
Game Theory and Logic for

Non-repudiation Protocols and

Attack Analysis

Matthijs Melissen

Supervisors:

Prof. Dr. S. Mauw (University of Luxembourg)
Prof. Dr. L. van der Torre (University of Luxembourg)
Dr. W. Jamroga (University of Luxembourg)

The author was employed at the University of Luxembourg and received support
from the National Research Fund Luxembourg (reference PHD/09/082) in the
project “Games for Modelling and Analysis of Security”.

PhD-FSTC-2013-25
The Faculty of Sciences, Technology and Communication

DISSERTATION

Presented on 14/10/2013 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG

EN INFORMATIQUE

by

Matthijs Melissen
Born on 20 June 1985 in Breda (The Netherlands)

Game Theory and Logic for

Non-repudiation Protocols and

Attack Analysis

Dissertation defense committee

Dr. Wojciech Jamroga, vice-chairman
Université du Luxembourg

Dr. Steve Kremer
Inria Nancy – Grand Est, LORIA

Dr. Fabio Martinelli
IIT-CNR, Italy

Dr. Sjouke Mauw, dissertation supervisor
Professor, Université du Luxembourg

Dr. Leendert van der Torre, chairman
Professor, Université du Luxembourg

Summary

Research in security has traditionally focused on preventing all possible attacks,
without focusing on the attacker and defender, and their incentives, abilities, and
knowledge. However, the security of a system might depend on such aspects.
Therefore, we use logic and artificial intelligence to model the attacker, the de-
fender, and their interaction. We have identified three areas in which the interac-
tion between attacker and defender, and thus the application of game theory and
logic, is relevant.

First, we study security protocols. A security protocol specifies the behavior of
agents that interact with the aim of guaranteeing security properties. As secu-
rity protocols are executed by interacting agents with possibly diverging interests,
they are an interesting candidate for game-theoretical and logical modeling. We
study in particular non-repudiation protocols, which are protocols that guaran-
tee that an agent cannot deny having executed a certain event. We introduce a
game-theoretical framework for analysis of security protocols. This framework is
created by unifying the Cremers–Mauw protocol semantics with concurrent game
structures, which allows us to phrase security properties as formulas of Alternating-
time Temporal Logic. We point out two limitations of current game-theoretical ap-
proaches, namely dealing with imperfect information and combining fairness and
effectiveness, and propose solutions for them. Furthermore, we model the restric-
tions on the behavior of agents, and the knowledge agents have of such restrictions.
If agents lack this knowledge, a new class of attacks, called virtual multi-protocol
attacks, arises. Finally, we study the security of security protocols when taking
the incentives of agents into account.

Second, we consider farsighted games, which are games in which agents consider
future deviations of other agent. Farsighted games are based on the interaction
between an initial deviation made by an agent who can be seen as an attacker,
and follow-up deviations by the other agents, who can be seen as defenders. We
propose a new solution concept based on this idea.

Third, we apply game theory to attack modeling, and more particularly to attack-
defense trees. Attack-defense trees are a method to describe possible security
weaknesses of a system, and their countermeasures. We make explicit the link
between attack–defense trees and a class of extensive-form games.

i

Acknowledgments

Writing a PhD thesis is an individual effort, but one that involves the support of
a large number of people.

I am very grateful to my supervisors. First, I would like to thank Sjouke Mauw for
guiding me through my PhD. His research style and his ability to get very quickly
to the core of any problem has been a great inspiration for me. I would also like
to thank Leon van der Torre, who always encouraged me to see my research in a
wider interdisciplinary perspective. I will also miss the regular dinners we had at
his home. I am also grateful to Wojtek Jamroga. By working with him, I have
gained a large amount of knowledge. Moreover, I have great admiration for his
never-ending enthusiasm, and his ability to spontaneously come up with complete
lectures in answer to all my questions.

Furthermore, I would like to thank the external members of the thesis defense
committee, Steve Kremer and Fabio Martinelli, for assessing this thesis, and for
their valuable feedback.

During the process of conducting the research that lead to this thesis, I have
discussed my work with many people in my field. In particular, I am grateful for
the useful suggestions I received from Cas Cremers, Mohammad Torabi Dashti,
Laurent Doyen, Saša Radomirović, Jean-François Raskin, and Henning Schnoor.

In between doing research, I had a great time spending my lunch breaks with my
colleagues in Sjouke’s research group. I am grateful for the fun and supportive
environment, so it is a great pleasure to thank Baptiste Alcalde, Xihui Chen,
Ton van Deursen, Naipeng Dong, Hugo Jonker, Simon Kramer, Barbara Kordy,
Piotr Kordy, Andrzej Mizera, Tim Muller, Jun Pang, Georgios Pitsilis, Patrick
Schweitzer, Rolando Trujillo, Chenyi Zhang, and Yang Zhang.

I would also like to thank my colleagues in Leon’s group: Diego Agust́ın Ambrossio,
Guillaume Aucher, Mathijs de Boer, Richard Booth, Patrice Caire, Martin Cami-
nada, Silvano Colombo Tosatto, Dov Gabbay, Valerio Genovese, Llio Humphreys,
Xavier Parent, Gabriella Pigozzi, Miko laj Podlaszewski, Tjitze Rienstra, Francois
Schwarzentruber, Marija Slavkovik, Xin Sun, Masoud Tabatabaei, Paolo Turrini,
Srdjan Vesic, Emil Weydert, Yining Wu, Marc van Zee, and Pouyan Ziafati.

Furthermore, I would like to thank my parents and siblings for their support.
Finally, I would like to thank Natalia, who hardly saw me at home the last months
before completing my thesis, for her continuous love, support, and patience.

Matthijs Melissen

iii

Contents

1 Introduction 1

1.1 Formal Modeling in Security . 1

1.2 Game Theory and Logic in Security 2

1.3 Non-repudiation . 4

1.4 Research Question . 5

1.5 Methodology . 7

1.6 Thesis Overview . 8

2 Modeling Security Protocols as Games 11

2.1 Introduction . 11

2.2 Concurrent Game Structures . 12

2.3 Modeling Security Protocols . 14

2.3.1 Role Terms . 14

2.3.2 Roles and Protocol Specifications 17

2.3.3 Runs . 19

2.3.4 Protocols as Concurrent Game Structures 21

2.3.5 Resilience . 25

2.4 Alternating-time Temporal Logic 27

2.5 Conclusion . 28

3 Imperfect Information in Fair Non-repudiation Protocols 29

3.1 Introduction . 29

3.2 Fair-exchange Protocols . 30

3.3 Existing Formalizations . 31

3.4 Fair Exchange and Imperfect Information 33

3.5 Effective Fairness . 37

3.6 Hierarchy of Fairness Requirements 40

3.7 Related Work . 42

3.8 Conclusion . 43

v

vi

4 The Expressive Power of ATL∗ 45

4.1 Introduction . 45

4.2 Preliminaries . 45

4.2.1 Expressive Power . 45

4.2.2 The Simple One-alternating Fragment of Strategy Logic . . 46

4.2.3 Strategy Logic for Imperfect Information 47

4.3 Expressive Power in Turn-based Models 48

4.3.1 The Unnested ©-free Fragment of SSL 48

4.3.2 Weak-until Positive Normal Form 48

4.3.3 Translation . 49

4.3.4 Correctness of the Translation 53

4.4 Expressive Power in Concurrent Game Structures 55

4.4.1 ATL∗-bisimulation for Perfect Information 55

4.4.2 Results . 56

4.5 Expressive Power in Imperfect-information Models 57

4.6 Application to Security Properties 59

4.7 Conclusion . 60

5 Non-repudiation and Virtual Multi-Protocol Attacks 63

5.1 Introduction . 63

5.2 Non-repudiation . 64

5.3 Non-repudiation of Intention . 66

5.4 Assumptions of Non-repudiation . 69

5.4.1 Assumptions about Restrictions on Agents 69

5.4.2 Virtual Multi-Protocol Attacks 73

5.5 Case Studies . 80

5.5.1 Combining Signing and Encryption in PKCS#1v1.5 80

5.5.2 RSASSA-PSS and Intention 81

5.5.3 Fair Exchange . 82

5.6 Related Work . 85

5.7 Conclusion . 86

6 Incentives in Security Protocols 89

6.1 Introduction . 89

6.2 Security Protocols . 91

6.2.1 Rationality and Coordination in Security Protocols 92

6.2.2 Game-theoretic Models of Interaction 94

vii

6.2.3 Protocols as Games . 96

6.2.4 Security Protocols as Game Trees 96

6.2.5 Game Frames for Protocols 97

6.2.6 Adding Incentives to Protocols 98

6.2.7 Modeling Security Objectives 99

6.3 Game-Based Security Analysis . 100

6.3.1 Incentive-Based Correctness 100

6.3.2 Unknown Incentives . 101

6.3.3 Defendability of Protocols 102

6.4 Characterizations of Defendability 105

6.5 Examples . 106

6.5.1 The ASW Protocol . 106

6.5.2 A Protocol with a Non-deterministic TTP 107

6.6 Related Work . 109

6.7 Conclusion . 110

7 Farsighted Pre-equilibria 111

7.1 Introduction . 111

7.2 Farsighted Pre-Equilibria . 113

7.2.1 Deviation Strategies and Farsighted Stability 113

7.2.2 n-person Prisoner’s Dilemma 114

7.3 Characterizing and Computing FPE 116

7.4 Deviations as a Game . 117

7.4.1 Deviation Games . 118

7.4.2 Correspondence to FPE . 120

7.5 Comparing Farsighted Solution Concepts 122

7.5.1 Related Work . 123

7.5.2 FPE vs. Other Farsighted Concepts 124

7.6 Conclusion . 126

8 Relating Attack-Defense Trees and Games 129

8.1 Introduction . 129

8.2 Preliminaries . 130

8.2.1 Attack–Defense Trees . 130

8.2.2 Two-agent Binary Zero-sum Extensive-Form Games 133

8.3 From Games to ADTerms . 135

8.4 From ADTerms to Games . 139

viii

8.5 Conclusion . 142

9 Conclusion and Future Work 147

9.1 Conclusion . 147

9.2 Future Work . 149

Bibliography 151

Publications 162

Index of subjects 165

Curriculum Vitae 169

1

Introduction

1.1 Formal Modeling in Security

Security of computer systems plays a critical role in our society. We rely on digital
communication methods such as e-mail and internet phone calls, assuming that
other people cannot listen in to our conversations. We also use computer systems
to keep track of our medical data, and assume that these systems do not allow
third parties to access our patient records. Moreover, we assume that nuclear
power plants do not explode, even if terrorists try to attack them.

However, these assumptions do not always hold. In May 2013, it was revealed
that the National Security Agency of the United States is able to intercept our
e-mail messages [Gua13]. In April 2012, log-in details to a Luxembourgish medical
system were stolen, which enabled a member of the public to access medical data
of thousands of patients in Luxembourg [Wor13]. Nuclear power plants have (so
far) not exploded as a consequence of terrorist activity, but in June 2010, a virus
was discovered that was suspected to be created by the United States and Israel
in order to attack Iran’s nuclear facilities [Tim13].

As shown by these examples, we often assume that computer systems have the
property that they prevent against a certain type of harm caused by a malicious
entity. We call such a property a security property, and we call the malicious entity
an attacker. If the security property does not hold in a system, we say that the
system has a security vulnerability. Defining security properties, and making sure
that they hold in computer systems, is not an easy task. Computer security is the
field of computer science that deals with defining adequate security properties, and
with designing systems in which these properties hold.

Security properties are often not precisely defined. For example, we mentioned that
we assume that a medical system does not allow third parties to access patient data.
However, this is not a complete specification. It is not clear who are third parties
and who are not. Furthermore, it is not specified whether the system is allowed to
give access to aggregated or statistical data, instead of data of individual patients.
Moreover, we do not know what is actually meant with ‘access’.

If a security property is not precisely defined, it might be the case that it is inter-
preted differently by different people. For example, the designer of a system might
think that the security property means one thing, while the user thinks it means
something else. In that case, the user’s expectation of security turns out to be
false.

The imprecise specification of security properties does indeed lead to security
problems in real computer systems. An example of this is a vulnerability that

1

2 Chapter 1 Introduction

was discovered by the author of this thesis in the trouble ticket system Request
Tracker [Pra]. A trouble ticket system is a system that is used in an organization’s
customer support center to manage reported customer issues. This vulnerability
allowed the author to send e-mails that looked like they were sent by a Luxem-
bourgish governmental organization (technically, the author had the possibility
to digitally sign arbitrary text with the PGP key of this organization). The un-
derlying cause of this vulnerability was that PGP signing was understood by the
receiver of the e-mail to guarantee that a message has been intentionally sent by
the signer, while it was understood by the system designer to guarantee that a mes-
sage originated from the e-mail server of the signer. This lead to a situation where
the electronic signatures did not guarantee the property that the user expected,
which could be exploited by a malicious entity. To prevent possible abuse of this
vulnerability, the governmental organization and the vendor of the software were
alerted, and they subsequently resolved the issue. This vulnerability is discussed
in more detail in Section 5.3 of this thesis.

Even when the security properties of a system are precisely defined, it might still
be the case that they do not hold. Unfortunately, real-life systems in fact often do
not satisfy their security properties. Research in web security, carried out by the
author of this thesis, has shown that many websites do not satisfy their required
security properties [SaT]. Furthermore, operating systems like Microsoft Windows
and Ubuntu are forced to release hundreds of security patches per year. Moreover,
a well-known security protocol, the Needham-Schroeder Public-key Protocol, was
thought to be correct for almost twenty years, until an attack was found [Low96].
This shows that many systems used in the real world in fact do not satisfy the
security properties they are assumed to satisfy.

The research in this thesis is motivated by the idea that to create secure sys-
tems, it is important to first precisely define security properties, and subsequently
mathematically prove that a system satisfies these properties. Informal definitions
inevitably lead to multiple interpretations, which in turn may lead to security vul-
nerabilities. Moreover, the large number of vulnerabilities in real-world computer
systems shows that it is very difficult to get security right. Mathematical tools can
indisputably prove that a system satisfies its required security properties.

1.2 Game Theory and Logic in Security

Security properties are different from other desirable properties of computer sys-
tems. For most desirable properties of computer systems, it is the case that if the
system does not satisfy the property, everyone is worse off. It is in nobody’s advan-
tage if a program displays text in bold when the button for italics is selected. If a
computer-controlled elevator does not arrive when it is called, neither the building
owner nor the user of the elevator will be happy. If a medical system stops working,
both the patient and the doctor are in trouble.

For a security property, however, there exists an entity, the attacker, that profits
from the fact that the property does not hold. Consider, for instance, an e-mail
system. E-mail systems should have the property that people cannot intercept e-
mails. If this property does not hold in the system, a spy might actually be happy

1.2 Game Theory and Logic in Security 3

if he can listen in. Similarly, an enemy nation might like to be able to gain access
to the control of a nuclear plant.

To model security properties, we should not only consider the system itself, but
also who the attacker is, and what his incentives, abilities and knowledge are. For
example, if the attacker has no incentive to attack the system, because the attack
costs the attacker more than he profits from it, then we might still consider the
system secure. Alternatively, a system could be seen as secure if the attacker lacks
the ability to attack the system. Similarly, we could consider a system secure if
the attacker does not have the required knowledge to attack the system.

In addition, we must take into account the entity that is under attack, and its
interaction with the attacker. We call the entity that is under attack the defender.
It might be that the defender has no incentive to prevent an attack, because the
cost of preventing the attack is higher than the damage caused by the attack. It
might also be that the attacker can at first attack the system, but that the defender
has a way to respond and prevent the attack. Furthermore, it might be that when
there exists a way to defend against an attack, the defender does not have the
ability to fend off this attack, for example because he has insufficient information.
All these circumstances are relevant for determining whether a system is secure or
not.

Therefore, when we model security properties, we need to model the attacker,
the defender, and their interaction. In this thesis, we model the attacker and
the defender as agents. Agents are autonomous entities, typically with diverging
information or diverging interests, or both [SLB09]. They are typically software
modules or pieces of hardware, but the ideas apply to humans or even entire
organizations as well. We use game theory and logic to describe and predict the
behavior of agents.

Game theory helps us to understand the phenomena we observe when rational
agents interact [OR94]. We illustrate this by considering an extremely simple
protocol as a game. We assume that two people who are operating in the same
business, named Alice and Bob, simultaneously choose to send either a piece of
useful information, or a piece of useless information. Alice and Bob expect that
their business will gain 5000 euro from receiving useful information from the other
person. As Alice and Bob are competitors, they prefer however not to give out
useful information. They estimate that it will cost their business 1000 euro to
give useful information to the other person. Therefore, if both agents send useful
information, they each gain 5000− 1000 = 4000 euro. If both agents send useless
information, they each gain or lose nothing. If one person sends useful information
while the other person sends useless information, the person sending useful infor-
mation loses 1000 euro, and the person receiving useful information gains 4000
euro. We can model this situation as a game. We represent this game as a table:

Useful Useless
Useful (4000, 4000) (−1000, 5000)
Useless (5000,−1000) (0, 0)

This table shows that both agents have two strategies: sending useful information,
or sending useless information. The rows represent Alice’s strategies, and the
columns represent Bob’s strategies. The combination of a strategy of Alice and a

4 Chapter 1 Introduction

strategy of Bob is called a strategy profile. Each cell represents the utilities of a
strategy profile for both agents. The first component of the pair represents Alice’s
utility, and the second component represents Bob’s utility.

Let us consider what Alice should do. We can see that if Bob sends useless infor-
mation, it is best for Alice to also send useless information, because that gives her
a utility of 0 instead of −1000 euro. If Bob sends useful information instead, it is
still better for Alice to send useless information, as that gives her a utility of 5000
euro instead of 4000 euro. In other words, whatever Bob does, it is best for Alice
to send useless information. Therefore, game theory predicts that if two rational
agents execute this protocol, both of them will send useless information. This is
true despite the fact that both agents would be better off had they both chosen to
send the piece of useful information.

To model the agents, we use logic. A logic is concerned with valid reasoning. A
variety of logics have been developed for different purposes. We focus in particular
on logics developed in the field of multi-agent system. Multi-agent systems is a
field originating from artificial intelligence. Multi-agent systems are those systems
that include multiple autonomous entities with either diverging information or
diverging interests, or both [SLB09]. Agents might be software or hardware agents
living on the internet, but the ideas apply to humans as well. Logics have turned
out to be a useful tool to model the knowledge, beliefs, desires, intentions and
abilities of agents. For example, epistemic logic has been developed to reason
about the knowledge of agents (see e.g. [FHMV95]). Furthermore, to reason about
believes, desires, and intentions, the BDI model was proposed [Bra87]. Moreover,
for reasoning about the abilities of agents, logics such as Alternating-time Temporal
Logic [AHK02] and Strategy Logic [CHP10] have been developed.

Game theory and logic are in general tools designed to model the incentives, abil-
ities, and knowledge of agents. It can therefore be expected that they can serve a
useful role in modeling the attacker and defender, and consequentially in modeling
security protocols.

1.3 Non-repudiation

In this thesis, we repeatedly refer to a security property which is called non-
repudiation [ZG96]. Non-repudiation is, basically, the requirement that an agent
cannot deny having executed a certain event. We will illustrate this security prop-
erty on the basis of two scenarios.

Consider a teacher who wants to send the marks of a course to his students by
e-mail. A complication is that it is possible for a malicious person to generate
an e-mail that appears to be coming from someone else. This is because the e-
mail protocol does not verify that the indicated sender is indeed the real sender.
Therefore, the student who receives the e-mail does not know whether the e-mail
is sent by the teacher, or spoofed by another student playing a prank on him.
Moreover, if the university administration does not believe that the e-mail has been
sent by the teacher, the student has no evidence to convince the administration
otherwise. The desired property in this scenario is non-repudiation of origin, which
means that the sender should not be able to deny having sent a message.

1.4 Research Question 5

Now we consider a customer of a mobile phone company who wants to cancel
his contract. The customer sends a cancellation letter by e-mail. The customer
does not know whether the mobile phone company has received the cancellation. It
would be desirable that the company cannot deny having received the cancellation.
However, the customer has no way to prove that the company has received the
letter, so the company can deny having received it. It does not help if the company
confirms the cancellation by e-mail, as the company can also deny having sent the
confirmation. The desired property in this scenario is non-repudiation of receipt,
which means that the receiver should not be able to deny having received a message.

Protocols that achieve non-repudiation work by making a protocol participant
collect evidence, which in case of disagreement does not only convince himself,
but also a third party, called the judge. In the student–teacher scenario, the
administration acts as a judge. In the case of the mobile phone company, the local
court would act as a judge.

In non-repudiation protocols, it is often required to have fair exchange of evidences.
Fair exchange is a security property that guarantees that two items get exchanged
fairly. Fair exchange of evidences means, basically, that if one party is able to get
evidence of origin, the other party is able to get evidence of receipt, and vice versa.

We focus in this thesis on non-repudiation protocols, since they have an interest-
ing property that many other properties lack. Non-repudiation is mostly concerned
with dishonest behavior of the participants in the protocol itself, while other se-
curity properties are typically concerned with external attackers. For instance, in
a protocol satisfying non-repudiation of receipt of a message, the receiving agent
may attack by trying to obtain the message without providing evidence of receipt,
and the sender may attack by trying to obtain evidence of receipt without actually
providing the message.

Therefore, in non-repudiation protocols, protocol participants have both an in-
centive to cooperate, as they need to run the protocol together in order to get
evidence, and an incentive to compete, as they try to get more pieces of evidence
than they are supposed to. The tension between the incentive to cooperate and
the incentive to compete make such protocols interesting objects to study using
game theory and logic.

1.4 Research Question

We have seen that in order to define security properties, it is important to model
the attacker, the defender, and their interaction. Game theory and logic are tools
to model agents and their interaction. We therefore expect to gain new insights
by using game theory and logic for modeling the interaction between an attacker
and a defender. This brings us to our research question.

Research question: How can game theory and logic help us to model the inter-
action between an attacker and a defender?

This question is clearly very broad, as the interaction between attacker and de-
fender plays a role in many fields in security. We therefore identify three areas in
which we believe that the interaction between attacker and defender is relevant,

6 Chapter 1 Introduction

and restrict ourselves to these areas. These areas are security protocols, farsighted
games, and attack modeling. Each of these areas leads to a subquestion.

Subquestion 1. How can game theory and logic help us to model the interaction
between an attacker and a defender in security protocols?

A security protocol specifies the behavior of interacting agents, with the aim of
guaranteeing security properties for the participating agents. As security protocols
are executed by interacting agents with possibly diverging interests, we expect that
they are an interesting candidate for game-theoretical and logical modeling. We
analyze four different aspects of security properties.

First, we investigate how security protocols themselves can be defined in a game-
theoretical model. This model creates the basis for analyzing the security proper-
ties we consider when studying the other aspects.

We proceed by modeling the information protocol participants have. When mod-
eling security protocols, it is usually assumed that agents have perfect information,
i.e., they know exactly the global state of the system, including the local states
of all other agents. This is an unrealistic assumption. Therefore, to get a more
realistic model, we investigate how we can model imperfect information of security
properties.

If agents do not know how other agents behave, they cannot make any claims about
such agents [KSW97]. Therefore, it is important to model the restrictions on the
behavior of agents, and the knowledge agents have of such restrictions. The third
part of our analysis is concerned with modeling this aspect.

The fourth aspect concerns the incentives of the protocol participants. It is usually
assumed that protocols need to protect against all attacks, including attacks in
which agents act against their own incentives. By making assumptions about the
incentives of agents, and predicting the behavior of these agents based on their
incentives, we might accept more protocols as secure. Game theory is designed to
predict how agents behave given their incentives. Therefore, we investigate how
game theory can be used to model this interaction.

Subquestion 2. How can game theory and logic help us to model the interaction
between an attacker and a defender in farsighted games?

A solution concept is a formal rule that predicts how agents behave in a game
based on their utilities. Some well-known solution concepts, such as Nash equilib-
rium (e.g. [OR94]), predict that agents will end up playing a strategy profile where
no agent has an incentive to deviate to another strategy profile. Nash equilibrium
does not take into account that agents might be ‘farsighted’, i.e., take future de-
viations into account. Farsighted games are based on the interaction between an
initial deviation made by an agent who can be seen as an attacker, and follow-up
deviations by the other agents, who can be seen as defenders. We investigate how
we can define a solution concept in farsighted games. Moreover, we investigate
how the interaction between an attacker and a defender can be modeled as a game
on a meta-level.

Subquestion 3. How can game theory and logic help us to model the interaction
between an attacker and a defender in the field of attack modeling?

Attack modeling is concerned with modeling all possible attacks on a system. At-

1.5 Methodology 7

tack trees [Sch99] are a method to describe possible security weaknesses of a system.
Recently, it has been proposed to extend attack trees with countermeasures taken
by the defender, resulting in attack-defense trees [KMRS10]. In attack-defense
trees, the interaction between an attacker and a defender therefore plays an im-
portant role. This interaction reminds us of the interaction between two agents in
extensive-form games. We therefore try to make explicit the connection between
attack-defense trees and extensive-form games.

1.5 Methodology

The general methodology used in this thesis is characterized by an interdisciplinary
approach. To analyze computer security, we rely on techniques developed in game
theory, logic, and multi-agent systems. We will discuss in more detail the method-
ology we use to answer each of the three individual subquestions.

Subquestion 1. How can game theory and logic help us to model the interaction
between an attacker and a defender in security protocols?

We model security protocols using a variant of the Cremers–Mauw protocol seman-
tics [CM03, CM12]. We keep the original syntax of the protocol definitions. How-
ever, instead of interpreting protocols in labeled transition systems, we interpret
them in concurrent game structures [AHK02]. This allows us to use logics for rea-
soning about strategic ability, such as Alternating-time Temporal Logic [AHK02]
and Strategy Logic [CHP10], in order to specify security properties. Our ap-
proach differs from the game-based protocol specification used by Kremer and
Raskin [KR03], in the sense that we allow for agents that execute an unbounded
number of protocol roles (albeit at the cost of decidability).

In order to model agents with imperfect information, we use a version of concurrent
game structures with imperfect information as developed by Schobbens [Sch04b].
We use Alternating-time Temporal Logic and Strategy Logic to specify our security
properties. We interpret these logics in imperfect-information models by using the
semantics of Schobbens [Sch04b], and we define our own semantics to interpret
Strategy Logic in such models. We apply our modeling by using it to study the
specification of fair exchange.

In order to formally model the knowledge that agents need to have about other
agents, we use epistemic logic. We test our method by analyzing the components
of which the security property of non-repudiation exists. For each of these compo-
nents, we investigate which knowledge assumptions should hold.

To model the incentives of agents taking part in a security protocol, we use clas-
sical game theory. We apply our method to simple examples of non-repudiation
protocols.

Subquestion 2. How can game theory and logic help us to model the interaction
between an attacker and a defender in farsighted games?

We use the interaction between attacker and defender to define a new solution
concept, called farsighted pre-equilibria. We study the computational complexity of
the solution concept. We also investigate how farsighted pre-equilibria correspond
to solving a meta-game obtained by using the original payoff matrix as arena and

8 Chapter 1 Introduction

the deviations as moves.

Subquestion 3. How can game theory and logic help us to model the interaction
between an attacker and a defender in the field of attack modeling?

We use extensive-form games [OR94] to model attack–defense trees. To be more
precise, we compare attack–defense trees to two-agent binary zero-sum extensive-
form games. We propose a mapping between these two concepts, and show that
this mapping is correct by proving that it preserves satisfiability.

1.6 Thesis Overview

We now discuss the structure of this thesis. We analyze security properties (Sub-
question 1) in Chapters 2–5. In Chapter 7 , we analyze farsighted games (Subques-
tion 2). In Chapter 8, we analyze attack modeling. We proceed with discussing
the content of the individual chapters.

• Chapter 2: Modeling Security Protocols as Games

We introduce the game-theoretical framework for analysis of security pro-
tocols that we use in this thesis. This framework is created by uniting
the Cremers–Mauw protocol semantics [CM03, CM12] with concurrent game
structures [AHK02].

• Chapter 3: Imperfect Information in Fair Non-repudiation Proto-

cols

We study the verification of fairness in non-repudiation protocols by means of
Alternating-time Temporal Logic, and we point out a number of limitations
of this approach. The first limitation has to do with the lack of modeling of
imperfect information. The second limitation has to do with the fact that
fairness is not a sufficient property for fair-exchange protocols, as protocols
are also required to be effective. We propose a solution to overcome both of
these limitations in isolation. Moreover, we give a hierarchy of the various
definitions of fairness, and prove that this hierarchy is correct.

This chapter is based on joint work with Wojciech Jamroga and Sjouke
Mauw [JMM12].

• Chapter 4: The Expressive Power of ATL∗

We show that Alternating-time Temporal Logic is not expressive enough to
overcome both limitations from Chapter 3 at the same time. Instead, we
model fair exchange in Strategy Logic. We do so by giving a characterization
of the class of formulas of Alternating-time Temporal Logic that cannot be
expressed in Strategy Logic, and showing that the property that expresses
fair exchange falls into this class. We also show that in perfect-information
models, at least part of the fragment of Strategy Logic can be expressed in
Alternating-time Temporal Logic.

This chapter is based on joint work with Leon van der Torre (to be submitted
for publication).

1.6 Thesis Overview 9

• Chapter 5: Non-repudiation and Virtual Multi-Protocol Attacks

We formally model the property of non-repudiation. Moreover, we introduce
a new class of attacks, which we call virtual multi-protocol attacks, and which
are, basically, situations in which a security property holds, but in which the
security property is not known to hold by some agent. To prevent such
attacks, we show that we need an additional assumption on the knowledge
that agents have about the protocols that other agents execute.

This chapter is based on joint work with Sjouke Mauw (submitted for pub-
lication).

• Chapter 6: Incentives in Security Protocols

We propose a methodological framework for analyzing security protocols and
other interaction protocols that takes into account the incentives of agents.
Our idea is based on a set of defenders of the protocol that are in favor of
the objective of the protocol. We say that a protocol can be defended if it
is correct with respect to every utility profile in which the preferences of all
defenders comply with the objective. We obtain characterization results for
defendability under Nash equilibria.

This chapter is based on joint work with Wojciech Jamroga and Henning
Schnoor [JMS13].

• Chapter 7: Farsighted Pre-equilibria

We propose a new solution concept, which we call farsighted pre-equilibrium.
This solution concept takes into account only deviations that do not lead to
a decrease of the agent’s utility even if some other deviations follow.

The idea is to “broaden” Nash equilibrium in a way that does not discrim-
inate solutions that look intuitively appealing but are ruled out by Nash
equilibrium. Then Nash equilibrium may be interpreted as a specification of
play which is certainly rational, and strategy profiles that are not farsighted
pre-equilibria can be considered certainly irrational.

This chapter is based on joint work with Wojciech Jamroga [JM11].

• Chapter 8: Relating Attack-Defense Trees and Games

We make the link between attack–defense trees and a class of extensive-form
games explicit. In particular, we show that attack–defense trees and binary
zero-sum two-agent extensive-form games have equivalent expressive power
when considering satisfiability, in the sense that they can be translated to
each other while preserving their outcome.

This chapter is based on joint work with Barbara Kordy, Sjouke Mauw, and
Patrick Schweitzer [KMMS10].

• Chapter 9: Conclusion and Future Work

We draw conclusions, summarize the contributions of this thesis, and point
out suggestions for future work.

2

Modeling Security Protocols as Games

Abstract. We develop a game-based protocol semantics, by modeling protocols as

concurrent game structures. To be precise, we take protocol specifications from the

Cremers–Mauw protocol semantics, and interpret such protocol specifications in concur-

rent game structures instead of in labeled transition systems. This allows us to define

security properties on Cremers–Mauw protocol specifications in logics of strategic ability,

such as Alternating-time Temporal Logic.

2.1 Introduction

When studying security protocols, we are interested in the security properties
that hold in such protocols. In order to be able to study such properties, we
formally introduce security protocols and their semantics. The treatment is based
on the operational semantics framework developed by Cremers and Mauw [CM03,
CM12], but the definitions and observations in this chapter easily transfer to other
frameworks, such as Strand Spaces [THG99].

Our model is different from the treatment by Cremers and Mauw in four ways.

• To allow analysis with Alternating-time Temporal Logic, we use concurrent
game structures [AHK02] instead of labeled transition systems to describe
the protocol interaction.

• The protocol semantics framework by Cremers and Mauw only allows for
linear protocols, i.e., protocols that consist of the sequential composition of
events. Our treatment follows Van Deursen [VD11] in that we allow for
branching protocols by including parallel composition and choice points in
our semantics. Moreover, we allow for loops by defining no-exit iteration and
the binary Kleene star operation [BBP94].

• The protocol semantics by Cremers and Mauw only considers finite exe-
cutions and finite traces. However, this is not sufficient when considering
liveness properties, i.e., properties that require that something eventually
happens. Such properties are needed, for example, when defining fair ex-
change. Therefore, we also consider infinite executions and infinite traces.

• For simplicity, we do not consider arbitrary functions, and only define hash-
ing, encryption, and constants.

11

12 Chapter 2 Modeling Security Protocols as Games

2.2 Concurrent Game Structures

We model protocols as concurrent game structures [AHK02]. An infinite concurrent
game structure describes how actions taken by a set of agents can cause a transition
from one state to the next. Every state is labeled with a set of propositions. A
state and a combination of actions, one for each agent, together define the next
state of the system.

We first define infinite concurrent game structures.

Definition 2.1 (Infinite concurrent game structures). An infinite concurrent game
structure is a tuple M = (Agt,Act ,Q ,Π , π, d , δ) with the following components:

• a countable set Agt = {a1, a2, . . .} of agents;

• a countable set Act of actions;

• a countable set Q of states;

• a countable set Π of propositions;

• a labeling function π assigning a set π(q) ⊆ Π of propositions true at q to
each state q ∈ Q;

• a set d = {d1, d2, . . .}, such that for each agent ai ∈ Agt, di is a move function
assigning a set di(q) ⊆ Act of actions available at state q ∈ Q (we use D(q)
to denote the set of action profiles d1(q)× d2(q)× . . .);

• a transition function δ assigning a new state δ(q, (α1 , α2 , . . .)) ∈ Q to every
combination of state q ∈ Q and action profile (α1, α2, . . .) ∈ D(q).

We say that a concurrent game structure is finite when the sets of agents, actions,
states and propositions are finite.

Definition 2.2 ((Finite) concurrent game structures). A (finite) concurrent game
structure is an infinite concurrent game structure M = (Agt,Act ,Q ,Π , π, d , δ)
where Agt, Act, Q, and Π are finite.

Example 2.1. Consider concurrent game structure M (Figure 2.1). It is formally
defined as follows.

M = (Agt,Act ,Q ,Π , π, d1 , δ1) with Agt = {a, b}, Act = {1, 2}, Q = {q0, q1, q2, q3},
Π = {pa, pb, pc}, π = {q0 7→ ∅, q1 7→ {pa, pb, pc}, q2 7→ {pa, pb}, q3 7→ ∅}, d1(q0) =
d2(q0) = {1, 2}, d1(q1) = d1(q2) = d1(q3) = d2(q1) = d2(q2) = d2(q3) = {1},
δ(q0, (1 , 1)) = q1, δ(q0, (2 , 1)) = δ(q0, (2 , 2)) = q2, δ(q0, (1 , 2)) = q3, and finally
δ(qi, (1 , 1)) = qi for i ∈ {1, 2, 3}.

In this concurrent game structure, there are two agents, a and b. There are also
two actions, 1 and 2. There are four states, q0, q1, q2, and q3. There are three
propositions, pa, pb, and pc. In q0 and q3, none of the propositions are true, while
all propositions are true in q1, and proposition pa and pb are true in q2. In q0, both
players can play 1 and 2, while in q1, they can only play 1. From q0, if both players
play 1, they end up in q1. If a plays 2, they end up in q2 independent of what
b plays. Otherwise, they end up in q3. Once in one of these states, they remain
there.

2.2 Concurrent Game Structures 13

q0

∅

q1

{pa, pb, pc}

q2

{pa, pb}

q3

∅

(1 , 1)
(2 , 1)
(2 , 2)

(1 , 2)

(1 , 1) (1 , 1) (1 , 1)

Figure 2.1: An example of a concurrent game structure

A path is an infinite sequence of states such that there is a transition between each
two subsequent states.

Definition 2.3 (Paths [AHK02]). Let M = (Agt,Act ,Q ,Π , π, d , δ) be a concur-
rent game structure. A path in M is an infinite sequence λ = q0, q1, q2, . . . of states
such that for all positions i ≥ 0, we have qi+1 = δ(qi, (α1 , α2 , . . .)) for some action
profile (α1, α2, . . .) ∈ D(qi).

Now we define the finite prefix of a sequence, the infinite suffix of a sequence, and
the composition of two sequences.

Definition 2.4 (Finite prefix, Infinite suffix, Composition). Given a path λ =
q0, q1, . . . and a position i ≥ 0, we use λ[i], λ[0, i], and λ[i,∞] to denote the state
qi, the finite prefix q0, q1, . . . , qi, and the infinite suffix qi, qi+1, . . ., respectively.
Furthermore, given a finite sequence λ = q0, . . . , qn and a sequence λ′ = q′0, . . ., the
composition of λ and λ′, denoted λ · λ′, is q0, . . . , qn, q

′
0,

A strategy of an agent is a function that assigns an action to every finite non-empty
sequence of states.

Definition 2.5 (Strategies [AHK02]). Let M = (Agt,Act ,Q ,Π , π, d , δ) be a con-
current game structure. We write Q+ for the set of finite non-empty sequences,
i.e., sequences of the form q1, . . . , qn such that qi ∈ Q for 1 ≤ i ≤ n.

A strategy σa of agent a is a function from Q+ to Act such that if σa(q1, . . . , qn) =
α, then α ∈ da(qn). Given a sequence of agents C, a collective strategy σC for C
is a sequence of strategies σa, one for each agent a ∈ C.

We write Σa for the set of all strategies of agent a.

A set of agents, an initial state, and a set of strategies together define an outcome,
i.e., the set of paths that this set of agents can enforce.

Definition 2.6 (Outcome [AHK02]). Let M = (Agt,Act ,Q ,Π , π, d , δ) be a con-
current game structure where Agt = {a1, a2, . . .}, let q ∈ Q be a state, let C ⊆ Agt

14 Chapter 2 Modeling Security Protocols as Games

be a set of agents, and let σC = (σb1 , σb2 , . . .) be a collective strategy for C. The
outcome of σC from state q, written as out(q, σC), is the set of paths λ = q0, . . . , qn
such that q0 = q and for all k ≥ 0, there exists (α1, α2, . . .) ∈ D(qk) such that

1. αi = σi(λ[0, k]) for all i such that ai ∈ C, and

2. δ(qk, (α1 , α2 , . . .)) = qk+1.

Given an agent a, sometimes we write out(q, σa) instead of out(q, (σ{a})).

A special case of concurrent game structures are turn-based game structures. These
are concurrent game structures in which at every state, there is one agent deter-
mining the next state. If in a state, agent a is solely determining the next state,
we call that state an a-state.

Definition 2.7 (a-state). LetM = (Agt,Act ,Q ,Π , π, d , δ) with Agt = {a1, a2, . . .}
be a concurrent game structure, let q ∈ Q be a state, and let ai ∈ Agt be an
agent. Then we say that q is an ai-state if there exists an action αi such that
for all actions α1, . . . , αi−1, αi+1, . . . and actions β1, . . . , βi−1, βi+1, . . ., it holds that
δ(q, (α1, . . . , αi−1, αi, αi−1, . . .)) = δ(q, (β1, . . . , βi−1, αi, βi+1, . . .)).

A concurrent game structure is turn-based if every state is an a-state for some
agent a.

Definition 2.8 (Turn-based game structure). We say that a concurrent game
structure M = (Agt,Act ,Q ,Π , π, d , δ) is a turn-based game structure if for every
state q ∈ Q, there exists an agent a such that q is an a-state.

2.3 Modeling Security Protocols

In practice, describing security protocols by fully giving the concurrent game struc-
tures is cumbersome, as the state space is exponential in the number of rounds of
the protocol. Instead, we sometimes specify security protocols by means of the
Cremers–Mauw protocol semantics [CM03, CM12].

The formalization of security protocols in the Cremers–Mauw protocol semantics
is based on the two notions of roles and runs. A protocol consists of a collection
of roles. Roles might contain uninstantiated variables and role names to which no
agents have been assigned. In the execution of a protocol, every role might give rise
to one or more runs. A run is modeled as a role together with a unique identifier,
an instantiation of the variables, and an assignment of agents to roles.

2.3.1 Role Terms

We start by defining the set of role terms. Role terms can be used in the specifica-
tion of a role, for example as terms that are sent or received. We first consider the
basic term sets, such as freshly generated values, roles and variables, which can
be used to construct role terms. Afterwards, we add constructors for pairing and
cryptographic primitives to construct the set of all role terms.

2.3 Modeling Security Protocols 15

Definition 2.9 (Basic Term Sets). We assume the following basic term sets:

• Var, denoting variables that are used to store received messages;

• Const, denoting constants, such as natural numbers and strings;

• Fresh, denoting nonces (numbers used once), i.e., values that are freshly gen-
erated for each instantiation of a role;

• Role, denoting roles.

The following table contains typical elements for each of the sets defined above.

Description Set Typical element
Variables Var V , W
Constants Const 1, hello
Nonces Fresh ni, nr
Roles Role R, S

The basic term sets can be used to construct more complex role terms. We use
(t1, t2) to denote the pairing of role terms t1 and t2. Moreover, we define the
following cryptographic primitives. We write h(t) for the hashing of role term t,
and {| t1 |}t2 for the encryption of role term t1 with role term t2. Finally, we write
sk(R) for the secret key of role R, pk(R) for the public key of role R, and k(R, S)
for the key shared between role R and S.

Definition 2.10 (Role Terms). The set of role terms RoleTerm is defined as
follows.

RoleTerm ::= Var | Const | Fresh | Role

| (RoleTerm,RoleTerm)

| h(RoleTerm)

| {|RoleTerm |}RoleTerm

| sk(Role) | pk(Role) | k(Role,Role).

We write RoleTerm for the set of all role terms.

For readability, we sometimes write (t1, t2, t3) instead of ((t1, t2), t3), and {| t1, t2 |}k
instead of {| (t1, t2) |}k.

We proceed by defining the set of variables in a role term and the set of roles in a
role term.

Definition 2.11 (Variables in a role term). The set of variables in a role term rt,

16 Chapter 2 Modeling Security Protocols as Games

written vars(rt), is defined as follows.

vars(rt) =



























































∅ if rt ∈ Fresh ∪ Role ∪ Const ,

{rt} if rt ∈ Var ,

vars(rt1) ∪ vars(rt2) if rt = (rt1, rt2),

vars(rt1) if rt = h(rt1),

vars(rt1) ∪ vars(rt2) if rt = {| rt1 |}rt2 ,

vars(rt1) if rt = sk(rt1),

vars(rt1) if rt = pk(rt1),

vars(rt1) ∪ vars(rt2) if rt = k(rt1, rt2).

Definition 2.12 (Roles in a role term). The set of roles in a role term rt, written
roles(rt), is defined as follows.

roles(rt) =



























































∅ if rt ∈ Fresh ∪Var ∪ Const ,

{rt} if rt ∈ Role,

roles(rt1) ∪ roles(rt2) if rt = (rt1, rt2),

roles(rt1) if rt = h(rt1),

roles(rt1) ∪ roles(rt2) if rt = {| rt1 |}rt2,

roles(rt1) if rt = sk(rt1),

roles(rt1) if rt = pk(rt1),

roles(rt1) ∪ roles(rt2) if rt = k(rt1, rt2).

A role term that is encrypted with a key can only be decrypted with the inverse
of this key. Secret keys and public keys are each other’s inverse, enabling asym-
metric encryption. All other role terms are their own inverse, enabling symmetric
encryption.

Definition 2.13 (Inverse). We define the inverse function . . .−1 : RoleTerm →
RoleTerm as follows. Given R ∈ Role, we set pk(R)−1 = sk(R) and sk(R)−1 =
pk(R). Moreover, we set t−1 = t for all terms t that are not of the form sk(R) or
pk(R).

Given a set of role terms T and role term t, the term inference relation T ⊢ t
expresses that t is derivable from T . This relation is defined as follows.

Definition 2.14 (Term Inference Relation). Let T be a set of terms. The term
inference relation ⊢ : P(RoleTerm)→ RoleTerm is defined as the smallest relation
that satisfies the following properties for all terms t, t′, k ∈ RoleTerm.

t ∈ T ⇒ T ⊢ t;

T ⊢ t ∧ T ⊢ t′ ⇒ T ⊢ (t, t′);

T ⊢ (t, t′) ⇒ T ⊢ t ∧ T ⊢ t′;

T ⊢ t ⇒ T ⊢ h(t);

T ⊢ t ∧ T ⊢ k ⇒ T ⊢ {| t |}k;

T ⊢ {| t |}k ∧ T ⊢ k
−1 ⇒ T ⊢ t.

2.3 Modeling Security Protocols 17

The definition states that a term t is derivable from T if t is an element of T .
Furthermore, a pair is derivable if both elements of the pair are derivable, and vice
versa. The hash of a term is derivable if the term is derivable (but not vice versa).
If a term t and a key k are derivable, then the encryption of t with k is derivable
as well. If the encryption of t with k is derivable, then t is derivable whenever the
inverse of k is derivable.

Example 2.2. Let k,m ∈ Fresh, and let b ∈ Role. Consider the following set T :

T = {{| k |}pk(b), {| h(m) |}k, sk(b)}.

It holds that T ⊢ k, since we have T ⊢ {| k |}pk(b) and T ⊢ sk(b). It also holds that
T ⊢ h(m), since we have T ⊢ k and T ⊢ {| h(m) |}k. Moreover, we have T ⊢ h(k),
since we have T ⊢ k. However, we have T 6⊢ m, since m cannot be derived from
h(m).

2.3.2 Roles and Protocol Specifications

A security protocol consists of a collection of roles. A role describes the abstract
sequences of role events that an agent might perform when executing his part of
the protocol. We mainly focus on three types of events: send, recv and claim.
The events recv and send concern the exchange of messages, while claim events are
internal to an agent. To define claim events, we assume a set Claim of claim events,
of which we will define the meaning below.

Definition 2.15 (Role events). We define the set RoleEvent of all role events as
follows.

RoleEvent ::= send(Role,Role,RoleTerm)

| recv(Role,Role,RoleTerm)

| claim(Role,Claim)

The three events have the following meaning:

• send(R,R′, t) denotes the sending of message t by role R with intended re-
ceiver R′.

• recv(R,R′, t) denotes the reception of message t by role R′, apparently sent
by R.

• claim(R, p) denotes that role R claims security property p. Examples of such
security properties will be introduced later. The idea behind claim events is
that the security protocol assures that the property holds if an agent reaches
such a claim.

Now we define the active role of a role event.

Definition 2.16 (Active role). If e = send(R,R′, t), e = recv(R′, R, t), or e =
claim(R, p), we call R the active role of event e, denoted active(e).

18 Chapter 2 Modeling Security Protocols as Games

Now that we have defined role events, we can specify how these role events can
be combined to form role specifications. We define role specifications recursively.
To start the recursion, we say that role events are the most basic form of role
specifications. We consider five ways of composing role specifications. Sequential
composition of roles R and S, denoted by R · S, indicates that first R is executed,
followed by S. Alternative composition of roles R and S, denoted by R + S,
indicates that either R or S is executed. Conditional branching of roles R and S
given role terms t and t′, denoted by (R⊳t = t′ ⊲S), indicates that R is executed if
t equals t′, and S otherwise. No-exit iteration [Fok96] of roles R, denoted by Rω,
indicates that R is executed infinitely often. Binary Kleene composition [Fok97] of
role specifications R and S, denoted by R * S, indicates that R is executed zero
or more times, followed by the execution of S.

Definition 2.17 (Role specifications).

RoleSpec ::= RoleEvent

| RoleSpec · RoleSpec

| RoleSpec + RoleSpec

| (RoleSpec ⊳ RoleTerm = RoleTerm ⊲RoleSpec)

| RoleSpecω

| RoleSpec * RoleSpec.

Now we can define a protocol specification as a partial mapping from roles to role
specifications.

Definition 2.18 (Protocol specification). A protocol specification is a partial func-
tion from Role to RoleSpec. We write Protocol for the set of all protocol specifica-
tions. We assume that Role is a fresh set of variables for every protocol.

We only consider security protocols where:

• the specified role is the active role in all of its events, and

• all variables occurring in send or claim events have first been instantiated in
a recv event.

Example 2.3. We demonstrate the notions introduced so far on the following
protocol.

Let S,R, T ∈ Role, let m, continue, true, false ∈ Const, let V,W,X ∈ Var and let
NRO = {|m |}sk(S) and NRR = {|m |}sk(R).

Protocol 2.1:

S 7→ recv(T, S, continue) · send(S,R,NRO) ·

(send(S, T, false) * (send(S, T, true)) · recv(T, S, V)))

R 7→ send(R, T,NRR) · recv(S,R, V)

T 7→ recv(R, T, V) · send(T, S, continue) ·

(recv(S, T, false) * (recv(S, T, true) · send(T, S,NRR)))

2.3 Modeling Security Protocols 19

We use an informal notation, called Alice-and-Bob notation, to graphically depict
security protocols in a way that is easier to read. Protocol 2.1 can be displayed in
Alice-and-Bob notation as follows. In such a description, R → T : m means that
R sends message m to T .

Protocol 2.1

1. R→ T : NRR

2. T → S: continue

3. S → R: NRO

4. Choice for S:

(a) i. S → T : false

ii. Go to 4.

(b) i. S → T : true

ii. T → S: NRR

In this protocol, first R sends NRR to T . Next, T sends continue to R. Them, S
sends NRO to R. After that, S can send false to S zero or more times, followed by
sending true to T . Finally, T sends NRR to S.

To each role we assign the initial knowledge that an agent is assumed to have when
executing this role. We will normally not make this knowledge explicit when it
can be derived from the context. For instance, if a role contains the signing of a
message, we assume that the executing agent knows the signing key.

2.3.3 Runs

In the previous section, we have modeled a protocol as a set of roles. In this
section, we will model the execution of a protocol. To do so, we assume a set Agt
of agents. An agent can execute more than one instance of the same role, or even
several instantiations of different roles, at the same time.

We assume a set RID of run identifiers, and a set AttackerFresh of nonces generated
by the attacker.

Now we will define the set of run terms which are used to build runs. The set of
run terms is similar to the set of role terms, with the following differences. First,
run terms can contain agents. Second, variables, nonces, and roles are marked
with the run identifier, to avoid confusion between variables, nonces, or roles from
different runs. Third, we add the set AttackerFresh of nonces generated by the
attacker.

Definition 2.19 (Run Terms). The set of run terms RunTerms is defined as

20 Chapter 2 Modeling Security Protocols as Games

follows.

RunTerms ::= Var#RID | Const | Fresh#RID | Role#RID | Agt

| AttackerFresh

| (RunTerms,RunTerms)

| h(RunTerms)

| {|RunTerms |}RunTerms

| sk(Role) | pk(Role) | k((,Role),Role).

We define the inverse of run terms analogous to the inverse of role terms.

Definition 2.20 (Inverse). We define the inverse function . . .−1 : RunTerms →
RunTerms as follows. Given R ∈ Role ∪ Agt, we set pk(R)−1 = sk(R) and
sk(R)−1 = pk(R). Moreover, we set t−1 = t for all terms t that are not of the
form sk(R) or pk(R).

An instantiation is determined by three components:

• A run identifier θ. This is to bind together the different instantiated events
that make up a run. Thus, it distinguishes different executions of the same
role.

• A role assignment ρ. This is a function that maps the roles occurring in an
event to actual agents executing these roles.

• A variable assignment σ. This is a function that maps variables to concrete
values.

Definition 2.21 (Instantiation). An instantiation is a triple (θ, ρ, σ), where θ ∈
RID is a run identifier, ρ ∈ Role 7→ Agt is a role assignment, and σ ∈ Var 7→
RunTerms is a variable assignment. We write Inst for the set of all instantiations.

The instantiation of event e is denoted by ((θ, ρ, σ), e).

Definition 2.22 (Instantiation of event). Let inst ∈ Inst be an instantiation such
that inst = (θ, ρ, σ). Let rt, rt1, rt2 be role terms such that roles(rt) ⊆ dom(ρ) and
vars(rt) ⊆ dom(σ).

(inst, rt) =















































































n#θ if rt = n ∈ Fresh,

ρ(R) if rt = R ∈ Role,

σ(v) if rt = v ∈ Var ,

c if rt = c ∈ Const ,

((inst, rt1), (inst, rt2)) if rt = (rt1, rt2),

h((inst, rt1)) if rt = h(rt1),

{| (inst, rt1) |}(inst,rt2) if rt = {| rt1 |}rt2,

sk((inst, rt1)) if rt = sk(rt1),

pk((inst, rt1)) if rt = pk(rt1),

k((inst, rt1), (inst, rt2)) if rt = k(rt1, rt2).

2.3 Modeling Security Protocols 21

Definition 2.23 (Set of all runs). We define the set Run of all runs as follows.

Run = Inst× RoleEvent∗,

where RoleEvent∗ denoted a sequence of elements of type RoleEvent.

A run is an instantiation of a role, and consists of the instantiations of the role’s
events. To be more precise, we denote the instantiation of a sequence e1, . . . , en of
events by ((θ, ρ, σ), (e1, . . . , en)). An instantiation of a sequence of events is equal
to a sequence of instantiated events:

((θ, ρ, σ), (e1, . . . , en)) = ((θ, ρ, σ), e1), . . . , ((θ, ρ, σ), en).

The actor actor((inst, e)) of an instantiated event (inst, e) is the agent who exe-
cuted the active role.

Definition 2.24 (Actor). The actor of an instantiated event is determined by a
function actor from instantiated events to agents that is defined as follows.

actor((θ, ρ, σ), e) = ρ(active(e)).

If s = P (R), then we define the set of possible runs of this role by

runsof (P,R) = {((θ, ρ, ∅), s) | θ a run identifier, ρ maps all roles in P to agents}.

Definition 2.25 (Run Event). The set RunEvent of run events is defined as fol-
lows.

Inst× (RoleEvent ∪ {create(R) | R ∈ Role}).

Furthermore, we define the set of active run identifiers given a set of runs F .

Definition 2.26 (Active Run Identifiers). Given a set of runs F , we define the
set of active run identifiers as

runIDs(F) = {θ | ((θ, ρ, σ), s) ∈ F}.

2.3.4 Protocols as Concurrent Game Structures

Now we will define an operational semantics for security protocols, by representing
security protocols as infinite concurrent game structures.

We have seen that an infinite concurrent game structure consists of six compo-
nents, i.e., M = (Agt,Act ,Q ,Π , π, d , δ). We will now define these components
individually.

We use an infinite set of agents, denoted Agt, as agents of the concurrent game
structure. One of the agents is a dedicated scheduler Sched, i.e., we assume that
Sched ∈ Agt. The actions of the concurrent game structure are the set of run
events, together with the empty move ǫ.

22 Chapter 2 Modeling Security Protocols as Games

Definition 2.27 (Actions of protocols represented as a concurrent game struc-
ture). The set of actions of protocols that are represented as a concurrent game
structure are defined as follows.

Act = RunEvent ∪ {ǫ}.

The states of a concurrent game structure consist of three components. The first
component represent the agent whose turn it is. The second component represents
the attacker knowledge. The third component represents the (remainder of the)
runs that still have to be executed.

Definition 2.28 (States of protocols represented as a concurrent game structure).
The set of states of protocols that are represented as a concurrent game structure
are defined as follows.

Q = Agt× P(RunTerms)× P(Run).

The labeling function π and the set of propositions Π depend on the purpose of
the verification. We therefore define these components in the chapters in which
they are used.

We proceed by defining the transition relation. The transition relation will be
defined in two steps, following Van Deursen [VD11]. The actual transition relation
is defined by agent rules, which defines under which conditions an agent may
execute an event. Agent rules are defined in terms of composition rules, which are
used to model protocol flow.

Composition rules indicate transitions from one role specification to another by
means of an event. They have the form s1

e
=⇒ s2, with s1, s2 ∈ RoleSpec and

e ∈ RoleEvent . We write s1
e

=⇒ s2 for transactions from role specification s1 to
role specification s2 by means of event e. The composition rules are displayed in
Table 2.1, for s1, s

′
1, s2, s

′
2 ∈ Agenda and e ∈ RoleEvent .

The rule exec states that if we have atomic event e, we can execute that event and
be done. Rules seq1 and seq2 states that in s1 ·s2, we can either completely execute
s1 and continue with s2, or do a step in s1 and continue with the rest of s1, followed
by s2. The rules choiceL and choiceR states that it is possible to execute a step
from either the left or the right branch of parallel composition, and to discard the
other branch. The rules kleene1, kleene2, kleene3, and kleene4 state that in s1 ∗ s2,
we can completely execute s1 and execute s1 ∗ s2 again, or partially execute s1 and
execute the rest of s1 followed by s1 ∗ s2, or completely execute s2 and be done, or
partially execute s2 and execute the rest of s2. The rules inf1 and inf2 state that
in s1

∞, we can either fully execute s1 and execute s∞1 again, or partially execute
s1 and execute the rest of s1, followed by s∞1 again.

Next, we define the set of all paths by defining derivation rules, which define when
an agent can cause the system to transition from one state to another Before we
can do so, we first need to define matching. During the execution of a protocol,
variables are assigned values by executing recv events. The term in the recv event
can be seen as a pattern that should be matched by the term in an incoming
message. We write

2.3 Modeling Security Protocols 23

[exec]
e

e
=⇒ �

[seq1]
s1

e
=⇒ �

s1 · s2
e

=⇒ s2
[seq2]

s1
e

=⇒ s′1

s1 · s2
e

=⇒ s′1 · s2

[choiceL]
s1

e
=⇒ s′1

s1 + s2
e

=⇒ s′1
[choiceR]

s2
e

=⇒ s′2

s1 + s2
e

=⇒ s′2

[condT]
s1

e
=⇒ s′1

s1 ⊳ x = x ⊲ s2
e

=⇒ s′1
[condF]

s2
e

=⇒ s′2 x 6= y

s1 ⊳ x = y ⊲ s2
e

=⇒ s′2

[kleene1]
s1

e
=⇒ �

s1 ∗ s2
e

=⇒ s1 ∗ s2
[kleene2]

s1
e

=⇒ s′1

(s1 ∗ s2)
e

=⇒ s′1 · (s1 ∗ s2)

[kleene3]
s2

e
=⇒ �

s1 ∗ s2
e

=⇒ �
[kleene4]

s2
e

=⇒ s′2

s1 ∗ s2
e

=⇒ s′2

[inf1]
s1

e
=⇒ �

s1∞
e

=⇒ s1∞
[inf2]

s1
e

=⇒ s′1

s1∞
e

=⇒ s′1 · s1
∞

Table 2.1: Composition rules

Match((θ, ρ, σ), pt, t, (θ, ρ, σ′))

to denote the process of matching pattern pt by term t, where σ′ is the extension
of substitution σ by binding variables from pt to values from t.

Definition 2.29 (Match [CM03, CM12]). For every instantiation inst = (θ, ρ, σ) ∈
Inst, role term pt ∈ RoleTerm, run term m ∈ RunTerms, and instantiation
inst′ = (θ′, ρ′, σ′) ∈ Inst, the predicate Match(inst, pt,m, inst′) holds if and only if
θ = θ′, ρ = ρ′ and

(inst′, pt) = m ∧

σ ⊆ σ′ ∧

dom(σ′) = dom(σ) ∪ vars(pt).

Example 2.4. The following predicate is true:

Match((θ, ρ, ∅), recv(R, S, {| V, n |}pk(R)), ((θ, ρ, ∅), {| c, n |}pk(R)), (θ, ρ, {V 7→ c})).

This predicate expresses that the instantiated event ((θ, ρ, ∅), recv(R, S, {| V, n |}pk(R)))
matches a term of the form ((θ, ρ, ∅), {| c, n |}pk(R)). The result of this match is that
the instantiation (θ, ρ, ∅) is extended to (θ, ρ, {V 7→ c}).

Now we can define the derivation rules (Table 2.2). The first rule in this table
defines the creation of a new run for role R. Such a new run is assigned a fresh

24 Chapter 2 Modeling Security Protocols as Games

[create]

P ∈ Protocol r ∈ dom(P) (inst, s) ∈ runsof (P, r) θ 6∈ runIDs(F)
inst = (θ, ρ, ∅) a 6= Sched

(a,AKN , F)
(inst,create(r))
−−−−−−−−→a (S,AKN , F ∪ {(inst, s)})

[send]
(inst, s) ∈ F (inst, s)

(inst,e)
====⇒ (inst, s′) e = send(r, r′, m) a 6= Sched

(a,AKN , F)
(inst,e)
−−−−→a (Sched,AKN ∪ {(inst,m)}, (F \ (inst, s)) ∪ (inst, s′))

[recv]

(inst, s) ∈ F (inst, s)
(inst′,e)
====⇒ (inst′, s′) e = recv(r, r′, pt) AKN ⊢ m

Match(inst, pt,m, inst′) a 6= Sched

(a,AKN , F)
(inst′,e′)
−−−−−→a (S,AKN , (F \ (inst, s)) ∪ (inst′, s′))

[claim]
(inst, s) ∈ F (inst, s)

(inst,e)
====⇒ (inst, s′) e = claim(r, p) a 6= Sched

(a,AKN , F)
(inst,e)
−−−−→a (S,AKN , (F \ (inst, e · s)) ∪ (inst, s))

[empty]
a 6= Sched

(a,AKN , F)
empty
−−−→a (S,AKN , F)

[schedule]
a ∈ Agt

(S,AKN , F)
schedule
−−−−→Sched (a,AKN , F)

Table 2.2: Operational semantics rules.

run identifier (θ 6∈ runIDs(F)). The second rule defines the execution of a send
event. We model the attacker to have full control over the network. Thereto, it is
in fact the attacker, who plays the role of the network, that receives the message
from R, and who can forward the message to R′. The condition of the rule states
that there is a run starting with a send event. The conclusion expresses that the
attacker knowledge is extended with the sent message and that the executed send
event is dropped from the run, allowing the run to proceed with the next event.
The third rule defines the execution of a recv event. The condition states that
the receiving pattern matches a term derivable from the attacker knowledge. This
models the fact that the attacker provides input to the receiving agent. The state
of the corresponding run is updated through the instantiation of the variables
occurring in the pattern (from inst to inst′). The fourth rule expresses that claim
events are simply executed without significantly affecting the system state. The
fifth rule is an empty event, which agents can use to give back the turn to the
scheduler. The sixth rule states that the scheduler can give the turn to any event.

We define the transition relation in the concurrent game structure based on the
derivation rules.

Definition 2.30 (Transition relation of protocols represented as a concurrent game
structure). The transition relation of protocols that are represented as a concurrent

2.3 Modeling Security Protocols 25

game structure is the smallest function δ such that if q
α
−→ai q

′ is a valid derivation
rule, then we have δ(q, (nil, . . . , nil, α, nil, . . .) = q′, where α occurs on position i in
the tuple.

Finally, we define the move function as follows:

Definition 2.31 (Move function of protocols represented as a concurrent game
structure). The move function for agent ai of protocols that are represented as a
concurrent game structure is the smallest function di such that if q

α
−→ai q

′ is a
valid derivation rule, then we have α ∈ di(q), and for each state q = (a,AKN 0, F)
and agent aj such that aj 6= ai, we have nil ∈ dj(q).

The initial state of the system, denoted by s0, is defined by (Sched,AKN 0, ∅),
where ∅ expresses that there are initially no runs. AKN 0 denotes the initial attacker
knowledge. This knowledge includes all publicly known data. Further, it contains
the initial knowledge of all dishonest agents. The empty set ∅ is used here to
denote that none of the variables has a value (yet).

Now we define executions and traces given this transition system.

Definition 2.32 (Execution, trace). An execution is a (possibly infinite) sequence
of the form s0, t1, s1, t2, s2, . . ., where si are states of the form (a,AKN , F), and
ti are instantiated events of the form (inst, e) or (inst, create(r)). Every step in

the execution must correspond to a transition si
ti+1
−−→a si+1 which is derivable from

the above transition system. The (possibly infinite) sequence t1, t2, t3, . . . is called
a trace of the protocol. Given a trace t, we write ti for the i’th element of t.

2.3.5 Resilience

Some security properties require the existence of a future event. For example, every
time an agent in a non-repudiation protocol has received evidence of an event, he
should be sure that eventually, J will accept this evidence. Such properties are
also called liveness properties. Liveness properties, in general, do not hold in
the Dolev-Yao attacker model. Therefore, we assume an attacker that has less
power over the communication channels than the standard Dolev-Yao attacker. To
be more precise, for the liveness properties, we assume resilient channels [Aso98,
CD06], which are communication channels that eventually deliver all transmitted
messages. We will formalize resilient channels by assuming resilient agents. For
simplicity of modeling, we follow [CD06] by assuming that if a message is submitted
multiple times, it only needs to be delivered once. We defend this assumption by
pointing out that in typical good protocols, messages are never delivered multiple
times. Note that if in practice no resilient channels exist from agent a to agent b,
it can be simulated by a trusted third party T that relays messages from a to b,
whenever the channels between a and T and between T and b are resilient. We say
that an agent is resilient if the agent does not postpone enabled actions infinitely
often.

More precisely, we say that an agent is resilient if he does not indefinitely postpone
making claims, sending messages, or receiving pending messages, if specified so by
his role description (unless the execution of such an event is forever blocked by

26 Chapter 2 Modeling Security Protocols as Games

the other agents). Also, we require that an agent does not indefinitely postpone
blocking create events. We implement this by requiring that the agent executes
such instantiated events fairly, i.e., these events must not be enabled at the end
of the trace (for finite traces), or must occur infinitely often if they are enabled
infinitely often (for infinite traces). Note that the notion of fairness discussed here
is not related to fairness in the sense of fair exchange.

We proceed to define resilience in security protocols. To do so, we first define the
protocol corresponding to instantiated event, enabled instantiated events, pending
recv, and blocking create events.

Definition 2.33 (Protocol corresponding to instantiated event). The protocol cor-
responding to an instantiated event ti = ((θ, ρ, σ), e) in trace t, written protocolt(ti),
is the protocol P for which there exists tj = ((θ, ρ′, σ′), create(R)) such that R ∈
dom(P).

Definition 2.34 (Enabled). We write ent(P) for the set of enabled instantiated
events of protocol P in trace t, i.e., those events s such that t′ = t1, . . . , tn, s is also
a trace and protocolt′(s) = P .

A pending recv event is a recv event of a term that has been sent but not yet
received.

Definition 2.35 (Pending recv). Instantiated event e = ((θ, ρ, σ), recv(R1, R2, t))
is a pending recv event in finite trace t = t1, . . . , ti if there exists j ≤ i and instan-
tiation (θ′, ρ′, σ′) such that tj = ((θ′, ρ′, σ′), send(R′

1, R
′
2, t

′)) with ρ(R2) = ρ′(R′
2)

and σ(t) = σ′(t′), and there does not exist k (j < k ≤ i) and instantiation
(θ′′, ρ′′, σ′′ such that tk = ((θ′′, ρ′′, σ′′), recv(R′′

1 , R
′′
2, t

′′)) with ρ(R2) = ρ′′(R′′
2) and

σ(t) = σ′′(t′′).

A blocking create event is a create event that must be executed in order to execute
a claim event or a pending receive event.

Definition 2.36 (Blocking create). An instantiated event e = create(r) is a block-
ing create event in trace t if r = e1, . . . and e1 is a claim or pending recv event such
that e1 6∈ ent(P) and e1 ∈ ent,(inst,e)(P) for some instantiation inst.

Now we can formally define resilience of an agent.

Definition 2.37 (Resilient). Agent a is resilient in executing protocol P in trace
t, if a executes P fairly, i.e., if s = (inst, e) such that actor(s) = a and s is either
a pending recv event, a send event, a claim event, or a blocking create event in t,
then:

• s 6∈ ent(P) (if t is finite);

• if s ∈ ent1,...,tj (P) for infinitely many j, then for infinitely many j′, tj′ =
(inst′j , e) where inst′j is an instantiation (if t is infinite).

2.4 Alternating-time Temporal Logic 27

2.4 Alternating-time Temporal Logic

Security properties are properties of protocols. Since we model protocols as con-
current game structures. we model security properties as properties of concurrent
game structures. To do so, we use ATL∗, a version of Alternating-time Temporal
Logic. ATL∗ can be seen as an extension of Computation Tree Logic (CTL∗) [EH85].
For those readers familiar with CTL∗, the difference is that in ATL∗, the quan-
tification over paths is replaced by quantification over strategies. The logic is
particularly suited for reasoning about strategic properties, as it allows to express
that there exists a strategy with which an agent obtains a desired property, instead
of requiring that all protocol runs have to satisfy the property, independent of the
agent’s behavior.

ATL∗ makes use of path formulas, i.e., formulas that are properties of a single path
in the concurrent game structure. Path formulas correspond to LTL formulas.

We proceed by defining ATL∗, one of the variants of Alternating-time Temporal
Logic [AHK02]. ATL∗ has a strategic operator 〈〈C 〉〉, which can be seen as a path
quantifier that ranges over all paths into which the agents in C can force the game.

Path formulas can contain the temporal operators © (‘next’), 2 (‘always’), and
U (‘until’). These operators can be combined. For example, ©2ϕ means that
from the next state on, ϕ will always hold.

We proceed by defining the set of ATL∗ state formulas and ATL∗ path formulas.

Definition 2.38 (ATL∗ state formulas, ATL∗ path formulas [AHK02]). We assume
a set of propositions Π and a set of agents Agt. We define the set of ATL∗ state
formulas Φ and the set of ATL∗ path formulas Ψ as follows.

Φ ::= Π | ¬Φ | Φ ∧ Φ | 〈〈P(Agt)〉〉Ψ;

Ψ ::= Φ | ¬Ψ | Ψ ∨Ψ | ©Ψ | 2Ψ | Ψ U Ψ.

We call ATL∗ state formula sometimes simply ATL∗ formulas.

ATL∗ state formulas are defined in a state in a concurrent game structure. ATL∗

path formulas are defined in a path in a concurrent game structure.

Definition 2.39 (Interpretation of ATL∗). We write M, q |= ϕ for the inter-
pretation of ATL∗ state formula ϕ in state q ∈ Q of concurrent game structure
M = (Agt,Act ,Q ,Π , π, d , δ). We write M, q 6|= ϕ when it does not hold that
M, q |= ϕ.

The interpretation of ATL∗ state formulas is defined as follows.

• M, q |= p for propositions p ∈ Π, if p ∈ π(q).

• M, q |= ¬ϕ if M, q 6|= ϕ.

• M, q |= ϕ1 ∧ ϕ2 if M, q |= ϕ1 and M, q |= ϕ2.

• M, q |= 〈〈C 〉〉ϕ if there exists a collective strategy σC such that for all paths
λ ∈ out(q, σC) and positions i ≥ 0, we have M,λ[i,∞] |= ϕ.

28 Chapter 2 Modeling Security Protocols as Games

We write M,λ |= ϕ for the interpretation of ATL∗ path formula ϕ in path λ ∈ Q∗

of concurrent game structure M = (Agt,Act ,Q ,Π , π, d , δ). We write M,λ 6|= ϕ
when it does not hold that M,λ |= ϕ.

The interpretation of ATL∗ path formulas is defined as follows.

• M,λ |= ⊤.

• M,λ 6|= ⊥.

• M,λ |= ϕ where ϕ ∈ Φ if M,λ[0] |= ϕ.

• M,λ |= ¬ϕ if M,λ 6|= ϕ.

• M,λ |= ϕ1 ∨ ϕ2 if M,λ |= ϕ1 or M,λ |= ϕ2.

• M,λ |=©ϕ if M,λ[1,∞] |= ϕ.

• M,λ |= 2ϕ if for all i ≥ 0, we have M,λ[i,∞] |= ϕ.

• M,λ |= ϕ1 U ϕ2 if there exists i ≥ 0 such that M,λ[i,∞] |= ϕ2 and for all
0 ≤ j < i we have M,λ[j,∞] |= ϕ1.

We write M,λ |= 3ϕ for M,λ |= ¬2¬ϕ. Furthermore, we write |= ϕ if M, q |= ϕ
for all concurrent game structures M and all states q of M .

The universal path quantifier of the branching-time temporal logic CTL can be
captured in ATL as ∀ ≡ 〈〈∅〉〉. The existential path quantifier ∃ will be interpreted
as usual in CTL.

The following example illustrates the interpretation of ATL∗.

Example 2.5. Consider concurrent game structure M from Figure 2.1. We have
M, q0 |= 〈〈a〉〉3pa and M, q0 |= 〈〈a, b〉〉(3pa ∧3pb), but M, q0 6|= 〈〈a〉〉3pc.

2.5 Conclusion

We provided a game-based operational semantics for security protocols. We did so
by unifying the Cremers-Mauw semantics with concurrent game structures. This
allows us to define security properties on Cremers-Mauw protocol specifications in
Alternating-time Temporal Logic. In the next chapters, we will use this semantics
for the study of non-repudiation and fair-exchange protocols.

3

Imperfect Information in Fair

Non-repudiation Protocols

Abstract. We indicate two problems with the specifications of fairness that are currently

used for the verification of non-repudiation and other fair-exchange protocols. The first

of these problems is the implicit assumption of perfect information. The second problem

is the possible lack of effectiveness. We solve both problems in isolation by giving new

definitions of fairness, but leave the combined solution for the next chapter. Moreover,

we establish a hierarchy of various definitions of fairness, and indicate the consequences

for existing work.

3.1 Introduction

The correctness of a security protocol depends in general on the precise formu-
lation of its security properties. Consequently, the development of appropriate
security properties is at least as important as the proper design of security pro-
tocols. Classical properties, such as confidentiality and authentication, are well
understood and have been exhaustively investigated [Ros96, Low97, CMdV06].
Research on more recent properties, such as receipt-freeness in electronic voting
protocols [BT94, DKR06], seems to converge, while for other properties, such
as ownership transfer in RFID protocols, discussions have only recently started
[vDMRV09].

In this chapter, we study the development of the property of fairness for non-
repudiation protocols. Recall that the main goal of a non-repudiation protocol
is to allow two (or more) parties to exchange goods or messages without any of
the parties being able to falsely deny having taken part in the exchange. Such a
protocol is designed so that the sender of the message obtains a non-repudiation of
receipt (NRR) evidence and the receiver of the message a non-repudiation of origin
(NRO) evidence. An important property of fair-exchange protocols is fairness,
which roughly states that if the receiver obtains NRO, then the sender can obtain
NRR, and vice versa. An example of a non-repudiation protocol is a certified e-mail
protocol [ASW98].

Although other properties, such as abuse-freeness, also apply to non-repudiation
protocols (and the wider class of fair-exchange protocols), we will only investi-
gate fairness and its relation to effectiveness and strategic timeliness. Effectiveness
(sometimes also called viability) is not a security property, but a functional prop-
erty, stating that the protocol can actually achieve the exchange of an NRR and an
NRO evidence. Strategic timeliness requires that an agent always has an honest

29

30 Chapter 3 Imperfect Information in Fair Non-repudiation Protocols

strategy to stop execution of the protocol.

In the literature on non-repudiation protocols, a variety of different interpretations
of the fairness property have been described. Most of these were formalized in the
modal logic ATL∗ [AHK02] as to allow for the automated verification of protocols
through model checking, for example in the Mocha model checker [AHM+98]. The
observed variations seem to be due to differences in the assumed execution models
of the agents involved, to differences in the attacker model, and to differences in
the intended application of the protocol. Some authors already provided insight in
the relation between some of the fairness definitions [CKS06].

Nevertheless, we observe two limitations of the existing definitions. The first con-
cerns the implicit assumption of perfect information, as it is called in game theory.
By this we mean that, at each moment, all agents have full knowledge of the global
state of the system. In practice this does not seem a realistic assumption for a se-
curity protocol. One would expect an agent to only know his own state and use
a protocol to infer knowledge of the other agents’ states. This assumption has a
significant impact on the formulation of fairness in ATL∗.

The second limitation concerns the combination of fairness and effectiveness. In the
game-theoretical setting, both properties are expressed in terms of the existence of
strategies. By taking the conjunction of the two properties, one does not necessarily
obtain a single strategy that enforces both fairness and effectiveness. Here, we
propose a new property which blends fairness and effectiveness properly.

This chapter is structured as follows. We start with an example fair-exchange
protocol in Section 3.2. In Section 3.3, we revisit existing notions of fairness. We
introduce a notion of fairness based on the assumption of imperfect information in
Section 3.4. In Section 3.5, we combine fairness and effectiveness. In Section 3.6,
we develop the hierarchy of fairness properties and prove correctness and strictness
of the inclusions. Finally, we consider implications for the practical use of various
notions of fairness in the literature in Section 3.7, and conclude in Section 3.8.

3.2 Fair-exchange Protocols

Protocol 3.1

1. a→ b: m,NRO

2. b→ a: NRR

Protocol 3.1 is an example of a simple non-repudiation protocol, where Alice and
Bob exchange non-repudiation of origin and receipt of message m. The protocol
specifies that first Alice sends message m and NRO to Bob, and then Bob sends
NRR to Alice. Here, NRO could be implemented as [fNRO, a, b,m]a and NRR as
[fNRR, a, b,m]b, and fNRR and fNRO are so-called flags indicating the type of the
evidence. Note that this protocol is not fair, as Bob can abort after step 1, leaving
Alice without NRR. Protocol 3.2 is an example of a fair NR-protocol (with inline
TTP). Fairness is intuitively guaranteed because the TTP will not send out NRO
and NRR before he has collected both evidences.

3.3 Existing Formalizations 31

Protocol 3.2

1. a→ t: m, NRO

2. t→ b: m

3. b→ t: NRR

4. t→ b: NRO

5. t→ a: NRR

Non-repudiation protocols with inline TTP are generally inefficient, as the TTP be-
comes easily a bottleneck. Protocols with offline TTP do not suffer from this prob-
lem, but also tend to be more complex, as they typically contain non-determinism
and various sub-protocols. This means that it is less easy to check by hand that
fairness is satisfied. Therefore, a formal way of verifying fairness is needed.

In this chapter, we focus on fair exchange, and are therefore only interested in at-
tacks carried out by the protocol participants themselves. We do not consider
attacks carried caused by lack of secrecy or authentication, for example. We
therefore assume secure communication channels. We implement this by assum-
ing that every message m is signed, encrypted, and labeled with the name of the
intended recipient. In other words, when we write A → B : m, we mean in fact
A → B : {| {| (m,B) |}sk(A) |}pk(B). Moreover, for reasons of clarity, we leave the
scheduler (and communication channels) out of the specifications.

3.3 Existing Formalizations

Various definitions of fairness in ATL∗ have been proposed in the literature on
non-repudiation protocols and other fair-exchange protocols. In this section, we
first give an overview of the proposed definitions.

We assume that Alice sends a message to Bob. Alice wants to receive NRO of
this message, and Bob wants to receive NRR of this message. One can distinguish
fairness for Alice (whenever Bob receives NRO, Alice is guaranteed to obtain NRR),
and fairness for Bob (whenever Alice obtains NRR, Bob is guaranteed to obtain
NRO). We only consider fairness for Alice; fairness for Bob can be formulated
symmetrically.

Fairness for an agent only needs to be guaranteed when the agent complies with
the protocol: if an agent does not follow the protocol, he does so at his own risk.
An agent that complies with the protocol is called honest. Fairness should be
guaranteed for honest agents, even if the other agents are dishonest, i.e., behave in
a way that is not foreseen by the protocol. Therefore, when studying fairness for
Alice, we assume that Alice is honest, and that Bob might be dishonest. We do
not require that fairness can be guaranteed after unintended dishonest behavior
caused by system failures, as has been considered in [ES03, LNJ01].

We write M, q |= NRO whenever Bob has received NRO, and M,w |= NRR when-

32 Chapter 3 Imperfect Information in Fair Non-repudiation Protocols

ever Alice has received NRR. We assume that Alice cannot distinguish between
states where Bob has or has not received NRO, everything else being equal, and
that Bob cannot distinguish between states where Alice has or has not received
NRR, everything else being equal.

Strong Fairness One of the definitions of fairness that are proposed by Kremer
and Raskin [KR03] is strong fairness. It can be formulated as

StrongFair ≡ ∀2(NRO→ ∀3NRR).

Strong fairness for Alice states that in every reachable state where Bob has NRO,
Alice should eventually obtain NRR, whatever the agents do. Strong fairness can
be seen as enforced fairness: if the protocol is non-deterministic due to underspec-
ification and thus gives Alice multiple available strategies, each of these strategies
should guarantee her NRR.

Non-enforced Fairness If we assume that Alice is rational, StrongFair is stronger
than necessary. A weaker form of fairness, which requires Alice to play rational, has
also been proposed by Kremer and Raskin [KR03]. This form is called non-enforced
fairness, and defined as

NEFair ≡ ¬〈〈b〉〉3(NRO ∧ ¬〈〈ah〉〉3NRR).

This formula states that Bob should not have a strategy to reach a state where
he has obtained NRO, while Alice at the same time does not have a strategy to
obtain NRR. It is called non-enforced fairness, because a protocol that satisfies
this property does not enforce fairness: it is possible that Alice can choose to play
a strategy with which she might end in an unfair situation, as long as there exists
at least one “good” strategy that guarantees Alice a fair situation.

Strategic Fairness Chadha et al. [CKS06] have proposed a notion of fairness in
between strong fairness and non-enforced fairness, called strategic fairness, which
is defined as

StratFair ≡ ∀2(NRO→ 〈〈ah〉〉3NRR).

A protocol satisfies strategic fairness for Alice if and only if in every reachable
state, it holds that whenever Bob has obtained NRO, there exists a strategy for
honest Alice that gives her NRR.

This definition, however, seems counterintuitive, as it combines the enforced and
non-enforced approach. If one assumes that Alice is rational enough to resolve non-
determinism in the correct way, then it is not necessary to require that she obtains
the fair situation NRO → 〈〈ah〉〉3NRR independently of her strategy; it would
suffice if there exists a strategy for Alice that guarantees the fair situation. On the
other hand, if one does not assume that Alice is able to resolve non-determinism in
the correct way, then it is not enough to require that there exists a strategy that
gives her NRR; she might still never obtain NRR when she never plays the right
strategy. Therefore, strategic fairness seems too strong for rational agents, and too
weak for agents that are not rational.

3.4 Fair Exchange and Imperfect Information 33

Weak Fairness Another definition of fairness, proposed by Chadha et al. [CKS06],
is weak fairness. This notion has been proposed for technical purposes to simplify
verification. It is defined by

WeakFair ≡ ∀2(NRO→ ∃3NRR).

A protocol satisfies weak fairness for Alice if and only if in every reachable state,
it holds that whenever Bob has obtained NRO, if all agents cooperate, Alice will
eventually get NRR.

Invariant Fairness One disadvantage with the above formulations of fairness is
that it is not sufficient to look at a single path to prove that a formula does not hold.
Instead, to find a counterexample, the entire model needs to be taken into account.
An alternative definition of fairness is proposed based on invariants. Invariant
fairness [CKS06] for Alice only tests those states in which Alice has stopped the
protocol, allowing counterexamples to be expressed as paths. The proposition
Stopa is defined to be true exactly when Alice has stopped executing the protocol.
It is assumed that as soon as Alice has stopped executing the protocol, she cannot
obtain NRR anymore, i.e., ∀2((Stopa∧¬NRR)→ ∀2¬NRR). Now invariant fairness
is defined by

InvFair ≡ ∀2(Stopa → (NRO→ NRR)).

This formula states that in all states where Alice has stopped executing the pro-
tocol, Alice should possess NRR whenever Bob possesses NRO.

3.4 Fair Exchange and Imperfect Information

When ATL∗ formulas are interpreted in concurrent game structures, it is implicitly
assumed that agents know precisely the current global state of the system, including
the local states of the other agents [AHK02]. In other words, ATL∗ formulas are
usually evaluated in a model that assumes perfect information. This is also the
way in which the Mocha model checker [AHM+98] evaluates ATL∗ formulas. The
first limitation of the current way of modeling fairness in ATL∗ is that the perfect-
information assumption is unrealistic for communication protocols: if all agents
knew the local state of all other agents, no communication would be needed. We
will demonstrate that assuming perfect information leads to problems in practice,
by showing that evaluating NEFair in imperfect-information models, as is done
in [KR03], leads to counterintuitive results.

The problem is, basically, that an agent’s perfect-information strategy can be non-
executable under imperfect information: the strategy might require executing dif-
ferent actions in situations that look the same to the agent. Furthermore, even if
an agent has an executable strategy, he may be unaware of having it, and unable
to identify it [JvdH04]. For example, one can construct a protocol in which the
message that Alice needs to send depends on whether Bob did or did not receive
some other message. Alice does not know which messages have been received by
Bob. This implies that although Alice has a strategy to send the right message,
she does not know what this strategy is, and is thus unable to follow this strategy
under imperfect information. The following example illustrates this.

34 Chapter 3 Imperfect Information in Fair Non-repudiation Protocols

Example 3.1. Consider Protocol 3.3, in which Alice sends message m to Bob,
and NRO and NRR are exchanged. First, Alice sends m and NRO to the TTP. The
TTP forwards m to Bob, who replies by sending NRR and a boolean p back to the
TTP. Then the TTP sends NRO to Bob. Alice continues by sending a boolean p′

to the TTP. Only if Bob’s boolean p equals Alice’s boolean p′, the TTP sends NRR
to Alice.

Protocol 3.3

1. a→ t: m, NRO

2. t→ b: m

3. b→ t: NRR, bool p

4. t→ b: NRO

5. a→ t: bool p′

6. If p = p′:

(a) t→ a: NRR

Protocol 3.4

1. t→ a: start

2. t→ b: start

3. Choice:

(a) i. a→ t: NRO, request id

ii. b→ t: NRR, id

iii. t→ b: NRO

iv. a→ t: re-request id

(b) i. b→ t: NRR, id

ii. a→ t: NRO, request id

iii. t→ b: NRO

4. t→ a: NRR, id

Intuitively, Protocol 3.3 is not a fair protocol, as Alice can only obtain NRR by
sending p′ in step 5 where p′ equals p. However, she does not have a way of
knowing p, and therefore, she does not know the correct value of p′. Nevertheless,
the protocol satisfies NEFair, as 〈〈ah〉〉3NRR is true in step 5, since Alice has a
correct (perfect-information) strategy: if p = false, she sends false, and if p = true,
she sends true. The problem is that this strategy is not executable if Alice has
imperfect information.

In Example 3.1, it might be immediately obvious that the protocol is intuitively
unfair due to problems with imperfect information. The following example is a less
contrived example.

Example 3.2. Consider Protocol 3.4 (to simplify the presentation, it is assumed
that the TTP stops sending messages to agents from which he receives messages
that do not correspond to the protocol). In this protocol, the non-determinism is
caused by the order of arrival of messages, instead of by a boolean chosen by the
other agent. In this protocol, first the TTP sends the message start to Alice and
Bob. Then Alice sends NRO and a message request id to request Bob’s id to the
TTP, and Bob sends NRR and his id to the TTP. However, the behavior of the
TTP depends on the order in which these messages arrive. If the request arrives
before the id, as in branch (a), the TTP sends NRO to Bob, but Alice’s request
is ignored until Alice sends an additional message re-request id, on which the
TTP sends her the id and NRR. If the request arrives after the id, as in branch
(b), the TTP sends NRO to Bob and, immediately, NRR and the id to Alice.

3.4 Fair Exchange and Imperfect Information 35

This implies that Alice will never obtain NRR in the case where she does not send
re-request id in branch (a). On the other hand, in branch (b) Alice will never
obtain NRR if she does send re-request id. Alice cannot know or make sure that
request id arrives before or after Bob’s id, and neither does she know how long the
TTP will wait before answering her. Therefore, Alice does not know which branch
of the protocol is executed by the TTP, which means that she does not know whether
she needs to send request id or not. Still, this protocol satisfies NEFair, as Alice
has a perfect information strategy to obtain NRR, namely sending re-request id

in branch (a) and not sending it in (b).

Examples 3.1 and 3.2 show that the standard interpretation of ATL∗ is not suitable
for evaluating protocols in a context where agents might have imperfect informa-
tion. This problem can be solved by interpreting ATL∗-specifications in imperfect-
information concurrent game structures [Sch04b]. In such game structures, an
agent can only observe a part of the global state, and his strategy is required to
choose the same action in states that he cannot distinguish. Imperfect-information
concurrent game structures contain an indistinguishability relation ∼a for every
agent a ∈ Agt. The indistinguishability relation connects states that agents can-
not distinguish.

Definition 3.1 (Imperfect-information concurrent game structures [Sch04b]). An
imperfect-information concurrent game structure is a pair (M ,∼), where M is a
concurrent game structure and ∼= (∼a1 ,∼a2 , . . .) such that for every agent a ∈
Agt, ∼a∈ Q×Q is an equivalence relation. If q1 ∼a q2, we say that q1 and q2 are
indistinguishable.

We write (q1, . . . , qn) ∼a (q′1, . . . , q
′
n) whenever qi ∼a q′i for all i (1 ≤ i ≤ n).

Moreover, given a tuple of agents C, we write q ∼C q′ whenever q ∼a q
′ for all

agents a ∈ C.

We say that (M,∼a) is turn-based if and only if M is turn-based.

Imperfect-information turn-based game structures are defined analogously to perf̄ect-
information turn-based game structures.

An imperfect-information strategy is required to be uniform, that is, if sequences
of states λ, λ′ are indistinguishable for agent a, written λ ∼a λ

′, then the strategy
for agent a assigns the same action to λ and λ′, i.e., σa(λ) = σa(λ

′).

Strategies in imperfect-information concurrent game structures are required to as-
sign the same action to states that agents cannot distinguish.

Definition 3.2 (Imperfect-information strategy). An imperfect-information strat-
egy σi for agent a is a function from Q+ to Act where σa(q1, . . . , qn) = σa(q

′
1, . . . , q

′
n)

whenever (q1, . . . , qn) ∼a (q′1, . . . , q
′
n).

Collective imperfect-information strategies are defined analogously to perfect-infor-
mation strategies.

We now interpret ATL∗ in imperfect-information concurrent game structures.

Definition 3.3 (Interpretation of ATL∗ in imperfect-information concurrent game
structures [Sch04b]). Let M = ((Agt,Act ,Q ,Π , π, d , δ),∼) be an imperfect-infor-
mation concurrent game structure, let q ∈ Q be a state, let C ⊆ Agt be a set of

36 Chapter 3 Imperfect Information in Fair Non-repudiation Protocols

agents, and let ϕ be a state formula. We write M, q |= 〈〈C 〉〉ϕ if there exists a
collective imperfect-information strategy σC such that for all agents a ∈ C, states
q′ ∼a q, paths λ ∈ out(q

′, σC) and positions i ≥ 0, it holds that M,λ[i,∞] |= ϕ.
The other connectives are interpreted as in perfect-information concurrent game
structures.

It should be noted that the set of uniform strategies in M is always a subset
of perfect-information strategies in M . Moreover, perfect-information semantics
of ATL∗ is well-defined in imperfect-information concurrent game structures (it
simply ignores the indistinguishability relations). Furthermore, each concurrent
game structure can be seen as an imperfect-information concurrent game structure
where for every agent a, ∼a is the minimal reflexive relation.

We now define protocols in imperfect-information concurrent game structures. We
say that an agent cannot distinguish two states if in both states, the same agent is
determining the next state, and both states contain the same set of runs for that
agent.

Definition 3.4 (Protocol as imperfect-information concurrent game structure).
LetM = ((Agt,Act ,Q ,Π , π, d , δ),∼) be an imperfect-information concurrent game
structure, where (Agt,Act ,Q ,Π , π, d , δ) is the protocol interpreted as a perfect-
information concurrent game structure, and ∼= (∼1,∼2, . . .) such that for agent
a ∈ Agt, ∼a is defined as follows.

We say that (a1,AKN 1, F1) ∼a (a2,AKN 2, F2) when either a1 6= a2, or

{((ρ, θ, σ), R) ∈ F1 | ρ(R) = a} = {((ρ, θ, σ), R) ∈ F2 | ρ(R) = a}.

Imperfect-information semantics is sufficient to give an intuitive interpretation to
StratFair, WeakFair, StrongFair and InvFair (for the latter two, the choice
of semantics only matters if the initial state is unknown). However, it is not enough
to “repair” NEFair. If Alice wants to be sure that she can obtain NRR, it is also
necessary to use non-enforced controled fairness (NECFair) instead of NEFair.
Non-enforced controled fairness is defined as

NECFair ≡ 〈〈ah〉〉2¬(NRO ∧ ¬〈〈ah〉〉3NRR).

To see the difference between NEFair and NECFair, we define an unfair situation
as a situation in which Bob has obtained NRO and Alice does not have a strategy
to obtain NRR, i.e, Unfair ≡ (NRO ∧ ¬〈〈ah〉〉3NRR). Then we can write:

NEFair ≡ ¬〈〈b〉〉3Unfair;

NECFair ≡ 〈〈ah〉〉2¬Unfair.

If Agt = {a, b, t} and t is deterministic, then NEFair is equivalent to the formula
¬〈〈Agt\ah〉〉3Unfair. This shows that NEFair and NECFair have a very similar
interpretation: NEFair states that the group of agents without Alice has no
common strategy to reach an unfair situation, while NECFair states that Alice
has a strategy to always avoid an unfair situation.

3.5 Effective Fairness 37

Indeed, these two formulas are equivalent in turn-based perfect-information mod-
els [AHK02]. However, in imperfect-information models, both NEFair and the
negation of NECFair can hold, as is illustrated by Protocol 3.3. On the other
hand, NECFair does imply NEFair, even in imperfect-information models. In
imperfect-information models, it is not sufficient that all agents but Alice have
no common strategy to reach an unfair situation, as illustrated by Protocol 3.3.
Therefore, in imperfect-information models, NECFair should be required.

From now on, we will follow Schobbens [Sch04b] and use subscripts I (respectively
i) to denote that the specification is interpreted in the perfect (resp. imperfect)
information semantics of ATL∗ whenever the type of semantics has impact on the
truth of the specification. We will also write that ϕx implies ψy if and only if, for ev-
ery imperfect-information concurrent game structure M = (Agt,Act ,Q ,Π , π, d , δ)
and state q ∈ Q, we have that M, q |=x ϕ implies M, q |=y ψ.

Fact 1. If ϕ includes no strategic operators then (〈〈C 〉〉ϕ)i implies (〈〈C 〉〉ϕ)I. The
converse does not hold in general.

3.5 Effective Fairness

Fairness is not a sufficient property for fair-exchange protocols. Fair-exchange
protocols should not only satisfy fairness, but also effectiveness (sometimes also
called viability). It turns out that combining fairness and effectiveness is not trivial.
The second limitation with the current way of modeling fairness in ATL∗ has to
do with this combination.

To see the need for effectiveness, consider the empty protocol, i.e., the (admittedly
useless) protocol, that specifies that no messages are sent. It is obvious that this
protocol satisfies all definitions of fairness discussed above, as no unfair situation
can possibly occur. Still, the protocol is clearly not a good fair-exchange protocol,
because even if the agents want to, they cannot exchange evidences.

To exclude protocols like this, we need to impose a second property (besides fair-
ness), that states that the protocol is effective. This property states that Alice
and Bob have a collective strategy to execute the protocol such that both agents
obtain their evidence. Effectiveness can be formulated in ATL∗ as follows:

Effective ≡ 〈〈ah , bh〉〉3(NRO ∧ NRR).

Requiring effectiveness excludes the empty protocol. However, requiring both ef-
fectiveness and non-enforced fairness is not sufficient to rule out bad protocols. To
see this, consider the following example.

Example 3.3. Let us consider Protocol 3.5.

38 Chapter 3 Imperfect Information in Fair Non-repudiation Protocols

Protocol 3.5

1. Choice for a:

(a) i. a→ b: NRO

ii. b→ a: NRR

(b) End of protocol.

In this protocol, Alice can choose to either send NRO to Bob and wait for NRR to
be sent to her, or immediately stop the protocol.

This protocol is effective (if Alice chooses 1a and both parties continue the protocol,
they get their evidence). Furthermore, the protocol satisfies non-enforced fairness,
because Alice has a strategy to achieve fairness (by choosing 1b). Thus, the protocol
satisfies both (non-enforced) fairness and effectiveness. However, intuitively, it is
still not a good protocol, as Bob might be dishonest and stop the protocol after 1(a)i,
leaving Alice without her evidence.

The problem discussed in Example 3.3 arises because a’s strategy that guarantees
effectiveness is different from a’s strategy that guarantees fairness. To solve this
problem, we need to require that there exists a strategy for Alice that satisfies
both effectiveness and fairness at the same time. This cannot be easily expressed
in ATL∗. One way to overcome this problem is that, at least in turn-based game
structures, it is sufficient to require that Alice and Bob guarantee fairness until
NRO and NRR have been exchanged. In perfect-information turn-based game
structures, this property can be expressed in ATL∗ as follows:

〈〈ah , bh〉〉(NECFair U (NRO ∧ NRR)).

This formula expresses that a and b have a collective strategy that guarantees
NECFair for Alice until both Bob and Alice have their evidence.

The formula requires that Bob is honest in the outer quantifier, but allows Bob to
be dishonest in the quantifier inside NEFair. This is a problem, as agents need to
be either modeled as honest or dishonest. Therefore, we introduce an additional
proposition Honestb, which is true as long as Bob has only sent messages allowed
by the protocol. Now we can reformulate the property for Bob’s honesty so that
it applies only to effectiveness and not fairness:

EffFair ≡ 〈〈ah , b〉〉(NECFair U (NRO ∧ NRR ∧Honestb)).

Now we show that effective fairness indeed guarantees both effectiveness and non-
enforced fairness.

Theorem 3.1. EffFairI implies EffectiveI and NECFairI , and EffFairi

implies Effectivei and NECFairi.

Proof. That EffFairI implies EffectiveI and that EffFairi implies Effectivei

follows directly.

3.5 Effective Fairness 39

To show that EffFairI implies NECFairI , we assume M, q |= EffFairI , and
show that NECFairI . First we assume that M, q |=I NRO ∧ NRR ∧ Honestb. Let
λ be a q-path, and let i ≥ 0. Then we have M,λ[0] |=I NRR, and therefore also
M,λ[i] |=I NRR (as NRR is a property that stays true after it has been true for
the first time). Therefore, it holds that M,λ[i] |=I 〈〈ah〉〉(⊤ U NRR) and thus
that M,λ[i] |=I 〈〈ah〉〉3NRR, and therefore M,λ[i] 6|=I NRO ∧ ¬〈〈ah〉〉3NRR, which
implies M,λ[i] |=I ¬(NRO ∧ ¬〈〈ah〉〉3NRR). This implies M,λ |=I 2¬(NRO ∧
¬〈〈ah〉〉3NRR), and thus, it holds that M, q |=I 〈〈ah〉〉2¬(NRO ∧ ¬〈〈ah〉〉3NRR) =
NECFair. Now we assume that M, q 6|= NRO ∧ NRR ∧ Honestb. Then M, q |=I

EffFairI = 〈〈ah , b〉〉(NECFair U (NRO ∧NRR ∧Honestb). Since M, q 6|= NRO ∧
NRR ∧Honestb, we have M, q |=I NECFair.

To show that EffFairi implies NECFairi, we assume M, q |= EffFairi, and
show that NECFairi. First we assume that for all q′ ∼a q, we have M, q′ |=i

NRO∧NRR∧Honestb. Let q′ ∼a q, let λ be a q′-path, and let i ≥ 0. Then we have
M,λ[0] |=i NRR, and therefore also M,λ[i] |=i NRR (as NRR is a property that
stays true after it has been true for the first time). Then it holds that M,λ[i] |=i

〈〈ah〉〉(⊤ U NRR) and thus M,λ[i] |=i 〈〈ah〉〉3NRR, and therefore M,λ[i] 6|=i NRO ∧
¬〈〈ah〉〉3NRR, which implies M,λ[i] |=i ¬(NRO∧¬〈〈ah〉〉3NRR). Therefore, we have
M,λ |=i 2¬(NRO∧¬〈〈ah〉〉3NRR), and thus, it holds that M, q |=i 〈〈ah〉〉2¬(NRO∧
¬〈〈ah〉〉3NRR) = NECFair. Now we assume that not for all q′ ∼a q, we have
M, q |= NRO∧NRR∧Honestb. Let q′ ∼a q such that M, q′ 6|= NRO∧NRR∧Honestb,
and let λ be a q′-path. Since q′ ∼a q, we have q′ ∼{a,b} q, so by M, q |=i EffFairi,
we have M,λ |=i 〈〈ah , b〉〉(NECFair U (NRO ∧ NRR ∧ Honestb)). Since M, q′ 6|=i

NRO ∧ NRR ∧ Honestb, we have M, q′ |=i NECFair. Then for every q′′-path λ
where q′′ ∼a q

′, we have M,λ |= 2¬(NRO ∧ ¬〈〈ah〉〉3NRR). Therefore, since ∼a

is an equivalence relation, for every q′′-path λ where q′′ ∼a q, we have M,λ |=
2¬(NRO ∧ ¬〈〈ah〉〉3NRR) as well. This implies that M, q |= NECFairi.

Note that the converse implications do not hold. For example, Protocol 3.5 satisfies
both Effective and NEFair, but not EffFair.

We observe that EffFairI suffers from the problems concerning imperfect infor-
mation mentioned in Section 3.4. Moreover, even if a protocol satisfies EffFairi,
it can still be the case that the strategies for Alice behind the outer and the nested
strategic operators cannot be combined into a single uniform strategy (cf. [JB11]).
Consider the situation where Alice can either stop, resulting in fairness but not
effectiveness, or continue, only resulting in fairness (and effectiveness) if Bob plays
honest and neither fairness nor effectiveness otherwise. This is problematic if Alice
does not know whether Bob plays honest: in that case, EffFairI is satisfied, but
Alice does not have a strategy that results in both fairness and effectiveness.

We have shown that fairness is not sufficient for fair-exchange protocols, and that
effectiveness is also needed. Moreover, non-enforced fairness and effectiveness can-
not be combined trivially. We give a new specification, EffFair, that handles this
combination. This problem does not occur for weak, strategic, strong or invariant
fairness and effectiveness. For these specifications, it is sufficient to require the
conjunction of fairness and effectiveness.

Example 3.4. Fair-exchange protocols are security protocols in which two agents,
which we call Alice and Bob, want to fairly exchange digital items, for example

40 Chapter 3 Imperfect Information in Fair Non-repudiation Protocols

signatures on a contract [Zho10]. We write pA when Alice gets Bob’s item, and pB
when Bob gets Alice’s item. We say that a protocol satisfies fairness for Alice, if
Alice can guarantee that if Bob gets the item, Alice will get it as well. Fairness for
Bob, denoted ϕB, is defined symmetrically. Furthermore, we say that a protocol
is effectiveness, denoted ϕC, if Alice and Bob can guarantee that they both get the
item.

In order for a fair-exchange protocol to be correct, the protocol must satisfy effective
fairness, i.e., the strategy with which an agent guarantees fairness must be the same
strategy as with which he guarantees effectiveness [CR10, JMM12]. Formally, the
strategies for both objectives must be the same, i.e., there exists a pair of strategies
(σA, σB) such that:

1. If Alice plays σA, then her goal ϕA is achieved;

2. If Bob plays σB, then his goal ϕB is achieved;

3. If Alice plays σA and Bob plays σB, then the common goal ϕC is achieved.

3.6 Hierarchy of Fairness Requirements

We proceed by studying the relations between the different definitions of fairness.
Figure 3.1 contains a graphical view of these relations. Below we include proofs
for some of the relations. The other cases are straightforward. Unless explicitly
stated otherwise, the same reasoning applies to both the perfect-information and
imperfect-information version of variants of ATL∗.

Strong, Strategic, Weak and Invariant Fairness Chadha et al. [CKS06] prove that

StrongFairI ⇒ StratFairI ⇒ WeakFairI ⇒ InvFairI .

The two final implications extend to imperfect information. Furthermore, Chadha
et al. [CKS06] show that StratFairI , WeakFairI and InvFairI are equivalent
under strategic timeliness. Strategic timeliness states that Alice always has an hon-
est strategy that eventually allows her to stop executing the protocol: Timely ≡
∀2(〈〈ah〉〉3Stopa). Furthermore, InvFairI , WeakFairI and StrongFairI are
clearly equivalent with InvFairi, WeakFairi and StrongFairi, respectively, as
they do not contain strategic modalities.

These are the only implications that hold between StrongFair, StratFair,
WeakFair and InvFair. We show this by providing a number of counterex-
amples, as displayed in Figure 3.2. Protocol 3.6 satisfies StratFair, but not
StrongFair. Protocol 3.7 (a protocol lacking strategic timeliness) satisfies Weak-

Fair but not StratFair. Protocol 3.8 (another protocol lacking strategic time-
liness) satisfies InvFair, but not WeakFair. Finally, neither StrongFairi ⇒
StratFairi nor WeakFairi ⇒ StratFairi is valid, even under strategic time-
liness, as in a model where the initial state with ¬NRO is indistinguishable from an
unreachable state with NRO∧¬NRR, we might have StrongFairi and WeakFairi,
but not StratFairi.

3.6 Hierarchy of Fairness Requirements 41

StrongFairI

StrongFairi

StratFairi

StratFairI

WeakFairi

WeakFairI

InvFairi

InvFairI
EffFairi

EffFairI

NECFairi

NECFairI

NEFairI

NEFairi

tI

tI

eI

Figure 3.1: Relations between different notions of fairness. Solid arrows stand
for implications, i.e., lead from stronger to weaker definitions of fairness. Dashed
arrows represent implications that hold only under additional assumptions of effec-
tiveness (e) or strategic timeliness (t). Missing arrows correspond to implications
that do not hold. Note: we did not include arrows that follow from transitivity of
implication.

Non-enforced Fairness Now we study how StrongFair, StratFair, Weak-

Fair and InvFair relate to NEFair.

Theorem 3.2. StratFair implies NEFair.

Proof. Assume ∀2(NRO → 〈〈ah〉〉3NRR). Because ∀2ϕ ≡ ¬∃3¬ϕ is a validity of
CTL, we have ¬∃3(NRO∧¬〈〈ah〉〉3NRR). Therefore, it holds that ¬〈〈b〉〉3(NRO∧
¬〈〈ah〉〉3NRR).

Similarly, StrongFair implies NEFair as well. Also, because specifications
StratFair, WeakFair and InvFair are equivalent given strategic timeliness,
WeakFair and InvFair imply NEFair given strategic timeliness. Now we show
that the other implications do not hold. Protocol 3.9 satisfies NEFair, but not
StrongFair, StratFair, WeakFair or InvFair. Protocol 3.7, a protocol that
does not satisfy strategic timeliness, satisfies InvFair and WeakFair, but not
NEFair. Finally, StratFairi ⇒ NECFairi is not valid, as it does not hold in
a model with a state q with a next state where NRO ∧ ¬NRR holds such that q is
indistinguishable from the initial state.

Moreover, as shown in Section 3.4, NEFair and NECFair are equivalent un-
der perfect information, while under imperfect information, NECFair implies
NEFair, but not vice versa.

42 Chapter 3 Imperfect Information in Fair Non-repudiation Protocols

Protocol 3.6

1. b→ t: NRR

2. t→ a: continue

3. a→ b: NRO

4. Choice for a:

(a) i. a → t:
true

ii. t → a:
NRR

(b) i. a → t:
false

ii. Go to 4.

Protocol 3.7

1. a→ b: NRO

2. Choice for b:

(a) i. b → a:
NRR

(b) i. b → a:
cont.

ii. Go to 2.

Protocol 3.8

1. a→ b: NRO

2. b→ a: continue

3. Go to 2.

Protocol 3.9

1. b→ t: NRR

2. a→ b: NRO

3. Choice for a:

(a) i. End of
protocol.

(b) i. a → t:
cont.

ii. t → a:
NRO

Figure 3.2: Counterexample protocols

Effective Fairness We proceed by studying the relations between EffFair and
the other definitions of fairness. EffFair implies NEFair, as shown in Theorem
3.1. The following theorem states that in effective protocols, StratFairI implies
EffFairI . This theorem does only hold assuming perfect information. Under
imperfect information, Alice is not guaranteed to know whether Bob plays honest,
and cannot decide whether she should continue the cooperation with Bob or not.

Theorem 3.3. Whenever EffectiveI holds, StratFairI implies EffFairI .

Proof. Assume that EffectiveI and StratFairI hold. We set ϕ = ¬(NRO ∧
¬〈〈ah〉〉3NRR) and ψ = NRO ∧ NRR. StratFairI = ∀2(NRO → 〈〈ah〉〉3NRR)I
is equivalent to ∀2¬(NRO ∧ ¬〈〈ah〉〉3NRR)I and can thus be written as (∀2ϕ)I .
This means that for all paths λ ∈ out(q, ∅) and all positions i ≥ 0, we have
λ[i] |=I ∀2ϕ as well (1). EffectiveI can be written as (〈〈ah , bh〉〉3ψ)I . By
definition of 3, there exists a pair F of strategies for agents ah and bh, respectively,
such that for all λ ∈ out(q, F) there exists i ≥ 0 with λ[i] |=I ψ (2). Let F
be a pair of strategies for a and b satisfying this condition. Then we have that
for all λ ∈ out(q, F) there exists i ≥ 0 with λ[i] |=I ψ by (2), and for all 0 ≤
j < i, we have λ[j] |=I 〈〈ah〉〉2ϕ by (1). By definition of U , we obtain q |=I

〈〈ah , bh〉〉((〈〈ah〉〉2¬(NRO ∧ ¬〈〈ah〉〉3NRR)) U (NRO ∧ NRR)), i.e., EffFairI .

Again, these results, and the transitive closures of them, are all the implications
that hold. Protocol 3.5 satisfies NEFair, but not EffFair. Furthermore, the
empty protocol, which obviously does not satisfy effectiveness, satisfies Strong-

Fair, StratFair, WeakFair and InvFair, but not EffFair. Finally, Protocol

3.7 Related Work 43

3.7, not satisfying strategic timeliness, satisfies WeakFair and InvFair, but not
EffFair.

3.7 Related Work

Various definitions of non-repudiation and fair exchange have been formalized.
However, as we argue in this chapter, these definitions are often either too strong
or too weak because they do not take into account the agents’ ability to choose
the right strategy. In this section, we discuss how our results relate to existing
proposals about verification of non-repudiation protocols and other fair-exchange
protocols with the strategic logic ATL∗.

Kremer and Raskin [KR03] use NEFair to verify various non-repudiation pro-
tocols. They find flaws in the Zhou-Gollmann optimistic protocol [ZG97a], the
Asokan-Shoup-Waidner certified mail protocol [ASW98], and the Markowitch–
Kremer multi-party non-repudiation protocol [MK00]. An improved version of
the latter protocol, as well as the Kremer-Markowitch non-repudiation protocol
[KM00], is shown to satisfy NEFair. However, as we have seen in Section 3.4,
the protocols that are shown to satisfy NEFair might still be unfair if the agents’
strategies are not executable due to imperfect information. Furthermore, all strate-
gies that guarantee fairness in these protocols might be ineffective, as we showed
in Section 3.5.

Chadha et al. [CKS06] demonstrate that the GM protocol [GM99], a multi-party
contract signing protocol, does not satisfy InvFair, WeakFair, StratFair and
StrongFair for four participants. However, as we have seen, non-enforced fair-
ness might still hold. It can be argued that non-enforced fairness is sufficient, if it
is assumed that Alice has the ability to resolve the choices in a non-deterministic
protocol in the way that is the most advantageous for her.

Liu et al. [LPZ11] propose an extended CEM (certified e-mail) protocol with TTP
transparency and use StratFair to prove fairness. However, strategic timeliness
is only checked in a perfect information model, which means that the protocol
may be intuitively unfair in the presence of imperfect information, as we saw in
Section 3.4. Furthermore, the extended CEM protocol does not necessarily have
strong fairness, as StratFair does not imply StrongFair. This means that it
is still important that the agents resolve the non-determinism of the protocol in
the correct way.

Finally, Zhang et al. [ZZPM09] analyze a number of multi-party contract signing
protocols. WeakFair and InvFair are used to prove that the MR protocol
[MR08] is fair with up to 5 signers, and that the MRT protocol [MRD09] with 3
signers has a flaw. Furthermore, a corrected MRT protocol for 3 and 4 signers is
presented, which is shown to satisfy WeakFair and InvFair. Because strategic
timeliness is proven, the results carry over to StratFair. We saw in Section 3.6
that StratFair does not imply StrongFair, and that NEFair does not imply
StratFair. Therefore, it could be that both the original and the corrected version
of the MRT protocol satisfy NEFair, i.e., are fair assuming agents have enough
rationality to take the correct choices. On the other hand, it could be that both the
original and corrected version of the MRT protocol lack StrongFair, i.e., that in

44 Chapter 3 Imperfect Information in Fair Non-repudiation Protocols

both protocols, not every way of resolving non-determinism leads to fairness. In
the same way, the successful verification of StratFair in the MR protocol does
not guarantee NEFair. Furthermore, as strategic timeliness is only checked in
a perfect information model, the MR protocol and the corrected MRT protocol
might be only fair under the unrealistic assumption of perfect information (see
Section 3.6).

3.8 Conclusion

We have shown that the specifications of fairness that are currently used for the
verification of non-repudiation and other fair-exchange protocols have a number of
limitations. First, one of the definitions of fairness, non-enforced fairness, accepts
intuitively unfair protocols, because it was not taken into account that agents can
have imperfect information. This makes it clear that formal verification should
take imperfect information into account. We have proposed a new definition of
fairness that can be used in models with imperfect information. Furthermore, we
have shown that fairness is not a sufficient property for fair-exchange protocols,
as protocols are also required to be effective. We have shown that if both fairness
and effectiveness are expressed in terms of strategies, the two properties cannot
be combined easily in ATL∗. We have proposed a new definition of fairness that
combines the properties correctly in turn-based games. Moreover, we have given a
hierarchy of the various definitions of fairness, and have proven that this hierarchy
is correct. Finally, we have shown that our results have consequences for existing
results from literature.

Which definition of fairness is most appropriate depends on the assumptions on
the agents. If the agents are not rational and should be protected against taking
bad decisions, then StrongFair is clearly the best option. If the agents are
rational, the situation is more sophisticated, as we know how to specify fairness and
effectiveness under imperfect information but not both at the same time. To find as
many flaws as possible, we recommend to verify EffFair in imperfect information
semantics. However, even protocols that satisfy this specification might be flawed:
in imperfect-information models, EffFair guarantees the existence of a strategy
that is fair, and the existence of a strategy that is effective, but not the existence
of a strategy that is both fair and effective. In Chapter 4, we will show that such
a specification cannot be expressed in ATL∗ in imperfect-information models.

For future work, it would be interesting to study ATL∗ specifications of abuse-
freeness, a property that guarantees that no signer can prove to an outside observer
that he is able to determine the result of the protocol. Moreover, it would be
useful to have a tool to verify the concepts of fairness for existing non-repudiation
protocols. This may require a fundamental extension of verification techniques as
there are no ATL∗ model checkers for imperfect information. There was an attempt
in one of the older versions of MCMAS [LQR09], but because of conceptual as well
as computational problems the extension was subsequently abandoned. Also, the
Alpaga tool [BCW+09] can only solve a limited fragment of imperfect information
games.

4

The Expressive Power of ATL∗

Abstract. We compare the expressive power of ATL∗ and the simple fragment of Strat-

egy Logic. We show that on turn-based game structures, ATL∗ is at least as expressive

as the unnested simple one-alternating fragment of Strategy Logic without © operator.

We do so by providing a translation from this fragment into ATL∗. On concurrent game

structures, however, we show that the simple fragment of Strategy Logic is in fact more

expressive than ATL∗. This is also the case on imperfect-information game structures,

even when they are turn-based. These results imply that ATL∗ is not expressive enough

to express the combination of fairness and effectiveness in neither turn-based models nor

imperfect-information models.

4.1 Introduction

In Chapter 3, we saw that it was difficult to combine the requirements of fairness
and effectiveness in turn-based and imperfect-information models in ATL∗. In this
chapter, we formally show that doing so is impossible. We do so by expressing
the combination of fairness and effectiveness in Strategy Logic, and formally com-
paring the expressive power of ATL∗ and SSL. The results of this comparison are
as follows. First, we point out a problem in the proof of [CHP10] that SSL is
as expressive as ATL∗ in turn-based game structures. However, we show that his
result is still valid for a fragment of SSL. Furthermore, we show that SSL is more
expressive than ATL∗ in concurrent game structures, and give a characterization of
SSL-formulas that can be expressed in ATL∗. We do this by extending the defini-
tion of ATL∗-bisimulation from [ÅGJ07, DJ10] to imperfect information. Finally,
we show that in turn-based game structures, SSL is more expressive than ATL∗.
We conclude by applying these results back to security properties. In particular,
we show that the property that expresses the combination of fairness and effective-
ness falls outside the class of SSL formulas that can be expressed in ATL∗. This
implies that the combination of fairness and effectiveness cannot be expressed in
ATL∗. All results in this chapter hold for both finite and infinite concurrent game
structures.

4.2 Preliminaries

4.2.1 Expressive Power

We start by defining what we mean by expressive power [WD09]. We say that
language L2 is at least as expressive as language L1 if for every formula in L1,

45

46 Chapter 4 The Expressive Power of ATL∗

there exists a formula in L2 such that both formulas agree on all models.

Definition 4.1 (Expressive power). Language L2 is at least as expressive as lan-
guage L1 on a class of modelsM with satisfiability relation |=, written L1 ⊑M L2,
if

∀ϕ1 ∈ L1. ∃ϕ2 ∈ L2. ∀M ∈M. M |= ϕ1 if and only if M |= ϕ2.

We say that L1 and L2 are equally expressive on class of models M, written
L1 ≡M L2, if L1 ⊑M L2 and L2 ⊑M L1. Finally, we say that L2 is more expressive
than L1 on class of modelsM, written L1 <M L2, if L1 ⊑M L2 and not L1 ≡M L2.

Example 4.1. Let PROPC be propositional logic with only connectives C, and let
M be a valuation that assigns truth values to atomic formulas (the usual model for
propositional logic). Then we have PROP{∨,∧} ⊑M PROP{∨,∧,¬}, PROP{∨,∧,¬} ≡M

PROP{∨,¬}, and PROP{∨,∧} <M PROP{∨,∧,¬}.

4.2.2 The Simple One-alternating Fragment of Strategy Logic

In many domains, it is desirable to write specifications that treat strategies in two-
agent games as explicit first-order objects. Such domains include assume-guarantee
synthesis [CR10], secure equilibria [CHJ06], and verification of fair-exchange pro-
tocols [CR10, JMM12].

Several logics have been proposed that quantify explicitly over strategies. These in-
clude Strategy Logic (SL) as defined by Chatterjee, Henzinger & Piterman [CHP10],
and a logic defined by Mogavero et al. [MMPV11] also named Strategy Logic
(SLMMV).

In this thesis, we focus on the simple one-alternating fragment of Strategy Logic
(SSL) [CHP10], which is strictly contained in both SL and SLMMV. SSL is strong
enough to model many interesting properties. In particular, we will use SSL to
express the combination of fairness and effectiveness.

The version of Strategy Logic as defined in [CHP10] is interpreted over turn-based
game structures. We extend this definition to concurrent game structures. We
only give the definition of SSL for games with two agents, a and b, but the def-
inition can be easily extended to multiple agents. The crucial operator of SSL
is (∃ ϕa, ∃ ϕb, ϕc). This operator expresses that a and b have a joint strategy to
achieve the common goal ϕc; moreover, if a plays his part of the joint strategy,
then ϕa is achieved independently of the behavior of b, and vice versa.

Definition 4.2 (Simple one-alternating fragment of Strategy Logic (SSL)). The
simple one-alternating fragment of Strategy Logic (SSL) is defined as the following
set Φ, where Π is a set of propositions:

Φ ::= Π | ¬Φ | Φ ∧ Φ | (∃ Ψ, ∃ Ψ,Ψ);

Ψ ::= Φ | ¬Ψ | Ψ ∨Ψ | ©Ψ | 2Ψ | Ψ U Ψ.

We proceed by giving the interpretation of SSL in concurrent game structures.

4.2 Preliminaries 47

q0

ϕa ∧ ϕb ∧ ϕc

ϕa ∧ ϕb ∧ ¬ϕc

¬ϕa

(1 , 1)

(2 , 1)
(2 , 2)

(1 , 2)

(a) M1

q0

ϕa ∧ ϕb ∧ ϕc

ϕa ∧ ϕb ∧ ¬ϕc

¬ϕa

(1 , 1)
(3 , 1)

(2 , 1)
(2 , 2)
(3 , 2) (1 , 2)

(b) M2

Figure 4.1

Definition 4.3 (Interpretation of SSL). Given an SSL formula ϕ, a concurrent
game structure M , and a state q, the interpretation M, q |= ϕ is defined as follows.

M, q |= ¬ϕ if M, q 6|= ϕ;

M, q |= ϕ1 ∧ ϕ2 if M, q |= ϕ1 and M, q |= ϕ2;

M, q |= (∃ ϕa, ∃ ϕb, ϕc) if there exist strategies σa, σb such that:

• For all paths λ ∈ out(q′, σa), we have M,λ |= ϕa; and

• For all paths λ ∈ out(q, σb), we have M,λ |= ϕb; and

• For all paths λ ∈ out(q, (σa , σb)), we have M,λ |= ϕc.

The path formulas Ψ are defined as in ATL∗.

Example 4.2. Consider concurrent game structures M1 and M2 from Figure 4.1.
We have M1, q0 6|= (∃ 3ϕa, ∃ 3ϕb,3ϕc), but M2, q0 |= (∃ 3ϕa, ∃ 3ϕb,3ϕc).

4.2.3 Strategy Logic for Imperfect Information

The original version of Strategy Logic [CHP10] is only defined for perfect-infor-
mation concurrent game structures. We propose an extension of the simple one-
alternating fragment of Strategy Logic to imperfect-information concurrent game
structures [Sch04b].

Now we propose an interpretation of SSL in imperfect-information concurrent game
structures.

Definition 4.4 (Interpretation of SSL). SSL formulas are interpreted in an im-
perfect-information concurrent game structure M and a state q in the following
way.

M, q |= ϕ1 ∧ ϕ2 if M, q |= ϕ1 and M, q |= ϕ2;

M, q |= ϕ1 ∨ ϕ2 if M, q |= ϕ1 or M, q |= ϕ2;

M, q |= (∃ ϕa, ∃ ϕb, ϕc) if there exist imperfect-information strategies σa, σb

such that:

48 Chapter 4 The Expressive Power of ATL∗

• for all states q′ such that q′ ∼a q and paths λ ∈ out(q′, σa), we have M,λ |=
ϕa; and

• for all states q′ such that q′ ∼b q and paths λ ∈ out(q, σb), we haveM,λ |= ϕb;
and

• for all states q′ such that q′ ∼a q or q
′ ∼b q, and all paths λ ∈ out(q, (σa , σb)),

we have M,λ |= ϕc.

Note that concurrent game structures can be seen as special cases of imperfect-
information concurrent game structures, namely those where ∼a is the identity
relation for all agents a.

4.3 Expressive Power in Turn-based Models

It is claimed in Chatterjee et al. [CHP10] that ATL∗ is at least as expressive as
SSL. However, the proof in that paper uses incomplete case distinction. It is stated
that every path formula on a labeled game graph can be reduced to an infinitary
condition, and that Strategy Logic with infinitary conditions can be modeled in
ATL∗. However, path formulas can only be reduced to infinitary conditions on a
different game graph.

We show that ATL∗ is at least as expressive as the unnested ©-free fragment of
SSL. However, we leave open the general question whether ATL∗ is at least as
expressive as SSL.

4.3.1 The Unnested ©-free Fragment of SSL

We define SSL+⊘, the unnested ©-free fragment of SSL, as the fragment of SSL
without © where every path formula contains exactly one temporal operator.

Definition 4.5 (SSL+⊘). SSL+⊘, the unnested ©-free fragment of SSL is defined
as the following set Φ.

Φ ::= Π | Φ ∧ Φ | Φ ∨ Φ | (∃ Ψ, ∃ Ψ,Ψ),

Ψ ::= Φ | ¬Ψ | Ψ ∨Ψ | 2Φ | Φ U Φ.

4.3.2 Weak-until Positive Normal Form

We show that ATL∗ is as expressive as the unnested SSL-free fragment, by giving
a translation of SSL formulas to equivalent ATL∗ formulas. The first step of this
translation consists of writing the formulas in weak-until positive normal form
[BK08]. In this normal form, we add an additional operator W. The formulas
ϕ U ψ and ϕ W ψ both express that ϕ is true until ψ is true. However, ϕ U ψ
requires that ψ eventually will be true, while in ϕ W ψ, it might be the case that
ψ remains false forever.

Definition 4.6 (Weak until [BK08]). We define W (weak until) by ϕ W ψ ::=
(ϕ U ψ) ∨ 2ϕ.

4.3 Expressive Power in Turn-based Models 49

In weak-until positive normal form, negation occurs only directly in front of state
formulas, and 2 is replaced by W. Every path formula can be translated into
positive normal form [BK08].

Definition 4.7 (Weak-until positive normal form [BK08]). The set Ψ of unnested
©-free path formulas in weak normal form is defined as follows:

Φ ::= Π | ¬Φ | Φ ∧ Φ | (∃ Ψ, ∃ Ψ,Ψ);

Ψ ::= Φ | ¬Φ | Ψ ∨Ψ | Ψ ∧Ψ | Φ U Φ | Φ W Φ.

4.3.3 Translation

In order to define the translation from SSL formulas to equivalent ATL∗ formulas,
we define a set of relevant formulas Relv(ϕ) given a formula ϕ. The idea behind
this set is that to determine the validity of ϕ1 W ϕ2 or ϕ1 U ϕ2 in a path, one
only needs to determine whether ϕ1 is false somewhere in the path, and whether
ϕ2 is true somewhere in the path. Therefore, in ϕ1 W ϕ2 and ϕ1 U ϕ2, only the
occurrence of ¬ϕ1 and ϕ2 in the path are relevant.

Definition 4.8 (Relevant). The relevant formulas Relv(ψ) of a path formula ψ are
recursively defined on the structure of ψ in the following way,

Relv(ψ) = ∅

Relv(¬ψ) = ∅

Relv(ψ1 ∨ ψ2) = Relv(ψ1) ∪ Relv(ψ2)

Relv(ψ1 ∧ ψ2) = Relv(ψ1) ∪ Relv(ψ2)

Relv(ψ1 U ψ2) = {¬ψ1, ψ2}

Relv(ψ1 W ψ2) = {¬ψ1, ψ2}

Example 4.3. The formulas 3p and 2q are equivalent to ⊤ U p and q W ⊥,
respectively. So the relevant formulas in 3p ∧2q are Relv((⊤ U p) ∧ (q W ⊥)) =
{¬⊤, p,¬q,⊥}.

We proceed by defining the goal ϕG of formula ϕ after occurrence of a set of
formulas G. The intuition behind the definition of (ψ1 U ψ2)

G and (ψ1 W ψ2)
G is

as follows. In a path with a state where ψ2 is satisfied in an earlier state, ψ1 U ψ2

and ψ1 W ψ2 are satisfied. In a path with a state where ¬ψ1 is satisfied in an
earlier state while ψ2 is not satisfied in any earlier state, ψ1 U ψ2 and ψ1 W ψ2

are not satisfied. Otherwise, i.e., in a path with a state where neither ψ1 nor ψ2

has been satisfied in an earlier state, ψ1 U ψ2 and ψ1 W ψ2 are satisfied if they are
satisfied in the rest of the path.

Definition 4.9 (Goal). The goal ϕG of formula ϕ after occurrence of the set of

50 Chapter 4 The Expressive Power of ATL∗

formulas G is defined as follows.

(ψ1 U ψ2)
G =⊤ if ψ2 ∈ G

=⊥ if ¬ψ1 ∈ G and ψ2 6∈ G
= ψ1 U ψ2 otherwise

(ψ1 W ψ2)
G =⊤ if ψ2 ∈ G

=⊥ if ¬ψ1 ∈ G and ψ2 6∈ G
= ψ1 W ψ2 otherwise

(ψ1 ∨ ψ2)
G = ψG

1 ∨ ψ
G
2

(ψ1 ∧ ψ2)
G = ψG

1 ∧ ψ
G
2

ϕG =⊤ if ϕ ∈ Φ

Example 4.4. The goal of (⊤ U p) ∧ (q W ⊥) after occurrence of an atomic
formula p, written ((⊤ U p) ∧ (q W ⊥)){p}, is ⊤ ∧ (q W ⊥) (which is equivalent
to q W ⊥). This expresses that in a state where ¬q has been true, and none of
the other relevant formulas have been true, q W ⊥ must be true in the rest of the
path, in order for q W ⊥ to be true in the entire path.

We proceed by expressing the concept of ‘between’ in path formulas. We say that
formula ϕ is true between sets of formulas G an H if ϕ is true after all of G and
before all of H . To do so, we first express ‘before’ in path formulas. We say that
formula ϕ is true before a set of formulas H , formula ϕ is true before all of H .

Definition 4.10 (Before). Given a set of formulas H, a path λ and a position i,
we say that i in λ is before H if there does not exist h ∈ H and k with 0 ≤ k ≤ i
such that M,λ[k,∞] |= h.

We add a new path quantifier Before, which is defined as follows.

Definition 4.11 (Before). Let ϕ be a formula, and let H be a set of formulas. We
define Before as follows.

ϕ Before H ::= ϕ W
∨

h∈H

h.

The following lemma shows that the Before path quantifier expresses the concept
of ‘before’.

Lemma 4.1. We have M,λ |= ϕ Before H if and only if for all i in λ before H,
we have that M,λ[i,∞] |= ϕ.

Proof. This follows directly from Definitions 4.10 and 4.11.

Now we can formally define between.

Definition 4.12 (Between). Given sets of formulas G and H, a path λ, and a
position i, we say that i in λ is between G and H if for every g ∈ G, there exists
k with 0 ≤ k ≤ i such that M,λ[k,∞] |= g, and i in λ is before H.

We define Between recursively as follows in path formulas.

4.3 Expressive Power in Turn-based Models 51

Definition 4.13 (Between). Let ϕ be a formula, and let G and H be sets of for-
mulas. We define Between as follows.

ϕ Between ∅, H = ϕ Before H

ϕ Between G,H = (
∧

g∈G

(g → ϕ Between (G\g), H)) Before H

Example 4.5. We demonstrate Definition 4.13 on the case where |G| = |H| = 1.

ϕ Between {g}, {h}= (g → ϕ Between ∅, {h}) Before {h}

= (g → ϕ Between ∅, {h}) W h

= (g → ϕ Before {h}) W h

= (g → ϕ W h) W h.

The following lemma shows that the Between path quantifier expresses the concept
of ‘between’.

Lemma 4.2. We have M,λ |= ϕ Between G,H if and only if for all i in λ between
G and H, we have M,λ[i,∞] |= ϕ.

Proof. (⇒) We apply induction on the size of G. In the base case, we have G = ∅.
Assume M,λ |= ϕ Between G,H . By Definition 4.13, we have M,λ |= ϕ Before H .
By Lemma 4.1, we have for all i in λ before H that M,λ[i,∞] |= ϕ. Therefore,
for all i we have that if for every g ∈ G there exists k with 0 ≤ k ≤ i such that
M,λ[k,∞] |= g and i in λ is before H , then we have M,λ[i,∞] |= ϕ. Therefore, by
Definition 4.12, we have that for all i in λ between G and H , we have M,λ[i,∞] |=
ϕ.

We proceed with the induction step. Assume M,λ |= ϕ Between G,H . By Def-
inition 4.13, we have M,λ |= (

∧

g∈G(g → ϕ Between (G\g), H)) Before H . By
Lemma 4.1, we have that for all i in λ before H , we have M,λ[i,∞] |= (

∧

g∈G(g →
ϕ Between (G\g), H)). First we assume that there does not exist j such that
λ[j,∞] |= g for some g ∈ G and j in λ is before H . Then, given that G 6= ∅, there
does not exist j such that for every g ∈ G, there exists k with 0 ≤ k ≤ j such that
M,λ[k,∞] |= g and j in λ before H . This implies that for all j, if for every g ∈ G
there exists k with 0 ≤ k ≤ j such that M,λ[k,∞] |= g and j in λ before H , then
M,λ[i,∞] |= ϕ. Now we assume that there does exist j such that λ[j,∞] |= g for
some g ∈ G and j in λ is before H . Let j be the smallest such number, and let g
be such that λ[j,∞] |= g. Then M,λ[j,∞] |= (

∧

g∈G(g → ϕ Between (G\g), H)).
This implies M,λ[j,∞] |= ϕ Between (G\g), H . By the induction hypothesis, for
all i in λ[j,∞] between G\g and H , we have M,λ[j,∞][i,∞] |= ϕ. Therefore, for
all i we have that if for every g′ ∈ G\g there exists k with 0 ≤ k ≤ i such that
M,λ[j,∞][k,∞] |= g′ and i in λ[j,∞] is before H , then we have M,λ[i,∞] |= ϕ.
Since λ[j,∞] |= g and since the existence of k with 0 ≤ k ≤ j such that
λ[j,∞][k,∞] |= g implies the existence of k with 0 ≤ k ≤ j such that λ[k,∞] |= g,
we have for all j that if for every g ∈ G there exists k with 0 ≤ k ≤ j such
that M,λ[k,∞] |= g and j in λ is before H , then M,λ[j,∞] |= ϕ. Therefore, by
Definition 4.12, we have for all j in λ between G and H that M,λ[j,∞] |= ϕ.

(⇐) We apply induction on the size of G. In the base case, we have G = ∅.
Assume that for all i in λ between G and H , we have M,λ[i,∞] |= ϕ. Then, by

52 Chapter 4 The Expressive Power of ATL∗

Definition 4.12, we have for all i that if for every g ∈ G there exists k with 0 ≤ k ≤ i
such that M,λ[k,∞] |= g and i in λ is before H , then we have M,λ[i,∞] |= ϕ.
Therefore, for all i in λ before H , we have that M,λ[i,∞] |= ϕ. This implies
by Lemma 4.1 that M,λ |= ϕ Before H . Therefore, by Definition 4.13, we have
M,λ |= ϕ Between G,H .

We proceed with the induction step. Assume that for all i in λ between G and H
we have M,λ[i,∞] |= ϕ. Therefore, by Definition 4.12, we have for all i that if for
every g ∈ G there exists k with 0 ≤ k ≤ i such that M,λ[k,∞] |= g, and i in λ is
before H , then M,λ[i,∞] |= ϕ. Let i in λ before H , let g ∈ G, and assume that
M,λ[i,∞] |= g. Let j in λ[i,∞] between G\g and H . Then by Definition 4.12,
we have that if for every g′ ∈ G\g there exists k with 0 ≤ k ≤ j such that
M,λ[i,∞][k,∞] |= g, and j in λ[i,∞] is before H , then M,λ[i,∞][j,∞] |= ϕ. Let
g′ ∈ G. If g = g′, then M,λ[i,∞] |= g, so there exists k with 0 ≤ k ≤ i + j such
that M,λ[i+ j,∞] |= g. If g 6= g′, then g′ ∈ G\g, so there exists k with 0 ≤ k ≤ j
such that M,λ[i,∞][j,∞] |= g, so there exists k with 0 ≤ k ≤ i + j such that
M,λ[i,∞] |= g. Since j is in λ[i,∞] before H and i is in λ before H , we have that
i + j is in λ before H . Therefore, M,λ[i + j,∞] |= ϕ, so M,λ[i,∞][j,∞] |= ϕ.
This implies that for all i in λ between G\g and H , we have M,λ[i,∞][j,∞] |= ϕ.
By the induction hypothesis, we have λ[i,∞] |= ϕ Between G\g,H . Therefore,
we have λ[i,∞] |= g → (ϕ Between G\g,H). This implies λ[i,∞] |=

∧

g∈G(g →
(ϕ Between G\g,H)). Therefore, we have that for all i in λ before H , we have
M,λ[i,∞] |= (

∧

g∈G(g → ϕ Between (G\g), H)). By Lemma 4.1, we have M,λ |=
(
∧

g∈G(g → ϕ Between (G\g), H)) Before H . By Definition 4.13, this gives us
M,λ |= ϕ Between G,H .

The following lemma shows that given a path λ resulting from a strategy with
which a can guarantee ϕ and a point in that path between G ⊆ Relv(ϕ) and
Relv(ϕ)\G, a can achieve ϕG.

Lemma 4.3. For all concurrent game structures M , ATL∗-formulas ϕ, agents a,
G ⊆ Relv(ϕ), λ ∈ out(q, σa) such that for all λ′ ∈ out(q, σa) we have λ′ |= ϕa, and
i in λ between G and Relv(ϕ)\G, we have that M,λ[i] |= 〈〈a〉〉ϕG.

Proof. Let M be a concurrent game structure, q be a state in M , ϕ be an ATL∗-
formula, a be an agent, G ⊆ Relv(ϕ), λ ∈ out(q, σa) such that for all λ′ ∈ out(q, σa)
we have λ′ |= ϕ, and i ∈ N between G and (Relv(ϕ)\G). We will show that
M,λ[i] |= 〈〈a〉〉ϕG by structural induction on ϕ. If ϕ ∈ Φ or ¬ϕ ∈ Φ, then ϕG = ⊤,
so this holds trivially. Now assume ϕ = ϕ1∧ϕ2. Then M,λ |= ϕ1∧ϕ2, so M,λ |= ϕ1

and M,λ |= ϕ2. By induction hypothesis, M,λ[i] |= 〈〈a〉〉ϕ1
G and M,λ[i] |=

〈〈a〉〉ϕ2
G, so M,λ[i] |= 〈〈a〉〉ϕ1

G ∧ 〈〈a〉〉ϕ2
G, so M,λ[i] |= 〈〈a〉〉(ϕ1 ∧ 〈〈a〉〉ϕ2)

G. The
same reasoning holds when ϕ = ϕ1∨ϕ2. Now assume ϕ = ϕ1 U ϕ2. If ϕ2 ∈ G, then
ϕG = ⊤, so the claim holds trivially. If ¬ϕ1 ∈ G and ϕ2 6∈ G, then M,λ 6|= ϕ, which
is a contradiction. Otherwise, ¬ϕ1 6∈ G and ϕ2 6∈ G. Let λi ∈ out(λ[i], σa), As
λ[0, i] · λi[0,∞] ∈ out(q, σa), we have that M,λ[0, i] · λi[0,∞] |= ϕ. Since ¬ϕ1 6∈ G,
ϕ2 6∈ G, and i in λ between G and Relv(ϕ)\G, it holds that M,λi[0,∞] |= ϕ. This
implies that M,λ[i] |= 〈〈a〉〉ϕ. The same reasoning holds when ϕ = ϕ1 W ϕ2.

Now we give a function τ that translates SSL+⊘-formulas into equivalent ATL∗-
formulas.

4.3 Expressive Power in Turn-based Models 53

Definition 4.14 (Translation from SSL+⊘ to ATL∗). We define function τ :
SSL → ATL∗ as follows. We set τ(p) = p for p ∈ Π, τ(ϕ1 ∨ ϕ2) = τ(ϕ1) ∨ τ(ϕ2)
and τ(ϕ1 ∧ ϕ2) = τ(ϕ1) ∧ τ(ϕ2). We define τ(∃ ϕa, ∃ ϕb, ϕc) as follows:

〈〈a, b〉〉(ϕa ∧ ϕb ∧ ϕc

∧
∧

G⊆Relv(ϕa)

(〈〈a〉〉ϕa
G) Between G, (Relv(ϕa)\G)

∧
∧

G⊆Relv(ϕb)

(〈〈b〉〉ϕb
G) Between G, (Relv(ϕb)\G))

Furthermore, we set τ(p) = p for p ∈ Π, τ(¬ψ) = ¬τ(ψ), and τ(ψ1 ∧ ψ2) =
τ(ψ1) ∧ τ(ψ2).

Example 4.6. Consider the following SSL-formula.

ϕ = (∃ ((⊤ U p) ∧ (⊤ U q)) ∨ (r W ⊤), ∃ ⊤, ψ)

Then we have

τ(ϕ) = 〈〈a, b〉〉((((⊤ U p) ∧ (⊤ U q)) ∨ (r W ⊤)) ∧ ⊤ ∧ ψ ∧

〈〈a〉〉((⊤ U p) ∧ (⊤ U q))∨ (r W ⊥) Between ∅, {p, q,¬r}
∧ 〈〈a〉〉(⊤ ∧ (⊤ U q))∨ (r W ⊥) Between {p}, {q,¬r}
∧ 〈〈a〉〉((⊤ U p) ∧ ⊤)∨ (r W ⊥) Between {q}, {p,¬r}
∧ 〈〈a〉〉(⊤ ∧ ⊤)∨ (r W ⊥) Between {p, q}, {¬r}
∧ 〈〈a〉〉((⊤ U p) ∧ (⊤ U q))∨ ⊥ Between {¬r}, {p, q}
∧ 〈〈a〉〉(⊤ ∧ (⊤ U q))∨ ⊥ Between {p,¬r}, {q}
∧ 〈〈a〉〉((⊤ U p) ∧ ⊤)∨ ⊥ Between {q,¬r}, {p}
∧ 〈〈a〉〉(⊤ ∧ ⊤)∨ ⊥ Between {p, q,¬r}, ∅).

For example, the subformula

〈〈a〉〉(⊤ ∧⊤) ∨ (r W ⊥) Between {p, q}, {¬r}

expresses that in all states in a path where p and q have been true before, and ¬r
has not been true, a should be able to guarantee either ⊤ or r W ⊥.

4.3.4 Correctness of the Translation

Now we show that translation τ is correct, i.e., that in any model, ϕ is true if and
only if τ(ϕ) is true.

Theorem 4.1. For all turn-based game structures M , states q inM , and formulas
ϕ ∈ SSL, it holds that M, q |= ϕ if and only if M, q |= τ(ϕ).

Proof. We prove this by induction on the structure of ϕ. If ϕ ∈ Π, ϕ = ϕ1 ∧ ϕ2

or ϕ = ¬ϕ′, the result follows directly from the induction hypothesis. We proceed
with the case where ϕ = (∃ ϕa, ∃ ϕb, ϕc). (⇒) Assume that M, q |= ϕ. Let σa ∈ Σa

and σb ∈ Σb such that for all λ ∈ out(q, (σa, σb)), we have M,λ |= ϕc; for all
σ′
b ∈ Σb and λa ∈ out(q, (σa, σ

′
b)), we have M,λa |= ϕa; and for all σ′

a ∈ Σa and
λb ∈ out(q, (σ′

a, σb)), we have M,λb |= ϕb.

54 Chapter 4 The Expressive Power of ATL∗

Let λ ∈ out(q, (σa, σb)). By definition of σa and σb, we have M,λ |= ϕa, M,λ |= ϕb,
andM,λ |= ϕc. Since λ ∈ out(q, (σa , σb)), we have that λ ∈ out(q, (σa)). Moreover,
for all λ′ ∈ out(q, σa), we have λ′ |= ϕa. Now let G ⊆ Relv(ϕ), and i in λ between
G and Relv(ϕa)\G. Then we have M,λ[i] |= 〈〈a〉〉ϕa

G by Lemma 4.3. This implies
that M,λ |=

∧

G⊆Relv(ϕa)
(〈〈a〉〉ϕa

G) Between G, (Relv(ϕa)\G) by Lemma 4.2.

In the same way, we prove M,λ |=
∧

G⊆Relv(ϕb)
(〈〈b〉〉ϕb

G) Between G, (Relv(ϕb)\G).

Therefore, M, q |= τ(ϕ).

(⇐) Assume that M, q |= τ(ϕ). Let σa ∈ Σa and σb ∈ Σb be such that for all
λ ∈ out(q, σa, σb), we have M,λ |= τ(ϕ).

Let λ ∈ out(q, (σa , σb)). Then we have M,λ |= ϕa, M,λ |= ϕb, and M,λ |= ϕc by
definition of σa and σb.

For every i ∈ N, let Gi be such that i in λ between Gi and Relv(ϕa)\G
i. Now let

σi
a ∈ Σa be for every i ∈ N a strategy such that for every λa ∈ out(λ[i], σi

a), we
have M,λa |= ϕGi

a .

We construct a strategy σ∗
a as follows:

• If λ′ is a prefix of λ, then σ∗
a(λ′) = σa(λ

′).

• Otherwise, let i be the largest integer such that λ′[0, i] is a prefix of λ and
let σ∗

a(λ′) = σi
a(λ

′).

Now we show that for all λ∗ ∈ out(q, σ∗
a), we have M,λ∗ |= ϕa. Let λ∗ ∈ out(q, σ∗

a).
If λ∗ = λ, then M,λ∗ |= ϕa. Otherwise, let i be the largest integer such that λ∗[0, i]
is a prefix of λ. Let G ⊆ Relv(ϕa) be such that i between G and Relv(ϕa)\G.

If λ[i] is an a-state, then λ[i + 1] is also a prefix of λ, which is a contradiction.
Therefore, i is a b-state.

Since i is a b-state and i is the largest integer such that λ∗[0, i] is a prefix of λ, we
have that out(λ[i], σi

a) = out(λ[i], σ∗
a). We know that for all λ′ ∈ out(λ[i], σi

a), it
holds that M,λ′ |= ϕG, we also have that for all M,λ′ ∈ out(λ[i], σ∗

a), it holds that
M,λ′ |= ϕG. Therefore, M,λ∗[i] |= ϕa

G.

Now we prove by induction on ϕa that if M,λ∗[i,∞] |= ϕG
a and M,λ |= ϕa,

then M,λ∗ |= ϕa. If ϕ ∈ Π or ϕ ∈ Φ, then ϕG = ⊤, so this holds trivially.
If ϕ = ϕ1 ∧ ϕ2, then M,λ∗[i,∞] |= (ϕ1 ∧ ϕ2)

G, so M,λ∗[i,∞] |= ϕG
1 ∧ ϕ

G
2 by

definition of G. Therefore, by induction hypothesis, M,λ∗ |= ϕ1 and M,λ∗ |= ϕ2,
so M,λ∗ |= ϕ1∧ϕ2. The proof for ϕ = ϕ1∨ϕ2 is similar. Now assume ϕ = ϕ1 U ϕ2.
If ϕ2 ∈ G then this holds trivially. If ¬ϕ1 ∈ G and ϕ2 6∈ G then M,λ∗ 6|= ϕa, which
is a contradiction. Otherwise, ¬ϕ1 6∈ G and ϕ2 6∈ G. By ¬ϕ1 6∈ G, we have that
for all j ≤ i, M,λ∗[j,∞] 6|= ϕ1. Since (ϕ1 U ϕ2)

G = ϕ1 U ϕ2, there exists j ≥ i
such that M,λ∗[j,∞] |= ϕ2 and for all k < j, M,λ∗[k,∞] |= ϕ1. This implies that
there exists j ≥ 0 such that M,λ∗[j,∞] |= ϕ2 and for all k < j, M,λ∗[k,∞] |= ϕ1,
which implies that M,λ∗ |= ϕ1 U ϕ2. The proof for ϕ = ϕ1 W ϕ2 is similar.

This shows that for all λ∗ ∈ out(q, σ∗
a), we have M,λ∗ |= ϕa.

Symmetrically, we can prove that for all λ∗ ∈ out(q, σ∗
b), we have M,λ∗ |= ϕb.

Let λ′ ∈ out(q, (σ∗
a
, σ∗

b
)). We prove by induction on i that λ′[i] = λ[i]. We have that

λ[0] = q = λ′[0]. Assume the claim holds for i. By induction hypothesis, λ′[0, i]

4.4 Expressive Power in Concurrent Game Structures 55

is a prefix of λ, so sigma∗a(λ[i]) = sigmaa(λ[i]) and sigma∗b(λ[i]) = sigmab(λ[i]).
This implies that λ′[i+1] = λ[i+1]. Therefore, λ′ = λ. As M,λ |= ϕc, this implies
that for all λ∗ ∈ out(q, (σ∗

a
, σ∗

b
)), we have M,λ∗ |= ϕc.

This proves that M, q |= (∃ ϕa, ∃ ϕb, ϕc).

From Theorem 4.1, it follows directly that ATL∗ is at least as expressive as SSL+⊘

on turn-based game structures.

Corollary 4.1. IfM is the class of turn-based game structures, we have SSL+⊘ ⊑M

ATL∗.

4.4 Expressive Power in Concurrent Game Structures

We proceed by looking at concurrent game structures. We show that in concurrent
game structures, SSL+⊘ is in fact more expressive than ATL∗. In particular, we
show that in concurrent game structures, only some trivial SSL-formulas can be
expressed in ATL∗. We prove this by showing that for non-trivial ATL∗-formulas,
we can provide two models that can be distinguished by a SSL-formula, but not
by an ATL∗-formula. To prove that the models cannot be distinguished by an
ATL∗-formula, we extend the notion of bisimulation for ATL [ÅGJ07, DJ10] to
ATL∗ with imperfect information.

4.4.1 ATL∗-bisimulation for Perfect Information

Definition 4.15 (ATL∗-bisimulation). Let M1 = (Agt, Act1, Q1,Π, π1, d1, δ1) and
M2 = (Agt, Act2, Q2,Π, π2, d2, δ2) be concurrent game structures, let C ⊆ Agt be a
set of agents, and let ΣC1 and ΣC2 be the set of joint strategies of agents C in M1

andM2, respectively. We say that a relation β ⊆ Q1×Q2 is a C-ATL∗-bisimulation
between M1 and M2, denoted M1 ⇄

C
β M2, if for all q1 ∈ Q1 and q2 ∈ Q2, q1 β q2

implies that

Local harmony π1(q1) = π2(q2).

Forth For every joint strategy σC1 ∈ ΣC in M1, there exists a joint strategy σC2 ∈
ΣC2 such that for every path q12, q

2
2, . . . ∈ out(q2, σC2), there exists a path q11, q

2
1, . . . ∈

out(q1, σC1) such that qi2 β q
i
2 for all i > 0.

Back Likewise, for 1 and 2 swapped.

If β is a C-ATL∗-bisimulation between M1 and M2 for every C ⊆ Agt, we call it
a ATL∗-bisimulation between M1 and M2, denoted M1 ⇄β M2.

If M1 ⇄β M2 and q1 β q2, then we also say that β is a local ATL∗-bisimulation
between (M1, q1) and (M2, q2), denoted (M1, q1) ⇄β (M2, q2).

We say that two paths λ1 = q01, q
1
1, . . . and λ2 = q02, q

1
2, . . . are ATL∗-bisimilar,

written (M1, λ1) ⇄β (M2, λ2), when (M1, q
i
1) ⇄β (M2, q

i
2) for all i ≥ 0.

Example 4.7. In Figure 4.1, we have M1 ⇄β M2 with β(q0) = q0.

The following theorem states that in two states that are bisimilar, the same state

56 Chapter 4 The Expressive Power of ATL∗

formulas are true, and in two paths that are bisimilar, the same path formulas are
true.

Theorem 4.2. If M1 ⇄β M2 then:

1. If ϕ is a state formula and (M1, q1) ⇄β (M2, q2), then M1, q1 |= ϕ if and only
if M2, q2 |= ϕ.

2. If ϕ is a path formula and (M1, λ1) ⇄β (M2, λ2), then M1, λ1 |= ϕ if and
only if M2, λ2 |= ϕ.

Proof. We assume that (M1, q1) ⇄β (M2, q2) and (M1, λ1) ⇄β (M2, λ2). We prove
the theorem by induction on the structure of ϕ. First we prove 1. The base case
follows from the fact that we have ϕ ∈ Π, so the theorem holds by local harmony.
To prove the induction step, observe that the cases for ∨ and ¬ follow directly from
the induction hypothesis. For the case 〈〈a〉〉ϕ, we assume that M1, q1 |= 〈〈C 〉〉ψ,
so there exists a joint strategy σC such that for all paths λ ∈ out(q1, σC1), we
have M1, λ |= ψ. Let σC1 ∈ ΣC1. Then by forth, there exists a joint strategy
σC2 ∈ ΣC2 such that for every λ2 ∈ out(q2, σC2), there exists q′1 ∼c q1 and λ1 ∈
out(q′1, σC1) such that (M1, λ1) ⇄β (M2, λ2). Now let σC2 be such a strategy and
λ2 ∈ out(q2, σC2). Then there exists λ1 ∈ out(q1, σC1) such that (M1, λ1) ⇄β

(M2, λ2), so by induction hypothesis, we have that M2, λ2 |= ϕ. This implies that
there exists a joint strategy σ2

C such that for all and paths λ2 ∈ out(q2, σc), we
have M2, λ2 |= ϕ2. We proceed with proving 2. The cases for ∨ and ¬ follow
directly from the induction hypothesis. The cases for ©, 2 and U follow from
the fact that (M1, λ1) ⇄

C
β (M2, λ2) and the induction hypothesis. The ‘if’ direction

follows by symmetry.

4.4.2 Results

Definition 4.16 (ϕ1, ϕ2, and ϕ3). Let ϕ1, ϕ2, and ϕ3 be defined as follows.

1. ϕ1 = ¬(ϕa ∧ ϕb ∧ ϕc);

2. ϕ2 = ¬(ϕa ∧ ϕb ∧ ¬ϕc);

3. ϕ3 = ϕa ∧ ϕb.

We show that an SSL-formula only has a corresponding ATL∗-formula if in every
model, at least one of ϕ1, ϕ2, and ϕ3 is true in every path.

Theorem 4.3. If |= 〈〈〉〉ϕ1 ∨ 〈〈〉〉ϕ2 ∨ 〈〈〉〉ϕ3, then

J(∃ ϕa, ∃ ϕb, ϕc)K = (〈〈〉〉ϕ1 → ⊥)∧ (〈〈〉〉ϕ2 → 〈〈a〉〉ϕa ∧〈〈b〉〉ϕb)∧ (〈〈〉〉ϕ3 → 〈〈a, b〉〉ϕc

where J·K is a mapping from SSL-formulas to ATL∗ formulas such that M, q |= JϕK
if and only if M, q |= ϕ for every SSL-formula ϕ, concurrent game structure M ,
and state q in M .

4.4 Expressive Power in Concurrent Game Structures 57

Proof. Assume that |= 〈〈〉〉ϕ1 ∨ 〈〈〉〉ϕ2 ∨ 〈〈〉〉ϕ3. Let q be a state in concurrent game
structure M . First we show that if M, q |= ψ where ψ = (∃ ϕa, ∃ ϕb, ϕc), then
M, q |= JψK. We assume that M, q |= ψ, and proceed by proving that the three
conjuncts of JψK hold.

• Assume that M, q |= 〈〈〉〉ϕ1. Then for all paths λ ∈ out(q, ∅), we have M,λ |=
¬(ϕa∧ϕb∧ϕc). Furthermore, by M, q |= ψ, there exists σa ∈ Σa and σb ∈ Σb

such that for all λ ∈ out(q, (σa , σb)), we have M,λ |= ϕa ∧ ϕb ∧ ϕc. This is a
contradiction, so M, q |= ⊥, and thus M, q |= 〈〈〉〉ϕ1 → ⊥.

• By definition of ψ, we have M, q |= 〈〈a〉〉ϕa ∧ 〈〈b〉〉ϕb. This implies that
M, q |= 〈〈〉〉ϕ2 → 〈〈a〉〉ϕa ∧ 〈〈b〉〉ϕb.

• By definition of ψ, we have M, q |= 〈〈a, b〉〉ϕc. This implies that M, q |=
〈〈〉〉ϕ3 → 〈〈a, b〉〉ϕc.

Now we show that if M, q |= JψK, then M, q |= ψ. We prove this by case distinction
on the disjuncts of 〈〈〉〉ϕ1 ∨ 〈〈〉〉ϕ2 ∨ 〈〈〉〉ϕ3.

• Assume that M, q |= 〈〈〉〉ϕ1. Then M, q |= ⊥ by M, q |= JψK, so M, q |= ψ.

• Assume that M, q |= 〈〈〉〉ϕ2. Then for all paths λ ∈ out(q, ∅), we have M,λ |=
¬(ϕa ∧ ϕb ∧ ¬ϕc) and thus M,λ |= (ϕa ∧ ϕb) → ϕc. Moreover, we have
M, q |= 〈〈a〉〉ϕa∧〈〈b〉〉ϕb by definition of ψ. Then there exists σa ∈ Σa, σb ∈ Σb

such that for all σ′
b ∈ Σb and λ ∈ out(q, (σa , σ

′
b
)), we have M,λ |= ϕa, and for

all σ′
a ∈ Σa and λ ∈ out(q, (σ′

a
, σb)), we have M,λ |= ϕb. Therefore, for all

λ ∈ out(q, (σa , σb)), we have M,λ |= ϕa and M,λ |= ϕb, and thus M,λ |= ϕc.
This shows that M, q |= ψ.

• Assume that M, q |= 〈〈〉〉ϕ3. Then for all paths λ ∈ out(q, ∅), we have M,λ |=
ϕa∧ϕb. Moreover, we have M, q |= 〈〈a, b〉〉ϕc by M, q |= JψK, Then there exists
σa ∈ Σa, σb ∈ Σb such that for all λ ∈ out(q, (σa , σb)), we have M,λ |= ϕc.
Moreover, for all σ′

b ∈ Σb and λ ∈ out(q, (σa , σ
′
b
)), we have M,λ |= ϕa, and

for all σ′
a ∈ Σa and λ ∈ out(q, (σ′

a
, σb)), we have M,λ |= ϕb. Therefore,

M, q |= ψ.

Theorem 4.4. If M is a concurrent game structure such that M 6|= 〈〈〉〉ϕ1∨〈〈〉〉ϕ2∨
〈〈〉〉ϕ3, then ψ = (∃ ϕa, ∃ ϕb, ϕc) cannot be expressed in ATL∗.

Proof. Assume that 6|= 〈〈〉〉¬ϕ1 ∨ 〈〈〉〉ϕ2 ∨ 〈〈〉〉ϕ3. Then ¬(〈〈〉〉¬ϕ1 ∨ 〈〈〉〉ϕ2 ∨ 〈〈〉〉ϕ3) =
∃ϕ1 ∧ ∃ϕ2 ∧ ∃ϕ3 is satisfiable. Without loss of generality, we assume that ∃ϕ1 ∧
∃ϕ2 ∧ ∃¬ϕa is satisfiable. We turn models M1 and M2 in 4.1 into an imperfect-
information concurrent game by the standard construction for turning concurrent
games into imperfect-information turn-based games. One can easily check that
the models thus obtained are ATL∗-bisimilar. Furthermore, M1, q0 6|= ψ, while
M2, q0 |= ψ. This shows that ψ cannot be expressed in ATL.

Corollary 4.2. If M is a concurrent game structure, ψ = (∃ ϕa, ∃ ϕb, ϕc) can be
expressed in ATL∗ if and only if |= 〈〈〉〉¬ϕa ∨ 〈〈〉〉ϕb ∨ 〈〈〉〉ϕc.

58 Chapter 4 The Expressive Power of ATL∗

Proof. This follows directly from Theorem 4.3 and Theorem 4.4.

Corollary 4.3. If M is the set of imperfect-information concurrent game struc-
tures, SSL 6⊑M ATL∗.

Proof. This follows directly from Theorem 4.4.

4.5 Expressive Power in Imperfect-information Models

Just like for concurrent game structures, we prove that SSL+⊘, and therefore also
SSL, is more expressive than ATL∗, by providing two models that can be dis-
tinguished by a SSL+⊘-formula, but not by an ATL∗-formula. To prove that the
models cannot be distinguished by an ATL∗-formula, we extend ATL∗-bisimulation
to imperfect-information concurrent game structures.

Our definition differs from traditional definitions of bisimulation in that we do not
define ATL∗-bisimulation in terms of the possible next states from a state, but in
terms of the possible paths from a state.

Definition 4.17 (ATL∗-bisimulation). LetM1 = ((Agt, Act1, Q1,Π, π1, d1, δ1),∼1)
andM2 = ((Agt, Act2, Q2,Π, π2, d2, δ2),∼2) be concurrent game structures, let C ⊆
Agt be a set of agents, and let ΣC1 and ΣC2 be the set of joint strategies of agents
C in M1 and M2, respectively. We say that β ⊆ Q1×Q2 is a C-ATL∗-bisimulation
between M1 and M2, denoted M1 ⇄

C
β M2, if for all q1 ∈ Q1 and q2 ∈ Q2, q1 β q2

implies that

Local harmony π1(q1) = π2(q2);

Forth For every joint strategy σC1 ∈ σC1, there exists a joint strategy σC2 ∈ σC2

such that for every agent a ∈ C with q′2 ∼a q2 and for every path q12, q
2
2, . . . ∈

out(q′2, σC2), there exists an agent a ∈ C with q′1 ∼a q1 and a path q11, q
2
1, . . . ∈

out(q′1, σC1) such that qi2 β q
i
2 for all i > 0.

Back Likewise, for 1 and 2 swapped.

If β is a C-ATL∗-bisimulation between M1 and M2 for every C ⊆ Σ, we call it an
ATL∗-bisimulation between M1 and M2, denoted M1 ⇄β M2.

If M1 ⇄β M2 and q1 β q2, then we also say that β is a local ATL∗-bisimulation
between (M1, q1) and (M2, q2), denoted (M1, q1) ⇄β (M2, q2).

We say that two paths λ1 = q01, q
1
1, . . . and λ2 = q02, q

1
2, . . . are ATL∗-bisimilar,

written (M1, λ1) ⇄β (M2, λ2), when (M1, q
i
1) ⇄β (M2, q

i
2) for all i ≥ 0.

The following theorem states that if two states are bisimilar, the same state formu-
las are true in these states, and if two paths are bisimilar, the same path formulas
are true in these paths.

Theorem 4.5. If M1 ⇄β M2 then:

1. If ϕ is a state formula and (M1, q1) ⇄β (M2, q2), then M1, q1 |= ϕ if and only
if M2, q2 |= ϕ.

4.6 Application to Security Properties 59

2. If ϕ is a path formula and (M1, λ1) ⇄β (M2, λ2), then M1, λ1 |= ϕ if and
only if M2, λ2 |= ϕ.

Proof. We assume that (M1, q1) ⇄β (M2, q2) and (M1, λ1) ⇄β (M2, λ2). We prove
the theorem by induction on the structure of ϕ. First we prove 1. The base case
follows from the fact that we have ϕ ∈ Π, so the theorem holds by local harmony.
To prove the induction step, observe that the cases for ∨ and ¬ follow directly from
the induction hypothesis. For the case 〈〈a〉〉ϕ, we assume that M1, q1 |= 〈〈C 〉〉ψ,
so there exists a joint strategy σc such that for all agents a ∈ C, states q′1 ∼a q1
and paths λ ∈ out(q′1, σC1), we have M1, λ |= ψ. Let σC1 ∈ σC1. Then by
forth, there exists a joint strategy σC2 ∈ σC2 such that for every q′2 ∼c q2 and
for every λ2 ∈ out(q

′
2, σC2), there exists q′1 ∼c q1 and λ1 ∈ out(q

′
1, σC1) such that

(M1, λ1) ⇄β (M2, λ2). Now let σC2 be such a strategy and let q′2 ∼c q2 and
λ2 ∈ out(q′2, σC2). Then there exists q′1 ∼c q1 and λ1 ∈ out(q′1, σC1) such that
(M1, λ1) ⇄β (M2, λ2), so by induction hypothesis, we have that M2, λ2 |= ϕ. This
implies that there exists a joint strategy σ2

C such that for all agents a ∈ C, states
q′2 ∼a q2 and paths λ2 ∈ out(q′2, σc), we have M2, λ2 |= ϕ2. We proceed with
proving 2. The cases for ∨ and ¬ follow directly from the induction hypothesis.
The cases for ©, 2 and U follow from the fact that (M1, λ1) ⇄

C
β (M2, λ2) and

the induction hypothesis. The ‘if‘ direction follows by symmetry.

Now we can prove that in imperfect-information concurrent game structures, ATL∗

is not as expressive as SSL.

Theorem 4.6. If M is the set of imperfect-information turn-based game struc-
tures, SSL 6⊑M ATL∗.

Proof. One can easily check that M1 and M2 in Figure 4.2 are bisimilar. However,
M1, q1 |= (∃ ϕa, ∃ ϕb, ϕc), while M2, q0 6|= (∃ ϕa, ∃ ϕb, ϕc).

Corollary 4.4. If M is the set of imperfect-information concurrent game struc-
tures, SSL 6⊑M ATL∗.

Proof. This follows from the fact that every imperfect-information turn-based game
structure is also an imperfect-information concurrent game structure.

4.6 Application to Security Properties

Winning secure equilibria [CHJ06] express that two agents a and b have a joint
strategy to achieve their respective goals ψa and ψb, which are expressed as path
formulas [CHP10]. Moreover, if an agent plays his part of the joint strategy, he
can guarantee that if the goal of the other agent gets satisfied, his own goal gets
satisfied as well. The concept of winning secure equilibria can be expressed in SSL
as follows [CHP10]:

(∃ ϕa → ϕb, ∃ ϕb → ϕa, ϕa ∧ ϕb).

In the original paper [CHP10], it was stated that “such a condition is difficult to
state without explicit quantification over strategies”. From our results, it follows

60 Chapter 4 The Expressive Power of ATL∗

q0

q1 q2

ϕa ∧ ϕb ∧ ϕc

ϕa ∧ ϕb ∧ ¬ϕc

¬ϕa

(−, 1) (−, 2)

(1 ,−)
(2 ,−)

(1 ,−)

(2 ,−)

a

(a) M1

q0

q1 q2

ϕa ∧ ϕb ∧ ϕc

ϕa ∧ ϕb ∧ ¬ϕc

¬ϕa

(−, 1) (−, 2)

(1 ,−)
(3 ,−) (2 ,−)

(1 ,−)

(2 ,−)
(3 ,−)

a

(b) M2

Figure 4.2: Two bisimilar models

that winning secure equilibria in fact can be expressed in ATL∗, as long as one is
restricted to turn-based perfect-information game structures. On the other hand,
our results formally confirm that winning secure equilibria cannot be expressed in
concurrent game structures and imperfect-information game structures.

Effective fairness can be seen as an instance of winning secure equilibria. In order
for a fair-exchange protocol to be correct, the protocol must satisfy that an agent
has a strategy that both guarantees fairness and effectiveness [CR10, JMM12].
Formally, i.e., there exists a pair of strategies (σa, σb) such that:

1. If Alice plays σa, then her goal 2(pa → (3pb)) is achieved;

2. If Bob plays σb, then his goal 2(pb → (3pa)) is achieved;

3. If Alice plays σa and Bob plays σb, then the common goal 3(pa ∧ pb) is
achieved.

Therefore, effective fairness can be expressed by the following strategy logic for-
mula:

EffFairSL = (∃ 2(pb → (3pa)), ∃ 2(pa → (3pb)),3(pa ∧ pb))

Theorem 4.7. EffFairSL cannot be expressed in ATL∗ in concurrent game struc-
tures or imperfect-information game structures.

Proof. Let ϕa = 2(pb → (3pa)), ϕb = 2(pa → (3pb)), and ϕc = 3(pa ∧ pb).
First we show the case for concurrent game structures. Consider concurrent game
structuresM1 andM2 from Figure 4.1. We have M1, q0 6|= EffFairSL andM2, q0 |=
EffFairSL. As M1 and M2 are ATL∗-bisimilar, EffFairSL cannot be expressed
in concurrent game structures in ATL∗.

4.7 Conclusion 61

Now consider concurrent game structures M1 and M2 from Figure 4.2. We have
M1, q0 6|= EffFairSL and M2, q0 |= EffFairSL. As M1 and M2 are ATL∗-
bisimilar, EffFairSL cannot be expressed in imperfect-information structures in
ATL∗.

4.7 Conclusion

We provided a translation from SSL+⊘, the unnested simple one-alternating frag-
ment of Strategy Logic without ©, into ATL∗, on turn-based game structures.
This shows that SSL+⊘ is at least as expressive as ATL∗ on such structures. The
logic SSL+⊘ is an interesting fragment, because it can express useful properties
from game theory and security protocols, such as secure equilibria. Furthermore,
we pointed out a problem in the proof of [CR10] that the full one-alternating frag-
ment of Strategy Logic SSL is at least as expressive as ATL∗ in turn-based game
structures. It remains therefore an open question whether ATL∗ and the full logic
SSL are equally expressive.

Conversely, we pointed out that in concurrent game structures, SSL+⊘ is in fact
strictly more expressive than ATL∗. Moreover, we gave a characterization of the
class of SSL formulas that cannot be expressed in ATL∗ in such game structures.
Finally, we proposed an extension of SSL to imperfect-information concurrent game
structures, and show that in such structures, SSL+⊘ is also strictly more expressive
than ATL∗.

Our results have consequences for the verification of computer security. In partic-
ular, we have seen that in imperfect-information game structures and turn-based
game structure, effective fairness cannot be expressed in ATL∗,

In this chapter, we only considered game structures with two agents. We expect
that our results generalize to an unlimited number of agents. The comparison of
the expressive power of ATL∗ and full SSL in turn-based perfect-information game
structures is also left for future work. Moreover, we did not consider models with
imperfect recall [Sch04b]. It is also not known whether the model checking prob-
lems of SSL for models with imperfect recall and concurrent models are decidable.

5

Non-repudiation and Virtual

Multi-Protocol Attacks

Abstract. It is well-known that in order for security properties to hold, agents are

required to be somehow restricted (for example by not reusing their private keys across

protocols). We show that in addition, agents need to have knowledge about the re-

strictions of other agents. We do so by formally studying the security property of non-

repudiation. We investigate of which sub-properties non-repudiation consists, and study

the knowledge assumptions that are required for each of them. When these assumption

are not satisfied, a new class of attacks, called virtual multi-protocol attacks, arises.

In such attacks, the attacker abuses the lack of knowledge of the attacked agent. We

demonstrate the practical significance of virtual multi-protocol attacks by providing a

case study.

5.1 Introduction

Non-repudiation is, informally, a security property that guarantees that an agent
cannot deny having executed some event in a message exchange, if the event has
actually occurred in the course of the protocol [ZG96]. One can distinguish non-
repudiation of origin (NRO), which says that the sender cannot deny having sent
a message, and non-repudiation of receipt (NRR), which says that the receiver
cannot deny having received a message. To achieve non-repudiation, a protocol
participant collects evidence, which in case of disagreement does not only convince
himself, but also convinces a third party, called the judge [ZG97b]. Evidences are
typically implemented using cryptographic signatures.

The fact that protocol participants need to convince an external judge is a major
difference between non-repudiation and other security properties, such as secrecy
and authentication [Low97]. Moreover, other security properties are typically con-
cerned with external attackers, while non-repudiation is mostly concerned with
dishonest behavior of the participants in the protocol itself. In a protocol offering
NRR of a message, for instance, the sending agent may try to convince the judge
that the message has been received, while in reality, it has not.

Note that, we do not consider fair exchange of evidences in this chapter, but only
the property of non-repudiation itself. Furthermore, we study the assumptions
that are necessary in order to satisfy this definition. In particular, we focus on the
knowledge that agents need to have about the behavior of other agents.

In particular, we look at situations where multiple protocols are executed in par-
allel. Kelsey, Schneier and Wagner [KSW97] have shown that for any protocol

63

64 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

that satisfies a security property if the agents are restricted to executing only that
protocol, it is possible to construct a protocol, called the chosen protocol, that inval-
idates this security property if agents execute multiple protocols in parallel. This
is caused by the fact that unrestricted agents might send all their private informa-
tion, including private keys, to the attacker (as the agents might execute another
protocol that instructs them to do so). This implies that the attacker can do ev-
erything that an unrestricted agent can do. There are multiple ways to prevent
this, such as assuming that agents are restricted to executing only one protocol, or
using a key for only one protocol. An attack on protocol P that is possible when
agents run other protocols at the same time, but not when agents are restricted
to executing protocol P , is called a multi-protocol attack [KSW97]. Multi-protocol
attacks are not only a theoretical problem, but also a realistic threat. Cremers
[Cre06] found that out of 30 individually secure protocols from literature, 23 were
vulnerable to multi-protocol attacks when executed in parallel with one of the other
protocols. A well-known solution to prevent multi-protocol attacks is to assume
that agents use different keys for each protocol [GT00]. We will show that this
assumption (or at least some restriction on the behavior of agents) is also necessary
for non-repudiation.

In addition, in the context of non-repudiation, we identify new necessary assump-
tions, namely that agents need to be aware about the restrictions of the other
agents. This can be seen as an assumption that says that agents trust other agents
to be restricted (for example, to be restricted to one protocol). If these assump-
tions are not satisfied, a new class of attacks, called virtual multi-protocol attacks,
arises.

The remainder of this chapter is organized as follows. In Section 2.3, we give a short
introduction to security protocols. In Section 5.2, we give a formal definition of
the property of non-repudiation. In Section 5.3, we distinguish between traditional
types of non-repudiation, and a newly introduced type of non-repudiation called
non-repudiation of intention. In Section 5.4, we study the assumptions that need to
be made about how the agents are restricted, and we show that if these assumptions
are not satisfied, a new class of attacks, called virtual multi-protocol attacks, arises.
In Section 5.5, we demonstrate a virtual multi-protocol attack against an existing
protocol, and in Section 5.6, we compare our definition with previous definitions
of non-repudiation, before concluding in Section 5.7.

5.2 Non-repudiation

We proceed by formalizing the security property of non-repudiation. A non-
repudiation protocol consists of at least three roles: a signer, a relying party,
and a judge. The protocol consists of two phases. In the first phase, called the
evidence generation phase, the signer sends evidence of event e to the relying party.
After the first phase, the relying party can optionally start the second phase of
the protocol, the evidence verification phase, in which he sends his evidence to the
judge for verification.

Both phases of the protocol end with a security claim. The evidence generation
phase ends with the relying party R claiming generation of evidence of event e,

5.2 Non-repudiation 65

e GE VE

reachGE

soundVE

reachVE

soundGE

Figure 5.1: Event e and the corresponding two claim events, and the relation
between them.

written GE(e), meaning that R is in the possession of evidence that e happened.
The evidence verification phase ends with the judge claiming verification of ev-
idence of e, written VE(e), meaning that the evidence sufficiently proves to the
judge that event e has occurred. The second phase is optional: the relying party
can choose not to execute this phase, if no ruling from a judge is necessary.

Below, we will make the meaning of the two security claims precise.

We split the property of non-repudiation into four sub-properties. Each of the two
security claims gives rise to two of these properties. The properties are informally
depicted in Figure 5.1. The picture shows event e and the corresponding claim
events GE and VE, and the relations between these three events. A rightward
arrow from one event to another indicates that when the first event has happened,
the second event must eventually happen in the future. A leftward arrow means
that when the first event has happened, the second event must have happened
previously.

The first property is reachability of GE (reachGE), which is a functional prop-
erty with respect to GE(e). This property states that the agent executing role
R will eventually reach the claim GE(e). The second property, soundness of GE
(soundGE), states that R only claims GE(e) if event e has actually happened ear-
lier in the trace. The third property, reachability of VE (reachVE), states that if
R claims GE(e), then at some point later in the trace, J will claim VE(e). The
fourth property, soundness of VE (soundVE), states that if the judge claims VE(e),
then e has actually happened.

Note that soundGE is implied by reachVE and soundVE. However, we still consider
soundGE individually, because the assumptions for each of the properties differ, as
we will see in Section 5.4.

If we assume that different agents might behave in different ways, whether the
property holds or not is dependent on which agents run which roles. Therefore, we
parametrize the security properties with a role assignment.

Definition 5.1 (Reachability of GE, Soundness of GE, Reachability of VE, Sound-
ness of VE). Given a trace t and a role assignment ρ, we define the following four
security properties:

• Reachability of GE in trace t under role assignment ρ, written reachGEt(ρ),
holds whenever ti = ((θ, ρ, σ), e) for some θ and σ, active(ti) = S, there
exists j > i and an instantiation inst′ such that tj = (inst′, claim(R,GE(e))).

• Soundness of GE in trace t under role assignment ρ, written soundGEt(ρ),

66 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

holds if whenever ti = ((θ, ρ, σ), claim(R,GE(e))) for some θ and σ, there
exists j < i and some instantiation inst′ such that tj = (inst′, e).

• Reachability of VE in trace t under role assignment ρ, written reachVEt(ρ),
holds whenever ti = ((θ, ρ, σ), claim(R,GE(e))) for some θ and σ, there exists
j > i and some instantiation inst′ such that tj = (inst′, claim(J,VE(e))).

• Soundness of VE in trace t under role assignment ρ, written soundVEt(ρ),
holds whenever ti = ((θ, ρ, σ), claim(J,VE(e))) for some θ and σ, there exists
j < i and some instantiation inst′ such that tj = (inst′, e).

We illustrate this definition with an example.

Example 5.1. We assume that all agents are restricted to executing only this
protocol, and that agents do not indefinitely postpone executing available actions.
Protocol 5.1 satisfies all security properties of Definition 5.1, given event e =
send(S,R, {| f1, R, J,m |}pk(S)). The evidence generation phase consists of steps (i)
and (ii), while the evidence verification phase consists of steps (iii) and (iv). The
constants f1 and f2 are called flags, and are used to prevent type-flaw attacks
[HLS03].

Protocol 5.1

1. S → R: {| f1, R, J,m |}pk(S)

2. claim(R,GE(e))

3. R→ J : {| f2, {| f1, R, J,m |}pk(S) |}pk(R)

4. claim(J,VE(e))

We proceed by (informally) checking that this protocol satisfies all four properties.
When step (i) and (ii) are executed, claim(R,GE(e)) is reached, so reachGE is satis-
fied. For soundGE, we observe the following. Whenever R executes claim(R,GE(e)),
he must have received {| f1, R, J,m |}pk(S). As {| f1, R, J,m |}pk(S) can only be gener-
ated by S, the event send(S,R, {| f1, R, J,m |}pk(S)) must have been executed. Next,
we check reachVE. If R claims GE of e, steps (iii) and (iv) lead to J reaching
claim(J,VE(e)). Finally, if J claims VE of e, then step (iv) is executed, and he
only executes step (iv) after he receives {| {| f1, R, J,m |}pk(S) |}pk(R), due to the use of
the signature. Only S could have generated {| f1, R, J,m |}pk(S), so {| f1, R, J,m |}pk(S)
must have been sent by S, which implies soundVE. This implies that Protocol 5.1
is a correct non-repudiation protocol under the above-mentioned assumptions.

5.3 Non-repudiation of Intention

Non-repudiation of origin (NRO) states that an agent cannot deny having sent a
message. In many applications, however, we need a stronger property, namely that
an agent cannot deny having had a certain intention with sending a message. We
take contract signing as an example.

5.3 Non-repudiation of Intention 67

In contract signing, NRO is necessary, as it should be required that it is impossible
for an agent to deny having put a signature on a contract. However, we will see
that we need an even stronger property than NRO. It is important to realize that
the word signing is used for two entirely different concepts. Cryptographic signing,
obtained by public key cryptography, guarantees that a message originates at a
certain agent. Legal signing, such as a hand-written signature on paper, indicates
that the agent agrees with the content of the contract. These two definitions do
not necessarily correspond.

One of the requirements of a contract signing scheme (in the legal sense) should be
that an agent that follows the protocol never signs a contract without intending
to do so. That means that in contract signing, it should not only be required that
a signature on a contract is originated by a certain agent, but also that this agent
has done so with the intention of signing a contract. NRO does not accomplish
this, which implies that NRO is not sufficient for contract signing, as sometimes is
assumed [GM99, ODSS04, AE11].

As NRO is not suitable for applications that require intention, we introduce a new
security property, called non-repudiation of intention (NRI). We model this by
adding so called intention events, that have the form intend(S, Int, rt), and denote
that S has the intention to commit to the content of rt. We only model this event
informally. We do this by requiring that S only executes intend(S, Int, rt) if he
has the intention to commit to rt. Then we define NRI as non-repudiation of the
intention event.

Definition 5.2 (Intention event, non-repudiation of intention). If S is a role, Int
is an intention, and rt is a role term, then intend(S, Int, rt) is an intention event,
denoting that S intends rt.

A protocol guarantees non-repudiation of intention (NRI) if there exists an inten-
tion event e such that non-repudiation of e is guaranteed.

The following example illustrates the difference between NRO and NRI.

Example 5.2. Consider the following non-repudiation protocol with event e =
send(S,R,m) and evidence NR(e) = {|m |}pk(S). In this protocol, n is a nonce.

Protocol 5.2

1. R→ S: n

2. S → R: {|n,R, J |}pk(S)

3. R→ S: m

4. S → R: {|m,R, J |}pk(S)

One can easily check that {|m,R, J |}pk(S) is indeed a proof that S has sent the
contract m. However, the following trace proves that the evidence {|m,R, J |}pk(S)
cannot be used as an evidence that S signed the contract m (in the legal sense).

Trace: a[Protocol 5.2 : ρ(R) = b, ρ(S) = a)]; b[unrestricted].

68 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

1. b→ a: m

2. a→ b: {|m,R, J |}pk(a)

In this trace, b sends a contract m instead of a nonce n as the first message of
the protocol. Note that the protocol does not specify that m has a special structure,
so a cannot differentiate between a nonce and a contract. Therefore a expects
that she has been sent a nonce and signs it. Consequently, b possesses evidence
{|m,R, J |}pk(b), while a did not intend to sign a contract. This shows that this
protocol cannot be used for contract signing (although it can be used for NRO).

Protocols that offer non-repudiation can not in general be used for any application
where it is required that an agent cannot deny his intention. For example, in certi-
fied e-mail [ZG97a], NRR guarantees that a message has been received. However,
there is no guarantee that the receiving agent had the intention of receiving an
e-mail message. For example, while receiving the certified e-mail, the agent might
have thought he only received a nonce, and might have discarded it immediately.

To formally show that Protocol 5.2 cannot be used for NRI, we add an event
expressing that S has the intention to agree to a contract at the beginning of the
protocol, and change R’s claim in NRI of this event. This results in the following
protocol.

Protocol 5.3

1. e = intend(S, agree to contract m,m)

2. R→ S: n

3. S → R: {|n,R, J |}pk(S)

4. R→ S: m

5. S → R: {|m,R, J |}pk(S)

6. claim(R,GE(e))

This protocol does not satisfy soundness of VE, as S might use {|n,R, J |}pk(S) as
evidence, while S never agreed to n, proving that this protocol cannot be used for
NRI.

To further illustrate the difference between NRI and other forms of non-repudiation,
we consider a vulnerability which we recently discovered in a software package
called Request Tracker.

Example 5.3. Request Tracker [Pra] is a web and email-based trouble ticketing
system, which is developed by Best Practical. Trouble ticketing systems are used by
an organization’s customer support call center to manage reported customer issues.
Request Tracker is included in the Ubuntu universe repository, and widely used (for
example by OpenSSL, Verisign, and NASA). It is possible to set up Request Tracker
to sign all outgoing e-mail. Furthermore, the default behavior of Request Tracker
is such that if the system receives an incoming e-mail for a certain trouble ticket,

5.4 Assumptions of Non-repudiation 69

it automatically forwards the unaltered message to all e-mail addresses that are
listed as cc for this ticket. This can be abused in the following way. The attacker
asks the system owner for a ticket to be created, with a second e-mail address
controlled by the attacker as a cc. Subsequently, the attacker sends an e-mail
message concerning this ticket to Request Tracker, and receives a version of his
e-mail in return that is signed with the PGP key of the system owner. This implies
that an Request Tracker system with PGP-signing of outgoing e-mail enabled can
be used as a signing oracle. Users of Request Tracker might assume that e-mail
signed by Request Tracker implies NRI, and has a meaning comparable with physical
signature. The designers of Request Tracker, though, apparently only had in mind
that the signatures would offer NRO. The author has demonstrated this vulnerability
on a Luxembourgish government agency. Best Practical has been contacted by the
authors, and subsequently issued a patch to their system [CVE]. The government
agency has been contacted as well.

In practice, implementations of non-repudiation, such as PGP, do not make the
distinction between NRO and NRI explicit. The vulnerability in Request Tracker
shows that this might lead to security problems.

5.4 Assumptions of Non-repudiation

5.4.1 Assumptions about Restrictions on Agents

For the usual security properties, such as security and authentication, it is normally
assumed that the communication partners are restricted to executing only that
protocol [CM03, CM12]. Sometimes such restricted agents are called ‘honest’ or
‘trusted’. For security and authentication, this requirement is understandable,
because for such security properties, the participants in the run have an incentive
to validate the security claim.

However, for non-repudiation, the assumption that all communication partners
are restricted is too strong. This is because in the case of non-repudiation, the
communication partners have an incentive to invalidate the security claims of the
other agents. For example, a non-repudiation protocol should protect against the
relying party trying to convince the judge with false evidence. This implies that
non-repudiation protocols also need to protect against attacks from the communi-
cation partners that deviate from the protocol description.

However, in order to be able to make any claims, at least some restrictions on
agents must be assumed. If agents are not restricted at all, no security properties
can be satisfied in any protocol [KSW97]. We define which restrictions on agents
we assume for each of the sub-properties of non-repudiation. The first property
we look at is soundGE. Remember that this property states that R only claims
GE(e) if e has actually happened earlier in the trace. If the signer is unrestricted,
he might give away all his private information to Eve, an agent controlled by the
attacker. It is therefore impossible to distinguish between an event executed by
the signer and an event executed by Eve.

This shows that in most practical contexts, the most a protocol can offer is the
guarantee that an agent either executed an event or was not restricted to the pro-

70 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

tocol. Any requirement beyond that should be solved by non-technical measures
such as a legal system in which agents are liable for any consequence of not fol-
lowing the protocol. For example, in contract signing, this means that the gain of
ignoring a contract should never be larger than the punishment for not following
the protocol. The details of such non-technical measures are outside the scope of
this chapter. Therefore, in the rest of this chapter, we may assume that the signer
is restricted.

Furthermore, if R is unrestricted, he might make a claim at a moment when it is
not (yet) appropriate. Therefore, in the context of soundGE, R should be assumed
to be restricted as well.

Note that since S is assumed to be restricted, the relation between the evidence
and the event can be arbitrary. For example, Protocol 5.4 with e = send(R, S,m)
and evidence NR(e) = {| h(m) |}pk(S) is a correct non-repudiation protocol:

The assumptions for the second property, soundVE, are similar: we need to assume
that R and S are unrestricted.

We proceed by looking at the assumptions for reachGE. This property can in
general not be satisfied if S is unwilling to generate the evidence, or when R is
unwilling to receive the evidence. Therefore, reachGE cannot be satisfied when
either S or R are unrestricted. Similarly, to achieve reachVE, R should be willing
to send evidence, and J should be willing to receive it. This implies that reachVE
cannot be satisfied when either R or J is unrestricted.

In order to reason about such restrictions on agents, we introduce a logic. This
logic contains all usual propositional connectives, atomic formulas of the form
Rest(a, P), indicating that in trace t, agent a is restricted to protocol P , and
atomic formulas of the form Resilientt(a, P), indicating that in trace t, agent a is
resilient when executing protocol P .

The properties reachGE and reachVE require the existence of a future event. There-
fore, we need to assume resilient agents (see Section 2.3.5). For reachGE, we need
to assume that S and R are resilient, and for reachVE, we need to assume that R
and J are resilient.

One possible restriction on agents is the restriction of agents to only one protocol.
Formally, we say that an agent is restricted to protocol P , if the agent only creates
roles of protocol P .

Definition 5.3 (Restricted to protocol). Agent a is restricted to protocol P in trace
t, written Rest(a, P), if for all ti such that actor(ti) = a, we have protocolt(ti) = P .

We have seen that for each of the properties, some agents must be assumed to be
restricted. If we assume that these restricted agents are restricted to executing
only the protocol in question, we obtain the following definition.

Definition 5.4 (Satisfying non-repudiation). A protocol P satisfies non-repudia-
tion if for all role assignments ρ and all traces t, we have:

1. Rest(ρ(S), P) ∧ Rest(ρ(R), P) ∧ Resilientt(ρ(S), P) ∧ Resilientt(ρ(R), P) →
reachGEt(ρ).

2. Rest(ρ(S), P) ∧ Rest(ρ(R), P)→ soundGEt(ρ).

5.4 Assumptions of Non-repudiation 71

3. Rest(ρ(R), P) ∧ Rest(ρ(J), P) ∧ Resilientt(ρ(R), P) ∧ Resilientt(ρ(J), P) →
reachVEt(ρ).

4. Rest(ρ(S), P) ∧ Rest(ρ(J), P)→ soundVEt(ρ).

Example 5.1 satisfies non-repudiation under protocol-restriction assumptions, which
shows that non-repudiation can indeed be satisfied under this definition.

Now let us have a look at which attack scenarios this definiton prevents. First of
all, all attacks on reachGE, soundGE, reachVE and soundVE from outside agents,
i.e., agents not participating in the protocol run, are prevented. Moreover, require-
ment (1) prevents attacks from the judge against reachGE, i.e., the judge cannot
prevent agents from reaching GE(e); Requirement (2) prevents attacks from the
judge against soundGE, i.e., the judge cannot trick the relying agent into believing
false evidence; Requirement (3) prevents attacks from the signer against reachVE,
i.e., the signer cannot prevents the relying agent from convincing the judge; Re-
quirement (4) prevents attacks from the relying agent against soundVE, i.e., the
relying agent cannot cause the judge to make a false claim. The final requirement
is what is typically seen as the most important requirement of non-repudiation.

Note that two attack scenarios cannot be prevented. First, we do not prevent
attacks from the signer against soundGE, i.e., the signer might cause the relying
agent to make a false claim; Second, we do not prevent attacks from the signer
against soundVE, i.e., the signer might cause the judge to make a false claim.

Protocol 5.4

1. R→ S: h(m)

2. R→ S: m

3. S → R: {|R, J, h(m) |}pk(S)

4. claim(R,GE(e))

5. R→ J : {| {|R, J, h(m) |}pk(S) |}pk(R)

6. claim(J,VE(e))

Alternatively, if a protocol can only be used for agreeing to a constant (for example,
the text ‘I sell you my house’), a signed empty string can be used as evidence. Even
a protocol where evidence ‘I do not agree to m’ is evidence of agreeing to m might
be correct.

Assuming that agents are restricted to one protocol is a strong restriction, as
in real-life situations, agents might run several protocols (perhaps with different
purposes) at the same time. We can also assume weaker restrictions that allow
that agents execute multiple protocols in parallel, for example by assuming that
agents use a different key for every protocol (see e.g. [GT00]). However, the choice
of the exact restriction is not the main point. The main point is that there need
to be at least some way in which the agents are assumed to be restricted.

Another way to avoid multi-protocol attacks is to make use of disjoint encryption
[GT00], meaning that when one protocol uses a particular form of encrypted mes-

72 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

sages or signatures, the other protocols must not construct a message of the same
form. One way to arrange for this is to assign each protocol a unique identifier,
and include this identifier in each encryption. This is not an ideal solution, as it
involves altering the protocols themselves. Moreover, if the set of possible proto-
cols is not known in advance, it cannot be guaranteed that there do not exist two
protocols that tag messages in the same way. Therefore, an easier way to achieve
disjoint encryption is to ensure that agents use a different key for every protocol
[GT00].

Definition 5.5 (Restricted to protocol with key). Agent a is restricted to protocol
P in trace t when using key k, written Rest(a, P, k), if for all ti such that actor(ti) =
a and protocolt(ti) = P , then k is not in the initial knowledge of that run.

Now we can define what it means for a protocol to satisfy non-repudiation under

Definition 5.6 (Satisfying non-repudiation under protocol-key assumptions). A
protocol satisfies non-repudiation under protocol-key assumptions if for all role as-
signments ρ and pairwise disjoint keys kS, kR, kJ we have:

1. Rest(ρ(S), P, kS)∧Rest(ρ(R), P, kR)∧Resilientt(ρ(S), P)∧Resilientt(ρ(R), P)
→ reachGEt(ρ).

2. Rest(ρ(S), P, kS) ∧ Rest(ρ(R), P, kR)
→ soundGEt(ρ).

3. Rest(ρ(R), P, kR)∧Rest(ρ(J), P, kJ)∧Resilientt(ρ(R), P)∧Resilientt(ρ(J), P)
→ reachVEt(ρ).

4. Rest(ρ(S), P, kS) ∧ Rest(ρ(J), P, kJ)
→ soundVEt(ρ).

Protocol 5.5 can be used for non-repudiation when executed in isolation. However,
protocols are typically executed in a context in which many protocols are ran in
parallel. In Example 5.4, we will show a multi-protocol attack on Protocol 5.5,
i.e., we will show that this protocol is correct when executed in isolation, but not
when executed in parallel with some other protocol.

Example 5.4. Protocol 5.5 is a non-repudiation protocol in which event e =
send(R, S,m) and evidence NR(e) = {|m |}pk(S). Further, consider authentication
Protocol 5.6, which functions as a chosen protocol that attacks Protocol 5.5.

Protocol 5.5

1. R→ S: m

2. S → R: {|m |}pk(S)

Protocol 5.6

1. P → Q: n

2. Q→ P : {|n |}pk(Q)

When Protocols 5.5 and 5.6 are executed in parallel, b can execute Protocol 5.6,
with a in role Q and b in role P . However, b can be unrestricted and send a contract
m instead of a nonce. Because a expects a nonce, she will sign it, not realizing that

5.4 Assumptions of Non-repudiation 73

by doing that, she gives b evidence that she signed the contract m. It is clear that
this situation is undesirable in the context of contract signing, as it does not satisfy
the property that if a contract is signed, it should be signed intentionally.

So far we only studied attacks in which the attack is executed by the receiving
party R. However, there also exist attacks on a protocol P in which both the
signer and relying party are restricted to P , but where a third party can execute
the attack.

Example 5.5. If Protocols 5.5 and 5.6 are executed in parallel, the following attack
trace becomes possible.

Trace: a[Protocol 5.6 : ρ(S) = a, ρ(R) = e)]; b[Protocol 5.5 : ρ(S) = a, ρ(R) =
b)]; e[unrestricted].

1. b→ e: m

2. e→ a: m

3. a→ e: {|m |}pk(R)

4. e→ b: {|m |}pk(R)

This means that b obtains evidence that a originated contract m. However, a did
not intend to sign contract M . Note that this problem cannot be solved by adding
a layer of authentication (so that b can verify that he is indeed speaking with a).
That is because E can alter the chosen protocol in such a way that he can obtain
the required signatures from a.

5.4.2 Virtual Multi-Protocol Attacks

We have implicitly assumed that the restrictions on agents are common knowledge.
With that, we mean that the restrictions are known by all agents, and all agents
know that they are known, and all agents know that all agents know that they are
known, etc. For example, we assumed that agents have full knowledge about how
agents are restricted to protocols. This assumption is, however, not necessarily
realistic. For example, in networks where agents do not know their communication
partners in advance, such as in ad-hoc networks or the internet, agents have no prior
knowledge about the restrictions on the other agents. Note that we are not talking
about dynamic knowledge about the current state of the agent (i.e. [ZG98, KR10]),
but about static knowledge concerning the restrictions on the behavior of other
agents, that does not change during the course of the protocol execution.

We make our model more realistic by dropping the assumption that agents have
common knowledge about restrictions on behavior of agents. We do so by explicitly
modeling the knowledge that agents have about the restrictions on the behavior of
other agents.

The reason that knowledge on the restrictions on agents is important, is that a se-
curity property should not only hold, but also be known to hold. When restrictions
on agents are not common knowledge, the fact that a security property holds, does

74 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

not automatically imply that an agent knows that the property holds, as different
agents might consider different sets of possible traces.

We proceed by studying for each subproperty of non-repudiation which agents
should know that this property holds. First of all, R must know that soundGE
holds. If R does not know that soundGE holds, R cannot be sure that when he
reaches the GE claim, the event indeed happened. This is problematic: R must
be convinced about the validity of the evidence. Note that the fact that soundGE
might actually hold, changes nothing about this fact. The relevant factor is whether
R knows that soundGE holds.

For the same reason, J should know that soundVE holds.

Furthermore, R should know that reachVE holds. If R does not know that reachVE
holds, he cannot rely on the evidence, as he is not sure that he will be able to
convince J .

However, the knowledge of the properties is not sufficient: agents might even need
knowledge of knowledge of the properties. Consider that if R has knowledge of the
fact that reachVE holds, he knows that J will reach the VE claim. However, R does
not know whether J ’s VE claim implies that J is convinced that e has happened.
Therefore, in order for R to have his evidence accepted, R needs to know that J
knows that soundVE holds.

The fact that agents need to know that a security property holds has as a conse-
quence that the correctness of a non-repudiation protocol does not only depend on
the restrictions on agents (as is well-known), but also on the knowledge that agents
have about these restrictions. To see that lack of knowledge about the restrictions
of other agents might invalidate security properties that held previously, consider
the following example.

Example 5.6. If R knows that S is restricted to Protocol 5.1, we can easily check
that S knows that soundGE holds. However, if R does not know of this restriction,
R does not know that soundGE holds. This is because R must consider the fact that
S might execute a protocol in which S sends out his signing key kS to a third party,
which has as a consequence that the message {| f2, m |}pk(kS) is not guaranteed to
originate at S.

Agents might even need knowledge of knowledge about the restrictions. The fol-
lowing example informally illustrates this.

Example 5.7. Assume that R, J and S are restricted to Protocol 5.1, and that
all agents know that all other agents are restricted to this protocol. Assume that
R does not know that J knows that S is restricted to Protocol 5.1. If J does not
know that S is restricted to Protocol 5.1, then J does not know that soundVE holds
(as J might consider that S executes a protocol that instructs S to send out his
signing key). Therefore, if R does not know that J knows that S is restricted to
Protocol 5.1, R does not know whether J knows soundVE.

To reason about the knowledge that agents have about each other’s restrictions,
and the knowledge about this knowledge etc., we develop a possible world seman-
tics [FHMV95], and a corresponding logic. This logic is interpreted in protocol-
restriction models, which consist of a set of worlds, a property Restricted , and a

5.4 Assumptions of Non-repudiation 75

property Progress that determines the set of worlds in which an agent is restricted
to a protocol, and resilient in a protocol, respectively, and for each agent a relation
on the set of worlds that indicates which worlds are indistinguishable to that agent.

Definition 5.7 (Protocol-restriction model). A protocol-restriction model is a tu-
ple (W,Restricted ,Progress,∼1, . . . ,∼n), where:

• W is a set of worlds, where each world defines a set of traces;

• given agent a and protocol P , we say that Restricted(a, P) ⊆ W is the set of
worlds where a only executes protocol P ;

• given agent a and protocol P , we say that Progress(a, P) ⊆ W is the set of
worlds where a is resilient;

• ∼1, . . . ,∼n are equivalence relations on W for n number of agents. If w ∼i

w′, we say that w and w′ are indistinguishable for agent i.

Whenever w ∼a w′ for agent a, then w ∈ Restricted(a, P) implies that w′ ∈
Restricted(a, P), and w ∈ Progress(a, P) implies that w′ ∈ Progress(a, P).

The final property specifies that agents know their own restrictions.

A world w in model M defines a set of possible traces, which we indicate by
Tr(M,w).

Definition 5.8 (Traces of world in protocol-restriction model). The set of traces
of world w in model M = (W,Restricted ,Progress ,∼1, . . . ,∼n), written Tr(M,w),
is the set of traces t such that for every agent a and every protocol P , we have that
w ∈ Restricted(a, P) implies Rest(a, P), and w ∈ Progress(a, P) implies that we
have Resilientt(a, P).

The semantics of the logic is defined as follows, given a model M and a world w.

Definition 5.9 (Interpretation of protocol-restriction models). Let a be an agent
and let P be a protocol. We define the interpretation of a formula in a protocol-
restriction model M and a world w as follows.

• M,w |= Kaϕ if for all w′ such that w ∼a w
′, we have M,w′ |= ϕ.

• M,w |= π(ρ) for property π in {reachGE, soundGE, reachVE, soundVE} and
role assignment ρ, if for all traces t ∈ Tr(M,w), we have we have πt(ρ).

• M,w |= Res(a, P) if w ∈ Restricted(a, P).

• M,w |= Resilient(a, P) if w ∈ Progress(a, P).

This definition says that an agent knows ϕ in world w, written M,w |= Kaϕ, if it is
true in every world that he cannot distinguish from that world. This implies that
an agent only knows things that are true. Furthermore, a property holds in a world
if it holds in all traces in that world. The last two properties are straightforward.

76 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

Given a formula ϕ, we write |= ϕ whenever for all models M and all worlds w of
M , it holds that M,w |= ϕ.

Now we will study which knowledge of agents need to be assumed in order to satisfy
the knowledge of the security property. The following property of this logic states
that agents cannot know a security property without knowing the assumption that
is required to make this security property true.

Property 5.1. If ϕ is K-free, and π ∈ {reachGE, soundGE, reachVE, soundGE},
and ρ is a role assignment, then we have that 6|= π(ρ) implies

6|= Ka1 . . .Kak−1
Kak+1

. . .Kanϕ→ Ka1 . . . Kanπ(ρ).

Now we can define non-repudiation in protocol-restriction models as follows.

Definition 5.10 (Satisfying non-repudiation in protocol-restriction models). A
protocol P satisfies non-repudiation in protocol-restriction models if for all role
assignments ρ, we have:

1. |= Res(ρ(S), P) ∧ Res(ρ(R), P) ∧ Resilient(ρ(S), P) ∧ Resilient(ρ(R), P)
→ reachGE(ρ).

2. |= Res(ρ(S), P) ∧ Res(ρ(R), P)
→ soundGE(ρ).

3. |= Res(ρ(R), P) ∧ Res(ρ(J), P) ∧ Resilient(ρ(R), P) ∧ Resilient(ρ(J), P)
→ reachVE(ρ).

4. |= Res(ρ(S), P) ∧ Res(ρ(J), P)
→ soundVE(ρ).

5. |= Kρ(R)(Res(ρ(S), P) ∧ Res(ρ(R), P))
→ Kρ(R)soundGE(ρ).

6. |= Kρ(R)(Res(ρ(R), P)∧Res(ρ(J), P)∧Resilient(ρ(R), P)∧Resilient(ρ(J), P))
→ Kρ(R)reachVE(ρ).

7. |= Kρ(J)(Res(ρ(S), P) ∧ Res(ρ(J), P))
→ Kρ(J)soundVE(ρ).

8. |= Kρ(R)Kρ(J)(Res(ρ(S), P) ∧ Res(ρ(J), P))
→ Kρ(R)Kρ(J)soundVE(ρ).

Property 5.2. For every agent a, propositional formula α and formula Ψ, it holds
that |= α→ Ψ implies |= Kaα→ KaΨ.

Proof. Let a be an agent, let α be a propositional formula, and let Ψ be a formula.
Assume |= α → Ψ. Let M be a protocol-restriction model and let w be a world.
Assume M,w |= Kaα. Let w′ be a world such that w′ ∼a w. Since M,w |= Kaα, we
have M,w′ |= α. Since |= α → Ψ, we have M,w′ |= α → Ψ, and thus M,w′ |= Ψ.
Therefore, M,w |= KaΨ. This shows that M,w |= Kaα → KaΨ, so we have
|= Kaα→ KaΨ.

5.4 Assumptions of Non-repudiation 77

Now we show that Protocol 5.1 satisfies item 1 of Definition 5.10. In Section 5.4.1,
we saw that it satisfies (Res(ρ(S), P, kS)∧Res(ρ(R), P, kR))→ soundGE(ρ). Hence
it also satisfies |= Kρ(R)(Res(ρ(S), P, kS) ∧ Res(ρ(R), P, kR)) → soundGE(ρ), and
thus item 5 is also satisfied. It can be shown similarly that the protocol satisfies
the other properties.

Property 5.2 shows that there exist protocols that satisfy non-repudiation in pro-
tocol-restriction models. For example (5): In Section 5.2, we saw that there ex-
ist protocols that satisfy |= (Res(ρ(S), P, kS) ∧ Res(ρ(R), P, kR)) → soundGE(ρ).
Therefore, by Property 5.2, there exist protocols that satisfy the other assumptions
as well.

From definition 5.10, it follows that the following assumptions need to be made in
order to allow protocols that satisfy non-repudiation.

1. S, R and J are restricted to the protocol and resilient.

2. R knows that S, R and J are restricted to the protocol.

3. J knows that S and J are restricted to the protocol.

4. R knows that J knows that S and J are restricted to the protocol.

5. R knows that S and J are resilient.

Again, we can replace the restriction to the protocol by other restrictions. For
example, one could instead assume that the agent has a key that he uses only for
one protocol.

In that case, the first assumption corresponds to the standard requirement that
agents should not re-use their signing key across protocols. However, to the best
of the authors’ knowledge, the other assumptions have not been formulated before.
When these latter restrictions are not satisfied, a new type of attack arises, which
we call virtual multi-protocol attacks. We speak of a virtual multi-protocol attack
when a security property holds in a world of a model, but when some agent does
not know that the property holds.

Definition 5.11 (Virtual multi-protocol attack). A world w in protocol-restriction
model M is vulnerable to a virtual multi-protocol attack on security property ϕ
against agent a if M,w |= ϕ and M,w 6|= Kaϕ.

We call the attack virtual because the attacker does not need to execute a role that
invalidates the security property, but only needs to imply that he might have done
so. Now we discuss some possible ideas to prevent virtual multi-protocol attacks
that do not work. For example, if the judge does not know about the restrictions
on the signer, the signer might correctly execute a non-repudiation protocol, and
afterwards claim that he in fact executed a chosen protocol that is especially crafted
to invalidate the security property of the first protocol (for example a protocol that
makes the signer’s signing key available to others). The signer might either do this
deliberately, or accidentally when he is tricked by the attacker into executing such
a protocol.

78 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

Note that virtual multi-protocol attacks cannot be prevented by standard tech-
niques to avoid multi-protocol attacks or type flaw attacks. In particular, it is not
sufficient to assume that all protocols are tagged with a protocol identifier, or that
each message is tagged with a flag indicating the type of the message, as proposed
in [HLS03]. This is because R and J do not know that the signer only executes
correctly tagged or flagged protocols. As the attacker can choose the chosen pro-
tocol, the attacker can select a chosen protocol that tags or flags messages in the
same way as the original protocol. Finally, a virtual multi-protocol attack cannot
be prevented by requiring that agents use a different key for different protocols, as
long as the relying party and judge do not know that agents use a different key
for different protocols. A protocol especially crafted to serve as chosen protocol
against another protocol might be trivial, and claiming to be the victim of a multi-
protocol attack involving a trivial protocol might not be credible. However, less
contrived chosen protocols can be created as well, as we will see in Section 5.5.

We have seen that agents need to be assumed to have knowledge about each other’s
restrictions, for example in the form of knowledge about which key is used for which
protocol. Note that this knowledge cannot be achieved through a cryptographic
protocol. If this were possible, we could prepend the non-repudiation protocol with
a protocol that achieves the required knowledge, and obtain a non-repudiation
security protocol in which no prior knowledge is required. For example, it is not
sufficient when an agent sends a message that says ‘I execute only non-repudiation
protocol P ’ to the other parties, as the agent might later deny having originated
such a message. In other words, we also need NRO of this message, which leads
to a bootstrapping problem.

The knowledge assumption can only be satisfied when agents communicate their
restrictions to each other. This process should happen by means of a communi-
cation medium that does not suffer from the attacks mentioned above, i.e., in a
non-digital way. As it is not practical for the judge to have a personal interaction
with all agents that execute non-repudiation protocols, this could be implemented
by using key servers that spread information about restrictions on agents. For
example, the restrictions about which keys are used for which protocols could be
propagated by making the key server not only link public keys and user identities
(as normally happens), but additionally link the key to the exact protocol (and
version) for which it will be used. Alternatively, certificates can be used for the
same purpose. Again, it is required that the interaction between the signer and
the key server or certificate authority happens along non-digital way, in order to
prevent the agent from denying that he has deposited his key for a certain protocol.

Attacks on NRI protocols can occur in a multi-protocol context as well. As we have
seen, for contract-signing (or any protocol requiring non-repudiation of intention),
agents are required to have knowledge about each other’s restrictions as well. In
particular, if the relying party does not know for which protocols the signer of the
contract uses his key, virtual multi-protocol attacks are possible: The relying party
can always deny having intended to sign the contract by claiming to have executed
a protocol in which the evidence of the contract signing protocol has a different
interpretation.

The protocol that the signer claims to have executed in a virtual multi-protocol
attack is not required to be an existing or realistic protocol. However, the relying

5.4 Assumptions of Non-repudiation 79

party (and the judge) should believe that the signer might have executed such a
protocol. Therefore, it helps if the executed protocol looks credible. In the next
section, we will look at three examples of credible looking protocols that can be
used as virtual multi-protocol attack against published protocols.

Furthermore, note that the attack cannot be prevented by requiring that contracts
are always messages with a certain structure, and that messages with this structure
should not be signed without agreeing to the contract. In other words, it should be
prohibited to sign a message that has the structure of a contract without agreeing
to it. There is currently no such standard, and even if such a standard were
available, an agent could always deny to be aware of the standard.

Consider protocol P where message m is evidence of the origin of m, and protocol
P ′ where message h(m) is evidence of the origin of m. We assume that messages
and hashes are not distinguishable (one can think, for example, of the message
as a random number). If the relying party does not know that the signer uses
his signing key only for protocol P , the signer can execute protocol P , giving
the relying party evidence of the origin of m. However, the signer can deny the
validity of the evidence by claiming that the evidence originated from protocol
P ′, even without actually having executed P ′. This shows why we need Kρ(R) as
condition of soundGE, since under this assumption, R can exclude that S used the
key with which his evidence is signed in P ′. Similarly, we need Kρ(J) in soundVE.
Finally, if the relying party does not know that the judge does not know that the
signer uses his signing key only for protocol P , the relying party has no way of
knowing whether or not his evidence is sufficient to convince the judge. This is
why Kρ(R)Kρ(J) is essential as condition of reachVE.

Note that there is no requirement that a key pair is only used for one protocol. As
is well-known, it is not a problem to use a key pair for multiple protocols, as long as
these protocols are proved to be compatible together. In practice, any two protocols
can be made compatible by adding a protocol identifier to the messages. However,
even if all protocols used in practice were compatible, a non-repudiation protocol
can still be attacked: the protocol that attacks the non-repudiation protocol is not
required to be a protocol used in practice, but can be invented by the attacker
specifically for this purpose.

An additional problem is that when getting a certificate that links the identity,
key and protocol, the CA needs itself NRI. To understand this, remember that
the judge needs to know that agent a in role S in protocol P uses key k only for
protocol P . If the CA does not require NRO, a can get a certificate that links key
k and protocol P , and later deny that he intentionally did so, preventing the judge
from knowing that a uses k only for protocol P . This problem cannot be solved
by requiring that the CA checks the identity of the agent that registers the key, as
this agent can still claim not having intended to register the key.

Obviously, this gives rise to a bootstrapping problem: an agent should register his
key before he can prove non-repudiation of intention with protocol P , and needs
to prove non-repudiation of intention before he can register his key. There are
several ways to circumvent this problem. A first option is to require that the CA
used for generating the certificate does not only generate the certificate, but also
generates the key pair itself. This prevents the attack, as it becomes impossible to

80 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

register the key at two different CAs for two different protocols. However, the CA
will get to know the private key, which is often undesirable, as it requires trust of
the signer in the CA. A second option is to require that the key is registered in
the physical world, for example at a notary. In this way, the agent that registers
his key intended doing so (and cannot deny this intention, assuming the notary is
trusted).

As a third possibility, the key could be registered by means of a digital recording
[Mau04]: any type of projection of physical reality, e.g., a digital image, video or
sound recording. Such a recording is evaluated by converting it back to physical
form (e.g., an image on a computer screen) and then having it interpreted by
humans. This also guarantees that the agent signs intentionally.

5.5 Case Studies

The examples given in the previous sections were all toy examples that perhaps
might not be credible. In this section, we look at three more plausible ways in
which a virtual multi-protocol could be launched.

5.5.1 Combining Signing and Encryption in PKCS#1v1.5

Existing implementations of non-repudiation protocols are often based on signing
algorithms such as PKCS#1v1.5 [Kal98] or PKCS#1v2.1 [PE02], which both im-
plement the RSA algorithm [RSA78]. In this section, we show an attack against
the combination of NRI and secrecy in PKCS#1v1.5, obtained by first encrypting
and then signing. In the next subsection, we show an attack against NRI obtained
by PKCS#1v2.1.

To prevent guessing attacks, PKCS#1v1.5 specifies that to encrypt a message m,
the string m′, m is encrypted, where m′ is a string of random padding. We show
that the random padding can be used to create a multi-protocol attack when a
message is first encrypted and then signed. Let P be a non-repudiation protocol
that specifies that agent S first encrypts a message m for agent R according to
PKCS#1v1.5 (i.e., with random padding m′), and then signs it, resulting in the
evidence {| {|m′, m |}pk(R) |}pk(S).

Now we specify a new non-repudiation protocol P ′, in which R sends a nonce n to
S, and S replies with {| {|m′, n |}pk(R) |}pk(S). It is easy to check that this guarantees
that S cannot deny having sent m′ (and that R knows that the message has been
sent after he has send n). Note that the encryption does not use padding (which is
not a problem, as guessing attacks can be made impossible by choosing the entropy
of n high enough).

When a judge is presented with evidence from either P or P ′, he cannot decide
from which of both protocols the evidence originates (it is assumed that m, m′, n
and S have a fixed, equal length, and that messages cannot be distinguished from
random strings - for example, because the message is a decryption key). This gives
rise to the following attack trace:

Trace: a[unrestricted]; b[P ′ : ρ = (S 7→ a, R 7→ b)].

5.5 Case Studies 81

1. a→ b : m.

2. b→ a : {| {|m′, m |}pk(b) |}pk(a).

In this attack, agent a pretends to execute P ′, but sends a message m′ instead of
the nonce. b assumes that he signs message m′ according to P ′, but a can use the
resulting evidence to show that m originated at b according to P .

This attack can also be used to execute a virtual multi-protocol attack. Agent a
can execute P to sign m, and in the end deny his intention to sign m, claiming
that the evidence results from the execution of P ′.

It must be admitted that there are other known problems with the approach of
first encrypting and then signing (a relying party can remove the old signature and
add his own, claiming authorship of the message [Dav01]). There are also problems
known with the approach of first signing and then encrypting. These problems can
be solved by either first signing, then encrypting, then signing [Dav01]. However,
the (virtual) multi-protocol attack as discussed in this section still applies to these
approaches.

5.5.2 RSASSA-PSS and Intention

In order to be provably secure, modern electronic signature schemes are imple-
mented probabilistically rather than deterministically, by incorporating a randomly
generated salt value. An example of such a scheme is is the RSA probabilistic sig-
nature scheme (RSASSA-PSS) [BR96]. We will see that signing over salt values,
however, makes it easier to construct a credible chosen protocol with which a vir-
tual multi-protocol attack becomes possible.

An RSASSA-PSS signature offering NRO by an agent executing role S of message
m signed for an agent executing role R has the following form:

{| ((p2, s)⊕MGF(N)), N, bc |}pk(S) where N = h(p1, h(m), s).

Here, p1, p2 and bc are fixed padding, MGF is a pseudo random function called
message generation function, s is a random salt value, and ⊕ is exclusive or. The
final message counts as NRO of message m. The chosen protocol that we will
construct is based on RSASSA-PSS, except that we replace h(m) by a nonce n
chosen by the relying party, and the salt s by a new message m′, of which we
prove NRO. This leads to the following protocol, where the final message counts
as evidence of NRO of m′.

Protocol 5.7

1. R→ S : n

2. S → R : {| ((p2, m
′)⊕MGF(N)), N, bc |}pk(S) where N = h(p1, n,m

′)

If the relying party is played by an unrestricted agent that sends a message h(m)
instead of nonce n, we obtain the following trace:

Trace: a[P ′ : ρ(S) = a, ρ(R) = b]; b[unrestricted]

82 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

1. b→ a : h(m).

2. a→ b : {| ((p2, m
′)⊕MGF(N)), N, bc |}pk(a) where N = h(p1, h(m), m′).

The final message can be either interpreted as NRO evidence of m in RSASSA-PSS,
or as NRO evidence of m′ in Protocol 5.7. This means that an agent can obtain an
NRO evidence of any message in RSASSA-PSS if he can lure another agent into
executing Protocol 5.7. Moreover, a virtual multi-protocol attack is possible: an
agent can first sign evidence of origin of m by RSASSA-PSS, and later deny that
he signed m, claiming that the evidence resulted from signing M ′ in Protocol 5.7.

RSASSA-PSS can be used as signing algorithm in S/MIME [Ram99], which offers
NRO of e-mail messages. S/MIME uses X.509 certificates, which can also be used
for other protocols. It is possible to register the type of protocol that the key will be
used for, e.g., non-repudiation, but not the exact protocol. This is insufficient, as
the chosen protocol in this example is also a non-repudiation protocol. This result
implies that S/MIME with RSASSA-PSS as signing algorithm cannot be used for
contract signing, unless the signing key is registered specifically for S/MIME with
RSASSA-PSS.

It should be noted that PGP [Gar95], an alternative scheme offering non-repudia-
tion, is not affected. PGP keys are registered on a PGP key server, which is only
used to register keys that will be used for the PGP protocol. Registering a key
on a PGP server therefore implicitly confirms that the owner will use the key for
(only) for PGP.

5.5.3 Fair Exchange

As a third case study, we demonstrate a credible chosen protocol that invalidates
an existing non-repudiation protocol, the ZDB protocol [Zho10]. ZDB offers fair
exchange [BOGMR90] of non-repudiation, i.e., when S sends a message m to R, S
receives evidence of NRR if and only if R receives evidence of NRO. Fairness cannot
be ensured without at least one external agent that is trusted by both parties, called
the trusted third party (TTP) [EY80]. ZDB used a trusted third party T which
is only involved in exceptional cases. Agent S first sends a message containing
ciphertext c = {| k |}m, awaits evidence of origin of c, sends the (symmetric) key
k, and awaits evidence of receipt of k. The following messages are used in the
protocol:

• k: message key defined by S,

• c = {| k |}m: commitment (cipher text) for message m.

• L = h(S,R, T,m, k): a unique label linking c and k.

• fi(1 ≤ i ≤ 8): constant flags indicating the intended purpose of a signed
message.

• EOOc = {| f1, R, L, c |}pk(S): evidence of origin of c.

• EORc = {| f2, S, L, c, {| pk(T) |}k |}pk(R): evidence of receipt of c.

5.5 Case Studies 83

• EOOk = {| f3, R, L, k |}pk(S): evidence of origin of k.

• EORk = {| f4, S, L, k |}pk(R): evidence of receipt of k.

• subk = {| f5, R, L, k, h(c) |}pk(S): evidence of submission of k to the TTP.

• conk = {| f6, S, R, L, k |}pk(T): evidence of confirmation of k issued by the TTP.

• abort = {| f8S,R, L |}pk(T): evidence of abortion of a transaction issued by T .

In the original protocol, EORc contains h(c) instead of c, but this is just an opti-
mization [Zho10].

We only give the main protocol, which is executed if no abnormalities occur.
For the full protocol, the reader is referred to [Zho10]. In the protocol, L =
h(S,R, T,m, k) is a unique label for a protocol execution, fi(1 ≤ i ≤ 5) are con-
stant flags indicating the intended purpose of a message, and subk is a message
signed by S that R can use to start the recovery protocol with the TTP in the
abnormal case where a message does not arrive timely.

If an abnormal case occurs, either both or none of the agents can obtain a message
conk from T . Message EORc together with either EORk or conk counts as NRR
evidence, while EOOc with either EOOk or conk counts as NRO evidence. For the
sake of simplicity, we assume that all parameters have a standard length, and that
pairing of messages is implemented by concatenation. This assumption is not vital,
as for more complex cases, it is still possible to construct a protocol that attacks
the non-repudiation protocol (although more complex).

There are three sub-protocols: Exchange, Abort, and Resolve. In the Re-

solve sub-protocol, the initiator U is either a or b.

Exchange:

Protocol 5.8

1. a→ b : b, L, c, T, {| pk(T) |}k,EOOc, subk.

2. If b gives up Then quit.

3. Else b→ a : a, L,EORc.

4. If a gives up Then Abort.

5. Else a→ b : b, L, k,EOOk.

6. If b gives up Then Resolve.

7. Else b→ a : a, L,EORk.

8. If a gives up, Then Resolve.

9. Else done.

84 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

Abort:

Protocol 5.9

1. A→ T : b, L, {| f7, b, L |}pk(a).

2. If exchange resolved Then a← T : a, b, L, k, conk,EORc.

3. Else a← T : a, b, L, abort.

Resolve:

Protocol 5.10

1. U → T : a, b, L, {| pk(T) |}k, subk,EORc.

2. If exchange aborted Then T ← U : a, b, L, abort.

3. Else U ← T : a, b, L, k, conk,EORc.

The following two authentication protocols together can be used as chosen pro-
tocols in a multi-protocol attack. Note that flags are only required to be unique
within a protocol, not across protocols. Both of these protocols correctly guarantee
that recent aliveness of P to Q. Messages n1 and n2 are nonces.

Protocol 5.11

1. P → Q : f2, n1, n2.

2. Q→ P : {| f1, Q, n1, n2 |}pk(Q).

Protocol 5.12

1. P → Q : f4, n1, n2.

2. Q→ P : {| f3, Q, n1, n2 |}pk(Q).

This leads to a multi-protocol attack demonstrated in the following attack trace:
Trace: a[unrestricted]; b[Protocol 5.11 : ρ(P) = a, ρ(Q) = b], a[Protocol 5.12 :

ρ(P) = a, ρ(Q) = b]

1. a→ b : f2, L, c.

2. b→ a : {| f1, a, L, c |}pk(b).

3. a→ b : f4, L, k.

4. b→ a : {| f3, a, L, k |}pk(b).

Agent b then possesses ({| f1, a, L, c |}pk(b), {| f3, a, L, k |}pk(a)) = (EOOc,EOOk), so b
can claim NRO of m. This seems undesirable, as a is not aware of sending message
m, as she assumed that L, c and k were just nonces. On the other hand, agent
a can execute the non-repudiation protocol normally, and afterwards deny that
she executed it, claiming that b obtained NRO by executing the authentication
protocol.

5.6 Related Work 85

Now we define a new non-repudiation protocol ZDB’, which functions as a chosen
protocol that invalidates ZDB. ZDB’ is equal to ZDB, except that flags f1 and f2
are swapped, and that c and L are swapped in EORc, i.e.,

EORc = {| f1, S, L, {| pk(T) |}k, c |}pk(R).

Furthermore, L and {| pk(T) |}K are half the length of the other parameters. This
clearly does not change the correctness of the protocol. However, the following
attack trace becomes possible, in which L = (L1, L2) and s is any string.

Trace: a[ZDB′ : ρ(S) = a, ρ(R) = b); b[unrestricted]

1. b→ a : a, L1, c, T, L2, {| f2, a, L1, c |}pk(b), {| s |}pk(b).

2. a→ b : b, L,EOR′
c.

Note that a has no way to find out that the parameters L, c,{| pk(T) |}k and subk
are incorrect, as she does not yet know k and m, and that EOOc matches the
expected value. After this trace is executed, b possesses the message EOR′

c =
{| f1, b, L1, L2, c |}pk(a) = {| f1, b, L, c |}pk(a), which is equal to the evidence EOOc in
ZDB.

Analogously, b can obtain EOOK from a (with a second chosen protocol). As a
can obtain both EOOc and EOOk, a can obtain evidence of origin without b having
originated m. This allows for a multi-protocol attack if R considers it possible that
S executes ZDB’ (with the relevant key): S can deny having originated m (even
if he did originate it), by claiming that his evidence results from the execution of
another protocol.

Note that to create the protocols that invalidate the claims of ZDB, it was sufficient
to change the argument order and swap two flags. This indicates that even a slight
change in a protocol, for example a different version, can be used to invalidate the
original protocol.

5.6 Related Work

Formalization of non-repudiation starts with Zhou and Gollmann [ZG98], who
formally express (versions of) non-repudiation as goals in SVO logic. For example,
NRO is defined as ‘J believes that (a said M)’. This corresponds to our soundGE
property. The other properties are not considered. Analysis of non-repudiation
in terms of evidence dates back to Schneider [Sch98], who uses Communicating
Sequential Processes to model non-repudiation protocols. He requires that if pieces
of evidence are sent from an agent to the judge, then another agent must have sent
(in the case of NRO) or received (in the case of NRR), a particular message.
This loosely corresponds to our soundGE and soundVE properties. However, in
the analysis of Schneider, it is not taken into account that either the sender or
the judge might not be able to inspect the evidences (for example, because the
evidence is encrypted), and that the properties therefore are not equivalent. He
also does not consider the reachVE property. Moreover, both Zhou & Gollmann
and Schneider do not make the assumptions that are made about the protocol

86 Chapter 5 Non-repudiation and Virtual Multi-Protocol Attacks

participants non-repudiation explicit. Admittedly, in the protocols considered in
[ZG98, Sch98], these additional properties are satisfied trivially. Bella & Paulson
[BP01] have used the theorem prover Isabelle to verify non-repudiation protocols.
They also do not distinguish between soundGE and soundVE. Klay & Vigneron
[KV08] formalize non-repudiation as an authentication problem, i.e., they require
that the relying party needs to authenticate the signer and the TTP. We have seen
that this only partially models non-repudiation, as authentication does not model
the aspect that the relying party needs to convince the judge.

The notion of non-repudiation is closely related to the notion of accountability,
which says that a judge blames protocol participants if and only if they mis-
behave. Various formal definitions of accountability have been proposed, i.e.,
[KTV10, KR10]. Much attention has also been paid to the formalization of the fair
exchange property [BOGMR90], rather than the non-repudiation property itself.

Another property often considered in the context of contract-signing is abuse-
freeness [GM99], meaning that at no point a participant can prove to others that
he is capable of choosing whether to validate or invalidate a contract.

5.7 Conclusion

It is well-known that agents need to restrict the use of their cryptographic keys
to a limited set of protocols if multiple security protocols are executed in paral-
lel. We have shown that this restriction is not sufficient, as it allows for virtual
multi-protocol attacks, i.e., situations in which a security property holds, but is not
known to hold by some agent. To prevent such attacks, we proposed an additional
assumption, which states that agents know for which protocols other agents use
their keys. This assumption can be satisfied by making the public key infrastruc-
ture not only link keys to agents, but also to the protocol for which the key is used.
Such an assumption is currently not observed in practice in protocols claiming to
offer non-repudiation and contract signing. For instance S/MIME [Ram99], a pro-
tocol of which the documentation explicitly states that it offers non-repudiation,
uses generic keys and certificates that allow keys to be used in other protocols as
well. Therefore, an agent can deny his signature by claiming that it resulted from
the execution of another protocol. This implies that S/MIME is only suitable for
non-repudiation if agents know that the other agents do not use their keys for
different purposes.

Virtual multi-protocol attacks can occur in other types of protocols as well. For
instance, in a secrecy protocol P , if the receiver does not know that the signer
executes only protocol P , then the signer can apply a virtual multi-protocol attack
by claiming that he did not execute protocol P , and that the claim is broken, i.e.,
that the message is not secret anymore. Our results also extend to intentional au-
thentication. For example, when an agent transfers money from his bank account,
the bank should require that the agent intends to do so. This can be accomplished
by letting the agent sign his command. Our results indicate that this is not suffi-
cient in general: the bank should also require that the agent registers his signing
key for the protocol that the bank uses.

However, virtual multi-protocol attacks are especially relevant for non-repudiation

5.7 Conclusion 87

protocols for three reasons. First, in non-repudiation protocols, it is in the advan-
tage of the signer to state that the security claim does not hold, as, for instance,
being able to deny a contract might be profitable. Secondly, non-repudiation pro-
tocols are executed more often in open systems where the participants do not have
knowledge about each other. Thirdly, in non-repudiation protocols, there is an
external judge involved, who also must have knowledge about the other agents.

Moreover, we have given a new definition of non-repudiation. This definition is
an improvement on previous definitions, as it excludes some intuitively incorrect
protocols that are accepted by previous definitions.

Some non-repudiation protocols make use of a trusted third party (TTP). We
expect that our analysis can be easily extended to incorporate this. A formal
analysis of this situation is left for future work.

6

Incentives in Security Protocols

Abstract. We propose a methodological framework for analyzing interaction protocols

that takes into account the incentives of agents. The framework allows for a more fine-

grained analysis of such protocols. We formally define correctness of a protocol given a

notion of rationality, and possibly given the utilities of the agents and a set of agents

that supports the objective of the protocol. Finally, we describe the security level of a

protocol as the minimal sets of participants supporting the objective of the protocol that

are necessary to achieve this objective.

6.1 Introduction

From a game-theoretic perspective, security protocols are an interesting class of
games since they have a goal, i.e., an outcome that is preferred by the designer of
the protocol. In security protocols, some participants have a strong incentive to
deviate from the protocol. Security protocols enforce certain goals, provided that
at least some of the participants follow the original protocol.

When studying the interaction between security protocols and game theory, re-
searchers have usually considered protocol execution as a game with the very pes-
simistic assumption that the only goal of the other participants (“attackers”) is to
break the intended security property of the protocol. In other words, the classical
requirement states that a protocol is correct if the agents supporting the objective
have a strategy such that for all strategies of the other agents, the objective of
the protocol is satisfied. Game-based analysis in such a way has been performed
in [KR02], among others. Recently, protocols have been analyzed with respect to
game theory’s notions of rationality [Mic10, ACH11], where the preferences of the
participants are taken into account.

In this chapter, we point out that the above definition of correctness can be too
strong, because violation of the objective may be achievable only by irrational
responses from the other agents. On the one hand, the only behavior violating
the security constraints might never going to be chosen by rational attackers. On
the other hand, the definition may also prove too weak when the objective of the
protocol can be only achieved by an irrational joint strategy of agents supporting
the objective, in other words: one that they will never choose to play. In this
chapter, we show that this classical requirement is neither necessary nor sufficient
if we have any – even very weak – idea of what drives the participating parties.

To describe and predict rational behavior of agents, game theory has proposed a
number of solution concepts [OR94, SLB09]. Each solution concept represents a
different notion of rationality and ability of coordination, which may be more or

89

90 Chapter 6 Incentives in Security Protocols

less applicable in different contexts.

Another strategic issue that is central in the study of many games is the question of
how much (if at all) participants are able to coordinate their strategies. In the study
of security protocols, it is important that if a coalition has a strategy to achieve
some objective (such as signing a contract), each of the coalition’s members must
be able to identify their actions to be followed in the strategy. The question of
how much coordination is possible between different participants is closely related
to the question which solution concept to apply. Hence, choosing an adequate
solution concept is a key step in performing a meaningful protocol analysis.

For example, Nash equilibrium, which is used in all rational analysis of security
protocols that we are aware of, assumes coordination capabilities that participants
may not have in a concrete protocol setting. We do not fix any particular solution
concept, and instead take it to be a parameter of the problem.

Our approach applies to all protocols where the objective (e.g., secrecy, authen-
tication) is well-defined for individual runs. As running example, in this chapter
we focus on contract signing protocols as an example of fair-exchange protocols.
In contract-signing protocols, Alice and Bob want to exchange digitally signed
contracts [BOGMR90, ASW98, GJM99]. We abstract away from the actual imple-
mentation of the protocols, and model them as game frames where strategy profiles
correspond to possible ways of executing the protocol. Moreover, utility functions
represent agents’ preferences over different possible outcomes of the interaction.

Consider Alice’s point of view. She knows that if the protocol run is supposed to
be effective, Bob must cooperate in some way. Hence Alice can assume, at the
very least, that Bob will play a “nice” strategy that does not completely preclude
the exchange of contracts. Therefore, one reasonable starting point would be to
require that Alice has a strategy that ensures effectivity as long as Bob plays any
strategy that is “nice” in this sense.

More generally, Alice’s reliance on Bob playing “nice” can be captured game-
theoretically as Alice being able to reason about Bob’s incentives. With solution
concepts, game theory provides useful tools to formalize situations like these and
analyze their strategic properties.

The aim of this chapter is to provide a methodological framework that uses game-
theoretic models of agents’ incentives to obtain a finer-grained analysis of properties
of interaction protocols. First, we propose that a protocol satisfies its objective
if the objective is satisfied by all rational behaviors of participants. To define ra-
tional behavior, we need an accurate model of agents’ incentives. Since the exact
incentives of the agents are often unknown, we consider the following alternative:
We assume a subset of agents to be in favor of the security (and/or function-
ality) properties in question. For instance, a bank should not favor fraud that
decreases its revenue, a contract signing party should not prefer to be cheated by
the other party, etc. Analogously to the classic definition of security (a protocol
should achieve its objective as long as a specific group of participants follows the
protocol), we give a very natural definition in the game-theoretic setting: Every
rational protocol run must satisfy the protocol goal, as long as a specific group of
participants are in favor of the protocol goal. The group defines the game-theoretic
security level of the protocol.

6.2 Security Protocols 91

Our main contributions are the following:

1. We define rational correctness notion for security protocols,

2. we give an appealing characterization about security properties that can be
defended in the above sense in the case of using Nash equilibria,

It is important to note that we do not fix a single notion of rationality here, but
consider it as a parameter to our model.

6.2 Security Protocols

We begin by defining the models of security protocols that we use in this thesis. A
protocol is a formal specification of how agents should interact. Protocols might
contain choice points in which more than one action is available to the agents. If a
security protocol contains choice points in which more than one action is available
to the agents, the protocol is non-deterministic. A strategy of an agent in a protocol
is a conditional plan, i.e., a function that specifies for each choice point which action
to take. A set of deterministic strategies, one for each agent, uniquely determines a
run of the protocol, i.e., the sequence of actions that the agents take. We say that
an agent is honest if he follows the protocol specification, and dishonest otherwise,
i.e., when he behaves in a way that is not allowed by the protocol. In that case,
the agent is only restricted by the physical and logical actions that are available in
the environment. For instance, in a security protocol, agents can do anything that
satisfies properties of the cryptographic primitives, assuming perfect cryptography
(as in [KR03]).

In this chapter, we mainly focus on two-party contract signing protocols. In such
protocols, two agents, which we will call Alice and Bob, intend to sign a contract.
Many security properties of protocols can be expressed in terms of desirable prop-
erties, or objectives, of runs. The two main objectives of runs in contract signing
protocols are fairness and effectivity.

Remember that fairness should be guaranteed for honest agents even if the other
agents are not honest. In order to achieve fairness, contract signing protocols have
to make use of a trusted third party T [PG99], which is assumed to be honest. A
protocol run is effective if at the end of the run, both agents have the signature of
the other agent. Obviously, if a run is effective, it is also fair.

Recall that in the traditional definition of effectivity of a contract-signing protocol,
it is required that the agents together must be able to enforce an effective run, while
any of the agents should be able to enforce fairness for himself.

In this chapter, we do not study the cryptographic aspects of security of contract-
signing, but instead consider the question whether a protocol allows agents that
play “rationally” to reach the relevant security goals. Therefore, we take a high-
level view of the protocol and assume that attacks on the protocol in the cryp-
tographic sense (i.e., forging of messages, multi-session attacks, type flaw attacks,
etc.) are prevented by the usual cryptographic tools (signing, encryption, typing of
messages, etc.), and that all messages that are being transmitted are labeled with

92 Chapter 6 Incentives in Security Protocols

Alice TTP Bob

sA
sig?
sB
sA

sB

msc Contract Signing with TTP

Figure 6.1: A contract-signing protocol

the type of the message, the name of the sender, the name of the intended recipient,
the name of the TTP which is agreed upon, and an identifier linking the message
to the protocol session. Similarly, we assume that the communication channels are
resilient, i.e., that all messages are delivered after a finite, but unknown amount
of time.

We will usually assume that Alice prefers the situation where both Alice and Bob
receive a signed contract over the one where neither of them do. Moreover, her
most preferred option is to receive a signed contract while Bob does not receive
one, and her least preferred outcome is to not receive a contract in spite of Bob
receiving one.

Example 6.1. Figure 6.1 displays a simple contract signing protocol [BOGMR90],
where Alice and Bob exchange signatures. It makes use of a trusted third party
(TTP) T , which is assumed to be honest. The protocol specifies that first Alice sends
her signature sA to the TTP, and then the TTP requests Bob’s signature with the
message sig?. Subsequently, Bob sends his signature sB to the TTP. Finally, the
TTP forwards the signatures to Bob and Alice.

Clearly, in a real-world setting, each participant in a protocol can stop execution
of the protocol at any point. To model this, we formally consider protocols as
non-deterministic.

Moreover, we assume that each participant has the choice to stop execution of the
protocol at any point. In this protocol, fairness is intuitively guaranteed, because
the TTP is honest and will not send out sA and sB before he has collected both
signatures.

6.2.1 Rationality and Coordination in Security Protocols

It is traditionally required that a correct protocol must satisfy the relevant prop-
erties in all possible runs [CR10, KR03]. In case of contract signing that implies
a.o. that all combinations of honest strategies are fair. We claim that this re-
quirement is often too strong. Consider, for example, the ASW contract signing
protocol [ASW98] (see also Section 6.5.1) where agents have the right to abort
or stop the execution of the protocol. When a participant is “cheated”, he can
always call the “resolve” protocol. If he does not do this, the protocol run is not
fair according to the above definition. This seems intuitively wrong in a situation

6.2 Security Protocols 93

bool p

Alice TTP

bool p′

Bob

sA, p
s

sB, p
′

p = p′?
sA

sB

msc Coordinated Contract Signing

Figure 6.2: A contract-signing protocol in which coordination is required

where the participant voluntarily gave up enforcing fairness, presumably because
he pursued other goals. In particular, we would like to distinguish between sit-
uations where an agent is deprived of fairness, and ones where he prefers not to
obtain it. This calls for a model of reasons for choices of the participants in a
protocol.

Moreover, effectiveness is usually deemed to hold if there exists a run that is
effective [CR10]. We claim that this is too weak. First, the participants might not
be able to coordinate on playing a successful run. Second, even if they can do that,
they might still not be willing to, as it comes against other goals that they pursue.

In fact, typical analysis of contract signing is also based on an implicit model of
incentives. One usually assumes that a participant, say Alice, has an incentive
to obtain a fair run for her but not for the others (Bob in this case), as Alice
prefers obtaining the signature of Bob without sending a signature herself. Con-
tract signing protocols are supposed to prevent such attacks, and that is where a
trusted third party is needed. We point out that both assumptions can be wrong:
that Alice wants Bob’s signature as well as that she wants to deprive Bob of her
signature.

The following protocol serves as an example where the agents need to coordinate in
order to exchange signatures. This demonstrates that the requirement that there
exists a successful run is insufficient.

Example 6.2. Consider the protocol in Figure 6.2, which is similar to the protocol
in Figure 6.1, except that the agents have to send Boolean values p and p′ to the
TTP. The TTP only forwards the signatures if both agents have sent the same
Boolean. As the agents need to choose the same Boolean, coordination is required
in order to exchange signatures.

The above protocol is clearly contrived, however such concerns more realistically
appear in situations when Alice and Bob use a contract signing protocol in which
the TTP has limited memory, and thus cannot keep every contract received in mem-
ory, and hence there is an upper bound on the maximal number of open sessions.
To achieve contract signing, Alice and Bob thus have to coordinate the time of
contacting the TTP.

(Note that coordinating session numbers can be avoided, since it can be assumed

94 Chapter 6 Incentives in Security Protocols

Alice Bob

sA
sB

msc Naive Contract Signing

Figure 6.3: A naive contract-signing protocol

that the TTP can uniquely identify the session when given the contract text and
the public keys of Alice and Bob.)

The following example demonstrates a protocol where the objective (fairness) can
be in principle satisfied, but only if the participants choose irrational behavior.

Example 6.3. Figure 6.3 depicts a naive contract signing protocol. In this pro-
tocol, Alice sends a signature to Bob, who responds by sending back his signature.
Again, we assume that Alice and Bob can choose to stop executing the protocol
at any moment. The run where Bob and Alice both send their signatures is fair.
However, it is irrational for Alice to send her signature, as Bob has an incentive to
stop the protocol (before sending his signature) instead of sign, and thereby causing
harm to Alice.

We will use game models to represent incentives and study their impact on cor-
rectness of protocols.

6.2.2 Game-theoretic Models of Interaction

We will use normal-form games to provide an abstract representation of agents’
possible strategies, runs resulting from playing the strategies, and preferences of
agents with respect to runs.

Definition 6.1 (Frames and games). A (normal-form) game frame is a tuple
(N,Σ,Ω, o), where N = {A,B, . . .} is a finite set of agents, Σ = ΣA × ΣB × . . . is
a set of strategy profiles (Σi is a strategy for each i ∈ N), Ω is the set of outcomes,
and o : Σ → Ω is a function mapping each strategy profile to an outcome. We
write s−i for the tuple of strategies by agents N\{i}, and if N = {A1, . . . , An}, we
write (s′Ai

, sA−i
) for the strategy profile (sA1

, . . . , sAi−1
, s′Ai

, sAi+1
, . . . sAn

).

It is often assumed that Ω = Σ, in which case we will write (N,Σ) instead of
(N,Σ,Σ, id), where id is the identity function.

We will use both notations interchangeably.

A normal-form game (F, u) consists of a game frame F together with a utility
profile u = {uA, uB, . . .} where ui : Σ → R is a utility function assigning utility
values to strategy profiles. We write G for the class of all normal-form games.

We assume that agents play rationally when executing the protocol. Game theory
uses solution concepts to define which strategy profiles capture rational interactions

6.2 Security Protocols 95

X Y
X 1, 1 5, 0
Y 0, 1 2, 2

Figure 6.4: Example normal-form game

(given a utility profile). Formally, a solution concept is a function SC : G →
P(Σ) that given a game returns a set of rational strategy profiles. Well-known
solution concepts include e.g. Nash equilibrium (NE), dominant and undominated
strategies, Stackelberg equilibrium, Pareto optimality etc. For definitions of various
solution concepts and detailed discussion, we refer to the textbooks [OR94, SLB09].

As the appropriate notion of rationality may depend both on the protocol and on
the situation in which it is analyzed, we do not fix a single solution concept but
instead treat it as a parameter of our analysis.

Definition 6.2. A solution concept is a function SC : G → P(Σ).

We proceed by defining the solution concepts we use in this chapter, given a game
(N,Σ), u).

Nash equilibrium A strategy profile s = (sA, sB, . . .) is a Nash equilibrium, written
s ∈ NE(G), if no agent can unilaterally improve, i.e., if there does not exist an
agent i ∈ N with a strategy s′i such that ui(s

′
i, s−i) > ui(si, s−i).

Equilibrium in undominated strategies A strategy si is undominated if no other
strategy is at least as good against all strategies of the other agents and strictly
better against some strategy the other agents, i.e., if there is no s′i such that
ui(s

′
i, s−i) > ui(si, s−i) for some strategies s−i and ui(s

′
i, s−i) ≥ ui(si, s−i) for all

strategies s−i. A strategy profile s = (sA, sB, . . .) is a equilibrium in undominated
strategies, written s ∈ Undom(G), if si is undominated for every i ∈ N .

Maximal sum A strategy profile s is max-sum if the sum of the utilities is maximal,
i.e., if there exists no strategy profile s′ such that

∑

i∈N ui(s
′) >

∑

i∈N ui(s).

Note that the above-mentioned solution concepts do not only cover different notions
of “goodwill” (maximal sum assumes that agents have an interest in maximizing
each other’s utility, while Nash equilibrium does not), but also different abilities to
coordinate. For example, finding a Nash equilibrium requires communication be-
tween the agents if there is more than one equilibrium in the game. It also assumes
that each agent has some knowledge about the other agents’ utility functions. On
the other hand, each agent can identify an undominated strategy without requiring
either coordination or information about the other agent’s incentives.

Example 6.4. Consider a normal-form game G = (N,Σ, u) with N = {A,B},
ΣA = ΣB = {X, Y } and u as depicted in Figure 6.4. We have NE(G) = {(1, 1)},
Undom(G) = {(1, 1), (5, 0)}, and MS(G) = {(5, 0)}.

96 Chapter 6 Incentives in Security Protocols

send sAstop

∅

A

send sB

ϕA, ϕB

stop

ϕB

B

Figure 6.5: The protocol from Figure 6.3 expressed as an extensive-form game
frame

6.2.3 Protocols as Games

In this section we define our game models of protocols, which will provide the basis
for the analysis of protocol correctness in Section 6.3. First, we define extensive-
form game frames, that is, multi-step games represented by the tree of possible runs
without incentives indicated, as they are more intuitive when modeling protocols
than normal-form games. Then, we convert these into normal-form game frames,
i.e., normal-form games without incentives. Finally we show how we can obtain
normal-form games, by adding the incentives of the agents to the model.

6.2.4 Security Protocols as Game Trees

Definition 6.3. An extensive-form game frame is a tuple (N,H, P,Ω, o), where:

• N = {A,B, . . .} is the set of agents.

• H is a set of sequences (finite or infinite) that satisfies the following three
properties: 1) the empty sequence ∅ is a member of H; 2) if (a1, . . . , aj) ∈ H
(where j may be infinite) and k < j then (a1, . . . , ak) ∈ H; 3) if an infinite
sequence a = (a1, . . .) satisfies (a1, . . . , ak) ∈ H for every positive integer k
then a ∈ H. (Each member of H is a history; each component of a history is
an action taken by an agent.) A history (a1, . . . , ak) ∈ H is terminal if it is
infinite or if there is no ak+1 such that (a1, . . . , ak, ak+1) ∈ H. We write Z
for the set of terminal histories.

• P is a function that assigns to each nonterminal history h ∈ H\Z a member
of N , being the agent who takes an action after the history h.

• Ω is the set of outcomes.

• o : Z → Ω is a function mapping each terminal history to an outcome.

With an extensive-form game frame (N,H, P,Ω, o), for each agent i ∈ N we asso-
ciate a strategy Σi, which is a function that assigns an action a to each nonterminal
history h ∈ H\Z for which P (h) = i such that (h, a) ∈ H. If Σi is a set of strate-
gies for each i ∈ N , we call Σ = ΣA × ΣB . . . the set of strategy profiles. For
each strategy profile s ∈ Σ in the extensive-form game (N,H, P, u), s yields a run
run(s), which is defined as the (possibly infinite) history (a1, . . .) ∈ H such that
for relevant i ≥ 0, we have sP (a1,...,ai)(a1, . . . , ai) = ai+1.

6.2 Security Protocols 97

Example 6.5. Consider the protocol in Figure 6.2. To denote the outcomes, we
use variables ϕi for each i ∈ N , where ϕi means that agent i has received the
signature of the other agent. Now we express this protocol as the extensive-form
game (N,H, P,Ω, o), where

• N = {A,B},

• H = {∅, (stop), (send sA), (send sA, stop), (send sA, send sB)},

• P (∅) = A, P ({send sA}) = B,

• Ω = P({ϕA, ϕB}),

• o(stop) = ∅, o(send sA, stop) = {ϕB}, and o(send sA, send sB) = {ϕB, ϕB}.

This extensive-form game is depicted in Figure 6.5.

We note that some solution concepts, such as subgame perfect Nash equilibria, can
be only defined in extensive-form games [OR94]. We leave analysis of protocols
based on subgame-perfectness for future work.

6.2.5 Game Frames for Protocols

In order to focus on the strategic interactions of agents in a protocol, we only
model the possible strategies that agents have, and the outcomes in which playing
these strategies result. Thereby, we abstract away from the internal (temporal)
structure of the protocol, and model it as a normal-form game.

We will use normal-form games in the rest of the chapter to focus on the inter-
play between agents’ incentives and the objective of the protocol, rather than the
internal structure of the protocol execution.

Every extensive-form game frame can be converted into a normal-form game frame.

Definition 6.4. The conversion of extensive-form game frame G = (N,H, P,Ω, o)
with strategy profiles Σ to a normal-form game frame is (N,Σ,Ω, o′) in which for
each agent i ∈ N , o′i(s) = oi(run(Σ)) for all i ∈ N , s ∈ Σ.

For example, the normal-form game frame corresponding to the game tree from
Figure 6.5 is depicted in Figure 6.6b.

A joint strategy σA for agents A is a tuple of strategies, one for each agent i ∈ A.
If σ is a joint strategy for agents A, and σ′ is a strategy profile, then σ′ is an
extension of σ, written σ < σ′, if for all agents i ∈ A, σi = σ′

i.

Example 6.6. Consider the protocol in Figure 6.1, and the strategies of Alice and
Bob stop (meaning stopping before sending the signature) and sign (running the
protocol honestly). The protocol can then be modeled as the game frame (N,Σ,Ω, o),
with N = {A,B, T}, ΣT = {−} (the trusted third party T is deterministic, i.e., has
only one strategy), ΣA = ΣB = {stop, sign}, Ω = P({ϕA, ϕB}), o(σ) = {ϕA, ϕB} if
σ = (sign, sign,−), and o(σ) = ∅ if σ 6= (sign, sign,−). The game frame is displayed

98 Chapter 6 Incentives in Security Protocols

Stop Sign
Stop ∅ ∅
Sign ∅ {ϕA, ϕB}

(a)

Stop Sign
Stop ∅ {ϕB}
Sign ∅ {ϕA, ϕB}

(b)

Stop Sign1 Sign2

Stop ∅ ∅ ∅
Sign1 ∅ ∅ {ϕA, ϕB}
Sign2 ∅ {ϕA, ϕB} ∅

(c)

Stop Sign1 Sign2

Stop ∅ ∅ ∅
Sign1 ∅ ∅ {ϕA, ϕB}
Sign2 ∅ {ϕA, ϕB} {ϕA, ϕB}

(d)

Stop Sign1 Sign2

Stop ∅ ∅ ∅
Sign1 ∅ ∅ {ϕA, ϕB}
Sign2 ∅ {ϕA, ϕB} ∅
Sign3 ∅ {ϕA, ϕB} {ϕA, ϕB}

(e)

Figure 6.6: Game frames for contract signing

in Figure 6.6a. The protocol from Figure 6.3 can be modeled as the game frame in
Figure 6.6b.

The naive contract signing protocol from Figure 6.3 can be modeled in a similar
way (Figure 6.6b). The only difference with the protocol in Figure 6.1 is that we
define o(σ) = {ϕB} if σ 6= {notsign, sign,−}.

Finally, the contract signing protocol from Figure 6.2, in which coordination is
required, can be represented as the game frame in Figure 6.6c.

6.2.6 Adding Incentives to Protocols

In order to model protocols as games, we need to formalize agents’ preferences
with respect to outcomes.

Note that we assign utilities to outcomes and not to strategy profiles, as we want
to model the fact that if two strategy profiles have the same effect (for example
because the same agents get contracts), agents should have equal utilities for these
strategy profiles.

Definition 6.5. Whenever P = (N,Σ,Ω, o) is a normal-form game frame and
u = {uA, uB, . . .} is an outcome utility profile, the normal-form game corresponding
to (P, u) is defined as Γ(P, u) = (N,Σ, (u′A, u

′
B, . . .)), where u

′
i(s) = ui(o(s)) for all

agents i ∈ N .

Now we show how we can model protocols represented as game frames together
with a utility function as normal-form games.

Example 6.7. Assume the following utility function for A: uA({ϕA, ϕB}) = 2;
uA(∅) = 1; uA({ϕA}) = 3; uA({ϕB}) = 0. The utility function for B is symmetric.
Thus, both agents prefer the exchange of signatures over no exchange; moreover,
the most preferred option for an agent is to get the signature while the other agent
does not, and the least preferred option is not to get the signatures while the other
agent does. Combining this utility function with the game frames from Figures 6.6
leads to the games depicted in Figure 6.7.

Now assume that the agents are in fact not willing to sign. In that case, agents
prefer the outcome ∅ over {ϕA, ϕB}, so the utility function of A is as follows:

6.2 Security Protocols 99

Stop Sign
Stop 1, 1 1, 1
Sign 1, 1 2, 2

(a) G1

Stop Sign
Stop 1, 1 0, 3
Sign 1, 1 2, 2

(b) G2

Stop Sign1 Sign2

Stop 1, 1 1, 1 1, 1
Sign1 1, 1 1, 1 2, 2
Sign2 1, 1 2, 2 1, 1

(c)

Stop Sign
Stop 2, 2 2, 2
Sign 2, 2 1, 1

(d) G1

Stop Sign
Stop 2, 2 0, 3
Sign 2, 2 1, 1

(e) G2

Stop Sign1 Sign2

Stop 2, 2 2, 2 2, 2
Sign1 2, 2 2, 2 1, 1
Sign2 2, 2 1, 1 2, 2

(f) G3

Figure 6.7: Games for contract signing protocols

uA({ϕA, ϕB}) = 1; uA(∅) = 2; uA({ϕA}) = 3; uA({ϕB}) = 0. The utility function
for agent B is symmetric. Now, the game frames from Figure 6.6 can be modeled
as the normal-form games in Figure 6.7d-f.

6.2.7 Modeling Security Objectives

A security protocol is designed to achieve one or more security properties and/or
functionality properties. We only consider properties that can be expressed in terms
of individual strategy profiles having a certain good property. To model this, we
define a set of outcomes that we consider good, called the objective.

Note that this does not restrict us to trace properties as in defining which runs are
correct, we might use information from the other runs as well.

For example, consider balance in contract signing: A contract signing protocol is
balanced [CKS01], if there is no reachable state in the protocol execution where one
of the signers can decide unilaterally whether the contracts are exchanged or not.
This property is desirable e.g., when trading at the stock market. One can define
balance by stating that a strategy profile is correct if at no point in the run, an
agent has a choice between getting the contract or aborting. Although this is not
a trace property, we still can define whether individual runs do or do not satisfy
the objective.

Definition 6.6. Given a game frame (N,Σ,Ω, o), an objective is a non-empty set
γ ⊆ Ω.

Given a game frame (N,Σ,Ω, o), an objective is a non-empty set γ ⊆ Ω.

Example 6.8. In a fair strategy profile, either both agents obtain the signature
of the other agent, or none of them does, and in an effective strategy profile, both
agents obtain the other agent’s signature. Hence we write γfair = {∅, {ϕA, ϕB}}
for the fairness objective, and we write γeff = {{ϕA, ϕB}} for the objective of
effectiveness.

100 Chapter 6 Incentives in Security Protocols

6.3 Game-Based Security Analysis

First, we give a definition of correctness of protocols, assuming that the utility
profile is known. Then we proceed to the more general situation, where correctness
of a protocol is to be verified without knowing the utility profiles of the agents. In
this section, we give a new definition of correctness of security protocols that takes
into account the incentives of agents, represented as utility functions.

6.3.1 Incentive-Based Correctness

We have seen on the one hand, that defining correctness of a protocol as all strategy
profiles satisfying the objective is too strong for our purpose, as it also requires runs
to satisfy the objective that agents will never play as they are irrational for them.
On the other hand, requiring that some strategy profile satisfies the objective is
too weak for our purpose, as agents might be unable to coordinate on such a
strategy profile, or this strategy profile might be irrational for them to play. while
requiring that some strategy profiles satisfy the objective is too weak. We propose
an intermediate definition, which states that a protocol is correct if all rational
runs satisfy the objective.

We have seen in the previous section that the requirement that all strategy profiles
satisfy the objective might be too strong, Instead, we require that all rational runs
satisfy the objective. In case there are no rational runs, all outcomes are possible,
and all of them must satisfy γ. The non-existence of a rational run can occur, for
example, if the agents lack the ability to coordinate their strategies.

Formally, we define correctness of a protocol P with respect to a utility profile u,
an objective γ, and a solution concept SC. First, we require that any strategy
profile in the game corresponding to P and u that is rational according to SC
satisfies the objective γ. Second, we require that there exists a strategy profile in
the game corresponding to P and u that is rational according to SC.

Definition 6.7. A protocol represented as game frame P = (N,Σ,Ω, o) with utility
profile u is correct with respect to objective γ under solution concept SC, written
(P, u) |=SC γ, if and only if:

SC(P, u) ⊆ γ if SC(P, u) 6= ∅
γ = Ω else.

Protocol verification is the following decision problem:

• Input: A protocol P , a utility function u, an objective γ and a solution
concept SC.

• Question: Does (P, u) |=SC γ hold?

Example 6.9. Consider game G2 in Figure 6.7b for the naive contract signing
protocol. We saw that if Alice signs, Bob might stop the protocol, resulting in
the worst possible utility for Alice. Therefore, Alice might consider it safer to
never sign. This kind of reasoning can be captured by using Nash equilibrium as

6.3 Game-Based Security Analysis 101

the solution concept. Only (Stop, Stop) is a Nash equilibrium, i.e., NE(G2) =
{(Stop, Stop)}. When the objective is γ = {(Sign, Sign)}, then NE(G2) ⊆ γ does
not hold, i.e., G2 is not correct with respect to γ under Nash equilibrium as solution
concept.

However, if we think that Alice may be willing to take risks in order to obtain a bet-
ter outcome, using e.g. Halpern’s maximal perfect collaborative equilibrium [HR10]
as the solution concept is more appropriate. As we have that MPCE(G2) =
{(Sign, Sign)} ⊆ γ, the protocol is correct with respect to γ under MPCE.

Finally, consider the protocol game G1 in Figure 6.7a. In G1, we have NE(G1) =
Undom(G1) = MPCE(G1) = {(Sign, Sign)}. This implies that when we assume
γ = {(Sign, Sign)}, the protocol is correct under Nash equilibrium, equilibrium in
undominated strategies, and maximal perfect cooperative equilibrium.

Now consider the game G3 with objective γ = {(Sign1, Sign1), (Sign2, Sign2)}.
As we have Nash equilibria NE(G3) = {(Sign1, Sign1), (Sign2, Sign2)}, both Nash
equilibria satisfy the objective, i.e., NE(G3) ⊆ γ, so the protocol is correct with
respect to Nash equilibrium. However, Nash equilibrium assumes that the agents
have a way to coordinate on their strategy (for example by considering how the
agents played in previous games). If no such coordination mechanism exists, other
solution concepts, such as equilibrium in undominated strategies, might be more
appropriate. As Undom(G3) = {Sign1, Sign2} × {Sign1, Sign2}, we have that
NE(G3) 6⊆ γ, so the protocol is incorrect with respect to the solution concept.

The above example highlights that, for different situations, different solution con-
cepts are appropriate.

The solution concept models both the rationality assumptions for the involved
agents and the abilities to coordinate strategies, etc.

6.3.2 Unknown Incentives

In the previous section, we studied correctness of a protocol when a utility profile
is given. However, often the exact utility profiles are unknown. One way out is to
require the protocol to be correct for all possible utility profiles.

Definition 6.8. A protocol is valid with respect to objective γ under solution con-
cept SC, written P |=SC γ, if and only if (P, u) |=SC γ holds for all strategy profiles
u.

Protocol validity is the following decision problem:

• Input: A protocol P , an objective γ and a solution concept SC.

• Question: Does P |=SC γ hold?

Now we show that, under some reasonable assumptions, no protocol is valid. The
first assumption is that not all strategy profiles of the protocol are correct, i.e., γ 6=
Σ. The second assumption is that the solution concept is closed under permutation
of utilities, which can be defined as follows:

102 Chapter 6 Incentives in Security Protocols

Definition 6.9. Let G = (N,Σ, (u1, . . . , un)). Let π = (π1, . . . , πn), where for
all i ∈ N , πi : Σi → Σi is a permutation on Σi. For conciseness of notation,
sometimes we write π((s1, . . . , sn)) for (π1(s1), . . . , πn(sn)). A solution concept is
closed under permutation of utilities if s ∈ SC((N,Σ, (u′1, . . . , u

′
n))) if and only if

π(s) ∈ SC((N,Σ, (π(u′1), . . . , π(u′n)))).

All solution concepts that we are aware of are closed under permutation of utilities.

Theorem 6.1. If γ 6= Σ and SC is closed under permutation of utilities, then
P 6|=SC γ.

Proof. When a solution concept is closed under permutation of utilities, and all
outcomes have the same utility, then either all strategy profiles are rational, or
none of them.

Let SC be a solution concept, and let G = (N,Σ, (u1, . . . , un)) be a normal-form
game. If there exists r1, . . . , rn ∈ R such that ui(s) = ri for all i ∈ N and s ∈ Σ,
then either s ∈ SC(G) for all s, or s 6∈ SC(G) for all s.

Let G = (N,Σ, (u1, . . . , un)) be a game, let s, s′ ∈ Σ, and let SC be closed under
permutation of utilities. Let π = (πi, . . . , πn), where each πi is a permutation on
Σi such that π(s) = s′. As ui(s) = ri for all i ∈ N , π(G) = G. As s ∈ SC(G) if
and only if π(s) ∈ SC(π(G)), by π(G) = G and πi(s) = s′, we obtain s ∈ SC(G)
if and only if s′ ∈ SC(G). Therefore, either s ∈ u(G) for all s, or s 6∈ u(G) for all
s.

Let G be a game, SC be a solution concept closed under permutation of utilities,
and γ be an objective. Fix u such that ui(s) = (0, 0) for all i ∈ N and s ∈ Σ.
Either s ∈ SC(G) for all s ∈ Σ, or s 6∈ SC for all s ∈ Σ. Assume s ∈ SC(G) for
all s ∈ Σ. As γ 6= Σ, there exists s′ ∈ Σ\γ. Then s′ ∈ SC(G) and not s′ ∈ γ, so
SC(G) 6⊆ γ, and therefore P 6|=SC γ. Now assume s 6∈ SC(G) for all s ∈ Σ. Then
SC(G) = ∅, so P 6|=SC γ.

Thus, correctness for all distributions of incentives is equivalent to correctness in
all possible runs—as we argued before, requiring this can be too strong. In the
next section we look at the case where a subset of agents D, called the defenders
of the protocol, have a genuine interest in achieving the objective of the protocol.

An interesting special case of Theorem 6.1 appears in a study of rational secret
sharing: Asharov and Lindell [AL11] proved that the length (number of rounds) of
a protocol for rational secret sharing must depend on the utilities of the involved
agents for the possible protocol outcomes. In particular, there can be no single
protocol which works for every possible set of incentives of the agents. Their
result even holds under some plausibility assumptions on the agents’ incentives
(i.e., agents prefer to learn the secret over not learning it, etc.).

6.3.3 Defendability of Protocols

In many circumstances, requiring that the protocol is correct with respect to all
preferences is too pessimistic: In a way, this is equivalent to assuming that all
the participants are playing against the security objective. Typical analysis of

6.3 Game-Based Security Analysis 103

a protocol implicitly assumes some participants to be aligned with its purpose.
E.g., one usually assumes that communicating parties are usually interested in
exchanging a secret without the eavesdropper getting hold of it, that a bank wants
to prevent web banking fraud etc. In this chapter, we formalize this idea by
assuming a subset of agents, called the defenders of the protocol, to be in favor of
its objective. Our new definition of correctness says that a protocol is correct if
and only if it is correct with respect to every utility profile in which the preferences
of all defenders comply with the objective.

Definition 6.10 (Supporting an objective). A group of agents D ⊆ N supports
the objective γ in game (N,Σ, u) if for all i ∈ D, if s ∈ Σ ∪ γ and s′ ∈ Σ\γ then
ui(s) > ui(s

′).

A protocol represented as game frame P = (N,Σ,Ω, o) is correct with defenders D,
written P |=SC [D]γ, if (P, u) |=SC γ for all utility profiles u such that D support
γ in game Γ((N,Σ,Ω, o), u).

Guarded protocol validity is the following decision problem:

• Input: Protocol P , objective γ, set of agents D, and solution concept SC.

• Question: Does (P, u) |=SC [D]γ hold?

For effectivity, it makes sense to require that both Alice (Bob) is a defender of the
goal that she (he) obtains a contract, as we cannot expect that the contract will
get signed if any of the agents prefer not to sign. In the case of fairness for Alice,
we can expect Alice to be a defender of the property. Bob, on the other hand,
cannot be expected to defend this. The situation for fairness for Bob is symmetric.

We proceed by investigating the borderline cases, where either none or all of the
agents are defenders. The following theorem shows that if none of the agents are
defenders, the definition is equivalent to ordinary protocol validity.

Proposition 6.1. If P is a game frame and SC is a solution concept, we have
that P |=SC [∅]γ if and only if P |=SC γ.

Proof. This follows directly from the definitions of validity and validity with de-
fenders.

Proof. Let P = (N,Σ,Ω, o) be a game frame and SC be a solution concept. As-
sume P |=SC []γ. This is equivalent to (P, u) |=SC γ for all utility profiles u
such that ∅ support γ in game Γ((N,Σ,Ω, o), u). This is in turn equivalent to
(P, u) |=SC γ for all utility profiles u such that for all i ∈ ∅, if s ∈ Σ ∪ γ and
s′ ∈ Σ\γ then ui(s) > ui(s

′) in game Γ((N,Σ,Ω, o), u). This is in turn equivalent
to (P, u) |=SC γ for all utility profiles u. This is in turn equivalent to P |=SC γ.

If all agents are defenders, any protocol is correct, as long as there exists a rational
strategy profile, and the solution concept does not select strategy profiles that
are strongly Pareto-dominated, i.e., strategy profiles for which there exists another
strategy profile that is preferred by all agents.

We formalize this in Theorem 6.2.

104 Chapter 6 Incentives in Security Protocols

Definition 6.11. A strategy profile s ∈ Σ is Pareto-dominated if there exists s′ ∈ Σ
such that ui(s

′) > ui(s) for all i ∈ N .

Definition 6.12. A solution concept is weakly Pareto if and only if it never selects
a strongly Pareto dominated outcome (that is, one such that there exists another
outcome strictly preferred by all the agents). It is efficient if and only if it never
returns the empty set.

Theorem 6.2. If P is a game frame and SC an efficient weakly Pareto solution
concept then P |=SC [N]γ.

Proof. Let P = (N,Σ,Ω, o) be a game frame, and let u be a utility function such
that D support γ in game (P, u). We have SC(P, u) 6= ∅ by assumption. Now we
prove that SC(P, u) ⊆ γ. Assume s ∈ SC(P, u) and s 6∈ γ. Let s′ ∈ γ. Then
ui(s

′) > ui(s) for all i ∈ N . However, this implies that s 6∈ SC(P, u), which is a
contradiction.

A note on existing solution concepts: Nash equilibrium is neither weakly Pareto nor
efficient (the Hi/Lo from game Figure 6.8a being a counterexample). Equilibrium
in dominant strategies is weakly Pareto but not necessarily efficient. Stackelberg
equilibrium and Halpern’s maximum-perfect cooperative equilibrium are weakly
Pareto and efficient. Also, backward induction and, more generally, subgame-
perfect equilibrium in perfect information games are weakly Pareto and efficient.

Given a protocol, a solution concept and an objective, it is interesting to determine
the smallest set of defenders with which the protocol is correct. We show that
correctness of a protocol is monotonic with respect to the set of defenders.

Theorem 6.3. For every d ∈ N and set of defenders D ⊆ N , if P |=SC [D]γ then
P |=SC [D ∪ {d}]γ.

Proof. Let P = (N,Σ,Ω, o) be a protocol represented as game frame. Assume that
P |=SC [D]γ. Then we have (P, u) |=SC [D]γ for all preference profiles u in which D
defend γ. This means that for all i ∈ D, if s ∈ γ and s′ ∈ Σ\γ then ui(s) > ui(s

′).
Therefore, also for all i ∈ D ∪ {d}, we have that if s ∈ γ and s′ ∈ Σ\γ then
ui(s) > ui(s

′). This implies that (P, u) |=SC [D ∪ {i}]γ for all preference profiles u
in which D ∪ {i} defend γ. Therefore, we have P |=SC [D]γ.

This justifies the following definition.

Definition 6.13 (Game-theoretic security level). The game-theoretic security level
of protocol P as the antichain of minimal sets of defenders that make the protocol
correct. Defender determination is the following function problem:

• Input: A protocol P , an objective γ, and a solution concept SC.

• Question: Compute a set D such that (P, u) |=SC [D]γ, and there does not
exist D′ ⊆ D such that (P, u) |=SC [D ′]γ.

6.4 Characterizations of Defendability 105

t1 t2
s1 hi, hi 0, 0
s2 0, 0 lo, lo

(a)

t1 t2 t3
s1 hi, lo lo, hi 0, 0
s2 lo, hi hi, lo 0, 0
s3 0, 0 0, 0 0, 0

(b)

Figure 6.8: (a) HiLo game for 2 agents; (b) Extended matching pennies. In both
games, we assume that hi > lo > 0, e.g., hi = 100 and lo = 1

6.4 Characterizations of Defendability

Not much can be said about defendability under arbitrary solution concepts. In
this section, we turn to properties that can be defended if agents’ rationality is
defined by Nash equilibrium. In what follows, we will call objective γ nontrivial
if and only if ∅ 6= γ 6= Σ. First, we observe that no protocol is valid under Nash
equilibrium (NE) for any nontrivial objective.

Theorem 6.4. P 6|=NE γ for any nontrivial γ.

Proof. Let s /∈ γ (arbitrary). We construct utility profile u as follows: ui(s) = 1
for all i ∈ N ; ui(s

′) = 0 for all i ∈ N, s′ 6= s. Clearly, NE(P, u) = {s}, so NE(P, u)
is nonempty but not included in γ.

Do things get better if we assume some agents to be in favor of the security ob-
jective? In the rest of this section, we study the extreme variant of the question,
i.e. defendability by the grand coalition N . Note that, by Theorem 6.3, nonde-
fendability by N implies that the objective is not defendable by any coalition at
all.

Our first result in this respect is also negative: we show that in every game frame
there are nontrivial objectives that are not defendable under Nash equilibrium.

Theorem 6.5. Let P be a game frame with at least two agents and at least two
strategies per agent. Moreover, let γ be a singleton objective, i.e., γ = {ω} for
some ω ∈ Σ. Then, P 6|=NE [N]γ.

Proof. Assume without lose of generality that N = 2, Σ1 = {s1, s2}, Σ2 = {t1, t2},
and γ = {(s1, t1)}. Now, consider the utility function uhl of the well known HiLo
game (Figure 6.8a). Clearly, uhl is consistent with γ. Moreover, SC(P, uhl) 6=
∅. On the other hand, SC(P, uhl) = {(s1, t1), (s2, t2)} 6⊆ γ, which concludes the
proof.

To present the general result that characterizes defendability of security objectives
under Nash equilibrium, we need to introduce additional concepts. In what follows,
we use s[ti/i] to denote (s1, . . . , si−1, ti, si+1, . . . , sN).

Definition 6.14 (Deviation closure). Let γ be a set of outcomes (strategy profiles)
in P . The deviation closure of γ is defined as Cl(γ) = {s ∈ Σ | ∃i ∈ N, s′i ∈
Σi . s[s

′
i/i] ∈ γ}.

106 Chapter 6 Incentives in Security Protocols

Cl(γ) extends γ with the strategy profiles that are reachable by unilateral devi-
ations from γ (and vice versa). Thus, Cl(γ) can be seen as the set of outcomes
that are “connected” to γ in the sense of Nash equilibrium. The following notion
captures strategy profiles that can be used to construct sequences of unilateral
deviations ending up in a cycle.

Definition 6.15 (Strategic knot). A strategic knot in γ is a subset of strategy
profiles S ⊆ γ such that there is a permutation (s1, . . . , sk) of S where each sj+1 =
sj[sj+1

i /i] for some i ∈ N , and sk = sj[ski /i] for some i ∈ N, j < k.

We can now state the main result in this section.

Theorem 6.6. Let P be a finite game frame with N ≥ 2, |Σ1| ≥ 3, |Σ2| ≥ 3, and
γ a nontrivial objective in P . Then, P |=NE [N]γ if and only if Cl(γ) = Σ and
there is a strategy profile in γ that belongs to no strategic knots in γ.

Proof. “⇒” Let P |=NE [N]γ, and suppose that Cl(γ) 6= Σ. Thus, there exists
ω0 ∈ Σ which is not in Cl(γ). Consider a HiLo-style utility function u(s) = hi if
s ∈ γ, lo if s = ω0, and 0 otherwise (for some values hi > lo > 0). Clearly, ω0

is a Nash equilibrium in (P, u), and thus NE(P, u) 6= ∅) but also NE(P, u) 6⊆ γ),
which is a contradiction.

Suppose now that Cl(γ) = Σ but every s ∈ γ belongs to a strategic knot. We
construct the utility function akin to the extended matching pennies game (Fig-
ure 6.8b), i.e., for every node s in a ring ui(s) = hi for the agent i who has just
deviated, and lo for the other agents (if a node lies on several knots, we need to
assign several different hi values in a careful way). Moreover, ui(s) = 0 for all
i ∈ N, s /∈ γ. Clearly, ui is consistent with γ for every i ∈ N . On the other
hand, no s ∈ Σ is a Nash equilibrium: if s is outside of γ then there is a prof-
itable unilateral deviation into γ, and every s inside γ lies on an infinite path of
rational unilateral deviations. Thus, NE(P, u) = ∅. Since γ is nontrivial, we have
P 6|=NE [N]γ, a contradiction again.

⇐ Assume that Cl(γ) = Σ and s ∈ γ is a strategy profile that belongs to no
strategic knot in γ. Let u be a utility function such that for every i ∈ N, s ∈
γ, s′ ∈ Σ\ γ it holds that ui(s) > ui(s

′). Take any ω /∈ γ. Since ω ∈ Cl(γ), there is
an agent i with a unilateral deviation to some s ∈ γ. Note that ui(ω) < ui(s), so
ω /∈ NE(P, u). Thus, NE(P, u) ⊆ γ. Moreover, s is a Nash equilibrium or there is
a sequence of unilateral deviations leading from s to a Nash equilibrium (since P
is finite and s does not lie on a knot). Thus, also NE(P, u) 6= ∅, which concludes
the proof.

6.5 Examples

6.5.1 The ASW Protocol

The contract-signing protocol PASW, introduced in [ASW98], uses co-called com-
mitments, which are legally binding “declarations of intent” by Alice and Bob to
sign the contract. The protocol is fair and optimistic, i.e., it involves the TTP only

6.5 Examples 107

if a problem occurs. The protocol operates as follows: 1) Alice sends a commit-
ment cmA to Bob; 2) Bob sends his commitment cmB to Alice; 3) Alice sends the
contract scA, digitally signed with her signature, to Bob; 4) Bob sends the contract
scB, signed with his signature, to Alice. If one of these messages is not sent by the
corresponding signer, the other party may contact the TTP:

• If Alice does not receive a commitment from Bob, she can contact the TTP
with an abort request, which instructs the TTP to mark this session of the
protocol as aborted;

• If Bob does not receive Alice’s signature, but has her commitment, he can
send a resolve request to the TTP, who then issues a replacement contract (a
document that is legally equivalent to the contract signed by Alice), unless
Alice has sent an abort request earlier,

• If Alice does not receive Bob’s signature, but has his commitment, she can
send a resolve request to the TTP as well, which allows her to receive a
replacement contract.

It can be shown that the protocol is fair. It is also balanced, if neither Alice nor
Bob can drop or delay messages from the other signer to the TTP.

We denote with u the usual utilities for the involved agents, i.e., uA({ϕB}) = 0,
uA(∅) = 1, uA({ϕA, ϕB}) = 2, uA({ϕ}) = 3, and symmetrically for Bob. Their
utilities reflect that each signer wants to avoid giving his signature without receiv-
ing the one of the other signer, but prefers a fair exchange of signatures over no
exchange result, but would prefer to only obtain the other signer’s signature with-
out having to sign himself. We assume that the TTP is reliable, i.e., will not stop
the protocol run and thus has only a single strategy. Applying the definitions in
Section 6.3.2, one can easily show the following: If SC is either Nash equilibrium
or Undominated Strategies, we have

1. PASW |=SC [{Bob}]{∅, {ϕB}, {ϕA, ϕB}},

2. PASW |=SC [{Alice}]{∅, {ϕA}, {ϕA, ϕB}}.

It is clear that if we allow the TTP to stop the protocol at any time, then the
protocol does not guarantee fairness anymore. However, if Bob wants the protocol
to be fair, then he can ensure fairness by simply sending a signed contract to Alice
as soon as he receives her signature. Clearly, Alice alone (without an honest TTP
to assist her) cannot achieve fairness. Hence the game-theoretic security level of the
ASW protocol is the set {{Bob} , {TTP}}. This holds for both Nash equilibrium
and undominated strategies.

6.5.2 A Protocol with a Non-deterministic TTP

We consider the contract signing protocol PAiz suggested by Aizatulin in [Aiz08].
This protocol is an extension of the well-known contract signing protocols ASW
and GJM. It is well-known [CKS01] that the latter two protocols are unbalanced

108 Chapter 6 Incentives in Security Protocols

against an attacker who can drop or delay messages on the network, since then the
attacker can always enforce that his request is the first one to reach the trusted
third party.

The protocol PAiz counteracts this problem with two measures:

• To the protocol structure of ASW and GJM, it adds an additional round of
pre-commitments. These are handled in a similar way as commitments in the
normal ASW/GJM protocol flow. A protocol exchange now consists of

1. An exchange of pre-commitments,

2. an exchange of commitments,

3. the exchange of the actual contracts.

The pre-commitments play a similar role as commitments; if a party did send
his or her commitment, but does not receive a commitment from the other
party, he can try to resolve the contract signing with help of the TTP.

• The trusted third party is non-deterministic: When a resolve request is made
with a pre-commitment, the TTP may either accept or decline the request
(if, however, a resolve request is performed with an actual commitment, the
TTP always issues a valid contract).

The rules of the TTP additionally handle exceptions as dishonest behavior of
principals that, for example, send an abort request to the TTP, but still continue
the regular protocol run. The protocol is fair due to a similar reasoning as the
ASW protocol above (we assume that the TTP does not “misbehave”, i.e., the
TTP always follows the protocol and does not stop working). Since the TTP is
non-deterministic, it has a choice, i.e., it may follow a strategy. Clearly, the TTP
can side with an attacker and just accept/request on his or her behalf. However,
if the TTP supports balance, the protocol is indeed balanced, as we now show.

Let γbal-Alice denote the runs of the protocol that are balanced for Alice, i.e., where
no situation appears in which Bob has both a strategy to ensure that he gets a
contract, and a (different) strategy in which Alice does not obtain one. Similarly,
let γbal-Bob denote the runs that are balanced for Bob.

1. PAiz |=SC [{TTP}]γbal-Bob,

2. PAiz |=SC [{TTP}]γbal-Alice,

The first point follows since the TTP can always ignore Alice’s requests and act
in Bob’s favor. Analogously, the second point is true since the TTP can rule
according to Alice’s wishes instead. To achieve balance for both Alice and Bob,
a natural strategy for the TTP is to randomize its replies to requests involving a
pre-commitment: Assume that the TTP accepts or rejects each such request with
probability 1

2
. Then, clearly, neither Alice nor Bob can have both a strategy to

obtain a contract themselves as well as one to stop the other from obtaining a
contract: One of these strategies must rely on the TTP ruling in their favor, which
only happens with probability 1

2
. In [ASW09], a probabilistic version of the protocol

was analyzed and shown to guarantee probabilistic balance in a computational
setting.

6.6 Related Work 109

6.6 Related Work

There are several meeting points of security protocols and game theory. Some re-
searchers have considered protocol execution as a game with the very pessimistic
assumption that the only goal of the other participants (“adversaries”) is to break
the intended security property of the protocol. In the pessimistic analysis of cor-
rectness, a protocol is deemed correct if the “honest” participants have a strategy
such that, for all strategies of the other agents, the objective of the protocol is
satisfied (cf. e.g. [KR02]). Recently, protocols have been analyzed with respect to
game-theoretic notions of rationality [Mic10, ACH11] where preferences of partic-
ipants are taken into account. An overview of connections between cryptography
and game theory is given in [Kat08], focusing mainly on correlated equilibria in
multi-party computation protocols. Another overview [AMNO07] presents argu-
ments suggesting that study of incentives in security applications is crucial.

Game-theoretic concepts have been applied to analysis of specific security prop-
erties in a number of papers. Kremer and Raskin [KR03] used graph games to
formally verify non-repudiation protocols. However, their method did not use any
model of incentives nor rationality. Buttyán, Hubaux and Čapkun [BHC04] model
games in a way similar to as is done in this chapter, and also use incentives to
model the behavior of agents. However, they restrict their analysis to strongly
Pareto-optimal Nash equilibria which is not necessarily a good solution concept
for security protocols. First, it is unclear why agents would individually converge
to a strongly Pareto-optimal play. Moreover, in many protocols it is unclear why
agents would play a Nash equilibrium in the first place. Our method is more
general, as we use the solution concept as a parameter to our analysis.

Asharov et al. [ACH11] use game theory to study gradual-release fair exchange
protocols, i.e., protocols in which at any round, the probability of any party to
predict the item of the other player increases only by a negligible amount. They
model this in a game-theoretical setting, where in every round, the player can
either continue or abort. In every round, the item of the other player is predicted.
The situation where the player predicts correctly and the other one does not has
the highest utility, and the situation where the player predicts incorrectly and
the other one predicts correctly the lowest. Then a protocol is said to be game-
theoretically fair if the strategy that never aborts the protocol is a computational
Nash-equilibrium. It is shown that no protocol exists that is both fair and effective,
but that if effectiveness is not required, game-theoretic fairness is in fact achievable.
They also show that their analysis allows for solutions that are not admitted by
the traditional cryptographic definition.

Groce and Katz [GK12] show that if agents have a strict incentive to achieve fair
exchange, then gradual-release fair exchange without TTP is in fact possible un-
der the assumption that the other agents play rational. Fairness without TTP is
impossible for dishonest partners. However, it might be possible for rational part-
ners. Chadha et. al [CMSS05] show that in any fair, optimistic, timely protocol,
there exists a point where one player has a strategy to determine whether or not
to complete the protocol and obtain a contract. The strongest property attainable
is provable advantage, i.e. abuse-freeness. Although they reason about strategies,
they do not model incentives explicitly, and also do not take different solution

110 Chapter 6 Incentives in Security Protocols

concepts into account. Syverson [Syv98] presents a rational exchange protocol for
which he shows that “enlightened, self-interested parties” have no reason to cheat.

Chatterjee & Raman [CR10] use assume-guarantee synthesis for synthesis of con-
tract signing protocols. Our analysis is strictly more general, as we can model
assume-guarantee synthesis by assuming that A is a defender of ϕA, while B is
a defender of ϕB, and both A and B are defenders of the joint goal ϕC . Fi-
nally, in [FS10], a logic for modeling coordination abilities between agents is pre-
sented, but incentives are not taken into account. Ghaderi, Levesque & Lespérance
[GLL07] also study coordination and applies iterated elimination of dominated
strategies.

In summary, rationality-based correctness of protocols has been studied in a num-
ber of papers, but usually with a particular notion of rationality in mind. In con-
trast, we define a concept of correctness where a game-theoretic solution concept is
a parameter of the problem. Even more importantly, our concept of defendability of
a security property is completely novel. The same applies to our characterizations
of defendable properties under Nash equilibrium.

6.7 Conclusion

We have proposed a methodological framework for analyzing security protocols
and other interaction protocols that takes into account the incentives of agents.
This framework allows for a more fine-grained analysis of such protocols. We
have obtained characterization results for defendability under Nash equilibria. Our
analysis allows for an easy combination of different requirements, as we saw in
Chapter 3. For example, to verify that a protocol is correct with respect to both
fairness and effectivity, it suffices to check both fairness and effectivity. Not all
approaches allow for an easy combination of different requirements [JMM12].

In the future, we plan to select solution concepts that can be expressed in the logic
ATL [AHK02], and use tools to formally verify protocols with our methodology.
Furthermore, we want to focus on the coordination problem, and study which
assumptions on rationality, i.e., which solution concepts, are most reasonable in
practice. Finally, we are going to extend our analysis to models of games with
imperfect information.

7

Farsighted Pre-equilibria

Abstract. Nash equilibrium is based on the idea that a strategy profile is stable if no

player can benefit from a unilateral deviation. We observe that some locally rational

deviations in a strategic-form game may not be profitable anymore if one takes into

account the possibility of further deviations by the other players. As a solution, we

propose the concept of farsighted pre-equilibrium, which takes into account only devia-

tions that do not lead to a decrease of the player’s utility even if some other deviations

follow. While Nash equilibria are taken to include plays that are certainly rational, our

pre-equilibrium is supposed to rule out plays that are certainly irrational. We prove

that positional strategies are sufficient to define the concept, study its computational

complexity, and show that pre-equilibria correspond to subgame-perfect Nash equilibria

in a meta-game obtained by using the original payoff matrix as arena and the deviations

as moves.

7.1 Introduction

The optimal strategy for an agent depends on his prediction of the other agents’ be-
havior. For example, in security analysis, some predictions of the users’ behavior,
or even of the behavior of the attacker, can be useful when designing a particular
solution. However, if the users or attackers do not behave in the predicted way,
this solution might give rise to new vulnerabilities. We therefore weaken the as-
sumptions made by agents when playing Nash equilibrium, and introduce a new
solution concept based on these weaker assumptions.

Nash equilibrium (e.g. [OR94]) says that a play is stable when, if the agents knew
what the others are going to do, they would not deviate from their choices unilat-
erally. Conversely, if some agent can beneficially deviate from strategy profile s,
then the profile is assumed to describe irrational play. In this chapter, we point
out that some of these deviations may not be profitable anymore if one takes into
account the possibility of further deviations from the opponents. As a solution,
we propose the concept of farsighted pre-equilibrium (FPE), which takes into ac-
count only those deviations of agent i that do not lead to decrease of i’s utility,
even if some other deviations follow. In consequence, we argue that the notion of
irrational play can be meaningfully relaxed.

We call the new concept pre-equilibrium, because we do not imply that all FPEs are
necessarily stable. Our point is rather that all strategy profiles outside FPEs are
certainly unstable: a rational agent should deviate even if he considers it possible
that other agents react to his change of strategy. Formally, FPE is strictly weaker
than Nash equilibrium, with the following intuition: Nash equilibria correspond

111

112 Chapter 7 Farsighted Pre-equilibria

to play which is certainly rational, strategy profiles that are not pre-equilibria are
certainly irrational, and the profiles in between can be rational or not, depending
on the circumstances.

The term “farsighted” refers to the type of reasoning about strategic choice that
agents are supposed to conduct according to FPE. Unlike Nash equilibrium, which
assumes “myopic” reasoning (only the immediate consequences of a deviation are
taken into account), farsighted pre-equilibrium looks at further consequences of
assuming a particular choice. This type of strategic reasoning has been already
studied for coalitional games in [NM44, Har74, Chw94]. There have been also some
attempts at farsighted stability in noncooperative games [SM05, Nak07], but, as
we argue in Section 7.5, they were based on intuitions from coalitional game theory,
and are incompatible with the setting of noncooperative games.

Our assumptions about the way in which agents react to another agent’s deviation
are minimal: we only assume that the reactions are locally rational. Our view of
local rationality is standard for noncooperative games, i.e., it concerns an individual
change of play that increases the payoff of the deviating agent. In particular, we
do not take into account scenarios where a coalition of agents makes a sequence of
changes that leads to a beneficial state, but leads through nodes where the payoff
of some members of the coalition decreases. As we see it, such a scenario can be
rational only when the coalition can commit to executing the sequence, which is
not possible in noncooperative games.

An interpretation of Nash equilibrium is that an agent forms an expectation about
the other agents’ behavior based on his past experience of playing the game [OR94].
Then he chooses his best response strategy to maximize his immediate gain in the
next instance of the game, assuming that this move will not influence future plays
of the game. In other words, it is assumed that the other agents do not best respond
to a deviation from the expectation when the game is repeated. In contrast, in
repeated games [MS06], it is assumed that once an agent decides to deviate, the
deviation will be observed by the opponents, and they will adapt to it accordingly.
Then, the agent would observe and adapt to their change of behavior, and so on.

Farsighted pre-equilibrium is very similar to the standard setting of infinitely re-
peated games (with a sufficiently small discount factor). In both settings, it is
assumed that the agent considers how his behavior can affect the behavior of the
other agents in subsequent games. However, while in repeated games it is assumed
that opponents always best respond, in FPE no assumption is made about the
opponents at all in this respect. We are looking for a weak notion of rationality,
and restricting the opponents’ possible responses would make the solution concept
stronger. Therefore, our deviations need to succeed against agents that do not best
respond at all (as assumed by Nash equilibrium), against agents that best respond
locally, against agents that best respond farsightedly (as in the standard setting of
repeated games), and against combinations of such agents.

We do not pursue the perspective of repeated games further in this chapter, but
rather leave it for future work.

This chapter is organized as follows. We begin by defining the concept of far-
sighted pre-equilibrium formally and discussing some examples in Section 7.2. We
investigate how the concept behaves on the benchmark case of the n-person Pris-

7.2 Farsighted Pre-Equilibria 113

oner’s Dilemma, provide an alternative characterization of FPE, and propose a
polynomial algorithm for verifying pre-equilibria. In Section 7.3, we given an al-
ternative characterization of FPE. In Section 7.4, we show that FPEs can be seen
as subgame-perfect solutions of specific extensive-form games (“deviation games”).
Finally, we compare our solution concept to existing work (Section 7.5), and con-
clude in Section 7.6.

7.2 Farsighted Pre-Equilibria

We begin by presenting the central notions of our solution concept.

7.2.1 Deviation Strategies and Farsighted Stability

Let G = (N,Σ1, . . . ,Σn, out1, . . . , outn) be a strategic game with N = {1, . . . , n}
being a set of agents, Σi a set of strategies of agent i, and outi : Σ→ R the payoff
function for agent i where Σ = Σ1×· · ·×Σn is the set of strategy profiles. We use
the following notation: si is agent i’s part of strategy profile s, s−i is the part of
N \ {i}, and s→i s

′ denotes agent i’s deviation from strategy profile s to s′ (with
the obvious constraint that s′−i = s−i). Sometimes, we write (out1(s), . . . , outn(s))
instead of s.

Definition 7.1 (Locally rational, Fi-compatible). Deviation s →i s
′ is locally

rational if and only if outi(s
′) > outi(s). Function Fi : Σ+ → Σ is a deviation

strategy for agent i if and only if for every finite sequence of profiles s1, . . . , sk

we have that sk →i Fi(s
1, . . . , sk) is locally rational or Fi(s

1, . . . , sk) = sk. A
sequence of locally rational deviations s1 → . . .→ sk is Fi-compatible if and only
if sn →i s

n+1 implies Fi(s
n) = sn+1 for every 1 ≤ n < k.

Locally rational deviations turn G into a graph in which the transition relation
corresponds to Nash dominance in G. Deviation strategies specify how an agent
can (rationally) react to rational deviations done by other agents.

Definition 7.2 (Farsighted pre-equilibrium). Strategy profile s is a farsighted pre-
equilibrium (FPE) if and only if there is no agent i with a deviation strategy Fi

such that: 1) outi(Fi(s)) > outi(s), and 2) for every finite Fi-compatible sequence
of locally rational deviations Fi(s) = s1 → . . .→ sk we have outi(Fi(s

1, . . . , sk)) ≥
outi(s).

This means that a strategy profile s is potentially unstable if there is a deviation
strategy of some agent i such that the first deviation is strictly advantageous, and
no matter how the other agents react to his deviations so far, i can always recover
to a profile where he is not worse off than he was originally in s. Moreover, s is still
unstable if the other agents reply to this recovery as long as i has a new recovery,
and so on.

Example 7.1. Consider the following games:

(A) C D
C (7, 7) (0, 8)
D (8, 0) (1, 1)

(B) L C R
T (1, 1) (3, 3) (0, 0)
B (0, 0) (4, 0) (2, 2)

114 Chapter 7 Farsighted Pre-equilibria

The farsighted pre-equilibria are printed in bold font. Let us first look at game (A),
which is also known as the Prisoner’s Dilemma. The locally rational deviations
are (7, 7) →1 (8, 0), (0, 8) →1 (1, 1), (7, 7) →2 (0, 8) and (8, 0) →2 (1, 1). This
implies that (1, 1) is an FPE because there is no agent i with a deviation strategy
Fi such that outi(Fi(1, 1)) > outi(1, 1). On the other hand, (8, 0) is not an FPE
because F2(. . . , (8, 0)) = (1, 1) is a valid deviation strategy. By symmetry, (0, 8)
is neither an FPE. Finally we show that s = (7, 7) is an FPE. All deviation
strategies F1 for agent 1 with out1(F1(7, 7)) > out1(7, 7) specify F1(7, 7) = (8, 0).
Still, agent 1 cannot recover from the F1-compatible sequence of locally rational
deviations (7, 7) →1 (8, 0) →2 (1, 1) which makes his payoff drop down to 1. The
same holds for deviation strategies of agent 2 by symmetry. Therefore, (7, 7) is an
FPE.

In game B, (3, 3) and (2, 2) are FPEs for similar reasons. Note than (1, 1) is not
an FPE, as agent 1 can deviate (1, 1) →1 (3, 3), and recover from the follow-up
(3, 3) →1 (4, 0) by playing (4, 0) →1 (2, 2), resulting in a final utility 2, which is
still higher than the initial utility 1.

The following theorem shows that FPE is strictly weaker than Nash equilibrium.

Theorem 7.1. Every Nash equilibrium is an FPE.

Proof. Assume that s is a Nash equilibrium. Then there exists no deviation s→i s
′

to a strategy profile s′ such that outi(s
′) > outi(s). Therefore, there exists no agent

i with a deviation strategy Fi such that outi(Fi(s)) > outi(s), so s is an FPE.

7.2.2 n-person Prisoner’s Dilemma

We demonstrate our solution concept on a well-known benchmark example, the
n-person Prisoner’s Dilemma [SM05].

As we saw in Example 7.1, the Prisoner’s Dilemma has two farsighted pre-equilibria:
the Nash equilibrium profile where everybody defects, and the “intuitive” solution
where everybody cooperates. This extends to the n-person Prisoner’s Dilemma.

Definition 7.3 (n-person Prisoner’s Dilemma). Let N = {1, 2, . . . , n} be the set of
agents. Each agent has two strategies: C (cooperate) and D (defect). The payoff
function of agent i is defined as outi(s1, . . . , sn) = fi(si, h) where h is the number
of agents other than i who play C in s, and fi is a function with the following
properties:

1. fi(D, h) > fi(C, h) for all h = 0, 1, . . . , n− 1;

2. fi(C, n− 1) > fi(D, 0);

3. fi(C, h) and fi(D, h) are increasing in h.

The first requirement states that defecting is always better than cooperating, as-
suming that the other agents do not change their strategy. The second requirement
specifies that the situation where everyone cooperates is better than the situation
where everyone defects. The third requirement says that the payoff increases for
an agent when a larger number of the other agents cooperate.

7.2 Farsighted Pre-Equilibria 115

Theorem 7.2. If G is a n-person Prisoner’s Dilemma, then the strategy profiles
(C, . . . , C) and (D, . . . , D) are FPEs in G.

Proof. We define s
XiX−i

i as (X1, . . . , Xn) where Xj = Xi (1 ≤ j ≤ n) if and only if
j = i and Xj = X−i otherwise. Note that (C, . . . , C) = sCC

i and (D, . . . , D) = sDD
i .

First we show that sCC
i is an FPE. We need to prove that for any deviation strat-

egy Fi, it does not hold that both 1) outi(Fi(s
CC
i)) ≥ outi(s

CC
i) and 2) for every

finite Fi-compatible sequence of locally rational deviations sCC
i = s1 → . . . → sk

we have outi(Fi(s
1, . . . , sk)) ≥ outi(s

CC
i). It does not hold that outi(s

CC
i) >

outi(s
CC
i), so because of 1), Fi chooses D in sCC

i , i.e. Fi(. . . , s
CC
i) = sDC

i . Now
consider the Fi-compatible sequence of deviations sCC

j →j s
DC
j →−j . . .→−j s

DD
j .

This sequence consists of locally rational deviations by assumption 1 in Defini-
tion 7.3. Furthermore, either Fi(. . . , s

DD
i) = sDD

i or Fi(. . . , s
DD
i) = sCD

i . If
Fi(. . . , s

DD
i) = sDD

i , then outi(s
DD
i) < outi(s

CC
i) by assumption 2, so it does

not hold that outi(Fi(. . . , s
DD
i)) ≥ outi(s

CC
i), which contradicts 2). Furthermore,

outi(s
CD
i) < outi(s

DD
i) by assumption 1, and because of outi(s

DD
i) < outi(s

CC
i), by

transitivity outi(s
CD
i) < outi(s

CC
i) as well. Therefore, if Fi(. . . , s

DD
i) = sCD

i , then
it holds that outi(Fi(. . . , s

DD
i)) < outi(s

CC
i), which is a contradiction with 2).

Now we show that sDD
i is an FPE for every agent i. It holds that outi(s

DD
i) ≥

outi(s
CD
i) by assumption 1. Therefore, agent i has no deviation strategy Fi such

that outi(Fi(s
DD
i)) > outi(s

DD
i), so sDD

i is an FPE.

Example 7.2. We look at an instance of the 3-person Prisoner’s Dilemma. Agent
1 selects rows, agent 2 columns and agent 3 matrices.

C C D
C (3, 4, 4) (1, 5, 2)
D (5, 2, 2) (4, 3, 0)

D C D
C (1, 2, 5) (0, 3, 3)
D (4, 0, 3) (2, 1, 1)

The unique Nash equilibrium is (D,D,D), the strategy profile where everyone de-
fects, so this strategy profile is also an FPE. Furthermore, also the strategy profile
where everyone cooperates, i.e., (C,C, C), is an FPE. Finally, (D,C,C) is an
FPE, showing that also other FPEs can exist.

We can interpret these results as follows. A population where every agent defects
might be stable: being the first to cooperate is not necessarily advantageous, as the
other agents might not follow. A population where all agents cooperate might also
be stable if the agents consider long-term consequences of damaging the opponents’
payoffs: if one agent starts defecting, the other agents might follow. Finally, a
strategy profile might also be stable if there are only a couple of defecting agents in
the population, and the cooperating agents all receive payoffs above some minimal
“threshold of fairness” (which is usually the agent’s payoff in the Nash equilibrium
(D, . . . , D)). Hence the asymmetry: (D,C,C) is farsighted stable, but (C,C,D)
and (C,D,C) are not, because they provide agent 1 with an “unfair” payoff, and
agent 1 is better off heading for the Nash equilibrium. Another motivation for
(D,C,C) to be stable, is that agent 1 does not want to cooperate in the hope that
agents 2 and 3 do not change their strategy (as is assumed by Nash equilibrium),
while agents 2 and 3 do not want to defect out of fear for follow-ups of the other
agents (as is assumed in repeated games).

116 Chapter 7 Farsighted Pre-equilibria

7.3 Characterizing and Computing FPE

In general, deviation strategies determine the next strategy profile based on the
full history of all preceding deviations. In this section, we show that it suffices for
the definition of FPE to consider only positional deviation strategies, i.e. strate-
gies that determine the next deviation only based on the current strategy profile,
independently of what previously happened.

Definition 7.4 (Positional deviation strategy, Positional FPE). A positional de-
viation strategy for agent i is a strategy Fi such that Fi(s

1, . . . , sk) = Fi(t
1, . . . , tk)

whenever sk = tk. We will sometimes write Fi(s
k) instead of Fi(s

1, . . . , sk) for such
strategies. A positional FPE is an FPE restricted to positional deviation strategies.

Theorem 7.3. A strategy profile s ∈ Σ is an FPE if and only if it is a positional
FPE.

Proof. It suffices to prove that there is no agent i with a deviation strategy such
that conditions 1) and 2) from Definition 7.2 hold if and only if there is no agent i
with a positional deviation strategy such that these conditions hold. Every po-
sitional deviation strategy is a deviation strategy, so the ‘only if’ direction is
trivial. We prove the ‘if’ direction by contraposition. Assume there exists an
agent i with a deviation strategy such that conditions 1) and 2) from Definition
7.2 hold in s. Now we define a positional deviation strategy F ′ as follows. For
all s′ ∈ Σ for which there exist finite Fi-compatible sequences of locally ratio-
nal deviations Fi(s) = s1 → . . . → sk = s′, let Fi(s) = t1 → . . . → tk = s′

be a shortest Fi-compatible sequence of locally rational deviations. Then we set
F ′(sk) = F (s0, s1, . . . , sk). For all other s′ ∈ Σ, we set F ′

i (s
′) = s′. The function

F ′ is clearly positional and a deviation strategy. Because F ′
i (s) is defined based

on the shortest sequence which is s (the only sequence of length 1), Fi(s) = F ′
i (s),

and since we assumed that condition 1) holds for Fi, it also holds for F ′
i . Finally

we need to check that condition 2) holds. Assume F ′
i (s) = s1 → . . . → sk is a

finite F ′
i -compatible sequence of locally rational deviations. Then by definition of

F ′
i , there exists also a finite Fi-compatible sequence of locally rational deviations
Fi(s) = t1 → . . . → tk−1 → sk with Fi(t

1, . . . , tk−1, sk) = F ′
i (s

k). By assumption,
outi(Fi(t

1, . . . , tk−1, sk)) ≥ outi(s), so also outi(F
′
i (s

k)) ≥ outi(s).

The following theorem provides an alternative characterization of farsighted play.

Theorem 7.4. L is the set of FPEs if and only if for all s ∈ L, all i ∈ N
and all positional deviation strategies Fi with Fi(s) 6= s, there exists a finite Fi-
compatible sequence of locally rational deviations s →i s

1 → . . . → sk such that
outi(Fi(s

1, . . . , sk)) < outi(s).

Proof. By Definition 7.2, a strategy profile s is an FPE if and only if there is
no agent i with a deviation strategy Fi such that: 1) outi(Fi(s)) > outi(s), and
2) for every finite Fi-compatible sequence of locally rational deviations Fi(s) =
s1 → . . . → sk we have outi(Fi(s

1, . . . , sk)) ≥ outi(s). Because Fi is a deviation
strategy, condition 1) is equivalent to Fi(s) 6= s by Definition 7.1. By using this
equivalence and moving the negation inwards, we find that a strategy profile s is

7.4 Deviations as a Game 117

an FPE if and only if for every agent i and all deviation strategies Fi such that
Fi(s) 6= s, there exists a finite Fi-compatible sequence of locally rational deviations
s = s1 → . . . → sk such that outi(Fi(s

1, . . . , sk)) < outi(s). By Theorem 7.3, the
theorem follows.

Now we will present a procedure that checks if the strategy profile s is a farsighted
pre-equilibrium in game G. Procedure dev(G, i, s) returns yes if agent i has a
successful deviation strategy from s in G, and no otherwise:

1. forall j ∈ N do compute relation ≺j∈ Σ × Σ st. t ≺j t
′ if and only if

∃t→j t
′. outj(t) < outj(t

′);

2. let ≺−i :=
⋃

j 6=i ≺j and let ≪∗ be the transitive closure of ≺−i;

3. let Good := {t | outi(t) ≥ outi(s)}; /profiles at least as good as s/

4. repeat

Good′ := Good;

forall t ∈ Good do

if ∃t′ ≫∗ t. (t′ /∈ Good ∧ ∀t′ →i t
′′. t′′ /∈ Good) then remove t from Good′;

until Good′ = Good;

5. if ∃t ∈ Good. s ≺i t then return yes else return no.

A strategy profile s is an FPE in G if and only if dev(G, i, s) = no for all agents
i ∈ N . Note that the procedure implements a standard greatest fixpoint for a
monotonic transformer of state sets. As a consequence, we get that checking if s
is a farsighted pre-equilibrium in G can be done in polynomial time with respect
to the number of agents and strategy profiles in G.

7.4 Deviations as a Game

Deviations can be seen as moves in a “meta-game” called the deviation game,
that uses the original payoff matrix as arena. Transitions in the arena (i.e., agents’
moves in the meta-game) are given by domination relations of the respective agents.
In such a setting, deviation strategies can be seen as strategies in the deviation
game. A successful deviation strategy for agent i is one that gets i a higher payoff
immediately (like in the case of Nash equilibrium), but also guarantees that i’s
payoff will not drop below the original level after possible counteractions of the
opponents. A node in the original game is an FPE exactly when no agent has a
winning strategy in the deviation game.

7.4.1 Deviation Games

We formally model deviation games as extensive-form games (e.g. [OR94]). In this
chapter, we define extensive-form games as follows.

Definition 7.5 (Extensive-form games, finite extensive-form games). An extensive-
form game is a tuple (H,Agt, P, out1, . . . , outn) with the following components:

118 Chapter 7 Farsighted Pre-equilibria

• We call a set of sequences H prefix-closed if ǫ ∈ H, and if (a1, . . . , ak, ak+1) ∈
H then also (a1, . . . , ak, . . .) ∈ H. Each member of H is a history; each
component of a history is an action taken by an agent. A history a1, . . . , ak

is terminal if there is no ak+1 such that a1, . . . , ak, ak+1 ∈ H. The set of
terminal histories is denoted Z. If A = (a1, . . . , ak), we write A : b for A =
(a1, . . . , ak, b). We write b ∈ (a1, . . . , ak) if b = aj for some j ∈ 1, . . . , k.

• A set of agents Agt;

• An agent function P : H\Z → Agt that assigns to every non-terminal history
an agent;

• An outcome function out : Z → R that assigns to every terminal history an
outcome.

We say that an extensive-form game is finite if every history is finite.

A deviation game D is constructed from a strategic game G and a strategy profile
s in G, and consists of two phases. In the first phase, each agent can either start
deviating from s or pass the turn to the next agent. If no agent deviates, all agents
get the “neutral” payoff 0 in D. If an agent i deviates, the game proceeds to the
second phase in which i tries to ensure that his deviation is successful, while all
other agents try to prevent it. This phase is strictly competitive: if i succeeds, he
gets the payoff of 1 and all the other agents get −1; if i fails, he gets −1 and the
other agents get 1 each.

Formally, given a strategic game G = (N,Σ1, . . . ,Σn, out1, . . . , outn) and a strategy
profile s, the deviation game is an extensive-form game

T (G, s) = (N,H, P, out′1, . . . , out
′
n),

where N is the set of agents as in G, H is the set of histories in the deviation
game, P is a function assigning an agent to every non-terminal history, and for
every i ∈ N , out′i is a function assigning the payoff for agent i to every terminal
history. A history in H is a sequence of nodes of the form (i, t, j), with the intended
meaning that i ∈ N ∪{−} is the agent whose deviation strategy is currently tested
(where “−” means that no deviation has been made yet), t ∈ Σ is the current
strategy profile under consideration, and j ∈ N ∪ {⊥} is the agent currently going
to play (i.e., P (. . . , (i, t, j)) = j), where ⊥ indicates that the game has terminated.
The initial state is (−, s, 1). For every agent j, we define out′j as follows:

• out′j(. . . , (−, t,⊥)) = 0;

• if outi(t) ≥ outi(s), then out′j(. . . , (i, t,⊥)) = 1 when j = i, otherwise
out′j(. . . , (i, t,⊥)) = −1;

• if outi(t) < outi(s), then out′j(. . . , (i, t,⊥)) = −1 when j = i, otherwise
out′j(. . . , (i, t,⊥)) = 1.

Now we recursively define the set of histories H . We will write i for min(N\{i}).

7.4 Deviations as a Game 119

(−, (7, 7), 1)

(1, (8, 0), 2)

(1, (1, 1), 1)

(1, (1, 1),⊥)

(−1, 1)

(1, (1, 1), 2)

(1, (1, 1), 1)

(1, (1, 1),⊥)

(−1, 1)

(1, (8, 0), 1)

(1, (8, 0),⊥)

(1,−1)

(−, (7, 7), 2)

(2, (0, 8), 1)

(2, (1, 1), 2)

(2, (1, 1),⊥)

(1,−1)

(2, (1, 1), 1)

(2, (1, 1), 2)

(2, (1, 1),⊥)

(1,−1)

(2, (0, 8), 2)

(2, (0, 8),⊥)

(−1, 1)

(−, (7, 7),⊥)

(0, 0)

Figure 7.1: Deviation game for strategy profile (7, 7) in Prisoner’s Dilemma (Ex-
ample 7.1 (A))

1. ǫ ∈ H , where ǫ is the empty sequence.

2. (−, s, 1) ∈ H .

3. If h = . . . , (−, s, i) ∈ H and i+ 1 ∈ N then h, (−, s, i+ 1) ∈ H .

4. If h = . . . , (−, s, i) ∈ H and i = max(N), then h, (−, s,⊥) ∈ H .

5. If h = . . . , (−, s, i) ∈ H , s→i s
′ is a locally rational deviation and i ∈ N\{i}

then h, (i, s′, i) ∈ H .

6. If h = . . . , (i, s′, i) ∈ H and s′ →i s
′′ is a locally rational deviation, then

h, (i, s′′, i) ∈ H .

7. If h = . . . , (i, s′, i) ∈ H , then h, (i, s′,⊥) ∈ H .

8. If h = . . . , (i, s′, i′) ∈ H , i′ ∈ N\{i} and either s′ →i s
′′ is a locally rational

deviation or s′ = s′′, then h, (i, s′′, i′) ∈ H whenever both h, (i, s′′, i′) 6∈ H
and i′ = i implies h, (−, s′′, i′) 6∈ H .

Statement 2 specifies the initial history. Statements 3–5 say that if nobody has
deviated so far, agent i can embark on a deviation strategy or refrain from deviating
and pass the token further. If no agent deviates, the game ends. If agent i initiates
deviations, the strategy profile changes, and the token goes to the first opponent.
Statement 6 says that the latter also applies during execution of the deviation
strategy. Furthermore, 7 indicates that agent i can stop the game if it is his
turn (note that this can only be the case if the opponents do not want to deviate
anymore). Finally, 8 states that an opponent agent can make a locally rational
deviation or do nothing if it is his turn, and pass the turn to another agent i′

(as long as the agent has not had the turn in the new strategy profile before, to
guarantee finite trees).

Now we can see an opponent strategy against agent i as a set of strategies for
agents N\{i} such that every deviation is locally rational, and in every strategy
profile, not more than one agent deviates. Formally, an opponent strategy against
agent i is a function F−i : N\{i} × Σ∗ → Σ such that for every agent j ∈ N\{i},
s →j F−i(j, (. . . , s)) is a locally rational deviation or F−i(j, (. . . , s)) = s and such
that F−i(j, (. . . , s)) 6= s for some j implies F−i(j

′, (. . . , s)) = s for all j′ 6= j.

120 Chapter 7 Farsighted Pre-equilibria

Example 7.3. Figure 7.1 depicts the deviation game T (G, s) where G is the Pris-
oner’s Dilemma and s is (7, 7). The moves selected by the minimax algorithm
(e,g,[OR94]) are printed as thick lines. The minimax algorithm selects outcome
(0, 0), so no agent has a strategy yielding more than 0, which indicates that (7, 7)
is an FPE.

7.4.2 Correspondence to FPE

Now we will prove that a strategy profile in the original game is an FPE ex-
actly when no agent has a strategy that guarantees the payoff of 1 in the devi-
ation game. We say that a sequence of strategy profiles s1, . . . , sk is (Fi,F−i)-
compatible if for all k′ < k, either F−i(j, (s

1, . . . , sk
′

)) = sk
′+1 for some j ∈ N\{i},

or both Fi(s
1, . . . , sk

′

) = sk
′+1 and F−i(j, (s

1, . . . , sk
′

)) = sk
′

for all j ∈ N\{i}.
Furthermore, a sequence of strategy profiles s1, . . . , sk is loop-free if sn 6= sn

′

for
1 ≤ n ≤ n′ ≤ k.

Let G be a strategic form game, s be a strategy profile and i ∈ N be an agent. Now
we say that a deviation strategy Fi is successful against an opponent strategy F−i,
if 1) outi(Fi(s)) > outi(s), and 2) for every loop-free (Fi, F−i)-compatible sequence
of strategy profiles Fi(s) = s1, . . . , sk, it holds that outi(Fi(s

1, . . . , sk)) ≥ outi(s).
The following lemma shows that it is indeed sufficient to look at loop-free (Fi, F−i)-
compatible sequences.

Lemma 7.1. Strategy profile s is an FPE in game G if and only if there does not
exist an agent i with a deviation strategy Fi that is successful against all opponent
strategies F−i.

Proof. First we prove the ‘only if’ direction by contraposition. Assume there
exists an agent i with a deviation strategy Fi that is successful against all op-
ponent strategies F−i, i.e., 1) outi(Fi(s)) > outi(s), and 2) for every loop-free
(Fi, F−i)-compatible sequence of strategy profiles Fi(s) = s1, . . . , sk, it holds that
outi(Fi(s

1, . . . , sk)) ≥ outi(s).

Let Fi(s) = s1 → . . .→ sk be a loop-free Fi-compatible sequence of locally rational
deviations. We define opponent strategy F−i such that F−i(j, s

k) = sk+1 whenever
sk →j s

k+1 for j ∈ N\{i}. Then s1, . . . , sk is (Fi, F−i)-compatible, so we have
outi(Fi(s

1, . . . , sk)) ≥ outi(s) by assumption. Therefore, for every loop-free Fi-
compatible sequence of locally rational deviations Fi(s) = s1 → . . .→ sk, it holds
that outi(Fi(s

1, . . . , sk)) ≥ outi(s) (∗).

Now let Fi(s) = s1 → . . .→ sk be a finite Fi-compatible sequence of locally rational
deviations. Then we can construct a loop-free sequence t1, . . . , tk with t1 = s1 and
tk = sk. Now outi(Fi(t

1, . . . , tk)) = outi(Fi(s
k)) because Fi is positional, and

outi(Fi(t
1, . . . , T k)) ≥ outi(s) by (∗). Therefore, for every finite Fi-compatible

sequence of locally rational deviations Fi(s) = s1 → . . . → sk, it holds that
outi(Fi(s

1, . . . , sk)) ≥ outi(s). This shows that there exists an agent i with a
deviation strategy Fi such that 1) outi(Fi(s)) > outi(s), and 2) for every finite
Fi-compatible sequence of locally rational deviations Fi(s) = s1 → . . . → sk, it
holds that outi(Fi(s

1, . . . , sk)) ≥ outi(s), i.e., s is not an FPE.

The ‘if’ direction follows from the fact that every loop-free sequence of strategy

7.4 Deviations as a Game 121

profiles is finite, and the fact that when a sequence of strategy profiles is (Fi,F−i)-
compatible, it is also an Fi-compatible sequence of deviations.

We proceed by defining a bijection φ between strategy Fi in G and strategy Φi in
T (G, s) as follows.

If Fi(s) = s then Φi(−, s, i) = (−, s, i+ 1) where i+ 1 ∈ N ;
If Fi(s) = s then Φi(−, s, i) = (−, s,⊥) where i = max(N);
If Fi(s) = s′ then Φi(−, s, i) = (i, s′, i) where s 6= s′;
If Fi(s

′) = s′ then Φi(i, s
′, i) = (i, s′,⊥); where s 6= s′;

If Fi(s
′) = s′′ then Φi(i, s

′, i) = (i, s′′, i) where s 6= s′ 6= s′′.

We call a set of strategies Φ−i for agents N\{i} non-initially-deviating whenever
Φi′(−, s, i

′) = (−, s, i′′) where i 6= i′. Then an opponent strategy Φ−i in the devia-
tion game is a set of non-initially-deviating strategies Φj for agents j ∈ N\{i} such
that in every strategy profile, not more than one agent in N\{i} deviates and the
other agents always give the turn to the deviating agent, i.e., Φj(i, s

′, j) = (i, s′′, j′)
with s′ 6= s′′ for some j, j′ ∈ N\{i} implies Φi(i, s

′, j′′) = (i, s′, j) for all j′′ 6= j.
Now we define a bijection ψ between an opponent strategy F−i in T and an oppo-
nent strategy Φ−i in T (G, s). Let ψ(F−i) = Φ−i, where Φ−i is defined as follows:

• If F−i(i
′, s′) 6= s′ for some i′ ∈ N\{i}, then Φi′(i, s

′, i′) = (i, s′′, i′) and
Φi′′(i, s

′, i′′) = (i, s′, i′) for i′′ 6= i′.

• If F−i(i
′, s′) = s′ for all i′ ∈ N\{i}, then Φi′(i, s

′′, i′) = (i, s′′, i).

It can easily be checked that φ and ψ are indeed bijections.

Let outi(Φi,Φ−i) be the outcome of the game for agent i when agent i plays
strategy Φi and agents N\{i} play strategy Φ−i. When outi(Φi,Φ−i) = ui and
outj(Φi,Φ−i) = u−i for j ∈ N\{i}, we sometimes write outi,−i(Φi,Φ−i) = (ui, u−i).

Lemma 7.2. If i ∈ N is an agent with a deviation strategy Fi and F−i is an
opponent strategy, then Fi is successful against F−i in game G and strategy profile
s if and only if outi,−i(φ(Fi), ψ(F−i)) = (1,−1) in T (G, s).

Proof. By construction of ψ and φ, we have a run s = s1 →i1 s
2 →i2 . . . →ik−1 sk

in G if and only if

(−, s, 1), . . . , (−, s, i), (i, s′, i), . . . , (i, sk, i), (i, Fi(s
k), i), (i, Fi(s

k), i), (i, Fi(s
k),⊥)

is a run in T (G, s). Therefore, a run ends in sk in G with outi(Fi(s
1, . . . , sk)) ≥

outi(s) if and only if a run ends in (i, Fi(s
k),⊥) in T (G, s) with outi(Fi(s

k)) ≥
outi(s). Therefore, Fi is successful against F−i if and only if outi(φ(Fi), ψ(F−i)) =
1.

Theorem 7.5. Strategy profile s ∈ Σ is an FPE in game G if and only if all
subgame-perfect Nash equilibria in T (G, s) yield (0, . . . , 0).

Proof. To prove the ‘only if’ direction, we assume that strategy profile s is an
FPE in game G. By Lemma 7.1, there does not exist an agent i with a devia-
tion strategy Fi that is successful against all opponent strategies F−i. Because f

122 Chapter 7 Farsighted Pre-equilibria

and g are bijections, by Lemma 7.2 there does not exist an agent i with a strat-
egy Φi such that for every opponent strategy Φ−i it holds that outi,−i(Φi,Φ−i) =
(1,−1). This means that for every agent i with a strategy Φi, there exists an
opponent strategy Φ−i such that outi,−i(Φi,Φ−i) 6= (1,−1) (∗). Now we prove
that every subgame-perfect Nash equilibrium (SPNE) (e.g. [OR94]) (Φ1, . . . ,Φn)
in the subgame starting at (−, s, i) yields (0, . . . , 0) by backwards induction on
i ∈ (1, . . . , n,⊥). The base case, where i = ⊥, follows from the definition of out.
Now assume that the claim holds for i + 1 (where n + 1 = ⊥). To show that
Φi(−, s, i) = (i, s, i + 1), we assume that Φi(−, s, i) = (i, s′, i) for some s′ and
derive a contradiction. Let Φ−i be an opponent strategy. Now outi,−i(Φi,Φ−i) is
either (1,−1) or (−1, 1). If outi,−i(Φi,Φ−i) = (1,−1), by (∗), there exists an oppo-
nent strategy Φ′

−i such that outi,−i(Φi,Φ
′
−i) 6= (1,−1) and thus outi,−i(Φi,Φ

′
−i) =

(−1, 1). Now out−i(Φi,Φ
′
−i) > out−i(Φi,Φ−i), which contradicts the assumption

that (Φi,Φ−i) is a Nash equilibrium. If outi,−i(Φi,Φ−i) = (−1, 1), let Φ′
i be a

strategy such that Φ′
i(−, s, n) = (−, s, n+1) and Φ′

i is a SPNE strategy in the sub-
game starting at (−, s, n + 1). Then outi(Φ

′
i,Φ

′
−i) ≥ 0 for all opponent strategies

Φ′
−i by the induction hypothesis This implies that outi(Φ

′
i,Φ−i) > outi(Φi,Φ−i),

contradicting the assumption that (Φi,Φ−i) is a Nash equilibrium. This implies
that the assumption Φi(−, s, i) = (i, s′, i) is false, so Φi(−, s, i) = (i, s, i + 1) or
Φi(−, s, i) = (i, s,⊥). By the induction hypothesis, all SPNE in the subgame start-
ing at (−, s, i+ 1) yield (0, . . . , 0). Therefore, all SPNE in T (G, s) yield (0, . . . , 0).

We prove the ‘if’ direction by contraposition. Assume strategy profile s ∈ Σ is
not an FPE in game G. By Lemma 7.1, there exists an agent i with a strategy
Fi that is successful against all opponent strategies F−i. Because φ and ψ are
bijections, by Lemma 7.2 there exists an agent i with a strategy Φi such that for
every opponent strategy Φ−i it holds that outi,−i(Φi,Φ−i) = (1,−1) (†). Now let
(Φ′

i,Φ
′
−i) be a strategy profile such that outi(Φ

′
i,Φ

′
−i) = 0. Then there exists a

strategy Φi such that outi(Φi,Φ
′
−i) = 1 by (†), so outi(Φi,Φ

′
−i) > outi(Φ

′
i,Φ

′
−i),

and therefore (Φ′
i,Φ

′
−i) is not an SPNE. An extensive game always has an SPNE

and (Φ′
i,Φ

′
−i) is the only strategy profile yielding (0, . . . , 0), so there exist SPNEs

not yielding (0, . . . , 0), which implies that not all SPNEs yield (0, . . . , 0).

Note that Theorem 7.5 provides an alternative way of checking pre-equilibria: s is
an FPE in G if and only if the minimaxing algorithm [OR94] on T (G, s) returns
0 for every agent. However, the deviation game for G can be exponentially larger
than G itself, so the algorithm proposed in Section 7.3 is more efficient.

7.5 Comparing Farsighted Solution Concepts

There have been a number of solution concepts with similar agenda to FPE. In
this section, we discuss how they compare to our new proposal.

7.5.1 Related Work

The discussion on myopic versus farsighted play dates back to the von Neumann-
Morgenstern stable set (VNM) in coalitional games [NM44], and indirect domi-
nance in Harsanyi’s sense of coalition structures, leading to the strictly stable set

7.5 Comparing Farsighted Solution Concepts 123

(SSS) [Har74]. More recent proposals are the noncooperative farsighted stable set
(NFSS) [Nak07] and the largest consistent set (LCS) [Chw94]. Other similar solu-
tion concepts include [Gre90, SM05, DX03]. Also Halpern and Rong’s cooperative
equilibrium [HR10] can be seen as a farsighted solution concept.

Definitions In order to define the concepts, we introduce three different dominance
relations between strategy profiles. Direct dominance of x over y means that agent
i can increase his own payoff by deviating from strategy profile x to strategy
profile y. Indirect dominance of x over y says that a coalition of agents can deviate
from strategy profile x to strategy profile y, possibly via a number of intermediate
strategy profiles, such that every coalition member’s final payoff is better than his
payoff before his move. Finally, indirect dominance in Harsanyi’s sense is indirect
dominance with the additional requirement that each individual deviation is locally
rational. Formally:

• We say that y directly dominates x through agent i (x ≺i y) if there is a
locally rational deviation x →i y. We also write x ≺ y if x ≺i y for some
i ∈ N .

• We say that y indirectly dominates x (x ≪ y) if there exists a sequence of
(not necessarily locally rational) deviations x = x0 →i1 x

1 . . . →ip x
p = y

such that outir(x
r−1) < outir(y) for all r = 1, 2, . . . , p.

• We say that x indirectly dominates y in Harsanyi’s sense (x ≪H y) if there
exists a sequence of locally rational deviations x = x0 →i1 x

1 . . .→ip x
p = y

such that outir(x
r−1) < outir(y) for all r = 1, 2, . . . , p.

It can easily be seen that x ≺ y implies x≪H y, and x≪H y implies x≪ y.

Example 7.4. In the Prisoner’s Dilemma (Example 7.1(A)), we have (7, 7) ≺1

(8, 0), (0, 8) ≺1 (1, 1), (7, 7) ≺2 (0, 8) and (8, 0) ≺2 (1, 1). In addition, (7, 7)
indirectly dominates (1, 1) in Harsanyi’s sense, i.e., (1, 1)≪H (7, 7).

With these definitions, we can introduce four main farsighted solution concepts.

• A subset K of Σ is a von Neumann-Morgenstern stable set (VNM) if it satis-
fies the following two conditions: (a) for all x, y ∈ K, neither x ≺ y nor y ≺ x;
(b) for all x ∈ Σ\K, there exists x ∈ K such that x ≺ y [NM44]. In fact, a
VNM corresponds to stable extensions in the argumentation theory (Σ,≺′),
where ≺′ is the converse of ≺, in Dung’s argumentation framework [Dun95].

• Replacing the direct dominance relation≺ in VNM by the indirect dominance
relation ≪, yields the noncooperative farsighted stable set (NFSS) [Nak07].

• Furthermore, a subset S of Σ is a strictly stable set (SSS) if it is a VNM such
that for all x, y ∈ S, neither x≪H y, nor y ≪H x [Har74].

• Finally, a subset L of Σ is consistent in Chwe’s sense if (x ∈ L if and only if
for all deviations x →i y there exists z ∈ L such that [y = z or y ≪ z] and
outi(x) ≥ outi(z)). Now the largest consistent set (LCS) is the union of all
the consistent sets in Σ [Chw94].

124 Chapter 7 Farsighted Pre-equilibria

L R
T (3, 1) (0, 2)
B (1, 1) (0, 0)

(a)

F L R
T (3, 1, 2) (0, 2, 2)
B (0, 0, 0) (0, 0, 0)

S L R
T (3, 1, 1) (0, 0, 0)
B (1, 1, 1) (0, 0, 0)

(b)

L R
T (3, 1) (2, 2)
B (1, 1) (0, 0)

(c)

L C R
T (0,0) (3, 1) (0, 2)
B (1, 3) (2, 4) (0, 0)

(d)

Figure 7.2: Example games (FPEs are printed in bold)

Another solution concept that has been recently proposed is perfect cooperative
equilibrium (PCE) [HR10]. Like FPE, PCE aims at explaining situations where
cooperation is observed in practice. An agent’s payoff in a PCE is at least as high
as in any Nash equilibrium. However, a PCE does not always exist. Every game
has a Pareto optimal maximum PCE (M-PCE), as defined below. We only give
the definition for 2-agent games; the definition for n-person games can be found in
[HR10].

Given a game G, a strategy si for agent i in G is a best response to a strategy
s−i for the agents in N\{i} if Ui(si, s−i)) = sups′i∈Σi

Ui(s
′
i, s−i). Let BRi(s−i)

be the set of best responses to s−i. Given a 2-agent game, let BUi denote the
best payoff that agent i can obtain if the other agent j best responds, that is
BUi = supsi∈Σi,sj∈BR(si)

Ui(s). A strategy profile is a PCE if for i ∈ {1, 2} we have
Ui(s) ≥ BUi. A strategy profile is an α-PCE if Ui(s) ≥ α+BUi for all i ∈ N . The
strategy profile s is an M-PCE if s is an α-PCE and for all α′ > α, there is no
α′-PCE.

Example 7.5. In the Prisoner’s Dilemma (Example 7.1(A)), there is one VNM
({(1, 1), (7, 7)}) and one NFSS ({(7, 7)}). There is no SSS. Finally, the LCS is
{(1, 1), (7, 7)}.

Regarding PCE, we have BR1(C) = {D}, BR1(D) = {D}, BR2(C) = {D}, and
BR2(D) = {D}. This implies that BU1 = D and BU2 = D. Thus, the set of PCE
outcomes is {(7, 7), (1, 1)}, and (7, 7) is the unique M-PCE (with α = 6).

7.5.2 FPE vs. Other Farsighted Concepts

The main idea of all introduced farsighted solution concepts (except PCE) is very
similar. One can test whether a given strategy profile is stable by checking whether
an agent or group of agents can deviate from the strategy profile in a profitable way,
given a possible follow-up from the other agents. Strategy profiles from which no
agent has an incentive to deviate, after taking the follow-up by the other agents in
account, are considered stable. However, there are also many differences between
the concepts. In this section, we will compare FPE with other farsighted solution
concepts in various aspects.

Scope of Farsightedness In farsighted reasoning about strategies, agents con-
sider further consequences of their deviations, as opposed to reasoning in myopic
solution concepts like Nash equilibrium. Consider for example the game in Fig-
ure 7.2a. Strategy profile (1, 1) is not a Nash equilibrium because (1, 1)→1 (3, 1)

7.5 Comparing Farsighted Solution Concepts 125

is locally rational. However, this deviation is not necessarily globally rational, as it
might trigger agent 2 to follow up with the deviation (3, 1)→2 (0, 2). Unlike Nash
equilibrium, which only considers (0,2) stable, the set {(1, 1), (0, 2)} is considered
stable in all presented farsighted solution concepts (VNM, NFSS, SSS, LCS and
FPE).

The degree of farsightedness is different across the concepts. The least farsighted
concept is VNM. Here, only the direct dominance relation ≺ is taken into account.
This implies that agents only look at whether they can recover from a single de-
viation of the opponents, as the game in Figure 7.2b illustrates. The deviation
(1, 1, 1) →1 (3, 1, 1) is locally rational but might intuitively be wrong because de-
viations (3, 1, 1) →3 (3, 1, 2) →2 (0, 2, 2) can spoil its effect. However, since VNM
does not take sequences of deviations into account, it does not consider (1, 1, 1)
stable ({(0, 2, 2), (3, 1, 1)} being the only stable set). The concepts NFSS, LCS and
FPE have a “more farsighted” view, and consider sequences of follow-up deviations.
In consequence, they all deem the profile (1, 1, 1) stable.

Furthermore, the solution concepts evaluate follow-ups differently. In VNM and
NFSS, a follow-up deviation from the opponents is always considered undesirable,
even if it gives a higher payoff for the first deviating agent. In LCS and FPE,
beneficial follow-ups only strengthen the success of the original deviation. Consider
the game in Figure 7.2c. After (1, 1) →1 (3, 1), the follow-up (3, 1) →2 (2, 2) still
leaves agent 1 with a payoff higher that his initial one. Thus, both LCS and FPE
deem (1, 1) unstable, which matches intuition, while VNM and NFSS consider
(1, 1) stable.

Type of Solution Concept The concepts also yield objects of different types.
LCS and FPE both return a set of strategy profiles, thus ascribing rationality to
individual profiles. On the other hand, VNM, NFSS and SSS return a set of sets of
profiles each, hence ascribing rationality to sets of strategy profiles. In the latter
case a rational set of profiles can be understood as a set of collective decisions
to whom the grand coalition of agents can consistently stick. Clearly, this makes
sense in coalitional games, but is less suitable for noncooperative games where the
agents’ control over collective choice is limited. Furthermore, still no prediction
is made about which set from the collection will be selected by the agents to be
stable.

Deviation Strategy VNM, SSS and FPE are built on a pessimistic view of the
follow-up to the first deviation, as they make no assumptions about the other
agents’ rationality. In particular, it is not assumed that opponents will help to
increase the initiator’s utility, even if it is also to their advantage. In consequence,
these solution concepts assume that the deviations of the initiator must always be
locally rational. In contrast, NFSS assumes that an agent can make deviations
which are not locally rational if he hopes that other agents will further increase his
utility. The game in Figure 7.2a illustrates this. The set {(1, 1), (0, 2)} is a VNM,
SSS, LCS and collects all FPEs. On the other hand, {(0, 2)} is the only NFSS.
FPE and (M-)PCE also make different assumptions about the initially deviating
agent. The intuition of these solution concepts is similar: agents realize that if
they deviate from a strategy profile, the other agent may start to best respond;
then, after a while, they will likely end up in some Nash equilibrium, and thus have

126 Chapter 7 Farsighted Pre-equilibria

a payoff that is guaranteed to be no less than that of the original strategy profile.
The solution concepts PCE and M-PCE may also require agents to deviate in a
locally irrational way because they do not take into account the domination relation
explicitly. For example, (0, 2) in Figure 7.2d is neither PCE nor M-PCE, although
it is a Nash equilibrium and hence no agent has a locally rational deviation in it.
All the other solution concepts considered here deem (0, 2) stable.

Expected Behavior of Opponents Different solution concepts imply different
opponent models. We have already mentioned that the initiator of deviations can
either be optimistic or pessimistic about the follow-up by the opponents. Another
distinction is whether the deviating agent expects the opponents to be farsighted
as well, or whether they might be regular best-response agents. Consider the game
in Figure 7.2d. Intuitively, a farsighted agent 1 would not deviate (2, 4)→1 (3, 1),
because the follow-up deviation (3, 1)→2 (0, 2) can damage his payoff. Therefore,
agent 2 can safely play (1, 3) →2 (2, 4) if he is sure that agent 1 is farsighted.
However, if agent 1 plays best response, the deviation (1, 3)→2 (2, 4) might harm
agent 2, because agent 1 will deviate (2, 4)→1 (3, 1) afterwards. Therefore, if agent
2 has no information about the kind of behavior of agent 1, it might be better to
stick to strategy profile (1, 3). FPE is the only solution concept that captures this
intuition by considering (1, 3), (2, 4) and (0, 2) to be (potentially) stable; the other
formalisms (VNM, SSS, NFSS, LCS) all result in the stable set {(1, 4), (0, 2)}.

Summary The main difference between our farsighted pre-equilibrium and the
other solution concepts discussed in this section lies in the perspective. It can be ar-
gued that the type of rationality defined in [NM44, Har74, Chw94, SM05, Nak07] is
predominantly coalitional. This is because those proposals ascribe stability to sets
of strategy profiles, which does not have a natural interpretation in the noncooper-
ative setting. Moreover, some of the concepts are based on coalitional rather than
individual deviations. In contrast, the concept of cooperative equilibrium [HR10]
is not based on reasoning about possible deviations. In this sense, FPE is the first
truly noncooperative solution concept for farsighted play that we are aware of.

7.6 Conclusion

We have proposed a new solution concept that we call farsighted pre-equilibrium.
The idea is to “broaden” Nash equilibrium in a way that does not discriminate
solutions that look intuitively appealing but are ruled out by Nash equilibrium.
Then, Nash equilibrium may be interpreted as a specification of play which is
certainly rational, and strategy profiles that are not farsighted pre-equilibria can
be considered certainly irrational. The area in between is the gray zone where
solutions are either rational or not, depending on the detailed circumstances.

Our main motivation is predictive: we argue that a solution concept that makes
too strong assumptions open up ways of possible vulnerability if the other agents
do not behave in the predicted way. Nash equilibrium seems too restrictive in
many games (Prisoner’s Dilemma being a prime example). We show that FPE
does select non-Nash equilibrium strategy profiles that seem sensible, like the “all
cooperate” strategy profile in the standard as well as the generalized version of
Prisoner’s Dilemma. Moreover, we observe that FPE favors solutions with bal-

7.6 Conclusion 127

anced distributions of payoffs, i.e., ones in which no agent has significantly higher
incentive to deviate than the others.

A natural way of interpreting deviations in strategy profiles is to view the deviations
as moves in a “deviation game” played on a meta-level. We show that farsighted
pre-equilibria in the original game correspond to subgame-perfect Nash equilibria
in the meta-game. This is a strong indication that the concept that we propose is
well-rooted in game-theoretic tradition of reasoning about strategic choice.

Farsighted play has been investigated in multiple settings, starting from von Neu-
mann and Morgenstern almost 70 years ago. Our proposal is, to our knowledge,
the first truly noncooperative solution concept for farsighted play. In particular, it
is obtained by reasoning about individual (meta-)strategies of individually rational
agents, rather than by reconstruction of the notion of stable set from coalitional
game theory.

8

Relating Attack-Defense Trees and Games

Abstract. Attack–defense trees are used to describe security weaknesses of a system and

possible countermeasures. In this chapter, the connection between attack–defense trees

and game theory is made explicit. We show that attack–defense trees and binary zero-

sum two-player extensive-form games have equivalent expressive power when considering

satisfiability, in the sense that it is possible to convert ADTerms to these games (and

vice-versa) while preserving their outcome and their internal structure.

8.1 Introduction

In this thesis, we have seen how security protocols can be modeled as a game
between an attacker and a defender. This approach can also be fruitful in other
areas, such as security modeling. In this chapter, we model an extension of attack
trees [Sch04a], called attack–defense trees [KMRS10], as a game.

Attack trees [Sch04a], as popularized by Bruce Schneier at the end of the 1990s,
form an informal but powerful method to describe possible security weaknesses of
a system. An attack tree basically consists of a description of an attacker’s goal
and its refinement into sub-goals. In case of a conjunctive refinement, all sub-goals
have to be satisfied to satisfy the overall goal, while for a disjunctive refinement
satisfying any of the sub-goals is sufficient. The non-refined nodes (i.e., the leaves
of the tree) are basic attack actions from which complex attacks are composed.

Due to their intuitive nature, attack trees have proven to be very useful in un-
derstanding a system’s weaknesses in an informal and interdisciplinary context.
The development of an attack tree for a specific system may start by building a
small tree that is obviously incomplete and describes the attacks at a high level of
abstraction. Later, these attacks might be refined and new attacks might be added
later as to make a more complete description.

Over the last few years, attack trees have developed into an even more versa-
tile tool. This is due to two developments. The first development consists of
the formalization of the attack trees method [MO05], which provides an attack
tree with a precise meaning. As a consequence, formal analysis techniques were
designed [JW09, RSF+09], and computer tools were made commercially avail-
able [Ame, Iso].

The second development comes from the insight that a more complete descrip-
tion can be achieved by modeling the activities of a system’s defender in addition
to those of the attacker. Consequently, one can analyze which set of defenses is
optimal from the perspective of, for instance, cost effectiveness. Several notions

129

130 Chapter 8 Relating Attack-Defense Trees and Games

of protection trees or defense nodes have already been proposed in the litera-
ture [EDRM06, BDP06]. They mostly consist of adding one layer of defenses
to the attack tree, thus ignoring the fact that in a dynamic system new attacks
are mounted against these defenses and that, consequently, yet more defenses are
brought into place. Such an alternating nature of attacks and defenses is captured
in the notion of attack–defense trees [KMRS10]. In this extension of attack trees,
the iterative structure of attacks and defenses can be visualized and evolutionary
aspects can be modeled.

These two developments, the formalization of attack trees and the introduction
of defenses, imply that an attack–defense tree can be formally considered as a
description of a game. The purpose of this chapter is to make the connection
between attack–defense trees and game theory explicit. We expect that the link
between the relatively new field of attack modeling and the well-developed field of
game theory can be exploited by making game theoretic analysis methods available
to the attack modeling community. In particular, we study the relation between
attack–defense trees and games in terms of expressiveness. Rather than studying
the graphical attack–defense tree language, we consider an algebraic representation
of such trees, called attack–defense terms (ADTerms) [KMRS10], which allows for
easier formal manipulation.

The main contribution of this chapter is to show that ADTerms with a satisfiability
attribute are equivalent to two-agent binary zero-sum extensive-form games. In
this chapter, we refer only to this class of games when we talk about games. We
show equivalence by defining two translations: one from games to ADTerms and
one from ADTerms to games. Then, we interpret a strategy in the game as a
basic assignment for the corresponding ADTerm and vice versa. Such a basic
assignment expresses which attacks and defenses are in place. Equivalence then
roughly means that for every winning strategy, there exists a basic assignment that
yields a satisfiable term, and vice versa. Although the two formalisms have much
in common, their equivalence is not immediate. Two notions in the domain of
ADTerms have no direct correspondence in the world of games: conjunctive nodes
and refinements. The translation from ADTerms to games will have to solve this
in a semantically correct way.

This chapter is structured as follows. We introduce attack–defense terms and two-
agent binary zero-sum extensive-form games in Section 8.2. In Section 8.3, we
define a translation from games to attack–defense terms and prove that an agent
can win the game if and only if he is successful in the corresponding ADTerm. A
reverse translation is defined in Section 8.4, before we conclude in Section 8.5.

8.2 Preliminaries

8.2.1 Attack–Defense Trees

A limitation of attack trees is that they cannot capture the interaction between
attacks carried out on a system and defenses put in place to fend off the attacks. To
mitigate this problem and in order to be able to analyze an attack–defense scenario,
attack–defense trees are introduced in [KMRS10]. Attack–defense trees may have

8.2 Preliminaries 131

two types of nodes: attack nodes and defense nodes, representing actions of two
opposing agents. The attacker and defender are modeled in a purely symmetric
way. To avoid differentiating between attack–defense scenarios with an attack node
as a root and a defense node as a root, the notions of proponent (denoted by p)
and opponent (denoted by o) are introduced. The root of an attack–defense tree
represents the main goal of the proponent. To be more precise, when the root is
an attack node, the proponent is an attacker and the opponent is a defender, and
vice versa.

To formalize attack–defense trees, we use attack–defense terms (ADTerms), which
are either of the proponent’s type, or of the opponent’s type. ADTerms are defined
in terms of basic actions of the proponent and opponent. Their basic actions
are denoted with Bp and Bo, respectively. The functions ∨p,∧p,∨o,∧o represent
disjunctive (∨) and conjunctive (∧) refinement operators of the proponent’s and
opponent’s type, respectively. The binary function ca (‘counter’), where a ∈ Agt,
connects a term of one agent’s type with a countermeasure of the other agent’s
type.

The set of ADTerms TΣ is defined as the set of all terms of the proponent’s type.

Definition 8.1 (ADTerms). Given a set of basic actions of the proponent Bp and
a set of basic actions of the opponent Bo, we define the set of ADTterms of the
proponent’s type, denoted T p

Σ, and the set of ADTerms of the opponent’s type,
denoted T o

Σ, as follows.

• T p
Σ ::= ∨p(T p

Σ, . . . , T
p
Σ) | ∧p (T p

Σ, . . . , T
p
Σ) | cp(T p

Σ, T
o
Σ) | Bp;

• T o
Σ ::= ∨o(T o

Σ, . . . , T
o
Σ) | ∧o (T o

Σ, . . . , T
o
Σ) | co(T o

Σ, T
p
Σ) | Bo.

We define the set of ADTerms TΣ as T p
Σ ∪ T

o
Σ. The type of an ADTerm, written

τ(t), is defined by the function τ(t) = a where t ∈ T a
Σ.

Example 8.1. Consider the following ADTerm:

t = cp(∧p(D,E),∨o(F)).

This ADTerm is graphically displayed in Figure 8.1a. In order to present the
transformations between ADTerms and games more clearly, we draw counter notes
slightly different from [KMRS10]. Our graphical depiction of ADTerms is basically
a parse tree of such terms.

The depicted ADTerm represents an attacker that tries to gain access to a system
by obtaining credentials to authenticate (A). The defender can prevent this attack
by using two-factor authentication (C). The defender can implement two-factor
authentication with key fobs (F). The attacker can log in with credentials if he
obtains both the user name (D) and the password (E).

For this ADTerm, we have τ(t) = p. Subterms D and E are basic actions of the
proponent’s type, and F is a basic action of the opponent’s type. Assuming that the
proponent is the attacker, the system can be attacked by combining the basic attack
actions D and E. However, the defender has the option to defend if he implements
the basic defense action F .

132 Chapter 8 Relating Attack-Defense Trees and Games

cp

A

Cred’s

∧p

B

Cred’s

D

User

name

E

Passw’d

∨o

C

Two-

factor

auth.

F

Key

fobs

(a)

a = NLp

b = NLo

d = Lp(0, 1) e = Lp(1, 0)

c = Lo(0, 1)

(b)

Figure 8.1: An example of an ADTerm (a) and a two-agent binary zero-sum
extensive-form game (b).

In order to check whether an attack–defense scenario is feasible, the notion of
satisfiability of an ADTerm is introduced by defining a satisfiability attribute satβ.
First, for agent a ∈ {p, o}, we define a basic assignment for a as a function βa : Ba →
{true, false}. We gather the basic assignments for both agents in a basic assignment
profile β = (βp, βo). Second, given a basic assignment profile β, the function
satβ : TΣ → {true, false} is used in order to calculate the satisfiability value of an
ADTerm. It is defined recursively as follows.

satβ(t) =



















βa(t), if t ∈ Ba,

∨(satβ(t1), . . . , satβ(tk)), if t = ∨a(t1, . . . , tk),

∧(satβ(t1), . . . , satβ(tk)), if t = ∧a(t1, . . . , tk),

satβ(t1) ∧ ¬satβ(t2), if t = ca(t1, t2).

For instance, consider the term t from Example 8.1 and the basic assignment
profile β = (βp, βo), where βp(D) = true, βp(E) = true, βo(F) = false. We
get satβ(t) = true. Assuming that the proponent is the attacker, the basic defense
action F is absent and the system is attacked by combining the basic attack actions
D and E.

The next definition formalizes the notion of a satisfiable ADTerm for an agent.

Definition 8.2 (Sataβ , Sataβa , Sata). For every agent a, basic assignment βa, and
basic assignment profile β, we define the sets of ADTerms Sataβ, Sataβa , Sata ⊆ TΣ
in the following way. Let t ∈ TΣ.

• Agent a is successful in t under basic assignment profile β, written t ∈ Sataβ,
if either τ(t) = a and satβ(t) = true, or τ(t) 6= a and satβ(t) = false.

• Agent a is successful in t under basic assignment βa, written t ∈ Sataβa, if
t ∈ Sata(βp,βo) for every basic assignment β−a.

• ADTerm t is satisfiable for a, written t ∈ Sata, if there exists a basic assign-
ment βa for agent a such that t ∈ Sataβa.

8.2 Preliminaries 133

The following theorem states that given an ADTerm t and a basic assignment
profile β, either o or p is successful.

Theorem 8.1. For every ADTerm t and basic assignment profile β, we have t ∈
Satpβ if and only if t 6∈ Satoβ.

Proof. It holds that t ∈ Satpβ if and only if either τ(t) = p and satβ(t) = true,
or τ(t) = o and satβ(t) = false. This is true exactly when neither τ(t) = p and
satβ(t) = false, nor τ(t) = o and satβ(t) = true, which is equivalent to t 6∈ Satoβ .

8.2.2 Two-agent Binary Zero-sum Extensive-Form Games

We consider two-agent binary zero-sum extensive-form games, in which a proponent
p and an opponent o play against each other. In those games, we allow only for
the outcomes (1, 0) and (0, 1), where (1, 0) means that the proponent succeeds in
his goal (breaking the system if he is the attacker, keeping the system secure if
he is the defender), and (0, 1) means that the opponent succeeds. Note that the
proponent is not necessarily the agent who plays first in the game. Finally, we
restrict ourselves to extensive-form games, i.e., games in tree format. We assume
that turns in the game alternate between the two agents. To ease the translation of
games to ADTerms, instead of using the usual notation, we present extensive-form
games as terms. This gives us the following definition of two-agent binary zero-sum
extensive-form games, where L stands for a leaf and NL for a non-leaf of the term.

Definition 8.3 (Two-agent binary zero-sum extensive-form game). Let Agt =
{p, o} denote the set of agents and let the set of outcomes be {(1, 0), (0, 1)} the set
of possible outcomes. A two-agent binary zero-sum extensive-form game is a term
t ::= ψp | ψo, where

ψp ::= NLp(ψo, . . . , ψo) | Lp(1, 0) | Lp(0, 1)

ψo ::= NLo(ψp, . . . , ψp) | Lo(1, 0) | Lo(0, 1).

We denote the set of all two-agent binary zero-sum extensive-form games by G∗E.

Example 8.2. An example of a two-agent binary zero-sum extensive-form game is
the expression NLp(NLo(Lp(0, 1),Lp(1, 0)),Lo(0, 1)). This game is displayed in Fig-
ure 8.1b. When displaying extensive-form games, we use dashed edges for choices
made by the proponent, and solid edges for those made by the opponent. In this
game, first the proponent can pick from two options; if he chooses the first op-
tion, the opponent can choose between outcomes (0, 1) and (1, 0). If the proponent
chooses the second option, the game will end with outcome (0, 1).

Definition 8.4 (Extensive-form game terms). The set of extensive-form game
terms consists of terms NLa(ψa′1 , . . . , ψa′m) and La(ra1 , . . . , ran), where m,n ∈ R,
a, a′1, . . . , a

′
m ∈ Agt, ψa, . . . , ψa are extensive-form game terms, and (ra1 , . . . , ran) ∈

Rn.

Every extensive-form game term belongs to an agent.

Definition 8.5 (Game term belonging to agent). If G is a game terms such that
G = NLa(ψa′1 , . . . , ψa′m) or G = La(ra1 , . . . , ran), then we say that G belongs to
agent a, written τ(G) = a. We also say that ψa is a term of agent a.

134 Chapter 8 Relating Attack-Defense Trees and Games

A strategy for a game for agent a is a function that assigns to every non-leaf one
of the children of that leaf. A strategy profile is a combination of strategies, one
for each agent.

Definition 8.6 (Strategy, strategy profile). A function σa is a strategy for game
G for agent a if it assigns to every non-leaf NLa(ψa′

1 , . . . , ψ
a′

n) of agent a in game
G a term ψa′

k for some k ∈ {1, . . . , n}.

A strategy profile for a game G is a tuple σ = (σa1 , . . . , σan), where σai is a strategy
of agent ai for game G.

For conciseness of notation, if g = NLa(ψa′

1 , . . . , ψ
a′

n) and σ = (σa1 , . . . , σan), some-
times we write σ(G) instead of σa(G).

Definition 8.7 (Comparison of outcomes). We write

(ra11 , . . . , r
an
1) ≤ai (ra12 , . . . , r

an
2)

whenever rai1 ≤ rai2 .

This definition implies that (Rn,≤a) is a totally ordered set for every a ∈ Agt.

We define the outcome under a strategy profile as the outcome we obtain when all
agents play according to σ.

Definition 8.8 (Outcome under strategy profile). The outcome outσ of a game
G under strategy profile σ = (σa1 , . . . , σan) is defined by:

outσ(La(ra1 , . . . , ran)) = (ra1, . . . , ran)

outσ(NLa(ψa′

1 , . . . , ψ
a′

n)) = outσ(σa(NLa(ψa′

1 , . . . , ψ
a′

n)))

We define the outcome under a strategy for a player as the outcome we obtain
when the other player tries to maximize his own outcome.

Definition 8.9 (Outcome under strategy). Let (ra1 , . . . , ran) ∈ Rn, and ψa′

1 , . . . , ψ
a′

n

be games belonging to agent a′.

The outcome outσa of a game g under strategy σa is defined by:

outσa(La(ra1 , . . . , ran)) = (ra1 , . . . , ran)

outσa(NLa(ψa′

1 , . . . , ψ
a′

n)) = outσa(σa(NLa(ψa′

1 , . . . , ψ
a′

n)))

outσa(NLa′(ψa′

1 , . . . , ψ
a′

n)) = max
1≤i≤n

≤a′{outσa(ψa′

i)}

Finally, we define the outcome of the game as the outcome we obtain when both
agents try to maximize their own outcome.

Definition 8.10 (Outcome). Let (ra1 , . . . , ran) ∈ Rn, and let ψa′

1 , . . . , ψ
a′

n be games
belonging to agent a′.

The outcome out of a game g is defined by:

out(La(ra1 , . . . , ran)) = (ra1, . . . , ran)

out(NLa(ψa′

1 , . . . , ψ
a′

n)) = max
1≤i≤n

≤a{outσa(ψa′

i)}

out(NLa′(ψa′

1 , . . . , ψ
a′

n)) = max
1≤i≤n

≤a′{outσa(ψa′

i)}

8.3 From Games to ADTerms 135

8.3 From Games to ADTerms

In this section, we show how to translate binary zero-sum two-agent extensive-form
games to ADTerms. We do this by defining a function that translates games to
equivalent ADTerms, and a function that translates strategies in games to basic
assignments in the corresponding ADTerms. We show that these translations are
correct in the following sense. First, we show that the agent who is winning in
the game is also the agent for whom the corresponding ADTerm is satisfiable,
if both agents play the basic assignment corresponding to their strategy in the
game. Then we show that if an agent is winning in a game, he is successful in the
corresponding ADTerm under the corresponding basic assignment. To translate
games into ADTerms, we define a function [·]AD.

Definition 8.11 (Translation of games to ADTerms). Let u, u1, . . . , un represent
fresh basic actions from Bo, and let v, v1, . . . , vn represent fresh basic actions from
Bp. The function [·]AD : G∗E → TΣ is defined in the following way.

Lp(1, 0) 7→ v (8.1a)

Lo(1, 0) 7→ co(u, v) (8.1b)

Lp(0, 1) 7→ cp(v, u) (8.1c)

Lo(0, 1) 7→ u (8.1d)

NLp(ψ1, . . . , ψn) 7→ ∨p(cp(v1, [ψ1]AD), . . . , cp(vn, [ψn]AD)) (8.1e)

NLo(ψ1, . . . , ψn) 7→ ∨o(co(u1, [ψ1]AD), . . . , co(un, [ψn]AD)) (8.1f)

These rules are visualized in Figure 8.2. Rules (8.1a)–(8.1d) specify that a winning
leaf for an agent in the game is translated to a satisfiable ADTerm for this agent,
i.e., an ADTerm consisting of only a leaf belonging to this agent. Rule (8.1e)–(8.1f)
specify that non-leaves in the game are translated to disjunctive ADTerms of the
same agent. These disjunctions have children of the form ca(uk, [ψk]AD) for some
k. The intended meaning here is that agent a selects uk exactly when his strategy
selects ψk in the game.

Example 8.3. Figure 8.3 depicts the translation of the game from Figure 8.1b to
an ADTerm.

The ADTerm resulting from [·]AD : G∗E → TΣ is conjunction-free. Note that since
terms in our games alternate between p and o, this translation results in correctly
typed ADTerms.

Now we define how to translate a strategy profile for a game to a basic assignment
profile for an ADTerm. First, we define a translation J·K·AD from a strategy σa

(a ∈ {p, o}) for game G to a basic assignment βa = JσaKGAD for ADTerm [G]AD.
Intuitively, if an agent’s strategy for the game selects a certain branch, the basic
assignment for the ADTerm assigns true to the node uk in the corresponding branch,
and false to the nodes uk in the other branches. Furthermore, ADTerms resulting
from leaves in the game are always assigned true by the basic assignment.

Definition 8.12 (Translation from strategy to basic assignment). Given a strategy
σa for a in game G, we define βa = JσaKGAD as follows. For all ADTerms ca(u, v)

136 Chapter 8 Relating Attack-Defense Trees and Games

Lp(1, 0) 7→ v Lo(1, 0) 7→ co

u v

(10.1a) (10.1b)

Lp(0, 1) 7→ cp

v u

Lo(0, 1) 7→ u

(10.1c) (10.1d)

NLp

ψ1 ψ2 · · · ψn

7→ ∨p

cp

v1 [ψ1]AD

cp

v2 [ψ2]AD

· · · cp

vn [ψn]AD

(10.1e)

NLo

ψ1 ψ2 · · · ψn

7→ ∨o

co

u1 [ψ1]AD

co

u2 [ψ2]AD

· · · co

un [ψn]AD

(10.1f)

Figure 8.2: Translation of a game in extensive-form to an ADTerm by function
[·]AD.

and v resulting from the first four cases in Definition 8.11, we set βa(u) = βa(v) =
true. For ADTerms obtained from game G by one of the last two cases in Defini-
tion 8.11, if σa(G) = ψk, we set βa(uk) = true and βa(ui) = false for 1 ≤ i ≤ n,
i 6= k.

We extend the translation J·K·AD to strategy profiles as follows.

Definition 8.13 (Translation from strategy profile to basic assignment profile).
We write J(σp, σo)KGAD for (JσpKGAD, Jσ

oKGAD).

The next theorem states that an agent is winning in a game under a certain strategy
profile if and only if he is successful in the corresponding ADTerm under the basic
assignment profile corresponding to the strategy profile.

Theorem 8.2. Let G be a game and let σ be a strategy profile for G. Then
outσ(G) = (1, 0) if and only if [G]AD ∈ Satp

JσKG
AD

.

Proof. Let G be a game and let σ a strategy profile for G. We set t = [G]AD

and β = JσKGAD. To prove that outσ(G) = (1, 0) implies that t ∈ Satpβ, we assume
outσ(G) = (1, 0) and apply structural induction on G.

8.3 From Games to ADTerms 137

∨p

a

cp

∨o

b

co

d

co

e

cp

c

Figure 8.3: The result of the translation of the game from Figure 8.1b to an
ADTerm.

In the base case, G = La(rp, ro) with rp, ro ∈ {0, 1}. If outσ(G) = (1, 0), then
rp = 1 and ro = 0, so either t = v or t = co(u, v). In the first case, satβ(v) = true
by Definition 8.12, so satβ(t) = true, and therefore t ∈ Satpβ. In the second case,
we have satβ(u) = satβ(v) = true by Definition 8.12, so satβ(t) = satβ(co(u, v)) =
false. Therefore, t 6∈ Satoβ, and thus t ∈ Satpβ.

To prove the induction step, we assume G = NLa(ψ1, . . . , ψn). Then we have
t = ∨a(ca(u1, [ψ1]AD)), . . . , ca(un, [ψn]AD). Furthermore, there exists a k such that
ψk = σ(G). Therefore, outσ(ψk) = (1, 0). By induction hypothesis, [ψk]AD ∈
Satpβ. First assume a = p, so τ(ψk) = o by the definition of a game. Then
τ([ψk]AD) = o by definition of [·]AD, so satβ([ψk]AD) = false by Definition 8.2
and satβ(uk) = true by definition of G. Therefore, satβ(cp(uk, [ψk]AD)) = true,
which implies satβ(t) = satβ(∨a(ca(u1, [ψ1]AD), . . . , ca(un, [ψn]AD)) = true. Be-
cause it holds that τ(t) = τ(G) = p, we have t ∈ Satpβ. Now assume a =
o, so τ(ψk) = p by the definition of a game. Then τ([ψk]AD) = p by def-
inition of [·]AD, so satβ([ψk]AD) = true by Definition 8.2. Therefore, it holds
that satβ(cp(uk, [ψk]AD)) = false. Furthermore, whenever 1 ≤ a ≤ n, a 6= k
satβ(u) = false by definition of G, and therefore satβ(cp(u, [ψk]AD)) = false. This
means that satβ(t) = satβ(∨o(co(u1, [ψ1]AD), . . . , co(un, [ψn]AD))) = false. Because
τ(t) = τ(G) = o, t 6∈ Satoβ , and therefore t ∈ Satpβ.

Now we prove that t ∈ Satpβ implies that outσ(G) = (1, 0). We prove this by

contraposition and structural induction on G. We set t = [G]AD and β = JσKGAD. In
the base case, we have outσ(G) 6= (1, 0), and thus outσ(G) = (0, 1). By symmetry,
we have t ∈ Satoβ, and therefore t 6∈ Satpβ. We proceed with the induction step.
We have that outσ(G) = (0, 1) implies t ∈ Satoβ by symmetry. Then we also have
outσ(G) 6= (0, 1) implies t 6∈ Satpβ by Theorem 8.1.

The following theorem states that an agent is winning under a strategy in a game

138 Chapter 8 Relating Attack-Defense Trees and Games

if and only if that agent is successful in the corresponding ADTerm under the
corresponding basic assignment. This is not a consequence of Theorem 8.2, as
there might exist a basic assignment βa for the ADTerm, for which there exists
no strategy σa such that βa = JσaKGAD (i.e, the function J·K·AD is not surjective).
Therefore, it is not immediately clear that if an agent has a strategy σa that wins
from the other agent independent of his strategy, an agent with a basic assignment
JσaKGAD wins from the other agent independent of his basic assignment.

Theorem 8.3. Let G be a game and σp be a strategy for p for G. Then outσp(G) =
(1, 0) if and only if [G]AD ∈ Satp

JσpKG
AD

.

Proof. Let G be a game and let σp be a strategy for p for G. We set t = [G]AD

and βp = JσKGAD. To prove that outσp(G) = (1, 0) implies t ∈ Satp
JσpKG

AD

, we assume

that outσp(G) = (1, 0) and apply structural induction on G.

In the base case, G = La(rp, ro) with rp, ro ∈ {0, 1}. Let βo ∈ Bo. If outσp(G) =
(1, 0), then rp = 1 and ro = 0, so either t = v or t = co(u, v). In the first
case, sat (βp,βo)(v) = true by Definition 8.12, so sat (βp,βo)(t) = true, and therefore
t ∈ Satp

(JσpKG
AD

,βo)
, and thus t ∈ Satp

JσpKG
AD

. In the second case, sat (βp,βo)(u) =

sat (βp,βo)(v) = true by Definition 8.12, so sat (βp,βo)(t) = sat (βp,βo)(c
o(u, v)) = false.

Therefore, t ∈ Satp
(JσpKG

AD
,βo)

, and thus t ∈ Satp
JσpKG

AD

.

We proceed with the induction step, i.e., G = NLa(ψ1, . . . , ψn). This implies
that t = ∨a(ca(u1, [ψ1]AD), . . . , ca(un, [ψn]AD)). We apply case distinction on a.
First, we assume that a = p. Then there exists k such that ψk = σp(G) and
outσp(ψk) = (1, 0). By the induction hypothesis, we have [ψk]AD ∈ Satp

JσpKG
AD

. This

implies that for all βo ∈ Bo, we have [ψk]AD ∈ Satp
(JσpKG

AD
,βo)

. Therefore, since

τ([ψk]AD) = o, we have for all βo ∈ Bo that sat (βp,βo)([ψk]AD) = false. Moreover,
we have sat (βp,βo)(uk) = true by definition of JσpKGAD. This implies that for all
βo ∈ Bo, we have that sat (βp,βo)(c

p(uk, [ψk]AD)) = true, which in turn implies that
for all βo ∈ Bo, it holds that sat (βp,βo)(t) = true. Since τ(G) = p, we have that
for all βo ∈ B

o, it holds that t ∈ Satp
(JσpKG

AD
,βo)

. This implies t ∈ Satpβp . Now we

assume that a = o. We assume that 1 ≤ k ≤ n. Then outσp(ψk) = (1, 0), so
[ψk]AD ∈ Satp

JσpKG
AD

by the induction hypothesis. This implies that for all βo ∈ Bo,

we have [ψk]AD ∈ Satp
(JσpKG

AD
,βo)

. Therefore, since τ([ψk]AD) = p, we have for all

βo ∈ Bo that sat (βp,βo)([ψk]AD) = true. This implies that for all βo ∈ Bo, we have
sat (βp,βo)(c

o(uk, [ψk]AD)) = false, which in turn implies that for all βo ∈ B
o, it holds

that sat (βp,βo)([ψk]AD) = false. Since τ(t) = o, we have that for all βo ∈ Bo, it holds
that t ∈ Satp

(JσpKG
AD

,βo)
. This implies t ∈ Satpβp .

To prove that t ∈ Satp
JσpKG

AD

implies outσp(G) = (1, 0), we assume that outσp(G) 6=

(1, 0), i.e. outσp(G) = (0, 1), and prove that t 6= Satp
JσpKG

AD

by structural induction

on G.

In the base case, G = La(rp, ro) with rp, ro ∈ {0, 1}. Let βo ∈ Bo. If outσp(G) =
(1, 0), then rp = 1 and ro = 0, so either t = v or t = co(u, v). In the first
case, sat (βp,βo)(v) = true by Definition 8.12, so sat (βp,βo)(t) = true, and therefore
t 6∈ Satp

(JσpKG
AD

,βo)
, and thus t 6∈ Satp

JσpKG
AD

. In the second case, sat (βp,βo)(u) =

sat (βp,βo)(v) = true by Definition 8.12, so sat (βp,βo)(t) = sat (βp,βo)(c
o(u, v)) = false.

8.4 From ADTerms to Games 139

Therefore, t 6∈ Satp
(JσpKG

AD
,βo)

, and thus t 6∈ Satp
JσpKG

AD

.

We proceed with the induction step, i.e., G = NLa(ψ1, . . . , ψn). This implies that
t = ∨a(ca(u1, [ψ1]AD), . . . , ca(un, [ψn]AD)). We apply case distinction on a. First,
we assume that a = p. Then there exists k such that ψk = σp(G) and outσp(ψk) =
(0, 1). This implies that [ψk]AD 6∈ Satp

JσpKG
AD

by the induction hypothesis. This

implies that there exists βo ∈ Bo such that [ψk]AD 6∈ Satp
(JσpKG

AD
,βo)

. Therefore,

since τ([ψk]AD) = o, there exists βo ∈ Bo such that sat (βp,βo)([ψk]AD) = true.
This implies that there exists βo ∈ Bo such that sat (βp,βo)(c

o(uk, [ψk]AD)) = false,
which in turn implies that there exists βo ∈ B

o such that sat (βp,βo)([ψk]AD) = false.
Since τ(t) = p, there exists βo ∈ Bo such that t ∈ Satp

(JσpKG
AD

,βo)
. This implies

t 6∈ Satpβp . Now we assume that a = o. We assume that 1 ≤ k ≤ n. Then
outσp(ψk) = (0, 1), so by the induction hypothesis, we have that [ψk]AD 6∈ Satp

JσpKG
AD

.

This implies that there exists βo ∈ Bo such that [ψk]AD 6∈ Satp
(JσpKG

AD
,βo)

. Therefore,

since τ([ψk]AD) = p, there exists βo ∈ Bo such that sat (βp,βo)([ψk]AD) = false.
Moreover, we have sat (βp,βo)(uk) = true by definition of JσpKGAD. This implies that
there exists βo ∈ Bo such that sat (βp,βo)(c

p(uk, [ψk]AD)) = true, which in turn
implies that there exists βo ∈ Bo such that sat (βp,βo)(t) = true. Since τ(G) = o,
there exists βo ∈ Bo such that t 6∈ Satp

(JσpKG
AD

,βo)
. This implies t 6∈ Satpβp .

Now we obtain the following corollary, which says that an agent is winning in a
game if and only if it is successful in the corresponding ADTerm.

Corollary 8.1. Whenever G is a game, out(G) = (1, 0) if and only if [G]AD ∈
Satp.

Proof. It holds that out(G) = (1, 0) if and only if there is a strategy σp for p such
that outσp = (1, 0). This holds if and only if t ∈ Satpβp for some βp by Theorem 8.3.
This in turn is equivalent to t ∈ Satp.

8.4 From ADTerms to Games

We proceed with the translation in the other direction, from ADTerms to games.
We define two translations, one from ADTerms to games, and one from basic
assignment profiles to strategy profiles. Then we show that if an agent has a basic
assignment for an ADTerm with which he is successful, then that agent is winning
in the corresponding game under he the corresponding strategy.

The translation from ADTerms to games is given by the following function [·]G. A
graphical representation of this translation is displayed in Figure 8.4.

It can easily be checked that this translation always generates valid games (in
which p-moves and o-moves alternate).

Definition 8.14 (Translation from ADTerms to games). The function [·]G from

140 Chapter 8 Relating Attack-Defense Trees and Games

ADTerms to games is defined as follows.

v 7→ NLo(NLp(Lo(0, 1),Lo(1, 0))) if v ∈ B
p (8.2a)

v 7→ NLp(NLo(Lp(1, 0),Lp(0, 1))) if v ∈ B
o (8.2b)

∨p(ψ1, . . . , ψn) 7→ NLo(NLp([ψ1]G, . . . , [ψn]G)) (8.2c)

∨o(ψ1, . . . , ψn) 7→ NLp(NLo([ψ1]G, . . . , [ψn]G)) (8.2d)

∧p(ψ1, . . . , ψn) 7→ NLo(NLp([ψ1]G), . . . ,NLp([ψn]G)) (8.2e)

∧o(ψ1, . . . , ψn) 7→ NLp(NLo([ψ1]G), . . . ,NLo([ψn]G)) (8.2f)

cp(ψ1, ψ2) 7→ NLo(NLp([ψ1]G), [ψ2]G) (8.2g)

co(ψ1, ψ2) 7→ NLp(NLo([ψ1]G), [ψ2]G) (8.2h)

Rules (8.2a) and (8.2b) specify that leaves for agent a are translated to two options
for agent a, a losing and a winning one. These choices correspond to not choosing
and choosing the leaf in the ADTerm, respectively. Rules (8.2c) and (8.2d) specify
that disjunctive terms for agent a are translated to choices for agent a in the game.
There is no direct way of representing conjunctions in games. We can, however,
still handle conjunctive terms, by translating them to choices for the other agent,
as is specified by rules (8.2e) and (8.2f). This reflects the fact that an agent can
succeed in all his options exactly when there is no way for the other agent to pick
an option which allows him to succeed. Finally, rules (8.2g) and (8.2h) specify that
countermeasures against agent a are translated to a choice for agent −a. Here, the
first option corresponds to agent −a not choosing the countermeasure, so that it
is up to agent a whether he succeeds or not, while the second option corresponds
to agent −a choosing the countermeasure.

Example 8.4. Figure 8.5 depicts the translation of the ADT from Figure 8.1a to
a game.

We proceed by defining a translation J·K·G from a basic assignment for an ADTerm
to a strategy for the corresponding game. We only give the definition for a = p;
the definition for a = o is symmetric.

Definition 8.15 (Translation from basic assignment to strategy). Function J·K·G
is a translation from a basic assignment βp for ADTerm t to a strategy σp = JβpKtG
for game [t]G. We define this translation using case distinction on t.

• Assume t ∈ Bp. Then [t]G = NLp(Lo(0, 1),Lo(1, 0)). We set σp([t]G) =
Lo(1, 0) if βa(v) = true, and σp([t]G) = Lo(1, 0) = Lo(0, 1) otherwise.

• Assume t = ∨p(ψ1, . . . , ψn). Then [t]G = NLp([ψ1]G, . . . , [ψn]G). We set
σp([t]G) = [ψk]G where k is the smallest number such that ψk ∈ Satpβp, and
σp([t]G) = [ψ1]G if there exists no such number.

• Assume t = ∧p(ψ1, . . . , ψn). Then [t]G = NLp(NLo([ψ1]G), . . . ,NLo([ψn]G))
We set σp([t]G) = NLo([ψk]G) where k is the smallest number such that ψk ∈
Satpβp, and σp([t]G) = NLo([ψ1]G) if there exists no such number.

• Assume t = cp(ψ1, ψ2), so [t]G = NLp(NLo([ψ1]G), [ψ2]G). We set σp([t]G) =
NLo([ψ1]G) if ψ2 6∈ Satpβp, and σp([t]G) = [ψ2]G otherwise.

8.4 From ADTerms to Games 141

Now we show that this translation is correct in the sense that agent p is successful
in t under a basic assignment βp if and only if p is winning with the strategy
corresponding to this basic assignment in the corresponding game.

Theorem 8.4. Let t be an ADTerm and let βp be a basic assignment for t. Then
t ∈ Satpβp if and only if outJβpKt

G
([t]G) = (1, 0).

Proof. In order to prove that t ∈ Satpβp implies outJβpKt
G

([t]G) = (1, 0), we assume
that t ∈ Satpβp . We prove that outσp([t]G) = (1, 0) by structural induction on t.
Since t ∈ Satpβp , we have that τ(t) = p implies sat (βp,βo)(t) = true for all βo ∈ Bo,
and that τ(t) = o implies sat (βp,βo)(t) = false for all βo ∈ B

o.

In the base case, we have either t ∈ B
p or t ∈ B

o. If t ∈ B
p, we have that

[t]G = NLo(NLp(Lo(0, 1),Lo(1, 0))). Since sat (βp,βo)(t) = true for all βo ∈ Bo, we
have βp(t) = true for all βo ∈ Bo as well, so σp(NLp(Lo(1, 0),Lo(0, 1))) = Lo(1, 0)
by Definition 8.15. Therefore, we have outσp([t]G) = (1, 0). If t ∈ Bo, we have that
[t]G = NLp(NLo(Lp(1, 0),Lp(0, 1))). Then there exists a basic assignment βo such
that t 6∈ Satp(βp,βo), namely when βo(t) = true. Therefore, it holds that t 6∈ Satpβp ,
which is a contradiction.

We proceed with the induction step.

If t = ∨p(ψ1, . . . , ψn), then [t]G = NLo(NLp([ψ1]G, . . . , [ψn]G)). Since sat (βp,βo)(t) =
true for all βo ∈ Bo, there exists j such that sat (βp,βo)(ψj) = true for all βo ∈
Bo. Let k be the smallest number with this property. Then ψk ∈ Satpβp , so
σp(NLp([ψ1]G, . . . , [ψn]G)) = [ψk]G. Furthermore, since ψk ∈ Satpβp , we have
outσp([ψk]G) = (1, 0) by the induction hypothesis. Therefore, outσp([t]G) = (1, 0).

If t = ∨o(ψ1, . . . , ψn), then [t]G = NLp(NLo([ψ1]G, . . . , [ψn]G)). By t ∈ Satpβp ,
we have that sat (βp,βo)(t) = false for all βo ∈ Bo, so for 1 ≤ k ≤ n, we have
sat (βp,βo)(ψk) = false for all βo ∈ Bo. Furthermore, because τ(ψk) = o, it holds
that ψk ∈ Satpβp . By the induction hypothesis, it holds that outσp([ψk]G) = (1, 0),
so outσp([t]G) = outσp(NLp(NLo([ψ1]G, . . . , [ψn]G))) = (1, 0).

If t = ∧p(ψ1, . . . , ψn), then [t]G = NLo(NLp([ψ1]G), . . . ,NLp([ψn]G)). Assume 1 ≤
k ≤ n. By sat (βp,βo)(t) = false for all βo ∈ Bo, we obtain sat (βp,βo)(ψk) = true for all
βo ∈ Bo, and since τ(ψk) = p, we have ψk ∈ Satpβp . By the induction hypothesis,
we have outσp([ψk]G) = (1, 0), so we have that outσp(NLp([ψk]G)) = (1, 0) for
1 ≤ k ≤ n, and therefore outσp([t]G) = (1, 0).

If t = ∧o(ψ1, . . . , ψn), then [t]G = NLp(NLo([ψ1]G), . . . ,NLo([ψn]G)). Because
sat (βp,βo)(t) = false for all βo ∈ Bo, there exists a number j such that sat (βp,βo)(ψj) =
false for all βo ∈ B

o. Let k be the smallest number which this property. Then
σp(t) = NLo([ψk]G). Furthermore, by ψk ∈ Satpβp , we have outσp([ψk]G) = (1, 0)
by the induction hypothesis. Therefore outσp(wk)) = (1, 0) for 1 ≤ k ≤ n, so
outσp([t]G) = (1, 0).

If t = cp(ψ1, ψ2), then [t]G = NLo(NLp([ψ1]G), [ψ2]G). By sat (βp,βo)(t) = true for all
βo ∈ Bo, we obtain sat (βp,βo)(ψ1) = true for all βo ∈ Bo, and sat (βp,βo)(ψ2) = false
for all βo ∈ Bo. Since we have τ(ψ1) = p and τ(ψ2) = o, both ψ1 ∈ Satpβp and ψ2 ∈
Satpβp . Then by the induction hypothesis, outσp([ψ1]G) = outσp([ψ2]G) = (1, 0).
Then we have outσp(NLp([ψ1]G)) = (1, 0) as well, and therefore outσp([t]G) = (1, 0).

If t = co(ψ1, ψ2), then [t]G = NLp(NLo([ψ1]G), [ψ2]G). Since we have sat (βp,βo)(t) =

142 Chapter 8 Relating Attack-Defense Trees and Games

false for all βo ∈ Bo, we have either sat (βp,βo)(ψ1) = false for all βo ∈ Bo, or
sat (βp,βo)(ψ2) = true for all βo ∈ Bo. In the first case, we have σp(t) = [ψ1]G.
Moreover, by τ(ψ1) = o, we have ψ1 ∈ Satpβp , so outσp([ψ1]G) = (1, 0) by the
induction hypothesis. Then we have outσp(t) = (1, 0) as well. In the second
case, we have σp(t) = NLo([ψ1]G). Furthermore, by τ(ψ2) = p, we have ψ2 ∈
Satpβp , which implies that outσp([ψ2]G) = (1, 0) by the induction hypothesis. Then
outσp([t]G) = outσp(NLo([ψ1]G)) = (1, 0).

Similarly, we can prove that t 6∈ Satpβp implies outσp([t]G) 6= (1, 0), which gives us
by contraposition that outσp([t]G) = (1, 0) implies t ∈ Satpβp .

Now the definition of out and Satp gives us the following corollary. This gives us
the following corollary, which states that an agent wins in a game if and only if
the agent is successful in the corresponding ADTerm.

Corollary 8.2. Whenever t is an ADTerm, t ∈ Satp if and only if out([t]G) =
(1, 0).

Proof. It holds that t ∈ Satp if and only if t ∈ Satpβp for some βp. By Theorem 8.4,
this holds if and only if there exists a strategy σp for p such that outσp([t]G) = (1, 0).
This in turn is equivalent to out([t]G) = (1, 0).

8.5 Conclusion

We showed that attack–defense terms and binary zero-sum two-agent extensive-
form games have equivalent expressive power when considering satisfiability, in
the sense that they can be translated to each other while preserving their out-
come. The translations preserve internal structure, in the sense that there exist
injections between subterms in the game and subterms in the ADTerm such that
if an agent wins in the subterm of the game, the corresponding subterm in the
ADTerm is satisfiable for this agent, and vice versa. Therefore, attack–defense
trees with a satisfiability attribute and binary zero-sum two-agent extensive-form
games can be seen as two different representations of the same concept. Both rep-
resentations have their own advantages. On the one hand, attack–defense trees are
more intuitive, because conjunctions and refinements can be explicitly modeled.
On the other hand, the game theory representation profits from the well-studied
theoretical properties of games.

We saw that two notions in the domain of ADTerms have no direct correspondence
to notions in the world of games: conjunctive nodes and refinements. Conjunc-
tive nodes for one agent were translated to disjunctive nodes for the other agent.
This also shows that, when considering the satisfiability attribute, the class of
conjunction-free ADTerms has equal expressive power to the full class of ADTerms
(note that the translation from ADTerms to games and vice versa are not each
other’s inverse, i.e., [[G]AD]G 6= G and [[t]G]AD 6= t). Refinements were translated
by adding extra dummy moves in between refining and refined nodes.

It is left for future work to translate attack–defense trees accompanied with more
sophisticated attributes. An example of these are non-zero-sum games, where (1, 1)
can be interpreted as an outcome where both the attacker and the defender profit

8.5 Conclusion 143

(for example, if the attacker pays the defender to achieve his goal), and (0, 0) as an
outcome where both parties are damaged (when the attacker fails in his goal, but
his efforts damage the defender in some way). Also the binary requirement can be
lifted, so that the outcome of an agent represents for instance the cost or gain of
his actions. Furthermore, it would be interesting to look for a correspondence of
incomplete and imperfect information in attack–defense trees.

144 Chapter 8 Relating Attack-Defense Trees and Games

7→

Lo

NLp(0, 1) NLp(1, 0)

7→

Lp

NLo(1, 0) NLo(0, 1)

(10.2a) (10.2b)

∨p

ψ1 ψ2 · · · ψn

7→ NLo

NLp

[ψ1]G [ψ2]G [ψn]G

(10.2c)

∨o

ψ1 ψ2 · · · ψn

7→ NLp

NLo

[ψ1]G [ψ2]G [ψn]G

(10.2d)

∧p

ψ1 ψ2 · · · ψn

7→ NLo

NLp

[ψ1]G

NLp

[ψ2]G

· · · NLp

[ψn]G

(10.2e)

∧o

ψ1 ψ2 · · · ψn

7→ NLp

NLo

[ψ1]G

NLo

[ψ2]G

· · · NLo

[ψn]G

(10.2f)

cp

ψ1 ψ2

7→ NLo

NLp

[ψ1]G

[ψ2]G

co

ψ1 ψ2

7→ NLp

NLo

[ψ1]G

[ψ2]G

(10.2g) (10.2g)

Figure 8.4: Translation of an ADTerm to a game by means of function [·]G.

8.5 Conclusion 145

A = NLo

NLp

B = NLo

NLp

D = NLo

NLp

Lo(1, 0) Lo(0, 1)

NLp

E = NLo

NLp

Lo(1, 0) Lo(0, 1)

C = NLp

NLo

F = NLp

NLo

Lp(0, 1) Lp(1, 0)

Figure 8.5: The result of the translation of the ADTerm from Figure 8.1a to a
game.

9

Conclusion and Future Work

9.1 Conclusion

We restate the main research question of this thesis.

Research question: How can game theory and logic help us to model the inter-
action between an attacker and a defender?

To answer this question, we have divided the question in three subquestions. We
first answer each of these subquestions individually.

Subquestion 1. How can game theory and logic help us to model the interaction
between an attacker and a defender in security protocols?

We considered four aspects of this subquestion. First, we unified the Cremers–
Mauw protocol semantics with concurrent game structures. This allowed us to
define security properties on Cremers–Mauw protocol specifications in Alternating-
time Temporal Logic.

Second, we studied imperfect information of participants in security protocols. This
resulted in the discovery of two limitations of the protocol verification framework of
Kremer and Raskin [KR03]. The first limitation has to do with the fact that perfect
information is implicitly assumed in their framework. The second limitation is the
fact that the properties of fairness and effectiveness cannot be combined easily.
We proposed a solution for both limitations individually. Moreover, we established
a hierarchy of various definitions of fairness, and indicated the consequences for
existing work. To investigate whether it is possible to overcome both limitations
at the same time, we compared the expressive power of ATL∗ and the simple
fragment of Strategy Logic. We showed that on turn-based game structure, the
unnested simple one-alternating fragment of Strategy Logic without ©-operator
is at least as expressive as ATL∗. We did so by providing a translation from the
former fragment into ATL∗. On concurrent game structures, however, we showed
that the simple fragment of Strategy Logic is in fact more expressive than ATL∗.
This is also the case on imperfect-information game structures, even when they are
turn-based. These results imply that ATL∗ is not expressive enough to overcome
both limitations at the same time.

Third, we proposed a formal definition of the security property of non-repudiation,
and we studied the knowledge assumptions that agents need to have about the
behavior of the other agents. When these assumption are not satisfied, a new class
of attacks arises, which we called virtual multi-protocol attacks. In addition, we
introduced an additional type of non-repudiation, which we called non-repudiation
of intention.

147

148 Chapter 9 Conclusion and Future Work

Forth, we proposed a methodological framework for analyzing interaction protocols
that takes into account the incentives of agents. The framework allows for a more
fine-grained analysis of such protocols. We formally defined correctness of a proto-
col given a notion of rationality, and possibly given the utilities of the agents and
a set of agents that supports the objective of the protocol. Finally, we described
the security level of a protocol as the minimal sets of participants supporting the
objective of the protocol that are necessary to achieve this objective.

All aspects that were studied lead to new insights related to security protocols and
their verification. We conclude therefore that logic and game theory are fruitful
methodologies for the study of security protocols.

Subquestion 2. How can game theory and logic help us to model the interaction
between an attacker and a defender in farsighted games?

We proposed a new solution concept, which we called farsighted pre-equilibrium.
It is based on the idea that some locally rational deviations in a strategic-form
game, which can be seen as a player ‘attacking’ the stable situation, may not be
profitable anymore if one takes into account the possibility of further ‘defenses’
by the other players. We proved that positional strategies are sufficient to define
the concept, studied its computational complexity, and showed that pre-equilibria
correspond to subgame-perfect Nash equilibria in a meta-game obtained by using
the original payoff matrix as arena and the deviations as moves.

Subquestion 3. How can game theory and logic help us to model the interaction
between an attacker and a defender in the field of attack modeling?

We studied attack-defense trees, and made the connection between attack-defense
trees and game theory explicit. To be more precise, we showed that attack-defense
trees and binary zero-sum two-player extensive form games have equivalent expres-
sive power when considering satisfiability, in the sense that it is possible to convert
ADTerms to these games (and vice-versa) while preserving their outcome and their
internal structure.

We conclude that in all three studied areas, the research conducted has shown that
logic and game theory can lead to new insights in security. In all three areas, it
turned out that we should not only look into attacks carried out by the attacker,
but also consider the possibility for the defender to prevent the attacker. In fair-
exchange protocols, an attacker might be able to get an item from the other player,
while the other player does not yet have the item of the attacker. This is not a
problem, however, as long as the other player has the ability to react and get the
defender’s item. In farsighted games, an agent might try to deviate from a strategy
profile. However, this could be seen as an unsuccessful ‘attack’ when other agents
can follow up with deviations that make the initial deviator be worse off. In attack
modeling, only modeling the attacks is not sufficient either. In general, it turns
out that we can only get a complete view of the vulnerabilities of a system by not
only looking at the possible attacks, but also at possible countermeasures.

9.2 Future Work 149

9.2 Future Work

We expect that our methodology can also be extended to investigate other as-
pects of security protocols. A first possible extension is to investigate applications
of different kinds of transition systems in security. Transition systems, of which
concurrent game structures are an extension, are often used as underlying model
for verification. The application of imperfect-information models, which are one of
these extensions, has been analyzed in this thesis. Another way to extend transition
systems is to make use of probabilistic models. Current work in security focuses
on fully guaranteeing security. However, in certain circumstances, a probability
of security might be good enough, especially when the measures that guarantee
security are costly. It might be sufficient that a system is protected almost surely,
i.e., with probability one, instead of surely (see e.g. [BCW+09]), or even with a
lower probability. It would be interesting to use such models for the verification of
security properties. Probabilistic models that could be used include QAPI [Sch12]
and pATL∗ [CL07]. Another recent extension of transition systems are models that
explicitly refer to time. An example of such a model is Timed Alternating-time
Temporal Logic, which is interpreted in Durational Concurrent Game Structures
[HP06, LMO06]. It would also be interesting to see whether such models have a
purpose in security.

This thesis has pointed out a number of theoretical problems, such as lack of
information to play the right strategy (Chapter 3), and virtual multi-protocol
attacks (Chapter 5). We looked at hypothetical protocols in which these problems
occur. However, we did not find any real-life protocols that are vulnerable to such
problems. Future research could focus on how these theoretical problems could be
exploited in real life.

To enable such research, it would be helpful to be able to do automatic verification
of security properties in imperfect-information models. There are currently some
obstacles that prevent this. First, it is known that ATL∗ model-checking in mod-
els with imperfect information and perfect recall (i.e., memory-based strategies)
is undecidable [DT11]. Even with imperfect recall, the model checking problem is
in PSPACE. Due to these facts, few tools are available for imperfect-information
model checking. To do so, Alpaga [BCW+09], which is a tool for solving parity
games with imperfect information, seems a good start. However, at its current
state, Alpaga is not suitable for the verification of fair-exchange protocols, as Al-
paga requires observable objectives, while objectives in fair-exchange protocols are
observable.

Another way to extend the results of this thesis is to consider other security prop-
erties. In this thesis, we focused on the security property of non-repudiation. We
expect that our methodology can be extended to other security properties as well.

A first logical choice would be abuse-freeness [GM99, KST10]. A protocol is abuse-
free if no signer S is able to prove to an external observer that S has the power
to choose between successfully concluding the protocol and aborting the protocol.
This property is interesting because it cannot be formulated as a property that
should hold in all paths, and thus requires explicit reasoning about strategies to
define it.

150 Chapter 9 Conclusion and Future Work

Furthermore, it would be interesting to define accountability [KTV10, KR10] in a
way similar to non-repudiation. Accountability is typically modeled as two proper-
ties: first if an agent has evidence of an event, then the event has happened; second,
if an event happens, then the agent will have evidence of this event. Superficially,
these properties look similar to the reachability and soundness of non-repudiation,
respectively (Chapter 5).

In Chapter 5, we have seen that authentication can be seen as a special case of
non-repudiation. It would be also interesting to investigate whether there exist
non-repudiation-like properties that correspond to other forms of authentication,
such as injective agreement [DBL97].

Furthermore, there are some technical issues left to analyze. In this thesis, as well
as in Cremers–Mauw protocol specifications, the attacker in a security protocol is
implicit, as it is modeled by the injection, blocking and deleting of messages in
the network. Alternatively, it is possible to model the attacker either as an agent
on its own that is not restricted by any protocol, or by means of a separately
crafted protocol (as is the case in multi-protocol attacks). It would be interesting
to formally investigate whether these three ways of modeling the attacker yield
equally strong attackers.

Finally, it would be interesting to see if it is possible to do mechanism design by
manipulating available information of protocol participants. Mechanism design
is closely related to game theory. While game theory predicts the behavior of
agents when given a game as input, mechanism design aims to design a game
with the purpose of making agents display desired behavior. Mechanism design is
typically done by altering incentives of agents. However, it might also be possible
to influence the behavior of agents by manipulating their initial knowledge. This
leads to the question whether we can distribute information among agents in a
security protocol in such a way as to satisfy the security property.

Bibliography

[AB06] Eugene Asarin and Patricia Bouyer, editors. Formal Modeling and
Analysis of Timed Systems, 4th International Conference, FOR-
MATS 2006, Paris, France, September 25-27, 2006, Proceedings, vol-
ume 4202 of Lecture Notes in Computer Science. Springer, 2006.

[ACH11] Gilad Asharov, Ran Canetti, and Carmit Hazay. Towards a game
theoretic view of secure computation. In Kenneth G. Paterson, editor,
EUROCRYPT, volume 6632 of Lecture Notes in Computer Science,
pages 426–445. Springer, 2011.

[AE11] Alfin Abraham and Vinodh Ewards. An optimistic fair RSA based
protocol for e-commerce. In International Conference on VLSI, Com-
munications and Instrumentation, pages 16–19, 2011.

[ÅGJ07] Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga.
Alternating-time temporal logics with irrevocable strategies. In Dov
Samet, editor, TARK, pages 15–24, 2007.

[AHK02] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman.
Alternating-time temporal logic. J. ACM, 49(5):672–713, 2002.

[AHM+98] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz
Qadeer, Sriram K. Rajamani, and Serdar Tasiran. Mocha: Mod-
ularity in model checking. In Alan J. Hu and Moshe Y. Vardi, edi-
tors, CAV, volume 1427 of Lecture Notes in Computer Science, pages
521–525. Springer, 1998.

[Aiz08] Mihhail Aizatulin. A timely and balanced optimistic contract-
signing protocol. Master’s thesis, Institut für Informatik, Christian-
Albrechts-Universität zu Kiel, 2008.

[AL11] Gilad Asharov and Yehuda Lindell. Utility dependence in correct and
fair rational secret sharing. J. Cryptology, 24(1):157–202, 2011.

[Ame] Amenaza. SecurITree. http://www.amenaza.com/.

[AMNO07] Ross Anderson, Tyler Moore, Shishir Nagaraja, and Andy Ozment.
Incentives and information security. In Noam Nisan, Tim Roughgar-
den, Eva Tardos, and Vijay V. Vazirani, editors, Algorithmic Game
Theory, pages 633–649. Cambridge University Press, New York, NY,
USA, 2007.

151

http://www.amenaza.com/

152 Bibliography

[Aso98] N Asokan. Fairness in Electronic Commerce. PhD thesis, University
of Waterloo, may 1998.

[ASW98] N. Asokan, Victor Shoup, and Michael Waidner. Asynchronous pro-
tocols for optimistic fair exchange. In IEEE Symposium on Security
and Privacy, pages 86–99. IEEE Computer Society, 1998.

[ASW09] Mihhail Aizatulin, Henning Schnoor, and Thomas Wilke. Computa-
tionally sound analysis of a probabilistic contract signing protocol.
In Backes and Ning [BN09], pages 571–586.

[BBP94] Jan A. Bergstra, Inge Bethke, and Alban Ponse. Process algebra
with iteration and nesting. Comput. J., 37(4):243–258, 1994.

[BCW+09] Dietmar Berwanger, Krishnendu Chatterjee, Martin De Wulf, Lau-
rent Doyen, and Thomas A. Henzinger. Alpaga: A tool for solving
parity games with imperfect information. In Stefan Kowalewski and
Anna Philippou, editors, TACAS, volume 5505 of Lecture Notes in
Computer Science, pages 58–61. Springer, 2009.

[BDP06] Stefano Bistarelli, Marco Dall’Aglio, and Pamela Peretti. Strategic
games on defense trees. In Theodosis Dimitrakos, Fabio Martinelli,
Peter Y. A. Ryan, and Steve A. Schneider, editors, Formal Aspects
in Security and Trust, volume 4691 of Lecture Notes in Computer
Science, pages 1–15. Springer, 2006.

[BHC04] Levente Buttyán, Jean-Pierre Hubaux, and Srdjan Capkun. A for-
mal model of rational exchange and its application to the analysis of
syverson’s protocol. Journal of Computer Security, 12(3-4):551–587,
2004.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[BN09] Michael Backes and Peng Ning, editors. Computer Security - ES-
ORICS 2009, 14th European Symposium on Research in Computer
Security, Saint-Malo, France, September 21-23, 2009. Proceedings,
volume 5789 of Lecture Notes in Computer Science. Springer, 2009.

[BOGMR90] Michael Ben-Or, Oded Goldreich, Silvio Micali, and Ronald L.
Rivest. A fair protocol for signing contracts. IEEE Transactions
on Information Theory, 36(1):40–46, 1990.

[BP01] Giampaolo Bella and Lawrence C. Paulson. A proof of non-
repudiation. In Bruce Christianson, Bruno Crispo, James A. Mal-
colm, and Michael Roe, editors, Security Protocols Workshop, volume
2467 of Lecture Notes in Computer Science, pages 119–125. Springer,
2001.

[BR96] Mihir Bellare and Phillip Rogaway. The exact security of digital
signatures - how to sign with RSA and rabin. In Ueli M. Maurer,
editor, EUROCRYPT, volume 1070 of Lecture Notes in Computer
Science, pages 399–416. Springer, 1996.

Bibliography 153

[Bra87] Michael E. Bratman. Intention, Plans, and Practical Reason. Har-
vard University Press, November 1987.

[BT94] Josh Cohen Benaloh and Dwight Tuinstra. Receipt-free secret-ballot
elections (extended abstract). In Frank Thomson Leighton and
Michael T. Goodrich, editors, STOC, pages 544–553. ACM, 1994.

[CD06] Jan Cederquist and Muhammad Torabi Dashti. An intruder model
for verifying liveness in security protocols. In Marianne Winslett,
Andrew D. Gordon, and David Sands, editors, FMSE, pages 23–32.
ACM, 2006.

[CHJ06] Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzin-
ski. Games with secure equilibria. Theor. Comput. Sci., 365(1-2):67–
82, 2006.

[CHP10] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman.
Strategy logic. Inf. Comput., 208(6):677–693, 2010.

[Chw94] Michael S. Chwe. Farsighted coalitional stability. Journal of Eco-
nomic Theory, 63:299–325, 1994.

[CKS01] Rohit Chadha, Max I. Kanovich, and Andre Scedrov. Inductive
methods and contract-signing protocols. In Michael K. Reiter and
Pierangela Samarati, editors, ACM Conference on Computer and
Communications Security, pages 176–185. ACM, 2001.

[CKS06] Rohit Chadha, Steve Kremer, and Andre Scedrov. Formal analysis
of multiparty contract signing. J. Autom. Reasoning, 36(1-2):39–83,
2006.

[CL07] Taolue Chen and Jian Lu. Probabilistic alternating-time temporal
logic and model checking algorithm. In J. Lei, editor, FSKD (2),
pages 35–39. IEEE Computer Society, 2007.

[CM03] Cas J. F. Cremers and Sjouke Mauw. Operational semantics of se-
curity protocols. In Stefan Leue and Tarja Systä, editors, Scenarios:
Models, Transformations and Tools, volume 3466 of Lecture Notes in
Computer Science, pages 66–89. Springer, 2003.

[CM12] Cas J.F. Cremers and Sjouke Mauw. Operational Semantics and
Verification of Security Protocols. Information Security and Cryp-
tography. Springer, 2012.

[CMdV06] Cas J. F. Cremers, Sjouke Mauw, and Erik P. de Vink. Injective
synchronisation: An extension of the authentication hierarchy. Theor.
Comput. Sci., 367(1-2):139–161, 2006.

[CMSS05] Rohit Chadha, John C. Mitchell, Andre Scedrov, and Vitaly
Shmatikov. Contract signing, optimism, and advantage. J. Log. Al-
gebr. Program., 64(2):189–218, 2005.

154 Bibliography

[CR10] Krishnendu Chatterjee and Vishwanath Raman. Assume-guarantee
synthesis for digital contract signing. CoRR, abs/1004.2697, 2010.

[Cre06] Cas J. F. Cremers. Feasibility of multi-protocol attacks. In ARES,
pages 287–294. IEEE Computer Society, 2006.

[CVE] CVE-2012-6578. http://cve.mitre.org/cgi-bin/cvename.cgi?

name=CVE-2012-6578.

[Dav01] Don Davis. Defective sign & encrypt in S/MIME, PKCS#7, MOSS,
PEM, PGP, and XML. In Yoonho Park, editor, USENIX Annual
Technical Conference, General Track, pages 65–78. USENIX, 2001.

[DBL97] 10th Computer Security Foundations Workshop (CSFW ’97), June
10-12, 1997, Rockport, Massachusetts, USA. IEEE Computer Soci-
ety, 1997.

[DJ10] Mehdi Dastani and Wojciech Jamroga. Reasoning about strategies
of multi-agent programs. In van der Hoek et al. [vdHKL+10], pages
997–1004.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-
resistance and receipt-freeness in electronic voting. In CSFW, pages
28–42. IEEE Computer Society, 2006.

[DT11] Catalin Dima and Ferucio Laurentiu Tiplea. Model-checking ATL
under imperfect information and perfect recall semantics is undecid-
able. CoRR, abs/1102.4225, 2011.

[Dun95] Phan Minh Dung. On the acceptability of arguments and its fun-
damental role in nonmonotonic reasoning, logic programming and
n-person games. Artif. Intell., 77(2):321–358, 1995.

[DX03] Effrosyni Diamantoudi and Licun Xue. Farsighted stability in hedonic
games. Social Choice and Welfare, 21(1):39–61, 2003.

[EDRM06] Kenneth S. Edge, George C. Dalton, II, Richard A. Raines, and
Robert F. Mills. Using attack and protection trees to analyze threats
and defenses to homeland security. In Proceedings of the 2006 IEEE
conference on Military communications, MILCOM’06, pages 953–
959, Piscataway, NJ, USA, 2006. IEEE Press.

[EH85] E. Allen Emerson and Joseph Y. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time. Journal of
Computer and System Sciences, 30(1):1–24, February 1985.

[ES03] Paul D. Ezhilchelvan and Santosh K. Shrivastava. Systematic devel-
opment of a family of fair exchange protocols. In Sabrina De Capitani
di Vimercati, Indrakshi Ray, and Indrajit Ray, editors, DBSec, pages
243–258. Kluwer, 2003.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6578
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-6578

Bibliography 155

[EY80] Shimon Even and Yacov Yacobi. Relations among public key signa-
ture systems. Technical Report 175, Technion, Haifa, Israel, March
1980.

[FHMV95] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Reasoning about Knowledge. MIT Press, 1995.

[Fok96] Wan Fokkink. On the completeness of the equations for the Kleene
star in bisimulation. In Martin Wirsing and Maurice Nivat, editors,
AMAST, volume 1101 of Lecture Notes in Computer Science, pages
180–194. Springer, 1996.

[Fok97] Wan Fokkink. Axiomatizations for the perpetual loop in process alge-
bra. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-
Spaccamela, editors, ICALP, volume 1256 of Lecture Notes in Com-
puter Science, pages 571–581. Springer, 1997.

[FS10] Bernd Finkbeiner and Sven Schewe. Coordination logic. In Anuj
Dawar and Helmut Veith, editors, CSL, volume 6247 of Lecture Notes
in Computer Science, pages 305–319. Springer, 2010.

[Gar95] Simson L. Garfinkel. PGP - pretty good privacy: encryption for ev-
eryone (2. ed.). O’Reilly, 1995.

[GJM99] Juan A. Garay, Markus Jakobsson, and Philip D. MacKenzie. Abuse-
free optimistic contract signing. In Michael J. Wiener, editor,
CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
449–466. Springer, 1999.

[GK12] Adam Groce and Jonathan Katz. Fair computation with rational
players. In David Pointcheval and Thomas Johansson, editors, EU-
ROCRYPT, volume 7237 of Lecture Notes in Computer Science,
pages 81–98. Springer, 2012.

[GLL07] Hojjat Ghaderi, Hector J. Levesque, and Yves Lespérance. A logical
theory of coordination and joint ability. In AAAI, pages 421–426.
AAAI Press, 2007.

[GM99] Juan A. Garay and Philip D. MacKenzie. Abuse-free multi-party
contract signing. In Prasad Jayanti, editor, DISC, volume 1693 of
Lecture Notes in Computer Science, pages 151–165. Springer, 1999.

[Gre90] Joseph Greenberg. The theory of social situations: an alternative
game-theoretic approach. Cambridge University Press, 1990.

[GT00] Joshua D. Guttman and F. Javier Thayer. Protocol independence
through disjoint encryption. In CSFW, pages 24–34, 2000.

[Gua13] The Guardian. The NSA is turning the internet into a total surveil-
lance system. http://www.theguardian.com/commentisfree/

2013/aug/11/nsa-internet-surveillance-email, 2013. Ac-
cessed: 2013-09-01.

http://www.theguardian.com/commentisfree/2013/aug/11/nsa-internet-surveillance-email
http://www.theguardian.com/commentisfree/2013/aug/11/nsa-internet-surveillance-email

156 Bibliography

[Har74] John C. Harsanyi. Interpretation of stable sets and a proposed alter-
native definition. Management Science, 20:1472–1495, 1974.

[HLS03] James Heather, Gavin Lowe, and Steve Schneider. How to prevent
type flaw attacks on security protocols. Journal of Computer Secu-
rity, 11(2):217–244, 2003.

[HP06] Thomas A. Henzinger and Vinayak S. Prabhu. Timed alternating-
time temporal logic. In Asarin and Bouyer [AB06], pages 1–17.

[HR10] Joseph Y. Halpern and Nan Rong. Cooperative equilibrium. In
van der Hoek et al. [vdHKL+10], pages 1465–1466.

[Iso] Isograph. AttackTree+.
http://www.isograph-software.com/atpover.htm.

[JB11] Wojciech Jamroga and Nils Bulling. Comparing variants of strategic
ability. In Toby Walsh, editor, IJCAI, pages 252–257. IJCAI/AAAI,
2011.

[JM11] Wojciech Jamroga and Matthijs Melissen. Doubtful deviations and
farsighted play. In Luis Antunes and Helena Sofia Pinto, editors,
Progress in Artificial Intelligence, 15th Portuguese Conference on
Artificial Intelligence, EPIA 2011, Lisbon, Portugal, October 10-13,
2011. Proceedings, volume 7026 of Lecture Notes in Computer Sci-
ence, pages 506–520. Springer, 2011.

[JMM12] Wojciech Jamroga, Sjouke Mauw, and Matthijs Melissen. Fairness in
Non-Repudiation Protocols. In Catherine Meadows and M. Carmen
Fernández Gago, editors, Proceedings of the 7th International Work-
shop on Security and Trust Management, volume 7170 of Lecture
Notes in Computer Science, pages 122–139. Springer, June 2012.

[JMS13] Wojciech Jamroga, Matthijs Melissen, and Henning Schnoor. Incen-
tives and rationality in security of interaction protocols. In PRIMA
2013: Principles and Practice of Multi-Agent Systems. Proceedings,
2013. In print.

[JvdH04] Wojciech Jamroga and Wiebe van der Hoek. Agents that know how
to play. Fundam. Inform., 63(2-3):185–219, 2004.

[JW09] Aivo Jürgenson and Jan Willemson. Serial model for attack tree
computations. In Donghoon Lee and Seokhie Hong, editors, ICISC,
volume 5984 of Lecture Notes in Computer Science, pages 118–128.
Springer, 2009.

[Kal98] B. Kaliski. PKCS #1: RSA encryption version 1.5. RFC 2313 (In-
formational), March 1998. Obsoleted by RFC 2437.

[Kat08] Jonathan Katz. Bridging game theory and cryptography: recent
results and future directions. In Proceedings of the 5th conference on
Theory of cryptography, TCC’08, pages 251–272, Berlin, Heidelberg,
2008. Springer-Verlag.

http://www.isograph-software.com/atpover.htm

Bibliography 157

[KM00] Steve Kremer and Olivier Markowitch. Optimistic non-repudiable
information exchange. In 21th Symp. on Information Theory in the
Benelux, pages 139–146, Wassenaar, The Netherlands, May 2000.

[KMMS10] Barbara Kordy, Sjouke Mauw, Matthijs Melissen, and Patrick
Schweitzer. Attack-defense trees and two-player binary zero-sum
extensive form games are equivalent. In Tansu Alpcan, Levente
Buttyán, and John S. Baras, editors, GameSec, volume 6442 of Lec-
ture Notes in Computer Science, pages 245–256. Springer, 2010.

[KMRS10] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick
Schweitzer. Foundations of attack-defense trees. In Pierpaolo Degano,
Sandro Etalle, and Joshua D. Guttman, editors, Formal Aspects in
Security and Trust, volume 6561 of Lecture Notes in Computer Sci-
ence, pages 80–95. Springer, 2010.

[KR02] Steve Kremer and Jean-François Raskin. Game analysis of abuse-free
contract signing. In CSFW, pages 206–220. IEEE Computer Society,
2002.

[KR03] Steve Kremer and Jean-François Raskin. A game-based verification
of non-repudiation and fair exchange protocols. Journal of Computer
Security, 11(3):399–430, 2003.

[KR10] Simon Kramer and Andrey Rybalchenko. A multi-modal framework
for achieving accountability in multi-agent systems. In Proceedings
of the ESSLLI-affiliated Workshop on Logics in Security, 2010.

[KST10] Ralf Küsters, Henning Schnoor, and Tomasz Truderung. A formal
definition of online abuse-freeness. In Sushil Jajodia and Jianying
Zhou, editors, SecureComm, volume 50 of Lecture Notes of the Insti-
tute for Computer Sciences, Social Informatics and Telecommunica-
tions Engineering, pages 484–497. Springer, 2010.

[KSW97] John Kelsey, Bruce Schneier, and David Wagner. Protocol interac-
tions and the chosen protocol attack. In Bruce Christianson, Bruno
Crispo, T. Mark A. Lomas, and Michael Roe, editors, Security Pro-
tocols Workshop, volume 1361 of Lecture Notes in Computer Science,
pages 91–104. Springer, 1997.

[KTV10] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability:
definition and relationship to verifiability. In Ehab Al-Shaer, Ange-
los D. Keromytis, and Vitaly Shmatikov, editors, ACM Conference
on Computer and Communications Security, pages 526–535. ACM,
2010.

[KV08] Francis Klay and Laurent Vigneron. Automatic methods for analyz-
ing non-repudiation protocols with an active intruder. In Pierpaolo
Degano, Joshua D. Guttman, and Fabio Martinelli, editors, Formal
Aspects in Security and Trust, volume 5491 of Lecture Notes in Com-
puter Science, pages 192–209. Springer, 2008.

158 Bibliography

[LMO06] François Laroussinie, Nicolas Markey, and Ghassan Oreiby. Model-
checking timed ATL for durational concurrent game structures. In
Asarin and Bouyer [AB06], pages 245–259.

[LNJ01] Peng Liu, Peng Ning, and Sushil Jajodia. Avoiding loss of fairness
owing to failures in fair data exchange systems. Decision Support
Systems, 31(3):337–350, 2001.

[Low96] Gavin Lowe. Breaking and fixing the needham-schroeder public-key
protocol using fdr. Software - Concepts and Tools, 17(3):93–102,
1996.

[Low97] Gavin Lowe. A hierarchy of authentication specifications. In Proceed-
ings of the 10th IEEE workshop on Computer Security Foundations,
CSFW ’97, pages 31–, Washington, DC, USA, 1997. IEEE Computer
Society.

[LPZ11] Zhiyuan Liu, Jun Pang, and Chenyi Zhang. Verification of a key chain
based ttp transparent cem protocol. Electr. Notes Theor. Comput.
Sci., 274:51–65, 2011.

[LQR09] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: A
model checker for the verification of multi-agent systems. In Ahmed
Bouajjani and Oded Maler, editors, CAV, volume 5643 of Lecture
Notes in Computer Science, pages 682–688. Springer, 2009.

[Mau04] Ueli M. Maurer. New approaches to digital evidence. Proceedings of
the IEEE, 92(6):933–947, 2004.

[Mic10] Daniele Micciancio, editor. Theory of Cryptography, 7th Theory of
Cryptography Conference, TCC 2010, Zurich, Switzerland, February
9-11, 2010. Proceedings, volume 5978 of Lecture Notes in Computer
Science. Springer, 2010.

[MK00] Olivier Markowitch and Steve Kremer. A multi-party optimistic non-
repudiation protocol. In Dongho Won, editor, ICISC, volume 2015 of
Lecture Notes in Computer Science, pages 109–122. Springer, 2000.

[MMPV11] Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y.
Vardi. Reasoning about strategies: On the model-checking problem.
CoRR, abs/1112.6275, 2011.

[MO05] Sjouke Mauw and Martijn Oostdijk. Foundations of attack trees.
In Dongho Won and Seungjoo Kim, editors, ICISC, volume 3935 of
Lecture Notes in Computer Science, pages 186–198. Springer, 2005.

[MR08] Aybek Mukhamedov and Mark Dermot Ryan. Fair multi-party con-
tract signing using private contract signatures. Inf. Comput., 206(2-
4):272–290, 2008.

[MRD09] Sjouke Mauw, Sasa Radomirovic, and Mohammad Torabi Dashti.
Minimal message complexity of asynchronous multi-party contract
signing. In CSF, pages 13–25. IEEE Computer Society, 2009.

Bibliography 159

[MS06] George J. Mailath and Larry Samuelson. Repeated games and repu-
tations: Long-run relationships. Oxford University Press, 2006.

[Nak07] N. Nakanishi. Purely noncooperative farsighted stable set in an n-
player Prisoners Dilemma. Technical Report 707, Kobe University,
2007.

[NM44] John Von Neumann and Oskar Morgenstern. Theory of Games and
Economic Behavior. Princeton University Press, 1944.

[ODSS04] Ole Kasper Olsen, Ole Martin Dahl, Torkjel Søndrol, and Fredrik
Skarderud. Contract signing using pgp. Technical report, Gjøvik
University College, NISlab, 2004.

[OR94] Martin J. Osborne and Ariel Rubinstein. A course in game theory.
The MIT Press, Cambridge, USA, 1994. electronic edition.

[PE02] PKCS-Editor. PKCS#1 v2.1: RSA cryptography standard. Techni-
cal report, RSA Laboratories, April 2002.

[PG99] Henning Pagnia and Felix C. Gartner. On the impossibility of fair
exchange without a trusted third party. Technical report, Darmstadt
University of Technology, 1999.

[Pra] Best Practical. Request tracker. http://www.bestpractical.com/

rt/. Accessed: 2013-09-11.

[Ram99] Blake Ramsdell. S/MIME version 3 message specification. Internet
RFC 2633, June 1999.

[Ros96] A. William Roscoe. Intensional specifications of security protocols.
In CSFW, pages 28–38. IEEE Computer Society, 1996.

[RSA78] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method
for obtaining digital signatures and public-key cryptosystems. Com-
mun. ACM, 21(2):120–126, 1978.

[RSF+09] Martin Rehák, Eugen Staab, Volker Fusenig, Michal Pechoucek, Mar-
tin Grill, Jan Stiborek, Karel Bartos, and Thomas Engel. Runtime
monitoring and dynamic reconfiguration for intrusion detection sys-
tems. In Engin Kirda, Somesh Jha, and Davide Balzarotti, editors,
RAID, volume 5758 of Lecture Notes in Computer Science, pages
61–80. Springer, 2009.

[SaT] SaToSS. Vulnerability testing. http://satoss.uni.lu/

vulnerability-testing/. Accessed: 2013-09-01.

[Sch98] Steve Schneider. Formal analysis of a non-repudiation protocol. In
CSFW, pages 54–65, 1998.

[Sch99] Bruce Schneier. Attack trees - modeling security threats. Dr. Dobb’s
Journal, December 1999.

http://www.bestpractical.com/rt/
http://www.bestpractical.com/rt/
http://satoss.uni.lu/vulnerability-testing/
http://satoss.uni.lu/vulnerability-testing/

160 Bibliography

[Sch04a] Bruce Schneier. Secrets and lies - digital security in a networked
world: with new information about post-9/11 security. Wiley, 2004.

[Sch04b] Pierre-Yves Schobbens. Alternating-time logic with imperfect recall.
Electr. Notes Theor. Comput. Sci., 85(2):82–93, 2004.

[Sch12] Henning Schnoor. Deciding epistemic and strategic properties of
cryptographic protocols. In Sara Foresti, Moti Yung, and Fabio Mar-
tinelli, editors, ESORICS, volume 7459 of Lecture Notes in Computer
Science, pages 91–108. Springer, 2012.

[SLB09] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems - Algo-
rithmic, Game-Theoretic, and Logical Foundations. Cambridge Uni-
versity Press, 2009.

[SM05] Akihiro Suzuki and Shigeo Muto. Farsighted stability in an n-person
prisoner’s dilemma. Int. J. Game Theory, 33(3):431–445, 2005.

[Syv98] Paul F. Syverson. Weakly secret bit commitment: Applications to
lotteries and fair exchange. In CSFW, pages 2–13, 1998.

[THG99] F. Javier Thayer, Jonathan C. Herzog, and Joshua D. Guttman.
Strand spaces: Proving security protocols correct. Journal of Com-
puter Security, 7(1):191–230, 1999.

[Tim13] Washington Times. In classified cyberwar against
iran, trail of stuxnet leak leads to white house.
http://www.washingtontimes.com/news/2013/aug/18/

trail-of-stuxnet-cyberwar-leak-to-author-leads-to-,
2013. Accessed: 2013-09-01.

[VD11] Ton Frederik Petrus Van Deursen. Security of RFID protocols. PhD
thesis, Université du Luxembourg, Luxembourg, September 2011.

[vdHKL+10] Wiebe van der Hoek, Gal A. Kaminka, Yves Lespérance, Michael
Luck, and Sandip Sen, editors. 9th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2010), Toronto,
Canada, May 10-14, 2010, Volume 1-3. IFAAMAS, 2010.

[vDMRV09] Ton van Deursen, Sjouke Mauw, Sasa Radomirovic, and Pim Vullers.
Secure ownership and ownership transfer in RFID systems. In Backes
and Ning [BN09], pages 637–654.

[WD09] Yanjing Wang and Francien Dechesne. On expressive power and class
invariance. CoRR, abs/0905.4332, 2009.

[Wor13] Luxemburger Wort. 48.670 dossiers médicaux échappent
au contrôle de l’Etat. http://www.wort.lu/fr/view/

4f60e9bae4b02f5ce8fa946d, 2013. Accessed: 2013-09-01.

[ZG96] Jianying Zhou and Dieter Gollmann. Observations on non-
repudiation. In Kwangjo Kim and Tsutomu Matsumoto, editors,
ASIACRYPT, volume 1163 of Lecture Notes in Computer Science,
pages 133–144. Springer, 1996.

http://www.washingtontimes.com/news/2013/aug/18/trail-of-stuxnet-cyberwar-leak-to-author-leads-to-
http://www.washingtontimes.com/news/2013/aug/18/trail-of-stuxnet-cyberwar-leak-to-author-leads-to-
http://www.wort.lu/fr/view/4f60e9bae4b02f5ce8fa946d
http://www.wort.lu/fr/view/4f60e9bae4b02f5ce8fa946d

Bibliography 161

[ZG97a] Jianying Zhou and Dieter Gollmann. An efficient non-repudiation
protocol. In CSFW [DBL97], pages 126–132.

[ZG97b] Jianying Zhou and Dieter Gollmann. Evidence and non-repudiation.
Journal of Network and Computer Applications, 20:267–281, 1997.

[ZG98] Jianying Zhou and Dieter Gollmann. Towards verification of non-
repudiation protocols. In 1998 International Refinement Workshop
and Formal Methods Pacific, pages 370–380. Springer-Verlag, 1998.

[Zho10] Jianying Zhou. Handbook of Financial Cryptography and Security (G.
Rosenberg, ed.), chapter Non-repudiation, pages 82–108. Chapman
and Hall/CRC, 2010.

[ZZPM09] Ying Zhang, Chenyi Zhang, Jun Pang, and Sjouke Mauw. Game-
based verification of multi-party contract signing protocols. In Pier-
paolo Degano and Joshua D. Guttman, editors, Formal Aspects in
Security and Trust, volume 5983 of Lecture Notes in Computer Sci-
ence, pages 186–200. Springer, 2009.

Publications

[EPIA] Wojciech Jamroga and Matthijs Melissen. Doubtful deviations and far-
sighted play. In Luis Antunes and Helena Sofia Pinto, editors, Progress
in Artificial Intelligence, 15th Portuguese Conference on Artificial In-
telligence, EPIA 2011, Lisbon, Portugal, October 10-13, 2011. Pro-
ceedings, volume 7026 of Lecture Notes in Computer Science, pages
506–520. Springer, 2011.

[STM] Wojciech Jamroga, Sjouke Mauw, and Matthijs Melissen. Fairness in
Non-Repudiation Protocols. In Catherine Meadows and M. Carmen
Fernández Gago, editors, Proceedings of the 7th International Work-
shop on Security and Trust Management, volume 7170 of Lecture Notes
in Computer Science, pages 122–139. Springer, June 2012.

[PRIMA] Wojciech Jamroga, Matthijs Melissen, and Henning Schnoor. Incen-
tives and rationality in security of interaction protocols. In PRIMA
2013: Principles and Practice of Multi-Agent Systems. Proceedings,
2013. In print.

[GameSec] Barbara Kordy, Sjouke Mauw, Matthijs Melissen, and Patrick
Schweitzer. Attack-defense trees and two-player binary zero-sum ex-
tensive form games are equivalent. In Tansu Alpcan, Levente Buttyán,
and John S. Baras, editors, GameSec, volume 6442 of Lecture Notes in
Computer Science, pages 245–256. Springer, 2010.

[NSVKI] Matthijs Melissen. A solution to the emptiness problem for Lambek
calculus and some of its extensions. In J H Janssen, A Van Wissen, and
T Goosen, editors, Proceedings of the 2nd NSVKI Student Conference,
Utrecht, June 2008.

[BNAIC] Matthijs Melissen. Lambek-Grishin Calculus Extended to Connectives
of Arbitrary Arity. In Anton Nijholt, Maja Pantic, Mannes Poel, and
Hendri Hondorp, editors, Proceedings of the 20th Belgian-Netherlands
Conference on Artificial Intelligence, Enschede, October 2008.

[MSc] Matthijs Melissen. Lambek-Grishin Calculus Extended to Connectives
of Arbitrary Arity. Master’s thesis, Cognitive Artificial Intelligence,
Universiteit Utrecht, May 2009.

[FG] Matthijs Melissen. The Generative Capacity of the Lambek-Grishin
Calculus: A New Lower Bound. In Philippe de Groote, Markus Egg,
and Laura Kallmeyer, editors, Proceedings of Formal Grammar 2009,
volume 5591 of LNCS, pages 118–132. Springer, 2011.

163

Index of subjects

(normal-form) game frame, 94

a-state, 14
abort request, 107
abuse-freeness, 29, 44, 86, 149
accountability, 85, 149
action, 12, 96, 118
action profile, 12
active role, 17
active run identifier, 21
actor, 21
ADTerm, 130
agent, 3, 12, 94, 96, 118
agent rule, 22
Alice-and-Bob notation, 19
Alternating-time Temporal Logic, 4, 27
alternative composition, 18
at least as expressive, 45
ATL∗, 27
ATL∗ path formula, 27
ATL∗ state formula, 27
attack modeling, 6
attack tree, 7, 129
attack–defense term, 130
attack–defense tree, 129
attacker, 1
authentication, 29

balanced, 99, 107
basic assignment, 130, 132
basic assignment profile, 132
before, 50
between, 50
binary Kleene composition, 18
binary Kleene star, 11
blocking create, 26

certified e-mail, 29
choice points, 91
chosen protocol, 64
claim events, 17

closed under permutation of utilities,
101

collective strategy, 13
commitment, 106–108
common knowledge, 73
composition, 13
composition rule, 22
Computation Tree Logic, 27
computer security, 1
concurrent, 45
concurrent game structure, 11, 12
conditional branching, 18
confidentiality, 29
conjunctive, 129
constant, 15
cooperative equilibrium, 123
coordinate, 90
correct with defenders D, 103
correct with respect to objective γ un-

der solution concept SC, 100
counter, 131
cryptographic primitive, 15
cryptographic signing, 67
CTL∗, 27

defendability, 110
defender, 3
defender of the protocol, 9, 102, 103
derivation rule, 22, 23
deviation closure, 105
deviation game, 117
deviation strategy, 117
deviation strategy for agent i, 113
digital recording, 79
direct dominance, 123
dishonest, 31, 91
disjoint encryption, 71
disjunctive, 129
Dolev-Yao attacker, 25

effective, 37, 91
effective fairness, 39

165

166 Index of subjects

effectiveness, 29, 37
effectivity, 91
efficient, 104
empty protocol, 37
enabled, 26
encryption, 15
enforced fairness, 32
epistemic logic, 4
equally expressive, 46
equilibrium in undominated strategies,

95
evidence generation phase, 64
evidence verification phase, 64
execution, 25
expressive power, 45
extension, 97
extensive-form game, 118
extensive-form game frame, 96

fair exchange, 5, 63
fair-exchange protocol, 29, 39
fairness, 26, 29, 39, 91
fairness for Alice, 31
fairness for Bob, 31
farsighted game, 6
farsighted pre-equilibrium, 111, 113,

126
farsighted pre-equilibrium, 7, 148
(Fi,F−i)-compatible, 120
Fi-compatible, 113
finite extensive-form game, 118
finite prefix, 13
flag, 30, 66
FPE, 111, 113
functionality property, 99

game, 3
game theory, 3
game-theoretic security level, 90, 104
generation of evidence, 64
goal, 49, 89

hashing, 15
history, 118
honest, 31, 91

identify, 90
imperfect-information concurrent game

structure, 35
indirect dominance, 123

indirect dominance in Harsanyi’s sense,
123

indistinguishability relation, 35
indistinguishable, 35
individually, 109
infinite concurrent game structure, 12
infinite suffix, 13
initial knowledge, 19
instantiation of event, 20
intention, 66
intention event, 67
invariant fairness, 33
inverse, 16

joint strategy, 97

labeling function, 12
largest consistent set, 123, 124
legal signing, 67
liveness property, 25
locally rational, 113
logic, 3, 4
loop-free, 120

matching, 22
max-sum, 95
mechanism design, 150
message generation function, 81
more expressive, 46
move function, 12
multi-agent system, 4
multi-protocol attack, 64

Nash equilibrium, 95
Needham-Schroeder Public-key Proto-

col, 2
no-exit iteration, 11, 18
non-deterministic, 91, 108
non-enforced controled fairness, 36
non-enforced fairness, 32
non-executable, 33
non-initially-deviating, 121
non-repudiation, 4, 63
non-repudiation of intention, 67
non-repudiation of origin, 4, 29, 63
non-repudiation of receipt, 5, 29, 63
non-repudiation protocol, 29
nonce, 15
noncooperative farsighted stable set,

123

Index of subjects 167

nontrivial objective, 105
normal-form game, 94
normal-form game frame, 96

objective, 91, 99
opponent, 131
opponent strategy, 119, 121
optimistic, 106
outcome, 96, 134
ownership transfer, 29

pairing, 15
path, 13
path formula, 27
pending recv, 26
perfect cooperative equilibrium, 124
perfect information, 6, 30, 33
positional, 116
positional deviation strategy, 116
positional FPE, 116
pre-commitment, 108
pre-equilibrium, 111
prefix-closed, 118
Prisoner’s Dilemma, 114
proponent, 131
proposition, 12
protocol corresponding to instantiated

event, 26
protocol specification, 18
protocol-restriction model, 74
public key, 15

rational exchange, 110
rationality, 89
reachability of GE, 65
reachability of VE, 65
receipt-freeness, 29
relevant, 49
replacement contract, 107
resilience, 26
resilient, 26, 92
resilient agent, 25
resilient channel, 25
resolve request, 107
restricted, 70
role, 14, 15, 17
role assignment, 20
role event, 17
role specification, 18

role term, 14
roles in a role term, 15
run, 14, 91, 96
run identifier, 19, 20
run term, 19

scheduler, 21
secret key, 15
secure communication channel, 31
security property, 1, 99
security protocol, 6
security vulnerability, 1
sequential composition, 18
shared key, 15
signing, 67
solution concept, 6, 89, 94
soundness of GE, 65
soundness of VE, 65
SPNE, 122
stable set, 127
state, 12
strategic fairness, 32
strategic knot, 106
strategic operator, 27
strategic timeliness, 29, 41
strategy, 3, 13, 27, 91, 130, 134
strategy profile, 4, 96, 134
strictly stable set, 123
strong fairness, 32
strongly Pareto-dominated, 103
subgame-perfect Nash equilibrium, 122
supporting an objective, 103

terminal, 96, 118
trace, 25
transition function, 12
trust, 64
trusted third party, 25, 91, 92
turn-based game structure, 14
two-agent binary zero-sum extensive-

form game, 133

undominated, 95
unfair situation, 36
uniform, 35
unnested ©-free, 48
utility, 4
utility function, 94
utility profile, 94

168 Index of subjects

valid, 101

variable, 15

variable assignment, 20

variables in a role term, 15

verification of evidence, 65

viability, 29, 37

virtual multi-protocol attack, 64, 77

von Neumann-Morgenstern stable set,
123

weak fairness, 33
weak until, 48
weak-until positive normal form, 48
weakly Pareto, 104
winning secure equilibrium, 59

Curriculum Vitae

2013 – . . . Research fellow, University of Birmingham, United Kingdom.
2009 – 2013 Ph.D. student in Computer Science, University of Luxem-

bourg, Luxembourg.
2007 – 2009 Master of Science in Cognitive Artificial Intelligence, Utrecht

University, The Netherlands.
2004 – 2007 Bachelor of Science in Cognitive Artificial Intelligence, Utrecht

University, The Netherlands.
1997 – 2004 Secondary education, Stedelijk Gymnasium Breda, The

Netherlands.

Born on June 20, 1985, Breda, The Netherlands.

169

	Introduction
	Formal Modeling in Security
	Game Theory and Logic in Security
	Non-repudiation
	Research Question
	Methodology
	Thesis Overview

	Modeling Security Protocols as Games
	Introduction
	Concurrent Game Structures
	Modeling Security Protocols
	Role Terms
	Roles and Protocol Specifications
	Runs
	Protocols as Concurrent Game Structures
	Resilience

	Alternating-time Temporal Logic
	Conclusion

	Imperfect Information in Fair Non-repudiation Protocols
	Introduction
	Fair-exchange Protocols
	Existing Formalizations
	Fair Exchange and Imperfect Information
	Effective Fairness
	Hierarchy of Fairness Requirements
	Related Work
	Conclusion

	The Expressive Power of ATL*
	Introduction
	Preliminaries
	Expressive Power
	The Simple One-alternating Fragment of Strategy Logic
	Strategy Logic for Imperfect Information

	Expressive Power in Turn-based Models
	The Unnested -free Fragment of SSL
	Weak-until Positive Normal Form
	Translation
	Correctness of the Translation

	Expressive Power in Concurrent Game Structures
	ATL*-bisimulation for Perfect Information
	Results

	Expressive Power in Imperfect-information Models
	Application to Security Properties
	Conclusion

	Non-repudiation and Virtual Multi-Protocol Attacks
	Introduction
	Non-repudiation
	Non-repudiation of Intention
	Assumptions of Non-repudiation
	Assumptions about Restrictions on Agents
	Virtual Multi-Protocol Attacks

	Case Studies
	Combining Signing and Encryption in PKCS#1v1.5
	RSASSA-PSS and Intention
	Fair Exchange

	Related Work
	Conclusion

	Incentives in Security Protocols
	Introduction
	Security Protocols
	Rationality and Coordination in Security Protocols
	Game-theoretic Models of Interaction
	Protocols as Games
	Security Protocols as Game Trees
	Game Frames for Protocols
	Adding Incentives to Protocols
	Modeling Security Objectives

	Game-Based Security Analysis
	Incentive-Based Correctness
	Unknown Incentives
	Defendability of Protocols

	Characterizations of Defendability
	Examples
	The ASW Protocol
	A Protocol with a Non-deterministic TTP

	Related Work
	Conclusion

	Farsighted Pre-equilibria
	Introduction
	Farsighted Pre-Equilibria
	Deviation Strategies and Farsighted Stability
	n-person Prisoner's Dilemma

	Characterizing and Computing FPE
	Deviations as a Game
	Deviation Games
	Correspondence to FPE

	Comparing Farsighted Solution Concepts
	Related Work
	FPE vs. Other Farsighted Concepts

	Conclusion

	Relating Attackâ•ﬁ-Defense Trees and Games
	Introduction
	Preliminaries
	Attack–Defense Trees
	Two-agent Binary Zero-sum Extensive-Form Games

	From Games to ADTerms
	From ADTerms to Games
	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Publications
	Index of subjects
	Curriculum Vitae

