generated runtime exceptions, i.e., they became
unhealthy after instrumentation with ACVTool (see the third row in Ta-
ble 4.1). Five cases were due to the absence of the Retrofit annotation (four
IllegalStateException and one IllegalArgumentException), 3 cases –
ExceptionInInitializerError, 1 case – NullPointerException, 1 case
– RuntimeException in a background service. In the F-Droid dataset, 2
apps became unhealthy due to the absence of Retrofit annotation, raising
IllegalArgumentException.
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Upon investigation of the issues, we suspect that they could be due to
faults in the ACVTool implementation. We are working to properly identify
and fix the bugs, or to identify a limitation in our instrumentation approach
that leads to a fault for some type of apps.

Conclusion: we can conclude that ACVTool is able to process the vast
majority of apps in our dataset, i.e., it is effective for measuring code cov-
erage of third-party Android apps. For our total combined dataset of 1278
originally healthy apps, ACVTool has instrumented 1251, what constitutes
97.8%. From the instrumented apps, 1239 are still healthy after instrumen-
tation. This gives us the instrumentation survival rate of 99%, and the total
instrumentation success rate of 96.9% (of the originally healthy population).
The instrumentation success rate of ACVTool is much better than the in-
strumentation rates of the closest competitors BBoxTester [ZPG+15] (65%)
and the tool by Huang et al. [HCLT15] (36%).

4.4 Efficiency

4.4.1 Instrumentation-time Overhead

Table 4.1 presents the average instrumentation time required for apps from
our datasets. It shows that ACVTool generally requires less time for in-
strumenting the F-Droid apps (on average, 27.4 seconds per app) than the
Google Play apps (on average, 36.6 seconds). This difference is due to the
smaller size of apps, and, in particular, the size of their .dex files. For our
total combined dataset the average instrumentation time is 33.3 seconds
per app. This time is negligible compared to the testing time usual in the
black-box setting that could easily reach several hours.

4.4.2 Runtime Overhead

CPU utilization overhead To assess the runtime overhead induced by
our instrumentation in a real world setting, we ran the original and instru-
mented versions of 10 apps (size range 1–32MB, 10MB mean APK size)
randomly chosen from our dataset with Monkey [Goo18d], a random in-
put event generator from Google (same seed for reproducibility, 1 second
throttle, 500 events), and measured CPU utilization with the Qualcomm
Snapdragon Profiler [Qua19].

We provide performance measurement at the best precision we could
achieve on Android, taking into account its reactive nature. Our fully au-
tomated pipeline works as follows. First, we reboot the Android device (we
use Nexus 5) and install a new app. Then the profiler is launched starting
the CPU utilization measurements. Monkey starts and exercises the app,
while the profiler saves the data. Once the testing is finished, the app is
uninstalled. We test every app 5 times for each of its 3 versions: original,
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Figure 4.1: Average CPU utilization measured in 10 applications.

instrumented at the method level and instrumented at the instruction level.
Finally, we calculated the average CPU utilization for every app version and
logic processor (since the CPU on our device has 4 logic processors).

Figure 4.1 shows that CPU utilization of instrumented apps slightly dif-
fers from the CPU utilization by their original versions. However, as seen
from Figure 4.2, the difference is insignificant: the mean difference of CPU
utilization is 0.25% and 0.53% for the method- and instruction-instrumented
versions, respectively. This experiment shows that the runtime overhead in-
troduced by ACVTool is not prohibitive in a user-like application testing
scenario.

PassMark overhead To further estimate the runtime overhead we used
a benchmark application called PassMark [Sof18]. Benchmark applications
are designed to assess performance of mobile devices. The PassMark app
is freely available on Google Play, and it contains a number of test bench-
marks related to assessing CPU and memory access performance, speed of
writing to and reading from internal and external drives, graphic subsystem
performance, etc. These tests do not require user interaction. The re-
search community has previously used this app to benchmark their Android
related-tools (e.g., [BBS+17]).

For our experiment, we used the PassMark app version 2.0 from Septem-
ber 2017. This version of the app is the latest that runs tests in the man-
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Figure 4.2: Boxplot of the CPU utilization difference for instrumented ver-
sions of applications (instrumented versions at the method-only and at the
instruction level compared to the original app versions).

Table 4.2: PassMark overhead evaluation

Granularity of instrumentation Overhead
CPU .dex size

Method +17% +11%
Instruction +27% +249%

aged runtime (Dalvik and ART) rather than on a bare metal using native
libraries. We have prepared two versions of the PassMark app instrumented
with ACVTool: one instrumented at the method level, and another instru-
mented at the instruction level.

Table 4.2 summarizes the performance degradation of the instrumented
PassMark version in comparison to the original app. When instrumented,
the size of the Passmark .dex file increased from 159KB (the original ver-
sion) to 178KB (method granularity instrumentation), and to 556KB (in-
struction granularity instrumentation). We have run the Passmark appli-
cation 10 times for each level of instrumentation granularity against the
original version of the app. In the CPU tests that utilize high-intensity
computations, Passmark slows down, on average, by 17% and 27% when
instrumented at the method and instruction levels, respectively. Other sub-
system benchmarks did not show significant changes in numbers.
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Table 4.3: Increase of .dex files for the Google Play benchmark
Summary
statistics Original file size Size of instrumented file

Method Instruction
Minimum 4.9KB 17.6KB (+258%) 19.9KB (+304%)
Median 2.8MB 3.1MB (+10%) 7.7MB (+173%)
Mean 3.5MB 3.9MB (+11%) 9.0MB (+157%)

Maximum 18.8MB 20MB (+7%) 33.6MB (+78%)

Evaluation with PassMark is artificial for a common app testing scenario,
as the PassMark app stress-tests the device. However, from this evaluation
we can conclude that performance degradation under the ACVTool instru-
mentation is not prohibitive, especially if it is used with modern hardware.

Dex size inflation As another metric for overhead, we analysed how much
ACVTool enlarges Android apps. We measured the size of .dex files in both
instrumented and original apps for the Google Play benchmark apps. As
shown in Table 4.3, the .dex file increases on average by 157% when instru-
mented at the instruction level, and by 11% at the method level. Among
already existing tools for code coverage measurement, InsDal [LWD+17]
has introduced .dex size increase of 18.2% (on a dataset of 10 apks; aver-
age .dex size 3.6MB), when instrumenting apps for method-level coverage.
Thus, ACVTool shows smaller code size inflation in comparison to the Ins-
Dal tool.

Conclusion: ACVTool introduces an off-line instrumentation overhead
that is acceptable for common testing scenarios. The run-time overhead
(measured as CPU utilization) in live testing with Monkey is negligible.
When stress-testing with the benchmark PassMark app, ACVTool intro-
duces 27% overhead in CPU. The increase in code base size introduced by
the instrumentation instructions, while significant, is not prohibitive. Thus,
we can conclude that ACVTool is efficient for measuring code coverage in
Android app testing pipelines.

4.5 Compliance with Other Coverage Tools

4.5.1 Instruction Coverage Measurement

When the source code is available, developers can log code coverage of An-
droid apps using the JaCoCo library [JaC18] that could be integrated into
the development pipeline via the Gradle plugin. We used the coverage data
reported by this library to evaluate the correctness of code coverage metrics
reported by ACVTool.

For this experiment, we used only the F-Droid benchmark because it
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(a) Scatterplot of the number of instruc-
tions in app methods, as computed by
ACVTool and JaCoCo.
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Figure 4.3: Compliance of coverage data reported by ACVTool and JaCoCo.

contains open-source applications. We put the new jacocoTestReport task
in the Gradle configuration file and added our Instrumentation class into
the app source code. In this way we avoid creating app-specific tests, and
can run any automatic testing tool. Due to the diversity of project structures
and versioning of Gradle, there were many faulty builds. We obtained 141
apks instrumented with JaCoCo, i.e., we could generate JaCoCo reports for
them. Two of these apks were further excluded, as the JaCoCo reports for
them generated incorrectly (coverage always would be zero). Thus, totally
we used 139 apps in this experiment.

First, we analyze this app population in terms of instructions. Indeed,
smali code and Java bytecode are organized differently. Figure 4.3a shows a
scatterplot of the number of method instructions in smali code (measured
by ACVTool, including the “untrackable” instructions) and in Java code
(measured by JaCoCo). Each point in this Figure corresponds to an indi-
vidual method of one of the apks in our benchmark. The line in the Figure
is the linear regression line. The data shape demonstrates that the number
of instructions in the smali code is usually slightly smaller than the number
of instructions in the Java bytecode.

Figure 4.3a also shows that there are some outliers, i.e., methods that
have low instruction numbers in smali, but many instructions in Java byte-
code. We have manually inspected all these methods and found that out-
liers were constructor methods that contain declarations of arrays. Smali
(and Dalvik VM) allocates such arrays with only one pseudo-instruction
(.array-data), while Java bytecode is much longer [Bor08]. Given these
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differences in the code organization, we can expect that, generally, there will
be discrepancies in the coverage measured by ACVTool and JaCoCo.

Discrepancies in code coverage measurements can appear also due to
the fact that some instructions are not tracked by ACVTool, as mentioned
in Section 3.1. It is our choice to not count those instructions towards
covered. In our F-Droid dataset, about half of the methods consist of 7 smali
instructions or less. For such small methods, if they contain untraceable
instructions, code coverage measurements by ACVTool and JaCoCo can
differ substantially.

To compare the measured coverage data, we ran two copies of each app
(instrumented with ACVTool and with JaCoCo) on the Android emulator
using the same Monkey scripts for both versions. Figure 4.3b shows a box-
plot of the correlation of code coverage measured by ACVTool and JaCoCo.
Each data point corresponds to one application, and its value is the Pearson
correlation coefficient between percentage of executed code, for all methods
included in the app. The minimal correlation is 0.21, the first quartile is
0.94, median is 0.99, and maximal is 1.00. This means that for more than
75% of apps in the tested applications, their code coverage measurements
have correlation equal to 0.94 or higher, i.e., they are strongly correlated.
The boxplot in Figure 4.3b contains a number of outliers that appear due
to the reasons explained above. Still, overall, the boxplot demonstrates that
code coverage logged by ACVTool is strongly correlated with code coverage
logged by JaCoCo.

4.5.2 Method-level Coverage Measurements

When the application source code is not available, testers cannot use Ja-
CoCo to measure code coverage. In this situation researchers and practi-
tioners frequently use the ELLA library [ELL16] to measure the method
coverage [MHJ16, WLY+18]. As ELLA is no longer maintained, ACVTool
can be now used by testers to measure code coverage at the method level,
if such need arises.

To provide evidence that ACVTool measures method-level code coverage
reliably, we compare its results with the method coverage data reported by
ELLA (no source code) and JaCoCo (white-box coverage).

For this experiment, we use the same 139 F-Droid apps mentioned above.
We have instrumented them with the ACVTool at the method level. We
have also instrumented them with ELLA, and we took the apps already
pre-compiled with JaCoCo. For all these app versions, we run Monkey in
the same setting.

Figure 4.4 shows scatterplots of method coverage measurements for pair-
wise comparison of data from the three coverage tools; each data point cor-
responds to an application. This Figure demonstrates that the vast majority
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Figure 4.4: Code coverage measurements at the method level: pair-wise
coverage comparisons for ACVTool, ELLA and JaCoCo.

of data points lie on the symmetry line from (0,0) to (1,1), i.e., the tools
report practically identical method coverage results for most of the apps in
this set. The deviations from the main line are results of possible differences
in app behavior (further elaborated in 5.1.3).

In this experiment, correlation of method coverage measurements for
ACVTool and ELLA is 0.9829; for ACVTool and JaCoCo is 0.9912; and for
ELLA and JaCoCo is 0.9858. This demonstrates very high compliance of
ACVTool measurements to results obtained by the other independent tools.

Class-level compliance. As the previous experiment has shown that
the method code coverage measured by ACVTool agrees with the measure-
ments at the same level by ELLA and JaCoCo, we can consider the class-level
coverage to be compliant with the other tools as well. This is an implica-
tion of our instrumentation implementation for classes: class-level coverage
requires method-level instrumentation, and a class is considered covered if
at least one of its methods was called.

Conclusion: overall, we can summarize that code coverage data re-
ported by ACVTool generally agrees with data computed by JaCoCo. The
discrepancies in code coverage appear due to the different approaches that
the tools use, and the inherent differences in the Dalvik and Java bytecodes.
At the method level, the measurements by ACVTool are highly compliant
with the measurements taken by ELLA and JaCoCo.

4.6 Comparison to Other Coverage Frameworks

Unfortunately, other coverage frameworks lack of detailed evaluation such as
we performed for ACVTool in this chapter. In this section we summarized
available information with regards to the described in the previous Chapter
related work on coverage measurement for black-box analysis.

An empirical study by Wang et al. [WLY+18] has evaluated per-
formance of Monkey [Goo18d], Sapienz [MHJ16], Stoat [SMC+17], and
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Table 4.4: Evaluation of coverage frameworks for black-box analysis
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ELLA [ELL16,
WLY+18]

68 60% 60% N/A N/A N

ELLA this work 1278 95.9% 91.1% 15.7 N/A Y
Huang et

al.
[HCLT15] 90 36% N/A N/A N/A Y

BBoxTester [ZPG+15] 91 65% N/A 15.5 N/A N
InsDal [LWD+17,

YWYZ16,
LWY+16]

10 N/A N/A 1.5 N/A N

CovDroid [YH15] 1 N/A N/A N/A N/A N
Asc [SQH17] 35 N/A N/A N/A N/A N

ABCA [HYWH15] 6 N/A N/A N/A 9-86%
of sys-
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time

N

Horvath
et al.

[HBG+14] 10 N/A N/A N/A N/A N
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Y
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WCTester [ZLZ+16] automated testing tools on large and popular industry-
scale apps, such as Facebook, Instagram and Google. They have used ELLA
to measure method code coverage, and they reported the total success rate
of ELLA at 60% (41 apps) on their sample of 68 apps.

In our own experiment with ELLA reported in Section 4.5.2, ELLA has
nearly the same instrumentation success rates as ACVTool: the same 98.7%
apps in the F-Droid dataset, and 94.4% in the Google Play dataset (against
97.8% for ACVTool). After the ELLA instrumentation, in total, 91.1% out
of 1278 apps are healthy (against 96.9% for ACVTool). While success rates
are similar between the tools (ACVTool performs slightly better), ACV-
Tool does more sophisticated instrumentation at the instruction level and,
therefore, takes twice as much time as compared to ELLA.

Huang et al. [HCLT15] reported a low instrumentation success rate of
36%, and only 90 apps have been used for evaluation. Unfortunately, the tool
is not publicly available, and we were unable to obtain it or the dataset by
contacting the authors. Because of this, we cannot compare its performance
with ACVTool, although we report a much higher instrumentation rate,
evaluated against a much larger dataset.

The empirical evaluation of BBoxTester showed the successful repackag-
ing rate of 65%, and the instrumentation time has been reported to be 15
seconds per app. We were able to obtain the original BBoxTester dataset.
Out of 91 apps, ACVTool failed to instrument just one. This error was not
due to our own instrumentation code: apktool could not repackage this
app. Therefore, ACVTool successfully instrumented 99% of this dataset,
against 65% of BBoxTester.

Liu et al. [LWD+17] evaluated their InsDal tool on a limited dataset
of 10 apps, but did not provide instrumentation success rate. The authors
have reported an average instrumentation time overhead of 1.5 sec per app,
and an average instrumentation code overhead of 18.2% of dex file size.
ACVTool introduces a smaller code size overhead of 11%, on average, but
requires more time to instrument an app. On our dataset, the average
instrumentation time is 24.1 seconds per app, when instrumenting at the
method level only. It is worth noting that half of this time is spent on
repackaging with apktool.

While the instrumentation approach of CovDroid [YH15] is similar in
nature to our ACVTool, the former tool has been evaluated on a single
application only.

Among the Android application instrumentation approaches, the most
relevant for us are the techniques discussed by Huang et al. [HCLT15], Ins-
Dal [LWD+17] and CovDroid [YH15]. ACVTool shows much better in-
strumentation success rate, because our instrumentation approach deals
with many peculiarities of the Dalvik bytecode. A similar instrumenta-
tion approach has been also used in the DroidLogger [DWZ12] and Swift-
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Hand [CNS13] frameworks, which do not report their instrumentation suc-
cess rates.

Table 3.3 aggregates the related work discussed in Section 3.3 and sum-
marizes the performance of ACVTool and code coverage granularities that
it supports in comparison to other state-of-the-art tools. ACVTool signif-
icantly outperforms any other tool that measures black-box code coverage
of Android apps. Our tool has been extensively tested with real-life ap-
plications, and it has excellent instrumentation success rate, in contrast to
other tools, e.g., [HCLT15] and [ZPG+15]. We attribute the reliable perfor-
mance of ACVTool to the very detailed investigation of smali instructions
we have done, that is missing in the literature. ACVTool is available as
open-source to share our insights with the community, and to replace the
outdated tools (ELLA [ELL16] and BBoxTester[ZPG+15]) or publicly un-
available tools ([HCLT15, YH15]).
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Chapter 5

The Influence of Code
Coverage Metrics on
Automated Testing

This Chapter presents our results on integrating ACVTool with
the Sapienz automated testing framework, evaluates the impact
of ACVTool instrumentation on app runtime behavior, and dis-
cusses the contribution of code coverage data to bug finding in
Android apps.
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5.1 Usefulness of ACVTool in Testing with Sapienz

To assess the usefulness of ACVTool in practical black-box testing and anal-
ysis scenarios, we integrated ACVTool with Sapienz [MHJ16] – a state-of-
art automated Android search-based testing tool. Its fitness function looks
for Pareto-optimal solutions using three criteria: code coverage, number of
found crashes and the length of a test suite. This experiment had two main
goals: (1) demonstrate that ACVTool fits into a real automated testing/-
analysis pipeline; (2) evaluate whether the fine-grained code coverage mea-
sure provided by ACVTool can be useful to automatically uncover diverse
types of crashes with black-box testing strategy.

Sapienz integrates three approaches to measure code coverage achieved
by a test suite: EMMA [Rub06] (reports source code statement coverage);
ELLA [ELL16] (reports method coverage); and its native plugin to measure
coverage in terms of launched Android activities. EMMA does not work
without the source code of apps, and thus in the black-box setting only
ELLA and own Sapienz plugin could be used. The original Sapienz pa-
per [MHJ16] did not evaluate the impact of the code coverage metric used
on the discovered crashes population, because it was not possible to compare
results for the same group of applications.

Our previously reported experiments with JaCoCo suggest that ACV-
Tool can be used to replace EMMA, as the coverage data reported for Java
instructions and smali instructions are highly correlated and comparable.
Furthermore, ACVTool measures coverage in terms of classes and methods,
and thus it can also replace ELLA within the Sapienz framework. Note that
the code coverage measurement itself does not interfere with the search algo-
rithms used by Sapienz. Thus, ACVTool allows us to compare the coverage
granularities performance with respect to bug finding with Sapienz.

As our dataset, we use the healthy instrumented apks from the Google
Play dataset described in the previous section. We have run Sapienz against
each of these 799 apps, using its default parameters. Each app has been
tested using the activity coverage provided by Sapienz, and the method
and instruction coverage supplied by ACVTool. Furthermore, we also ran
Sapienz without coverage data, i.e., substituting coverage for each test suite
as 0.

Each app has been tested by Sapienz under the default settings for 3
hours for each coverage metric. After each run, we collected the crash infor-
mation (if any), which included the components of apps that crashed and
Java exception stack traces. In the remainder of this section, we report on
the results of crash detection with different coverage metrics and draw con-
clusions about whether the choice of a coverage metric contributes to bug
detection.

Like many other automated testing tools for Android, Sapienz is non-
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Table 5.1: Crashes found by Sapienz in 799 apps

Coverage metrics # unique
crashes

# faulty
apps

# crash
types

Activity coverage 233 (36%) 154 22
Method coverage 237 (36%) 142 21

Instruction coverage 251 (38%) 147 25
Without coverage 160 (24%) 102 22

Total 653 353 35
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Figure 5.1: Crashes found by Sapienz.

deterministic. Thus, we apply statistical tests to analyze significance of all
reported findings. Throughout this section, we will evaluate how effectively
Sapienz finds bugs with each coverage metric in a particular app. For each
app population, we obtain records of found crashes in each application,
and we compare performance of each coverage metric per each app record.
This gives us paired measurements for all coverage metrics, which are not
necessarily normally distributed. Thus, to evaluate statistical significance of
the results, we use the non-parametric Wilcoxon signed-rank test [WRH+12]
that is appropriate in this setting. The null-hypothesis for the Wilcoxon test
is that there is no difference which metric to use in Sapienz. Alternative
hypothesis is that Sapienz with one coverage condition will consistently find
more crashes than Sapienz with another coverage condition.

To measure the effect size we use the Vargha-Delaney A12 statistics [VD00]
that was applied in the original Sapienz paper [MHJ16].
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5.1.1 Descriptive Statistics of Crashes

Table 5.1 shows the numbers of crashes grouped by coverage metrics that
Sapienz has found in the 799 apps. We consider a unique crash as a distinc-
tive combination of an application, its component where a crash occurred,
the line of code that triggered an exception, and a specific Java exception
type.

In total, Sapienz has found 353 apps out of 799 to be faulty (at least one
crash detected), and it has logged 653 unique crashes with the four coverage
conditions. Figure 5.1a summarizes the crash distribution for the coverage
metrics. The intersection of the results for all code coverage conditions
contains only 5 unique crashes. Individual coverage metrics have found 38%
(instruction coverage), 36% (method coverage), 36% (activity coverage), and
24% (without coverage) of the total number of found crashes. These results
suggest that coverage metrics at different granularities find distinct crashes.

In these experiments, instruction coverage has shown slightly better per-
formance in bug finding as it found more crashes on the dataset. However,
when comparing chances to find a bug in a particular app, its edge over
the activity and method coverage is not statistically significant according
to the Wilcoxon signed-rank test [WRH+12]. On the other hand, all valid
coverage metrics outperform testing without coverage data in a statistically
significant way (p-values ≤ 10−4). Still, Vargha-Delaney effect sizes [VD00]
are very small: 0.52 for method and instruction coverage (compared to no
coverage), and 0.53 for activity coverage. Thus, we can conclude that it
is likely that Sapienz with coverage performs better than without coverage
data. However, the practical importance of coverage data used in Sapienz
may be limited.

We now set out to investigate how multiple runs affect detected crashes,
and whether a combination of coverage metrics could detect more crashes
than a single metric.

5.1.2 Evaluating Bug Finding Efficiency on Multiple Runs

We now look at assessing the impact of randomness on Sapienz’ results.
As we mentioned, our findings may be affected by the non-determinism in
Sapienz. To determine the impact of coverage metrics in finding crashes
on average, we need to investigate how crash detection behaves in multiple
runs. Thus, we have performed the following two experiments on a set of
150 apks randomly selected from the 799 healthy instrumented apks.

Performance in 5 Runs

We have run Sapienz for 5 times with each coverage metric and without
coverage data, for 3 hours per each of 150 apps. This gives us two crash
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Table 5.2: Crashes found in 150 apps with 1 and 5 runs.

Coverage metrics Crashes
P1: 1 run P5: 5 runs

Activity coverage 40 (32%) 101 (38%)
Method coverage 43 (34%) 119 (45%)

Instruction coverage 46 (36%) 106 (40%)
No coverage 39 (31%) 95 (36%)

Total 126 263

populations: P1 that contains unique crashes detected in the 150 apps during
the first experiment, and P5 that contains unique crashes detected in the
same apps running Sapienz 5 times. Table 5.2 summarizes the populations
of crashes found by Sapienz with each of the coverage metrics and without
coverage.

As expected, running Sapienz multiple times increases the amount of
found crashes. In this experiment, we are interested in the proportion of
crashes contributed by coverage metrics individually. If coverage metrics
are interchangeable, i.e., they do not differ in capabilities of finding crashes,
and they will, eventually, find the same crashes, the proportion of crashes
found by individual metrics to the total crashes population can be expected
to significantly increase: each metric, given more attempts, will find a larger
proportion of the total crash population.

As shown in Table 5.2, the activity coverage has found a larger pro-
portion of total crash population (38% from 32%). Sapienz without cov-
erage data also shows better performance over multiple runs (36% from
31%), while the instruction coverage has increased performance from 36%
to 40%. The method coverage has achieved the best improvement (45%
form 34%). For all coverage metrics, the increases in the found crashes pop-
ulations due to repeated testing are statistically significant according to the
Wilcoxon signed-rank test (p-values ≤ 10−5), but the Vargha-Delaney effect
sizes [VD00] are small: all in the range (0.61, 0.64). Thus, repeating Sapienz
test executions improves chances to find a crash in an app, but not a lot.
The edge of method coverage over other metrics in repeated experiments is
not statistically significant.

These findings suggest that even with 5 repetitions a single coverage
metric is not able to find all crashes that were detected by other metrics.
Our results in this experiment are consistent with a previously reported
smaller experiment that involved only 100 apps (see [DGPZ18] for more
details).
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Figure 5.2: Boxplots of crashes detected per app (a stands for activity, m
for method, and i for instruction, respectively).

Evaluating a Combination of Metrics

The previous experiment indicates that even repeating the runs multiple
times does not allow any of the code coverage metrics to find the same
number of bugs as all metrics together. We now fix the time that Sapienz
spends on each apk1, and we want to establish whether the number of crashes
that Sapienz can find in an apk with 3 metrics is greater than the number of
crashes found with just one metric but with 3 attempts. This would suggest
that the combination of 3 metrics is more effective in finding crashes than
each individual metric. For each apk from the chosen 150 apps, we compute
the number of crashes detected by Sapienz with each of the three coverage
metrics executed once. We then have executed Sapienz 3 times against each
apk with each coverage metric individually.

Table 5.3 summarizes the basic statistics for the apk crash numbers data,
and the data shapes are shown as boxplots in Figure 5.2. The summary
statistics show that Sapienz equipped with 3 coverage metrics has found, on
average, slightly more crashes per apk than Sapienz using only one metric
but executed 3 times. To verify this, we apply the Wilcoxon signed-rank
test [WRH+12].

The results of the Wilcoxon test did not reject the null-hypotheses for

1In these testing scenarios, Sapienz spends the same amount of time per app (3 runs),
but the coverage conditions are different.
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Table 5.3: Summary statistics for crashes found per apk, in 150 apk

Statistics 1 run × 3 metrics 3 runs × 1 metric
activity method instruction

Min 0 0 0 0
1st. Quartile 0 0 0 0

Mean 0.65 0.48 0.64 0.58
Median 0 0 0 0

3rd. Quartile 1 1 1 1
Max 9 4 9 6

all coverage metrics (p-values 0.43 and 0.58, and 0.51 for activity, method
and instruction coverage, respectively). This can be interpreted as a high
probability that the crashes data have been drown from similarly distributed
populations.

To confirm this negative result, we apply the Vargha-Delaney A12 statis-
tic to measure the effect size. The A12 effect sizes for differences in the crash
population found by 3 metrics jointly and the population found by the ac-
tivity, method and instruction coverage are, respectively, 0.515, 0.516 and
0.513, which all correspond to a negligible effect.

Our findings from this experiment are not fully consistent with the pre-
viously reported experiment on a smaller set of 100 apps [DGPZ18]. The
difference could be explained by the following factors. First, we have used
only healthy instrumented apps in this experiment (the ones that did not
crash upon installation). The experiment reported in [DGPZ18] did not
involve the check for healthiness, and the crashing apps could have affected
the picture. In the unhealthy app case, Sapienz always reports one single
crash for it, irrespectively of which coverage metrics is used. Note that in
our Google Play sample approximately 17% are unhealthy, i.e., they can-
not be executed on an emulator, as required by Sapienz. Second, the new
apps tested in this experiment could have behaved slightly differently than
the previously tested cohort. And, finally, in these experiments we used
more recent releases of the testing environment components, including the
Android SDK, that are more stable and have less compatibility issues.

5.1.3 Impact of ACVTool on Sapienz

Instrumentation and repackaging of the app’s codebase may introduce differ-
ences in runtime behavior and additional faults. Such deviations can make
parts of the app unreachable, which may impact further testing. Despite
our positive evaluation demonstrated in Section 4, automated testing tools,
such as Sapienz, look deeper into the app and can be more significantly
impacted by issues raised by instrumentation. Here we analyze how much
does ACVTool interfere with the Sapienz testing process. We consider two
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main aspects.

• Preserving the original behavior. We compare the behavior of instru-
mented apps against their original versions and report the differences.

• Fault analysis. We analyse what crashes Sapienz found with and with-
out ACVTool and report on ACVTool-specific crashes.

Preserving behavior

To evaluate the ACVTool impact on app behavior we designed the following
experiment. For every app from the 150 apps subset mentioned in Sec-
tion 5.1.2 we took the most evolutionary developed Sapienz test suite and
ran it on two versions of the app: original and instrumented at instruction
level. After every triggered event we saved a screenshot of the UI state and
its XML layout (with the help of UIAutomator [Goo19]). Then we removed
the status bar (around 90px at the image top) from every image and per-
formed an automated comparison of images and XML files for the original
and instrumented versions in Beyond Compare [Sco19].

The publicly available version of Sapienz produces sequences contain-
ing mostly atomic Monkey [Goo18d] events, with one exception. An event
named GUIGen in the sequence produces up to 12 random events on Android.
Thus, in this experiment we excluded the GUIGen line from all the sequences
to achieve sequence reproducibility. Moreover, we kept 1 second pause be-
tween the events to make sure that content loading and app animation have
lower impact on the produced screenshots.

In this experiment, 50% out of the total 33938 automatically compared
image and XML pairs were found to be identical. We manually inspected
the other pairs and found that the differences could be attributed to the
following main reasons.

• Pop-ups: One of the apps in the pair in some cases fires a pop-up
related to the Android OS state or the app itself. This happens to
both instrumented and original apps. In this case we re-run the test
and it solves the problem.

• Advertisement: Apps frequently load ads, which may look differently
each time, as shown in Figure 5.3).

• Dynamic content: Some apps may display their UI each time dif-
ferently or download completely new content, as exemplified in Fig-
ure 5.3.

• PNG artefacts: Apktool sometimes breaks PNG files or changes the
color and transparency properties during decoding. Therefore, parts
of the app may look different.
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Figure 5.3: Example of a justified difference in behavior between the original
(left) and the instrumented (right) app versions: the screenshots are different
due to the dynamic nature of the app itself and the loaded ad content.

In this experiment, we assume that two versions of an app behave iden-
tically if their GUI states stay equal.

Taking into account the above-mentioned factors, we consider the app
behavior unmodified if the GUI states are totally identical, or they are dif-
ferent due to the four reasons specified above, which we call justifiable dis-
crepancies. Such discrepancies do not correspond to functional differences
in app states.

In total, 145 out of 150 apps in the dataset behaved justifiably the same,
while 26 of them behaved completely the same. In these 145 apps we did
not observe behavioral differences caused by ACVTool.

Two apps behaved differently because the test interacted with an ad,
which expanded to the full screen mode. Three apps could not load maps,
which made the apps to malfunction. They threw the Google Maps Android
API: Authorization failure error in logcat. ACVTool caused this error
because it re-signs the app with its own signature, while the Google Maps
API requires the original signature.
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Figure 5.4: Distribution of the crash types (exceptions) found by Sapienz
with different code coverage granularities. Exceptions are sorted in the
descending order with respect to the total number of unique found crashes
with this exception type.

Fault analysis

Figure 5.4 demonstrates the distribution of crashes found by Sapienz with
respect to the code coverage metric applied. The 653 unique crashes found
on the set of 799 apps were caused by 35 exception types. We note that our
crash type distribution resembles the results reported in the original Sapienz
paper for the main crash types on the Google Play subjects [MHJ16]. The
most prevalent Java exception types in Figure 5.4 also generally agree with
the statistics of Java exceptions in open source Android projects reported
by [CAG+17]. As Android bug finding is not the core goal of this work,
we limit ourselves to reporting the general crash distribution as provided by
Sapienz, and we do not focus here on attributing the root causes of crashes
as in, e.g., [LVBT+17].

It is interesting yet very challenging to evaluate whether ACVTool in-
troduces new app crashes due to the instrumentation process. There are
two approaches to confirm if ACVTool introduces new faults in the exper-
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iment with Sapienz. First, from a crash description and the corresponding
stack trace we can find the evidence that the bug is introduced by ACV-
Tool. Second, crashes introduced by ACVTool and thus detected only on
instrumented apps should not reproduce on the original app versions.

As we described in Section 3.2.1, during the offline phase ACVTool em-
beds the custom Instrumentation class and probes into apps. We carefully
analyzed the stack traces of all exceptions obtained in our experiment with
Sapienz and did not find any evidence of ACVTool methods there. However,
the probes we embed do not use method calls, but rather directly change
binary array values corresponding to original bytecode instructions at run-
time. Thus, if any fault happens due to these probes we will not see any
probe-specific symptoms in the stack trace. Therefore, the first approach
cannot completely confirm the absence of crashes introduced by ACVTool.

The applicability of the second approach is hurdled by flaky tests. Flaky
tests are those that do not reliably fail even in identical circumstances. The
authors of the follow-up paper about Sapienz [AGH+18] admit that the tool
is subject to flaky tests, but they do not provide estimates about how many
tests are flaky. It is mentioned only that “it is safer to assume that we live
in a world where all tests are flaky”, what may indicate that the flaky tests
proportion is high.

To prove this we ran an experiment where we used the crash-leading
test suites found by Sapienz with the default settings on the original, non-
modified apps. In this experiment, only 37% of the faults found in the
original apps were reproduced on the same apps.

The main reason for this low reproducibility of faults is the asynchronous
nature of Android [AGH+18]. Depending on the wait time, an asynchronous
call to a service may produce different results. When the service returns a
value in time, this value is used, but if a value is not returned, the default
value is used. This may lead to completely different execution paths.

We should also mention that the default throttle setting that Sapienz
uses for Monkey is quite aggressive. It intensively bombards an app with
events irrespective of the app’s state and its animation. Since Monkey’s
throttle parameter significantly affects crash detection [PSRN18], satisfac-
tory crash reproducibility on Sapienz may be achieved with a proper throttle
value (e.g., as we set in Section 5.1.3). However, the consequence and a huge
disadvantage would be a dramatic slowing down of Sapienz in finding new
faults. Still, even this approach cannot guarantee full reproducibility of the
crashes. Thus, with this approach we cannot confirm that ACVTool does
not introduce new faults, because these faults could be due to flaky tests.

Thus, we can confidently confirm only the crashes described in Sec-
tion 4.3.2 as caused by the ACVTool instrumentation phase. However, out
of the 5 exception types found when filtering healthy apps in Section 4.3.2,
3 types – IllegalStateException, IllegalArgumentException,
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NullPointerException – appear prevalently in the found crashes
distribution. We expect that ACVTool could have contributed to at least
some of these exceptions.

5.1.4 Analysis of Results

Our experiments show that ACVTool can be integrated into an automated
testing pipeline and it can be used in conjunction with available testing
tools such as Sapienz. Our experiments demonstrate that ACVTool does
not impact app behavior in testing with Sapienz for the majority of the
tested apps. However, as we expected, the repackaging process breaks the
original signature, and some app code parts may become unavailable due to
the failing signature checks, as happens, e.g., with the Google Maps Android
API.

We can also conclude that better investigation and integration of differ-
ent coverage granularities is warranted in the automated Android testing
domain, just like in software testing in general [CPTH17]. Our crash data
analysis and the experiment with repeating executions 5 times show that
no coverage metric is able to find the vast majority of the total found crash
population. Sapienz without coverage finds fewer bugs than with coverage
data (160 crashes on the total app population versus, e.g., 233 crashes found
with the activity coverage), yet it is still able to uncover a significant crash
population. Further investigation of these aspects could be a promising line
of research. Our open-source ACVTool can be helpful in these studies.

5.2 Comparison of Coverage Metrics Measurement

As mentioned, many automated testing tools for Android apps use vari-
ous code coverage metrics to achieve better results in bug finding [CGO15,
KLG+18, WLY+18]. With ACVTool such tools are now able to utilize the
fine-grained instruction coverage while working directly on Android apps.
However, it is currently not evident from the Android literature whether
the instruction-level coverage will be a game-changer in the software testing
community, or whether more coarse-grained coverage metrics, e.g., activity
coverage [MHJ16], might be sufficient for the testing needs.

Researches and app developers can use line coverage provided by Ja-
CoCo [JaC18] or EMMA [Rub06] when the app source code is available,
while method and activity coverage were mainly used in black/grey-box
testing before c ACVTool. For example, authors of EvodDroid [MP15],
SIG-Droid [MBMM15], Sapienz [MHJ16] and Stoat [SMC+17] measured
code coverage using EMMA on the app source code. Both Sapienz and
Stoat used Ella to measure method or implemented activity coverage mea-
surement on their own when working with 3rd-party apps (see more details
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Figure 5.5: Code coverage measured at class, method, and instruction levels
for 141 apps in our F-Droid dataset.

examples in the previous chapter). Yang et al. [YHH19] explain these differ-
ent treatments by the lack of finer-grained code coverage metric in Android
closed-source app testing.

We would like to empirically establish how do measurements of differ-
ent coverage granularity relate to each other in the context of automated
Android app testing. In this section we report on a small study with apps
from our dataset that evaluates the code coverage differences as measured
at the instruction, method and class levels. Our study empirically validates
the results presented by Yang et al. [YHH19] and concludes a small advan-
tage of the instruction-level code coverage over the method- and class-level
coverage.

To compare coverage metrics we run Monkey just once over our set
of 141 F-Droid apps instrumented by ACVTool. The generated code cov-
erage reports provide all necessary information about instruction, method
and class coverage at the same time. Figure 5.5 shows how coverage is
measured in terms of class, method and instruction, with median values
at 13.6%, 7.3%, and 6.8% respectively. Correlation between the coverage
metrics over 1785068 methods in 213652 classes in our set goes as follows:
94% instruction-method, 88% method-class, 75% instruction-class. These
results show high interchangeability of measured metrics and a possibility
of using less accurate metric in more demanding circumstances, specifically
on performance-sensitive apps.

On the contrary, method coverage hides valuable knowledge such as
whether all instructions in the method were executed and how many of them
have run. To answer this question we can calculate the amount of fully cov-
ered methods and instruction coverage over the executed methods. Our
data demonstrates that, while the median method coverage was 7.3%, only
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0.7% of all methods were fully covered (i.e., only 9.8% of executed methods
were fully covered, figure 5.6a). More broadly, on average, instruction cover-
age of executed methods was 64% (figure 5.6b). This experiment quantifies
the difference in precision when analysing coverage data based on diverse
metrics. Thus, if precision is important, more precise instruction coverage
can be recommended. Moreover, the fine-grained instrumenting technique
itself opens opportunity to develop other, more sophisticated types of code
coverage such as path coverage.

Conclusion: Despite the high correlation of instruction and method
coverage metrics (94%), method coverage, so popular in closed-source test-
ing, does not give the full picture and underestimates covered instructions
(at 36% per executed method, on average), whereas instruction coverage
is precise. In meanwhile, amount of fully covered methods is dramatically
low. In line with the findings by Yang et al. [YHH19], this small study
shows that the instruction coverage provides better precision than coarser-
grained coverage metrics. This can be especially important when identify-
ing features [XBFO19] or targeting specific parts of code such as API calls.
However, as the absolute values of these metrics are highly correlated, it
is acceptable to use different coverage granularities interchangeably in the
automated testing.

5.3 Discussion

ACVTool addresses the important problem of measuring code coverage of
closed-source Android apps. Our experiments show that the proposed in-
strumentation approach works for the majority of Android apps, the mea-
sured code coverage is reliable, and the tool can be integrated with security
analysis and testing tools. We have already shown that integration of the
coverage feed produced by our tool into an automated testing framework
can help to uncover more application faults. Our tool can further be used,
for example, to compare code coverage achieved by dynamic analysis tools
and to find suspicious code regions.

In this section, we discuss limitations of the tool design and current im-
plementation, and summarize the directions in which the tool can be further
enhanced. We also review threats to validity regarding the conclusions we
make from the Sapienz experiments.

5.3.1 Limitations of ACVTool

ACVTool design and implementation have several limitations that we discuss
in this section.
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Figure 5.6: Instruction coverage of methods (for each executed method in
our F-Droid dataset).

Limitations of the ACVTool design An inherent limitation of our
approach is that apps must be first instrumented before their code cov-
erage can be measured. Indeed, in our experiments, there was a frac-
tion of apps that could not be repackaged and instrumented. Further-
more, apps can employ various means to prevent repackaging, e.g., they
can check their signature at the start, and stop executing in case of a
failed signature check. Moreover, as shown by the experiment reported
in Section 5.1.3, the repackaging step may inhibit the usage of Google
APIs. Still, this limitation is common to all tools that instrument applica-
tions (e.g., [ZPG+15, ELL16, HCLT15, YH15, LWD+17]). Considering this,
ACVTool has successfully instrumented 96.9% of our total original dataset
selected randomly from F-Droid and Google Play. Our instrumentation suc-
cess rates are significantly higher than any of the related work, where this
aspect has been reported (e.g., [HCLT15, ZPG+15]). Therefore, ACVTool is
practical and reliable. We examine the related work and compare ACVTool
to the available tools in Section 4.6.

While being an important part of the ACVTool workflow, the decompi-
lation and repackaging part are not the focus of this study. Therefore, we
do not investigate possible errors in apktool, which is currently the best
Android reverse engineering tool that integrates a decompiler to smali. It
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is also well-maintained, and new improved versions are released regularly.
We assessed that the code coverage data from ACVTool is compliant to

the measurements from the well-known JaCoCo [JaC18] and ELLA [ELL16]
tools. We have found that, even though there could be slight discrepancies
in the number of instructions measured by JaCoCo and ACVTool, the cov-
erage data obtained by both tools is highly correlated and commensurable.
Therefore, the fact that ACVTool does not require the source code makes
it, in contrast to JaCoCo, a very promising tool for simplifying the work of
Android developers, testers, and security specialists.

Limitations of our instrumentation approach One of the reasons
for the slight difference in the JaCoCo and ACVTool measurements of the
number of instructions is the fact that we do not track several instructions,
as specified in Section 3.1. Technically, nothing precludes us from adding
probes right before the “untraceable” instructions. However, we consider
this solution to be inconsistent from the methodological perspective, because
we deem the right place for a probe to be immediately after the executed
instruction. In the future we plan to extend our approach to compute also
basic block coverage, and then the “untraceable” instruction aspect will be
fully and consistently eliminated. Alternatively, ACVTool can be enhanced
by introducing a lightweight static analysis at the smali code level for a
control flow graph-aware instrumentation [HWHH18].

Another limitation of our current approach is the constraint of 256 regis-
ters per method. Our instrumentation approach introduces 3 new registers.
This register manipulation technique is safe as long as the total number of
registers in the original smali method is less than or equal to 256. The only
problematic instruction in this respect is aput-boolean, which can access
up to 256 registers. While this limitation could potentially affect the success
rate of ACVTool, we have encountered only one app, in which this limit was
exceeded after the instrumentation. This limitation can be addressed either
by switching to another instrumentation approach, whereby inserting probes
as specific method calls, or by splitting big methods. Both of the approaches
may require to reassemble an app that has more than 64K methods into a
multidex apk [Goo17b]. We plan this extension as future work.

Taken to extremes, insertion of probes may potentially lead to issues.
It is not clear what is the limit to the amount of instructions in a single
app method and whether this limit can be reached by increasing the total
number of instructions by a factor of 4. We have not encountered such cases,
but this aspect may be worthy of further investigation in case of testing very
complex applications [ZLZ+16].

We investigated the runtime overhead introduced due to our instrumen-
tation, which could be another potential limitation. Our results show that
ACVTool does not introduce a prohibitive runtime overhead. For exam-
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ple, the very resource-intensive computations performed by the PassMark
benchmark app degrade the CPU utilization by 27% in the instruction-level
instrumented version. This is a critical scenario, and the overhead for an
average app will be much smaller, which is confirmed by our experiments
on real apps.

Limitations of the current ACVTool implementation Our current
ACVTool prototype does not fully support multidex apps. It is possible
to improve the prototype by adding full support for multidex files, as the
instrumentation approach itself is extensible to multiple dex files. In our
dataset, we have 46 multidex apps, which constitutes 3.5% of the total
population. In particular, in the Google Play benchmark there were 35
apks with 2 dex files, and 9 apks containing from 3 to 9 dex files (overall,
44 multidex apps). In the F-Droid benchmark, there were two multidex
apps that contained 2 and 42 dex files, respectively. The current version
of ACVTool is able to instrument multidex apks and log coverage data
for them, but coverage will be reported only for one dex file. While we
considered the multidex apks, if instrumented correctly, as a success for
ACVTool, after excluding them, the total instrumentation success rate will
become 93.1%, which is still much higher than other tools.

Also, the current implementation still has a few issues (3.3% of apps have
not survived instrumentation), which we plan to fix in subsequent releases.

5.3.2 Threats to Validity

Our experiments with Sapienz reported in Section 5.1 allow us to conclude
that black-box code coverage measurement provided by ACVTool is useful
for state-of-art automated testing frameworks. Furthermore, these experi-
ments suggest that it is necessary to better study the impact of coverage
data for achieving time-efficient and effective bug finding.

At this point, it is not yet clear if there is a coverage metric that works
best. Further investigation of this topic is required to better understand
exactly how granularity of code coverage affects the results, and what are
other confounding factors that may influence the performance of Sapienz
and other similar tools.

Our findings from these experiments are negative, as our data does not
indicate prevalence of a particular coverage granularity. We now discuss
the threats to validity for the conclusions we draw from our experiments.
These threats to validity could potentially be eliminated by a larger-scale
experiment.

Internal validity. Threats to internal validity concern the experiment’s
aspects that may affect validity of the findings. First, our preliminary exper-
iment involved only a sample of 799 Android apps. It is, in theory, possible
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that on a larger dataset we will obtain different results in terms of number of
unique crashes and their types. A significantly larger experiment involving
thousands of apps could lead to more robust results.

Second, Sapienz relies on the random input event generator Mon-
key [Goo18d] as the underlying test engine, and thus it is nondeterministic.
It is possible that this randomness may have influence on our current results,
and the results obtained in another experiment will show a clear edge for
some coverage granularity.

Third, we perform our experiment using the default parameters of Sapienz.
It is possible that their values, e.g., the length of a test sequence, may also
have an impact on the results. In our future work, we plan to investigate
this threat further.

We acknowledge that tools measuring code coverage may introduce some
additional bugs during the instrumentation process. In our experiments,
results for the method and instruction-level coverage have been collected
from app versions instrumented with ACVTool, while data for the activ-
ity coverage and without coverage were gathered for the original apk ver-
sions. If ACVTool introduces bugs during instrumentation, this difference
may explain why the corresponding populations of crashes for instrumented
(method and instruction coverage) and original (activity coverage and no
coverage) apps tend to be close.

As reported in Section 5.1.3, we have tried to address this threat by
comparing application behaviors on original and instrumented app versions,
and by investigating the crashes. We have shown that ACVTool does not
change the app behavior, as visible in the GUI. However, we are yet not able
to automatically confirm that ACVTool does not introduce crashes at run-
time. Unfortunately, the publicly available Sapienz version does not support
crash reproducibility. In the future, we consider to systematically evaluate
reproducibility of found crashes across the original and instrumented app
versions using tools like RecDroid [ZYS+19], CrashScope [MLVBC+17] or
Paladin [MHH+19].

Finally, our findings may be affected by the experimental set-up. We
run Sapienz with Android emulators, which are not fully representative of
real devices and may introduce some stability issues that can result in app
crashes [AGH+18].

External validity. Threats to external validity concern the general-
ization of our findings. To test the viability of our hypothesis, we have
experimented with only one automated test design tool. It could be pos-
sible that other similar tools that rely upon code coverage metrics such as
Stoat [SMC+17], AimDroid [GCL+17] or QBE [KSM+18] would not obtain
better results when using the fine-grained instruction-level coverage. We
plan to investigate this further by extending our experiments to include
more automated testing tools that rely on code coverage.
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It should be also stressed that we used apps from Google Play for our
experiment. While preparing a delivery of an app to this market, developers
usually apply different post-processing tools, e.g., obfuscators and packers,
to prevent potential reverse-engineering. Some crashes in our experiment
may be introduced by these tools. In addition, obfuscators may introduce
some additional dead code and alter the control flow of apps. These fea-
tures may also impact the code coverage measurement, especially in case of
more fine-grained metrics. Therefore, in our future work we plan to also
investigate this issue.
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Chapter 6

Dynamic Binary Shrinking

In this Chapter, we present a novel approach, that allows a
user to review app functionality and leave only tested code. The
shrunk app produces 100% instruction coverage on observed be-
haviors and in such a way guarantees the absence of unexplored,
and therefore, potentially malicious code.
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6.1 Running Examples

In this section, we study the behaviors of two apps. One of them is a toy
example where we purposely injected a hidden time bomb. Another one is
the real-life Twitter Lite app. We explored both apps to find out how much of
the code is executing in the app. We further give present the interpretation
of our measurements.

6.1.1 Time Bomb Sample

The goal of the Time Bomb sample is twofold. First, it gives us an un-
derstanding of the exact amount of code run under a complete test suite.
Second, further, in Section 4, we demonstrate in detail how our approach
eliminates hidden, potentially malicious functionality out of the app.

We based our sample on the available at Github Java example of a time
bomb [Rab16]. To build the app, we used Android Studio 3.5.2, build tools
29.0.2 with targeted minimum Andriod SDK 25, and enabled androidx1.
We also enabled all available optimizations to minify extra code as much
as possible. The optimizations included Proguard [Gua20] resource shrink-
ing, code optimization, and minification and R8 aggressive optimizations in
the full mode [Goo20b]. Optimizations helped to drop the APK size from
1328KB to 784KB (41% smaller), while the compressed binary code (DEX)
file located inside the APK decreased from 1879KB to 262KB (86% smaller).

Indeed, our app is straightforward. It contains only one activity and a
timer configured for one day from the app’s build time. When launched,
the app displays a text indicating one day left before the time expires (day
0 functionality). However, the next day, when the timer is over, the app
triggers an alert (day 1 functionality). We further use the terms day 0 and
day 1 to specify the app states before and after the time bomb explosion
respectively. We also declare day 1 functionality as hidden, since it stays
unexpected after exploration on the day 0. Thus, we have an optimized time
bomb app that explodes on the day 1.

Exploration

Since our app has no buttons or other elements to interact with, and we
are fully aware of its functionality, we developed a short but complete test
routine intending to achieve peak coverage. Our test suite combines the
following set of actions: launching the app, hiding the app and bringing it
to front, switching between the apps, changing a device orientation, stopping
the app with a close button, stopping it with a swipe and with the Clear
all button, launching the app again, taking a screenshot, changing volume,
tapping, swiping. Though we did not declare most of the listed actions in the

1https://developer.android.com/jetpack/androidx
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app, Android Application Framework libraries may have default listeners to
some of them. In this scenario, an attacker targets to demonstrate benign
behavior and pass our testing routine on day 0. We now report instruction
coverage measured in testing on day 0 and day 1.

When testing the app, we measured instruction coverage with the help
of ACVTool. It provides us with information on exact executed instructions
(this becomes essential in Section 6.3). ACVTool marks executed instruc-
tion through the whole codebase in the app’s DEX file (including libraries).
It first instruments the app in smali representation and then tracks exe-
cuted instructions at the run-time. After the end of exploration, ACVTool
generates an instruction coverage report. In this work, we used ACVTool
capability to measure instruction coverage at any time without stopping the
exploratory procedure.

In our experiments we managed to reach instruction coverage peak at
15.22% and 14.94% on day 0 and day 1 respectively. Remarkably, the app
demonstrated lower code coverage on day 1, though the main package (the
code was written by us, excludes libraries) showed the opposite picture —
instruction coverage is higher on day 0 with 52.63% against 72.37% on day
1. Furthermore, we observed more UI elements on day 1 because the time
bomb functionality runs an alert on top of the existing page.

However, a closer look at coverage differences revealed that on day
1 some methods from Android Application Framework libraries did
not run compared to day 1. These methods are dispatchKeyEvent,
dispatchTouchEvent, onWindowFocusChanged, dispatchKeyEvent,
onKeyDown, setBackgroundDrawable, onBackPressed. This happened due
to the time bomb alert message popped out over the main page and blocked
default event listeners on the page. We could not identify some other
framework methods due to their obfuscation. The difference in the main
package only revealed two different branches that executed with regard to
the current time.

Although we revealed the hidden feature on day 1, the observer could
not predict it from day 0. Moreover, more than 80% of the app code stayed
not tested and we (as app developers) could not guarantee the absence of
another logic bomb in this code.

6.1.2 Twitter Lite App

For the second, more complex example, we took a real-life case — a pop-
ular social network app Twitter Lite (version 2.1.2). This is the secondary
official Twitter client that targets lower-cost devices limited on storage and
performance. Compared to the main official Twitter app, the Lite version
has a much smaller size: 1.3Mb against 31.8Mb of the main app. Twitter
Lite is a popular app with over 10 million installs and 4 stars rating on
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Google Play. This app is convenient for us due to its relatively generalized
and straightforward architecture. In particular, its architecture simplifies
our exploratory procedure in an attempt to reach peak instruction cover-
age. We further describe Twitter Lite features and our results on observing
its behaviors.

App internals

Twitter Lite is a typical example of a lightweight client app for network com-
munication. Along with Twitter, other major companies, targeting emerging
markets, provide Lite versions of apps to their users. To mention a few popu-
lar, Facebook Lite, Messenger Lite, Instagram Lite (temporarily rolled back
to date), LINE Lite, Skype Lite, Pinterest Lite.

Lite apps make use of a single trick to achieve lightness. An app embeds
a web browser that loads and displays web pages from the dedicated website.
The embedded browser has no regular address field nor navigation buttons.
Thus, the app is often indistinguishable from an ordinary native Android
app.

Twitter, as well as most of the other Lite apps, runs the standard Android
component WebView [Goo20c] to vest the app with browser capabilities.
This component allows Twitter to display web page content through the
embedded browser, but also it provides JavaScript APIs to interact between
the web page, app code, and Android system. WebView often simplifies
developers’ work because they can adapt original website pages to fit in
a mobile app without significant changes in their website logic. This may
reduce development costs compared to native apps. Second, it is possible to
instantly roll out updates for the app on the website without undergoing the
whole update procedure in the app market. However, the main advantage
when using WebView is the small size of the app.

In our analysis, we found that the app was compiled using a standard
Android dx compiler, but the code was obfuscated and minified (most likely,
Proguard [Gua20] was used). The app makes a check if a debugger is con-
nected and collects device information. Developers often use such techniques
for anti-debugging purposes [Fou20]. In addition to the standard Android
Framework libraries, Twitter Lite also uses such popular libraries as retrofit2,
okhttp3, crashlytics, firebase, and gson. AndroidManifest file declares per-
missions from several categories. In the Photos/Media/Files and Storage
permission categories: read, modify, and delete the contents of USB stor-
age. From the "Other" category the app declares permissions to receive data
from the Internet, view network connections, obtain full network access, run
at startup, and prevent the device from sleeping2.

2Google Play also gives permissions information at the app’s page
https://play.google.com/store/apps/details?id=com.twitter.android.lite
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Functionality

The Twitter Lite app’s major features include posting a tweet, finding and
following another account, bookmarks, home timeline, notifications, profile
settings, and direct messages. Twitter hosts a detailed description of Twitter
Lite functionality on its website [Twi20].

This functionality is available through the embedded WebView that
takes full display space. Therefore, a user mostly interacts with web page
content. In turn, the web page calls appropriate methods in the app and
Android APIs.

Exploration of behaviors

To explore Twitter behaviors, we used three automated testing tools, and we
explored the app manually. Monkey [Goo18d], our first tool, is a popular,
efficient and integrated into Android automated testing tool that randomly
pushes UI events into an app. Second, Droidbot [LYGC17] is a more ad-
vanced tool based on Monkey but reinforced with the use of UIAutomator
[Goo19]. Droidbot recognizes particular UI elements and combines its ac-
tions based on this knowledge. In particular, Droidbot allows users to specify
the login page id of the app and credentials to pass app authentication. The
third tool is DroidMate-2 [BJHZ18]. This state of art tool targets specifi-
cally 3rd-party apps. Like Droidbot, DroidMate-2 uses UIAutomator, but
it provides additional test strategies and even allows anyone to develop a
new. Last, we tested the app manually, which allowed us to run as much
functionality as possible consciously.

Instruction coverage on observed behaviors

Figure 6.1 demonstrates the results of instruction coverage measurement
when performing automated and manual exploratory procedures.

Our exploratory procedure worked as follows. Instrumented by ACV-
Tool Twitter Lite app was installed on Android emulator (API 25), each
automated testing tool worked for 1 hour as well as manual exploration per-
formed by one of the authors. During this procedure, ACVTool generated
instruction coverage every 5 seconds (in total, 720 values per hour).

We achieved the best results by manual exploration: 19.65% instruction
coverage. Automated tools performed differently and demonstrated the fol-
lowing results: 14.08% Droidbot, 13.82% Monkey and 13.78% DroidMate-2.
We ran the experiment twice and received very similar results. Among auto-
mated testing tools, Droidbot performed better, though it reached the peak
slower. In the case of DroidMate-2, the tool managed to finish exploration
in less than 3 minutes since it could not find more states (short red line
appears in Figure 6.1).
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Figure 6.1: Twitter Lite full instruction coverage under automated (Monkey,
Droidbot, DroidMate-2) and manual explorations.

Such a big difference in instruction coverage between the automated
exploration and manual has its reasons. The main obstacle for automated
tools was to sign up and log in. Though Droidbot and DroidMate-2 can to
pass the login page in native apps (credentials need credentials need pre-
configuration), the issue remains unresolved in the case of WebView apps,
such as Twitter Lite.

Remarkably, both Droidbot and DroidMate-2 use UIAutomator under
the hood. It helps tools to locate UI elements and extract their attributes.
Therefore, Droidbot and DroidMate-2 are capable of recognizing login and
password fields with specific identifiers. However, this is not the case in
the WebView app. Here we confirm that the current implementation of
UIAutomator is not able to pull field attributes out of a web page. Thus,
both tools are not capable of passing either login or sign up pages in the
WebView. This issue prevents automated tools from efficiently exploring
such apps since a significant amount of functionality lies on the authorized
side.

Indeed, during manual exploration, when passed the authorization, in-
struction coverage is significantly higher compared to automated tools. Cov-
erage increased on more than 5% when tweeting a picture that we instantly
shot with the camera, while sign up and login functionality took less than
0.3% of the codebase. Worth noting that after half an hour of exploration,
we could not find more actions to improve overall coverage. Therefore, we
continued to interact with the app more randomly. However, the peak cover-
age we managed to achieve is less than one-fifth of the number of instructions
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in the app.
The Twitter Lite app experiment, in particular, demonstrated that nei-

ther absolute value nor relative increase of code coverage gave additional
information on what or how to test more intensively. We could not also
estimate the total amount of runnable code in the app. Our experiment
further raises questions. What does the rest of the app (more than 80% not
executed)? Can we guarantee goodness of not executed code?

6.1.3 Interpretation

Many officials and even states leaders nowadays use Twitter. Potentially
they may become a target to an attack through the app on their devices.
An attacker may hide malicious functionality in the app that can trigger
under specific conditions (logic bomb).

Indeed, Frantantonio et al. in their work [FBR+16] described logic
bombs as a commonly employed by targeted malware mechanism that may
be used in state-sponsored attacks. From the dynamic analysis perspective,
we could not find the logic bomb. Moreover, on our samples, the percent-
age of instruction coverage did not give more understanding of time bomb
behavior since on day 1 it did not differ much from day 0. When measuring
only the main package (code written by us), not covered code is present on
both days.

Although we put in our Time Bomb app as little functionality as we
could, while the Twitter app is quite complicated app, instruction coverage
on both apps was under 20%. Furthermore, for the Time Bomb app, we
used Proguard and aggressive R8 shrinking — modern tools that use static
analysis to eliminate dead code and compress apps.

The experiments brought us to the conclusion that app instruction cov-
erage depends on app functionality, including libraries and optimizations
techniques. Hence, the instruction coverage metric is not comparable be-
tween the apps. In this case, testing techniques that rely on absolute code
coverage values may not scale on different apps.

Moreover, the maximum coverage value for 3rd-party apps is always
unknown due to the absence of requirements or a complete test suite. Code
coverage, therefore, does not help to clarify when to stop testing too. This is
a known issue in automated testing approaches, when authors suggest to use
certain thresholds such as time limit, certain level of code coverage or code
coverage increase, number of total test cases [MMM14, MMP+12, NH19].

From the examples mentioned above, we can see that not only imper-
fection of automated tools contribute to the inability to reach 100% code
coverage, nor dead code, but also the extra code from libraries or written by
app developers stays never executed. This extra code constitutes the app’s
bloat, and thus, unnecessarily increases the attack surface [AJWK+19].
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6.1.4 Implications on the App Distribution Model

With regards to the obtained results, in this work we propose a novel tech-
nique on shrinking Android apps towards their declared capabilities. Al-
though we target this technique onto security analysts, so they could test
and monitor the app and remove not executed code as potentially malicious.

To make it possible, before installation on the targeted device an analyst
has to explore the functionality of a new app. When exploring, the analyst
should aim to run the declared by the app functionality that the end-user
supposed to use. During this procedure monitoring of sensitive resources
is essential to ensure no malicious actions happening. Further, the app
undergoes a shrinking procedure towards executed code.

It is clear, such manual exploration is expensive. However, the effort
is justifiable against targeted attacks on specific authority (e.g. when the
end-user is a head of state).

Yet, there is another option to protect users, which requires action from
app producers. Those app producers willing to run their apps in a trust-
ful authority environment would shrink the app at the delivery stage and
provide a set of tests covering the declared functionality. This way the app
would become verifiable and could demonstrate 100% instruction coverage
on the provided test. Thus, an analyst could make sure that there is no po-
tentially malicious code remained in the app. This approach, however, may
impose a few limitations such as to restrict the use of dynamic loaded code
and reflection mechanisms since dynamically loaded code may be potentially
malicious. In future work, we may study vulnerabilities that shrinking may
impose on the app.

6.2 Methodology

Figure 6.2 demonstrates a high-level overview of the Dynamic Binary Shrink-
ing System for Android. Using this approach, security specialists and test
engineers may monitor an app for malicious activities while exploring its
behaviors. When the exploratory procedure is finished, our tool, ACVCut,
shrinks the app towards covered code. Thus, only executed code may remain
in the shrunk version of the app.

The core of such a system is fine-grained code coverage. In this work, we
use ACVTool [PGD+18, PGZ+20] — the only available fine-grained code
coverage tool for Android. ACVTool provides code coverage information at
the level of instructions, methods and classes. Full and precise information
about executed instructions is essential for us since substantial modifications
of a 3rd-party app may easily break it.

The Dynamic Shrinking System consists of two phases. The first phase
aims to observe and analyze all relevant behaviors, while in the second phase,
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Figure 6.2: Dynamic Binary Shrinking System for Android.

ACVCut shrinks the app. We further describe them in depth.

6.2.1 Exploratory Phase

During the exploration procedure, an analyst (or an automated tool) ob-
serves 3rd-party app functionality. The analyst may want to leave only
specific behaviors or to test the app exhaustively. Thus, depending on the
analyst requirements, the app may lose not essential features when shrunk.
Therefore, in the best scenario, the app provider willing to pass checks with
all behaviors may present a complete test suite for their app.

Software development companies with full development cycle maintain
requirements documentation, unit-, integration and regression tests, mock
objects, and manual test cases with a simple goal — to check all required
features. We consider these testing artifacts as a complete test suite.

This approach is beneficial to both sides since the app provider is inter-
ested in delivering a qualitatively tested app. At the same time, the analyst
needs to make sure that the app does not perform malicious actions. There-
fore, an app provider could shrink the app himself and deliver it together
with the complete test suite, so that anyone could verify the app on 100%
coverage.

The exploratory phase from a technical perspective goes as follows. The
original APK gets instrumented by ACVTool to allow code coverage mea-
surements. Then we install the instrumented app onto a device or emulator.
An analyst may enable dynamic analysis tools to monitor which sensitive
actions the app performs. Thus, by the end of testing, we may obtain three
outputs: instruction coverage, explored behaviors and app activity analysis
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reports.
From the obtained reports, instruction coverage is generated by ACV-

Tool and goes as an input to the Shrinking phase. The behaviors report
represents a complete test suite to the next generated shrunk version of the
app. The analysis report aims to confirm the absence of malicious activities
that happened under the exploratory phase. The analysis report relies upon
Monitor Environment used to track suspicious activities.

This work aims to present a shrinking approach and its applications,
which brings Dynamic Binary Shrinking System to life. Therefore, the
monitor environment is not the goal of this work. However, monitoring
is an essential part of the system to confirm that the shrunk app is benign.
We suggest using state-of-the-art approaches to monitor sensitive APIs and
HTTP requests. Further, the shrunk app loses a significant part of the code.
Therefore, existing static analysis approaches may benefit from significantly
smaller codebase available for analysis.

6.2.2 Shrinking Phase

The instruction coverage report specifies the exact code executed during the
testing phase. Therefore, we can remove all not tested functionality. In a
nutshell, we match the original smali code on our code coverage report and,
through peculiar code manipulations, remove all unnecessary functionality.
Such an operation is not trivial and requires attention to specific Android
bytecode architecture since we can easily break the app. We give details on
smali code modification in Section 6.3.

6.2.3 ACVCut Implementation

ACVCut heavily relies on ACVTool under the hood, which performs a full
cycle of app repackaging. ACVTool instruments the smali code, initiates the
instrumentation process before the beginning of the exploratory procedure,
saves runtime report at the end of exploration and finally generates code
coverage report [PGD+18, PGZ+20]. Here we give more details on the
design of ACVCut.

ACVCut starts form the preparation of the working directory with the
help of ACVTool. The directory should include the instrumented by ACV-
Tool app, instrumentation report and the decompiled app directory. The
instrumented app takes its part in the exploratory procedure and produces
the runtime report. Runtime reports contain instruction coverage informa-
tion in the form of binary arrays and, when applied to instrumentation re-
ports, produce tree-based smali code structure, where executed instructions
are marked as covered. ACVCut walks through the tree in several passes to
determine and remove not-executed basic blocks and remove or make stubs
from not called methods. Stub methods removal may break the app due
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to its structural role, e.g. they may take part in the inheritance hierarchy.
However, stubs have no executable code and never called. Therefore, they
should be excluded from all types of analysis. When code processing is fin-
ished, ACVCut builds the shrunk app with the help of apktool. Finally,
the output of ACVCut contains the shrunk app and a list of neutralized stub
methods.

6.3 Cutting the Code

In this section, we describe our approach to removing the not-executed smali
code from an app. The approach performs an extensive smali code pro-
cessing and even a lightweight static analysis for solving challenges related
to maintaining consistency, coherence, and cohesion of complex compiler-
generated code. We first get rid only of instructions in executed methods
and further remove not executed methods.

6.3.1 Instructions

The smallest executable unit of an app is an instruction. In this work,
we rely on smali representation of binary executable since it gives us the
possibility to modify the app binary at the finest granularity.

Basic block

Besides the fact that ACVTool currently supports instruction- and method-
level code coverage, we found it is more efficient to operate on smali basic
blocks. We made this technical decision because ACVTool does not mark
specific instructions when it is impractical or impossible to insert probes
[PGZ+20].

Indeed, in Section 3.1 we mentioned the following cases. It is impossible
to insert a probe after the invoke-* instruction followed by move-result
and after a catch followed by move-exception. It is impractical to insert
a probe after instructions return, goto and throw. ACVTool relies on
execution of probes linked to specific instructions and by default it does not
give coverage information about the above-listed instructions.

We focused on basic blocks since, normally, instructions in a basic block
either executed all or none. This strategy works well with the only special
case when one instruction throws an exception. Then, the instructions next
to the failing instruction stay not executed. This case is easy to find by
checking if the last instruction of the basic block worked. Further we describe
our study on basic block definition for smali representation.

Basic block contains a sequential branch-free set of instructions that
starts with a labeled operation and ends with a brunch, jump or predicated
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operation [CT11]. In smali representation, we developed the following rules.
A basic block may start with the first instruction in the method, a label or
if-* instruction. The basic block ends on the last instruction before the
beginning of the next basic block, goto instruction or the end of the method.

ACVCut gets rid of all not executed basic blocks. Removal of a basic
block means sequential removal of instructions from it and removal of cor-
responding labels. In our implementation, we extended the definition of a
basic block to a labeled block since all instructions between two labels are
always covered or none of them. However, basic block removal is still a chal-
lenging task since executed branch instructions (if-* or goto) may stay in
place and reference to the deleted basic block label.

For instance, statement "if-eqz v7, :cond_0" compares the v7 regis-
ter value to zero. When the condition was satisfied, a program pointer jumps
to the label :cond_0. Otherwise, the program pointer passes the statement
to the next instruction. ACVCut may remove the basic block corresponding
to the specified label (:cond_0) when they were not executed. In this case,
the "if-eqz v7, :cond_0" statement becomes invalid since the target la-
bel declaration is absent now. To solve this issue, we analyzed possible cases
and suggest code manipulations that eventually modify the original program
control flow.

Conditional jump logic

The issue of an absent label reference, mentioned above, may occur to all
instructions able to reference a label: if, goto and .catch. Since goto
always finalizes the basic block and gets removed along to the not executed
basic block, it does lead to the issue in our implementation. However, if
and .catch statements need a more sophisticated approach. We describe
a solution to the if statement that references an absent label and further
explain the .catch case in the next Try-Catch paragraphs.

If instruction in smali representation has the same meaning as in Java
code. It has four combinations depending on the coverage of if instruction
itself and the coverage of the referenced by the specified label basic block.
Concerning the case, we do the following.

We check each targeted label specified for the executed if statement.
If the label does not appear in the code anymore, ACVCut removes the if
statement since it did not perform conditional jump during the test.

The opposite case is when ACVTool did not mark the if statement.
It does not always mean that the statement did not execute. Indeed, the
statement could work and make a jump to the specified label. Therefore,
the probe placed next to the statement did not run, and ACVTool could
not mark the appropriate statement. In this case, we check if the previous
instruction run. This means to us that the program pointer reached if
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statement and performed a conditional jump to the specified label. Since
only one branch worked, we replace the statement and the rest of the basic
block with the unconditional goto.

Try-Catch

The exception mechanism in smali representation relates to Java try-catch
structure. The monitored block starts and ends with :try_start and
:try_end labels correspondingly and followed by the .catch and .catch-all
meta-instructions. They first declare the type of an exception try-catch
block catches, second — where the monitored code starts and ends (labels
:try_start and :try_end) and third — the target label where to handle
the exception.

When the try-catch is covered, we check exception handlers mentioned
in the .catch meta-instruction. If the code did not throw the specified
exception, then the corresponding handling basic block did not work, too,
and was removed in previous steps. Therefore, we remove the .catch as well.
If no .catch meta-instructions left in try-catch, we remove :try_start and
:try_end labels too. Thus, if the code did not throw an exception, it would
continue working smoothly.

The opposite, when the code throws an exception, the try-catch and han-
dling code stay in place. Moreover, an instruction that threw an exception
is not marked as covered (since the probe next to it was not executed), but
it has to stay in code and perform its function to throw the exception.

Synchronized code

Complex apps may deal with multiple threads that often need access to a
shared resource. In this case, developers use Java keyword synchronized
to allow one thread at a time to the selected code. Android implements this
mechanism using a monitor object and a pair of instructions monitor-enter
and monitor-exit to specify the beginning and the end of synchronized
code.

Synchronization is sensitive to exceptions and can affect the work of a
device. Hence, an app required to unconditionally catch possible exceptions
in synchronized code and call emergency monitor-exit (contains two in-
structions). Android compiler takes responsibility for developers to generate
the required exception handler with additional monitor-exit code, so that
the app code could pass Android Runtime Verifier checks concerning the
synchronized code.

In the same way, we need to follow the rules when modifying the smali
code. When synchronized code worked without any exception, the gener-
ated try-catch can be removed. However, we leave the monitor-exit code
in place since it helps the app to pass the Runtime Verifier. As a result,
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monitor-exit code stays as an exceptional addition that may never be
called.

Switches

The switch statement in Java represents a set of cases that may be chosen
depending on the passed value. Android Compiler translates Java switch
into either packed-switch or sparse-switch instructions depending on
the value sparseness in the cases.

Switch instruction consists of two parts in smali . The first part declares
the switch statement in the code, while the second part stays at the end of
the method and contains a tuple of cases. Each case is a pseudo-instruction
that references a label attached to the basic block to handle a specific case.
The whole second part cannot be tracked with ACVTool. Therefore, we
again take a close look at what labels stay in the code.

Since we removed not executed basic blocks, we also need to get rid of
the corresponding pseudo-instructions that reference absent labels. How-
ever, the removal of a pseudo-instruction violates original switch table value
allocation. Instead of removal of a case, we replace it with another working
case in the original order. Though a switch statement may have a series of
identical pseudo-instructions, its logic remains correct for the left cases. If
no cases worked during the test, we would remove both parts of the switch
instructions.

Arrays

Similarly to the switch statements, arrays statements also have two parts
where the first part declares an array (fill-array-data instruction), and
the second part keeps enumerated array values. When fill-array-data
instructions disappeared from the code, the corresponding .array meta-
instruction containing array values gets removed.

Merging gotos

As a result of our above-mentioned code manipulations, we noticed many
cases when a goto instruction jumps right to the next line. This operation
is equal to standard program pointer increment and happens due to the
removal of basic blocks between the goto instruction and the label it jumps
to. We remove such a goto instruction and the label if it has no other
references.
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6.3.2 Methods

Above, we described a sophisticated analysis of smali structures on in-
struction removal. We perform this approach only on called methods since
other methods stayed untouched under exploration and, intuitively, should
be deleted. However, the removal of not used methods is not an obvious
task too.

Methods removal

Android picks up object-oriented features of Java, such as encapsulation,
polymorphism and inheritance for its bytecode. Therefore, Android also
has notions of abstract methods and classes, interfaces and virtual tables
for inheritance. When calling the methods, Android uses the correspond-
ing invoke-* instructions: invoke-virtual, invoke-super, invoke-direct and
invoke-static

Even when not called, a method may constitute inheritance hierarchy or
polymorphism taking place in the corresponding virtual table at run time.
Such a method is usually called through invoke-super or invoke-virtual
instructions that take into account object type hierarchy at run time. Pre-
dicting the correct run time type based on the code coverage and class
hierarchy and altering method calls accordingly is not a part of this study.
We see it as an exciting field of research from the perspective of bytecode op-
timization. However, this issue does not relate to static and direct methods,
and we can remove them for sure.

Stub methods

The rest of the methods may stay in the app since some of them maintain an
object-oriented skeleton of the app, as we have mentioned earlier. However,
here we do the following trick. We first remove all the instructions inside the
not called method and the second — put default return value according to
the declared type. One particular case here is the constructor of an inherited
class. We add a statement to call default Ljava/lang/Object;-><init>V()
constructor, since the inherited constructor always calls the constructor the
superclass.

Thus, the app has many empty methods that we call stub methods.
ACVCut saves them into a list so that other tools could exclude them from
their analyses.

6.3.3 Offensive Mode

When removed all extra instructions, some not explored functionality could
disappear. Though we claim not tested code as potentially malicious, the
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absence of legitimate features can be unexpected to the end-user. For in-
stance, the user may press a not tested button. Then, the button will not
react since now its method-listener is empty.

A friendly approach to address this issue is to bring into the app ex-
ception code to alert the end-user that the functionality was purposefully
cut.

6.4 Results

In this section, we applied our shrinking technique on the running examples.

6.4.1 Shrunk Time Bomb

We shrunk the app on day 0 to verify what happened with the time bomb
behavior on day 1. To make the results more transparent, we also enabled
instruction coverage measurement using ACVTool on the shrunk app and
run the complete test suite we described in Section 6.1.1.

Table 6.1 demonstrates results on shrinking Time Bomb on day 0. When
testing the app, we observed the same behavior, as we described in Section
6.1. Indeed, instruction coverage of the shrunk version shows 99.9% since we
removed all the extra code. Additional benefits are smaller app size and less
code. Thus, the decompressed binary DEX file decreased twice, while the
amount of instructions, methods and classes greatly decreased in 9, 7 and
4 times correspondingly. App size changed slightly because the DEX file is
saved in a compressed form, while app resources took the most of space.

Table 6.1: The original and the shrunk Time Bomb app metrics on Day 0

App
Version

Cove-
rage

Instruc-
tions Methods Classes APK

Size
DEX
Size

Original 15.2% 58045 3002 388 784 KB 591 KB
Shrunk 99.9% 6342 431 102 701 KB 327 KB

Profit - x9 x7 x4 12% x2

The app behavior remained unchanged on day 1. The time bomb func-
tionality disappeared. However, there are cases when apps have similar
benign functionality. If we wanted to keep both behaviors, we have two
options. First is to test both behaviors separately and merge their instruc-
tion coverage before shrinking the app. Second, specific functions can be
shortlisted to exclude their shrinking.
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Not covered instructions. Worth to note why instruction coverage is
very close to 100% but not precisely. ACVTool marked only 7 instructions
as not covered. Four of them are necessary to respect runtime verifier rules
concerning the synchronized code. Three others relate to the handled ex-
ception. We describe the reasons in Section 6.3.1.

6.4.2 Shrunk Twitter Lite App

On the Twitter Lite app, we performed the following experiment. We took
instruction coverage generated by Monkey as an example of automatically
explored behaviors keeping in mind that it did not pass the login page and
did not see a significant part of the app. Since this is a WebView app, we
expect that shrinking preserved the major part of functionality except for
not observed functions that closely work with Android APIs. The goal of
this experiment is to determine what behaviors continue to stay in the app
and how the user interface (UI) responds to shrinking.

Table 6.2 presents changes that happened to the app after shrinking.
Though the size of the app was already small compared to the full Twitter
version, the app size decreased to 1036KB from 1327KB after shrinking.
The number of instructions, methods and classes fell dramatically: 14, 7
and 3.5 times less than in the original app.

Table 6.2: The original and the shrunk Twitter Lite app metrics

App
Version

Cove-
rage

Instruc-
tions Methods Classes APK

Size
DEX
Size

Original 13.82% 166031 11140 1680 1327 KB 1896 KB
Shrunk 97.9% 11198 1562 488 1036 KB 1757 KB

Profit - x14 x7 x3.5 28% ≈

Remarkably, the app preserved all web functionality that Monkey could
not observe, such as logging in, tweeting, interacting with other profiles
(follow/unfollow, like, comment, retweet), sending and receiving messages,
profile editing, changing theme color, changing app language and other app
settings. However, other not observed features, that rely on interacting
with the Android code, disappeared. Indeed, the app lost notifications,
sharing a tweet to other apps, sharing pictures and text from other apps to
Twitter, posting pictures, changing user avatar and the background picture.
Moreover, when tried to tweet a picture, we tapped on the attach picture
button, the button animation worked. However, the standard dialog did
not pop out to choose between the gallery and camera pictures. The same
happened when we tried to change the user avatar and background picture.

Thus, when exploring behaviors before shrinking the app, we can decide
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on what functionality we want to leave. This particular ability allows us to
impose privacy requirements on the app. For instance, when a solid enter-
prise company tries to regulate the use of apps on employees’ devices, it may
allow them to access social networks but restrict posting sensitive pictures.
Moreover, the app will never ask the user for a suspicious permission if the
corresponding functionality was deleted. Thus, the user of the shrunk app
has no chance to give a permission by mistake. For instance, our shrunk
Twitter Lite app preserved most of the major features while restricted access
to sensitive Android APIs.

6.5 Discussion

In this section, we shortly review existing threats and limitations that we
may address in future work.

6.5.1 Threats and Limitations

Internal validity. Threats to internal validity relate to the implementa-
tion of our tool and discussed methodology on Dynamic Binary Shrinking
System.

Although our tool processed a significant amount of obfuscated code
represented in our samples, the tool may contain bugs and may break some
apps. We will continue the development of ACVCut and evaluate it on more
apps.

The stub methods continue staying in the code. However, we save them
into a list of stubs to exclude from other analyses.

Our approach may shrink legitimate, however, not tested behaviors.
Only app reviewer can decide which functionality to leave in the app. How-
ever, interested app producers can share their full tests addressing all the
app requirements.

Android applications framework contains backward compatibility code
that we shrink too. The app may be tested and shrunk for the device model,
where it is expected to work.

External validity. We acknowledge the following threat to the gener-
alization of our findings. A simple time bomb example does not scale on the
possible diversity of logic bombs and attacks. Although we decreased the
attack surface, an attacker may maliciously use existing app vulnerabilities
to exploit benign app capabilities.

ACVCut limitations. Since our tool depends on the ACVTool, it in-
herits all its limitations. It is impossible to shrink an app when ACVTool was
not able to generate instruction coverage. We refer to the original Section 3
for the limitations. These cases include apps that use hardening techniques
to prevent repackaging with apktool, apps with multiple DEX files (ACV-
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Tool currently works only with main DEX file), dynamically loaded code,
native C/C++ libraries.

Another limitation of our tool is a steppy learning curve when trou-
bleshooting errors that ACVCut may inject into apps due to yet unfamiliar
compiler generated code semantics appearing in new apps. We commented
on ACVCut development in Section 6.5.2. However, we are always happy
to verify the tool in real life challenges and improve it towards everyone’s
advantage.

6.5.2 On the ACVCut Development

The development process of ACVCut is far from trivial. Unfortunately,
smali language suffers from a lack of documentation and the absence of code
practices commonly available for ordinary programming languages. The lan-
guage itself is pretty low-level; it is an assembler. No wonder its learning
curve is pretty steep. These limitations badly contribute to ACVCut de-
velopment because it requires a rare skill-set that would allow debugging
potential errors injected by ACVCut into a 3rd-party app.

Doing this work, we transformed many observed smali code cases and
rules (see Section 6.3.1) into an automated tool. Taking into account the
flaws mentioned earlier, the development of the tool became more evolu-
tionary. Although ACVCut worked well on the running examples (Section
4), it may break some other apps. We will continue to generalize our code
processing approach along with shrinking more apps.

We also improved the correctness of instruction coverage generated by
ACVTool. Notably, we fixed coverage calculating for .catchmeta-instructions
(incorrect coverage may inject errors into ACVCut). We also fully reworked
the Instrumentation class to allow on-demand coverage reporting at any
time. Moreover, ACVTool can now track instructions even on the app ter-
mination since we keep the instrumentation process running all the time.
These updates are essential for our tool because apps are sensitive to care-
less code manipulations and break easily. When coverage information, for
instance, is absent on app termination, the shrunk app would be crashing on
each app exit. We will pull request these updates into the original ACVTool
repository after the acceptance of this work.

Impact on mutation testing

To the best of our knowledge the only work, called MutAPK [EVLVB+20],
recently suggested a limited set of Android-specific mutation operators for
closed-source mutation on smali representation [EVLVB+20]. The authors
of MutAPK assume that smali mutation speeds up the testing process com-
paring to traditional source code mutation. Our detailed analysis on smali
modification will help to extend existing for smali basic mutation opera-
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tors, e.g. our technique allows to remove statements and basic blocks and
branches, and thus, to modify the app’s control flow. Moreover, the shrunk
version of the app is itself can be considered as a mutant that is going to
survive and demonstrate 100% instruction coverage.

6.6 Related Work

Program debloating is in the closest relation to our approach since it de-
scribes program thinning and the removal of specific features. It found
applications in such areas as debloating of libraries, source code, containers,
hardware, and in delta debugging. Debloating techniques emerged in sev-
eral recent works and available now for various platforms to reduce programs
with and without source code.

Brown et al. remove features from software based on source code to
feature mapping [BP19]. Azad et al. remove complete features in web
applications by using a PHP profiler to extract code coverage information
[ALN19]. Heo et al. developed the Chisel system to effectively customize C
programs with the help of reinforcement learning [HLPN18].

Agadakos et al., in their recent work, developed Nibbler, a tool for bloat
removal from binary shared libraries. Nibbler works on x86 binaries, does
not recompile the program and relies on static analysis to eliminate not
reachable code [AJWK+19]. Qian et al. developed a RAZOR framework
that use control-flow heuristics to predict and leave more user-expected func-
tionalities in Linux binaries [QHA+19]. Landsborough et al. make software
thinner with two approaches: first relies on dynamic tracing as a guide while
the second uses a genetic algorithm to mutate a program [LHF15]. The au-
thors also argue on the pros and cons of thinned programs from security,
size, validity and optimality perspectives.

In Android, researchers rely on static analysis to remove dead code.
Jiang et al. proposed JRed and RedDroid approaches to remove bloat
from Java applications, Java Runtime and Android apps [JZWL16, JWL16,
JBW+18]. Proguard, a Gradle plugin for shrinking Android apps, performs
static analysis to cut dead code [Gua20].

While static analysis and debloating are well researched, to the best of
our knowledge, Android did not have a solution for thinning apps based on
the app execution traces or code coverage.
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Conclusions

We conclude this dissertation and discuss potential future re-
search directions in this Chapter.
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7.1 Conclusions

In this work we presented a novel approach to measure fine-grained code
coverage of Android apps without access to their source code and a method-
ology to shrink an Android app towards executed code while observing the
app’s functionality.

More specifically, we organized this dissertation in three parts: 1) An
instrumentation-based fine-grained code coverage measurement approach
and its evaluation; 2) A study on the influence of code coverage granularity
on automated testing; 4) A dynamic binary shrinking methodology.

Regarding the first part, our objective was to deploy a new reliable and
versatile approach for code coverage measurement when testing apps with-
out access to their source code. To support our approach, we demonstrated
a high execution success rate (compared to the previous work) for the apps
instrumented by ACVTool at the instruction level. Furthermore, we have es-
tablished negligible runtime and instrumentation time overheads introduced
by ACVTool, we reported on justified behavior changes and we confirmed
the compliance of code coverage measurement to JaCoCo and ELLA tools.

Further, we performed a detailed study on the influence of code cover-
age metric granularity on automated testing. The study confirms the inter-
changeability of different code coverage granularity when used to guide auto-
mated testing tools for fault detection. Moreover, instruction-, method- and
class-level coverage turned out to be highly correlated. This study demon-
strated that the use of a coarser-grained coverage metric is not prohibitive
in automated testing and suggested to choose the metric with respect to
testing requirements such as possible limitations on the runtime overhead.

In the final part, we presented the Dynamic Binary Shrinking System - a
novel methodology created for shrinking 3rd-party Android apps towards ob-
served benign behaviors. On our running examples we demonstrated several
findings. First, apps contain large amounts of not used code. Second, the
measured coverage does not provide information on whether all legitimate
app behaviors have been seen. The Dynamic Binary Shrinking System can
guarantee the absence of potentially malicious code with 100% instruction
coverage. We shrunk two apps and confirmed the viability of our approach.
However, shrinking may lead to the disappearing of legitimate features if
they stay not tested.

This dissertation, moreover, delivered two artifacts. First, the ACVTool
— the implementation of our instrumentation-based fine-grained coverage
measurement approach. The tool is our significant engineering effort that is
available now to the Software Testing Android community. it has already
gained interest from other research teams, which poured out into new articles
[PDGCS20, YHH19]. Second, the ACVCut tool — an implementation of the
Dynamic Binary Shrinking approach based on the instruction coverage gen-
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erated by ACVTool. We confirmed the viability of our shrinking approach
on two apps that remained functioning after shrinking, furthermore, they
produced 100% instruction coverage on the explored behaviors.

7.2 Future Work

We can identify several novel research directions and future work extensions
stemming from this thesis. One area of future research concerns possible
improvements and extensions of the coverage measurement approach and
the dynamic binary shrinking technique.

We plan to extend our code coverage measurement approach to instru-
ment and report on the level of a basic block, which should make the system
to be more efficient in terms of performance, and may also simplify the in-
strumentation approach, allowing to eliminate the "untraceable" instruction
aspect. We futher consider to implement other more complex code coverage
metrics such as path coverage. This will allow the analysts to have a better
view on the observed functionalities.

Furthermore, our experiments with Sapienz have produced interesting
conclusions that no coverage granularity is able to find all crashes, even
in repeated experiments. We have also found negative results on the im-
portance of coverage granularity, when used as a component of the fitness
function in the 3rd-party app testing. ACVTool that works with most of
the apps has uniquely enabled us to perform this coverage comparison study.
Another line of future work for us is to expand our experiments with more
testing tools, thus establishing better guidelines on which coverage metric(s)
is more effective and efficient in bug finding.

One of the outputs of our experiment with Sapienz are faults. We con-
sider in the future to systematically evaluate reproducibility of found crashes
across the original and instrumented app versions.

It should be also stressed that we used apps from Google Play for our
experiment. While preparing a delivery of an app to this market, developers
usually apply different post-processing tools, e.g., obfuscators and packers,
to prevent potential reverse-engineering. Some crashes in our experiment
may be introduced by these tools. In addition, obfuscators may introduce
some additional dead code and alter the control flow of apps. These fea-
tures may also impact the code coverage measurement, especially in case of
more fine-grained metrics. Therefore, in our future work we plan to also
investigate this issue.

To enable better support for the automated testing community, we are
working to add support for multidex apps, extend the set of available cov-
erage metrics to branch coverage, and to alleviate the limitation caused by
the fixed amount of registers in a method. We will also investigate an option
to store counters for each executed instruction, which will allow identifying
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most and least executed code locations. As another promising line of fu-
ture work, we will investigate on-the-fly dex file instrumentation that will
make ACVTool even more useful in the context of analyzing highly complex
applications and malware.

From the Dynamic Binary Shrinking part of this thesis we plan to con-
tinue improve our approach and validate it on more apps and use cases.
The current ACVCut prototype demonstrated its viability on two exam-
ples. However, the use of this technique raises a few questions and opens
many interesting directions for further studying. Although our technique
worked well on our examples, the loss of legitimate behaviors may severely
affect reliability and even introduce bugs and vulnerabilities. Therefore, we
plan to investigate how shrinking changes the reliability of the app and if it
introduces severe bugs and vulnerabilities.

In future work, we also plan to finalize building of the Dynamic Binary
Shrinking System by integrating the monitoring and analysis tools (e.g. to
monitor sensitive APIs and HTTP requests with possible use of analysis
sandboxes [SFE+13, WYZ+15]). This will allow to validate such system
on real logic bombs and other malware and propose the complete Dynamic
Binary Shrinking solution to security analysts.

Furthermore, our shrinking techniques applies changes to the branching
code structures such as if, try-catch and switch. We found absence of
such operators that could significantly change the control flow of an app
(e.g. removal of a branch as we do in shrinking). Therefore, in the future
work, we may carefully study possible operators on smali representation
and introduce a new set of operators for 3rd-party mutation testing.

Another prominent line of research is possible in collaboration with a
real app distributor. App producers that maintain the full app develop-
ment cycle aiming to consistently and in full cover functional requirements
with automated integration and unit tests can benefit from our shrinking
approach. With the test suites provided by the app producer, the shrunk
app could demonstrate its full instruction coverage, which unlocks the app’s
verifiability and the guarantees on the absence of a logic bomb or a back-
door (with a few clauses) to the end-user, but also the test suites guarantee
the remaining of planned functionality. Indeed, such a test suit may not be
complete in terms of a combination of all possible paths, however, it would
be complete in terms of designed features avoiding the loss of legitimate
features. Therefore, in the future, we would like to study the possibility
of maintaining such a development process and develop the guidelines that
would allow production of verifiable apps in the shrunk shape.
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