
Attack–Defense Trees

Patrick Schweitzer

Supervisor:

Prof. Dr. Sjouke Mauw (University of Luxembourg)

Daily advisor:

Dr. Barbara Kordy (University of Luxembourg)

© 2013 Patrick Schweitzer

The author was employed at the University of Luxembourg and received support
from the Fonds National de la Recherche, Luxembourg (PHD-09-167) in the project
“Security Analysis through Attack–Defense Trees”.

PhD-FSTC-2013-28
The Faculty of Sciences, Technology and Communication

DISSERTATION
Presented on 8 November 2013 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU
LUXEMBOURG

EN

INFORMATIQUE

by

Patrick SCHWEITZER
Born on 25 January 1980 in Saarbrücken–Dudweiler (Germany)

ATTACK–DEFENSE TREES

Dissertation defense committee

Dr. Barbara Kordy, vice-chairman
Université du Luxembourg

Dr. Sjouke Mauw, dissertation supervisor
Professor, Université du Luxembourg

Dr. Christian W. Probst, member
Assistant Professor, The Technical University of Denmark

Dr. Yves Le Traon, chairman
Professor, Université du Luxembourg

Dr. Jan Willemson, member
Cybernetica, Estonia

Summary

The advent of the information age has notably amplified the importance of security.
Unfortunately security considerations still widely occur as an afterthought. For
many companies, security is not a requirement to conduct business and is therefore
readily neglected. However the lack of security may obstruct, impede and even ruin
an otherwise flourishing enterprise. Only when internal computer networks shut
down, web portals are inaccessible, mail servers are attacked, or similar incidents
affect the day to day business of an enterprise, security enters into the field of
vision of companies. As such, security by design is only slowly becoming accepted
practice.

Amongst security researchers, there is no dispute that a reasonable approach to-
wards uninterrupted business activities includes security measures and controls
from the beginning. To support these efforts, many security models have been
developed. Graphical security models are a type of security model that help illus-
trate and guide the consideration of security throughout the lifecycle of a product,
system or company. Their visual properties are especially well-suited to elucidate
security requirements and corresponding security measures.

During the last four years, we have developed a new graphical security model called
attack–defense trees. The new framework, presented in this thesis, generalizes the
well-known attack trees model. Attack–defense trees formally extend attack trees
and enhance them with defenses.

To be able to deploy attack–defense trees as a security support tool, we have
equipped them with three different syntaxes: A visually appealing, graph-based
syntax that is dedicated to representing security problems, an algebraic, term-based
syntax that simplifies correct, formal and quantitative analysis of security scenarios
and a textual syntax that is a compromise between succinct, visual representation
and easy, computerized input.

We have also equipped attack–defense trees with a variety of semantics. This
became necessary, since different applications require different interpretations of
attack–defense trees. Besides the very specific and problem oriented propositional,
De Morgan and multiset semantics, we have introduced equational semantics. The
latter semantics is, in fact, an alternative, unified presentation of semantics based
on equational theory. We have expressed the propositional and the multiset seman-
tics in terms of the equational semantics. This facilitates algorithmic treatment
since the two different semantics have a unified formal foundation.

To be able to perform quantitative security analysis, we have introduced the notion
of an attribute for attack–defense trees. To guarantee that the evaluation of an
attribute on two or more semantically equal attack–defense trees results in the same

I

II Summary

value, we have introduced the notion of a compatibility condition between semantics
and attributes. We have also provided usability guidelines for attributes. These
guidelines help a user to specify security-relevant questions that can unambiguously
be answered using attributes.

We have performed several case studies that allowed us to test and improve the
attack–defense tree methodology. We have provided detailed explanations for our
design choices during the case studies as well as extensive applicability guidelines
that serve a prospective user of the attack–defense tree methodology as a user
manual.

We have demonstrated the usefulness of the formal foundations of attack–defense
trees by relating attack–defense terms to other scientific research disciplines. Con-
cretely, we have shown that attack–defense trees in the propositional semantics
are computationally as complex as propositional attack trees. Moreover, we have
described how to merge Bayesian networks with attack–defense trees and have il-
lustrated that attack–defense trees in the propositional semantics are equivalent
to a specific class of games frequently occurring in game theory.

Concluding the thesis, we have related the attack–defense tree methodology to
other graphical security models in an extensive literature overview over similar
methodologies.

Acknowledgments

Writing a thesis is, like life, a never-ending learning process. Moments of joy are
equally part of the experience as failures and setbacks. Besides having to pull myself
(and the horse I was sitting on) out of the self-induced chaos by my own hair, I
was frequently helped and supported by numerous people all of whom I wish to
thank.

First, I want to mention my daily advisor, Barbara Kordy. I cherish the unwaivering
endurance that she showed throughout the years. Her devotion to teach me the
precise and intelligible writing is admirable.

Next, I wish to extend my gratitude to Sjouke Mauw. It was a great pleasure to be
part of his research group. His enthusiasm for and capability to inspire individuals
to perform theoretical research continues to fascinate me. I appreciate the many
valiant conversational attempts to enlighten me in aspects of Dutch humor, which
unfortunately still remain a mystery to me.

I would also like to thank the members of my defense committee, Christian W.
Probst, Yves Le Traon and Jan Willemson. I am grateful for the time and effort
they spent on improving the quality of my research results. Furthermore, I would
like to thank Björn Ottersten for valuable advice given as a member of my thesis
supervisory committee.

Many members of SaToSS as well as SnT made life in Luxembourg extremely
enjoyable. In particular, I would like to acknowledge Xihui Chen, Ton van Deursen,
Naipeng Dong, Hugo Jonker, Piotr Kordy, Jean Lancrenon, Matthijs Melissen, Tim
Muller, Marc Pouly, Saša Radomirović and Miguel Urquidi for scientific discussions,
memorable Xmas parties and extended aquatic sessions.

I am honored to have such great friends as André Berthe, Johannes Hess and Se-
bastian Reißmann who managed to, time and again, show me different perspectives
on life and unerringly urged me to go on.

I’d like to extend my special appreciation to Matty McConchie for thoroughly
proofreading the entire manuscript.

I give heartfelt thanks to my parents, my Bomi, Annette and Renate for their
never-ending moral support. Moreover, I wish to thank Tamaris Zwickler for always
lending me a shoulder to cry on and for never complaining about the long hours
that it took to compose this thesis.

I want to express my deepest gratitude to my brother Pascal, who not only fought
his way through the first draft of this thesis but also encouraged me to wake up
an hour earlier than him every morning. Finally, I wish to acknowledge my Volk

III

IV Acknowledgments

for always smiling not matter what the circumstances.

Patrick Schweitzer

Luxembourg, November 2013

Contents

1 Introduction 1

1.1 Graphical Security Modeling . 2

1.2 Formal Security Modeling . 3

1.3 The Research Question . 4

1.4 Contribution . 7

1.5 Thesis Structure . 7

1.6 Further Research . 10

2 Syntax and Definitions 13

2.1 ADTrees . 13

2.1.1 Defining ADTrees . 13

2.1.2 An Introductory Example . 14

2.1.3 A Running Example . 17

2.1.4 A Formal Definition of ADTrees . 17

2.2 ADTerms . 19

2.3 Transformations between ADTrees and ADTerms 20

2.4 Textual Syntax . 21

2.5 Design Choices . 26

3 Semantics 29

3.1 Propositional Semantics (≡P) . 30

3.2 Semantics Induced by a De Morgan Lattice 34

3.3 Multiset Semantics (≡M) . 38

3.4 Equational Semantics . 40

3.5 Axiomatization of Semantics for ADTerms 41

3.5.1 The Notion of a Complete Set of Axioms 42

3.5.2 A Complete Set of Axioms for ≡P 44

3.5.3 A Complete Set of Axioms for ≡M 49

4 Quantitative Analysis 55

V

VI Contents

4.1 Historical Overview of Attributes . 55

4.1.1 Attributes for Attack Trees . 56

4.1.2 Attributes for Defensive Aspects . 56

4.1.3 Value Domains . 56

4.1.4 Calculation Procedure . 57

4.2 Formal Definition of Attributes on ADTrees 58

4.2.1 The Satisfiability Attribute . 59

4.2.2 The Minimal Costs Attribute . 61

4.2.3 The Cheapest Successful Proponent’s Bundle Attribute 64

4.2.4 The Minimal Costs of the Winner Attribute 65

4.3 Compatibility of an Attribute with a Semantics 68

4.3.1 Consistent Bottom-up Evaluation 68

4.3.2 Attribute Domains Compatible with the Multiset Semantics . 71

4.4 Practical Use of Attributes . 72

4.4.1 Classification of Questions . 73

4.4.2 Questions Referring to One Player 75

4.4.3 Questions Where Answers Can Be Deduced from Each Other 85

4.4.4 Questions Relating to an Outside Third Party 87

4.5 Constructing New Attributes and Attribute Domains 88

4.5.1 Cartesian Composition . 88

4.5.2 Dependent Composition . 89

4.5.3 Derived Attributes . 89

4.5.4 Switching the Owner of the Question 90

4.5.5 Switching the Perspectives . 91

5 Practical Applications of ADTrees 93

5.1 Selecting Suitable Case Studies and Research Aspects 93

5.2 Initial Case Study . 95

5.3 Subsequent Case Studies . 98

5.3.1 The RFID Goods Management System 98

5.3.2 The ADTree Model . 99

5.3.3 Attribute Selection . 104

5.3.4 Attribute Decoration . 106

5.3.5 Preparation of Attribute Values . 109

5.3.6 Bottom-up Calculation of Attribute Values 112

5.3.7 Evaluation of the RFID Goods Management Case Studies . . 115

Contents VII

5.4 Practical Observations . 117

5.4.1 Question Q1: Meaning and Visualization of Defenses 117

5.4.2 Question Q2: Usefulness of Transformations 118

5.4.3 Question Q3: Practical Model Restrictions 120

5.4.4 Question Q4: Attribute Decoration 121

5.4.5 Question Q5: The Basic Assignment 125

5.4.6 Question Q6: Bottom-up Computation 126

5.5 Design Choices and Guidelines for Case Studies 128

5.6 The ADTool . 132

6 Formal Applications of ADTrees 139

6.1 Complexity Considerations of the De Morgan Semantics 139

6.1.1 Positive, Negative and Monotone Boolean Functions 139

6.1.2 Expressiveness of Propositional ADTerms 141

6.1.3 From Propositional ADTerms to Propositional Attack Terms 142

6.1.4 Generalization to De Morgan ADTerms 143

6.1.5 Consequences for Complexity Considerations 144

6.2 ADTrees and Dependent Nodes . 145

6.2.1 Computation of Independently Occurring Actions 145

6.2.2 Bayesian Networks for ADTerms . 148

6.2.3 Computing Probabilities of Attacks Using Bayesian Network 151

6.2.4 ADTerms as Constraint Systems . 154

6.2.5 Indicators for Probability Computation 157

6.2.6 Semiring Valuation Algebras . 158

6.2.7 The Fusion Algorithm . 160

6.2.8 Probability of Successful Attacks . 162

6.3 ADTrees and Games . 163

7 Related Formalisms 167

7.1 Graphical Security Modeling on DAGs . 167

7.2 Keywords and Examined Aspects . 169

7.3 The Template of the Formalism Descriptions 171

7.4 Description of the Formalisms . 174

7.4.1 Static Modeling of Attacks . 174

7.4.2 Sequential Modeling of Attacks . 180

7.4.3 Static Modeling of Attacks and Defenses 188

7.4.4 Sequential Modeling of Attacks and Defenses 194

VIII Contents

7.5 Summary of the Surveyed Formalisms . 201

7.6 Alternative Graphical Security Methodologies 202

7.6.1 Petri Nets for Security . 202

7.6.2 Attack Graphs . 206

7.6.3 Approaches Derived from UML Diagrams 207

7.6.4 Isolated Models . 208

8 Conclusion and Future Work 211

8.1 Conclusion . 211

8.2 Future Work . 213

Bibliography 217

Author’s Publications 247

Index 249

Nomenclature

. Generic attack node . 14

. Generic defense node . 14
△ Generic subtree . 101
〈 〉 Algebraic structure . 34
{| |} Multiset brackets . 39
· Concatenation of strings . 18
↓ Projection of a configuration onto a subset 33
¬ Unary negation function, also Boolean negation 33
s Negation of type s . 19
⊗ Distributive product of sets of bundles 39
+k Addition of any number of variables bounded by k 71
M∗ Set of finite strings over M . 17
⊎ Multiset union . 39
≈ Equivalent propositional formulas 32
::= Production rule in BNF grammar notation 25
≡ Equivalent Boolean functions . 33
≡ Equivalent De Morgan valuations 37
� Partial order . 34
⊢ Syntactic consequence . 41
Σ The AD–signature . 19
β Basic assignment function . 59
ε The empty string . 17
≡DM Equivalence in the De Morgan semantics 37
≡E Equivalence in the equational semantics 41
≡M Equivalence in the multiset semantics 40
≡P Equivalence in the propositional semantics 32
∨p Disjunctive refinement of proponent type 19
∧p Conjunctive refinement of proponent type 19
∨o Disjunctive refinement of opponent type 19
∧o Conjunctive refinement of opponent type 19
cp Countermeasure operator of proponent type 19
co Countermeasure operator of opponent type 19
A Attribute domain for ADTerms . 58
ADT Grammar that generates all propositional ADTerms 45
AT Grammar that generates all propositional attack terms . . 141
A Set of query answers . 144
B Set of all basic actions . 19
Bo Set of all basic actions of the opponent 18
Bp Set of all basic actions of the proponent 18

IX

X Nomenclature

BNt Bayesian network associated to the ADTerm t 149
C[] Context: typed term with a hole 41
DADT Grammar that generates all propositional ADTerms in

disjunctive form
. . . 46

D Value domain for ADTerms . 58
EM Complete set of axioms for the multiset semantics 43
EP Complete set of axioms for the propositional semantics . . . 43
E Expected value . 116
E Set of propositional formulas . 45
false Boolean value false . 31
F Set of all functional symbols in the AD–signature 19
F̃ Flattened set of all functional symbols in the AD–

signature
. . . 19

G Set of all two-player binary zero-sum games in extensive
form

. . 164

ι(T) ADTerm corresponding to the ADTree T 21
I(t) ADTree corresponding to the ADTerm t 21
M(S) Set of all multisets of elements of S 39
N Natural numbers.
N+ Positive natural numbers excluding 0.
o Opponent . 14
own Owner of a question . 75
par Parents . 148
P(S) Powerset of S . 39
p Proponent . 14
R≥0 Positive real numbers including 0.
R Real numbers.
R∞ Real numbers and ∞.
R+ Positive real numbers excluding 0.
R+

∞ Positive real numbers and ∞ excluding 0.
Sym Set of all bijections from {1, . . . , k} to itself 41
S Set containing the types p and o 19
TΣ Set of all ADTerms . 20
To

Σ Set of all ADTerms of opponent type 20
T

p
Σ Set of all ADTerms of proponent type 20

TVAR
Σ Set of typed ADTerms over the variables in VAR 40

T ADTree in textual syntax . 25
true Boolean value true . 31
T ADTree in graphical syntax . 18
t ADTerm, i.e., ADTree in term syntax 20
tα Term used to evaluate the attribute α on the ADTerm t . . 40
tDM De Morgan ADTerm t . 36
tM ADTerm t in multiset semantics 40
tP Propositional ADTerm t . 30
var Set of propositional variables . 40
VAR Set of typed variables . 40
x Configuration . 33

Nomenclature XI

XG Set of propositional variables that correspond to all ba-
sic actions of the proponent type in the propositional
semantics

. . . 45

x or xb Propositional variables . 30
xBasic Action . . . Propositional variable associated with a basic action la-

beled “Basic Action”
. . . 30

Y G Set of propositional variables that correspond to all ba-
sic actions of the proponent type in the propositional
semantics

. . . 45

Attribute . . . Attributes are typeset in bold font 55
Consensus . . . Values resulting from the consensus meeting are typeset

in bold font
. . 112

Design Choice Preferred design choices of the ADTree methodology are
typeset in bold font

. . 129

“Label” Node labels are surrounded by quotation marks 15
Value Attribute values are typeset in typewriter font 57

List of Figures

1.1 A generic attack tree. 5

1.2 Dependencies between the chapters of the thesis. 8

2.1 An ADTree modeling the scenario of protecting data confidentiality. 16

2.2 An ADTree for defeating a guard. 17

2.3 An ADTree, a parse tree and the corresponding ADTerm. 21

2.4 The linear ASCII syntax of Figure 2.2. 23

2.5 A textual ADTree for defeating a guard. 24

2.6 Derivation of the running example in BNF syntax. 26

3.1 Two ADTrees for subduing a guard. 29

3.2 Propositional semantics for an ADTree for defeating a guard. 31

3.3 An equational term rewriting system. 51

3.4 Additional rewrite rules. 51

4.1 Generic attribute evaluation on an attack tree. 58

4.2 The attribute satisfiability (sat) and a basic assignment. 60

4.3 The attribute costs (costs) and a basic assignment. 63

4.4 The attribute cspb (cspb) and a basic assignment. 65

4.5 The attribute mcw (mcw) and a basic assignment. 67

4.6 Two propositionally equivalent ADTrees with different costs values. 68

4.7 Classification of questions and attribute domain templates. 74

4.8 Pruning illustration for questions of Class 1. 76

4.9 Pruning a proper disjunctive refinement. 77

4.10 Pruning a proper conjunctive refinement. 77

4.11 Pruning a countermeasure. 77

4.12 Pruning an entire ADTree. 78

5.1 Steps in use cases that follow the ADTree methodology. 95

5.2 An ADTree for an online auction fraud scenario. 97

XIII

XIV List of Figures

5.3 The WIMS deployment diagram. 99

5.4 The floor plan of the warehouse and its surroundings. 100

5.5 An ADTree for RFID DoS attack. 101

5.6 The “Remove Tag” subtree. 102

5.7 The “Breaking and Entering” subtree. 103

5.8 The “Block Communication” subtree. 104

5.9 The “Breaking and Entering” subtree with costs values. 113

5.10 The “Breaking and Entering” subtree with costs calculated. 115

5.11 Creating an ADTree with the ADTool. 134

5.12 An ADTree modeled in the ADTool. 135

5.13 Large-scale printing in the ADTool. 135

5.14 Attribute selection in the ADTool. 136

5.15 Attribute evaluation in the ADTool. 137

6.1 An ADTree for infecting a computer. 146

6.2 A Bayesian network associated with an ADTerm. 149

6.3 An ADTree corresponding to a Bayesian network. 150

6.4 An extensive form game is mapped to an ADTree. 165

6.5 An ADTree mapped to an extensive form game. 166

7.1 An exemplary threat logic tree. 168

7.2 An exemplary Bayesian attack graph. 169

List of Tables

2.1 Transformation rules from ADTrees to ADTerms. 22

2.2 Transformation rules from ADTerms to ADTrees. 23

3.1 The sum and product of two De Morgan valuations. 36

4.1 Attribute structures for questions of Class 1 (infinite notions). 82

4.2 Attribute structures for questions of Class 1 (finite notions). 83

5.1 Extract of raw data of the external case study. 108

5.2 Extract of the raw data of the classroom case study. 109

5.3 Attribute values after the consensus meeting. 110

5.4 ADTrees guidelines work flow. 129

6.1 Attacks and their corresponding probabilities. 152

6.2 An exemplary computation step in the fusion algorithm. 161

7.1 Summary of aspects taken into account in the formalism description. 173

7.2 Aspects relating to the formalism’s modeling capabilities. 203

7.3 Aspects relating to the formalism’s characteristics. 204

7.4 Aspects relating to the formalism’s maturity and usability. 205

XV

1

Introduction

Security has long become a part of our daily life. We have lockable drawers, doors,
windows and safes in our homes. And we have a large corresponding bunch of keys.
Our wallets are filled with identity documents, membership cards and bank notes
that are all equipped with numerous security features.

Security has also ceased to only be physical. To be able to use bank and credit
cards, we require personal identification numbers, we need to enter a pattern to
access smart phones and almost all electronic services ask us to provide a password
or another form of digital identification.

Compared to physical security, the field of information technology (IT) security is
relatively young. In the early development stages, many computer systems have
been claimed to be secure, but were compromised shortly after. The evolution
of security continues to strive for an acceptable protection level without overly
inconveniencing the end user. These efforts are complicated by the ever growing
complexity of the systems that IT security aims to protect and the skill that
potential attackers have. This battle between attackers and defenders is known as
the IT arms race.

Naively, fighting against attacks on complex IT systems appears to be an insur-
mountable challenge. However, there are three developments that support security
specialists in protecting systems from attacks.

Graphical models First, visual models support human creativity and under-
standing. The phrase a picture says more than a thousand words succinctly char-
acterizes our brain’s capabilities. When visualized, even the most intricate concepts
and detailed facts can be relayed, explained and understood.

Formal models Second, another tool that helps us cope with complexity is
the use of formal models. Long past being in their infancy, formal methods are
precise and exact. Researchers have learned how to capitalize on formal methods
by specifying only the necessary aspects and abstracting away from everything else
when creating models.

Paradigm shift Third, a paradigm shift in IT security changes the focus of the
models as well as the modeler: Security analysts have realized that the complete
prevention of all attacks is costly if not even infeasible. Zero-day attacks, i.e., at-
tacks that exploit previously unknown vulnerabilities, are inevitable and can only
be thwarted heuristically. Therefore, security experts are now not only advocating
measures that impede attacks from succeeding, but are also encouraging to miti-
gate the effect of any attack that has not been prevented. Abstractly speaking the
paradigm shift introduces an additional layer of security. This, in turn, reempha-

1

2 Chapter 1 Introduction

sizes the importance of adequate graphical and formal security models since they
are now used in two protection mechanisms.

In this introduction, we first elaborate on graphical models (Section 1.1) and formal
models (Section 1.2) before we can formulate the research question (Section 1.3)
and adequately express the contribution of this thesis (Section 1.4). We provide a
more detailed outline of the thesis (Section 1.5) and shortly illustrate how other
research interests have benefited this thesis (Section 1.6).

1.1 Graphical Security Modeling

Graphical security models, such as attack trees [SSSW98], provide a powerful
method to visualize and examine security vulnerabilities of systems, organizations
or even scenarios. In our framework, we understand a scenario as a series of ac-
tions and events that affect the security of systems or organizations. Graphical
security models constitute a valuable support tool to facilitate threat assessment
and risk analysis of real-life systems, during the planning, the development and the
maintenance phase of a system’s lifecycle. Graphical security models also provide
an intuitive methodology to visualize possible attacks and countermeasures and to
enable the computation of security related parameters.

Despite the advancement of many analysis possibilities that are now embedded in
graphical security methodologies, their main focus still lies on creating a model
that visually represents a system or a scenario. Hence, the most important require-
ment for a graphical methodology is its intuitiveness, especially with respect to
presentation features. As such, they have become popular in the industrial sec-
tor as a means to visualize and support threat analysis and risk management.
Due to their simplicity, graphical models are especially well-suited for an inter-
disciplinary context, where different cooperating partners may not be familiar
with each other’s conventions and working language [JEBR10]. Application do-
mains of graphical models include security analysis of supervisory control and
data acquisition (SCADA) systems, voting systems, vehicular communication sys-
tems, Internet related attacks, secure software engineering and socio-technical at-
tacks [TLFH01,BFM04,ABD+06,BM07,RVOC08,HAF+09,TA10,EPPC11].

In 1991, Weiss [Wei91] introduced threat logic trees as the first graphical at-
tack modeling technique. The apparent similarities of threat logic trees to fault
trees [VGRH81] suggest that graphical security modeling has its roots in safety
modeling. The essential difference between safety and security modeling is that
security models consider preventing threats originating from active or malicious
actions, whereas safety models address accidental system failures or events with
potential impacts on the system environment [PCB13]. The nature of the differ-
ent threat models is the reason that graphical security modeling and graphical
safety modeling are nowadays considered as two largely separate disciplines, led
by separated communities developing their own tools and methodologies. However,
Weiss’s approach can be considered to be the origin of graphical security modeling.
Numerous subsequent models are based on Weiss’s original idea. In the late 1990s,
graphical security models were popularized by Schneier [SSSW98, Sch99]. He in-
troduced the wide-spread graphical security methodology attack trees, a formalism

1.2 Formal Security Modeling 3

that largely resembles Weiss’s threat logic trees.

Graphical approaches have attracted the attention of numerous security and formal
methods experts and are now quickly becoming a stand-alone research area with
dedicated national and international research projects [SHI10a, TRE16, ANI14,
ATR12]. As a result, a myriad of different approaches exist. Some of them extend
the original methodology of threat logic trees in various dimensions. These dimen-
sions include defensive components [BFP06], timed and ordered actions [WJ10] as
well as dynamic aspects [PCB10a]. Other approaches are based on popular model-
ing techniques, such as UML [SO00]. Yet again, others are ad hoc approaches that
arise from attempting to model the security of specific applications in particular
contexts [ABS06].

In security analysis, an emerging subfield is concerned with quantifying security.
In other words, besides qualitative questions, such as “Is it possible to attack a
system?”, the focus of the subfield lies on quantitative questions, such as “What
are the minimal costs to protect a server?” The result of quantification is often a
single key figure that can provide an indication on the general state of the system,
rather than a complex mathematical function that describes the system’s behavior.
Security quantities are deduced from the available raw data. In practice, numerous
different methods to compute security related parameters, such as the costs, the
impact or likelihood of an attack, the efficiency of necessary protection measures
or the environmental damage of an attack, have been developed.

While the great advantage of a graphical modeling approach lies in its user friendli-
ness and its capability to intuitively visualize scenarios, graphical modeling is first
and foremost an ad hoc procedure. It is often neither structured nor systematic.
At best the approaches are loosely governed by modeling rules. These, however,
are indispensable when the models grow in size. Therefore, graphical approaches
by themselves do not suffice.

1.2 Formal Security Modeling

When modeling a mature and complex system with a purely visual approach that
depicts every part of the system, the model can become cluttered, muddled and
confusing. If there exists only a detailed graphical model, and no alternative repre-
sentation, it may be difficult to quickly decide whether a costly defensive measure
implemented in the past is still necessary today. Problems like “What are the best
defensive measures currently worth investing in?” or “How can newly discovered
attacks and implemented defenses be efficiently and systematically documented?”
require a structured, systematic approach.

Formal approaches, such as term rewriting [BN98], are, by definition, designed to
overcome the mentioned problems. Correctly specified formal models are struc-
tured, systematic, have a clear methodology, sound mathematical foundations and
are often well-equipped to handle qualitative and quantitative analysis [Win90].
They are precise and unambiguous and typically constructive. Contrary to in-
tuitive models, formal frameworks aim at preventing ambiguity and are able to
support automated processing and automated quantitative evaluation [Win90].

4 Chapter 1 Introduction

A formal model consists of a clearly defined syntax and an explicit semantics.
Attributes, sometimes also called metrics, are used to answer questions such as:
“Is it possible to protect the system?”, “How much would it cost to prevent one or
all attacks?” or “How long does it take to secure the entire system?”

Despite all benefits of formal approaches, they are, not seldom, unintuitive, difficult
to understand and hard to apply. Most of the formal methodologies are specialized,
using their own notation and, therefore, require expert knowledge [BH95, BH06].
This knowledge is not only necessary for creating models, but even for under-
standing and interpreting them. As a result, it has to be acquired before a formal
approach can be applied successfully [BH06].

Over the course of the last two decades there has been a growing tendency to
advocate graphical models as part of formal approaches instead of treating them
separately [BH06]. This development comes in many flavors. It is, for example,
possible to formalize an already existing, purely visual methodology [GGR93].
Similarly, techniques have been developed to better illustrate and visualize formal
methods [BH06]. Naturally, it is also possible to construct entirely new approaches
having both the formalization and the intuitive visualization, in mind.

1.3 The Research Question

In this thesis, we combine a graphical with a formal approach. The abundance
of related approaches in Chapter 7 demonstrates that the idea of improving an
already existing graphical and formal security formalism is not a novel idea. It
is a strategy as old as formalisms themselves. One of the reasons to continually
improve a security methodology is that none of the existing approaches can model
all vulnerable systems or security scenarios. Most methodologies are, in fact, limited
to small, dedicated application domains. As such, they do not meet the demands
of security analysts for a general, versatile formalism.

Nonetheless, all-purpose security methodologies exist. One such methodology is
the formalism of attack trees that uses an underlying graph structure. Attack trees
have proven their worth in numerous case studies and applications and are widely
accepted in the industry, for references see Section 7.4.1.

The attack tree formalism can informally be described as follows. For a security
scenario, the main goal of the attacker is depicted by the root node of a tree.
Two types of refinement relations help to detail the model. Disjunctive refinements
elaborate on attack options and conjunctive refinements to specify necessary steps,
called actions, of the attacker. Both types of refinement are recursively applied.
The procedure may stop at any time when the actions are sufficiently specified.
This allows for a customizable level of abstraction. Generally speaking, the more
refinements are depicted in a tree, the more precise the model. We illustrate an
attack tree in Figure 1.1. Attack actions are depicted by labeled, red, circular nodes.
The root is disjunctively refined into two subgoals. The Disjunctive Subgoal 2 is
conjunctively refined into two subgoals. To distinguish conjunctive from disjunctive
refinements, an arc connects the edges between a node and its conjunctively refining
children.

1.3 The Research Question 5

Initially, the attack tree formalism lacked formalization and could not provide a
precise meaning for a given scenario [SSSW98]. This was remedied by Mauw and
Oostdijk who have formalized syntax and semantics of attack trees in 2005 [MO05].
They also analyzed under which conditions quantification with the help of attack
trees is consistent with a simple bottom-up procedure. More recently, Whitley et al.
extended and diversified the quantification procedure by proposing a novel way to
compose disjunctive nodes [WWPP11].

Main Goal

Disjunctive
Subgoal 1

Disjunctive
Subgoal 2

Conjunctive
Subgoal 1

Conjunctive
Subgoal 2

Legend
Attack node
Disjunctive
refinement
Conjunctive
refinement

Figure 1.1: A generic attack tree.

In 2010, Willemson and Jürgenson
proposed to extend attack trees by
defining an order on the nodes [WJ10].
Their approach allowed them to im-
prove quantitative analysis. They also
showed that their extension is con-
sistent with the semantics defined by
Mauw and Oostdijk.

A notable step that structurally ex-
tends attack trees was proposed by
Bistarelli et al. in 2006 [BDP06]. Their
approach includes defenses as leaves
into the attack tree formalism and
views interactions between attackers
and defenders as a game. In the same
year, Edge et al. proposed protection
trees. Instead of attack nodes, these
trees only contain defensive nodes.
Consequently, protection trees can be
seen as being dual to attack trees. Over
the last years, further approaches have incorporated defenses in the attack tree for-
malism. Baca and Petersen have proposed countermeasure graphs [BP10], which
are similar to defense trees. Countermeasure graphs extend attack trees by attach-
ing countermeasures to the leaves of the tree. Baca and Petersen use hierarchical
cumulative voting in their quantification methods. Another approach that com-
bines attack trees with defenses has been prosed by [RKT12a]. Their so-called
attack countermeasure trees distinguish between attack events, detection events
and mitigation events, which all appear as leaf nodes.

In summary, attack trees in general and defenses in particular have already gained
wide interest. They have proven their value in practice, as we show in a more thor-
ough analysis of related approaches, which can be found in Chapter 7. However,
no attack tree-based security analysis methodology with interleaved defenses ex-
isted at the start of this research project. Moreover, the existing approaches that
include defenses do not differentiate between semantics and quantitative analysis
and are not checking for consistency. Our aim is to overcome these deficiencies
and amend the attack tree approach with novel features. We pose the following
research question.

Research question: How can we extend attack trees with defenses to be
able to provide a security analysis methodology that is both formal and
graphical?

6 Chapter 1 Introduction

There is a long and a short answer to this question. The short one is the attack–
defense tree methodology. The long answer is this thesis.

For the development of a new graphical security methodology we follow certain
design criteria. By choosing attack trees as the underlying model, we have already
limited the scope of this thesis to focus on modeling of attack and defense scenarios.
We understand attacks and defenses in a general sense: they consist of any malicious
action of an attacker who wants to harm or damage another party or its assets as
well as any defense or countermeasure that could be used to prevent or mitigate
the aforementioned malicious actions.

The choice of the attack tree formalism calls for a justification. First, attack trees
are already well-known in the security area. Hence, by basing a model on attack
trees, we can benefit from their familiarity. Consequently, as an extension of attack
trees, attack–defense trees are more likely to be accepted by end users compared
to an entirely new methodology. Additionally, any existing attack tree model can
simply be reused and expanded. Second, their simplicity makes it ideal for graphical
security modeling. As already mentioned before, combining a visual and a formal
model should respect the main concepts of both worlds to maximally benefit from
the fusion. By slightly extending the attack tree formalism and supplying it with
formal foundations, we benefit in two ways. On the one hand, the models remain
intuitive and can be interpreted by anyone, not only by specialists. On the other
hand, the formal component of the model is ideally suited for algorithmic treatment
and computer support.

Besides being based on attack trees, there were several other design choices that
we followed when creating the versatile attack–defense tree methodology.

1. The methodology is supposed to capture attacker as well as defender actions
by allowing alternation between attack and defense nodes. Consequently,
it is possible to analyze which sets of defenses are optimal from different
perspectives.

2. The approach should not only capture potential attack and defense actions,
but it should allow for interleaving them. Interleaving enables the user to
consider the evolution of a system’s security. It especially clarifies why certain
defenses were put in place and whether they are still necessary or whether
they have become obsolete due to more advanced and more powerful attacks
or defenses.

3. The modeling capabilities should be extended while the complexity of the
formalism should be restricted to a minimum. This entails that the simple
tree structure of attack trees is kept.

4. The model description should closely resemble natural language. Artificial
constructions should be avoided in the visual representation of the model.
In other words, any visual representation feature should serve a purpose and
not (only) exist for technical purposes.

5. Finally, as already stated in the main research question, we chose to extend
the attack tree approach. Moreover, we require it to be backward compatible,
so that any attack tree is also a model in our formalism. This implies that

1.4 Contribution 7

the attack tree displayed in Figure 1.1 has an identical representation in the
attack–defense tree formalism.

1.4 Contribution

We designed a graphical model called attack–defense trees consisting of a syntax,
a semantics and formal analysis techniques for quantitative analysis. Compared
to other models, the formalism is unique since it is the only tree-based formalism
that allows for interleaving of attacks and defenses. It is the only formalism that is
equipped with various semantics to handle attacks as well as defenses. Moreover,
the attack–defense tree methodology is the only attack tree-based formalism with a
strict separation of semantics and quantitative analysis. It is both visual and formal
and a translation between the two representations is provided. The methodology
has been tested in practical case studies and applied in theoretical research.

A complete list of the author’s scientific contributions can be found at the end of
the thesis. This publication index is separated from the general bibliography and
includes further research activities performed by the author during the course of
his doctoral studies. All references to the author’s own work start with a year,
contrary to other references, which end in a year.

1.5 Thesis Structure

To answer the research question while respecting the restrictions detailed in Sec-
tion 1.3, we

• define a syntax for attack–defense trees in Chapter 2;

• define a semantics for attack–defense trees in Chapter 3;

• treat quantitative analysis for attack–defense trees in Chapter 4. This chapter
is based on the previous two chapters, however, some parts of it can be
understood with only knowledge of the syntax for attack–defense trees;

• verify the usefulness of the methodology twofold. We examine the methodol-
ogy’s usefulness practically with the help of case studies in Chapter 5. We also
demonstrate the usefulness of the formalization by relating attack–defense
trees to concepts of other mathematical disciplines in Chapter 6;

• provide an extensive literature review that surveys attack and defense mod-
eling approaches based on directed acyclic graphs in Chapter 7.

The dependencies between the chapters are illustrated in Figure 1.2. The the-
sis generally assumes knowledge equivalent to graduate level studies in theoretical
computer science and basic knowledge of formal methods. Moreover, to understand
the description of the syntax and the semantics a sound knowledge on term rewrit-
ing and typed terms is beneficial. For an introduction to term rewriting we refer
to the book by Baader and Nipkow [BN98], for an introduction to typed terms, we

8 Chapter 1 Introduction

refer to [CK00]. For a more extensive treatment, we refer to [Zan91,Zan00,Ohl02].
Finally, basic knowledge about general Bayesian networks [Pea88] is beneficial when
they are used in combination with attack–defense trees in Section 6.2.

Chapter 2
Syntax

Chapter 3
Semantics

Chapter 1
Introduction

Chapter 4
Attributes

Chapter 7
Related Work

Chapter 5
Practical

Applications

Chapter 6
Formal

Applications

Figure 1.2: Dependencies between the chapters of the thesis.

Chapter 2: Syntax In this chapter, we introduce three different kinds of syntax
for attack–defense trees. More precisely, we describe the visual attack–defense tree
description, the algebraic attack–defense terms and a textual syntax that retains
a formal character while also providing a visually appealing layout. We specify
the connections and transformations between the different syntaxes and provide
an introductory example that we turn into a running example. Finally, we explain
benefits of the choices we made while designing the attack–defense tree language.

The syntax description is based on work with Barbara Kordy, Saša Radomirović
and Sjouke Mauw. Attack–defense trees and attack–defense terms have been intro-
duced in the conference paper [10KMRS] as well as the subsequent and expanded
journal publication [12KMRS]. The textual syntax and related concepts were de-
veloped in collaboration with Sjouke Mauw.

Chapter 3: Semantics After introducing the syntax, we describe various se-
mantics for attack–defense trees along with several usage scenarios. More specifi-
cally, we define the propositional semantics, suitable to answer recursively defined
binary questions. We specify the class of De Morgan semantics. Each De Morgan
semantics is an extension of the propositional semantics and is suitable in scenar-
ios where we have two or more discrete outcomes. Finally, we provide the multiset
semantics that are adequate when repetitive actions need to be considered.

We then introduce an axiomatic approach to semantics, by defining semantics
with the help of an equational theory. This approach is then applied to express the
propositional and the multiset semantics in terms of an equational theory. The so-
called equational semantics are structures that allow us to relate different semantics
to each other and are suitable to be implemented in algorithms and software.

The De Morgan semantics have been introduced in [11KPS]. The rest of this
chapter is, to a small extent, based on [10KMRS] and, to a large extent, based
on [12KMRS].

1.5 Thesis Structure 9

Chapter 4: Attributes This chapter covers attributes, which serve to model
quantitative aspects on attack–defense trees. We provide a historical perspective on
attributes before we introduce them formally as questions together with a bottom-
up evaluation algorithm. We illustrate the computation with the help of several
examples and advance a compatibility criterion that relates attributes and seman-
tics.

Then we turn our attention to practical considerations and provide an empirical
analysis on how to provide unambiguous answers to informal questions. We provide
guidelines on how to transform the intuitive questions into an appropriate formal
form. This transformation is also valid on attack trees. We conclude with methods
that explain how to construct new attributes from existing ones.

The historical overview is based on [12BKMS]. The definitions and the compatibil-
ity criterion in this chapter originate from [10KMRS] and [12KMRS]. The exam-
ples of the attributes arose from work with Barbara Kordy and Jean-Paul Weber.
The empirical analysis of attributes in the literature is based on a conference pa-
per [12KMS] and the associated technical report [12KMSTec] while the construc-
tions of new attributes are unpublished work.

Chapter 5: Practical Applications During the development cycle, attack–
defense trees have continually been evaluated with the help of targeted case studies.
This chapter illustrates the realization and the results of the case studies. We
first investigated what kind of case study is suitable in the context of attack–
defense trees. We then conducted internal case studies of which we present one.
The experience gained from the initial case studies was then incorporated into
comprehensive case studies on attributes.

As the outcome of the experiments, we provide observations that we made during
the case studies and guidelines that assist during the application of the attack–
defense tree methodology. Finally, we present a software tool that facilitates the
work with the attack–defense tree methodology.

This chapter is based on results from a start-up workshop with an industrial partner
and several internal case studies. One of these case studies concerning attributes
has been published as a journal paper [12BKMS]. This journal paper also contains
the guidelines on how to apply the attack–defense tree methodology. The software
tool was designed in cooperation with Barbara Kordy and implemented by Piotr
Kordy [12KSADTMan]. The presentation of the software tool is based on an early
version of [13KKMS] and the extended technical report [13KKMSTec].

Chapter 6: Formal Applications In this chapter, we demonstrate the use-
fulness of the formalization of attack–defense trees. We analyze computational
complexity aspects of the propositional as well as the class of De Morgan seman-
tics and elaborate on implications for query evaluations and the applicability of
present and future attack tree algorithms for attack–defense trees.

We also show how to combine the attack–defense tree methodology with other
methodologies. More concretely, we combine attack–defense trees with Bayesian
networks to be able to quantify probabilistic scenarios with dependent actions.
Moreover, we present a summary of an explicit connection between attack–defense
trees and game theory by showing that attack–defense trees in the propositional

10 Chapter 1 Introduction

semantics are equivalent to a specific class of games.

The results about the complexity considerations have been published in a con-
ference paper [11KPS]. The concept of combining Bayesian networks and attack–
defense trees is under submission [13KPSPro] and the relation between attack–
defense trees and a certain class of games has been a collaboration with Matthijs
Melissen and has been published in a conference paper [10KMMS] and in extended
form in a technical report [10KMMSTec].

Chapter 7: Related Work This chapter surveys related graphical security
models. The emphasis lies on DAG-based models while other popular graphical
security models are only shortly summarized.

The chapter is based on a survey which was submitted for publication [13KPSFor].

1.6 Further Research

Apart from graphical security models the author worked in three distinct research
areas. We summarize the contributions and elaborate on the impact of the ex-
tracurricular activities on the work in graphical security models.

Trust models In asymmetric interactions over the Internet, an agent (the sub-
ject) is dependent on another agent (the target), but not vice versa. The subject
should, therefore, form an opinion about the target, before possibly initiating an in-
teraction. The scenario wherein a subject only relies on information obtained from
past interactions with one target is well-studied and understood. In [12MS], we
generalize the setting to allow for targets consisting of several parties. In particu-
lar, we formally derive conjunction and disjunction of trust opinions. In a follow-up
paper [13MS], we generalize the initial setting differently by allowing recommen-
dations (statements of a third party) as a source of information. We formalize a
set of assumptions about trust with recommendations which allows us to identify
and analyze the family of valid models that admit recommendations.

Research in trust models has helped the author gain a better understanding for
formal methods and security modeling in general.

Graph theory In [10SS], we show that any face hitting set of size n of a con-
nected planar graph with a minimum degree of at least 3 is contained in a connected
subgraph of size 5n−6. Furthermore, we show that this bound is tight by providing
a lower bound in the form of a family of graphs. Our proof is valid for simple graphs
with loops and generalizes to graphs embedded in surfaces of arbitrary genus.

In a paper currently under submission [13MSS], we have proven two conjectures
about competition graphs. The competition graph of a directed acyclic graph D
is the undirected graph on the same vertex set as D in which two distinct vertices
are adjacent if they have a common out-neighbor in D. The competition number
of an undirected graph G is the least number of isolated vertices that have to be
added to G to make it the competition graph of a directed acyclic graph. The first
conjecture by Opsut [Ops82] is proven by showing that the competition number
of every quasi-line graph is at most 2. Recall that a quasi-line graph, also called a
locally co-bipartite graph, is a graph for which the neighborhood of every vertex

1.6 Further Research 11

can partitioned into at most two cliques. To prove this conjecture we devise an
alternative characterization of quasi-line graphs to the one by Chudnovsky and
Seymour [CS05]. The second conjecture by Kim [Kim05] is proven by showing that
the competition number of any graph is at most one greater than the number
of holes in the graph. Our methods are even applicable to prove a strengthened
form of this conjecture. Specifically, we show that the competition number of any
graph is at most one greater than the dimension of the subspace of the cycle space
spanned by the holes.

Working in mathematics and especially graph theory has helped the author to
improve his knowledge of precise mathematical formalization.

Modeling uncertainty In the paper [10KS], we analyze the regulation of emis-
sions of non-uniformly mixed pollutants under uncertainty. Commonly, regulation
with a permit market carries the risk of hot spot formation, which can be reduced
by dividing the regulation area into trading zones. The trading zone approach has
been extensively discussed for the full-information case. We consider incomplete
information concerning the emitters’ abatement costs, their locations and pollu-
tion dispersion. We derive the optimal number of trading zones and the optimal
number of permits per zone and analyze under which conditions a system of in-
dependent trading zones is superior to other policy measures. Our results show
that appropriately sized permit markets are well-suited to regulate non-uniformly
mixed pollutants under informational constraints if firms are not excessively het-
erogeneous. Only for substantial heterogeneity and a highly non-linear damage
function can it be optimal to use command-and-control strategies.

This work has helped the author increase his knowledge about modeling in gen-
eral and modeling with probabilistic variables in particular. It also introduced the
author to academic research and research presentation.

2

Syntax and Definitions

The growing complexity of systems complicates their reliable operation. Since em-
pirical testing was deemed to be insufficient, formal methods were devised to over-
come this new challenge [CW96]. At the core of any formal method lies the syntax.
The syntax describes a model’s fundamental building blocks and stipulates how
to combine them into a model. The syntax does not provide any interpretation,
syntactical rules merely govern the visual appearance of the model. All syntaxes
depicted in this thesis are typeset with a set of LATEX macros, publicly available in
a documented LATEX package [12SADTSty].

In this chapter, we advance three different syntaxes for attack–defense methodol-
ogy. First, in Section 2.1, we introduce the graphical syntax called attack–defense
trees. The graphical syntax is well-suited to provide a quick and intuitive overview
over the entire model. It is based on the syntax of attack trees, as introduced
in [SSSW98]. Then, in Section 2.2 we introduce a term-based syntax called attack–
defense terms. This syntax is based on the mathematical concept of terms. Terms
are a convenient mathematical framework to devise properties of and prove results
within the model. In Section 2.3 we show how attack–defense trees and attack–
defense terms are linked by formalizing transformation rules between the two syn-
taxes. Sometimes, a trade-off between a visual and purely symbolic syntax can be
helpful. We, therefore, present a third syntax, the textual syntax, in Section 2.4.
Its primary use can be seen to serve as notation use in email exchanges between
people that are unfamiliar with the notation of the term-based syntax. Finally, in
Section 2.5, we elaborate on several choices that we were faced with during the de-
sign phase and the creation of the syntax of the attack–defense tree methodology.
We elaborate on the choices and how they affected the syntax.

2.1 ADTrees

As already mentioned, attack–defense trees are a methodology to represent attack–
defense scenarios. Attack–defense trees extend the well-known model of attack
trees [SSSW98,Sch99] by incorporating defensive measures. In this section we first
introduce the concept of attack–defense trees intuitively. We then illustrate their
usage on an extended example, before we formally define attack–defense trees.

2.1.1 Defining ADTrees

An attack–defense tree (ADTree) is a node-labeled rooted tree describing measures
an attacker may take in order to attack a system and defenses that a defender can

13

14 Chapter 2 Syntax and Definitions

employ to protect the system. ADTrees have nodes of two opposite types: attack
nodes and defense nodes, which correspond to, respectively, an attacker’s and a
defender’s goals or subgoals.

Two key features of an ADTree are the ability to represent refinements and coun-
termeasures. Every node may have one or more children of the parent’s type rep-
resenting a refinement into subgoals of the node’s goal. If a node does not have any
children of the parent’s type, it is called a non-refined node. Non-refined nodes
represent so-called basic actions, i.e., actions which can be fully understood and
easily quantified.

Every node may also have one child of opposite type of that of the parent, repre-
senting a countermeasure. Thus, an attack node may have several children which
refine the attack and one child which defends against the attack. The defending
child in turn may have several children which refine the defense and one child that
is an attack node and counters the defense.

The refinement of a node of an ADTree is either disjunctive or conjunctive. The
goal of a disjunctively refined node is achieved when at least one of its children’s
goals is achieved. The goal of a conjunctively refined node is achieved when all
of its children’s goals are achieved. It is also possible to view the two refinements
as different ways and different steps to achieve the goal represented by the parent
node, where no indication of the steps’ order is necessary.

The purpose of ADTrees is to model attack–defense scenarios. An attack–defense
scenario can be seen as a game between two players, the proponent (denoted by p)
and the opponent (denoted by o). The root of an ADTree represents the main goal
of the proponent. When the root is an attack node, the proponent is an attacker
and the opponent is a defender. Conversely, when the root is a defense node, the
proponent is a defender and the opponent is an attacker.

When drawing ADTrees, we depict attack nodes by (red) circles () and defense
nodes by (green) rectangles (), as shown in Figure 2.1. Refinement relations are
indicated by solid edges between nodes and countermeasures are indicated by dot-
ted edges. We depict a conjunctive refinement of a node by an arc over all edges
connecting the node and its children of equal type.

2.1.2 An Introductory Example

To construct an ADTree, we first consider the goal of the attack–defense scenario.
It forms the root of the tree. The goal is refined into subgoals represented by
children of the root which in turn may get further refined. Counteracting measures
employed or expected to be employed against a goal are included by inserting one
child of the opposite type. This child node is then refined into specific goals and
actions of the other type. Should there again be a measure which counteracts this
goal, then the measure is inserted as a child of the measure and further refined, if
necessary.

Example 2.1 To demonstrate the features of ADTrees, we consider the following
fictitious scenario concerning data confidentiality in a data hosting center. The
ADTree representing the scenario is shown in Figure 2.1. Its root node is a defense.
Thus the proponent is the defender and his main goal expressed by the tree is

2.1 ADTrees 15

the protection of “Data Confidentiality”. To ease matching of the textual scenario
descriptions with the corresponding figures, we signify node labels with quotation
marks.

In order to protect the confidentiality of costumer data, the hosting company needs
to invest in “Network Security” as well as in physical security measures. These
measures break up into several aspects that need to be taken care of. However,
even if both of physical and network security were to be infallible, the company’s
employees would still be a weak point. Two common options to subvert a company
through its employees are “Corruption” and “Social Engineering”. These attacks
can be mitigated through “Screening” the employees and “Sensitivity Training”
against social engineering techniques.

Network security is a complex problem. It is beyond the purpose of this introduc-
tory example to show all possible attacks and defenses. Some standard measures
employed in the context of network security are access control systems, firewalls
and intrusion detection. Of these, we display the evolution of access control through
the use of passwords. In many access controlled services, passwords used to be free
of any restrictions regarding the type of characters they need to contain. Conse-
quently, a significant number of passwords chosen consisted of a name or dictionary
word since these are much easier to remember than a random sequence of charac-
ters. This has led to access control breaches through so-called dictionary attacks.
In order to prevent these attacks, computer systems nowadays “Require Strong
Passwords”, which need to contain letters, numbers and non-alphanumeric char-
acters. This mechanism, however, causes people to write up their passwords on
easily accessible sticky notes or to reuse the same strong password for different
accounts and services. Thus, the strong password required for the data center may
be recovered by attacking an unrelated and possibly weaker system on which the
target user has an account or by finding a sticky note.

Regarding physical security, a building can be broken into through back doors,
fire escapes or windows. It is, therefore, common to reinforce windows and to
protect other entrances with locks. The locks can be circumvented by forcing them
open or by acquiring a key. An increasingly common practice is, therefore, to
employ security guards that monitor the building. In order to effectively monitor
the building, a security guard will typically have the keys not only to the building
itself, but also to all rooms in the building. This makes the security guard a possible
attack vector. He could be bribed, subdued or his keys could be stolen in some
manner. To overpower the guard, it would be necessary to outnumber him and then
use a weapon to incapacitate him. To prevent these three attacks, video cameras
with remote surveillance could be employed. These, in turn, could be sabotaged
by an attacker.

The scenario as described thus far is obviously incomplete. It is clear, however, how
to extend the ADTree shown in Figure 2.1 with new attacks and defenses when
adapting the scenario. In Section 5.4.3 we discuss when it is reasonable to stop
extending the tree and when to continued providing more details.

ADTrees were conceived as an extension of attack trees, which intend to describe
the security of systems. Other elaborated tree models include “How to attack
a bank account?” [10KMRS], “How to attack a server?” [12KMS] and “How to

16
C

h
a

p
te

r
2

S
y

n
ta

x
a

n
d

D
e
fi

n
itio

n
s

Data
Confiden-

tiality

Network
Security

Install
Access
Control

Require
Passwords

Launch
Dictionary

Attack

Require
Strong

Passwords

Strong
Password
Attacks

Find
Note

Same
Password,
Different
Account

Install
Firewalls

Install
IDS

Physical
Security

Break-in
Building

Use
Back Door

Install
Lock

Defeat
Lock

Force
Open

Acquire
Keys

Fire
Escape

Use Door

Install
Lock

Defeat
Lock

Force
Open

Acquire
Keys

Break
Window

Reinforce
Window

Break
Window

Reinforce
Window

Employ
Security
Guard

Defeat
Guard

Bribe
Guard

Subdue
Guard

Outnumber
Guard

Use
Weapon

Steal
Keys

Install
Video

Cameras

Sabotage
Cameras

Employee
Attack

Corruption

Screening

Social
Enginee-

ring

Sensitivity
Training

Legend
Attack node
Defense node
Disjunctive refinement
Conjunctive refinement
Countermeasure

F
igure

2.1:
A

n
A

D
T

ree
m

odeling
the

scenario
of

protecting
data

confidentiality.

2.1 ADTrees 17

perform a distributed denial of service attack on an RFID system?” [12BKMS].
However, the application field of ADTrees is versatile. They are not restricted to
only model computer security. We have created toy ADTree models for “How to
steal a lion?”, “How to break and enter into a warehouse?” and “How to open a
locked door without raising suspicion?”, which can all be found at [12KSADTLib].

2.1.3 A Running Example

The initial Example 2.1 given in the previous section visually demonstrates all
graphical features of ADTrees. However, it is rather large and unwieldy. We, there-
fore, use a subtree as a running example. This subtree example has the added
advantage that it demonstrates that ADTrees can also be rooted in attack nodes.
This means that, since in this scenario the root is of attack type, the proponent is
now the attacker and the opponent the defender.

Defeat
Guard

Bribe
Guard

Subdue
Guard

Outnumber
Guard

Use
Weapon

Steal
Keys

Install
Video

Cameras

Sabotage
Cameras

Figure 2.2: An ADTree for defeating a guard.

Example 2.2 Imagine we are only interested in defeating the guard mentioned
in Example 2.1. In this case we can use the subtree rooted in the node “Defeat
Guard” to illustrate the scenario. We use the following abbreviations: “Defeat
Guard” (DG), “Bribe Guard” (BG), “Subdue Guard” (SG), “Outnumber Guard”
(OG), “Use Weapon” (UW), “Steal Keys” (SK), “Install Video Cameras” (IC),
“Sabotage Cameras” (SC).

2.1.4 A Formal Definition of ADTrees

The formal definition of an ADTree is based on the notion of finite ordered trees,
as introduced in [CDG+07].

Given a set M, we denote by M∗ the set of all finite strings over M and by ε
the empty string. We define a finite ordered tree T over a set of labels L as a
function T : Pos(T) → L, where Pos(T) is a finite prefix-closed subset of (N+)∗

18 Chapter 2 Syntax and Definitions

which is closed under decrementing the last entry. It is called the set of positions
of T .

We depict T as a graph in the following manner. The positions in Pos(T) are drawn
as nodes labeled with elements of L. The position ε is the root node of the graph,
depicted as the topmost node. The positions p · 1, p · 2, . . . , p · k for some k ∈ N+,
are the children of the node corresponding to the position p. (We use · to denote
concatenation). Since T is ordered, the node corresponding to the position p · i is
drawn left of the node depicting position p · j whenever i < j.

An ADTree is then formally defined as follows:

Definition 2.3 (ADTree) An attack–defense tree (ADTree) is a finite ordered
tree T over the set of labels LT = Bp ∪ Bo ∪ {∨p,∧p,∨o,∧o}, where Bp denotes
the set of basic actions of the proponent and Bo denotes the set of basic actions
of the opponent, together with a function λ : Pos(T) → { , } which satisfies the
following conditions for every p ∈ Pos(T).

1. If there exists i ∈ N+, such that p · i ∈ Pos(T) and λ(p · i) = λ(p), then

T (p) ∈

{∨p,∧p} if λ(p) = λ(ε);

{∨o,∧o} else.

2. If there exists i ∈ N+, such that p · i ∈ Pos(T) and λ(p · i) 6= λ(p), then ∀j >
i : p · j 6∈ Pos(T).

3. If p·1 ∈ Pos(T) and λ(p·1) 6= λ(p) or there exists no i, such that p·i ∈ Pos(T),
then

T (p) ∈

Bp if λ(p) = λ(ε);

Bo else.

Finally, we require that on every path from a leaf to the root a basic action occurs
at most once.

The function λ allows us to distinguish between attack nodes () and defense nodes
(). The value λ(ε) determines for the considered tree which player (attacker or
defender) is the proponent and which is the opponent. By comparing the values
of λ applied to a parent node with the values of λ applied to its children, we can
decide which nodes are refined and which non-refined. A node p is refined if it has
the child p · 1 and it holds that λ(p) = λ(p · 1). Then, Condition 1 of Definition 2.3
holds and the node p of an ADTree is either conjunctively or disjunctively refined
(T (p) ∈ {∨p,∧p,∨o,∧o}). Condition 2 states that a node can have at most one
child p · j of opposite type. Such a child satisfies λ(p) 6= λ(p · j) and is always
depicted as the rightmost child node of p. Finally, Condition 3 says that a non-
refined node either has no children or exactly one child of opposite type and no
children of the same type. For every non-refined node it holds that T (p) ∈ Bp ∪Bo.

In the formal definition of ADTrees, refined nodes are labeled with the associated
refining symbols. In practice, such nodes are typically labeled with descriptive
names of the goals or subgoals they represent, as shown in Figure 2.1.

2.2 ADTerms 19

2.2 ADTerms

In order to formally analyze ADTrees, we define an abstract syntax which we
call attack–defense terms [10KMRS]. To be able to capture ADTrees rooted in an
attacker’s node as well as a defender’s node, we distinguish between the proponent,
which we recall refers to the root player, and the opponent, which is the other
player. For instance, for the ADTree in Figure 2.1, the proponent is the attacker
and the opponent is the defender. Conversely, if the root of an ADTree is a defense
node, the proponent is the defender and the opponent is the attacker. Therefore,
the root of an ADTree always represents the main goal of the proponent.

Attack–defense terms are typed terms over a particular signature called the attack–
defense signature (AD–signature). To define the AD–signature, we make use of the
notion of an unranked function. An unranked function F with domain D and
range R denotes a family of functions (Fk)k∈N+, where Fk : Dk → R, for k ≥ 1.
Often, when the rank of a function Fk can be deduced from the context, we abuse
notation and use the unranked function symbol F , instead of a specific ranked
function Fk.

Definition 2.4 (AD–signature) The AD–signature is a pair Σ = (S,F), where

• S = {p, o} is the set of types of the proponent and the opponent and

• F = {(∨p
k)k∈N+ , (∧p

k)k∈N+ , (∨o
k)k∈N+ , (∧o

k)k∈N+ , cp, co}∪Bp∪Bo is a set of func-
tion symbols, such that {(∨p

k)k∈N+ , (∧p
k)k∈N+, (∨o

k)k∈N+, (∧o
k)k∈N+ , cp, co}, Bp

and Bo are pairwise disjoint.

For technical reasons, we define the flattened set F̃ =
⋃

k∈N+{∨p
k} ∪

⋃
k∈N+{∧p

k} ∪⋃
k∈N+{∨o

k} ∪
⋃

k∈N+{∧o
k} ∪ {cp, co} ∪ Bp ∪ Bo. Every function symbol F ∈ F̃ is

equipped with a mapping rnk: F̃ → S∗ × S, called rank. The rank of a function
symbol F is a pair rnk(F) = (arity(F), type(F)), where the first component de-
scribes the arity of F and the second specifies its type. Given F ∈ F̃ and s ∈ S,
we say that F is of type s if type(F) = s. For the function symbols in F̃ we define,

rnk(b) = (ε, p), for b ∈ Bp, rnk(b) = (ε, o), for b ∈ Bo,

rnk(∨p
k) = (pk, p), rnk(∨o

k) = (ok, o),

rnk(∧p
k) = (pk, p), rnk(∧o

k) = (ok, o),

rnk(cp) = (p o, p), rnk(co) = (o p, o),

where k ∈ N+.

The elements of Bp and Bo are typed constants, which we call basic actions of pro-
ponent type and basic actions of opponent type, respectively. Since they do not take
any argument as input, but provide an ADTerm as output, their ranks are (ε, p) for
basic actions of the proponent and (ε, o), for basic actions of the opponent. We de-
note the set of all basic actions by B = Bp ∪Bo. The unranked functions ∨p,∧p,∨o

and ∧o represent disjunctive (∨) and conjunctive (∧) refinement operators for the
proponent and the opponent, respectively. The arity of a concrete operator, e.g., ∨p

k

is given k times the type of the root symbol (here p), followed by an argument of
the same type. We set p = o and o = p. The binary functions cs, for s ∈ S,

20 Chapter 2 Syntax and Definitions

represent countermeasures and are used to connect components of type s with
components of the opposite type s. The rank of cp is (p o, p) since the operator’s
inputs are a term of proponent type and a term of opponent type and it yields a
term of proponent type. Similarly, the rank of co is (o p, o).

The concept of AD–signatures allows us to define terms that are equipped with
the typing function type while not containing any variables. These kind of terms
are usually called typed ground terms.

Definition 2.5 (ADTerms) Finite, typed ground terms over the AD–signature Σ
are called attack–defense terms (ADTerms). The set of all ADTerms is denoted
by TΣ.

For s ∈ S, we denote by Ts
Σ the set of all ADTerms with the root symbol of type s,

i.e., the symbol at position ε is of type s. We have TΣ = T
p
Σ∪To

Σ. The elements of Tp
Σ

and To
Σ are called ADTerms of proponent type and of opponent type, respectively.

The ADTerms of proponent type constitute formal representations of ADTrees.
Finally, ADTerms which involve only operators ∨p and ∧p are called attack terms
and correspond to attack trees introduced in [SSSW98] and formalized in [MO05].

Example 2.6 Consider the ADTree given in Figure 2.2. To construct the cor-
responding ADTerm t we can limit the set of basic actions of the proponent
to {BG,OG,UW, SK, SC} ⊂ Bp and the set of basic actions of the opponent
to {IC} ⊂ Bo. Then t is given by t = cp(∨p(BG,∧p(OG,UW), SK), co(IC, SC)),
The subterms ∨p(BG,∧p(OG,UW), SK), ∧p(OG,UW), BG, OG, UW, SK and SC
as well as the entire ADTerm t, are of proponent type. Term t also contains a sub-
term of opponent type, namely co(IC, SC). Note that the names of refined nodes
in the ADTree, such as “Defeat Guard” and “Subdue Guard”, do not appear in
the ADTerm. Instead, these nodes are represented with the corresponding refining
symbols ∨p and ∧p.

Note that it is also possible to represent all ADTerms with the help of a grammar.
From [GTWW77] we know that every term-algebra can be transformed into a
context-free grammar.

Definition 2.7 (ADTerms grammar) Let Bp be all basic actions of proponent type
and Bo be all basic actions of opponent type. We define the following production
rules.

P : Bp | ∨p (P, . . . , P) | ∧p (P, . . . , P) | cp(P,O)

O : Bo | ∨o (O, . . . , O) | ∧o (O, . . . , O) | co(O,P).

Then, the expressions generated from the start symbol P represent all ADTerms of
proponent type and the expressions generated from the start symbol O represent all
ADTerms of opponent type. The set of all ADTerms is the union of the ADTerms
of proponent type and the ADTerms of opponent type.

2.3 Transformations between ADTrees and ADTerms

Both the intuitive model, detailed in Section 2.1, and the formal model, detailed
in Section 2.2, can be used as different representations of the same scenario. The

2.4 Textual Syntax 21

∨p

A B C

D

⇌

cp

∨p

A B

co

C D

Figure 2.3: An ADTree (left) and a parse tree (right) of the corresponding AD-
Term cp(∨p(A,B), co(C,D)).

intuitive ADTree model allows for quick visual inspections of the scenario, whereas
the formal ADTerms allow for easier automated manipulation. We illustrate that
ADTrees can be transformed into ADTerms and vice versa with the help of Fig-
ure 2.3.

As one might expect, the transformation involves the parse tree of an ADTerm.
Due to the requirement of backwards compatibility with attack terms, this, how-
ever, is not the only step involved in the transformation. The complete procedure
works as follows. Starting from an ADTree, we replace every node which has a
countermeasure as a child by an additional node. This additional node is a coun-
termeasure that has exactly two children: the original node’s subtree without the
countermeasure subtree and the countermeasure subtree. The modified tree then
corresponds to a parse tree of the ADTerm that represents the same scenario as
the initial ADTree.

Table 2.1 shows formally how ADTrees can be transformed into ADTerms and
Table 2.2 shows the inverse direction. Given an ADTree T , we denote by ι(T) the
ADTerm representing T . Given an ADTerm t, we denote by I(t) the corresponding
ADTree. In Tables 2.1 and 2.2, we assume that the proponent is an attacker. If the
proponent is a defender, circular nodes have to be replaced with rectangular nodes
and vice versa. To improve readability, we omit the arcs, denoting conjunctions, in
the cases where f ∈ {∧p,∧o}.

Remark 2.8 Since ADTerms do not contain labels of refined nodes, these will be lost
when transforming ADTrees into ADTerms. However, since all relevant information
is contained in the non-refined node, the labels of refined nodes may possibly be
reconstructed from the labels of the child nodes or may simply be omitted.

2.4 Textual Syntax

A third way to represent ADTrees is to use a linear ASCII description. It can be
employed for quick and easy display of ADTrees, for instance in an email exchange.
For this purpose the following ASCII characters are used:

() [] | - = #.

To depict the type of a node we use the brackets. More specifically, the label of
an attack node is enclosed between round brackets “()”, the label of a defense
node in square brackets “[]”. The “|” symbol helps to depict the structure of

22 Chapter 2 Syntax and Definitions

T
b b f

T1 · · · Tk

f

T1 · · · Tk

where where where where

b ∈ Bp b ∈ Bo f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

. .

ι(T) b b f(ι(T1), . . . , ι(Tk)) f(ι(T1), . . . , ι(Tk))

T
b

T1

b

T1

f

T1 · · · Tk T ′

f

T1 · · · Tk T ′

where where where where

b ∈ Bp b ∈ Bo f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

. .

ι(T) cp(b, ι(T1)) co(b, ι(T1)) cp(f(ι(T1), . . . , ι(Tk)), ι(T ′)) co(f(ι(T1), . . . , ι(Tk)), ι(T ′))

Table 2.1: Transformation rules from ADTrees to ADTerms.

the tree and the remaining symbols are used to express the connection between a
parent node and its children. Each node is written on its own line adhering to the
following structure.

The first line corresponds to the root node and contains only the label and the
type of the root. All other lines correspond to intermediate nodes or leaves. They
start with a number of “|” symbols, followed by “-”, “=” or “#” and end with the
label of the node enclosed in brackets. On each such line the depth of the node
in the tree is reflected by the amount of “|” symbols. The symbols “-”, “=” and
“#” illustrate that this node is linked to its parent via a disjunctive refinement, a
conjunctive refinement or a countermeasure, respectively.

The vertical structure of the ASCII description illustrates the parent–child rela-
tion between the nodes. The tree is set up from top to bottom and from left to
right. Children of nodes are considered before siblings. The structure is created
recursively. First, the line corresponding to the root is created. Then, for every
parent node, lines corresponding to its children are inserted underneath the line
corresponding to the parent. This construction is repeated until we reach lines cor-
responding to leaves. In other words, we mimic the execution of depth-first search.

The linear ASCII syntax for the ADTree from Example 2.2 is given in Figure 2.4.

Since white space should be insignificant in the textual ADTree syntax, there are
representations of ADTrees that do not look intuitive. We, therefore, give some
conventions for a proper layout:

• Every node is followed by a new line.

• The bar “|” and the connector symbols “-”, “=” and “#” are aligned vertically.

• Two vertically aligned bars may be connected to form a continuous figure,

2.4 Textual Syntax 23

t b ∈ Bp b ∈ Bo f(t1, . . . , tk), where f(t1, . . . , tk), where
f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1

. .

I(t)
b b f

I(t1) · · · I(tk)

f

I(t1) · · · I(tk)

t cp(b, t′), co(b, t′), cp(t0, t′), where co(t0, t′), where
b ∈ Bp b ∈ Bo t0 = f(t1, . . . , tk) and t0 = f(t1, . . . , tk) and

f ∈ {∨p,∧p}, k ≥ 1 f ∈ {∨o,∧o}, k ≥ 1
. .

I(t)
b

I(t′)

b

I(t′)

f

I(t1) · · · I(tk) I(t′)

f

I(t1) · · · I(tk) I(t′)

t cp(t0, t′), where co(t0, t′), where
t0 = cp(t1, t2) t0 = co(t1, t2)

. .

I(t)
∨p

1

I(t0) I(t′)

∨o
1

I(t0) I(t′)

Table 2.2: Transformation rules from ADTerms to ADTrees.

see Figure 2.5.

• The symbols denoting the connector type may also be connected to the ver-
tically aligned bars.

• Brackets may be replaced with a red oval (in case of attack nodes) or green
rectangles (in case of defense nodes) surrounding the node label.

Figure 2.5 depicts a visually more appealing version of Figure 2.2 that respects the
above conventions.

(Defeat Guard)

|-(Bribe Guard)

|-(Subdue Guard)

||=(Outnumber Guard)

||=(Use Weapon)

|-(Steal Key)

|#[Install Video Camera]

||#(Sabotage Camera)

Figure 2.4: The linear ASCII syntax of Figure 2.2.

24 Chapter 2 Syntax and Definitions

Defeat Guard

Bribe Guard

Subdue Guard

Outnumber Guard

Use Weapon

Steal Key

Install Video Camera

Sabotage Camera

Figure 2.5: A textual ADTree for defeating a guard.

To reverse the procedure and recreate the ADTree from the textual syntax, we draw
a node for every line in the syntax. We draw an attack node () for every line that
ends in “()” and a defense node () for every line that ends in “[]”. The node
labels correspond to the description inside the parentheses or brackets. A node A
is a child of a node B when the line corresponding to B has exactly one vertical
bar “|” less than the line corresponding to node A and the line corresponding
to node A is the first such line that we encounter after the line corresponding
to B when traversing the textual description from bottom to top. The parent-
child relationship indicates a countermeasure with a dashed line when the line
corresponding to the node contains a “#”. Finally, when a line contains a “=” then
the edges between the refining siblings and the parent are connected by an arc.

Transformations between the textual syntax and ADTerms are obtained by first
transforming into ADTrees.

While the ADTerms are context-free (Definition 2.7), the textual syntax is not. To
prove this fact, we use the pumping lemma for context-free languages [Gur89]. The
proof relies on the “|” symbols that do not exist in an ADTerm. They indicate
an absolute depth position within the tree which is not compatible with context-
freeness. Intuitively speaking, without context, it is, for example, not possible to
determine if the line ||=(Outnumber Guard) can succeed another one. This line
may follow |-(Subdue Guard), as seen in Figure 2.4, but it cannot follow the line
(Defeat Guard).

Theorem 2.9 The ASCII representation language of ADTrees is not context-free.

Proof. We can reduce the ASCII syntax to the following language over two symbols.
We write a 0 for nodes and a 1 for each “|” in front of the nodes. The other symbols
(connectors and brackets) we leave out, which is possible since context-free gram-
mars are closed under homomorphism. So defeating the guard, i.e., Example 2.2,
would be modeled as 0 10 10 110 110 10 10 110. The language has the property
that every zero which was preceded by n ones is followed by at most n + 1 ones
and never by a zero. Every string in the language terminates with a zero. Using

2.4 Textual Syntax 25

the pumping lemma for context-free languages we can see that the language is not
context-free:

Let p be the pumping length. Consider uvxyz = 0101101110 · · ·12p0 with |vy| > 0
and |vxy| ≤ p (i.e., an ADTree with 2p empty refinements). Then, by the pumping
lemma the strings uvixyiz for i ≥ 0 should be in the language. We make the
following case distinction: If v or y contain only zeros or only ones, then choosing i
large enough produces a string that is not in the language, since there cannot be
any consecutive zeros and the number of ones is bounded. In the remaining case, v
or y contains both zeros and ones. Then choosing i = 0 produces a string that is not
in the language: Either v or y must contain the sequence 01 or 10. (Which means
that p ≥ 2.) Provided u or z are not empty, the number of ones preceding a zero
right of v0 or right of y0 is at least two larger than to the left of the corresponding
symbol, which yields a contradiction. Due to the pumping length u or z cannot
both be empty. If u is empty, a similar reasoning as before holds since z starts with
two or more continuous ones. If z is empty then, since |vxy| ≤ p, y contains only
ones or uxz ends in a one. This finishes the proof.

A consequence of this theorem is that adding a line in the textual syntax may
require knowledge about the rest of the syntax. A given line may be inserted
between some lines, but not between others. Moreover, for algorithmic applications
we recommend the use of ADTerms instead of the textual syntax, since ADTerms
are constructed from a simple, context-free grammar.

The textual syntax of ADTrees can also be modeled as an Extended Backus–Naur
Form (EBNF) grammar. This allows the parametrization of variables with natural
numbers and elements of finite sets. We use the following notation to describe the
syntax. In detail, we use ::= to denote productions, ‖ to denote alternatives, [. . .] to
denote optional constructs and (. . .)∗ to denote repetition (0 or more times).

Let Id be a finite set of not further specified strings, denoting identifiers. We con-
sider the following set of terminals: “ − ”, “ = ”, “#”, “ |”, “(”, “)”, “[”, “]”, Id.

The grammar defines the following basic variables: Barn (for n ∈ N) denoting a
sequence of n vertical bars. The symbol Nodeτ (for τ ∈ { , }) denotes a node of
type τ . Finally, Connϕ (for ϕ ∈ {or, and,#}) denotes a ϕ-connection. This yields:

Bar0 ::= ε Connor ::= “ − ” Node ::= “(” Id “)”

Barn+1 ::= “ |” Barn Connand ::= “ = ” Node ::= “[” Id “]”

Conn# ::= “ # ”.

The main variable defined by the grammar is T, which denotes an ADTree in
textual syntax. The auxiliary variable Tn represents an ADTree at depth n ∈ N.
The auxiliary variable Tτ

n (for τ ∈ { , }) represents an ADTree at depth n ∈ N of
type τ . The auxiliary variable Tτ,φ

n (for τ ∈ { , } and φ ∈ {or, and}) represents
an ADTree at depth n ∈ N of type τ with connector φ. We use the notation =

26 Chapter 2 Syntax and Definitions

and = .

T ::= T0

Tn ::= Tn ‖ Tn

Tτ
n ::= Tτ,or

n ‖ Tτ,and

n

Tτ,φ
n ::= Nodeτ

(
Barn+1 Connφ (Tτ,or

n+1 ‖ T
τ,and

n+1)
)∗[

Barn+1 Conn# (Tτor

n+1 ‖ Tτand

n+1)
]
.

We derive the textual syntax for the Example 2.2 from the grammar in EBNF in
Figure 2.6.

T → T0 → T0 → T
,or

0

→ Node Bar1 Connor T
,or

1 Bar1 Connor T
,and

1 Bar1 Connor T
,or

1

Bar1 Conn# T
,or

1

→ Node Bar1 Connor T
,or

1 Bar1 Connor Node Bar2 Connand T
,or

2

Bar2 Connand T
,or

2 Bar1 Connor T
,or

1 Bar1 Conn# T
,or

1

→ Node Bar1 Connor T
,or

1 Bar1 Connor Node Bar2 Connand T
,or

2

Bar2 Connand T
,or

2 Bar1 Connor T
,or

1 Bar1 Conn# Node

Bar2 Conn# T
,or

2

→ Node Bar1 Connor Node Bar1 Connor Node Bar2 Connand Node

Bar2 Connand Node Bar1 Connor Node Bar1 Conn# Node

Bar2 Conn# Node

→ Node | − Node | − Node ||= Node ||= Node | − Node

| # Node || # Node

→ (Defeat Guard)

| −(Bribe Guard)

| −(Subdue Guard)

||= (Outnumber Guard)

||= (Use Weapon)

| −(Steal Key)

| #[Install Video Camera]

|| #(Sabotage Camera).

Figure 2.6: Derivation of the running example in BNF syntax.

2.5 Design Choices

When designing the ADTree formalism, we have deliberately made the following
choices in order to keep a balance between usability, complexity and representa-

2.5 Design Choices 27

tional impact.

1. Refinements and countermeasures. An ADTree node is refined either
conjunctively or disjunctively. Refinement operators are unranked. Each AD-
Tree node may only have one child of opposite type. These choices were
made in order for ADTrees to reflect as closely as possible a description of
an attack–defense scenario in natural language while keeping the number of
defining symbols to a minimum.

These choices do not limit the expressiveness of the formalism. We would
obtain an equally expressive formalism by restricting ADTrees to binary re-
finements, by allowing nodes with multiple countermeasures or by allowing
nodes that are conjunctively and disjunctively refined at the same time.

2. ADTrees versus parse trees of ADTerms. The ADTree corresponding
to an ADTerm of the form t = cp(t1, t2) differs from the parse tree of t. We
depict the root of the tree corresponding to t2 as a child of the root node of
the tree corresponding to t1. In this manner we illustrate that t2 represents a
countermeasure for the scenario depicted by t1. Such an illustration helps us
to model interactions between the two players involved in an attack–defense
scenario in an intuitive and understandable way.

3. Finite trees. We consider only finite ADTrees for the sake of simplicity.
Infinite ADTrees are conceivable, for instance, to model recursive goals, such
as obtaining keys to a locked box which contains the keys. Infinite ADTrees
would also be a useful tool to study the limit case of evolving attack–defense
scenarios, such as scenarios involving automated attacks and defenses.

4. Ordered trees. We define ADTrees to be ordered trees. This choice makes
ADTrees suitable for the analysis of scenarios in which the order between ac-
tions is relevant. This could, for instance, be the case when temporal relations
are taken into account.

5. Trees versus directed acyclic graphs. We use trees instead of directed
acyclic graph (DAG) for simplicity of the formalism. DAGs are more expres-
sive because they can be used to indicate dependencies between nodes. For
instance, the two nodes labeled “Window” in Figure 2.1 could be replaced by
a single node in order to express that they concern the same physical win-
dow or that all attacks against one window are also suitable attacks against
the other window. Since such shared nodes give rise to different possible in-
terpretations and to a more complicated semantical treatment, we leave the
extension to DAGs to future research.

3

Semantics

In the previous chapter we have defined the syntax for ADTrees and ADTerms. The
syntax allows us to model a scenario. However, the syntax alone does not enable us
to interpret or adequately compare different models. Consider, e.g., the “Subdue
Guard” subtree from Example 2.2. Recall that to subdue a guard, the guard must
be outnumbered and a weapon must be used. Different security analysts may create
different ADTrees when asked to create a model using the ADTree methodology.
Figure 3.1 depicts two possible resulting ADTrees.

Subdue
Guard

Outnumber
Guard

Use
Weapon

Subdue
Guard

Use
Weapon

Outnumber
Guard

Figure 3.1: Two ADTrees for subduing a guard.

Depending on how ADTrees and ADTerms are interpreted, these two trees may
or may not depict the same scenario. On the one hand, it is possible that the two
trees are modeling the same situation, in which case they should be equivalent. On
the other hand, it is also conceivable to understand them within a temporal setting
and interpret the conjunction as having an implied order. Then, the tree in the left
of Figure 3.1 could be interpreted as “Outnumber Guard” before “Use Weapon”
and the tree on the right could represent a scenario where first a guard has to
be threatened with a weapon, before someone else actually subdues the guard. In
conclusion, the two ADTrees in Figure 3.1 should be considered as equivalent if
time considerations are not factored into the model; they should be considered as
not equivalent if the analyst is interested in sequential aspects of his attack.

Already this small example illustrates that the syntax needs to be equipped with
one or several meanings. To be able to interpret and compare trees, we introduce
semantics for ADTerms (and consequently for ADTrees). We employ the notion
of equivalence classes to realize this goal. Every semantics partitions the set of
all ADTerms TΣ into equivalence classes. Then, terms that belong to the same
equivalence class represent the same scenario.

29

30 Chapter 3 Semantics

Definition 3.1 (Semantics for ADTerms) A semantics for ADTerms is an equiv-
alence relation on TΣ that preserves types.

Different scenarios can give rise to different applications of the ADTree methodol-
ogy, we propose three semantics and illustrate their differences. Semantics for AD-
Trees usually make use of other mathematical concepts, in which an equivalence
relation is naturally defined. In Section 3.1, we introduce the propositional seman-
tics that make use of the equivalence of certain propositional formulas. Then, in
Section 3.2 we introduce the class of semantics induced by a De Morgan lattice. We
show that the propositional semantics are actually an instantiation of the formally
more complicated class of the semantics induced by a De Morgan lattice. We define
a third semantics, the multiset semantics, in Section 3.3. The equivalence relation
that is pulled back to define the multiset semantics, is the equality of sets. After
defining these initial semantics in which we pull back a well-defined equivalence re-
lation, we use equational theory to define arbitrary semantics in Section 3.4. Since
the equational semantic can express the same concepts as the naturally defined
semantics, we show how to define the propositional and the multiset semantics in
terms of the equational semantics in Section 3.5.

The choice of an appropriate semantics becomes crucial when a quantitative anal-
ysis of an attack–defense scenario is to be performed. We discuss this issue after
introducing attributes in Chapter 4.

3.1 Propositional Semantics (≡P)

Attack trees are often seen as representations of AND-OR formulas. Thus, one of
the most frequently used semantics for attack trees is the propositional seman-
tics [10KMMS,12KMRS] and [RSF+09,WJ10]. In this section, we extend this par-
ticular semantics to ADTerms. When the propositional semantics is used, ADTerms
are interpreted as propositional formulas. The satisfiability of the formula inter-
preting an ADTerm t models the feasibility of the scenario represented by t. The
propositional semantics is well-suited to evaluate whether a system is vulnerable
to an attack or to answer in how many different ways a system can be successfully
attacked. It can also express whether or not special equipment is needed to perform
an attack. More generally, it can be used to answer any recursively defined binary
question related to the scenario that the ADTree models. We assign a propositional
variable xb to every basic action b ∈ B. We assume that different basic actions give
rise to different propositional variables. In particular, since the sets of basic actions
of proponent and of opponent type are disjoint, we have

{xb | b ∈ Bp} ∩ {xd | d ∈ Bo} = ∅.

We define:

Definition 3.2 (Propositional ADTerms) For every ADTerm t (Definition 2.5)
a propositional formula tP , called a propositional ADTerm is defined as follows.
Let t1, t2, . . . , tk ∈ TΣ, s ∈ {p, o} and k ∈ N+. Then we define recursively

bP = xb, for b ∈ B, (∨s
k(t1, . . . , tk))P = t1P ∨ · · · ∨ tkP ,

(cs(t1, t2))P = t1P ∧ ¬t2P , (∧s
k(t1, . . . , tk))P = t1P ∧ · · · ∧ tkP .

3.1 Propositional Semantics (≡P) 31

In case t is an attack term (defined after Definition 2.5), the corresponding formula
is called a propositional attack term.

Every assignment of Boolean values (true and false) to the propositional vari-
ables xb, for b ∈ B, which satisfies a propositional ADTerm tP , describes a way to
achieve the proponent’s goal represented by the ADTerm t.

Example 3.3 Consider the ADTerm t = ∨p(b1, cp(b2, d)), where b1, b2 ∈ Bp

and d ∈ Bo. The corresponding propositional ADTerm tP is xb1 ∨ (xb2 ∧ ¬xd).
The formula tP is satisfied if the variable xb1 is set to true or if the variable xb2

is set to true while the variable xd is set to false. This models the fact that, in
order to achieve his goal, the proponent needs to execute the action b1 or he needs
to execute b2 while the action d must not be executed by the opponent.

fDG

xBG xOG ∧ xUW

xOG xUW

xSK xIC ∧ ¬xSC

xSC

Figure 3.2: Propositional semantics for an ADTree for defeating a guard.

Let us also illustrate the propositional ADTerm with the help of the running Ex-
ample 2.2. Recall the abbreviations BG, OG, UW, SK, IC and SC for the leaves
of the tree “Bribe Guard”, “Outnumber Guard”, “Use Weapon”, “Steal Key”,
“Install Video Cameras” and “Sabotage Cameras” and the corresponding AD-
Term t = cp(∨p(BG,∧p(OG,UW), SK), co(IC, SC)) from Example 2.6. In order
to derive the propositional ADTerm corresponding to the ADTree, we identify
the leaves with propositional variables, abbreviated by xBG, xOG, xUW, xSK, xIC

and xSC. Then, we deduce the formulas for the remaining nodes by recursively
applying Definition 3.2. The propositional ADTerm for the considered tree is given
in Figure 3.2. The formula fDG is as follows:

fDG = tP = (xBG ∨ (xOG ∧ xUW) ∨ xSK) ∧ ¬(xIC ∧ ¬xSC).

The formula fDG expresses how to reach the main goal represented by the root
node, i.e., how to defeat a guard. In order to defeat a guard, the propositional
formula fDG has to be true. To achieve this xBG, xSK or xOG and xUW are to be
set to true (i.e., an attacker is able to bribe a guard, steal his keys or outnumber

32 Chapter 3 Semantics

him and use a weapon). At the same time the variable xSK has to be true or the
variable xIC must be false (i.e., either cameras are sabotaged or they are not even
installed).

The procedure of providing concrete values for all variables occurring in an ADTree
or ADTerm is called providing an assignment. In the remainder of this chapter,
we analyze properties of sets of assignments while we analyze specific assignments
(sets of size one) in more detail in Chapter 4.

Recall from propositional logics that two propositional formulas ψ and ψ′ are equiv-
alent (denoted by ψ ≈ ψ′) if and only if, for every assignment ν of Boolean values
to the propositional variables, we have ν(ψ) = ν(ψ′).

Definition 3.4 (Propositional semantics for ADTerms) The propositional seman-
tics for ADTerms is the equivalence relation ≡P on TΣ defined, for all t, t′ ∈ TΣ,
by

t ≡P t′ if and only if tP ≈ t′P .

Note that the propositional semantics refers to equivalence classes. Since we usually
specify ADTrees and ADTerms, we often abuse language and say the ADTree or
ADTerm in propositional semantics when referring to the representative of the
equivalence class and not the equivalence class itself. In other words, we often do
not distinguish between the representative and its equivalence class.

The following example illustrates the use of the propositional semantics.

Example 3.5 Consider the ADTerm t = ∨p(b1, cp(b2, d)), introduced in Exam-
ple 3.3, and the ADTerm t′ = ∨p(∧p(b1, b1), cp(b2, d)). Since the propositional con-
junction is idempotent, the corresponding propositional ADTerms are equivalent
formulas, i.e.,

tP = xb1 ∨ (xb2 ∧ ¬xd) ≈ (xb1 ∧ xb1) ∨ (xb2 ∧ ¬xd) = t′P .

Therefore, we have t ≡P t′, i.e., the ADTerms are equivalent in the propositional
semantics.

Similarly, we can express the propositional ADTerm from Example 3.3 in disjunc-
tive normal form:

fDG = (xBG ∧ xSC) ∨ (xBG ∧ ¬xIC) ∨ (xSK ∧ xSC) ∨ (xSK ∧ ¬xIC)∨

(xOG ∧ xUW ∧ xSC) ∨ (xOG ∧ xUW ∧ ¬xIC)

It immediately shows us the six possible ways of attacking described in the example.

With the detour over ADTerms, the previous examples also show how to verify
whether two ADTrees are equivalent in the propositional semantics. If they are,
we have found two propositionally equivalent representations for our scenario.

We next introduce Boolean functions by closely following [PK11]. Boolean func-
tions are closely related to propositional formulas. We use them to express the
propositional semantics in an alternative way. Then, in the next section, we gener-
alize Boolean functions to valuations, which in turn allows us to introduce the De
Morgan semantics.

3.1 Propositional Semantics (≡P) 33

Definition 3.6 (Configuration) Let R be a countable set of variables. A config-
uration with finite domain D ⊆ R is a function x : D → {0, 1} that associates a
value x(x) ∈ {0, 1} to every variable x ∈ D.

Thus, a configuration x ∈ {0, 1}D represents an assignment of Boolean values to
the variables in D.

Definition 3.7 (Boolean functions) A Boolean function f with domain D is a
function f : {0, 1}D → {0, 1} that assigns a value f(x) ∈ {0, 1} to each configura-
tion x ∈ {0, 1}D.

For D = {x}, we use the function f that satisfies f(x) = v for v ∈ {0, 1} when-
ever x(x) = v to denote the Boolean indicator function associated to the proposi-
tional variable x.

Remark 3.8 We usually drop the configuration from the assignment of the Boolean
function. In other words, we typically write xi = v or even v to denote the constant
configuration evaluating to v. The indicator function fi with domain {0, 1}{xi} that
satisfies fi(x) = v whenever x(xi) = v is then defined by the equation fi(xi = v) =
v, or even fi(v) = v.

Observe that in the context of Boolean functions, we denote the Boolean values
by 0 and 1, instead of denoting them by false and true, respectively. The latter
notation, we only use to denote values of propositional formula, or values related
to attributes as introduced in Definition 4.2.

Given a configuration x with domain D ⊆ R, we denote by x↓U the projection
of x to a subset U ⊆ D. This notation allows us to introduce the following two
definitions.

Definition 3.9 (Conjunction and disjunction of Boolean functions) Let f and g be
two Boolean functions with domains D and U , respectively. The conjunction (f∧g)
and the disjunction (f ∨ g) of f and g are Boolean functions with domain D ∪ U ,
defined for every x ∈ {0, 1}D∪U by

(f ∨ g)(x) = max{f(x↓D), g(x↓U)}, and (f ∧ g)(x) = min{f(x↓D), g(x↓U)}.

The negation of f , denoted by ¬f , is a Boolean function with domain D, defined
for every x ∈ {0, 1}D by (¬f)(x) = 1 − f(x).

Definition 3.10 (Equivalent Boolean functions) Two Boolean functions f and g,
with respective finite domains D and U , are said to be equivalent (denoted by f ≡
g) if and only if, for every x ∈ {0, 1}D∪U , we have f(x↓D) = g(x↓U).

Using an equivalence relation with a finite set of variables, as in Definition 3.10,
makes the above construction accessible and implementable in a computer program.
The significance of the previous definition is illustrated by the following example.

Example 3.11 Let f1 and f2 be two Boolean indicator functions with the do-
mains {x1} and {x2}, respectively. Suppose we define two new Boolean functions g1

and g2 as follows:
g1 = f1 g2 = f1 ∨ (f2 ∨ ¬f2).

34 Chapter 3 Semantics

Then g1 ≡ g2 because g1(x↓{x1}) = g2(x↓{x1,x2}). Indeed,

g1(x1 = 1) = g2(x1 = 1, x2 = 1) = g2(x1 = 1, x2 = 0) = 1,

g1(x1 = 0) = g2(x1 = 0, x2 = 1) = g2(x1 = 0, x2 = 0) = 0.

Remark 3.12 Since logically equivalent propositional formulas represent the same
Boolean functions, two ADTerms t and t′ are equivalent under the propositional
semantics if they represent the same Boolean function.

Using this new notation, we can rewrite Example 3.5 in terms of Definition 3.10.
For i ∈ {b1, b2, d} let fi be the indicator function of xi, i.e., the function with
domain {0, 1}{xi} that satisfies fi(x) = v whenever x(xi) = v. Then,

tP = fb1 ∨ (fb2 ∧ ¬fd) = (fb1 ∧ fb1) ∨ (fb2 ∧ ¬fd) = t′P .

In other words, the set of propositional ADTerms can be seen as a representation
language for certain Boolean functions. We use this representation language to
compare the computational complexity of propositional ADTerms and attack terms
in Section 6.1.3.

3.2 Semantics Induced by a De Morgan Lattice

In the propositional semantics, ADTerms are interpreted as propositional formulas
(or equivalently as Boolean functions). Such an interpretation limits the useful-
ness of the semantics to those applications which take only Boolean properties into
account. Examples of such properties are satisfiability or presence of an attack.
These examples imply that the propositional semantics is not well-suited to reason
about properties, such as effectiveness or usefulness of the components of an at-
tack, which may have more than two states (or values). In order to overcome this
limitation of the propositional semantics, we introduce the (more complicated) se-
mantics induced by De Morgan lattices. They are an extension of the propositional
semantics and consequently cover them. In a semantics induced by a De Morgan
lattice, ADTerms are interpreted as functions whose range is a De Morgan lattice.

Let 〈A,+,×〉 be an algebraic structure defined over a non-empty set A with two
binary operations + and ×. The structure 〈A,+,×〉 is called a distributive lattice
if the operators + and × are associative and commutative and if the following laws
hold: a× (a+ b) = a, a+ (a× b) = a (absorption) and a× (b+ c) = (a× b) + (a× c)
(distributivity of × over +), for a, b, c ∈ A. It is a basic fact in lattice theory that
the last condition is equivalent to its dual, i.e., a+(b×c) = (a+b)×(a+c) [DP90].
Furthermore, it is well-known [Grä03] that if 〈A,+,×〉 is a lattice it can always be
equipped with a canonical partial order �, defined for all a, b ∈ A, by

a � b if and only if a+ b = b. (3.1)

This order is monotone with respect to the operations + and ×, see [DP90].

To introduce the notion of a De Morgan lattice, we extend the notion of a distribu-
tive lattice 〈A,+,×〉 by a unary operation, denoted by ¬, satisfying De Morgan’s
laws and double negation.

3.2 Semantics Induced by a De Morgan Lattice 35

Definition 3.13 (De Morgan lattice) An algebraic structure 〈A,+,×,¬〉 is called
a De Morgan lattice if the substructure 〈A,+,×〉 is a distributive lattice and, for
all a, b ∈ A, we have

¬(a + b) = (¬a) × (¬b), ¬(a× b) = (¬a) + (¬b), ¬(¬a) = a.

We assume that every De Morgan lattice 〈A,+,×,¬〉 contains the neutral el-
ements 0 for + and 1 for ×. This is not a restriction since, using a result of
Pouly [Pou08], it can be easily shown that 〈A,+,×,¬〉 can always be adjoined
with such elements.

Example 3.14 The algebraic structure 〈{0, 1},∨,∧,¬〉 is an example of a De
Morgan lattice. This particular algebra is known as the propositional Boolean
algebra.

Not every De Morgan lattice is a Boolean algebra. In fact, De Morgan lattices are
more general than Boolean algebras, and are, therefore, well-suited to represent
outcomes requiring more than just the two Boolean values. To increase readability,
values of De Morgan lattices are typeset in typewriter font.

Example 3.15 The tuple 〈S = {I, P, C},max,min,¬〉, where I ≤ P ≤ C and ¬I =
C, ¬P = P and ¬C = I is a De Morgan lattice1. Using the values I, P and C,
allows us to distinguish between Ineffective actions (I), Partially effective (P)
and Completely effective (C), respectively. Note that I and C are neutral elements
for max and min, respectively. However, this De Morgan lattice is not a Boolean
algebra with I representing 0 and C representing 1. It does not satisfy the laws of
complements, i.e., for all elements in s ∈ S, the maximum of s and its complement
is the largest element of S and the minimum of s and its complement is the smallest
element. In fact, because max{P,¬P} = P 6= C and min{P,¬P} = P 6= I.

We now introduce De Morgan valuations which are functions represented by AD-
Terms when a semantics induced by a De Morgan lattice is used. As in the case
of the propositional semantics, we assign a propositional variable xb to every ac-
tion b ∈ B.

Definition 3.16 (De Morgan valuation) Let 〈A,+,×,¬〉 be a De Morgan lattice
and let D ⊆ {xb | b ∈ B} be a set of propositional variables. A De Morgan
valuation f with domainD is a function f : {0, 1}D → A that assigns a value f(x) ∈
A to every configuration x ∈ {0, 1}D.

Example 3.17 In case the De Morgan lattice in Definition 3.16 is the propositional
Boolean algebra 〈{0, 1},∨,∧,¬〉, the De Morgan valuations are simply Boolean
functions. This means they are functions of the form f : {0, 1}D → {0, 1}, as defined
in Definition 3.7.

Like in the case for the conjunction and disjunction of Boolean functions, we use
the projection to define the sum and the product of De Morgan valuations.

1It can be verified that the order ≤ coincides with the canonical order given by Equiva-
lence (3.1) when + is instantiated as max.

36 Chapter 3 Semantics

Definition 3.18 (Sum, product and negation of De Morgan valuations) Let the
tuple 〈A,+,×,¬〉 be a De Morgan lattice and let f and g be two De Morgan
valuations with domains D and U , respectively. The sum of f and g (denoted
by f + g) and the product of f and g (denoted by f ×g) are De Morgan valuations
with domain D ∪ U , defined for every x ∈ {0, 1}D∪U by

(f + g)(x) = f(x↓D) + g(x↓U) and (f × g)(x) = f(x↓D) × g(x↓U).

The negation of the De Morgan valuation f (denoted by ¬f) is the De Morgan
valuation with domain D, defined for every x ∈ {0, 1}D by (¬f)(x) = ¬(f(x)).

Example 3.19 Consider the De Morgan lattice 〈{I, P, C},max,min,¬〉 introduced
in Example 3.15. Let f : {0, 1}{y} → {I, P, C} and g : {0, 1}{z} → {I, P, C} be two
De Morgan valuations, given by

f(y = 0) = I, g(z = 0) = I,

f(y = 1) = P, g(z = 1) = C.

Negations of f and g are defined as:

¬f(y = 0) = C, ¬g(z = 0) = C,

¬f(y = 1) = P, ¬g(z = 1) = I.

Table 3.1 illustrates the sum of f and g as well as their product. Note that, in this
case + is equal to max and × is equal to min.

y z f + g = max{f, g} f × g = min{f, g}
0 0 I I

0 1 C I

1 0 P I

1 1 C P

Table 3.1: The sum and product of two De Morgan valuations.

Definition 3.20 (De Morgan ADTerms) Let 〈A,+,×,¬〉 be a De Morgan lattice
and let R be a countable set of variables. For every ADTerm t, a De Morgan
valuation tDM = ft, called a De Morgan ADTerm, is defined as follows. First,
for every basic action b ∈ B we construct a propositional variable xb ∈ R. We
assume that for b1, b2 ∈ B, b1 6= b2 =⇒ xb1 6= xb2 . Next, a De Morgan valuation
is associated with every ADTerm t, as follows. For t1, t2, . . . , tk ∈ TΣ, s ∈ {p, o}
and k ∈ N+, we define recursively

bDM = fb, for b ∈ B, (∨s
k(t1, . . . , tk))DM = t1DM + · · · + tkDM,

(cs(t1, t2))DM = t1DM × ¬t2DM, (∧s
k(t1, . . . , tk))DM = t1DM × · · · × tkDM,

where fb is a De Morgan valuation of the form fb : {0, 1}{xb} → A. In case t is a
pure attack term, the corresponding formula is called a De Morgan attack term.

3.2 Semantics Induced by a De Morgan Lattice 37

If b is a basic action, then the De Morgan valuation with domain {xb} expresses
how the value assigned to the action b changes, depending on whether this action is
present (xb = 1) or absent (xb = 0). With the help of basic De Morgan valuations fb,
we then associated general De Morgan valuations with composed ADTerms in a
recursive way. They are well-defined by associativity of + and ×.

A De Morgan ADTerm by itself is not sufficient to uniquely define a semantics.
The same De Morgan lattice may induce several semantics. In fact, each seman-
tics induced by a De Morgan lattice is fully determined by a De Morgan lat-
tice 〈A,+,×,¬〉 and a given set of De Morgan valuations {fb : {0, 1}{xb} → A | b ∈
B}. Modification of a De Morgan valuation fb results in a different semantics in-
duced by the lattice 〈A,+,×,¬〉. Note that this is not the case in the propositional
semantics, where fb is canonically assumed to be the indicator function.

Recall that the purpose of a semantics for ADTerms is to define which ADTerms
are equivalent. This is achieved with the help of equivalent De Morgan valuations.
Consider a De Morgan lattice 〈A,+,×,¬〉 and two subsets of propositional vari-
ables D,U ⊆ {xb | b ∈ B}. Two De Morgan valuations f and g, with respective
domains D and U , are said to be equivalent (denoted by f ≡ g) if and only if, for
every x ∈ {0, 1}D∪U , we have f(x↓D) = g(x↓U).

Definition 3.21 (Semantics for ADTerms induced by a De Morgan lattice) The
semantics for ADTerms induced by a De Morgan lattice 〈A,+,×,¬〉 and a set of
De Morgan valuations {fb : {0, 1}{xb} → A | b ∈ B} is the equivalence relation ≡DM

on TΣ defined, for all t, t′ ∈ TΣ, by

t ≡DM t′ if and only if tDM = t′DM.

Note that since every Boolean algebra satisfies the properties of a De Morgan
lattice, the propositional semantics introduced in Section 3.1 is also a semantics
induced by a De Morgan lattice:

Remark 3.22 The propositional semantics for ADTerms as introduced in Defi-
nition 3.4 can be described as the semantics induced by instantiating A as the
Boolean algebra 〈{0, 1},∨,∧,¬〉, where a basic action b ∈ B is associated with the
Boolean indicator function fb : {0, 1}{xb} → {0, 1} (see Remark 3.8). Note that the
lattice addition and multiplication can be written as ∨ and ∧ in case of Boolean
functions. We apply Definition 3.21 for all t, t′ ∈ TΣ,

t ≡P t′ if and only if ft = ft′ ,

to obtain an alternative definition for the propositional semantics.

We end this section with a discussion that shows how a semantics induced by a
De Morgan lattice that is not the Boolean algebra 〈{0, 1},∨,∧,¬〉 extends the
expressive capabilities of the propositional semantics. To accomplish this, we make
use of Example 3.19.

First recall that basic actions in the propositional semantics are Boolean functions
of the form fb(xb = v) = v for v ∈ {0, 1} and b ∈ B. Such an interpretation does not
allow us to differentiate between the execution of an action and its effectiveness. In
other words, the propositional semantics assumes that actions which are executed

38 Chapter 3 Semantics

are always completely effective. However, this is rarely the case in a real-life sce-
nario. For instance, the execution of a dictionary attack to guess a password does
not guarantee that the password will be found. The following example illustrates
how to more accurately model such an attack by using a semantics induced by the
De Morgan lattice 〈{I, P, C},max,min,¬〉.

Example 3.23 Let us consider the De Morgan lattice introduced in Example 3.15
and let t = cp(b,∧o(d1, d2)) be an ADTerm. We use De Morgan valuations to
describe efficiency levels of the actions b, d1 and d2. We assume that when the ac-
tions b, d1 and d2 are not executed (xi = 0 for i ∈ {b, d1, d2}), they are Ineffective

(I). We get

fb(xb = 0) = I, fd1(xd1 = 0) = I, fd2(xd2 = 0) = I.

Moreover, executing the actions b and d2 (xi = 1, i ∈ {b, d2}) ensures their
Complete effectiveness (C), but executing the action d1 guarantees its Partial

effectiveness only (P). We get

fb(xb = 1) = C, fd1(xd1 = 1) = P, fd2(xd2 = 1) = C.

The De Morgan valuation associated with t is given by

ft(xb, xd1 , xd2) = min{fb(xb),¬(min{fd1(xd1), fd2(xd2)})}.

This valuation allows us to reason about the effectiveness of the scenario repre-
sented by t. We have

ft(0, 0, 0) = I, ft(0, 1, 0) = I, ft(1, 0, 0) = C, ft(1, 1, 0) = C,

ft(0, 0, 1) = I, ft(0, 1, 1) = I, ft(1, 0, 1) = C, ft(1, 1, 1) = P.

Since the first entry of all elements in f−1
t ({P, C}) is 1, we deduce that the scenario is

at least partially effective for the proponent if the action b is executed, independent
of the opponent’s actions d1 and d2.

3.3 Multiset Semantics (≡M)

In the two semantics considered so far, the refining symbols ∨s and ∧s, for s ∈
{p, o}, have been interpreted with idempotent operators. Therefore, both semantics
assume that the multiplicity of a subgoal is irrelevant. This assumption, however,
may not be desired in all applications of ADTrees. The number of times that an
action needs to be executed, for example, is relevant when considering that every
repeated action takes additional time.

Example 3.24 Consider the scenario illustrated in Figure 2.1. In order to deprive
the attacker of the possibilities to break in through the back door and to break
in through the main door, the defender has to install locks on both doors. Since
the two doors are in two physically distinct locations, reusing the same lock is not
possible in this case.

3.3 Multiset Semantics (≡M) 39

Naturally, instead of adapting the semantics of the ADTree, it would also be possi-
ble to provide two distinct labels for each lock which is to be installed, e.g., “Install
Lock 1” and “Install Lock 2”. However, introducing new node labels has the side-
effect that the model is more specific and a possible reuse of the ADTree is less
likely.

We, therefore, introduce the multiset semantics. It allows us to distinguish between
multiple occurrences of the same action. Thus, it is suitable for analyzing scenar-
ios in which such multiple occurrences of the same subgoal are significant, as in
Example 3.24. The multiset semantics has initially been defined for attack trees
in [MO05]. Our construction extends this framework to ADTrees.

Given a set H , we use P(H) to denote the powerset of H and M(H) to denote
the collection of all multisets of elements in H . We use {|a1, . . . , an|} to denote a
multiset composed of (not necessarily distinct) elements a1, . . . , an. The symbol ⊎
denotes the multiset union.

In the multiset semantics, the ADTerms are interpreted as a set of pairs of the
form (P,O) ∈ M(Bp) × M(Bo) which are called bundles. A bundle (P,O) encodes
how the proponent can achieve his goal: the proponent must perform all actions
present in P while the opponent must not perform any of the actions in O. The set
of bundles corresponding to an ADTerm t is an element of P(M(Bp) × M(Bo)),
denoted by tM. It represents alternative possibilities for the proponent to achieve
his goal. A basic action b of proponent type is interpreted as a singleton bM =
{({|b|}, ∅)} because in order to achieve his goal it is sufficient for the proponent
to execute action b. A basic action b of opponent type is interpreted as bM =
{(∅, {|b|})} because in order for the proponent to be successful, the action b must
not be executed by the opponent. In order to obtain the multiset interpretation of
composed ADTerms, we use the union of sets of bundles (∪) and the distributive
product of sets of bundles (⊗). The distributive product of two sets of bundles S
and Z is defined as the set of bundles

S ⊗ Z = {(PS ⊎ PZ , OS ⊎OZ) | (PS, OS) ∈ S and (PZ , OZ) ∈ Z}.

The distributive product can be extended to any finite number of sets of bundles.
The multiset interpretation tM of a composed ADTerm t is then given by

(∨p
k(t1, . . . , tk))M = t1M ∪ · · · ∪ tkM, (∨o

k(t1, . . . , tk))M = t1M ⊗ · · · ⊗ tkM,

(∧p
k(t1, . . . , tk))M = t1M ⊗ · · · ⊗ tkM, (∧o

k(t1, . . . , tk))M = t1M ∪ · · · ∪ tkM,

(cp(t1, t2))M = t1M ⊗ t2M, (co(t1, t2))M = t1M ∪ t2M.

Let t be an ADTerm and let t′ be one of its subterms. Note that the set of bun-
dles t′M encodes how the proponent of the term t can be successful in the situation
described by subterm t′, regardless of the type of t′. In particular, in order to achieve
a disjunctive goal, the proponent has to achieve at least one of the corresponding
subgoals. Similarly, in order to successfully prevent a conjunctive countermeasure
of the opponent, it is sufficient for the proponent to prevent at least one of the
corresponding subcountermeasures. An analogous reasoning holds for a goal of
the proponent which is conjunctively refined and a disjunctively refined counter-
measure of the opponent. This is the reason why the operator used to define the

40 Chapter 3 Semantics

multiset interpretation of a disjunctively refined goal for one player is the same as
the operator used to define the multiset interpretation of a conjunctively refined
goal for the other player.

Definition 3.25 (Multiset semantics for ADTerms) The multiset semantics for
ADTerms is the equivalence relation on TΣ, denoted by ≡M and defined for
all t, t′ ∈ TΣ by

t ≡M t′ if and only if tM = t′M.

The following example shows that the multiset semantics takes into account mul-
tiple occurrences of the same actions.

Example 3.26 The ADTerms t = cp(b,∧o(d1, d2)) and t′ = cp(∧p(b, b),∧o(d1, d2))
from Example 3.5 have been shown to be equivalent with respect to the proposi-
tional semantics. Their multiset interpretations are tM = {({|b|}, {|d1|}), ({|b|}, {|d2|})}
and t′M = {({|b, b|}, {|d1|}), ({|b, b|}, {|d2|})}. Since tM 6= t′M, the ADTerms t and t′

are not equivalent with respect to the multiset semantics.

By comparing Examples 3.5 and 3.26, we deduce that the partition of TΣ defined
by the multiset semantics does not coincide with the partition defined by the
propositional semantics. A more detailed comparison of these two semantics is
presented in Section 3.5.1.

3.4 Equational Semantics

As discussed in previous sections, the choice of an appropriate semantics depends
on the aspects a security analyst wants to analyze. Such aspects can frequently be
modeled with the help of mathematical properties. For example, if for a modeled
aspect, the order in which the subgoals of conjunctively refined goals are executed
is irrelevant, the conjunctive refinement should be modeled using a commutative
operator. Similarly, if the examined aspect does not distinguish between executing
the same action twice or only once, the corresponding operator should be idem-
potent. In this section, we show how to construct a semantics for ADTerms which
takes a given set of properties into account. The idea is to specify an equivalence
relation on ADTerms through a set of equations expressing the desired properties.
This approach is a generalization of a concept described by Mauw and Oostdijk
in [MO05], which uses a specific set of rewrite rules to encode allowed tree trans-
formations. Our framework is more general since we allow any set of equations to
define an equivalence relation on ADTerms.

Let VAR = VARp ∪ VARo be a set of typed variables. We use capital letters
such as X, Xi, Y and Yi, to denote elements of VAR. We extend the set TΣ

to the set TVAR
Σ of typed ADTerms over the variables in VAR. An equation is a

pair (t, t′) ∈ TVAR
Σ × TVAR

Σ , where t and t′ have the same type. We denote the
equation (t, t′) by t = t′. An algebraic specification for ADTerms is a pair (Σ, E),
where Σ is the AD–signature and E is a set of equations. Given an algebraic
specification (Σ, E), we define the set of syntactic consequences of E as the smallest
subset of TVAR

Σ ×TVAR
Σ containing E and being closed under reflexivity, symmetry,

transitivity, substitutions and contexts. In other words, the equation t = t′ is a

3.5 Axiomatization of Semantics for ADTerms 41

syntactic consequence of E (denoted by E ⊢ (t = t′)) if it can be derived from E
by using the following rules:

• If (t = t′) ∈ E, then E ⊢ (t = t′).

• For every t ∈ TVAR
Σ , E ⊢ (t = t).

• If E ⊢ (t = t′), then E ⊢ (t′ = t).

• If E ⊢ (t = t′) and E ⊢ (t′ = t′′), then E ⊢ (t = t′′).

• If ρ : VAR → TVAR
Σ is a substitution and E ⊢ (t = t′), then E ⊢ (ρ(t) = ρ(t′)).

• If E ⊢ (t = t′) and C[] is a context (i.e., a term with a hole of the same type
as t), then E ⊢ (C[t] = C[t′]).

In the following definition we introduce the notion of equational semantics for
ADTerms.

Definition 3.27 (Equational semantics for ADTerms) The equational semantics
for ADTerms induced by an algebraic specification (Σ, E) is the equivalence rela-
tion ≡E on TΣ, defined by

t ≡E t′ if and only if E ⊢ (t = t′).

With the next example we show how to use the equational semantics.

Example 3.28 Let Symk denote the set of all bijections from {1, . . . , k} to itself.
Consider the equational semantics induced by an algebraic specification (Σ, Ek),
where

Ek = {∨p(X1, . . . , Xk) = ∨p(Xσ(1), . . . , Xσ(k)) | σ ∈ Symk}.

The equations in Ek encode the commutativity of the disjunctive operator for
the proponent. Thus, for the two ADTerms t1 = ∨p(a, b) and t2 = ∨p(b, a), we
have t1 ≡Ek

t2 for k > 1, i.e., t1 and t2 model the same situation when the
semantics ≡Ek

is used and k > 1. In contrast, t′1 = ∧p(a, b) 6≡Ek
t′2 = ∧p(b, a)

because none of the equations in Ek allows us to transform the operator ∧p.

The importance of defining a semantics, given a set of equations, is twofold. First,
equations allow us to encode many of the mathematical properties desired for
analysis of ADTrees. Second, the equations in E model all possible transformations
of ADTerms, which preserve the semantics ≡E . We perform further analysis of the
equational semantics in Chapter 4 where we combine equational semantics with
attributes. In the next section, we use the concept of equational semantics to
axiomatize the propositional and the multiset semantics for ADTerms.

3.5 Axiomatization of Semantics for ADTerms

In this section, we introduce the notion of a complete set of axioms for semantics
for ADTerms. Then we show how we can use complete sets of axioms to compare

42 Chapter 3 Semantics

partitions of the set of all ADTerms corresponding to two different semantics.
Finally, we provide complete sets of axioms for the propositional and the multiset
semantics and prove soundness and completeness of both sets.

We use two different proof strategies to prove completeness of the axiom sets for
the propositional semantics and the multiset semantics. For the multiset semantics,
we employ a standard proof strategy by transforming the equations into a rewrit-
ing system and showing its strong termination as well as confluence. The proof
mainly argues with ADTerms before relating ADTerms to the multiset semantics.
The proof is constructive in that it can easily be turned into an algorithm that
assigns a unique representative to every equivalence class defined by the multiset
semantics. We did not succeed in proving completeness of the set of axioms for
the propositional semantics by following the same strategy. Instead, we first relate
ADTerms to the propositional semantics and then argue using propositional logic.
This proof strategy helps us to explain that the propositional ADTerms correspond
to a subset of all propositional formulas. There are two reasons that the latter proof
strategy is not favorable in the case of the multiset semantics. First, the multiset
semantics has a more intricate syntax. Second, employing the proof strategy we
followed to prove the completeness of the set of axioms for the propositional se-
mantics does not provide term rewrite rules. Having these could be advantageous
when implementing the formalism in a software tool.

3.5.1 The Notion of a Complete Set of Axioms

We start by defining the notion of a complete set of axioms for a semantics for
ADTerms. A complete set of axioms allows us to express which expressions are
algebraically derivable. The resulting set of expressions reflects properties of the
complete set of axioms.

Definition 3.29 (Complete set of axioms) Let (Σ, E) be an algebraic specification
and let ≡ be a semantics for ADTerms. A set E is a complete set of axioms for the
semantics ≡ if and only if ≡ is equal to the equational semantics induced by the
algebraic specification (Σ, E).

Remark 3.30 It follows directly from Definition 3.29 that E is a complete set of
axioms for the equational semantics induced by an algebraic specification (Σ, E).

The importance of having a complete set of axioms for a semantics of ADTerms is
manifold. First, having complete sets of axioms unifies the treatment of different
semantics for ADTrees. Instead of having to argue within different domains, such
as sets of multisets or propositional logics, we can reason with ADTerms over the
AD–signature. Second, the equations of a complete set of axioms typically state
important properties modeled by a semantics, as shown in Example 3.28. We see
in Chapter 4 that this helps us to formally define how to quantitatively analyze
attack–defense scenarios using attributes. Third, knowing a complete set of axioms
is a crucial step in developing algorithms which assign unique representatives to
every equivalence class arising from a semantics. This simplifies the development
of a computer tool that supports the ADTree methodology and can facilitate tree
comparisons. Finally, we can use complete sets of axioms to facilitate a comparison

3.5 Axiomatization of Semantics for ADTerms 43

between different semantics. In the remainder of this section we take a closer look
at this issue.

In order to decide whether properties of ADTerms interpreted using one semantics
can be exploited to reason about ADTerms within a different semantics, we need
to compare the corresponding partitions of the set of ADTerms. To this end, we
define the notions of finer and coarser semantics. Intuitively, given two semantics,
we say that one is finer than the other if it partitions the set of ADTerms in a finer
way.

Definition 3.31 (Finer semantics, coarser semantics) Let ≡1 and ≡2 be two se-
mantics for ADTerms. The semantics ≡1 is finer than the semantics ≡2 if and only
if ≡1⊆≡2, i.e., for all t, t′ ∈ TΣ, t ≡1 t

′ ⇒ t ≡2 t
′. If ≡1 is finer than ≡2, we also

say that ≡2 is coarser than ≡1.

The fact that ADTerms which are equivalent according to a semantics which is
finer are also equivalent according to any semantics which is coarser, allows us to
exploit properties of a finer semantics into any coarser semantics.

In general, given two semantics for ADTerms, it is not clear how to decide whether
they are comparable and if so, which one is finer. However, this task may become as
trivial as comparing sets if we are able to appropriately axiomatize both semantics
using complete sets of axioms.

Theorem 3.32 Let ≡1 and ≡2 be two semantics for ADTerms with complete sets
of axioms E1 and E2, respectively. If E1 ⊆ E2, then ≡1 is finer than ≡2.

Proof. An immediate consequence of E1 ⊆ E2 is that every equation derivable
from E1 is also derivable from E2, which proves the theorem.

In Sections 3.5.2 and 3.5.3, we construct complete sets of axioms for the proposi-
tional (EP) and the multiset semantics (EM), respectively. These sets help us to
compare the two semantics. For instance, the idempotent laws hold in the propo-
sitional but not in the multiset semantics. It turns out that, in general, all axioms
in the multiset semantics also hold in the propositional semantics.

Theorem 3.33 The multiset semantics for ADTerms is finer than the proposi-
tional semantics for ADTerms.

Proof. It is sufficient to consider the complete sets of axioms EP for the proposi-
tional semantics and EM for the multiset semantics, which we introduce below in
Theorems 3.34 and 3.37, respectively. We observe that EM ⊆ EP , which according
to Theorem 3.32 finishes the proof.

Note that the propositional semantics is not finer than the multiset semantics, as
shown by Examples 3.5 and 3.26. Thus, these two semantics are not equal.

As mentioned earlier, the De Morgan semantics are, in fact, a class of semantics.
A semantics needs to specify the De Morgan lattice and the De Morgan valuations
associated to the involved basic actions. We do not provide a complete set of
axioms for other De Morgan semantics than the propositional semantics. However,
using the results from the next section, we are, nevertheless, able to relate any

44 Chapter 3 Semantics

other semantics induced by a De Morgan lattice to the propositional semantics, as
shown in Theorem 3.36.

3.5.2 A Complete Set of Axioms for ≡P

In this section, we give a complete set of axioms for the propositional semantics.

Theorem 3.34 The following set of equations, denoted by EP , is a complete set
of axioms for the propositional semantics.2

∨s (X1, . . . , Xk) = ∨s(Xσ(1), . . . , Xσ(k)), for all σ ∈ Symk (Es
1)

∧s (X1, . . . , Xk) = ∧s(Xσ(1), . . . , Xσ(k)), for all σ ∈ Symk (Es
2)

∨s (X1, . . . , Xk,∨
s(Y1, . . . , Yn)) = ∨s(X1, . . . , Xk, Y1, . . . , Yn) (Es

3)

∧s (X1, . . . , Xk,∧
s(Y1, . . . , Yn)) = ∧s(X1, . . . , Xk, Y1, . . . , Yn) (Es

4)

∨s (X) = X (Es
5)

∧s (X) = X (Es
6)

∨s (X,∧s(X,X1, . . . , Xk)) = X (Es
7)

∧s (X,∨s(X,X1, . . . , Xk)) = X (Es
8)

∨s (X,∧s(X1, . . . , Xk)) = ∧s(∨s(X,X1), . . . ,∨s(X,Xk)) (Es
9)

∧s (X,∨s(X1, . . . , Xk)) = ∨s(∧s(X,X1), . . . ,∧
s(X,Xk)) (Es

10)

∨s (X,X,X1, . . . , Xk) = ∨s(X,X1, . . . , Xk) (Es
11)

∧s (X,X,X1, . . . , Xk) = ∧s(X,X1, . . . , Xk) (Es
12)

cs(∨s(X1, . . . , Xk), X) = ∨s(cs(X1, X), . . . , cs(Xk, X)) (Es
13)

cs(∧s(X1, . . . , Xk), X) = ∧s(cs(X1, X), . . . , cs(Xk, X)) (Es
14)

cs(X,∨s(X1, . . .Xk)) = ∧s(cs(X,X1), . . . , cs(X,Xk)) (Es
15)

cs(X,∧s(X1, . . .Xk)) = ∨s(cs(X,X1), . . . , cs(X,Xk)) (Es
16)

cs(cs(X,X1), X2) = cs(X,∨s(X1, X2)) (Es
17)

cs(X, cs(X1, X2)) = ∨s(cs(X,X1),∧s(X,X2)) (Es
18)

∨s (cs(X1, Y), X2, . . . , Xk) = cs(∨s(X1, . . . , Xk), cs(Y,∨s(X2, . . . , Xk))) (Es
19)

∧s (cs(X1, Y), X2, . . . , Xk) = cs(∧s(X1, . . . , Xk), Y) (Es
20)

∨s (cs(X, Y), X) = X (Es
21)

∧s (cs(X, Y), X) = cs(X, Y), (Es
22)

where X, Y,Xi, Yj ∈ VAR, i, j, k, n ∈ N+, s ∈ {p, o} and Symk denotes the set of
all bijections from {1, . . . , k} to itself.

Outline of the proof. In order to prove Theorem 3.34, we define the notion of a
complete set of axioms for a set of propositional formulas. We reduce the problem
of finding a complete set of axioms for the propositional semantics to the problem
of finding a complete set of axioms for the set of all propositional ADTerms. The
outline of the proof is as follows:

2We remark that the set of axioms given in Theorem 3.34 is, in fact, an axiom scheme [Pot04].
This is unavoidable because the AD–signature contains infinitely many function symbols modeled
using unranked functions.

3.5 Axiomatization of Semantics for ADTerms 45

1. By reformulating equations in EP , we define a complete set G of axioms for
the set of propositional ADTerms.

2. We show using axioms in G that every propositional ADTerm can be trans-
formed into a disjunctive form.

3. We transform the obtained disjunctive forms further into minimal disjunctive
forms.

4. We prove that these minimal disjunctive forms are unique modulo associa-
tivity and commutativity.

The above considerations help us to conclude that two ADTerms are equivalent
with respect to the propositional semantics if and only if the minimal disjunctive
forms for the corresponding propositional ADTerms are equal modulo associativ-
ity and commutativity. This finishes the proof since the axioms in G correspond
exactly to the axiom schemes in EP when each equation is transformed into the
propositional semantics.

In the remainder of this section, we give details for Steps 1–4.

Step 1: We first define a grammar that generates all propositional ADTerms, which
are defined in Section 3.1. Let XG = {xb | b ∈ Bp} and Y G = {yb | b ∈ Bo} be
two sets of propositional variables that correspond to the basic actions in the
propositional semantics. We have XG ∩Y G = ∅. Consider the propositional formu-
las over XG ∪ Y G generated by the following two grammars, denoted by ADT P

and ADT N . The grammars have the start symbol P and N , respectively:

P : XG | P ∨ P | P ∧ P | P ∧ ¬N

N : Y G | N ∨N | N ∧N | N ∧ ¬P.
(ADT)

We define ADT as union of ADT P and ADT N and write ψ ∈ ADT if ψ is gen-
erated by ADT . Thus, we abuse notation and let ADT denote both the grammar
and the set of formulas generated by the grammar. It is easy to see that t ∈ T

p
Σ

(resp. To
Σ) if and only if there exists a formula ψ ∈ ADT P (resp. φ ∈ ADT N),

such that tP = ψ (resp. tP = φ) modulo associativity.

Let E be a set of equations of the form ξ = ζ , where ξ and ζ are propositional
formulas and let E be a set of propositional formulas. We say that E is a complete
set of axioms for E if and only if two propositionally equivalent formulas in E can
be transformed into each other by applying substitutions and context to equations
in E. The problem of finding a complete set of axioms for the propositional seman-
tics can be reduced to finding a complete set of axioms for the set of propositional
formulas generated by ADT .

Lemma 3.35 Let X, Y and Z be propositional variables. The following set G,
where ψ ⋆ φ = ψ ∧ ¬φ for propositional formulas ψ and φ over the variables X, Y

46 Chapter 3 Semantics

and Z, is a complete set of axioms for ADT .3

X ∨ Y = Y ∨X X ∧ Y = Y ∧X

X ∨ (Y ∨ Z) = (X ∨ Y) ∨ Z X ∧ (Y ∧ Z) = (X ∧ Y) ∧ Z

∨ (X) = X ∧ (X) = X

X ∨ (X ∧ Y) = X X ∧ (X ∨ Y) = X

X ∨ (Y ∧ Z) = (X ∨ Y) ∧ (X ∨ Z) X ∧ (Y ∨ Z) = (X ∧ Y) ∨ (X ∧ Z)

X ∨X = X X ∧X = X

(X ∨ Y) ⋆ Z = (X ⋆ Z) ∨ (Y ⋆ Z) (X ∧ Y) ⋆ Z = (X ⋆ Z) ∧ (Y ⋆ Z)

X ⋆ (Y ∨ Z) = (X ⋆ Y) ∧ (X ⋆ Z) X ⋆ (Y ∧ Z) = (X ⋆ Y) ∨ (X ⋆ Z)

(X ⋆ Y) ⋆ Z = X ⋆ (Y ∨ Z) X ⋆ (Y ⋆ Z) = (X ⋆ Y) ∨ (X ∧ Z)

(X ⋆ Y) ∨ Z = (X ∨ Z) ⋆ (Y ⋆ Z) (X ⋆ Y) ∧ Z = (X ∧ Z) ⋆ Y

(X ⋆ Y) ∨X = X (X ⋆ Y) ∧X = (X ⋆ Y).

Proof. For every axiom ξ = ζ in G, we have ξ ≈ ζ . Therefore, if a formula ψ′ is
obtained from a formula ψ by using axioms in G, we have ψ ≈ ψ′. This proves
soundness, i.e., the transformations rules provide only formulas that are valid with
respect to its semantics.

Proving completeness is done by showing that, using axioms in G, every for-
mula ψ ∈ ADT can be transformed into a minimal disjunctive form, which is
denoted by mdf(ψ). In Steps 2–4 below, we prove that this minimal disjunctive
form is unique up to commutativity and associativity of ∨ and ∧. We denote this
by =AC . In other words, we show that, for ψ, ψ′ ∈ ADT ,

ψ ≈ ψ′ if and only if mdf(ψ) =AC mdf(ψ′) (3.2)

holds.

Step 2: Note that for all ψ ∈ ADT P and φ ∈ ADT N , we have that ψ 6≈ φ
because XG ∩ Y G = ∅. To define minimal disjunctive forms for the formulas
in ADT , we first introduce a grammar DADT generating propositional formu-
las in disjunctive form and we show that every formula generated by ADT can
be transformed, using axioms in G, into an equivalent formula in disjunctive form,
generated by DADT . We later use these disjunctive forms to obtain minimal forms.

Let the following grammars be denoted by DADT P and DADT N , where the start
symbols are BP and BN , respectively:

BP : KP | KP ⋆ DN | BP ∨BP

KP : XG | KP ∧KP

DN : Y G | DN ∨DN

BN : KN | KN ⋆ DP | BN ∨ BN

KN : Y G | KN ∧KN

DP : XG | DP ∨DP .

(DADT)

3Note that contrary to the set EP , the set G is finite. The reduction of the number of equations
is made possible because the unranked function symbols ∨s and ∧s, for s ∈ {p, o}, are interpreted
with the associative operators ∨ and ∧.

3.5 Axiomatization of Semantics for ADTerms 47

Like before, we define the union DADT = DADT P ∪ DADT N . It is clear that
every formula generated by DADT is also generated by ADT . This can be seen
since every generation rule with index P can be replicated by the generation rule P
(in ADT P) and every generation rule with index N can be replicated by the
generation rule N (in ADT N). To prove the converse, we show that, for every ψ ∈
ADT P (resp. φ ∈ ADT N), there exists an equivalent disjunctive formula of the
form ψ ∈ DADT P (resp. φ ∈ DADT N). The disjunctive formula is obtained from
start symbol P (resp. N) by only using axioms in G. This is proven by induction
on the structure of P (resp. N). For this it suffices to show the following two
statements for all S ∈ {P,N}.

• If ψ1, ψ2 ∈ DADT S, then ψ1 ∧ ψ2 can be transformed, using axioms in G,
into a formula of the form ψ ∈ DADT S.

• If ψ1, ψ2 ∈ DADT S, then ψ1 ⋆ ψ2 can be transformed, using axioms in G,
into a formula of the form ψ ∈ DADT S.

The statements follow by structural induction.

Let I ⊆ N be a non-empty, finite index set. We see that every formula ψ ∈ DADT P

is in the following disjunctive form.

ψ =
∨

k∈I

αk ⋆ βk,

where αk = (xk,1 ∧ · · · ∧ xk,u) and βk = (yk,1 ∨ · · · ∨ yk,l), for some xk,1, . . . , xk,u ∈
XG, yk,1, . . . , yk,l ∈ Y G, u ≥ 1 and l ≥ 0. (A similar disjunctive form exists
for φ ∈ DADT N .)

Step 3: Our goal is now to minimize the obtained disjunctive forms. We show that,
using axioms in G, we can transform every ψ ∈ ADT P into an equivalent formula,
denoted by mdf(P), which is of the form

mdf(P) =
∨

k∈I

αk ⋆ βk,

where αk = (xk,1 ∧ · · · ∧ xk,u), βk = (yk,1 ∨ · · · ∨ yk,l) and for all k, k′ ∈ I, k 6= k′ we
have αk′ ⋆ βk′ does not imply αk ⋆ βk and for i 6= j we have xk,i 6= xk,j and yk,i 6=
yk,j. We proceed by contraposition. We already know that, by using axioms in G,
every ψ ∈ ADT P can be transformed into the formula ψ ∈ DADT P . Assume
that ψ =

∨
k∈I αk ⋆ βk is not minimal. This means that either there exist k, k′ ∈ I,

such that αk′⋆βk′ implies αk⋆βk or there exists k ∈ I and i 6= j, such that xk,i = xk,j

or yk,i = yk,j. In the latter case, we minimize the formula with the help of the
idempotence laws, i.e., X ∨ X = X or X ∧ X = X. From [11KPS], we know that
every formula ψ represents a monotone Boolean function, hence, the former case
may only happen if, for αk = (xk,1∧· · ·∧xk,u), βk = (yk,1∨· · ·∨yk,l), αk′ = (xbk′

1
∧· · ·∧

xbk′
u
) and βk′ = (ybk′

1
∨ · · · ∨ ybk′

l
), it holds that {xk,1, . . . , xk,u} ⊆ {xbk′

1
, . . . , xbk′

u
}

and {yk,1, . . . , yk,l} ⊆ {ybk′
1
, . . . , ybk′

l
}. We now sketch how to minimize ψ, using

axioms in G, in all possible cases. For ease of notation only exemplify the procedure
and assume that αk = xb, αk′ = xb ∧xb′ , βk = yb and βk′ = yb ∨yb′ , unless otherwise
stated.

48 Chapter 3 Semantics

a) If αk ⋆ βk = αk′ ⋆ βk′, then (αk ⋆ βk) ∨ (αk′ ⋆ βk′) can be reduced to αk′ ⋆ βk′ by
using idempotence of ∨.

b) If {yk,1, . . . , yk,l} 6= ∅, the following scheme can be used:

(αk ⋆ βk) ∨ (αk′ ⋆ βk′)

= (xb ⋆ yb) ∨ ((xb ∧ xb′) ⋆ (yb ∨ yb′))

= (xb ⋆ yb) ∨ ((xb ⋆ (yb ∨ yb′)) ∧ (xb′ ⋆ (yb ∨ yb′)))

= (xb ⋆ yb) ∨ ((xb ⋆ yb) ∧ ((xb ⋆ yb′) ∧ (xb′ ⋆ yb) ∧ (xb′ ⋆ yb′)))

= (xb ⋆ yb)

= αk ⋆ βk.

c) If {yk,1, . . . , yk,l} = ∅ and {ybk′
1
, . . . , ybk′

l
} 6= ∅, the following scheme can be used:

αk ∨ (αk′ ⋆ βk′) = xb ∨ ((xb ∧ xb′) ⋆ yb) = xb ∨ ((xb ⋆ yb) ∧ (xb′ ⋆ yb))

= (xb ∨ (xb ⋆ yb)) ∧ (xb ∨ (xb′ ⋆ yb)) = xb ∧ (xb ∨ (xb′ ⋆ yb))

= xb = αk.

d) If {yk,1, . . . , yk,l} = ∅ and {ybk′
1
, . . . , ybk′

l
} = ∅, the following scheme can be used:

αk ∨ αk′ = xb ∨ (xb ∧ xb′) = xb = αk.

Step 4: It remains to be shown that two minimal disjunctive forms are proposition-
ally equivalent if and only if they are equal modulo associativity and commutativity.
This follows from the fact that formulas generated by the grammar ADT represent
monotone Boolean functions, which have a unique minimal DNF representation
modulo associativity and commutativity (see [CH11]). Hence, formulas in minimal
disjunctive forms are, in fact, unique modulo associativity and commutativity. This
ends the proof of Equivalence (3.2) and, hence, the proof of Lemma 3.35.

Proof of Theorem 3.34. We recapitulate that Steps 1–4 show soundness and com-
pleteness of each axiom in G, defined in Lemma 3.35. Since G corresponds exactly
to the axiom schemes in EP when the axiom schemes are transformed into the
propositional semantics, this finishes the proof.

The complete set of axioms EP introduced in Theorem 3.34 allows us to compare
the propositional semantics (Definition 3.4) with other semantics induced by De
Morgan lattices (Definition 3.21).

Theorem 3.36 Let ≡P be the propositional semantics and let ≡DM be a semantics
induced by a De Morgan lattice. The propositional semantics ≡P is finer than ≡DM.

Proof. It is sufficient to notice that every equation in the complete set of axioms EP

for the propositional semantics is also valid for ≡DM. According to Theorem 3.32,
this proves that ≡P is finer than ≡DM.

In other words, Theorem 3.36 states that the propositional semantics is the finest
amongst all semantics induced by De Morgan lattices.

3.5 Axiomatization of Semantics for ADTerms 49

3.5.3 A Complete Set of Axioms for ≡M

We now give a complete set of axioms for the multiset semantics.

Theorem 3.37 The following set, denoted by EM, is a complete set of axioms for
the multiset semantics for ADTerms of proponent type.

{(Es
1), (Es

2), (Es
3), (Es

4), (Es
5), (Es

6), (Eo
9), (Ep

10), (E
p
11), (Eo

12),

(Ep
13), (Ep

16), (E
p
17), (Ep

18), (E
o
19), (Ep

20)},

where X, Y,Xi, Yj ∈ VAR, i, j, k, n ∈ N+, s ∈ {p, o} and Symk denotes the set of
all bijections from {1, . . . , k} to itself.

Note that contrary to the equations in the set EP , some of the equations in EM

only hold for either the proponent, e.g., (Ep
10), or the opponent, e.g., (Eo

9). We
remark that by switching the type in the ten axioms containing p and o, we yield
a set of axioms for the multiset semantics for the ADTerms of opponent type.

Proof. We make use of class rewriting by setting up an equational rewriting sys-
tem. Then we show that the system is strongly terminating and class confluent,
which guarantees that the system has unique normal forms modulo the given equa-
tions, see [Pla93].4 Finally, we show how the normal forms can be used to prove
completeness of the axioms. The outline of the proof is as follows:

1. We transform EM into an equational term rewriting system R.

2. We provide expressions which describe the normal forms of R.

3. We show strong termination of R.

4. We show confluence of R.

5. We prove that the expressions given in Step 2 describe the normal forms of R.

6. Using the normal forms, we show that the multiset semantics (≡M) is equal
to the equational semantics induced by EM (≡EM

).

Step 1: In order to define an equational term rewriting system (ETRS), see [FJN93],
we divide the equations in EM into two parts. Equations (Es

1)–(Es
6) express com-

mutativity and associativity of the operators ∨s and ∧s and serve in our system
as equations. We turn the remaining ten equations into rewrite rules by directing
them from left to right. By R we denote the ETRS composed of Equations (Es

1)–
(Es

6) and directed rewrite rules corresponding to the Equations (Eo
9), (Ep

10), (Ep
11),

(Eo
12), (Ep

13), (Ep
16), (Ep

17), (Ep
18), (Eo

19), (Ep
20).

Step 2: We introduce the operator Cp to ease notation. Let M = {|t1, . . . , tm|}, ti ∈
T

p
Σ, for i ∈ {1, . . . , m} and m ∈ N+, be a multiset of ADTerms of proponent type.

4The notion of class rewriting and class confluence correspond to the notions of rewriting and
confluence when rewiring equivalence classes instead of unique expressions.

50 Chapter 3 Semantics

Moreover, let M ′ = {|t′1, . . . , t
′
l|}, t′j ∈ To

Σ, for j ∈ {1, . . . , l} and l ∈ N, be a multiset
of ADTerms of opponent type. The operator Cp is defined by

Cp : M(Tp
Σ) × M(To

Σ) → T
p
Σ,

(M,M ′) 7→ cp(∧p(t1, . . . , tm),∨o(t′1, . . . , t
′
l)).

The operator is well-defined due to associativity and commutativity. This is guaran-
teed by the undirected Equations (Es

1)–(Es
6) and we leave out the precise technical

details.

With the help of this operator, we define expressions which serve as normal forms
for R. Let I ⊆ N be a nonempty index set. For every k ∈ I, let Bk be a finite
multiset of basic actions of the proponent, such that |Bk| ≥ 1 and let Ck be a finite
multiset of basic actions of the opponent, such that |Ck| ≥ 0. Then, the following
expressions represent ADTerms of the proponent which are in normal form with
respect to R ∨p

k∈I

Cp(Bk, Ck), (3.3)

where
∨p

represents the unranked function symbol (∨p
k)k∈I . Moreover, we require

that, for k 6= k′, we have (Bk, Ck) 6= (Bk′, Ck′).

Step 3: We prove strong termination of R with the help of the AProVE soft-
ware tool [RWT13]. AProVE can handle ETRS, but it cannot handle unranked
functions. In order to overcome this problem, we use currying (see [Sch24]). We
create curried versions of ∨s and ∧s, which are unary functions, denoted as ∨s

cu

and ∧s
cu, respectively. A specific list of arguments of an unranked function would,

for example, be encoded in the following way: for the expression ∨s(a, b, c), we
write ∨s

cu(v(v(u(a), u(b)), u(c))). Consequently, due to currying, we add the follow-
ing rewrite rules ∨s

cu(v(x, y)) → ∨s(∨s
cu(x),∨s

cu(y)) and ∨s
cu(u(x)) → x and similar

rules for ∧s.

We input the ETRS in AProVE using the syntax that was developed for the com-
petitions of the Workshop on Termination (see [MRZ05]). Due to input restrictions
in AProVE, the syntax, given in Figure 3.3, uses the transformations a = ∨p, b =
∨o, c = ∧p, d = ∧o, e = cp, f = co, g = ∨p

cu, h = ∨o
cu, k = ∧p

cu, l = ∧o
cu, v = v, u = u.

Figure 3.3 details the input to the software tool. It can be understood in the
following way: The line THEORY together with the first four lines of rewrite rules
correspond to Equations (Es

1)–(Es
6) and represent associativity, commutativity and

currying of the operators ∨s and ∧s. The other rules correspond to the remaining
ten equations. Briefly summarized, the tool provides the following output: Strong
termination of R is shown by multiple application of polynomial interpretation and
removal of redundant rewrite rules.

Step 4: To prove confluence of R, it suffices to show that all critical pairs are join-
able. We prove the joinability with the help of the software tool TTT2, see [KSZM13].
Unfortunately TTT2 cannot handle equational rewriting. We circumvent this prob-
lem by adding one rewrite rule for commutativity and two for associativity for
each of the binary operators, as shown in Figure 3.4. As output, we obtain that all
critical pairs are joinable.

Step 5: We show that all proponent ADTerms represented by Expression (3.3) are
irreducible and that all other ADTerms are reducible.

3.5 Axiomatization of Semantics for ADTerms 51

(VAR x y z)

(THEORY (AC a b c d))

(RULES

g(v(x, y)) → a(g(x), g(y)) h(v(x, y)) → b(h(x), h(y))

k(v(x, y)) → c(k(x), k(y)) l(v(x, y)) → d(l(x), l(y))

g(u(x)) → x h(u(x)) → x

k(u(x)) → x l(u(x)) → x

c(x, a(y, z)) → a(c(x, y), c(x, z)) b(x, d(y, z)) → d(b(x, y), b(x, z))

a(x, x) → x d(x, x) → x

e(e(x, y), z) → e(x, b(y, z)) c(x, e(y, z)) → e(c(x, y), z)

e(a(x, y), z) → a(e(x, z), e(y, z)) e(x, d(y, z)) → a(e(x, y), e(x, z))

e(x, f(y, z)) → a(e(x, y), c(x, z)) b(x, f(y, z)) → f(b(x, y), e(z, x))

)

Figure 3.3: An equational term rewriting system in the syntax of the Workshop on
Termination that proves termination of the rewrite rules from Theorem 3.37.

a(x, y) → a(y, x) a(x, a(y, z)) → a(a(x, y), z) a(a(x, y), z) → a(x, a(y, z))

b(x, y) → b(y, x) b(x, b(y, z)) → b(b(x, y), z) b(b(x, y), z) → b(x, b(y, z))

c(x, y) → c(y, x) c(x, c(y, z)) → c(c(x, y), z) c(c(x, y), z) → c(x, c(y, z))

d(x, y) → d(y, x) d(x, d(y, z)) → d(d(x, y), z) d(d(x, y), z) → d(x, d(y, z))

Figure 3.4: Additional rewrite rules that have to be added to the input of AProVE,
due to conversion of equations into rewrite rules.

If the symbol ∨p exists in an ADTerm represented by Expression (3.3), it is always
the root symbol. For these ADTerms, it is easily seen that, the only rewrite rule
corresponding to Equation (Ep

11) has ∨p as the root symbol on the left-hand side.
However, an ADTerm can only be rewritten using this rewrite rule if the arguments
of ∨p are not distinct, which is specifically excluded in the ADTerms represented
by Expression (3.3).

The ADTerms represented by Expression (3.3) that do not contain ∨p, have ei-
ther ∧p or cp as the root symbol. In the former case, the expressions are irreducible.
In the latter case, the rewrite rules corresponding to Equations (Ep

13), (Ep
16), (Ep

17)
and (Ep

18) may be applicable because they contain ∨p. In these rules the other oc-
curring operators are cp,∨p,∧o and co, respectively. None of these, however, appear
in the ADTerms represented by Expression (3.3). Hence, we conclude that none of
the ADTerms represented by Expression (3.3) can be reduced.

Next we show that every proponent ADTerm which is not represented by Expres-

52 Chapter 3 Semantics

sion (3.3) can be rewritten. First, we remark that the ADTerms represented by
Expression (3.3) are of proponent type only. Suppose a sub-ADTerm to be rewrit-
ten is of opponent type. Then it is either a subterm of an ADTerm of proponent
type, or already excluded by the theorem. Since cp is the only operator that takes
an ADTerm of opponent type and outputs an ADTerm of proponent type, we
know that if there exists a subterm of opponent type, the complete ADTerm must
contain cp.

We classify the ADTerms with respect to the number of (not necessarily distinct)
constants they contain.

ADTerms with one constant They can be divided into two classes: ADTerms
of proponent type and ADTerms of opponent type. The former are in normal form,
the latter are not covered by the theorem since they are ADTerms of opponent type.

ADTerms with two constants We also subdivide ADTerms with two con-
stants into ADTerms opponent type and ADTerms of proponent type. The AD-
Terms in the first subclass again are ADTerms of opponent type and not covered
by the theorem. In the second subclass, an ADTerm is either in normal form or it
is of the form ∨p(b, b). Then, the rewrite rule corresponding to Equation (Ep

11) can
be used.

ADTerms with three or more constants They are classified as follows:

a) ADTerms that contain co or ∧o. These are either of opponent type (and, there-
fore, not covered by the theorem) or can be rewritten using the rewrite rules
corresponding to Equations (Ep

9), (Eo
12), (Ep

16), (Ep
18) or (Eo

19).

b) ADTerms that contain a nested ∨p. These are either of opponent type or can
be rewritten using the rewrite rules corresponding to Equations (Ep

10) or (Ep
11).

c) ADTerms that contain a cp which is not preceded by a ∨p operator. These
terms are either of opponent type or can be rewritten using the rewrite rules
corresponding to Equations (Ep

10), (Ep
13), (Ep

17) or (Ep
20).

d) All remaining ADTerms. They are in normal form or contain at most one func-
tional symbol ◦ in {∨p,∧p,∨o}, which may appear several times. In the case
were ◦ = ∨o the ADTerm is of opponent type, in case ◦ = ∧p it is actually
already in normal form and in case ◦ = ∨p it can be rewritten if the rewrite
rule corresponding to Equation (Ep

11) can be applied otherwise it is already in
normal form.

Step 6: Together Steps 1–5 show that R is a convergent ETRS with the unique
normal forms represented by Expression (3.3). It remains to be shown that the
equations EM, are sound and complete with respect to the multiset semantics.
We can easily verify soundness by proving that every equation in EM holds in the
multiset semantics. In other words, for all t, t′ ∈ T

p
Σ, it holds that from t ≡EM

t′

it follows that tM = t′M. This is essentially due to the fact 〈M,∪,⊗〉 forms a
semiring. For example, Equation (Ep

20) concretely yields:

∧p(x, cp(y, z))M = xM ⊗ (yM ⊗ zM) = (xM ⊗ yM) ⊗ zM = cp(∧p(x, y), z)M.

3.5 Axiomatization of Semantics for ADTerms 53

All other cases are similar.

Finally, we prove completeness by showing that, for t, t′ ∈ T
p
Σ, from tM = t′M it fol-

lows that t ≡EM
t′. To facilitate reasoning, let NF(t) and NF(t′) denote the normal

forms obtained by R, represented by Expression (3.3), in other words, NF(t) ≡EM
t

and NF(t′) ≡EM
t′. Since the elements considered for the multiset semantics are

sets of pairs of multisets, there exists a one-to-one correspondence between such
sets of pairs of multisets and the normal forms given by the ADTerm represented by
Expression (3.3): Each pair of multisets is mapped to a pair (Bk, Ck) which corre-
sponds to ADTerms in normal form, as shown in Steps 2–5. The pairs (Bk, Ck) are
mutually different for different indices k because Cp is injective modulo associativ-
ity and commutative i.e., we map different sets to different elements. We conclude
that given tM = t′M, it follows that NF(t) = NF(t′). Consequently, from tM = t′M,
it follows that t ≡EM

NF(t) = NF(t′) ≡EM
t′, which concludes the proof of Theo-

rem 3.37.

4

Quantitative Analysis

Graphical visualization and interpretation of potential attacks and possible coun-
termeasures constitute a first step towards systematic security analysis. A potential
next step is to amend the model with quantitative analysis, meaning to add nu-
merical values to the model. When performing quantitative security analysis, we
ask questions related to specific aspects or properties that influence the security of
a system or a company. These questions may be binary (i.e., yes/no?), e.g., “Is the
attack realizable?” or may concern physical or temporal aspects, e.g., “What are
the minimal costs of successfully attacking a system?” or “How long does it take
to detect the attack?” We answer these questions with the help of attributes. At-
tributes provide a powerful analysis tool for vulnerability scenarios. They express
a particular property of an attack–defense scenario.

To quantify an attribute, we associate attribute values with the nodes of an AD-
Tree. Then, these basic values are used to determine a value for the entire scenario.
For some questions, such as, “What is the minimal skill level that the attacker needs
in order to execute an attack?” these basic values can be provided more easily than
for other questions, such as, “How probable is a given attack to succeed?” If known,
the basic values are assigned directly, otherwise they are estimated by experts or
deduced from historical knowledge on or statistical data about similar attacks or
defenses.

In this chapter, we first provide an overview of existing attributes in the literature
and elaborate on what needs to be considered when evaluating an attribute value
for a scenario in Section 4.1. We then formally introduce attributes on ADTrees
in Section 4.2. Section 4.3 examines connections between attributes and seman-
tics. Section 4.4 advances a classification of attributes arising in practice. This
classification supports users of the attack–defense tree methodology in finding an
adequate formalization for attributes they are interested in. The chapter concludes
in Section 4.5 describing different ways to construct new attributes.

4.1 Historical Overview of Attributes

Before we formalize the notion of quantitative analysis with the help of ADTrees,
we provide a historical perspective. We argue that rigorous formalization is a pre-
requisite for accurate numerical analysis. In the literature, quantitative measures
are generally called attributes or metrics. Some attributes, for example, costs
or probability, appear frequently in the context of attack trees, others, such as
severity or response time can rarely be found. For readability, we always write
names of attributes in bold font.

55

56 Chapter 4 Quantitative Analysis

4.1.1 Attributes for Attack Trees

In [SSSW98]5, Salter et al. propose to decorate attack trees with values express-
ing the component’s costs in an attempt to deduce the cheapest attack for the
modeled scenario. Similarly they provide values for other attributes such as prob-
ability, severity, consequence to derive the most probable, the most severe and
the most consequential attack. They also suggest using the attributes skill level
and impact to determine the attack with the highest required skill level or impact.
According to Schneier [SSSW98,Sch99], all of these attributes can be combined or
conditioned in order to, for example, identify the cheapest low-risk attack, attacks
that cost less than a given amount of money or cheap, highly successful attacks
where only medium skill is needed. Other researchers have extended this catalog of
attributes further. For example, Edge et al. [EDRM06] introduce protection costs.
Byres et al. [BFM04] use detectability to illustrate how easily a defender can
discover an attack and difficulty which specifies the needed skill of the attacker.
Henniger et al. [HAF+09] suggest attack time, to model the amount of time
needed to perform an attack and consider it to be independent of an attacker’s
skill, costs or resources. They also suggest combining a set of attributes, namely
elapsed time, expertise, knowledge of system, window of opportunity
and required equipment in order to deduce the required attack potential.
Fung et al. [FCW+05] show how the difficulty level can be used to estimate
the scenario’s survivability. Buldas et al. [BLP+06] define costs of an attack,
probability of success and expected penalty of a successful as well as of an
unsuccessful attack to derive the expected outcome of the attacker. Later Jürgen-
son and Willemson [JW08] combine the attributes costs, probability of success
and penalty differently to obtain an exact expected outcome attribute that also
respects the propositional semantics as defined by Mauw and Oostdijk [MO05].

4.1.2 Attributes for Defensive Aspects

Traditionally, attack trees only consider attributes directly related to attacks or
attackers. With the advent of graphical formalisms that consider protections, such
as protections trees, see Section 7.4.3, defense trees, see Section 7.4.3, and natu-
rally ADTrees, defensive aspects have been included in quantitative analysis. Many
attack-related attributes can be considered for attack–defense scenarios as well. For
instance, the costs attribute can refer to the costs of performing an attack or the
costs of installing a defense [EDRM06]. Similarly, the probability of occur-
rence [RKT12a], the probability of success [RKT12a] and the required skill
level [ERG+07] can be adapted. Other attributes, such as the number of pos-
sible countermeasures [RKT10b], the probability of detection [ERG+07] or
the response time might only make sense when defenders are taken into account.

4.1.3 Value Domains

To be able to answer, for example, how high the costs of an attack are, we need
to specify all possible values of the attribute. Attribute values can range over

5The idea is often only attributed to Schneier and then cited as [Sch99].

4.1 Historical Overview of Attributes 57

the following diversified types of domains. For attributes that can adopt only two
values, a binary value domain is most suitable. For other attributes, values from
a nominal scale, e.g., Low, Medium and High, real numbers or even discrete or
continuous probability distributions may be more adequate. Instead of a single
value, it is also possible to associate sets of values to the nodes. For example, if we
know that the attack costs are not High, we could associate the set {Low, Medium}
to the corresponding node. To increase readability all attribute values are typeset
in typewriter font.

4.1.4 Calculation Procedure

As pointed out by Slater et al. [SSSW98], in the case of attack trees, the most intu-
itive way to determine an attribute value for a scenario is the bottom-up approach.
The idea is to only associate attribute values with the basic actions and then de-
duce the values corresponding to the refined nodes from the values associated with
their children. The functions which are used to calculate the value for a parent
node depend on the kind of the corresponding refinement. Hence, the input of the
calculation procedure is the values associated to the basic actions and functions
that declare how to combine the values.

Example 4.1 We graphically illustrate the bottom-up procedure for attack trees
on the attack tree given in Figure 1.1. For illustrative purposes we assume that the
values of a generic attribute are given as 4, 3 and 2 for the leaf nodes “Disjunctive
Subgoal 1”, “Conjunctive Subgoal 1” and “Conjunctive Subgoal 2”, respectively.
Moreover, we use addition to deduce values for conjunctive nodes and minimization
to compute values for disjunctive nodes. Hence we need to evaluate 3 + 2 = 5 to
obtain the value associated to the “Disjunctive Subgoal 1” and min{4, 5} = 4 to
obtain the value associated to the root node “Main Goal”. The generic attribute
for the entire scenario is then computed to be 4 as illustrated in Figure 4.1.

The bottom-up approach has several advantages. First of all, we only have to find
values for all leaf nodes and no values for any refined node. Second, this approach
is suitable for evaluation of a large number of attributes since it can be automated.
Third, the algorithm is simple and fast since it is linear in the number of nodes.
Finally, assigning a value for basic actions should be feasible in most cases since
basic actions can be easily understood when the tree is set up properly. A good
understanding of the nodes allows us to easily quantify them. If a node cannot be
easily understood, it should be refined further.

As it is the case for all calculation procedures, the quality of the result depends on
the accuracy of the input values. Instead of asking one expert to provide values, we
can improve the quality of the input values by asking several security experts and
encouraging them to agree on a consensus value for each node. Another strategy is
to involve several people, such as the system owner, developers and administrators,
to provide values for subtrees relevant to their expertise. Alternatively, if past data
is available, the values could be estimated. If there are no other options, a user
has to use his best guess. Naturally, we face the same obstacles for the bottom-up
procedure extended to ADTrees, which we introduce in the next section. We do
not further discuss how to obtain the most appropriate values for the basic actions
that serve as input values for the bottom-up computation.

58 Chapter 4 Quantitative Analysis

Main Goal
4

Disjunctive
Subgoal 1

4

Disjunctive
Subgoal 2

5

Conjunctive
Subgoal 1

3

Conjunctive
Subgoal 2

2

Figure 4.1: Generic attribute evaluation on an attack tree. Values in red represent
initially assigned values, values in blue are computed values.

4.2 Formal Definition of Attributes on ADTrees

In order to facilitate and automate the quantitative analysis of attack–defense sce-
narios we introduce a bottom-up algorithm on ADTrees. Our algorithm extends
an intuitive bottom-up procedure often attributed to Schneier [Sch99], which was
formalized by Mauw and Oostdijk [MO05]. By an attribute we understand any
quantifiable aspect or property of a security model of a scenario. Before giving
numerous detailed examples, we start by defining the notion of an attribute do-
main Aα which formally specifies an attribute α.

Definition 4.2 (Attribute domain for ADTerms) An attribute domain for AD-
Terms Aα is a tuple

Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α),

where Dα, the value domain, is a set of values and, for s ∈ {p, o},

• ∨s
α, ∧s

α are unranked functions on Dα,

• cs are binary functions on Dα.

Since attack trees only have nodes of type of the proponent, we can deduce the
attribute domain on attack terms (and, therefore, the attribute domain on attack
trees) from a corresponding attribute domain on ADTerms. Given the attribute
domain for ADTerms Aα = (Dα,∨

p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α), the corresponding attribute

domain for attack terms is given by Aα = (Dα,∨
p
α,∧

p
α). With this framework, the

bottom-up evaluation of an attribute on attack trees presented in Section 4.1.4 can
be described as follows: first, values from Dα are assigned to all leaf nodes of an
attack tree. Then, the values for the remaining nodes are deduced by traversing
the tree from the leaves to the root, with the help of the operations ∨p

α and ∧p
α.

4.2 Formal Definition of Attributes on ADTrees 59

This is demonstrated by Example 4.1, where ∨p
α is instantiated as min, ∧p

α as +
and Dα ⊃ {2, 3, 4, 5}. We formalize and extend this procedure to ADTrees in the
next two definitions.

Definition 4.3 (Basic assignment) Let Dα be a value domain and B the set of
all basic actions. A function βα : B → Dα that assigns values from Dα to all basic
actions B is called a basic assignment.

The basic assignment allows us to formally define how to compute attribute values
corresponding to all subtrees of an ADTree by using the unranked functions ∨s

α,∧
s
α

and cs
α for s ∈ {p, o} in a bottom-up way.

Definition 4.4 (Bottom-up evaluation for ADTerms) Suppose we are given an
attribute domain for ADTerms Aα = (Dα,∨

p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) and a basic as-

signment βα : B → Dα. Then, the recursively defined function α : TΣ → Dα assigns
to every ADTerm t, the value of the attribute α of t, as follows:

α(t) =

βα(t), if t ∈ B;

∨s
α(α(t1), . . . , α(tk)), if t = ∨s(t1, . . . , tk);

∧s
α(α(t1), . . . , α(tk)), if t = ∧s(t1, . . . , tk);

cs
α(α(t1), α(t2)), if t = cs(t1, t2),

(4.1)

where s ∈ {p, o} and k ∈ N+.

The following sections illustrate the bottom-up attribute evaluation on four differ-
ent attributes of increasing complexity.

4.2.1 The Satisfiability Attribute

In order to analyze whether an attack–defense scenario is feasible, we introduce the
notion of satisfiability of an ADTerm by defining the satisfiability attribute sat.
It can be used to answer the question “Can the proponent realize the consid-
ered scenario?” In other words, it tells us if the proponent can succeed in or win
the scenario? The satisfiability attribute sat is a function sat : TΣ → Dsat =
{true, false}. First, we specify the corresponding basic assignment. If the propo-
nent can execute a basic action, we set βsat(b) = true for b ∈ Bp. Otherwise, i.e., if
the proponent cannot execute an action b or we are unsure whether or not he can
execute it, we set βsat(b) = false for b ∈ Bp. Similarly, we assign the basic actions
of the opponent the value true if the opponent can execute them and false if
he cannot. If we do not have any knowledge about the basic action of the oppo-
nent, they are set to true. This reflects the worst case for the proponent since it
assumes that the opponent can satisfy all his actions. Given the basic assignment,
we recursively define:

sat(t) =

βsat(t), if t = b ∈ B;

∨(sat(t1), . . . , sat(tk)), if t = ∨s(t1, . . . , tk);

∧(sat(t1), . . . , sat(tk)), if t = ∧s(t1, . . . , tk);

sat(t1) ∧¬ sat(t2), if t = cs(t1, t2),

60 Chapter 4 Quantitative Analysis

where k ∈ N+. The underlying attribute domain is given by:

Asat = ({true, false},∨,∧,∨,∧, ⋆, ⋆),

where ⋆ is defined as ⋆(x, y) = x∧¬ y for all x, y ∈ Dsat.

Example 4.5 Suppose we want to know whether the proponent’s goal modeled
by the ADTree from Example 2.2 is satisfied or not. For the sake of this example,
we assume that an attacker can outnumber the guards, use a weapon, steal the
keys and sabotage the cameras, but he cannot bribe the guard. We also assume
that the defender can install security cameras. We use the attribute domain Asat =
({true, false},∨,∧,∨,∧, ⋆, ⋆), where x ⋆ y = x∧ ¬y, for all x, y ∈ {true, false},
as well as the basic assignment βsat : B → {true, false} that assigns the value true

to every basic action which is satisfiable and the value false to every basic ac-
tion which is not satisfiable. Using the recursive evaluation procedure defined by
Equation (4.1), we evaluate the satisfiability attribute on the ADTerm from Ex-
ample 2.6. We obtain

sat(cp(∨p(BG,∧p(OG,UW), SK), co(IC, SC)))

= ⋆ (∨(βsat(BG),∧(βsat(OG), βsat(UW)), βsat(SK)), ⋆(βsat(IC), βsat(SC)))

= ⋆ (∨(false,∧(true, true), true), ⋆(true, true)) = ⋆(true, false) = true .

The evaluation is also depicted graphically on the ADTree in Figure 4.2. Naturally,
the computation of attribute values on trees and corresponding terms always yields
the same result. Intuitively, the value is obtained in the following way. Since an
attacker can outnumber the guard and can use a weapon, he is capable of sub-
duing the guard. Alternatively, the attacker could steal the keys from the guard.
Additionally, the attacker can sabotage the cameras, which could be put in place
as defenses. Together these actions allow the attacker to defeat the guard.

–
true

−

BG
false
false

–
true

−

OG
true
true

UW
true
true

SK
true
true

IC
false
true

SC
true
true

Figure 4.2: The attribute satisfiability (sat) and a basic assignment. Red values
(on the bottom) depict basic assignment values, blue values (in the middle) depict
the computed sat values.

When we slightly reinterpret the satisfiability attribute, it also allows us to define
the winner of the considered attack–defense scenario. If the satisfiability value

4.2 Formal Definition of Attributes on ADTrees 61

calculated for an ADTerm is equal to true, the winner of the corresponding sce-
nario is the proponent. If it is false, the winner is the opponent. In Example 4.5,
the value corresponding to the root is true, hence, the winner is the proponent,
which in the scenario is the attacker.

In fact, the attribute domain Asat can be used to answer a recursively defined
binary question, i.e., a question with only two possible answers which, therefore,
can be modeled with Boolean variables. Besides the satisfiability attribute, the
same attribute domain can be used to model the presence or absence of a system
component and need for insider knowledge, special skill or electricity. Using
the same strain of thought, the attribute domain is well-suited to handle annotating
flags, such as a description whether or not certain nodes are unmitigable. It can
also be used to simulate hypothetical scenarios. If we wanted to check whether or
not a system would be attackable during a power outage, the basic assignment of
all components that need electricity could be set to false. The regular bottom-up
evaluation is evaluated on

Aα = ({true, false},∨,∧,∨,∧, ⋆, ⋆),

where α is “sat”, “elec” or any other of the previously mentioned attributes. The
only difference is that the interpretation of true and false changes from attribute
to attribute.

4.2.2 The Minimal Costs Attribute

Another piece of valuable information about a scenario is a description of the
involved costs. More specifically, the question “What are the minimal costs of the
proponent, assuming that reusing tools is infeasible?” can be formally modeled
using the costs attribute. For this, we use the following attribute domain

Acosts = (R+
∞,min,+,+,min,+,min), (4.2)

where R+
∞ = R+∪{∞}. This attribute domain together with Equation (4.1) suffices

to determine the costs function that is used to recursively evaluate the costs
attribute:

costs(t) =

βcosts(t), if t = b ∈ B;

min{costs(t1), . . . , costs(tk)}, if t = ∨p(t1, . . . , tk);

+(costs(t1), . . . , costs(tk)), if t = ∧p(t1, . . . , tk);

+(costs(t1), . . . , costs(tk)), if t = ∨o(t1, . . . , tk);

min{costs(t1), . . . , costs(tk)}, if t = ∧o(t1, . . . , tk);

+(costs(t1), costs(t2)), if t = cp(t1, t2);

min{costs(t1), costs(t2)}, if t = co(t1, t2).

As basic assignments of the attacker, we assign the real costs to the corresponding
basic actions. Since the defender’s costs have no influence on the attacker’s costs,
the values associated with the defender’s basic actions express the costs from
the attacker’s point of view rather than the actual costs for the defender. To
reflect this fact, every basic action of the defender is assigned ∞, which is the

62 Chapter 4 Quantitative Analysis

absorbing element for the operation cp
costs = + and the neutral element for the

operation co
costs = min. Therefore, the assignment corresponds to a worst case

assumption when no information about the costs of an action is available.

Additionally assuming that the proponent is the attacker, we verbally describe
the application of Equation (4.1) to the costs attribute. To ease presentation, we
distinguish the following three cases depending on the structure of the ADTree:

Subtrees rooted in a node which is refined but not countered

• The costs calculated for a subtree rooted in a disjunctively refined attack
(resp. defense) node are defined as the minimum (resp. addition) of the costs
calculated for its refining subtrees.

• The costs calculated for a subtree rooted in a conjunctively refined attack
(resp. defense) node are defined as the addition (resp. minimum) of the costs
calculated for its refining subtrees.

Subtrees rooted in a node which is not refined but countered The costs
calculated for a subtree rooted in an attack (resp. defense) node are defined as the
addition (resp. minimum) of the initial value for the non-refined root node and the
value calculated for the countering subtree.

Subtrees rooted in a node which is refined and countered In this case,
first a value corresponding to a refining part of the tree is calculated. This is done
in the same way as in the case of a subtree rooted in a refined but not countered
node. Then, the functions for a subtree rooted in a non-refined but countered node
are used, where the initial value for the root is replaced with the calculated value
for the refining part.

We also illustrate the computation of the costs attribute on our running example:

Example 4.6 Suppose we want to evaluate the costs on our running example de-
feating a guard. The ADTerm cp(∨p(BG,∧p(OG,UW), SK), co(IC, SC)) was com-
puted in Example 2.6. We know that BG,OG,UW, SK, SC ∈ Bp and IC ∈ Bo.
Since the defender’s costs have no influence on the attacker’s costs, βcosts(IC) is
assigned ∞. For concreteness we suppose that the attacker’s minimal investment
to execute the attacker’s basic actions is given by:

βcosts(BG) = 1e, βcosts(UW) = 2e, βcosts(SC) = 4e,

βcosts(OG) = 2e, βcosts(SK) = 3e.

Note that the attacker has to potentially perform the action SC in order to coun-
teract the defender’s action IC. By using the appropriate operators cp

costs = +
and co

costs = min, we can compute the actual minimal costs for the attacker to
succeed in the scenario. The computation is performed on the corresponding AD-
Tree in Figure 4.3 and on the corresponding ADTerm (in prefix notation) in the

4.2 Formal Definition of Attributes on ADTrees 63

following:

costs(cp(∨p(BG,∧p(OG,UW), SK), co(IC, SC)))

= + (min{βcosts(BG),+(βcosts(OG), βcosts(UW)), βcosts(SK)},

min{βcosts(IC), βcosts(SC)})

= + (min{1e,+(2e, 2e), 3e},min{∞, 4e})

= + {1e, 4e}

= 5e.

−
5
−

BG
1
1

−
4
−

OG
2
2

UW
2
2

SK
3
3

IC
4
∞

SC
4
4

Figure 4.3: The attribute costs (costs) and a basic assignment. Red values (on
the bottom) depict the basic assignment, blue values (in the middle) depict the
computed costs values.

We also illustrate the computation on our second example running.

Example 4.7 The ADTerm t = ∨p(b1, cp(b2, d)) was used in Example 3.3. We
know that b1, b2 ∈ Bp and d ∈ Bo. Since the opponent’s basic action d is not under
control of the proponent, we set βcosts(d) = ∞. For concreteness we suppose, that
the minimal investment to execute the attacker’s basic action are βcosts(b1) = 2e
and βcosts(b2) = 3e for b1 and b2. Then,

costs(t) = min{2e,+(3e,∞)}) = 2e.

The attribute domain given in Equation (4.2) is not the only possible attribute
domain that helps us to calculate the minimal costs of the attacker. Suppose we
are only interested in whether the minimal costs are Low, Medium or High and
not in the exact monetary amount. Then we can choose a different value domain
to yield a different attribute domain. For example, the following attribute domain
would then be appropriate.

Acosts2
= ({Low, Medium, High},min,max,max,min,max,min),

with Low < Medium < High. Hidden in this attribute domain is an implicit assump-
tion that executing several actions of the same cost category does not make the
scenario more expensive.

64 Chapter 4 Quantitative Analysis

4.2.3 The Cheapest Successful Proponent’s Bundle Attribute

Attributes can even be used to quantify more complex questions. Suppose we ask
ourselves “What is the cheapest way for the proponent to succeed and which actions
does he then have to execute?” To answer this question, we use the cheapest
successful proponent’s bundle attribute, abbreviated as cspb.

Selecting the value domain P(Bp)×R∞, where R∞ = R∪{∞}, the basic assignment
is a pair. More specifically, we assign to a proponent’s node b the pair ({b}, cb),
where cb expresses the proponent’s costs that are incurred when performing the
action b. To the opponent’s nodes we associate the pair (∅,∞). This assignment
indicates that no action exists that would allow the proponent to be successful at
this node (∅) and that he would theoretically have to spent an infinite amount (∞)
if he nevertheless wanted to be successful.

The cspb attribute is given by the following attribute domain:

((P(Bp) × R∞), cspb∨p , cspb∧p , cspb∨o , cspb∧o , cspbcp , cspbco),

where

cspb∨p((S1, c1), . . . (Sk, ck)) = (Si, ci), such that ci = min{c1, . . . , ck}.

cspb∧p((S1, c1), . . . (Sk, ck)) =

(
⋃k

i=1 Si,Σk
i=1ci), if Σk

i=1ci < ∞;

(∅,∞), else.

cspb∨o((S1, c1), . . . (Sk, ck)) = cspb∧p((S1, c1), . . . (Sk, ck)).

cspb∧o((S1, c1), . . . (Sk, ck)) = cspb∨p((S1, c1), . . . (Sk, ck)).

cspbcp((S1, c1), (S2, c2)) =

(∅,∞), if S2 = ∅;

(S1 ∪ S2, c1 + c2), else.

cspbco((S1, c1), (S2, c2)) = (Si, ci), such that ci = min{c1, c2}.

If several ci result in the minimum, any i can be chosen to determine Si. By default,
we choose the smallest i to obtain a unique value for Si.

Intuitively the operators can be explained from the perspective of the proponent
as follows. The cspb∧p operator describes that the proponent chooses to execute
the cheapest action. The operator cspb∧p expresses that the proponent has to ex-
ecute all actions in order to be successful. He can, however, only do so if none of
the actions are too expensive and, therefore, all are possible. A similar intuition
explains cspb∨p . If the proponent cannot defend against the opponent’s counter-
measure, he will never be successful. Otherwise the actions related to both nodes
need to be executed and the corresponding costs will occur.

The cspb attribute allows the following interpretation. Let the pair cspb(t) = (S, c)
be associated with the term t. Then S expresses which basic components have to
be executed by the proponent in order to make him successful in the scenario
represented by t. The value c expresses the corresponding costs for the proponent.

Remark 4.8 If we restrict the operators of the attribute domainAcspb to be binary, it
holds that cspb∨p

2
, cspb∧o

2
and cspbco as well as cspb∧p

2
, cspb∨o

2
and cspbcp coincide.

Example 4.9 We illustrate the cspb attribute on the ADTerm

cp(∨p(BG,∧p(OG,UW), SK), co(IC, SC)),

4.2 Formal Definition of Attributes on ADTrees 65

which is already described in Example 2.6. For concreteness, we assume the fol-
lowing costs values: 1e for BG, 2e for OG, 3e for UW, 4e for SK and 1e
for SC. Hence the basic assignment for the nodes of the proponent is given by the
tuples ({BG}, 1), ({OG}, 2), ({UW}, 3), ({SK}, 4) and ({SC}, 1). To the defense
node IC we assign the default value (∅,∞). To compute the value of the root,
we recursively compute the values starting from the leaves. The value of each leaf
is simply the given value. The value of the defensive node is computed by eval-
uating cspbco((∅,∞), ({SC}, 1)) as ({SC}, 1). Similarly, we compute the value of
the conjunctive node using cspb∧p to be ({OG,UW}, 5). Finally, we use cspb∨p

and cspbcp to compute the value of the root as ({BG, SC}, 2). This value expresses
that the proponent needs to execute the nodes BG and SC in order to win the
scenario and that the corresponding minimal costs are 2. The computation is
graphically illustrated on the ADTree in Figure 4.4.

({BG, SC}, 2)
−

({BG}, 1)
({BG}, 1)

({OG,UW}, 5)
−

({OG}, 2)
({OG}, 2)

({UW}, 3)
({UW}, 3)

({SK}, 4)
({SK}, 4)

({SC}, 1)
(∅,∞)

({SC}, 1)
({SC}, 1)

Figure 4.4: The attribute cspb (cspb) and a basic assignment. Red values (on the
bottom) depict the basic assignment, blue values (on the top) depict the com-
puted cspb values.

4.2.4 The Minimal Costs of the Winner Attribute

Our final example of an attribute answers a question for which we also need to
know two values for the basic assignment. We use the attribute minimal costs of
the winner, abbreviated mcw, if we want to know “What are the minimal costs
of the winner of the scenario?” This attribute combines information from the first
two examples. For the basic assignment we use the values Low (L), Medium (M),
High (H), Extreme (X), true and false with Low < Medium < High < Extreme

and false < true to create the value domain {L, M, H, X} × {true, false}.

66 Chapter 4 Quantitative Analysis

The basic assignment is given by βmcw(b) = (cb, xb), where cb and xb express the
actual costs and the satisfiability of the component b for the player corresponding
to b. For instance, βmcw(b) = (M, true), for b ∈ Bo, means that the costs of the
component are Medium and that the opponent can satisfy it (true). If an action is
not satisfiable (false for the second component), its costs are Low.

Note that this default value is neutral for the operator mcw∨p and absorbing
for mcw∧p . Also this assignment represents a worst case scenario for the respective
player since an assignment of false means that the other player succeeds and it
is worst if the other player then has to pay as little as possible. This assignment is
contrary to the default value for the costs attribute (∞), where the value denotes
the costs of the proponent and not the costs of the winner of the scenario.

To apply the bottom-up algorithm, we apply the following attribute domain:

({L, M, H, X} × {true, false},mcw∨p ,mcw∧p ,mcw∨o ,mcw∧o ,mcwcp ,mcwco),

where L < M < H < X and

mcw∨p((c1, x1), . . . , (ck, xk)) =

(min
{i|xi=true}

{ci}, true), if ∃i, xi = true;

(max
1≤i≤k

{ci}, false), else.

mcw∧p((c1, x1), . . . , (ck, xk)) =

(max
1≤i≤k

{ci}, true), if ∀i, xi = true;

(min
{i|xi=false}

{ci}, false), else.

mcw∨o((c1, x1), . . . , (ck, xk)) = mcw∨p((c1, x1), . . . , (ck, xk)).

mcw∧o((c1, x1), . . . , (ck, xk)) = mcw∧p((c1, x1), . . . , (ck, xk)).

mcwcp((c1, x1), (c2, x2)) =

(c2, false), if x1 = true, x2 = true;

(c1, false), if x1 = false, x2 = false;

(max{c1, c2}, true), if x1 = true, x2 = false;

(min{c1, c2}, false), if x1 = false, x2 = true .

mcwco((c1, x1), (c2, x2)) = mcwcp((c1, x1), (c2, x2)).

The value mcw(t) = (c, x) expresses the costs of the scenario represented by the
term t for the winning player. For instance, given an ADTerm t = ∨p(t1, t2, t3),
such that mcw(t1) = (L, false) (i.e., the opponent is successful at t1 and his
costs are Low), mcw(t2) = (H, true) (i.e., the proponent is successful at t2 and his
costs are High) and mcw(t3) = (M, true) (i.e., the proponent is successful at t3
and his costs are Medium), we have mcw(t) = (M, true). Indeed, the proponent
can be successful either by proceeding with t2 and investing a High amount or by
proceeding with t3 and investing a Medium amount. We chose t3 because it is less
expensive and we are interested in the lowest costs.

Example 4.10 We also illustrate the mcw attribute on the ADTerm

cp(∨p(BG,∧p(OG,UW), SK), co(IC, SC)),

introduced in Example 2.6. For concreteness, we assume that the attacker only
executes the three actions BG, OG and UW. The respective costs are given by M, L

4.2 Formal Definition of Attributes on ADTrees 67

and H. The defender executes IC for a Medium (M) amount of costs. The re-
maining two basic actions SK and SC are not executed and are, therefore, as-
signed the default value, i.e., the lowest possible costs L. Hence the basic assign-
ment for the six nodes BG, OG, UW, SK, IC and SC is given by the six tu-
ples (M, true), (L, true), (H, true), (L, false) (M, true) and (L, false), respectively.
To compute the value of the root, we recursively compute the values starting from
the leaves. The value of each leaf is simply the given value. The value of the defen-
sive node is computed by evaluating mcwco((M, true), (L, false)) as (M, true). Sim-
ilarly, we compute the value of the conjunctive node using mcw∧p to be (H, true).
Finally, we use mcw∨p and mcwcp to compute the value of the root as (M, false).
This value expresses that in this example the opponent wins the attack–dense sce-
nario and in order to win he incurs a Medium amount of costs. The computation is
graphically illustrated on the ADTree in Figure 4.5.

−
(M, false)

−

BG
(M, true)
(M, true)

−
(H, true)

−

OG
(L, true)
(L, true)

UW
(H, true)
(H, true)

SK
(L, false)
(L, false)

IC
(M, true)
(M, true)

SC
(L, false)
(L, false)

Figure 4.5: The attribute mcw (mcw) and a basic assignment. Red values (in
the middle) depict the basic assignment, blue values (on the top) depict the com-
puted mcw values.

Remark 4.11 To illustrate that the mcw attribute exhibits a structure similar to
the structure of the sat attribute, we analyze mcw∧p in its binary form, i.e., mcw∧p

2
.

Additionally we define a negation function ¬ as follows:

¬(c1, x1) = (c1,¬x1).

Algebraic transformations show that a1 mcw∧p
2

¬a2 = a1 mcwcp a2 = a1 mcwco a2,
where ai = (ci, xi) for i ∈ {1, 2}.

In Section 4.4.3, we specify the structure of the attribute domains for sat and mcw
and generalize it to a class of attributes.

Remark 4.12 Replacing the value domain with R∞ × {true, false} and all max-
functions with +, yields absolute cost values (from R).

In Section 4.4, we come back to an empirical evaluation of attribute domains of
attributes that can be found in the literature. We classify the structure and point

68 Chapter 4 Quantitative Analysis

out pitfalls that may occur when trying to deduce the correct attribute domain of
an attribute. In Section 4.5 we provide pointers on how to generalize the theory of
attribute composition, illustrated by the last two examples.

4.3 Compatibility of an Attribute with a Semantics

In Chapter 3, we elaborated that we consider equivalent ADTrees to be indistin-
guishable. Thus, the evaluation of attributes on equivalent ADTerms should be
consistent, i.e., should yield the same values. However, as shown in the following
example, this is not always the case.

Example 4.13 Consider the two ADTrees given in Figure 4.6. Their ADTerm
representation is given by t = ∨p(b1, cp(b2, d)) and t′ = ∨p(∧p(b1, b1), cp(b2, d)).

∨p

b1 b2

d

∨p

∧p

b1 b1

b2

d

Figure 4.6: Two propositionally equivalent ADTrees (t represented on the left and t′

on the right) that do not yield the same values for the attribute costs.

In Example 3.5, we have shown that t ≡P t′. Moreover, in Example 4.7, we
have computed that costs(t) = 2e. Using the same basic assignment βcosts(b1) =
2e, βcosts(b2) = 3e and βcosts(d) = ∞, the evaluation of the proponent’s minimal
costs for t′ yields costs(t′) = min{+(2e, 2e),+(3e,∞)} = 4e, which is not the
same value as for t.

4.3.1 Consistent Bottom-up Evaluation

The problem of consistent bottom-up evaluation of attribute values has already
been discussed in the case of attack trees [MO05, JW08]. The authors of [MO05]
identify a sufficient condition guaranteeing that, when the multiset semantics is
used, the bottom-up evaluation of a specific class of attributes on attack trees is
consistent. In this section, we generalize this result to any semantics for ADTerms,
by introducing the notion of compatibility of an attribute domain with a seman-
tics for ADTerms. Compatibility constitutes a sufficient condition for consistent
bottom-up evaluation of attributes on equivalent ADTrees. Since equivalence of
ADTree is determined by the used semantics, both the semantics and the attribute
domain have to be specified when checking the compatibility criterion.

Consider an attribute domain

Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α),

4.3 Compatibility of an Attribute with a Semantics 69

the set TVAR
Σ of typed ADTerms over the variables in VAR, as introduced in Sec-

tion 3.4, and an element t of TVAR
Σ . We denote by tα an expression built from the

elements of B ∪ VAR and the operators ∨s
α,∧

s
α, c

s
α, for s ∈ S, recursively defined

as follows. Let t1, . . . , tk ∈ TVAR
Σ and k ∈ N+. Then,

tα = t, if t ∈ B ∪ VAR, (∨s(t1, . . . , tk))α = ∨s
α(t1α, . . . , t

k
α),

(cs(t1, t2))α = cs
α(t1α, t

2
α), (∧s(t1, . . . , tk))α = ∧s

α(t1α, . . . , t
k
α).

(4.3)

Hence TΣ ⊂ TVAR
Σ . Moreover, the terms tα may contain variables from Dα. This

means that, in particular, the term f ∨p
α g, where f and g are in VAR, is also

contained in TVAR
Σ .

Definition 4.14 (Attribute domains compatible with a semantics) An attribute
domain Aα = (Dα,∨

p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) is compatible with a semantics ≡ for

ADTerms if and only if, for all t, t′ ∈ TΣ, the semantical equivalence t ≡ t′ implies
that the equality tα = t′α holds in Dα.

In other words, the equivalence check tα = t′α is a functional equivalence check
since tα and t′α may contain variables. Therefore, tα needs to be equal to t′α for all
substitutions of variables, i.e.,∀σ(tα) = σ(t′α).

Example 4.15 Consider the following ADTerms t = cp(b,∧o(d1, d2)) and t′ =
cp(∧p(b, b),∧o(d1, d2)) from Example 3.5. We have shown that t ≡P t′. By using
the attribute domain Asat = ({true, false},∨,∧,∨,∧, ⋆, ⋆), introduced in Sec-
tion 4.2.1, and the procedure described by Recursion (4.3), we define the expres-
sions tsat and t′sat as follows:

tsat = b ∧ ¬(d1 ∧ d2) and t′sat = (b ∧ b) ∧ ¬(d1 ∧ d2).

Due to the idempotence of ∧, we obtain that the equality tsat = t′sat holds in Dsat =
{true, false}.

From Definitions 3.31 and 4.14 we can easily deduce that if an attribute domain is
compatible with a semantics for ADTerms it is also compatible with every seman-
tics which is finer.

In most cases, due to the infinite number of equivalent ADTerms, employing Defi-
nition 4.14 is impractical. The next theorem overcomes this drawback.

Theorem 4.16 Let E be a complete set of axioms for a semantics ≡ for AD-
Terms. An attribute domain Aα = (Dα,∨

p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) is compatible with

the semantics ≡ if and only if, for every equation t = t′ in E, the equality tα = t′α
holds in Dα.

Proof. It follows directly from Recursion (4.3) and Definitions 3.29 and 4.14.

Theorem 4.16 shows that a complete set of axioms is a powerful tool to ensure
the practical usability of semantics for ADTerms. By making use of a complete
set of axioms, Theorem 4.16 gives us a simple and efficient procedure for checking
compatibility of a given attribute domain with a considered semantics.

70 Chapter 4 Quantitative Analysis

Example 4.17 Using Theorem 4.16, we can easily prove that the attribute do-
main Acosts, used in Examples 4.6 and 4.13 to compute the proponent’s minimal
costs, is not compatible with the propositional semantics. Indeed, according to
Theorem 3.34, the axiom ∧p(X,X,X1, . . . , Xk) = ∧p(X,X1, . . . , Xk) holds for the
propositional semantics, but in the costs attribute domain with the value do-
main R∞ this does not hold in general. Suppose, k = 2 and all variables are equal
to 1. Then the left and the right side of the axiom evaluate to

(∧p(1, 1, 1, 1))costs = +(1, 1, 1, 1) = 4 6= 3 = +(1, 1, 1) = (∧p(1, 1, 1))costs.

The fact that + is not idempotent in general, explains why the evaluation of
the proponent’s minimal costs on two equivalent ADTerms in the propositional
semantics, presented in Example 4.13, gives two different results.

We now prove that semantically equivalent ADTerms always yield equal attribute
values over compatible attribute domains.

Lemma 4.18 Consider an attribute domain Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α), a

basic assignment βα : B → Dα and two ADTerms t and t′. If tα = t′α holds in Dα,
then α(t) = α(t′).

Proof. Since tα = t′α holds in Dα, we have σ(tα) = σ(t′α), for every substitu-
tion σ : B ∪ VAR → Dα. Thus, it suffices to show that for every ADTerm t, we
have

α(tα) = α(t). (4.4)

The proof of the previous equation is by induction on the structure of t. If t ∈ B,
then tα = t, thus α(tα) = βα(tα) = βα(t) = α(t). Suppose now that Equation (4.4)
holds for all ADTerms composing t and let t = ∨p(t1, . . . , tk). We have

α(tα) = α(∨p
α(t1α, . . . , t

k
α)) = ∨p

α(α(t1α), . . . , α(tkα))

= ∨p
α (α(t1), . . . , α(tk)) = α(t).

The proof for the other compositions is similar.

Using Equation (4.4), we obtain that if tα = t′α holds in Dα, then α(t) = α(tα) =
α(t′α) = α(t′), which finishes the proof.

Using the lemma, we can now show that if an attribute domain is compatible with
a semantics then the bottom-up algorithm computes the same attribute value on
ADTerms that are equivalent.

Theorem 4.19 Let Aα = (Dα,∨
p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α) be an attribute domain com-

patible with a semantics ≡ for ADTerms. If t ≡ t′, then, given any basic assign-
ment βα : B → Dα, we have α(t) = α(t′).

Proof. This theorem follows immediately from Equation (4.1), Definition 4.14 and
Lemma 4.18.

4.3 Compatibility of an Attribute with a Semantics 71

4.3.2 Attribute Domains Compatible with the Multiset Semantics

We next turn our attention to attribute domains occurring in the literature. While
performing case studies using the ADTree methodology, we have noticed that a
large number of useful attribute domains for ADTrees admits the following tem-
plate.

Aα = (Dα, ◦, •, •, ◦, •, ◦),

where we use the symbols ◦ and • as placeholders for specific operators. Corre-
sponding symbols within an attribute domain indicate that the functions coincide.

One attribute domain that exhibits this structure is

Acosts = (R+
∞,min,+,+,min,+,min),

which is introduced in Section 4.2.2 to calculate the minimal costs for the pro-
ponent to achieve his main goal. Another attribute domain following the same
structure is given by

Acosts2 = ({L, M, H},min,max,max,min,max,min),

where L < M < H. It is used to calculate the minimal costs for the proponent on
a 3-level scale, as also introduced in Section 4.2.2. Finally, the attribute domain

Altk = ({0, . . . , k},min,+k,+k,min,+k,min),

where +k(b1, . . . , bn) = min{
∑n

i=1 bi, k} for bi ∈ {0, . . . , k}, also follows the initial
template. This attribute domain can be used to model which goals of the proponent
are executable in less than k time units.

We say that an attribute domain is constructed from the structure 〈Dα, ◦, •〉 if
it matches the template Aα as given above. For instance, Acosts is constructed
from 〈R+

∞,min,+〉, the second attribute domain Acosts from 〈{L, M, H},min,max〉
and the third Acosts2 from 〈{0, . . . , k},min,+k〉.

All three structures share algebraic properties. They are, in fact, commutative
semirings or even idempotent semirings.

Definition 4.20 (Commutative and idempotent semiring) A structure 〈Dα, ◦, •〉 is
called a commutative semiring if the operations ◦ and • are both commutative and
associative over the non-empty set Dα. Moreover • has to distribute over ◦, i.e., for
all a, b, c ∈ Dα it holds that a•(b◦c) = (a•b)◦(a•c) and (a◦b)•c = (a•c)◦(b•c).

The structure is called an idempotent semiring if the operator ◦ is additionally
idempotent, andDα contains a neutral element with respect to ◦ which is absorbing
with respect to •.

Both structures are well-studied in the literature [PK11]. Typical examples of
commutative semirings include the Boolean semiring 〈{0, 1},max, ·〉, the tropical
semiring 〈N,min,+〉, the product t-norm semiring 〈[0, 1],max, ·〉, the truncation
semiring 〈{0, . . . , k},min,+k〉 and the arithmetic semiring 〈R,+, ·〉. The Boolean
semiring, the tropical semiring, the product t-norm semiring and the truncation
semiring are even idempotent semirings.

The fact that idempotent semirings occur frequently as attribute domains can be
explained with the realization that they are compatible with the multiset semantics.

72 Chapter 4 Quantitative Analysis

Theorem 4.21 Every attribute domain of the form Aα = (Dα, ◦, •, •, ◦, •, ◦), that
is constructed from an idempotent semiring 〈Dα, ◦, •〉, is compatible with the mul-
tiset semantics for ADTerms.

Proof. Let us consider the complete set of axioms EM for the multiset semantics,
given in Theorem 3.37. According to Proposition 4.16, it is sufficient to show that
for every l = r ∈ EM, the equality lα = rα holds in Dα. The equalities corre-
sponding to Equation (Es

1) and (Es
2) result from the commutativity of ◦ and •.

The equalities corresponding to Equations (Es
3), (Es

4), (Ep
17) and (Ep

20) hold due
to associativity of both operations. Distributivity of • over ◦ guarantees that the
equalities corresponding to Equations (Eo

9), (Ep
10), (Ep

13), (Ep
16), (Ep

18) and (Eo
19)

are satisfied in Dα. Finally, the equalities corresponding to Equations (Ep
11) and

(Eo
12) result from the idempotence of ◦. Note that Equations (Es

5) and (Es
6) are

concerned with the removal of unary operators only.

The authors of [MO05] show that, in the case of attack trees, every attribute do-
main which is a semiring is compatible with the multiset semantics. Theorem 4.21
extends this result from attack trees to ADTrees. Note that the result proven
in [MO05] only holds for idempotent semirings. Indeed, Equations (Ep

1), (Ep
2),

(Ep
3), (Ep

4), (Ep
5), (Ep

6), (Ep
10) and (Ep

11) axiomatize the multiset semantics for at-
tack trees. Thus, if the attribute domain forms a semiring which is not idempotent
(as for instance in the case of the arithmetic semiring, i.e., 〈R,+, ·〉), the com-
putation of attribute values on two equivalent attack trees, such as t = ∨p(a, a)
and t′ = a, for a ∈ Bp does not yield the same result.

In the next section, we continue our analysis of attribute domains following a more
practical approach that provides a classification of attribute domains.

4.4 Practical Use of Attributes

One of the goals of this thesis is to illustrate the benefits of a methodology that
supports a graphical as well as a formal component. In the previous sections,
attributes have been introduced formally. Using the transformations given in Sec-
tion 2.3 quantitative analysis with the help of attributes and attribute domains
can be performed directly on ADTrees instead of ADTerms. In practice, however,
we are not given an attribute domain. Instead we are often asked to analyze a
scenario and are supposed to answer certain questions about the scenario. Hence,
the user is still faced with another challenge, namely to find a relevant attribute
domain for each question.

In the following we describe how to correctly specify a question for an attack–
defense scenario in order to construct the corresponding attribute domain. This
means that we explain which components a question needs to have in order to avoid
underspecified questions. This then allows us to employ the ADTree methodology
and deduce a quantitative answer using the bottom-up procedure. We motivate
our approach with the following example.

Example 4.22 “What are the costs of the considered scenario?” appears to be
a suitable question for the ADTree methodology. However, this question is un-
derspecified, because we do not know whether we should quantify the attacker’s

4.4 Practical Use of Attributes 73

costs, the defender’s costs or both. Nor is it clear whether we are interested in the
minimal, maximal, average of other costs. Clarifying this information is necessary
to correctly define the corresponding basic assignment.

In the following we show that the question “What are the minimal costs of the
attacker, provided that the defender executes all possible defenses?” is adequately
specified for the ADTree methodology.

The example also shows that underspecified questions are not a new phenomenon
of ADTrees, but already occur in the case of attack trees.

4.4.1 Classification of Questions

We specify questions by providing a pragmatic taxonomy of quantitative questions
that can be asked about ADTrees. The presented classification originates from
case studies, e.g., [12BKMS], [EDRM06,TA10], as well as from a detailed literature
study concerning quantitative analysis of security. Our study allowed us to identify
three main classes of empirical questions, as described below.

Class 1: Questions referring to one player Typically, questions for AD-
Trees have an explicit or implicit reference to one of the players which we call the
owner of the question. This is motivated by the fact that the security model is
usually analyzed from the point of view of one player only, for instance a defender.
This player (the owner of the question) knows his own capabilities but does not
have extensive information concerning his adversary. Thus, the owner of the ques-
tion is only able to quantify his own actions precisely and he assumes the worst
case scenario with respect to the actions of the other player. Intuitive examples of
questions referring to one player are “What are the minimal costs of the attacker?”
or “How much does it at least cost to always protect the system?” Most of the
security relevant aspects that are analyzed in the context of attack trees can also
be answered on ADTrees. Questions related to attributes such as attacker’s or de-
fender’s costs [Sch99,BLP+06,TA10,BP10,SDP08,MO05,Yag06,ACK10,RKT12a,
BFM04, Ame12, WWPP11, EDRM06], attack detectability [TA10, BFM04], at-
tack time or defense time [HAF+09, Sch99,WWPP11], difficulty of attack or
protection [BFM04, FCW+05, TA10, HAF+09, MO05, ACK10, Amo94, WWPP11],
attacker’s special skill [MO05, ACK10, Sch99], attacker’s profit [Amo94, JW08,
BDP06,RKT12a] and penalty [BLP+06,JW08,WWPP11], all belong to Class 1.
We analyze questions of this class in Section 4.4.2.

Class 2: Questions where answers for both players can be deduced from
each other Exemplary questions belonging to Class 2 are “Is the scenario satisfi-
able?” or “How probable is it that the scenario will succeed?” We observe that if the
scenario is satisfied for the attacker, then it is not satisfied for the defender and vice
versa. Similarly, knowing that one player succeeds with probability p, we also know
that the other player succeeds with probability 1 − p. The foremost goal of attack
trees and all their extensions is to represent whether attacks are possible. Thus, the
satisfiability attribute is considered, either explicitly or implicitly, in all works

74 Chapter 4 Quantitative Analysis

concerning attack trees and their extensions. As for probability6, the attribute
has been extensively studied in [Sch99,BLP+06,HAF+09,LLFH09,MTF11,Yag06,
ACK10,RKT12a,BFM04,EDRM06,WWPP11]. We perform a detailed analysis of
questions of Class 2 in Section 4.4.3.

Class 3: Questions referring to an outside third party Questions be-
longing to Class 3 relate to a universal property which is influenced by actions
of both players. They quantify attack–defense scenarios from the point of view
of an outside third party which is neither the attacker nor the defender. For in-
stance, one could ask “How much data traffic is involved in the attack–defense
scenario?” In this case, we do not need to distinguish between traffic resulting
from the attacker’s and the defender’s actions since both players contribute to the
total amount. Another example of a question of Class 3 is “What is the global en-
vironmental impact of the scenario?” Examples of environmental impact could be
CO2 emissions or water pollution. Attributes corresponding to questions of Class 3
have not been addressed in the attack tree literature since attack trees focus on
a single player and do not combine values from two different players. The impor-
tance of those questions becomes apparent when actions of two opposite parties are
considered. The case study [12BKMS] that we have performed using the attack–
defense tree methodology showed that such attributes relate to essential properties
which should not be disregarded in the security assessment process. Questions of
Class 3 are discussed in Section 4.4.4.

Attack trees form a subset of ADTrees which involve only one player, the attacker.
Due to this simplified setting, in the case of attack trees, the three classes of
questions coincide.

Next, we set up guidelines that explain how to correctly specify quantitative ques-
tions of all three classes. The guidelines’ main purpose is to enable us to find
a suitable attribute domain in order to correctly compute an answer using the
bottom-up procedure. Figure 4.7 depicts the three classes of questions, as well as
general templates for the corresponding attribute domains. The symbols ◦, •, ⋄
and •¬ again serve as placeholders for specific operators. Corresponding symbols
within a tuple indicate that the functions coincide. For instance, (D, ◦, •, •, ◦, •, ◦)
means that ∨p

α = ∧o
α = co

α and that ∧p
α = ∨o

α = cp
α. We motivate these equalities

and give possible instantiations of ◦, •, ⋄ and •¬ in the following three sections.

quantitative question
(Dα,∨

p
α,∧

p
α,∨

o
α,∧

o
α, c

p
α, c

o
α)

related to one player
(D, ◦, •, •, ◦, •, ◦)

related to both players
(D, ◦, •, ◦, •, ⋄, ⋄)

where answers for both
players are deducible
from each other
(D, ◦, •, ◦, •, •¬, •¬)

referring to external
property/party
(D, ◦, •, ◦, •, •, •)

Figure 4.7: Classification of questions and attribute domain templates.

6We would like to point out that the probability attribute can only be evaluated using the
bottom-up procedure given by Equation (4.1) if the ADTree does not contain probabilistically
dependent actions.

4.4 Practical Use of Attributes 75

4.4.2 Questions Referring to One Player

Questions belonging to Class 1 refer to exactly one player, the owner, denoted
as own. As we explain below, in the attack–defense tree setting, only two situa-
tions occur for a question’s owner: either he needs to choose at least one option or
he needs to execute all options. Therefore, two operators suffice to answer ques-
tions of Class 1 and the generic attribute domain is of the form (D, ◦, •, •, ◦, •, ◦).
Furthermore, as we elaborate in Section 4.5.4, if we change a question’s owner, the
attribute domain changes from (D, ◦, •, •, ◦, •, ◦) into (D, •, ◦, ◦, •, ◦, •).

Defining a Formal Model for Questions of Class 1 In this section we il-
lustrate the construction of the formal model for Class 1 using the question “What
are the minimal costs of the attacker?”, where the owner is the attacker. In ques-
tions of Class 1, all values assigned to nodes and subtrees answer the question from
the perspective of its owner. In the minimal costs example, this means that even
subtrees rooted in defense nodes have to be quantified from the attacker’s point
of view, i.e., a value assigned to the root of a subtree expresses what the minimal
amount of money is that the attacker needs to invest in order to be successful in
the current subtree.

Subtrees rooted in uncountered attacker’s nodes can either be disjunctively or con-
junctively refined. In the first case the attacker needs to ensure that he is successful
in at least one of the refining nodes, in the second case he needs to be successful
in all refining nodes. The situation for subtrees rooted in uncountered defender’s
nodes is reversed. If a defender’s node is disjunctively refined, the attacker needs
to successfully counteract all possible defenses to ensure that he is successful at
the subtree’s root node. If the defender’s node is conjunctively refined, successfully
counteracting at least one of the refining nodes already suffices for the attacker to
be successful at the subtree’s root node.

This reversal explains that two different operators suffice to quantify all possi-
ble uncountered trees: The operator that we use to combine attribute values for
disjunctively refined nodes of one player is the same as the operator we use for
conjunctively refined nodes of the other player.

Furthermore, the same two operators can also be used to quantify all remaining
subtrees. If a subtree is rooted in a countered attacker’s node, the attacker needs
to ensure that he is successful at the action represented by the root node and that
he successfully counteracts the existing defensive measure. Dually, for the attacker
to be successful in a subtree rooted in a defender’s countered node, it is sufficient
to successfully overcome the defensive action or to successfully perform the attack
represented by the counteracting node. This implies that we can use the same
operator as for conjunctively refined attacker’s nodes in the first case and the same
operator as for disjunctively refined attacker’s nodes in the second case.

Pruning in general In order to perform the bottom-up algorithm, we do not
only need to specify a question or a corresponding attribute domain, but we also
need to provide a basic assignment. Since for attributes of Class 1 we are only
interested in who the owner of a question is, it is not immediately apparent which
values to assign to non-refined nodes of the other player, called the non-owner.
There are two situations that we need to distinguish. If a non-refined node of the

76 Chapter 4 Quantitative Analysis

non-owner is countered, its assigned value should not influence the result of the
computation. If a non-owner’s node is not countered, its value should indicate
that the owner does not have a chance to successfully perform this subscenario.
Mathematically, it means that the value assigned to the non-refined nodes of the
non-owner needs to be neutral with respect to one operator and simultaneously
absorbing with respect to the other. Since, in general, such an element may not
exist, we need to eliminate one of the described situations. We achieve this by
removing all subtrees that do not lead to a successful scenario for the owner, with
the help of the pruning procedure. This results in elimination of the absorption
condition.

We illustrate pruning in the following example.

Example 4.23 Consider a slightly altered version of Example 2.2. Suppose that
the defender is unaware of the options to “Install Video Cameras”, and instead, he
thinks about implementing a fingerprint scanner to have a key-less security system.
The altered scenario is illustrated on the ADTree given in the left part of Figure 4.8.
We are now interested in calculating the minimal costs. In this case, there is no
need to consider the subtree rooted in “Steal Keys” because it is countered by
the defense “Fingerprint Scanner” (abbreviated FS) and thus does not lead to a
successful attack. The subtree rooted in “Steal Keys” should, therefore, be removed.
This simultaneously eliminates having to provide values for the non-refined nodes
“Steal Keys” and “Fingerprint Scanner”. The computation of the minimal costs is
then executed on the term corresponding to the tree in the right of Figure 4.8.

Defeat
Guard

Subdue
Guard

Out-
Number
Guard

Use
Weapon

Bribe
Guard

Steal
Keys

Finger-
Print

Scanner

Pruning
−−−−→

Defeat
Guard

Subdue
Guard

Out-
Number
Guard

Use
Weapon

Bribe
Guard

Steal
Keys

Finger-
Print

Scanner

Figure 4.8: Pruning the modified “Defeat Guard” scenario for questions of Class 1
owned by the attacker.

Pruning graphically Let us consider a question of Class 1 and its owner. In
order to graphically prune an ADTree, we perform the following procedure.

Definition 4.24 (Graphical pruning procedure) Starting from a leaf of the non-
owner, we traverse the tree towards the root until we reach the first node v satisfying
one of the following conditions:

• The node v is of the owner and sibling in a proper7 disjunctive refinement
(see Figure 4.9).

7A refinement is called proper if it contains at least two refining nodes.

4.4 Practical Use of Attributes 77

• The node v is of the non-owner and sibling in a proper conjunctive refinement
(see Figure 4.10).

• The node v is of the owner and counteracts a refined node of the non-owner
(see Figure 4.11).

• The node v is the root of the ADTree (see Figure 4.12).

The subtree rooted in node v is removed from the ADTree. Starting from all leaves
of the non-owner, this procedure is repeated until no further part of the tree can
be eliminated.

We note that the order in which we perform the procedure does not influence the
final result since removal of any prunable part does not change the values computed
on the rest of the tree.

Also, in some cases the pruning procedure results in the removal of the entire
ADTree. This is the case when the owner of the question does not have any way of
successfully achieving his goal. In this case the computation of the attribute yields
the default value for nodes of the non-owner.

∨p

A B C

D

Pruning
−−−−→

∨p

A B C

D

Figure 4.9: Pruning a proper disjunctive refinement.

A

∧o

D E F

Pruning
−−−−→

A

∧o

D E F

Figure 4.10: Pruning a proper conjunctive refinement.

A

∨o

C D

E

Pruning
−−−−→

A

∨o

C D

E

Figure 4.11: Pruning a countermeasure.

78 Chapter 4 Quantitative Analysis

A

B

Pruning
−−−−→

A

B

Figure 4.12: Pruning an entire ADTree.

Pruning formally Let Q be a question of Class 1 and let own denote the
owner of Q. In order to model the pruning procedure in a mathematical way, we
construct a formal model answering the question “Can the owner of Q succeed in a
considered attack–defense scenario?” The idea is to assign the Boolean value true

to all subtrees in which the owner of Q can succeed and the value false to the
subtrees in which he cannot. Formally, we evaluate an attribute that we denote
by satown, defined as follows. First, we set the basic assignment

βsatown(b) =

true if b ∈ Bown;

false if b ∈ Bown.
(4.5)

Then, given an ADTerm t, we use the following attribute domain to derive the
values of the attribute satown at all subterms of t:

Asatown =

({true, false},∨,∧,∧,∨,∧,∨) if own = p;

({true, false},∧,∨,∨,∧,∨,∧) if own = o .
(4.6)

Note that the question “Can the owner of Q succeed in the scenario?” also falls into
Class 1, as it is referring to a specific player. This explains why the corresponding
attribute domain is constructed using only two different operators and conforms
to the template of Class 1.

Remark 4.25 The attribute domain Asatown is slightly different from the attribute
domain

Asat = ({true, false},∨,∧,∨,∧, ⋆, ⋆),

that was introduced in Section 4.2.1 to represent the satisfiability attribute. The
latter attribute domain does not conform with the template of Class 1. By switch-
ing the operators and eliminating the negation contained in ⋆, it can, however,
be transformed into the attribute domain Asatown . Such a transformation models
changing the point of view from the perspective of the winner of a scenario to
the perspective of a single player. In Section 4.5.5, we generalize this observation
and argue that every attribute domain of Class 2 can be turned into an attribute
domain of Class 1 such that the pruning procedure can be applied.

The following theorem shows that satown models the pruning procedure soundly
and correctly.

Theorem 4.26 Consider a question Q of Class 1, its owner own, an ADTree T
and the corresponding ADTerm t. Furthermore, let Asatown and βsatown be defined by
Equations (4.5) and (4.6). The graphical pruning procedure given in Definition 4.24
removes a subtree T ′ of T if and only if the evaluation of the satown attribute on
the corresponding subterm t′ of t results in the value false.

4.4 Practical Use of Attributes 79

Proof. We first observe that, when a pruned subtree is removed, the attribute
values in the rest of the tree do not change. It thus suffices to show that

1. if a subtree is removed by pruning, the evaluation of satown on the corre-
sponding term results in false.

2. if a subtree is not removed by pruning, evaluation of satown on the corre-
sponding term results in true.

Step 1: Let u be a leaf of the non-owner, from which we start the current step of
the pruning procedure. We show that if a tree rooted in a node v is removed by
pruning, then all subterms corresponding to subtrees rooted in the nodes on the
path from u to v (including u and v) evaluate to false.

We prove this by contraposition. Assume that there exists a node w on the path
between u and v, such that the term corresponding to the tree rooted in w evaluates
to true. Moreover, let w be the first node with such a property which is encountered
when starting from u. Note that w 6= u, because the basic assignment βsatown assigns
the value false to every non-refined node of the non-owner. This means that there
exists a node w1 which is a child of w lying on the path from u to v. According to
our assumptions, the term corresponding to the tree rooted in w evaluates to true

while the term corresponding to the subtree rooted in w1 evaluates to false. This
implies that operator ∨ has been used. According to the attribute domain given
by Equation (4.6), there are only three situations where the logical disjunction is
used:

• either w is a properly, disjunctively refined node of the owner,

• or w is a properly, conjunctively refined node of the non-owner,

• or w is a refined node of the non-owner and w1 is its countermeasure.

It is now sufficient to realize that in all the three cases, the pruning procedure
actually stops at node w1. This is in contradiction to the fact that pruning stops
at w.

Step 2: First, let us remark that the pruning procedure stops at node v if the
value of the term corresponding to the tree rooted in the parent node of v is not
uniquely determined by the value of the subterm corresponding to the tree rooted
in v. This is because, in all three cases where pruning stops at v, the calculation of
the satown attribute for the subterm corresponding to the tree rooted in the parent
of v uses the operator ∨. It is applied to the value false (quantifying the term
corresponding to the tree rooted in v) and another value which cannot be deduced
from the currently considered path. The tree rooted in the parent of v will either
be removed by the pruning procedure starting from another leaf of the non-owner
or it will not be removed after all possible steps of the pruning are performed.

Let T be an ADTree and T ′ be its subtree which is not removed by any step of the
pruning procedure. In the remaining part of this proof we show that the evaluation
of satown on a term t′ corresponding to T ′ results in value true. The proof is by
induction on the structure of T ′.

80 Chapter 4 Quantitative Analysis

If T ′ is a leaf of T , then it needs to represent a basic action of the owner. This
is because all leaves of the non-owner are removed by pruning. According to the
basic assignment βsatown the term t′ is quantified with true.

Let us now consider a tree T ′ which has not been removed by any step of the pruning
procedure and which is not a leaf of T . As induction hypothesis, we assume that
the evaluation of satown on all subterms corresponding to the subtrees of T ′ not
removed by pruning results in true. This implies that the evaluation of satown on t′

yields true because the only possible ways of combining the values quantifying the
subterms of the considered term are ∨ or ∧.

From a question to an attribute domain Next, we analyze how a question
of Class 1 should be composed, in order to be able to instantiate the attribute
domain template A = (D, ◦, •, •, ◦, •, ◦) with a specific value set and operators.
To correctly instantiate A, we need a value domain D, two operators (for all and
at least one) and we need to know which of those operators instantiates ◦ and
which •. Thus, a well-specified question of Class 1 contains exactly four parts, as
illustrated by the following question:

Modality: What are the minimal
Notion: costs
Owner: of the proponent
Execution: assuming that all actions are executed one after another?

Each of the four parts has a specific purpose in determining the attribute domain.

Notion The notions of Class 1 that we identified during our study are:

• attack potential,

• attack time,

• consequence,

• costs,

• detectability,

• difficulty level,

• elapsed time,

• impact,

• insider required,

• mitigation success,

• outcome,

• penalty,

• profit,

• response time,

• severity,

• resources,

• skill level,

• special equipment
needed,

• number of special-
ists,

• special skill needed,

• survivability.

From the notion we determine the value domain, e.g., N, R, R≥0, Levels, Booleans,
etc. We distinguish two general cases: finite notions, such as Levels, Booleans and
infinite notions, such as N, R, R≥0. For numerous attributes both categories of
notions are conceivable. It is, for example, up to the user to decide whether he
wants to utilize cost levels, such as Low, Medium and High or real values.

The choice of the value domain influences the basic assignments, as well as the
operators determined by the modality and the style of execution. The selected
value domain needs to include all values that we want to use to quantify the owner’s

4.4 Practical Use of Attributes 81

actions. It also must contain a neutral element with respect to ◦ if own = p and
with respect to • if own = o. This neutral element is assigned to all non-refined
nodes of the non-owner, as argued in the beginning of this section.

The name of the notion is usually contained in the name of the attribute. In this
thesis, if a notion is typeset in bold, it refers to the attribute and no longer the
notion. Naturally, a full attribute specification needs other components. These may
be irrelevant when no concrete attribute quantification is performed, but should
never be omitted when actually quantifying values. Unfortunately, throughout the
literature there is sometimes no clear distinction between the two notions resulting
in confusion.

Modality The modality of a question clarifies how options are treated. Thus,
it determines the characteristic of the at least one operator. Different notions are
accompanied with different modalities. In the case of costs, interesting modalities
include minimal, maximal and average.

Execution The question also needs to specify a style of execution. It describes
the characteristics of the all operator, i.e., it determines what happens whenever
all actions need to be executed. Exemplary styles of execution are: simultaneously
vs. sequentially (for time) or with reuse vs. without reuse (for resources).

Owner The owner of a question determines how the modality and the execution
are mapped to ◦ and •. In case the owner of the question is the root player, i.e.,
the proponent, ◦ is instantiated with the at least one operator and • with the all
operator. In case the root player is not the owner, the instantiations are reversed.

Given all four parts, we can construct the appropriate attribute domain. For infinite
notions, possible combinations of the modality, the style of execution and the owner
have been determined and are exemplified in Table 4.1 using the notion duration.
When using finite notions, we need to ensure that the finite set is ordered. Given
an ordered set, the functions are similar to the ones for infinite notions and are
presented in Table 4.2.

To actually construct the attribute domain of a given attribute, we construct the
template (D, ◦, •, •, ◦, •, ◦) from the algebraic structure 〈D, ◦, •〉 provided by the
tables. In case D does not contain the basic assignment for own, we extend D with
the element eown. The tables can also be used in case the notions do not model a
duration or a skill level, as shown in the next example.

Example 4.27 In Example 4.6, we have seen that the question “What are the
minimal costs of the proponent, assuming that reusing tools is infeasible?” can be
answered using the attribute domain Acosts = (R∞,min,+,+,min,+,min). Alter-
natively, we can apply the newly explained concepts of this section to deduce the
attribute domain as follows. The question’s notion is costs, for which we want to
use the value domain R. Replacing the notion of duration with the notion of costs,
we can make use of Table 4.1. From the question, we know that the modality is
minimum, the owner is the proponent and the style of execution is without reuse,
which corresponds to sequential execution. Hence, we use the semiring 〈R,min,+〉
and the basic assignment ∞ for own, as specified in Line 1 of Table 4.1. Executing
the attribute domain construction, we see that Table 4.1 indeed can be used to find

82 Chapter 4 Quantitative Analysis

Notion Modality Owner Execution Structure
〈D, ◦, •〉

Basic assignment
for own (eown)

1 duration min p sequential 〈R,min,+〉 ∞
2 duration avg p sequential 〈R, avg,+〉 eavg

3 duration max p sequential 〈R,max,+〉 −∞
4 duration min o sequential 〈R,+,min〉 0
5 duration avg o sequential 〈R,+, avg〉 0
6 duration max o sequential 〈R,+,max〉 0
7 duration min p parallel 〈R,min,max〉 ∞
8 duration avg p parallel 〈R, avg,max〉 eavg

9 duration max p parallel 〈R,max,max〉 −∞
10 duration min o parallel 〈R,max,min〉 −∞
11 duration avg o parallel 〈R,max, avg〉 −∞
12 duration max o parallel 〈R,max,max〉 −∞

Table 4.1: Determining instantiations of the structure from which to construct
attribute domains of questions of Class 1 for infinite notions. In the table, eavg

denotes the neutral element with respect to avg. For infinite structures R is N, R,
or R≥0.

the correct attribute domain. In order to finally answer the question on the AD-
Tree in the left of Figure 4.8, we first prune it, as shown on the right of Figure 4.8.
Then, the only basic actions that are left are “Outnumber Guard”, “Use Weapon”
and “Bribe Guard”. Suppose the costs are 100e, 200eand 400e, respectively. We
use these values as basic assignment βcosts and apply the bottom-up procedure
introduced in Definition 4.4 to the ADTerm ∨p(∧p(OG,UW),BG):

costs(∨p(∧p(OG,UW),BG))

= ∨p
costs (∧p

costs(βcosts(OG), βcosts(UW), βcosts(BG)))

= min{+(100e, 200e), 400e}

= 300e.

Remark 4.28 If the structure 〈D, ◦, •〉 forms a semiring, it is not necessary to prune
the ADTree to correctly answer a question Q of Class 1. This is due to the fact
that in a semiring the neutral element8 for the first operator is at the same time
absorbing for the second operator. Such an element can then be assigned to all
subtrees which do not yield a successful scenario for the owner of Q, in particular
to the uncountered basic actions of the non-owner.

Other attributes in this class include the cheapest successful proponent bundle
(cspb) attribute introduced in Section 4.2.3, and the attribute that models which
goals of the proponent are executable in less than k time units, as introduced in
Section 4.3.2.

Merging evaluation of attributes of Class 1 that are compatible with
the multiset semantics with pruning Finally, we show how to combine the

8Such an element is usually called zero of the semiring. For instance, ∞ is the zero element
of the semiring 〈R∞, min, +〉.

4.4 Practical Use of Attributes 83

Notion Modality Owner Execution Structure
〈D, ◦, •〉

Basic assignment
for own (eown)

1 skill level min p sequential 〈K,min,+k〉 k
2 skill level avg p sequential 〈K, avg,+k〉 eavg

3 skill level max p sequential 〈K,max,+k〉 0
4 skill level min o sequential 〈K,+k,min〉 0
5 skill level avg o sequential 〈K,+k, avg〉 0
6 skill level max o sequential 〈K,+k,max〉 0
7 skill level min p parallel 〈K,min,max〉 k
8 skill level avg p parallel 〈K, avg,max〉 eavg

9 skill level max p parallel 〈K,max,max〉 0
10 skill level min o parallel 〈K,max,min〉 0
11 skill level avg o parallel 〈K,max, avg〉 0
12 skill level max o parallel 〈K,max,max〉 0

Table 4.2: Determining instantiations of the structure from which to construct
attribute domains of questions of Class 1 for finite notions. The set K is a finite
ordered set of levels with maximum element k or the set {true, false} represented
as {0, 1}. The symbol +k denotes bounded addition over K, i.e., +k(b1, . . . , bn) =
min{

∑n
i=1 bi, k} for bi ∈ K and eavg denotes the neutral element with respect to avg.

evaluation of an attribute of Class 1 that is compatible with the multiset semantics
and the pruning operation in one procedure.

We have argued that, in order to evaluate an attribute α of Class 1 correctly, we first
need to prune a considered ADTree with respect to the owner of the corresponding
question. In this section, we show how the two procedures of attribute evaluation
and pruning can be modeled using an extended attribute domain.

Consider a question Q of Class 1, the corresponding attribute domain Aα =
(D, ◦, •, •, ◦, •, ◦) and a basic assignment βα : B → D. For ease of presentation,
in this section we assume that the owner of Q is the proponent, i.e., that ◦ is
the at least one operator and • is the all operator. In order to be able to an-
swer Q without the necessity of first pruning the ADTree, we extend D with an
additional Boolean dimension that represents which actions are relevant for our
considerations. Therefore, instead of the value domain D, we use the Cartesian
product D × {true, false} denoted by D̂. Furthermore, we define ◦̂ and •̂ as two
internal operations on D̂, by

◦̂((d1, s1), . . . , (dk, sk)) = (◦(d1 ⊗ s1, . . . , dk ⊗ sk),
k∨

i=1

si),

and

•̂((d1, s1), . . . , (dk, sk)) = (•(d1 ⊗ s1, . . . , dk ⊗ sk),
k∧

i=1

si),

where, for all d ∈ D, we set d ⊗ true = d and d ⊗ false = e◦. Moreover, e◦

denotes the neutral element with respect to ◦, which is absorbing with respect
to •. It always exists, since Aα is constructed from an idempotent semiring, see
Definition 4.20. In order to define the extended basic assignment β̂α : B → D ×

84 Chapter 4 Quantitative Analysis

{true, false}, we set β̂α(b) = (βα(b), true), for every basic action b of the owner
of Q, and β̂α(b) = (βα(b), false), for every basic action b of the non-owner of Q.
The following theorem shows that the attribute domain defined by

Âα = (D̂, ◦̂, •̂, •̂, ◦̂, •̂, ◦̂)

constitutes a formal model allowing us to correctly evaluate the attribute α and
thus to answer Q, without requiring prior pruning. It can be argued that Âα is also
associated to some question of Class 1 since it satisfies the corresponding template
for attribute domains, as illustrated in Figure 4.7.

Theorem 4.29 Let Q, Aα, βα, Âα and β̂α be defined as above. For every AD-
Term t, we have

• α̂(t) = (d, false), for some d ∈ D if the tree corresponding to t is removed
by the pruning procedure related to Q,

• α̂(t) = (α(t), true) if the tree corresponding to t is not removed by the
pruning procedure related to Q.

Proof. First, observe that the calculation of the second component of the pair α̂(t)
corresponds to the calculation of the attribute satown, formalized in Equations (4.5)
and (4.6). Theorem 4.26 ensures that the second component of α̂(t) is false if and
only if the corresponding ADTerm is removed by the pruning procedure related
toQ. In this case, it is not clear whether the first component of α̂(t) has a conclusive
meaning.

Let t be a term corresponding to a subtree which is not removed by pruning
related to Q. In order to prove that α̂(t) = (α(t), true), it suffices to show that,
according to Theorem 4.26, the evaluation of satown on all subterms of t results in
the value true. In other words, that, when calculating α̂(t) we perform operations
of the form

⋄̂((d1, true), . . . , (dk, true)) = (⋄(d1 ⊗ true, . . . , dk ⊗ true), true)

= (⋄(d1, . . . , dk), true),

where ⋄ ∈ {◦, •}. This concludes the proof.

We illustrate the use of the extended attribute domain introduced in this section
on the following example.

Example 4.30 As in Example 4.27, we would like to answer the question “What
are the minimal costs of the proponent, assuming that reusing tools is infeasi-
ble?”, on the tree in the left part of Figure 4.8. From Example 4.27, we know
that the corresponding attribute domain is Acosts = (R∞,min,+,+,min,+,min).
We extend Acosts to the attribute domain Âcosts = (R̂∞, m̂in, +̂, +̂, m̂in, +̂, m̂in), as
defined in this section. Since ∞ is the neutral element with respect to min on R,
the operation ⊗ is defined as x ⊗ false = ∞, for every x ∈ R. We evaluate the

4.4 Practical Use of Attributes 85

minimal costs attribute on the ADTerm corresponding to the non-pruned ADTree
from Figure 4.8, as follows:

ĉosts(∨p(∧p(OG,UW),BG, cp(SK,FS)))

= m̂in(+̂(β̂costs(OG), β̂costs(UW)), β̂costs(BG), +̂(β̂costs(SK), β̂costs(FS)))

= m̂in(+̂((βcosts(OG), true), (βcosts(UW), true)), (βcosts(BG), true),

+̂((βcosts(SK), true), (βcosts(FS), false)))

= m̂in((+(βcosts(OG), βcosts(UW)), true), (βcosts(BG), true),

(+(βcosts(SK),∞), false))

= m̂in((+(100e, 200e), true), (400e, true), (∞, false))

= m̂in((300e, true), (400e, true), (∞, false))

= (min{300e, 400e,∞}, true)

= (300e, true).

This result shows that the scenario is satisfiable for the proponent and that his
minimal costs are 300e. It is the same result as the one obtained in Example 4.27.

4.4.3 Questions Where Answers for Both Players Can Be Deduced
from Each Other

We illustrate the construction of the attribute domain of Class 2 using the ques-
tion “What is the probability of success of a scenario, assuming that all actions
are independent?” In case of questions of Class 2, values assigned to a subtree
quantify the considered property from the point of view of the root player of the
subtree. This means that, if a subtree that is rooted in an attack node is assigned
the value 0.2, the corresponding attack is successful with probability 0.2. If a sub-
tree that is rooted in a defense node is assigned the value 0.2, the corresponding
defensive measure is successful with probability 0.2. Following the same line of
reasoning, disjunctive (conjunctive) refinements for the proponent and the oppo-
nent have to be treated in the same way when considering questions of Class 2: in
both cases, they refer to the at least one option for disjunctive refinements (here
modeled with ◦) and the all options for conjunctive refinements (modeled with •),
of the player whose node is currently considered.

Questions of Class 2 also have the property that, given a value for one player, we
can immediately deduce a corresponding value for the other player. For example,
if the attacker succeeds with probability 0.2 the defender succeeds with probabil-
ity 0.8. This property is modeled using a value domain with a predefined unary
negation operation ¬. This negation allows us to express the operators for both
countermeasures. We use the binary all operator where the second argument is
negated. Hence, formally, •¬(x, y) = x •¬ y. Therefore, the attribute domains of
Class 2 follow the template (D, ◦, •, ◦, •, •¬, •¬).

Below we discuss three parts that questions of Class 2 need to address.

Notion Questions of Class 2 refer to notions for which the value domain can
be equipped with a unary negation operator. Given a value for a node of one

86 Chapter 4 Quantitative Analysis

player, this unary negation operator allows us to deduce the value corresponding
to the other player. E.g., if the scenario is true for the attacker it is false for the
defender. Identified notions for Class 2 are:

• satisfiability, • probability of success,

• probability of occurrence,

• electricity.

Note that the allocation of the notion is not always unique. For example, in ques-
tions of Class 2, electricity would refer to the question whether or not electricity
is needed. If we ask for the electricity requirements of the proponents, the notion
could be placed in Class 1 and if we ask for the electricity requirement of both
players, the notion could also be placed in Class 3.

Modality Modality specifies the operator for at least one option. For the notions
enumerated above, this is either the logical OR (∨) or the probabilistic addition
of independent events +O(pb1 , . . . , pbn

) =
∏n

i=1 pbi
for given probabilities pbi

for the
events bi.

Execution Finally, we need to know the style of execution, so that we can specify
the operator for all options. In the above notions, this is either the logical AND
(∧) or the probabilistic multiplication of independent events: ×O(pb1, . . . , pbn

) =
1 −

∏n
i=1(1 − pbi

).

In the two identified attribute domains the unary negation function is either the
logical not (¬) or the complement operator.

Example 4.31 We calculate the probability of success of the scenario given in
the left of Figure 4.8, assuming that the success of all actions is independent. Let
the probability of success of all basic actions be βsuc(b) = pb = 0.4. We use the
attribute domain

Asuc = ([0, 1],+O,×O,+O,×O, ⋆O, ⋆O),

where ⋆O is defined as ⋆O(pa1 , pa2) = pa1 · (1 − pa2) to compute

suc(∨p(∧p(OG,UW),BG, cp(SK,FS)))

= +O(×O(βsuc(OG), βsuc(UW)), β(BG), ⋆O(βsuc(SK), βsuc(FS)))

= +O(×O(βsuc(OG), βsuc(UW)), β(BG),×O(βsuc(SK), (1 − βsuc(FS))))

= +O(×O(0.4 · 0.4), 0.4, (0.4(1 − 0.4)))

= +O(0.16, 0.4, 0.24)

= 0.61696.

In Section 4.2.1 we already discussed the satisfiability attribute which also follows
the attribute template for attribute domains of Class 2. Moreover, in Section 4.2.4
we have seen the mcw attribute. From Remark 4.11 we can conclude that also this
attribute is in Class 2.

4.4 Practical Use of Attributes 87

4.4.4 Questions Relating to an Outside Third Party

Suppose an outsider is interested in the overall maximal power consumption of the
scenario. As in the previous section, disjunctive (conjunctive) refinements of both
players should be interpreted with the same operator. Indeed, for a third party the
important information is whether at least one of the options or all options need to
be executed and not who performs the actions. Countermeasures, contrary to coun-
termeasures in Section 4.4.3, lose their opposing aspect. Instead, the arguments of
the countermeasures are aggregated in the same way as conjunctive refinements.
This is plausible since both the countered and the countering action contribute to
the overall power consumption. These observations result in the following template
for an attribute domain of Class 3: (D, ◦, •, ◦, •, •, •).

We specify relevant parts of the questions of Class 3 on the following example.

Modality: What is the maximal
Notion: energy consumption
Execution: when sharing power to execute different basic actions is impossible?

Notion In Class 3, we use notions that express universal properties covering
both players. In the literature, we found the following examples:

• social costs,

• global costs,

• third party costs,

• environmental costs,

• information flow,

• environmental dam-
age,

• combined execution time,

• required network traffic,

• energy consumption.

Modality The question should also contain enough information to allow us to
specify how to deal with at least one option. In general, modalities used in questions
of Class 3 are the same as those in Class 1, e.g., minimal, maximal and average.

Execution Finally, we need to know the style of execution, in order to define the
correct operator for all options. The choices for the style of execution in Class 3
are again the same as in Class 1.

These three parts now straightforwardly define an algebraic structure 〈D, ◦, •〉 that
we use to construct the attribute domain (D, ◦, •, ◦, •, •, •).

Example 4.32 Consider the question “What is the maximal energy consumption
for the scenario depicted in the left of Figure 4.8 when sharing power to execute dif-
ferent basic actions is impossible?” The modality of the question is maximum. This
implicitly assumes we only analyze minimally satisfying scenarios, i.e., that for dis-
junctive nodes each player chooses exactly one option and we disregard situations
where more than once action is performed to satisfy disjunctive nodes. Both the
proponent’s as well as the opponent’s actions may require energy. We assume that
“Use Weapon” and “Fingerprint Scan” all consume 2kWh. The “Steal Keys” actions
requires 1kWh, whereas “Outnumber Guard” and “Bribe Guard” do not require
any energy. These numbers constitute the basic assignment for the considered at-
tribute. From the question we know that when we have a choice, we should consider
the option which consumes the most energy. Furthermore, since sharing power is

88 Chapter 4 Quantitative Analysis

impossible, values for actions which require execution of several subactions should
be added. Thus, we use the attribute domain Aergmax

= (R,max,+,max,+,+,+)
and compute the maximal possible energy consumption in the scenario as

ergmax(∨p(∧p(OG,UW),BG, cp(SK,FS)))

= max{+(0kWh, 2kWh), 0kWh,+(1kWh, 2kWh)}

= 3kWh.

Due to similarities for modality and the style of execution for questions of Class 1
and Class 3, we can use Table 4.1, to find the structure 〈D, ◦, •〉 that determines
an attribute domain for a question of Class 3. The table corresponds to the case
where the owner is the proponent.

4.5 Constructing New Attributes and Attribute Domains

We conclude our discussion of attributes for ADTrees by giving an outlook on how
to generally construct new attribute domains from previously known attributes.
Rather than providing a general theory, we provide pointers for further research.
We detail several examples that we hope are useful as a starting point for possible
generalizations.

4.5.1 Cartesian Composition

A trivial way of creating a new attribute domain from given ones is to take the
Cartesian product of the value domains and extend the operators componentwise.
We call this construction the Cartesian composition of two attribute domains. It
is formally defined as follows. Let

Aα1 = (Dα1 ,∨
p
α1
,∧p

α1
,∨o

α1
,∧o

α1
, cp

α1
, co

α1
)

and
Aα2 = (Dα2 ,∨

p
α2
,∧p

α2
,∨o

α2
,∧o

α2
, cp

α2
, co

α2
)

be two attribute domains of Class i, where i ∈ {1, 2, 3}. Then

Aα = (Dα1 ×Dα2 , (∨
p
α1
,∨p

α2
), (∧p

α1
,∧p

α2
), (∨o

α1
,∨o

α2
), (∧o

α1
,∧o

α2
), (cp

α1
, cp

α2
), (co

α1
, co

α2
))

is also an attribute domain of Class i. Naturally, the Cartesian composition gener-
alizes to a combination of more than two attribute domains. The Cartesian compo-
sition is also applicable when combining attribute domains from different classes.
However, then the resulting attribute domain cannot always be placed into one of
the classes since the structure of the attribute domain is not necessarily retained.
In practice, we have not observed such compositions of mixed classes.

In our case studies we have made use of the Cartesian composition when defin-
ing meta-attributes, see Section 5.3.3. Meta-attributes are properties of attributes.
Meta-attributes may be useful when associating attribute values since it is possible
to quickly identify information from one attribute instead of having to retrieve it
from several places. In general, any meta-attribute can be used in combination with
any attribute. We illustrate the use of meta-attributes on the following example.

4.5 Constructing New Attributes and Attribute Domains 89

Example 4.33 Suppose an RFID security analyst and a person working in com-
puter forensics are asked to assess the probability of occurrence of a denial
of service attack. Both experts think that the likelihood is Medium (M). However,
suppose the security analyst is confident about his guess while the forensics expert
is not. Capturing this additional information could help us distinguish between the
associated values and, therefore, more precisely represent the scenario. We use the
meta-attribute confidence to indicate how certain a person is about an attribute
value for a given node. Suppose the value domain of the confidence is {1, 2, 3},
where 1 symbolizes no confidence, 2 normal confidence and 3 extreme confidence.
Given these values, the basic assignment of the security expert would be (M, 3)
while the basic assignment of the forensics expert would be (M, 1).

Another meta-attribute is coverage, which expresses the number of people who
have associated an attribute value with a given node.

4.5.2 Dependent Composition

The Cartesian composition can be generalized by allowing more flexibility in the
functional operators of the attribute domains. We create dependently composed
attributes by taking again the Cartesian product of the value domains and em-
ploying new (more involved) functions as functional operators. In Section 4.2, we
have already used several dependently composed attribute domains. More specifi-
cally, Sections 4.2.3 and 4.2.4 provide two detailed examples while Theorem 4.29
uses a dependently composed attribute to express which nodes are pruned.

As in the case for Cartesian compositions, it is possible to extend the dependent
composition to compositions of more than two attributes. For example, it could be
beneficial to extend Theorem 4.29 to compose multiple binary attribute domains
with a non-binary attribute.

The benefit of a general theory of composition, however, is an open field of in-
vestigation. Since most compositions appear to be highly application specific, we
conclude this section by highlighting three compositions that we have used in prac-
tice.

4.5.3 Derived Attributes

If we lift the restriction that the value domain is the Cartesian product of exist-
ing value domains, we can use an arithmetic formula to derive a new attribute
by combining several existing attributes. These attributes are called derived at-
tributes. Numerous examples where an arithmetic formula is used to derive values
on attack trees can be found in the literature. Edge et al. [EDRM06] have de-
fined a variant of a risk attribute for attack trees based on the formula risk =
(probability/costs) · impact. A similar approach has been used in [JW08], where
the costs, success probability, profit (there called gain) and penalty attributes
have been combined in order to define a new attribute called the exact expected
outcome of the attacker. Henniger et al. [HAF+09] combine the attributes elapsed
time, expertise, knowledge of system, window of opportunity and re-
quired equipment, in order to deduce the required attack potential. Finally,

90 Chapter 4 Quantitative Analysis

Fung et al. [FCW+05] show how the difficulty level associated with the non-refined
nodes can be used to estimate the survivability in the root node.

Instead of using an arithmetic formula to derive new values, we can directly incor-
porate the computation of the values into the standard bottom-up algorithm. We
illustrate this general procedure on the following example.

Example 4.34 Suppose we want to compute the risk associated to nodes of an
ADTree. Suppose further that the risk is computed using the formula:

risk =
probability · impact

costs
. (4.7)

Assume we are given the attribute domains Aocc, Acosts and Aimp as well as the basic
assignment βocc, βcosts and βimp for a probability of occurrence attribute, a costs
attribute and an impact attribute, respectively. Then the attribute domain Arisk

is a derived attribute domain that includes the probability, the costs and the
impact attributes as components. The attribute domain of the risk attribute is
given by

Arisk = (Drisk, f1, f2, f3, f4, f5, f6),

whereDrisk = Docc×Dcosts×Dimp×D′
risk andD′

risk is the value domain of the original
risk formula given in Equation (4.7). Moreover, each fi is a function from Drisk

to Drisk. The first three components of each function fi correspond to the functions
of the original attributes probability of occurrence, costs and impact. The last
component is given by the right part of Equation (4.7). However, since the values
have to be computed from the values of the children, the risk value is expressed
in terms of the functions used in the first three components. We exemplify the
construction on f1:

f1 : Drisk → Drisk

f1((x1, x2, x3, x4)) = (focc1(x1), fcosts1(x2), fimp1
(x3),

focc1(x1) · fimp1
(x3)

fcosts1(x2)
),

where focc1 , fcosts1 and fimp1
denote the first functions in the attribute domains of

the corresponding attributes and xi for i ∈ {1, . . . 4} denotes a vector containing
the values of the children of a considered node.

Depending on the circumstances, simply applying Equation (4.7) for every node
after the other attribute values have been calculated may be more natural when
computing the last component of the derived attribute. However, the previous
example generalizes to other derived attributes that can be written in form of
Equation (4.7). Hence the ADTree formalism unifies other formalisms since it can
express numerous other attributes that occur in the literature.

4.5.4 Switching the Owner of the Question

While considering questions of Class 1 in Section 4.4.2, we have seen that it is
necessary to specify the owner of a question to unambiguously determine the cor-
responding attribute domain. We revisit the impact of the owner of a question in
the following.

4.5 Constructing New Attributes and Attribute Domains 91

Suppose we are given the attribute domain Ap = (D, ◦, •, •, ◦, •, ◦) that allows us
to compute the minimal costs of the proponent, given all defenses are in place.
Recall that the owner of the question is the proponent. Now assume that we are
instead interested in computing the minimal costs of the opponent. The attribute
domain Ao = (D, •, ◦, ◦, •, ◦, •) can be used to answer this question. We call this
transformation of questions (and corresponding attribute domains) switching the
owner and the non-owner of the question.

In general, to deduce the attribute domain corresponding to a question with a
switched owner, we merely switch the operators • and ◦. The reason behind switch-
ing the operators is that the owner (or the non-owner) determines whether to
assign • to the modality and ◦ to the execution, or vice versa.

Note that the switched attribute domain is, in general, no longer compatible with
the multiset semantics: Whereas before we used the algebraic structure 〈D, ◦, •〉
to construct the attribute domain of Class 1, we now use the algebraic struc-
ture 〈D, •, ◦〉. If the initially considered attribute of Class 1 is compatible with
the multiset semantics, we know that 〈D, ◦, •〉 is an idempotent semiring. After
switching, this does not hold in general, i.e., 〈D, •, ◦〉 is, in general, not a semi-
ring. If 〈D, ◦, •〉, however, were a De Morgan lattice, then 〈D, •, ◦〉 would also be
a De Morgan lattice and both attribute domains would be compatible with the De
Morgan semantics and the multiset semantics.

4.5.5 Switching the Perspectives

Finally, we analyze the relation between attribute domains of Class 1 and Class 2.
We exemplify the connection with the help of satisfiability attributes.

Example 4.35 One way to ask about the realizability of a scenario is to ask:
“Is the attack feasible for the proponent?” Alternatively, we could contemplate
“Who is the winner of the scenario?” When computing a value with the bottom-
up approach, the former formulation suggests that we already know the type of the
root node while the latter allows us to answer the question recursively for every
subtree.

We observe that the second formulation of the question can only be generalized to
other attributes if the considered attribute can be seen from both the proponent’s
as well as the opponent’s side and the proponent’s value and the opponent’s value
influence each other. This is true in the case of the satisfiability attribute because
of the following fact: If the proponent can win the scenario when considering only
a specific subtree, it is obvious that the opponent cannot.

For the costs attribute, for example, such a relation does not hold since the costs
of one player do not directly influence the costs of the other player.

The example generalizes to questions which ask for a winner or the current level
(Questions corresponding to Class 2) but does not generalize to questions that refer
to the type of the root node (Questions corresponding to Class 1). The fact that
there are two different formulations of questions of Class 2 indicates that questions
of Class 2 can be turned into questions of Class 1 but that the converse does not
hold.

92 Chapter 4 Quantitative Analysis

Mathematically the reasoning is as follows. From Figure 4.7, we know that the
template for attribute domains of Class 2 is given by (D, ◦, •, ◦, •, •¬, •¬) and the
basic assignment is given as true for all nodes that can be realized by the player
corresponding to the type of the node and as false, otherwise. We also know that
the template for attribute domains of Class 1 is given by (D, ◦, •, •, ◦, •, ◦) and the
corresponding basic assignment is given as true if the owner of the question can
realize the basic assignment and as false, otherwise. Therefore, to construct the
domain of attributes of Class 1, it suffices to know the basic assignment and the
algebraic structure 〈D, ◦, •〉 while for domains of attributes of Class 2 it is also
necessary to know the negation function. Hence, formally, given an attribute do-
main of an attribute of Class 2 it is always possible to construct the corresponding
attribute domain of Class 1, but (without additional knowledge) it is impossible
the other way around.

5

Practical Applications of ADTrees

Chapters 2, 3 and 4 present the foundations of the ADTree methodology. Through-
out the development process of the ADTree formalism, we have conducted numer-
ous case studies. These case studies served a theoretical and a practical purpose.
On the one hand, it provided valuable feedback on desired and necessary formal
improvements to ensure that the framework is, in fact, theoretically sound. On
the other hand, it verified that the approach is intuitive, practically applicable
and that use cases performed according to the ADTree methodology actually yield
meaningful results.

This chapter describes the case studies that were conducted to evaluate and possi-
bly improve the ADTree methodology and is structured as follows. First, Section 5.1
describes which kind of case studies are feasible and useful in the context of the
ADTree methodology and introduces the questions we focused on while perform-
ing the case studies. The two following sections describe three case studies that
we performed. In detail, we describe a case study on an online auction protocol
in Section 5.2 and two subsequent case studies on an RFID goods management
system in Section 5.3. In Section 5.4, we collect the observations that we made
during the case studies and use them to answer the initial questions. Then, in
Section 5.5, we summarize our insights from the case studies and present them as
guidelines that should be respected when performing use cases that follow the AD-
Tree methodology. Finally, in Section 5.6, the ADTool is introduced. This software
tool was developed taking the insights gained during the case studies into account.
It enables the user to construct and analyze ADTrees with the help of computer
support.

5.1 Selecting Suitable Case Studies and Research Aspects

Before commencing a case study with the aim of evaluating and improving a
methodology, it is important to clarify the research strategy behind the experi-
ments. In case studies on the ADTree methodology, we may strive to

• evaluate and improve the entire ADTree methodology,

• evaluate and improve certain aspects of the ADTree methodology,

• evaluate how the ADTree methodology can be applied in certain areas, for
example in risk management or penetration testing,

• evaluate how the ADTree methodology can be incorporated in existing meth-
ods, like SQUARE [MS05], STRIDE [HLOS06] or other risk management

93

94 Chapter 5 Practical Applications of ADTrees

tools,

• build a library of ADTrees based on scenarios,

• build a library of ADTrees based on known attacks or vulnerabilities tem-
plates,

• find and evaluate suitable application domains for ADTrees.

In our case studies, we opted to primarily evaluate certain aspects of the approach.
More precisely, we first focused on the syntax and the semantics of ADTrees,
before we analyzed how to quantitatively assess with the help of the formalism.
This advances the methodology and notation in a focused way. Since some of the
above goals are interconnected, though, we partially address them as well. For
example, by performing numerous case studies with varying scenarios, we simulta-
neously started a library of ADTrees, which is accessible at http://satoss.uni.

lu/projects/atrees/library.php. During the ADTree creation, we made use of
known attack pattern or vulnerability libraries such as the Common Attack Pat-
tern Enumeration and Classification (CAPEC) http://capec.mitre.org/, the
Common Weakness Enumeration (CWE) http://cwe.mitre.org/, the Common
Vulnerability Scoring System (CVSS) http://www.first.org/cvss or the Com-
mon Vulnerabilities and Exposures (CVE) http://cve.mitre.org/.

Since we used a wide range of suitable scenarios, we were able to confirm that the
ADTree methodology is capable of modeling a multitude of scenarios. For example,
we combined the analysis of technical, socio-technical, social as well as physical
security on numerous layers of abstraction. Other possible scenarios range from
the evaluation of web services and communication technologies, over analyzing
OS-level and network attacks, scrutinizing attacks on banks, warehouses or online
businesses to purely physical attacks, such as opening a bank vault or locked doors.
This wide range of scenarios also allowed us to test the hypothesis that the ADTree
methodology is general. In fact, the approach does not distinguish between high-
level and low-level attacks or, e.g., OS-level and network-based denial of service
(DoS) attacks, so that they can all be combined in the same model.

As we mentioned previously, our case studies targeted the evaluation of specific
aspects of the ADTree methodology. In detail, we focused on the following questions
relating to the ADTree methodology’s syntax, semantics and attributes:

Q1) How can we use ADTrees to find out which defensive measures are present
in a system? And which techniques allow us to construct a precise model?

Q2) Are semantics preserving transformations on ADTrees a useful tool? Do they
help us to improve our understanding of a scenario?

Q3) Should there be any restrictions when setting up a tree model, for example,
should the labels of the nodes have a specific form or should the tree have a
predefined depth?

Q4) What has to be considered when providing attribute values for nodes?

Q5) What are suitable methods to turn the values provided for the nodes into a
basic assignment?

http://satoss.uni.lu/projects/atrees/library.php
http://satoss.uni.lu/projects/atrees/library.php
http://capec.mitre.org/
http://cwe.mitre.org/
http://www.first.org/cvss
http://cve.mitre.org/

5.2 Initial Case Study 95

Q6) What are the strengths and weaknesses of the bottom-up algorithm?

Before we actually answer the above questions in Section 5.4, we present a se-
lection of case studies that we performed during the development of the ADTree
methodology. All case studies were performed by following the steps suggested
when conducting use cases with the ADTree methodology. At the start of every
use case, an ADTree model is set up which possibly requires several rounds of im-
provements and tweaks. In this phase, the ADTree structure, the attributes and
the people who provide attributes should be determined. Since any model rests on
these three interconnected pillars, any later adjustment is not advisable because
this might invalidate the actual values. After establishing the ADTree, values for
attributes can be estimated. In a next step, these values are then turned into a ba-
sic assignment, before the bottom-up algorithm is applied in a final step. The work
steps to perform a use case according to the ADTree methodology are summarized
in Figure 5.1.

Figure 5.1: High-level overview over the steps in use cases according to the ADTree
methodology with attribute evaluation.

The first case study, presented in Section 5.2, was performed on an online auction
scenario, mainly targeting the analysis of syntax and semantics, i.e., Questions Q1–
Q3. Since this case study was not concerned with attributes, it only illustrates the
first step in the ADTree methodology. Two other case studies, presented in Sec-
tion 5.3, were performed on an RFID goods management system. One case study
focused on attribute decoration, while the other one examined the entire methodol-
ogy. They both targeted quantitative aspects of the formalisms, i.e., Questions Q4–
Q6. Conclusions that can be drawn and the implications on future use cases are
presented subsequently in Section 5.4.

5.2 Initial Case Study

For our initial case study, we selected to model a specific online auction fraud
scenario that had previously been used by the trust in digital life (TDL) research
community [TDL13]. The scenario was provided as a textual description and de-
tails 10 predefined steps which Otto needs to perform in order to accomplish his
goal. We tried to capture the given description as accurately as possible by extract-
ing the most pertinent information to create an ADTree, displayed in Figure 5.2.

96 Chapter 5 Practical Applications of ADTrees

Our goal during the case study was to evaluate the ADTree methodology and not
to analyze the scenario. Therefore, we focused our attention on the syntax and the
semantics of an early version of the ADTree methodology. We present our obser-
vations together with observations from subsequent case studies in Section 5.4.

The root of the tree depicts how a fictitious agent called Otto can successfully per-
form an online auction fraud. In order to do that, he has to anonymously acquire
goods that he pays for with someone else’s money. Otto achieves this by accomplish-
ing 10 subgoals. To better visualize the scenario, some of these goals are grouped,
others refined. For the initial grouping we use the following four subgoals, repre-
sented as the four children of the conjunctive root node “Auction Fraud”. Otto
has to prepare his fraud, purchase the goods from Alice, get them delivered and
sell them to Perry. Some of these subgoals can again be refined. As preparation,
Otto has to “Ask Vera about Sam”, “Shop at Sam’s” and “Send Emails” to find
victims (conjunctive node “Preparation Phase” with three children). When Otto
shops at Sam’s, he acquires malware, a list of emails and a stolen credit card num-
ber (conjunctive node “Shop at Sam’s” with three children). To find victims, he
sends two kinds of emails. The first kind contains a “Job Offer”, the second kind
contains malware (conjunctive node “Send Emails” with two children). Both kinds
of emails are sent to the list of email addresses Otto acquired from Sam. Further,
Rachel has to read the job advertisement email and accept the job, Tina has to
read the email and open the attachment (two conjunctive nodes “Job Offer” and
“Malware Distribution” with two children each). Otto also needs to buy goods in
an online auction from Alice. For this, he needs to login into the online auction
using Tina’s credentials, purchase Max’s goods and pay these with Chris’s credit
card (conjunctive node “Purchase from Alice” with three children). Otto organizes
the delivery process by telling Max to ship to Rachel, Rachel to forward the goods
to Dave and finally by going to Dave, picking them up (conjunctive node “Delivery
Process” with three children). This concludes the construction of the part of the
ADTree that consists of only attack nodes. It actually represents an attack tree
that describes all necessary steps in Otto’s fraud scenario.

The scenario was extended to include possible defensive measures that law enforce-
ment could undertake to mitigate online auction fraud attempts. Subverting the
verification provided by Vera, can counteract Otto’s inquiry about Sam (counter-
measure against “Ask Vera about Sam”). Similarly, policing the Internet prevents
Otto from shopping at Sam’s underground shop (countermeasure against “Shop at
Sam’s”). Training Internet users like Rachel and Tina counteracts their exploita-
tion as re-shipper or unwilling password supplier (countermeasures against “Rachel
Accepts Job” and “Tina Opens Attachment”). To counteract credential theft, an
intelligent profiling of user credential usage can be set up by Alice, to mitigate fake
credit usage, faster checks for credit card theft can be implemented (countermea-
sures against “Credentials from Tina” and “Pay with Chris’s CC”). Preventing
the successful delivery of the goods is also possible. While marking goods helps
the police in tracking the origin of the goods, spot-checking drop boxes can pre-
vent Otto from picking up the goods from Dave (countermeasures against “Max
to Rachel” and “Otto from Dave”). In addition, either measure can interrupt the
delivery process from “Rachel to Dave” (countermeasure against “Rachel to Dave”
as disjunctive defense “Stop in Transit” with two children). Finally, the sale of the

5
.2

In
itia

l
C

a
se

S
tu

d
y

97

Auction
Fraud

Prepa-
ration
Phase

Ask Vera
about Sam

Subvert
Verify

Shop at
Sam’s

Acquire
Malware

Acquire
Email

Addresses

Acquire
Chris’s CC

Police
Internet

Send
Emails

Job
Offer
Email

Rachel
Accepts Job

Train
Rachel

Send Job
Ad to
Email

Addresses

Malware
Distri-
bution
Email

Tina Opens
Attachment

Train
Tina

Send
Malware to

Email
Addresses

Buy
from Alice

Credentials
from Tina

Profile
Credential

Usage

Purchase
Goods

Pay with
Chris’s CC

Check CCs
for Theft

Delivery
Process

Max to
Rachel

Mark
Goods

Rachel to
Dave

Stop in
Transit

Mark
Goods

Spot-check
Drop
Boxes

Otto from
Dave

Spot-check
Drop
Boxes

Otto Sells
to Perry

Prevent
Sale

Police
Pawn

Brokers
Revenue
Checks

Legend
Attack node
Defense node
Disjunctive refinement
Conjunctive refinement
Countermeasure

F
igure

5.2:
A

n
A

D
T

ree
for

an
online

auction
fraud

scenario.

98 Chapter 5 Practical Applications of ADTrees

goods can be disrupted in two ways, either by policing pawn brokers or increased
“Revenue Checks” (countermeasure “Prevent Sale” as disjunctive defense with two
children).

5.3 Subsequent Case Studies

To examine how the ADTree formalism handles quantitative aspects related to
scenarios, we have performed two case studies. One was an external case study
which involved SINTEF, a research institution in Trondheim, Norway and TXT
e-solutions, an Italy-based consulting company. The second case study was a class-
room experiment. For both case studies, we used the same ADTree model, describ-
ing an RFID-based goods management system. The system had already been used
in a threat assessment analysis as part of the FP7 project SHIELDS [SHI10b].

5.3.1 The RFID Goods Management System

In order to perform a case study on quantitative analysis, we selected a real-life
scenario of an already deployed and operational system named the Warehouse
Information Management System (WIMS) with special focus on one of its com-
ponents, the Warehouse Loading Docks Management Application (WaLDo). This
system manages all incoming and outgoing goods to and from a specific ware-
house, keeping track of orders, goods location, picking lists, shipping notifications,
etc. The warehouse is a highly automated environment where all goods can be
electronically identified using RFID tags. Figure 5.3 gives a high-level overview of
the system components. Arrows indicate interactions between components.

The WaLDo application controls all goods that cross the loading docks of the
warehouse. The physical warehouse is equipped with RFID enabled loading docks.
All RFID readers conform to the EPCGlobal specifications and are managed via
an Application Level Event (ALE) service that provides a web service interface to
upper layer applications like WaLDo. Additionally, the warehouse has an informa-
tion management system able to interact with the company Enterprise Resource
Planning (ERP) system, the integrated software application that manages the
entire company information flow and resources, to process universal business lan-
guage documents like Picking Lists, used to specify which material is to be shipped
to whom, and Advanced Shipping Notification (ASN) documents, used to specify
which goods are expected to be received.

In order to properly analyze potential threats, we also consider the environment in
which the system operates. Figure 5.4 depicts the physical premises, the equipment
and the workspaces inside the warehouse. The WaLDo application operates in a
warehouse where eight employees are working. The size of the warehouse building
is 500 m2. It contains forklifts with an RFID reader, shelves for goods and three
loading docks with RFID readers, which can only be opened from the inside. All
goods pass in and out through the loading docks and are registered by the RFID
readers. The building also has one room for computer servers, one administrative
office, one security room containing two Closed-Circuit Television (CCTV) moni-
tors and a fuse box, one bathroom, one corridor, a main entrance and an emergency

5.3 Subsequent Case Studies 99

WIMS

Picking list

ASN

document

Figure 5.3: The WIMS deployment diagram.

exit. The warehouse is surrounded by a fence that encloses the entire area. The
fence has two gates, one for trucks and one for employees, which can only be opened
remotely from the security room. The area inside the fence has a parking space
where trucks can wait before unloading their goods and one where the employees
can park their cars. The warehouse is equipped with a high-speed Internet connec-
tion and a wired LAN Ethernet. The Ethernet network connects the servers with
the RFID readers of the loading dock. In total, there are seven surveillance cam-
eras that are linked to external security services, monitoring both the inside and
the outside of the warehouse. Cameras 1, 5 and 6 monitor the shelves within the
WaLDo building, Camera 2 monitors the main entrance gates, Camera 3 monitors
the parking spaces, Camera 4 monitors the loading docks and Camera 7 monitors
the warehouse’s main door. Each day between 10 and 20 trucks deliver goods to or
from the warehouse. The drivers load the goods on and off their trucks by accessing
the warehouse through the docks. Though we do not specify what kind of goods
are stored in the warehouse, we assume they are worth stealing.

5.3.2 The ADTree Model

The information given in the previous section serves as a basis to create an ADTree.
Since the warehouse had been part of other unpublished case studies, we benefited
from already existing attack trees and misuse case diagrams describing potential
threats and countermeasures. We also made use of other relevant attack trees
to support the creation of an ADTree, such as Mirowski et al. [MHW09] who

100 Chapter 5 Practical Applications of ADTrees

Figure 5.4: The floor plan of the warehouse and its surroundings.

describe generic RFID attacks. In order to extend their work and capture threats
related to technical, physical and social engineering, we did a thorough analysis of
the conceptual design of the RFID-based goods management system, the physical
layout of the warehouse in which the system is deployed, see Figure 5.4, and how
people are involved in the work processes.

The top goal node of the high-level tree model that we analyze, as shown in Fig-
ure 5.5, is called “RFID DoS Attack”. In order to achieve this goal, we specified six
options. The attacker can remove the tag, disable the tag, overload the tag, dis-
able the reader, disable the backend or block the communication between tags and
readers. In the case study, we initially refined all children to construct a detailed
ADTree model. However, to keep the model tractable, we chose to only focus on
the nodes “Remove Tag” and “Block Communication” during the remainder of the
case study. Their refinements are depicted in Figures 5.6 and 5.8. We deliberately
opted to analyze an incomplete tree to reflect that, in most use cases, the modeling
time is limited which inevitably leads to incomplete trees.

To physically remove the RFID tag an attacker can either remove the tag himself
or he can convince someone else to remove the tag. In the first case, he either
can infiltrate the building or he has to infiltrate the organization and thereby
gain legitimate access. Infiltrating the building can be achieved by “Breaking and
Entering”, as detailed in Figure 5.7, by posing as a truck driver, by executing a
“Postal Trojan Attack” or by staging a “Visitor Attack”. A “Postal Trojan Attack”
can be achieved when the attacker hides in a box of 1 SFU and this box is sent
to the warehouse. The owner of the warehouse could defend against Trojan mail
by employing a “Sniffer dog” that can detect humans in the incoming goods. The

5.3 Subsequent Case Studies 101

RFID
DoS

Attack

Remove
Tag

Figure 5.6

Disable
Tag

Overload
Tag

Disable
Reader

Disable
Backend

Block
Communi-

cation

Figure 5.8

Legend
Attack node

△ Subtree
Disjunctive refinement

Figure 5.5: An ADTree for RFID DoS attack.

attacker, in turn, could confuse the dog using decoy rats or pepper spray. If the
attacker decides to execute a “Visitor attack”, he can “Come as Visitor” during
daytime and hide in the bathroom until everyone else has gone home. The defender
could anticipate such an attack and “Track Visitors” on the warehouse premises.
Tracking the visitors can be accomplished by escorting the visitors, by requiring
visitors to register in a visitor’s log, by using an attended visitor’s log or by in-
stalling presence detectors on the premises. A visitor could choose to overcome the
defense “Register in Visitor’s Log” by faking a log entry. In that case, the warehouse
owner should switch to an attended visitor’s log. If the attacker decides that he
wants to infiltrate the organization, he can try to “Get Hired as Warehouse Staff”,
“Pose as Warehouse Employee”, or simply “Buy the Warehouse” (we deliberately
added some extreme actions to the tree to try and provoke some extreme attribute
values). The defender could protect himself against any infiltration by performing
background checks on everyone he works with.

If the attacker chooses to convince someone else to remove the tag, he can “Bribe”,
“Threaten”, “Blackmail” or “Trick” this person. In the first case, he has to identify
a corruptible subject and then he has to actually bribe the subject. The warehouse
owner could defend against bribery by thwarting the employees from receiving
bribes by providing a mandatory “Security Awareness Training” or threatening to
fire the employees in case of infringement. Provided the attacker wants to trick
another person into removing the tag, he can either send false replacement tags or
he can place a “False Management Order” to replace the tags. Fake orders can be
initiated by infiltrating the management and ordering replacement tags. A defender
can prevent this kind of trickery by mandatory security awareness training courses.
Last, a defender could prevent any kind of removal of the RFID tag by using a
stronger adhesive, i.e., attaching the tag in a way that it cannot be removed.

If an attacker decides to remove the tag himself by breaking and entering, he
must get onto the premises and get into the warehouse undetected by the installed
cameras. To get onto the premises, an attacker can climb over the fence or he
can enter through the gate for employees undetected by Camera 2. To prevent
attackers from climbing over the fence, the defender could install “Barbed Wire”

102
C

h
a

p
te

r
5

P
ra

c
tic

a
l

A
p

p
lic

a
tio

n
s

o
f

A
D

T
re

e
s

Remove
Tag

Remove
Tag

Oneself

Infiltrate
Building

Breaking
and

Entering

Figure 5.7

Pose
as a

Truck
Driver

Postal
Trojan
Attack

Hide
in a Box

Be Sent
to the
Ware-
house

Sniffer
Dog

Confuse
Dog

Distract
Dog with

Rats

Spray
Pepper

Visitor
Attack

Come as
Visitor

Hide in
Bathroom

Track
Visitors

Escort
Visitors

Register
in

Visitor’s
Log

Fake
Log

Entry

Attended
Visitor’s

Log

Attended
Visitor’s

Log

Presence
Detectors

on
Premises

Infiltrate
Organi-
sation

Get
Hired as

Warehouse
Staff

Pose as
Warehouse
Employee

Buy the
Warehouse

Back-
ground
Check

Other
Person

Removes
Tag

Bribe

Identify
Corruptible

Subject

Bribe
Subject

Thwart
Employees

Security
Awareness
Training

Threaten
to Fire

Employees

Threaten Blackmail Trick

Send
False Re-
placement

Tag

Authenti-
cate Tag

Break
Authenti-

cation

False
Manage-

ment
Order

Infiltrate
Manage-

ment

Order
Tag

Replace-
ment

Security
Awareness
Training

Attach
with

Stronger
Adhesive

Legend
Attack node
Defense node

△ Subtree
disjunctive refinement
conjunctive refinement
countermeasure

F
igure

5.6:
T

he
“R

em
ove

T
ag”

subtree.

5.3 Subsequent Case Studies 103

on the fence. An attacker, in turn, could circumvent the barbs by guarding against
them, which he could achieve by either throwing a carpet over the barbs or by
wearing protective clothing. The attacker also has to get into the warehouse. He
can accomplish that by entering through the door undetected by Camera 7 or
entering through the loading dock undetected by Camera 4. The defender could
prevent an attacker from entering through the main door by monitoring the door
with biometric sensors. Another defensive measure would be to install and monitor
the premises with additional security cameras. These new cameras would monitor
the parts of the property not yet covered, but could be rendered useless if an
attacker disables them. Disabling could be done by shooting a strong laser at the
cameras or by video looping the camera feed. Alternatively, guards patrolling the
premises could protect against this kind of threat.

Breaking
and

Entering

Get
onto

Premises

Climb
over

Fence

Barbed
Wire

Guard
Against
Barbs

Use
Carpet

on Barbs

Wear
Protective
Clothing

Enter
through

Gate

Get
into

Ware-
house

Enter
through

Door

Monitor
with

Biometric
Sensors

Enter
through
Loading

Dock

Monitor
with

Security
Cameras

Disable
Cameras

Laser
Cameras

Video
Loop

Cameras

Employ
Guards

Figure 5.7: The “Breaking and Entering” subtree.

Blocking communication can be done by blocking the communication between the
tag and the reader or by blocking communication between the reader and the
backend, as depicted in Figure 5.8. To do the former, there exist several options:
It is possible to shield the tag, use a malicious reader that constantly requests

104 Chapter 5 Practical Applications of ADTrees

information from the tag and this way blocks the tag, use a different tag that
blocks the reader or jam all signals. Shielding a tag can be achieved by being
in the vicinity of the tag and by using a “Faraday Cage”. An obvious defense
against attackers being in the vicinity of the tags would be to increase the amount
of security personnel guarding the warehouse. A “Faraday Cage” can be installed
around the reader or around the tag. To prevent attackers from jamming the signal,
the defender could isolate the entire warehouse network, which could be achieved
by securing the warehouse or encasing the entire warehouse inside a Faraday cage.
If the attacker decides to block the communication between the reader and the
backend, he can achieve it by evoking a DoS in the wired network.

Block
Communi-

cation

Block
Tag

Reader

Shield
Tag

Be in
Vicinity
of Tag

Secure
Ware-
house

Faraday
Cage

Cage
Around
Reader

Cage
Around

Tag

Blocking
Reader

Blocking
Tag

Jam
Signal

Isolate
Network

Secure
Ware-
house

Faraday
Around
Tag and
Reader

Block
Reader

Backend

DoS in
Network

Figure 5.8: The “Block Communication” subtree.

5.3.3 Attribute Selection

For the external case study, we have experimented with a game-based approach
for the decoration of the ADTree. We chose a set of nine attributes that we felt
were useful. Detailed attribute descriptions, along with references treating these
attributes and possible value domains are listed in the following:

Costs [Sch99,BFM04,MO05,BLP+06,EDRM06,Yag06,SDP08,ACK10,
BP10,TA10,WWPP11,Ame12,RKT12a] The amount of money needed to
finance the attack or to defend against it (depending on whether it is the attacker’s

5.3 Subsequent Case Studies 105

or the defender’s point of view). This refers to, for example, equipment or software
costs, educational expenses, development costs or amount of a bribe.

Values: Cheap (C): Any attacker or defender can afford this without thinking twice.
Average (A): The costs of the attack will fend off most attackers without a steady
income. Defenders will typically do a cost-benefit analysis before the expenses can
be justified. Expensive (E): The attacker will need substantial funding in order to
perform the attack. It is unlikely a defender with insufficient funds will invest in
this. Alternative value domain: Real numbers.

Detectability (Det) [BFM04, TA10, Ame12] The chance that the defender
will notice the attack during its execution or the attacker will notice the defense
mechanism.

Values: Easy (E): Any attacker or defender with a clear state of mind will detect
that something was out of the ordinary right away. Possible (P): Some attackers or
defenders are able to detect this defense or attack. Difficult (D): Few attackers or
defenders are qualified to notice that something is wrong before the attack occurs.

Difficulty (Diff) [Amo94,Sch99,BFM04,MO05,HAF+09,TA10,ACK10,
WWPP11, Ame12] The technical or social skill level needed for the attacker
or defender to succeed.

Values: Trivial (T): Little technical or social skill required. Moderate (M): Average
cyber hacking or defense skills required. Difficult (D): Demands a high degree of
technical expertise, the attacker is a professional con artist. Unlikely (U): Beyond
the known capability of today’s best attackers or defenders.

Impact (Imp) [Amo94,Sch99,Sch04b,MO05,EDRM06,SDP08,HAF+09,
LLFH09, ACK10, TA10, WWPP11, RKT12a] The severity or consequence
from the system owner’s point of view. Can refer to loss of money, but also other
less tangible resources such as loss of reputation.

Values: Low (L): The system owner will not care or notice. Moderate (M): Acceptable
but unwanted loss. High (H): Unacceptable loss, must be avoided. Extreme (E):
Will terminate business. Alternative value domain: Real numbers expressing the
expected loss.

Penalty (Pen) [BLP+06, JW08, WWPP11] The consequences for the at-
tacker given that the attack fails, for instance, a fine, jail sentence or being black-
listed. Here, we do not consider any penalty of a successful attack.

Values: Low (L): The attacker will not care. Medium (M): The attacker will think
twice before performing the attack. High (H): Few attackers will take the risk.
Alternative value domain: Real numbers expressing a fine or years in prison.

Profit (Prof) [Amo94,BDP06,JW08,RKT12a] The economic profit or gain
the attacker will receive, should the attack succeed. This value does not include
costs of attack.

Values: None (N): A successful attack does not lead to any direct income. Marginal

(M): Economic gain is not enough by itself to justify the attack. Lucrative (L): The
attacker can obtain a substantial profit. Alternative value domain: Real numbers.

106 Chapter 5 Practical Applications of ADTrees

Probability of Success (Prob) [Sch99,BFM04,BLP+06,EDRM06,Yag06,
HAF+09, LLFH09, ACK10, MTF11, WWPP11, RKT12a] The estimated
chance that the attack or defense will succeed. Could be based on heuristics of
similar attacks or simply best guesses.

Values: Unlikely (U): Below 5 %. Low (L): Between 5 % and 25 %. Medium (M):
Between 25 % and 75 %. High (H): More than 75 %. Certain (C): Close to 100 %.
Alternative value domain: Specific percentage values.

Special skill or property (Skill) [Sch99,MO05,ACK10] A specified skill or
property the attacker or defender will need in order to succeed. This is orthogonal
to the difficulty attribute. Examples are insider knowledge or the need for
electricity.

Values: True (T): A special skill or property is required. False (F): No special skill
or property is required.

Time [Sch99, HAF+09, WWPP11] For the attacker this is the time needed
to perform the attack, independent of difficulty and costs of the attack. For the
defender this is the time needed until the defense is effective.

Values: Quick (Q): The attack or defense can be performed in an instance. Medium

(M): The attacker or defender will need to be patient and some time will pass. Slow

(S): The attack or defense takes a long time to complete. Alternative value domain:
Real numbers in terms of minutes.

We also decided to make use of the meta-attribute confidence (Section 4.5.1),
with the value domain {1, . . . , 5}, where 1 represents total lack of confidence
and 5 very high confidence in the correctness of the provided attribute value.
Meta-attributes constituted one of the novelties of the methodology used in the
current case study, as they have not yet been mentioned in the context of attack
trees nor attack–defense trees in the existing literature.

For the classroom experiment we only selected the three attributes costs, diffi-
culty and time with which to decorate the ADTree. We provided the students
with a verbal description similar to the one above and explained the value cate-
gories. In addition, we asked for the meta-attribute confidence with a reduced
value domain of {1, . . . , 3}. The meta-attribute values were explained as ranging
from Unsure (1) over In-between (2) to Sure (3).

5.3.4 Attribute Decoration

For the external case study, we created an empty table with 9 columns for the
attributes and 79 rows for all nodes. Our intention for using a table was to prevent
illegible values that may have occurred if the estimated values had been handwrit-
ten directly on the ADTree printed on a sheet of paper. Everyone who was supposed
to estimate values was provided with the warehouse and the system description
given in Section 5.3.1, the labeled ADTree given in Figures 5.5–5.8, the attribute
descriptions given in Section 5.3.3 and sheets of paper containing an empty ta-
ble template. The values were estimated independently over a period of one week.
We did not require estimation of values for every node and attribute, we rather
suggested a best effort strategy be applied.

5.3 Subsequent Case Studies 107

In the external case study, performed with SINTEF and TXT e-solutions, the entire
ADTree consisted of 79 nodes, where 59 were attack nodes and 20 were defense
nodes. The case study was conducted as a game between players. Two players took
the role of an attacker and two players took the role of a defender. Each group only
filled out the nodes corresponding to its role. An extract of the resulting estimated
values is shown in Table 5.1, where each line for an attack node represents a player
who had been given the role of an attacker. Similarly for a defense node, each
line represents a player who had been given the role of a defender. A dash in
a cell indicates a conscious decision of a player not to estimate a value and an
empty field indicates that the player was not considering (or forgot) to provide an
estimate. The letters [D] and [B], inserted in front of the node labels, indicate that
the node was a defensive node and a basic action, respectively. The first letter of
the attribute values has been used to indicate the value, and the number denotes
the confidence value.

During the external case study, the two players who were given the role of attackers
spent approximately 90 min and 120 min, the players with the role of the defender
spent 40 min and 90 min to complete Table 5.1. The players did not provide values
for all nodes, in fact, for some attributes no node ended up with two values. Across
the attributes, the maximal amount of nodes that were given two values was 93 %.
For five attributes (detectability, impact, penalty, profit and probability)
either an attacker or a defender did not estimate a value.

For the special skill attribute, we discovered that the attackers had not considered
the same special skill. One defender estimated values only for basic actions and not
for refined nodes. In total 436 values did not get filled in. This roughly amounts
to 15.3 %. (Even if the attribute profit is not considered since it was the one
which had the least filled in values, the percentage of missing entries still amounts
to 11.4 %.) Such a large percentage seems to indicate unanticipated problems. We
identified three categories of problems: attribute related problems, node related
problems and methodological problems, which is discussed in Section 5.4.

The classroom case study was performed by ten master’s students in a security
modeling class. Due to the classroom setting, we had to adapt the realization of
the case study. Any adaptation was carried out with the observations from the
external case study in mind. First, the tree was presented and explained (instead
of created). Then, definitions of the three attributes costs, difficulty and time
were explained and summarized on the blackboard. The students were provided
with three sets of papers on which the tree and an attribute were printed. Values
for the costs attribute were filled in during class directly on the tree and not in
a table. During this process the students were allowed to ask questions. Values
for the difficulty and time attributes were given as homework. Unlike in the
external case study, the students were asked to provide values for all non-refined
nodes, irrespective of the type of the node, but asked not to provide values for
refined nodes. A summary of the results for the “Breaking and Entering” subtree
is provided in Table 5.2.

The classroom experiment was performed after the external case study. Hence, we
tried to circumvent several of the identified problems. A first adjustment was to ask
for fewer attribute estimates. We chose the attributes costs, difficulty and time
since they already achieved a good performance during the external case study.

108 Chapter 5 Practical Applications of ADTrees

Name of the Node Costs Det Diff Imp Pen Prof Prob Skill Time

Breaking and Entering A,3 P,3 M,3 M,3 M,3 - - F,3 Q,3
- M,4 - M,4 F,4 Q,4

Get onto Premises C,4 P,4 T,4 M,4 M,4 - - F,4 Q,4
C,4 T,4 L,4 H,4 F,4 Q,4

Get into Warehouse C,4 P,4 T,4 M,4 M,4 - - F,4 Q,4
C,3 M,3 M,3 H,3 F,3 Q,3

[D,B] Monitor with E,4 P,4 T,4 H,4 F,4 S,4
Security Cameras E,4 E,4 M,4 M,3 T,4 Q,3
[B] Climb over Fence C,5 D,5 T,5 L,5 L,5 - M,5 F,5 Q,5

C,4 T,4 L,4 H,4 F,4 Q,4
[B] Enter through C,5 E,5 T,5 L,5 L,5 - H,5 F,5 Q,5
Gate C,4 M,4 M,4 M,4 F,4 Q,4
[B] Enter through C,5 E,5 T,5 M,5 M,5 - M,5 F,5 Q,5
Door C,4 M,4 M,4 M,4 F,4 Q,4
[B] Enter through C,5 E,5 T,5 M,5 M,5 - L,5 F,5 Q,5
Loading Dock C,4 M,4 M,4 M,4 F,4 Q,4
Disable Cameras A,3 E,3 T,3 L,3 M,3 - M,3 F,3 Q,3

C,3 M,3 L,3 - F,3 M,3
[D,B] Barbed Wire E,4 D,4 D,4 H,4 T,4 S,4

C,4 E,4 T,4 M,3 T,3 Q,2
[D,B] Monitor with E,4 D,4 D,4 H,4 T,4 S,4
Biometric Sensors E,4 E,3 M,3 M,3 T,3 Q,2
[B] Laser Cameras A,3 E,3 M,3 L,3 M,3 - L,3 F,3 Q,3

A,2 M,2 L,2 M,2 F,2 Q,2
[B] Video Loop A,2 D,2 D,3 L,2 M,2 - U,2 T,2 M,2
Cameras A,2 M,2 L,2 L,2 F,2 M,2
Guard Against Barbs C,4 - T,4 L,4 L,4 - H,4 F,4 Q,4

A,4 T,4 L,4 H,4 F,4 Q,4
[D,B] Employ Guards A,4 P,4 T,4 H,4 F,4 M,4

E,4 E,4 T,4 M,3 F,4 M,2
[B] Use Carpet on C,5 E,5 T,5 L,5 L,5 - C,5 F,5 Q,5
Barbs C,4 T,4 L,4 H,4 F,4 Q,4
[B] Wear Protective A,5 E,5 T,5 L,5 L,5 - H,5 F,5 Q,5
Clothing A,4 T,4 L,4 H,4 F,4 Q,4

Nodes with less
11 65 6 79 24 79 47 9 12

than two values
Attack nodes with

54 0 59 0 55 0 32 56 53
two values
Defense nodes with

14 14 14 0 0 0 0 14 14
two values

Table 5.1: Extract of raw data of the external case study. Each row represents the
estimates of one player. The first letter of every field represents an attribute value,
as abbreviated in Section 5.3.3 and the second represents the confidence level on
a scale from 1 to 5.

5.3 Subsequent Case Studies 109

Name of the Node C,3 C,2 C,1 A,3 A,2 A,1 E,3 E,2 E,1

[D] Monitor with Security Cameras 4 1 2 1
Climb over Fence 4 2 1 1
Enter through Gate 5 2 2
Enter through Door 3 2 1 1
Enter through Loading Dock 3 2 1 3
[D] Barbed Wire 1 2 3 1 3
[D] Monitor with Biometric Sensors 2 1 1 5 1
Laser Cameras 1 2 4 3
Video Loop Cameras 1 2 3 1 1
[D] Employ Guards 1 3 2 2 2
Use Carpet on Barbs 5 1 4
Wear Protective Clothing 5 1 1 1 1 1

Table 5.2: Extract of table of classroom experiment raw data for the costs at-
tribute. If [D] precedes a node name, it indicates a defensive action. The numbers
indicate how often a specific result was given.

On first glance these adjustments seemed promising. For the second case study,
only 144 out of 1710 values were not filled in. This amounts to roughly 8.4 %,
compared to the 15.3 % in the previous case study. On second glance, however,
a per attribute comparison looks less promising. Whereas in the external case
study 3.5 % of the costs attribute were missing, the percentage increased to 7.0 %
in the classroom case study. For the difficulty attribute it increased from 1.9 %
to 11.7 % and for the time attribute from 3.8 % to 6.5 %. In conclusion, even
though we adapted the case study in several aspects, this still did not ensure that
all values were filled in.

5.3.5 Preparation of Attribute Values

The last section is concerned with providing raw data for attribute values of non-
refined nodes. In this section, we describe a first step to turn these estimates into a
basic assignment (Definition 4.3). We focus on the applicability of the methodology
and not the computed results and their meaning.

In the external case study, all attribute values were supposed to be estimated by
two players. In practice this means that every node is assigned at most two values,
see Table 5.1. However, a basic assignment consists of exactly one value for every
basic action. Therefore, we must have exactly one single value for each node and
attribute.

We start from the data given in Table 5.1. Optimally, every player has estimated
the same value. Then we can immediately use it as the single attribute value. In
practice, this idealized scenario occurs seldom. There are several reasons why the
values were not identical. First, some players may have opted not to estimate a
value at all. Second, the player’s understanding of the node may have been different.
Third, it may also happen that no player has estimated a value for a node. Finally,
it may simply be the case that they have a different opinion with regard to the
value. Therefore, in a non-idealized scenario, we need a method to choose one

110 Chapter 5 Practical Applications of ADTrees

representative value for each node.

Provided all players have estimated a value for a given node, we automate the pro-
cess of combining the values by using the following procedure. First, we injectively
map the attribute values into the natural numbers. In the case studies, for exam-
ple, the costs attribute values Cheap, Average and Expensive, are transformed
into 1, 2 and 3, respectively. We let n be the number of independently gathered
pairs (attribute, confidence). In the external case study n was equal to 2, in the
classroom case study n was equal to 10. Then we used the following formula:

(rnd

(∑
attribute · confidence
∑

confidence

)
,

⌊∑
confidence

n

⌋
), (5.1)

where rnd represents ordinary rounding and ⌊·⌋ rounding down to the nearest inte-
ger. The choice of regular rounding for the first component allows us to transform
it back into the original value domain, using the inverse of the original mapping.
The choice of rounding the second component down reflects risk averseness. The
results of the application of the formula in the external case study are the non-bold
values in Table 5.3.

Name of the Node Costs Diff Time

Breaking and Entering A,3 M,3 Q,3
Get onto Premises C,4 T,4 Q,4
Get into Warehouse C,3 T,3 Q,3
[D,B] Monitor with Security Cameras E,4 M,4 S,4
[B] Climb over Fence C,4 T,4 Q,4
[B] Enter through Gate C,4 T,4 Q,4
[B] Enter through Door C,4 T,4 Q,4
[B] Enter through Loading Dock C,4 T,4 Q,4
Disable Cameras A,3 M,3 Q,3
[D,B] Barbed Wire A,4 T,4 S,4
[D,B] Monitor with Biometric Sensors E,4 D,3 S,5
[B] Laser Cameras A,2 M,2 Q,2
[B] Video Loop Cameras A,2 D,2 M,2
Guard Against Barbs A,4 T,4 Q,4
[D,B] Employ Guards E,4 T,4 M,3
[B] Use Carpet on Barbs C,4 T,4 Q,4
[B] Wear Protective Clothing A,4 T,4 Q,4

Table 5.3: Attribute values after the consensus meeting. The first letter of every
field represents an attribute value, as abbreviated in Section 5.3.3 and the second
represents the confidence level on a scale from 1 to 5. The letters preceding the
node names denote basic actions [B] and defensive actions [D]. Values obtained
during the consensus meeting are depicted in bold.

Example 5.1 To illustrate the application of Formula (5.1), we combine the diffi-
culty attribute values estimated for the node “Enter through Gate”. From Table 5.1
we can see that one player estimated the difficulty of “Enter through Gate” as
Trivial (T) and his confidence level in this value was 5. The other player found

5.3 Subsequent Case Studies 111

the difficulty of the considered action to be Moderate (M) and his confidence
level in this value was 4. The value domain for the difficulty attribute, as defined
in Section 5.3.3, contains four values: Trivial (T), Moderate (M), Difficult (D)
and Unlikely (U). These we transform into 1, 2, 3 and 4, respectively. Thus, we
use the pairs (1, 5) and (2, 4) as inputs for Formula (5.1). We obtain:

(rnd
(1 · 5 + 2 · 4

5 + 4

)
,
⌊5 + 4

2

⌋
) = (1, 4).

After combining the values estimated by the players, we can map the resulting pair
back to obtain that the difficulty of the node “Enter through Gate” is Trivial

(T) (because of the 1), of which we are certain with a confidence level of 4.

The costs, difficulty and time values, as well as the corresponding confidence
levels, obtained in the external case study for the remaining nodes with two esti-
mations each, are depicted as non-bold pairs in Table 5.3. For the classroom case
study, all values were computed using Formula (5.1), irrespective of the number of
initial values given in Table 5.2. We defer a discussion of other possible methods
to combine values where every player has provided a value to Section 5.4.5.

In the external case study, we encountered several exceptional cases where using
the formula was problematic. It is, for example, impossible to apply the formula
when not even a single value is given; it is highly doubtful to use it when the
provided values differ substantially. We classified and discussed such critical cases
at a consensus meeting.

The main goal of the consensus meeting was to obtain reasonable values that
can then be used as input for further calculations on the ADTree. Therefore, the
participants of the consensus meeting should have diverse backgrounds. We only
conducted a consensus meeting in the external case study. During the meeting all
players were present. At the meeting, we first decided to drop several attributes
for which we did not have enough data. As a result, we only focused on the costs,
difficulty and time.

We first ensured that the nodes’ estimates were correct, i.e., that the players had
not mistakenly estimated a wrong value. Whenever mistakes were discovered, they
were corrected, and the node was reevaluated. We also uncovered one inconsistency
where the tree was not matching the scenario. To repair this mistake, we corrected
the tree. (Since the classroom case study was performed after the external case
study, the students were immediately given the corrected tree.) To obtain consensus
values, the nodes were analyzed in context. More concretely, we looked at the
meaning of the surrounding nodes, without however taking any values that were
possibly assigned to the neighboring nodes into account.

During the consensus meeting, we identified the following categories and resolved
the problems in the following way:

• Nodes where no one had estimated a value: We opted to discuss the value
and eventually assign a single value. The players who had taken the opposite
role commented on plausible values. Then we made a unanimous decision.

• Nodes where not every player had estimated a value: We also decided on a
single value at the consensus meeting. Concretely, the player who had not

112 Chapter 5 Practical Applications of ADTrees

given a value, first explained why he had not done so, then the player who
had given a value explained his choice. Then, a consensus was formed.

• Nodes that had non-neighboring mapped values: The player with the lower
value explained his choice, then the player with the higher value explained
his. After that, the involved players agreed on one of the given values or a
compromise was chosen. Whenever a compromise was chosen, we lowered the
confidence value.

• Nodes where all given values had low confidence levels: We also planned to
discuss these uncertain values. However, due to time constraints, values in
this category were skipped and Formula (5.1) was applied instead.

The final result of the consensus meeting is given as pairs of values in bold font
in Table 5.3. Instead of the allocated hour, we spent two hours discussing the
values. Out of the 3 · 79 = 237 possible values, there were 188 cases for which we
applied Formula (5.1), 8 cases without any assigned value, 24 cases to which we
had assigned only one value and 17 cases where the values diverged significantly.

Example 5.2 We have illustrated the costs attribute values resulting from the
consensus meeting (also given in Table 5.3) in Figure 5.9.

5.3.6 Bottom-up Calculation of Attribute Values

As described in the previous two sections, providing a basic assignment for an AD-
Tree is cumbersome. Fortunately, the ADTree methodology allows us to automate
the calculation of values on ADTrees with the help of the bottom-up procedure
(Definition 4.4). In this section, we calculate the values for the minimal costs of
the attacker. Then we use the obtained values to analyze the warehouse scenario.

In both case studies, we were interested in calculating the minimal costs of a
successful attack in the RFID warehouse scenario without reusability of defensive
measures. The costs attribute is similar to the one introduced in Section 4.2.2 since
it includes the meta-attribute confidence. We considered the situation where the
attacker does not have any precise information on how the defender decides to
protect the warehouse. Thus, for this calculation, we assumed that all possible de-
fenses illustrated on the ADTree are in place and that they are fully functional, i.e.,
a defense attached to an attack node defeats the corresponding attack component,
unless the defense itself is rendered useless by a counterattack.

We started by providing a basic assignment for the non-refined nodes of the tree,
given the single values obtained in the previous section. In the case of the attacker’s
non-refined nodes, we used the pairs (costs, confidence) from Table 5.3 as initial
values. Since the defender’s costs do not influence the attacker’s costs, we did
not use the values from Table 5.3 in the case of the defender’s non-refined nodes.
Instead, we introduced an additional cost value Infinite, denoted by X and ini-
tialized non-refined nodes of the defender with the pair (X,5). This indicates that
we are fully confident that it is infinitely expensive (and thus impossible) for the
attacker to successfully execute a defender’s action. These initial values allow us to

5.3 Subsequent Case Studies 113

Breaking
and

Entering
(A,3)

Get
onto

Premises
(C,4)

Climb
over

Fence
(C,4)

Barbed
Wire
(A,4)

Guard
Against
Barbs
(A,4)

Use
Carpet

on Barbs
(C,4)

Wear
Protective
Clothing

(A,4)

Enter
through

Gate
(C,4)

Get
into

Ware-
house
(C,3)

Enter
through

Door
(C,4)

Monitor
with

Biometric
Sensors

(E,4)

Enter
through
Loading

Dock
(C,4)

Monitor
with

Security
Cameras

(E,4)

Disable
Cameras

(A,3)

Laser
Cameras

(A,2)

Video
Loop

Cameras
(A,2)

Employ
Guards
(E,4)

Figure 5.9: The “Breaking and Entering” subtree with the costs attribute values
after the consensus meeting.

express the costs of the considered scenario from the point of view of the attacker,
see also Example 4.6.

Since we eventually want to choose between different actions, we have to know
how to compare different values. We use the linear order Cheap < Average <
Expensive < Infinite. Moreover, we assumed that performing several actions
belonging to the same costs category is not more expensive than performing only
one such action. In the case studies, we were interested in the minimal costs.
We therefore always chose the least expensive action whenever there was a choice
between actions. We chose the maximal costs, in case several actions had to be
executed. Note that the same operator would have been chosen when the reuse of
tools would have been allowed. Last, we needed to specify which confidence level
we chose. Whenever encountering an OR node, the confidence level was chosen
to be the highest value that appeared among the set of actions with the chosen
costs value, in the other case, the confidence level was chosen to be the lowest
value that appeared among the set of actions with the chosen costs value.

114 Chapter 5 Practical Applications of ADTrees

To express the resulting attribute domain formally, we introduce the following value
domains. Let the possible values Cheap, Average and Expensive be represented
by Cost = {C, A, E}, the values Quick, Medium and Slow by Time = {Q, M, S} and
the values Trivial, Moderate, Difficult and Unlikely by Diff = {T, M, D, U}.
Finally, we denote with Conf = {1, 2, 3, 4, 5} (or Conf = {1, 2, 3} in the classroom
experiment) the set of confidence values. The resulting attribute domain of the
costs attribute is given by

Acostcat = ((Cost ∪{X}) × Conf , m̃in, m̃ax, m̃ax, m̃in, m̃ax, m̃in), (5.2)

where

m̃in((c1, x1), . . . , (ck, xk)) = (min
1≤i≤k

{ci}, max
j|cj=min1≤i≤k{ci}

{xj}),

m̃ax((c1, x1), . . . , (ck, xk)) = (max
1≤i≤k

{ci}, min
j|cj=max1≤i≤k{ci}

{xj}).

The attribute domains of the difficulty and time attributes are obtained by re-
placing the set Cost with Diff and Time, respectively.

With the assumption that all possible defenses are present and fully functional,
the actual minimal costs of a successful attack can be lower than the one obtained
using our calculation. Indeed, in reality, the defender may decide not to implement
some of the defenses and thus the costs of the corresponding counterattacks will
not be taken into account for the final costs of the attacker. However, by taking
the described approach we use a safe solution, in the sense that

• the calculated minimal costs will not be lower than the actual minimal costs,
i.e., the minimal costs will not be underestimated,

• and the resulting set of attack components that have to be executed in order
to achieve the cheapest attack forms a successful attack. In particular, this
means that the defender cannot protect himself against this attack.

For the external case study, our calculation of the minimal costs, the minimal
difficulty and the minimal time shows that, in order to achieve an attack with
minimal costs, an attacker needs to spend an Average amount of money. We have
a confidence level of 3 in this value. The corresponding attack consists of “Disable
Backend”. To execute the attack of minimal difficulty, the attacker should also
perform the “Disable Backend” action. Its difficulty is Medium of which we are
confident with level 3. The time it takes to perform the fastest attack is Quick

of which we are confident with level 2. To achieve the fastest attack, an attacker
should execute the “Disable Tag” action. We observe that for all three attributes,
the optimal attack option is an action which we have chosen not to refine, see
Figure 5.5. To be able to give a more insightful example, we compute the costs
attribute for the subtree rooted in the node “Breaking and Entering”.

Example 5.3 The values resulting from the bottom-up approach for the costs
attribute are depicted in Figure 5.10. We deduce that an attacker can break and
enter when he spends an Average amount of money and we are confident with
level 2 about that. To perform the attack, an attacker has two options: either he

5.3 Subsequent Case Studies 115

Breaking
and

Entering
(A,2)

Get
onto

Premises
(C,4)

Climb
over

Fence
(C,4)

Barbed
Wire
(C,4)

Guard
Against
Barbs
(C,4)

Use
Carpet

on Barbs
(C,4)

Wear
Protective
Clothing

(A,4)

Enter
through

Gate
(C,4)

Get
into

Ware-
house
(C,4)

Enter
through

Door
(X,5)

Monitor
with

Biometric
Sensors

(X,5)

Enter
through
Loading

Dock
(C,4)

Monitor
with

Security
Cameras

(A,2)

Disable
Cameras

(A,2)

Laser
Cameras

(A,2)

Video
Loop

Cameras
(X,5)

Employ
Guards
(X,5)

Figure 5.10: The “Breaking and Entering” subtree with costs calculated by the
bottom-up procedure.

has to “Use Carpet on Barbs”, “Climb over Fence”, “Enter trough Loading Dock”
and “Laser Cameras” or he has to “Enter through Gate”, “Enter through Loading
Dock” and “Laser Cameras”.

Using the attribute domain Acostcat defined in Equation (5.2), we computed the
minimal costs of an attacker for every subtree. This attribute value is depicted in
Figure 5.10 for every node. It seems natural to compare these values with the ones
gathered during the decoration phase, as presented in Table 5.3. In Section 5.4.6
we elaborate why such an approach may be suitable on attack trees but not on
ADTrees.

5.3.7 Evaluation of the RFID Goods Management Case Studies

A comparison between the two case studies seems to indicate that just because the
players had a good understanding of an attribute during the external case study, it
did not necessarily mean that the students had the same understanding. A further

116 Chapter 5 Practical Applications of ADTrees

comparison is only partially meaningful since in the external case study, a table
was provided and the meta-attribute value domain was different. With hindsight,
this was a valuable lesson that indicates that computer tool support (Section 5.6)
is indispensable to prevent nodes from not being filled in with values. Tool support
may also improve the quality of the values since then more focus can be put on
the actual values and not so much focus has to be put on the methodology.

Since the data gathered during the external case study was limited, we did not
use it further. Instead, we used the data from the classroom case study to support
several hypotheses. We operate under the assumption that students provide good
value estimates and are, therefore, helpful to evaluate the methodology but that
they are not security experts.

First, we analyzed whether as the confidence value rises, the more refined and
detailed a tree is. For this we compared the average of the confidence values
for the “Breaking and Entering” subtree with the average of all 57 confidence
values. For the costs attribute the averages were 2.51 vs. 2.16, for the difficulty
attribute they were 2.36 vs. 2.30 and for the time attribute, they were 2.38 vs. 2.28.
This supports our initial hypothesis and indicates that it is (subjectively) easier to
provide a value for a more refined tree that represents a more detailed scenario.

Second, we also examined whether the students were more likely to omit to fill
in values for non-refined nodes that are not leaves. In the given ADTree, 14 out
of 57 nodes were non-refined nodes that were not leaves. This yields a percentage
of roughly 25 % non-refined nodes compared to the total number of nodes to be
filled in. For the costs attribute, there were 40 nodes without values, 22 of which
were non-refined nodes that were not leaves. This yields an approximate percentage
of 55 %. For the time attribute, there were 37 nodes without values, 22 of which
were non-refined nodes that were not leaves. This amounts to approximately 59 %.
For the difficulty attribute, there were 67 nodes without values, 19 of which were
non-refined nodes that were not leaves. This equals roughly 28 %. Unfortunately
two sheets of papers were lost before we could start the evaluation. Discounting
these sheets, the percentages actually increase to 68 % (for the time attribute) and
to 33 % for the difficulty attribute. In summary, these values indicate there is a
tendency to forget to fill in non-refined nodes that are not leaves.

Finally, we tried to corroborate the hypothesis that the confidence value is high
if and only if the variance of the estimated values is low. To compute the vari-
ance, we proceeded as follows. We gathered all 10 value estimations for a certain
attribute in a vector X = (x1, . . . , x10). (Naturally, if values were missing, we used
a shorter vector X.) Then, for the costs attribute, we have xi ∈ Cost × Conf, for
the difficulty attribute, we have xi ∈ Diff × Conf and for the time attribute, we
have xi ∈ Time × Conf. With the help of the expectation operator, denoted by E,
we compute the variance as follows:

Var(X) =
∑

i f2(xi)(f1(xi) − E(X))2

∑
i f2(xi)

,

where f2(xi) denotes a projection on the confidence value. Moreover, f1(xi) trans-
forms an attribute value into a natural number in ascending order. For example,
for the costs attribute we have the following mapping: Cheap 7→ 1, Average 7→ 2
and Expensive 7→ 3. For costs, difficulty and time, we obtain variances for each

5.4 Practical Observations 117

node that lie between 0 and 0.746, 0.074 and 0.776 as well as 0 and 1.252, respec-
tively. The resulting averages over all nodes are computed to 0.33, 0.40 and 0.46.
To be able to compare these values, we also calculated the variance for randomly
provided values, which lies around 0.66. Hence, the empirical variance values are
lower than the expected variance for random values. Contrarily, the computed total
confidence gave values between 1.56 and 3, 1.88 and 2.78 as well as 1.78 and 2.70.
The resulting averages 2.16, 2.30 and 2.28 indicate a rather high confidence. To
conclude, we found some evidence suggesting that a high confidence in the esti-
mated values results in a low variance amongst the values. However, to prove or
disprove this hypothesis further experiments are necessary.

In conclusion, an analysis of quantification by non-experts showed some promising
results. To validate the results, we suggest there is a focus on improving the value
estimations of the basic assignments by non-experts.

5.4 Practical Observations

During the course of the three case studies, we observed numerous situations where
a user has a design choice of how to proceed when applying the ADTree methodol-
ogy. We elaborate how different choices affect the methodology and use the discus-
sion to answer Questions Q1–Q6. A summary of this discussion ordered according
to the work flow is provided in Table 5.4 in Section 5.5.

5.4.1 Question Q1: Meaning and Visualization of Defenses

We restate Question Q1: How can we use ADTrees to find out which defensive
measures are present in a system? And which techniques allow us to construct a
precise model?

In an ADTree model, the syntax and the semantics do not specify whether the
depicted nodes represent an actual scenario or potential attacks and defenses. We,
therefore, need to specify what an ADTree actually depicts. There are two rea-
sonable possibilities. First, we could view the tree that includes all nodes of the
root node type that can be reached from the root node via nodes of the same
type. For an ADTree rooted in an attack node, this would be an attack tree. This
tree would represent how to attack a deployed system. Any further nodes in the
tree would then represent hypothetical defenses, i.e., defenses that could be put
in place, but are not yet installed. These defenses could, in turn, be countered
and re-countered by other hypothetical actions. Second, it is possible to select a
(fictional) scenario where no defenses (or attacks) have been implemented. Step by
step we add potential defenses (or attacks) and countermeasures until we have a
suitably detailed model. Note that for a scenario without countermeasures these
possibilities coincide. (Design Choice D1.4)

Both possibilities have advantages as well as disadvantages. When modeling an
actually deployed system, we strive to model as accurately as possible. In a deployed
system, we do not need to puzzle about which security measures could be put into
place, we can simply observe which defensive measures are in place. We represent
these defenses indirectly by adding actions that counteract these measures to the

118 Chapter 5 Practical Applications of ADTrees

model. In the case study on the RFID goods management system, this means
that the security cameras from the floor plan, see Figure 5.4, are not explicitly
modeled as defense nodes in the ADTree. The cameras mentioned in Figure 5.7
are additional cameras that could be put into place.

However, a specific adaptation to an existing scenario is undesirable when, for
example, storing an ADTree model as a pattern in a library. In this case, it is
preferable that all defenses, including the already existing ones, are depicted in the
ADTree. If we want to convert an ADTree library template into an ADTree model
for an actual scenario, we only have to take existing defenses into account and
model them indirectly as necessary attack steps. (Design Choice D1.3) Moreover,
additional information about the attacker and defender can be included into the
model, by adjusting the tree to the considered situation. For example, if the de-
fender only has a limited budget, any attack that is too expensive can be removed,
e.g., following a procedure similar to pruning (Section 4.4.2).

In certain scenarios, some actions may only be valid when one or more external
conditions are fulfilled. We can generically model this in the tree to improve the
accuracy of the tree. To model a requirement or a condition, any node that is
not a disjunction gets an additional conjunctively connected child that expresses
the requirement or the condition. If a node is a disjunction, a conjunction with
two children replaces the disjunction. One child is the subtree rooted in the initial
disjunction, the other child depicts the requirement.

During the initial case study, we noticed that the ADTree depicting the scenario
(Figure 5.2) does not contain any disjunctively refined attack nodes. This is due
to the fact that in the original textual draft exactly one way of attacking online
auctions was described. While modeling an attack path is certainly possible with
the ADTree methodology, it loses some of its potential. In fact, any of the depicted
defenses would suffice to foil the attack. Naturally, if the tree were extended to
include other attack options, there would be disjunctively refined attack nodes
making an analysis of necessary defensive actions more interesting.

To answer Question Q1: It is possible to model defenses explicitly as children of
the attack action they counteract. In a tree adapted to a scenario, however, it
may be preferable to only model them implicitly. Such implicit modeling as well
as modeling requirements as conjunctions improves the expressive power of the
ADTree model.

5.4.2 Question Q2: Usefulness of Transformations

We restate Question Q2: Are semantics preserving transformations on ADTrees a
useful tool? Do they help us to improve our understanding of a scenario?

Recall that the root node of the online auction fraud case study has four children,
see Figure 5.2. Each child represents one of the four phases: prepare, buy, ship
and sell. This choice and, therefore, the refinement with four nodes was arbitrary.
Instead, we could have chosen to refine the root node according to the involved
people, i.e., Rachel, Perry and Otto. Such a choice would lead to a different ADTree
and consequently would group different nodes together as parts of subtrees.

The grouping, however, is subjective since it is not specified by the scenario. We

5.4 Practical Observations 119

have previously come across a similar phenomenon when modeling how to subdue
a guard, see Figure 3.1. There, the order of the children of a node was not given
by the scenario. Such an impreciseness is one of the reasons for the introduction
of different semantics. The semantics allow us to specify whether or not different
ADTree models that arise from different groupings represent the same scenario. In
the particular case of the online auction fraud scenario, different groupings of the
attack nodes represent the same scenario in every semantics where conjunctive and
disjunctive refinements are associative.

As indicated in Section 3.5, semantics can also be seen as transformations of AD-
Tree models. With the help of these transformations, it may be possible to push
countermeasures towards the root or to combine several conjunctive refinements
into one. Both transformations are likely to flatten the tree at the expense of
widening it.

Besides reshaping the model, transformations help us to gain insight about the
structure of defenses. Suppose that a defense fully protects against attack A and we
later discover that the same defense actually also fully protects against attack B. If
A and B are the only children of a disjunctively connected node C, transformations
help us to see that the defense actually protects against C. Similarly, they could
help us discover missing or redundant defenses. For example if C is conjunctively
refined instead of disjunctively refined, we only need to implement the defense
once.

A suitable choice of groupings and transformations may depend on individual pref-
erences and usually involves taste. It is, therefore, infeasible to specify universally
accepted choices. Nevertheless, it is possible to determine certain transformations
to create normal forms, as, for example, done in Section 3.5. These normal forms, in
turn, could help us to quickly understand a model through a fast visual inspection.
They may also help us to easily discover missing or redundant defenses. Suppose
the normal form of an ADTree is a tree that does not contain any attack node
leaves. Then, there exists a (potential) defense for every attack. In the De Morgan
and the multiset semantics such normal forms that do not contain any attack leaf
nodes exist.

While experimenting with different grouping strategies and normal forms, we re-
alized that modeling dependencies between different nodes is challenging and that
transformations do not help to overcome this problem. For a given tree, it is, for ex-
ample, not always possible to find an equivalent model such that dependent nodes
are always children of a common parent. For example, in the online auction fraud
ADTree the node “Otto from Dave” in subtree “Delivery Process” is not a sibling
of the node “Otto Sells to Perry” even though it must be the same Otto that first
acquires the goods, before he can sell them. Alternative groupings suffer from sim-
ilar dependency problems. In general, it is not possible to ensure that dependent
nodes are siblings of each other. These problems are inherent to tree structures. To
be able to display all possible dependencies and, therefore, also be able to quantify
probabilistically dependent actions, we combine ADTree with Bayesian networks
in Section 6.2.

Another kind of dependency arises when we want to specify that the same actor
needs to execute several actions. On the one hand we want the model to be as

120 Chapter 5 Practical Applications of ADTrees

precise as possible. We could achieve this by specifying which particular person
executes the actions in a particular case. On the other hand we want that the
models can serve as templates. This would only require us to indicate that the
same person needs to execute the action and we would not have to specify which
one. Also this second kind of dependency can not be overcome with the help of
transformations. To facilitate reusing models and being precise at the same time,
a role-based approach could be applied. Templates with role-based placeholders
could be stored in libraries. These placeholders should then be instantiated when
an ADTree template is adapted to a specific scenario. (Design Choice D1.3)

Even though transformation rules are defined on ADTerms, we have, so far, only
discussed their impact on ADTree representations. A main difference between AD-
Trees and ADTerms is that refined nodes in ADTrees are equipped with a label.
This label is not present in an ADTerm. The fact that ADTerms do not store infor-
mation about the refined nodes complicates a visual comparison, but it simplifies
an automated comparison with the help of a unique normal form. Being able to
say whether two terms have the same normal form is important because it is a first
step to be able to compare semantically non-equivalent trees.

To answer Question Q2: Semantics preserving transformations allow us to change
the shape of a specific scenario representation. They are, therefore, well-suited to
compare different representations of the same scenario. They also allow us to gain
insights into the structure of the defenses. They do not, however, help us to solve
problems related to dependent actions.

5.4.3 Question Q3: Practical Model Restrictions

We restate Question Q3: Should there be any restrictions when setting up a tree
model, for example, should the labels of the nodes have a specific form or should
the tree have a predefined depth?

A general modeling question is always how detailed a model should be compared
to the actual system or scenario. In ADTrees, this question translates into two
aspects. First, what are suitable node labels and second, what is a suitable level of
refinement.

On the one hand, node labels are important because they help the users to under-
stand the scenario without reading the scenario description in detail. Node labels
that are too short may lead to confusion. On the other hand, the labels should be
concise because if they are too long and detailed they are difficult to display and
reduce the chance of reusability. To make the tree as self contained as possible, it
is (often) beneficial that the node label consists of a noun and a verb. In rare cases
a single noun or a single verb may also be sufficient. (Design Choice D1.1)

For modeling purposes, the level of refinement is the more crucial aspect. In prac-
tice, a model is often set up under limited time or costs. Limited time generally
leads to less elaborated trees, i.e., a less detailed model. The level of refinement,
may also be influenced by the creator’s knowledge of the scenario in particular and
of security in general. For example, in the external case study, the players created
the tree. They had in-depth knowledge of both security in general and the sce-
nario in particular. If instead the creation of the tree is delegated to independent

5.4 Practical Observations 121

security experts, the subtree related to the security expert’s field of expertise (e.g.,
social security) may be detailed while other subtrees (e.g., RFID security) may be
less refined. (Design Choice D1.2) Last, but not least, the level of refinement is
also affected by the availability and use of templates or other models from security
repositories. In general, we advocate the use of templates since they speed up and
simplify the modeling process. However, there might be drawbacks to purely rely-
ing on such available information. New attacks or defenses, for example, are less
likely to be found. (Design Choice D1.1)

There is no absolute advice on the best level of refinements an ADTree should have.
In the case studies on the RFID goods management system, however, we have seen
that the resulting attribute values were primarily determined through less refined
branches. If any of these values had been incorrect or missing, it would have had
a disproportionately large impact on the result. This, in turn, indicates that the
relative level of node refinement is crucial. To avoid biased results, the level of
refinement should roughly be the same for all branches. Generally speaking, this
is achieved by providing the same intuitive level of understanding across different
branches in the tree. Note, however, that this does not mean that all non-refined
nodes are at roughly the same heights. A heuristic way of achieving this is to limit
the number of nodes in the entire tree and to verify that subtrees of the same
parent node have a comparable number of nodes. (Design Choice D1.5)

To answer Question Q3: Yes, there should be restrictions when modeling the tree.
Node labels should be concise and the level of tree refinement should be comparable
across the entire tree.

5.4.4 Question Q4: Attribute Decoration

We restate Question Q4: What has to be considered when providing attribute
values for nodes?

In the two case studies on the RFID goods managements system, numerous ob-
stacles arose when trying to provide values for an attribute for a given node. The
obstacles can roughly be classified into three groups. First, it is imperative that
everyone who provides a value has a good understanding about the model and,
therefore, for every node in the tree. Second, everyone who provides a value should
also have the same understanding of the attribute, as well as what the possible
attribute values represent. And third, if several people estimate values, they all
need to have the same understanding of who estimates which nodes according to
which criteria. We elaborate in more detail on the three groups in the following
three paragraphs.

Understanding a node within a model To gain a detailed understanding of
the scenario it is necessary that, at some point during the modeling process, the
structure of the tree is frozen and no more nodes are added or removed. Structural
changes made to the tree possibly falsify value estimations in other parts of the
tree. (Design Choice D1.6) To avoid such complications and repetitive work the
model of the tree should be sufficiently accurate before any values are assigned.
Much for the same reasons, all attributes should be evaluated on the same model
and not on a possibly pruned tree. (Design Choice D1.8)

122 Chapter 5 Practical Applications of ADTrees

However, agreeing on one definite model is not always possible. Especially in the
classroom case study, the students did not completely agree with the tree structure.
To mitigate this problem, two options are available. First, the introduction of
the meta-attribute confidence allows us to provide values with Low confidence.
With this option it is reasonable to ask everyone to provide a value irrespective of
whether they agree with the tree or not. Second, a new attribute called disagree
with node with a Boolean value range could be introduced. Any node or subtree
that has been flagged with this attribute should then be reevaluated or discussed
at the consensus meeting. (Design Choice D2.3)

Since the structure of the tree will be fixed at some point in time and later adapta-
tion should be avoided, the resulting models may be incomplete. This phenomenon
is common in practical models. Any quantitative analysis resulting from an incom-
plete (and thus incorrect) model has to be taken with a grain of salt. Unfortunately
the ADTree methodology is not robust and any forgotten node can, in principle,
influence the final outcome. Since a complete model is infeasible to attain and
an incomplete model can yield wrong quantitative results, we advocate the use
of sophisticated models. A sophisticated model is error free, sufficiently detailed
and comparably refined to increase a user’s understanding of the scenario. (Design
Choice D1.7)

Even though freezing a certain tree structure is necessary for a common under-
standing of the scenario, it is not sufficient. A user’s understanding of a specific
node may still be incomplete or even incorrect. One of the main problems that we
identified was that node labels were often not self-explanatory and led to confusion.
As we mentioned in the last section, we propose to use simple labels consisting of a
noun and a verb. On the one hand, this brevity allows us to graphically represent
the nodes. On the other hand, short labels, such as, “Break Authentication”, “Laser
Cameras” or “Hide in a Box”, are difficult to understand without context. (Design
Choice D1.1) This implies that looking at parents, siblings and child nodes as well
as the corresponding main goal is often necessary when providing attribute val-
ues for non-refined nodes. Consider, for example, the node “Enter through Door”.
Without taking its parent node “Get into Warehouse” into account, it is impossible
to estimate the corresponding values for the difficulty and the time attributes.
More explicitly, the values may differ depending on which door we are interested
in: the warehouse door, the bathroom door or the administrative office door.

Hence, in hindsight, the tables provided to be filled in during the external case
study made it more difficult to take the context into account. In the classroom case
study we approached this problem by extensively explaining the scenario depicted
by the ADTree, making the students aware of the context of the scenario and by
providing them with the ADTree on a sheet of paper on which they were supposed
to fill in the attribute values. Naturally, this strategy also had drawbacks. First, it
is not apparent if all values that are supposed to be provided are actually provided.
Second, if values are provided with the nodes’ context in mind, people might be
led to assign different values to nodes with the same label. Naturally, this should
not happen. It could, however, be an indication that the node labels should be
different. (Design Choice D4.2)

Directly related to inconsistent values is the problem of how to assign values to
nodes that have the same labels. These nodes, such as “Secure warehouse” or

5.4 Practical Observations 123

“Attended Visitor’s Log”, were mentioned twice in the initial table in the external
case study and occurred twice on the tree provided in the classroom case study as
can be seen in Figure 5.6. On the one hand, the values assigned to two different
occurrences of the same action may be different in the case when the context is
taken into account. On the other hand, if nodes are handled independently of the
tree, it would be more reasonable to associate similar values with similarly labeled
nodes.

Thus, it seems reasonable to conclude that nodes with the same label should be
given the same values. If this appears to be unreasonable, one of the nodes should
be renamed. (Design Choice D4.3)

A final issue with the understanding of nodes is whether attribute values should
be assigned to non-refined nodes only or also to refined nodes. This question is
closely related to the meaning of the refined nodes and the bottom-up algorithm.
We discuss it further in Section 5.4.6.

Understanding the attribute Naturally, everyone who provides a value which
is later used in the attribute computation should have a good understanding of
this attribute. During the case studies, we learned that the users tended to esti-
mate values by using their own interpretation of the attributes, even though they
were aware of the definitions provided in Section 5.3.3. One reason was that the
initial9 descriptions were imprecise or diverged from a player’s belief of what the
attribute should represent. During the external case study, we apparently did not
stress enough that only the given attribute description should be used. During the
classroom experiment we, therefore, wrote the definition on the blackboard and
explained it thoroughly.

In particular, the attribute descriptions in Section 5.3.3 are underspecified. For ex-
ample, the special skill description states the use of a Boolean value domain, but
does not specify which kind of special skill, e.g., insider knowledge, electricity
or a certain technical skill is supposed to be evaluated. Moreover, the penalty
and the profit attribute descriptions are only given from the perspective of an
attacker. Furthermore, the impact attribute describes consequences from a sys-
tem’s owner or a defender’s point of view, the scale given in Section 5.3.3, however,
indicates attacks. Even an explicit reference to only an attacker, as in the case of
the detectability attribute or a defender, as in the case of the probability at-
tribute, led to confusion for the corresponding player. In summary, a reference in
the attribute description to a specific role resulted in players with different roles
not filling in certain values. Specific references to only one player should, therefore,
be avoided. Besides adapting the costs, difficulty and time attribute definitions,
we also avoided distinguishing between different roles in the classroom experiment
and asked the students to fill in all values, for attack as well as defense nodes.
(Design Choice D2.1)

Besides the attribute description, Section 5.3.3 also offers an explanation for differ-
ent attribute value domains. In both case studies on the RFID goods management
system, we opted to use value domains with up to 5 levels. It is entirely possible to
use real numbers, intervals or even discrete probability functions as value domains.

9we adapted the descriptions for the costs, difficulty and time attributes several times
during the case study

124 Chapter 5 Practical Applications of ADTrees

Choosing a different domain is a trade-off between the time a person spends on es-
timating an accurate value and the inclination of actually providing a value. Using
a more fine-grained scale to achieve more exact results could be counterproductive
if the number of people who estimate a value decreases. Furthermore, increasing
the graining of the scale may make it more difficult to distinguish between values.
Even with the chosen value domain of up to 5 levels, the provided explanation
was sometimes not precise enough. For example, High costs are different for stu-
dents and millionaires. In order to guarantee comparability across different people
that estimate values, the categories should be given on an absolute scale. (Design
Choice D2.2)

However, even knowing an attribute keyword, its description and an explanation
of possible values may still not suffice. For example, simply knowing that costs
are estimated, is not enough. Depending on whether these costs are supposed to
represent minimal costs, maximal costs or average costs, a different default value
represents a conservative estimation.

To overcome the above problems, we propose to always use the attributes in forms
of questions, see Section 4.4 together with precise attribute and value domain
descriptions.

Finally, the description and the use of the meta-attribute confidence should have
been made more precise. One of the players in the external case study chose to
use the same confidence level for all attributes of a given node with the inten-
tion to save time at the expense of less accurate values. Other players selected a
different confidence level for every estimated attribute value. To make full use of
meta-attributes, they should always be estimated on a per attribute value basis.
(Design Choice D4.1) All players in the external case study concluded that the
scale of the confidence meta-attribute should be reduced. We implemented this
conclusion in the classroom case study by allowing only the three possible values
Unsure, In-between and Sure. Results from both case studies could not conclu-
sively determine which scale leads to superior outcomes. (Design Choice D2.4)

Understanding the methodology As mentioned previously, the external case
study was performed by four people: two of them played a role of the attacker
and two the role of the defender. However, it was not explicitly specified to which
nodes the players should assign the values. This led to inconsistent data. Each of
the players provided values for nodes related to his or her role, but one of the
attacker players also estimated some values for the defender nodes. The use of
hypothetical roles also allows us to distinguish knowledge of a user and knowledge
of a role. Therefore, it could be asked whether users only take the part of the
scenario corresponding to their role into account or whether they should base their
decisions on knowledge about the other player and the entire scenario. Assigning
different roles also made it possible that some attributes, e.g., penalty, profit or
impact, were only estimated by either attackers or defenders. (Design Choice D3.1)

Assigning a specific role to a player initially seemed like a good idea since it min-
imized the players’ work load. Of course, it also reduces the number of provided
estimations. To obtain a larger set of values, we refrained from assigning different
roles to the students in the classroom experiment. It is unclear to what extent in-
creasing the number of different estimations increases the quality of the estimated

5.4 Practical Observations 125

values. (Design Choice D3.1)

Instead of increasing the size of the raw data it may be more suitable to increase
the quality of the estimations. For example, if specialists within certain domains
are available, their knowledge should be exploited. In this sense, a janitor could es-
timate nodes related to physical building security, i.e., nodes depicted in Figure 5.7,
whereas a psychologist might be better suited to estimate values for nodes related
to social engineering, i.e., nodes depicted in Figure 5.6. (Design Choice D3.2)

To answer Question Q4: When providing values that are used for attribute evalu-
ation, they need to be consistent. This means, if several users estimate values for
use cases, these users need to have a common understanding

• of the scenario and of every single node in the ADTree,

• of the attribute including the attribute domain, the value domain and the
question and

• of the methodology in general.

5.4.5 Question Q5: The Basic Assignment

We restate Question Q5: What are suitable methods to turn the values provided
for the nodes into a basic assignment?

When estimations are provided by different people, this usually yields heteroge-
neous data, even if we respect all instructions presented in the previous section.
Since the bottom-up procedure requires exactly one value for each node as input
data, it needs to be homogenized. In Section 5.3.5, we have already described one
possible option to select a suitable homogenized representative: We applied For-
mula (5.1) for majority of the values (Design Choice D5.1) and discussed the re-
maining values at a consensus meeting. (Design Choice D5.3) The formula consists
of a weighted average for the attribute value and an estimation of the confidence
value, which reflects risk averseness. (Design Choice D5.2) Naturally, selecting the
average, the median, the highest or the lowest value or an entirely new value instead
of the weighted average is also conceivable. Similarly possible are other confidence
estimations. The desired methods usually depend on the scenario and possibly the
attribute.

When using a formula to compute a representative of a dataset, having more input
values is generally preferable over having fewer input values. However, the choice
of the representative may depend on the actual estimations. To better be able to
differentiate the data for different nodes, we distinguished six categories. Then, for
each category, a different approach determines the representative. For example, a
representative could be selected using an average, using a minimum value, using
ranges or deciding on the final value at the consensus meeting. The proposed
categories are:

C1) Nodes with as many attribute values as players.

C2) Nodes where all estimated values have a low confidence.

126 Chapter 5 Practical Applications of ADTrees

C3) Nodes where the values diverge significantly.

C4) Nodes where the disagree with node flag is set.

C5) Nodes where at least one player has not estimated a value.

C6) Nodes where no player has estimated a value.

The categories are ordered according to a descending scale of possible automatic
treatment and are not necessarily disjoint. Whereas for Category C1 it is entirely
reasonable to combine the input values automatically into a single value, this is not
even possible for Category C6. To gain a partition for the dataset, a node fulfilling
several criteria is only placed into one category. Amongst the suitable categories,
a node is placed into the one with the lowest number.

Categories C2 and C3 themselves are merely suggestions since the expressions low
confidence and diverge significantly do not unambiguously specify whether or not
a node fits into the category. In the external case study, we specified that all nodes
with confidence levels 1 and 2 classify as being of low confidence. Nodes whose
attribute values were not neighboring values, we specified as diverging significantly.
The nodes in Categories C4 and C6 and to a lesser extent the nodes in Category C5
indicate that there exists a problem with the model description. These nodes should
be discussed at a time-restricted consensus meeting. (Design Choice D5.4)

To answer Question Q5: We propose to use the presented classification to determine
a basic assignment for the nodes. Naturally, other methods to select a suitable
representative for each node and attribute are conceivable.

5.4.6 Question Q6: Bottom-up Computation

We restate Question Q6 What are the strengths and weaknesses of the bottom-up
algorithm?

Using the basic assignment, the bottom-up computation computes attribute val-
ues for all remaining nodes. Apart from computing these values, it is alternatively
also possible to assign them, following the same procedure as for the non-refined
nodes. Whether such an assignment is sensible, depends on the meaning of the
refined nodes. In fact, only some of them even represent understandable attacks
or defenses, e.g., “Get onto Premises” or “Block Tag Reader”, while others only
play the role of dummy placeholders, e.g., “Trick”. Whereas in the first case, it
still seems reasonable to associate values with refined nodes, the latter case indi-
cates that attribution of values might be more problematic. Providing values for
refined nodes can not be performed without taking the corresponding context into
account. Moreover, if an action is already sufficiently comprehensible such that a
reliable value can be suggested, it does not need to be refined anymore. Hence,
from the fundamental modeling idea behind ADTrees, assigning values to inter-
mediate nodes seems questionable. Therefore, comparing such values with values
computed with the bottom-up approach does not yield meaningful results. In the
classroom case study we, therefore, opted not to ask for values of refined nodes.
(Design Choice D4.4)

5.4 Practical Observations 127

Comparing the values from Table 5.3 with the values calculated using the bottom-
up approach supports this hypothesis. The comparison shows that the counter-
measures are mistakenly usually not taken into account when node values are
intuitively assigned. Therefore, such a comparison should not be performed. Fig-
ure 5.10 shows, for instance, that the costs for video looping is Infinite and thus
impossible when guards are employed. In contrast to this, the estimated costs
value given in Table 5.3, which is Average with a confidence level of 2. A similar
disregard of countermeasures and subsequent counterattacks occurs when using at-
tack trees instead of ADTrees. If all subtrees rooted in defense nodes are removed
from Figure 5.10, the model no longer depicts that an attacker should keep possible
defenses, such as “Barbed Wire” or “Monitor with Security Cameras”, in mind. In
this case, the costs value of the cheapest scenario would be Cheap, with a confi-
dence level of 4. The corresponding attack would consist of entering through the
gate and the loading dock undetected. As a consequence, we, therefore, opted not
to ask for values of refined nodes in the classroom case study. (Design Choice D6.2)

On the positive side, the bottom-up algorithm is flexible with regards to the spec-
ification of the attribute domain. In the minimal costs calculation performed in
Section 5.3.6, we have chosen to use the attribute domain given by Equation (5.2)
with discrete levels as value domain. Naturally, other value domains are conceivable
to more accurately express how costly a combination of actions is. For instance, if
the costs of two actions are Cheap and Average, we could simply choose to model
their real costs by 10e and 100e and adapt the attribute domain accordingly.
(Design Choice D2.2)

The bottom-up algorithm is also well-suited to include additional information we
have about the attacker and the defender. For instance, it is possible to compute
the minimal difficulty of an attack, assuming that the budget of the defender
is limited to Average. This application of the ADTree methodology is another
instance of bivariate questions that it can handle. From Table 5.3 and Figure 5.10
it can be seen that monitoring with biometric sensors as well as with security
cameras would be too expensive for the defender. Hence, there would only be four
remaining successful attack options:

• using the carpet on the barbs, climbing over the fence and entering through
the door of the main building,

• using the carpet on the barbs, climbing over the fence and entering through
the loading dock,

• entering through the gate and the door of the main building or

• entering through the gate and the loading dock.

Finally, adapting the predefined attribute domain can also help to obtain a more
detailed answer. (Design Choice D6.1) As described in Section 4.5, any recursively
defined attribute with a Boolean value domain can be used to enhance the ex-
pressiveness of the scenario analysis, provided a basic assignment is given of the
Boolean attribute. For example, the minimal costs calculation, performed in Sec-
tion 5.3.6, can be made more precise with the help of Boolean-valued attributes,
which are well-suited to reason about hypothetical scenarios. Let us, for instance,

128 Chapter 5 Practical Applications of ADTrees

consider the attribute that specifies whether or not electricity is needed. Then,
the tree can be pruned to simulate what happens if there is a power outage. Since
a power outage affects the attacker as well as the defender, the ADTree methodol-
ogy is especially well-suited to model this kind of scenario. Pruning is performed
according to the rules described in Definition 4.24. A similar technique can also be
used to reason about parts of the scenario that satisfy a property of interest, for
example, to reason about scenarios where the budget of the defender is limited.

To answer Question Q6: The bottom-up algorithm is a powerful tool for quan-
titative analysis. It is superior to simply estimating attribute values for refined
nodes and can formally incorporate additional information about the attacker or
the defender.

5.5 Design Choices and Guidelines for Case Studies

While performing the case studies, numerous design choices concerning the appli-
cation of the ADTree methodology arose. Some options are outright inadmissible,
some are clearly superior to others while for a third category the existence of
several possible solutions shows the versatility of the ADTree methodology. The
correct choices depend on the actual scenario, the security relevant questions to
be answered, the modeling goals and, last but not least, the people performing
the use case. None of the choices should be treated in isolation. Table 5.4 lists the
design choices we addressed throughout the last section. The bold options indicate
which of the choices we would select to perform use cases on an RFID attack sce-
nario. This means that other choices might be more suitable for other scenarios
or use cases. Table 5.4 is ordered chronologically, following the modeling process.
It, therefore, deviates from the order of the design choices presented in the last
section.

All design decisions have to be seen as part of four conflicting modeling goals:
time, reusability, accuracy and simplicity. All four aspects have implications on
the complexity of the analysis.

In modeling, time is always a concern. From a security point of view spending more
time can only be beneficial, from an economic point of view that disregards security
spending less time is efficient. As a consequence, the amount of time (and thus
money) spent modeling always has to be justified by either allowing the analysis
to be highly reusable or requiring a high degree of accuracy.

The use of model libraries is a natural approach to make graphical security models
reusable. The SHIELDS project [SHI10b] has developed an online repository for
(among others) attack trees. This library could be extended to also include AD-
Trees. While for attack scenarios a repository already exists, so far no one has spent
the effort to collect and store probable attribute values. The degree of reusability
may be lower for values compared to scenarios. Therefore, instead of storing con-
crete values, it may be preferable to store ranges of admissible values which serve as
possible and not actual values. The more values are available, the more likely some
information will be reusable. Using stored values may again conflict with other
modeling goals, such as a fast scenario analysis (the stored node values most likely
still have to be adapted) and, unless a computer tool is used, the visual appeal of

5.5 Design Choices and Guidelines for Case Studies 129

Step Task Design choices

1

Create
ADTree
for
scenario

D1.1 Use concise noun and verb/detailed textual description
as node label.

D1.2 Security expert/system owner/player(s)/random per-
son creates tree.

D1.3 Create tree recursively, starting at the root node/adapt
tree from existing templates.

D1.4 Hypothetical attacks and defenses/All attacks and
defenses.

D1.5 Use the same level of detail across refinements/limit num-
ber of nodes.

D1.6 Continuously improve trees/freeze the tree structure
at some time.

D1.7 Use incomplete/sophisticated/complete trees.
D1.8 Allow/disallow pruning.

2

Choose
and
describe
attributes

D2.1 Provide/do not provide attribute description similar to
the ones given in Section 5.3.3.

D2.2 Select value domains: discrete/real numbers/fuzzy sets/
intervals/probability measures.

D2.3 Allow/disallow the disagree with node attribute.
D2.4 Always/sometimes use the meta-attribute confidence.

3

Choose
who
estimates
what

D3.1 Who estimates attributes: attackers/defenders/specia-
lists/random people.

D3.2 Which nodes: according to role of a person/according to
background/depending on attribute/all nodes.

4
Estimate
values

D4.1 Evaluate meta-attributes for all attributes separately/
together.

D4.2 Consider nodes in/without context.
D4.3 Allow/disallow different values for repetitive nodes.
D4.4 Do not estimate/estimate values for refined nodes.

5
Combine
values

D5.1 Apply standard combining procedure for Categories 1–
4/for other categories.

D5.2 Use Formula (5.1)/something else as standard procedure.
D5.3 Use averaging/minimization/majority/consensus mee-

ting for remaining categories.
D5.4 Restrict/do not restrict the time in case of consensus

meetings.

6
Calculate
values

D6.1 Use predefined/other functions from a software tool or
the literature.

D6.2 Compare/do not compare with intermediate values.

Table 5.4: Work flow – Exemplary guidelines for the use of ADTrees for our case
study. The bold options indicate which of the choices should be selected for use
cases concerning the RFID goods management system.

130 Chapter 5 Practical Applications of ADTrees

the ADTrees is diminished, because the tree is cluttered.

The third conflicting modeling goal is the accuracy of the model and the values.
It is necessary to find an acceptable compromise between the required time and
necessary accuracy. Also, more accurate ADTrees and values reduce the reusability
of the ADTree. Generally speaking, the coarser the value, the more raw data is
available because more people feel comfortable with actually providing the value.
Contrary to this, the finer the value, the more precise the result will be. However, if
the scale of the demanded values is too fine, only experts may be able to estimate
values. A coarse value range for a costs attribute would, for example, be Low,
Medium and High, a fine grade would be present if the value was given as a real
number expressing a monetary value, e.g., in euro.

The last modeling goal, is the understandability of the ADTree methodology. AD-
Trees have a simple tree structure which is a main advantage over approaches
that use general graphs. Keeping the methodology simple makes it accessible to
non-experts such as common users, developers, administrators and system owners.
Naturally, simplicity is bought at the expense of accuracy.

As a result of the design choices and keeping the conflicting modeling goals in mind,
we present the resulting six-step guideline which suggests a work flow and lists
possible design choices that we recommend for applying the ADTree methodology
when performing use cases. We have extended the steps from Figure 5.1, to be able
to detail steps during the setup of the ADTree model.

1. Create an ADTree for the scenario: An ADTree is created using all available
information and support tools. Provided the root of the tree is an attack node,
the attack tree, obtained from an ADTree by ignoring all defense nodes and
the corresponding subtrees, depicts the main attack scenario. All other nodes
describe hypothetical defenses and counterattacks.

• People with diverse knowledge about the system, e.g., developers, secu-
rity experts, system owner and end users, should be involved in the tree
creation.

• Various materials, such as system specifications, floor plans, blueprints,
work descriptions, attack tree libraries and attack patterns, should be
used to create the tree.

• The creation of the tree should be an iterative process which should end
when there is mutual agreement between the involved parties. Modifying
the tree after Step 3 has been performed should be avoided.

• Node labels should preferably consist of a verb and a noun and concisely
represent an attack or defense action.

2. Choose and describe attributes: Relevant attributes and meta-attributes are
chosen, based on the security questions to be answered.

• A clear, written description of chosen attributes and meta-attributes
should be provided.

• The description of each attribute and meta-attribute should include a
domain specifying which values are used for quantification.

5.5 Design Choices and Guidelines for Case Studies 131

• In the case of discrete domains, a definition for each introduced category,
such as Small, Medium, Big, should be provided.

• A user of the formalism should be allowed to express whether he dis-
agrees with a part of the tree, e.g., by including the disagree with
node attribute in the list of attributes.

3. Choose who estimates attribute values: Decide which and how many people
estimate which values. Optimize the number of people with respect to the
available resources.

• In order to avoid errors and take into account different perspectives,
more than one person should estimate attribute values.

• Each person should obtain clear, written instructions detailing which
values to estimate. It is not necessary that each person estimates the
values for all nodes and/or all attributes, however, it should be manda-
tory that he provides the values he is assigned to estimate.

4. Value estimation: The persons that were selected in Step 3 estimate the
values of the attributes chosen in Step 2 with the help of the support material
identified in Step 1.

• The values should be estimated based on knowledge about the scenario,
the personal expertise and the attribute as well as the meta-attribute
descriptions provided in Step 2. It should not be based on personal
definitions.

• When the bottom-up approach is used, the values should only be esti-
mated for non-refined nodes.

• The confidence meta-attribute should express a user’s confidence into
each of the provided attribute values. It should, therefore, be given for
each estimated attribute value separately.

• The attribute values should be estimated taking the node’s context in
the tree into account.

5. Value combination: When the attribute estimates from different people dis-
agree, a combined value needs to be obtained. For a given node and a given
attribute, this value should reflect the entirety of input values and be a good
representative for them.

• Nodes should be partitioned into categories, depending on clear objec-
tive criteria, such as percentage of coverage, as defined in Section 4.5.1.

• The best way of deriving the representatives should be selected indepen-
dently for each category for each node and attribute, e.g., use a suitable
formula, the average or decide at a consensus meeting.

• In case a consensus meeting is called for, its duration should be limited.

6. Value calculation: If the bottom-up approach is to be applied, suitable func-
tions need to be chosen in order to calculate values for all the subtrees of a
considered tree.

132 Chapter 5 Practical Applications of ADTrees

• The used functions should be in accordance with the attribute descrip-
tions provided in Step 2.

• Scientific papers discussing attribute evaluation and existing attack tree
tools can be consulted in order to define the appropriate functions.

• Estimated values of refined subtrees should not be compared with values
resulting from the bottom-up algorithm.

To support the user in complying with the guidelines, we have developed a software
tool. Digital models allow a faster tree creation, a more detailed analysis and more
accessible visualization compared to models drawn by hand. Moreover, reusing
digital models is effortless. In short, a software tool, like the one introduced in the
following section, highly increases the efficiency of the ADTree methodology.

5.6 The ADTool

While performing case studies, it became apparent that security assessment using
methodologies like ADTrees requires dedicated software tool support. The expe-
rience gained while performing the case studies helped to elicit requirements for
a computer tool that supports ADTrees. Lack of such support results in numer-
ous modeling mistakes and computational errors. In detail, when analyzing the
conflicting modeling goals, the following challenges were identified.

1. In-depth formalism knowledge is required. General drawing tools are
not suited to guide the creation of particular models, such as ADTrees. Thus,
when using non-dedicated tools, the user himself needs to make sure that the
models he constructs are syntactically correct and well-formed.

2. Drawing visually appealing trees is difficult. Trees drawn by hand
or with the help of non-dedicated graphical tools do not have an appealing
layout. Using dedicated tree drawing tools, such as the PSTricks package for
LATEX, is cumbersome and time-consuming.

3. Sharing and updating models is tedious and often impossible.
Large real-life models, constructed manually or using non-dedicated tools,
are hard to maintain, difficult to print and often cannot be displayed prop-
erly.

4. Verification of values provided by users is necessary. The consis-
tency of values provided by several users needs to be thoroughly verified. For
instance, all values should be expressed in the same units. Such checks are
cumbersome, especially in the case of large-scale models.

5. Manual computations are highly error-prone.

6. Dedicated tools are expensive and sometimes even incomplete.
Commercial software for attack tree modeling, e.g., SecurITree [Ame12] or
AttackTree+ [Iso11], is expensive. Academic tools, in turn, including Sea-
Monster [Mel10] or AttackDog [Laz10], do not support quantitative analysis
or do not allow us to interleave attacks and defenses.

5.6 The ADTool 133

To simultaneously overcome all of the difficulties mentioned above and to ease the
use of ADTrees, the ADTool was developed. The ADTool combines the features
offered by graphical tree representations with mathematical functionalities pro-
vided by ADTerms and attributes. It is the only freely available tool that allows us
to create and quantitatively analyze security models uniformly integrating attack
and defense components. This software tool was implemented by Piotr Kordy. It
is accessible at http://satoss.uni.lu/software/adtool.

The goal of the ADTool is to provide security consultants as well as academic
researchers with a user-friendly but rigorous application supporting the ADTree
methodology. The ADTool facilitates the creation, display, sharing and manage-
ment of large-scale ADTrees. Furthermore, it supports their quantitative analysis.
Implemented attributes include: costs, satisfiability, time and skill level, for
various owners, modalities and execution styles (see Section 4.4), the scenario’s
probability of occurrence, reachability of the main goal in less than x min-
utes, where x can be customized by the user and the maximal energy consumption.
Since attack trees are a subclass of ADTrees, the tool can also be used for security
modeling and assessment with the help of attack trees.

In the following, the most important features of the ADTool are presented. We
show how the design of the tool addresses the challenges identified during the case
studies.

The ADTool is easy to use One of the main features of the ADTool is its
user-friendliness. When launching the tool, a default root node representing the
main goal of an attacker (a red circle) is displayed automatically in the ADTree
Edit window. The root can be changed to a defender’s node (a green rectangle)
with the help of the Switch Attacker/Defender Roles entry from the Edit menu.
Starting from the root, an ADTree can be created with the help of the mouse. All
options allowing to modify or refine a given node can be accessed by right-clicking
the node, as shown in Figure 5.11. Alternatively, intuitive keyboard shortcuts can
be used to create, alter or remove a subtree. All shortcuts are explained in the
ADTool manual [12KSADTMan].

The ADTool guides the user by inserting only correct types of nodes and edges in
the various places, complying with the graphical ADTree language, as described
in [12KMRS]. Moreover, at each step of the model creation, only options consis-
tent with the ADTree methodology are enabled. Thus, using the ADTool does not
require an in-depth knowledge of the technical details of the underlying method-
ology.

The ADTool produces visually appealing trees An improved version of
the Walker algorithm [Wal90] including several enhancements suggested by Buch-
heim et al. [BJL06] has been implemented in the ADTool to produce trees having
an appealing layout.

Furthermore, when an ADTree is built, the corresponding ADTerm is immediately
displayed in the ADTerm Edit window, see Figure 5.12. ADTerms form a compact,
textual representation of ADTrees.

In order to link a textual model with its graphical counterpart, the shortest tree
edit distance algorithm [DMRW09, PA11] has been implemented. It ensures that

http://satoss.uni.lu/software/adtool

134 Chapter 5 Practical Applications of ADTrees

Figure 5.11: Creating an ADTree with the ADTool.

when an ADTerm is modified, the corresponding ADTree is adapted accordingly.

The ADTool provides advanced features for model management The
ADTool is well-suited for analysis of large, real-life scenarios. Folding and expand-
ing options make it possible to temporarily hide parts of a tree. This allows users to
only focus on the displayed components, which is highly appreciated during indus-
trial meetings and presentations. As different computers may have different screen
sizes, several zooming features have also been implemented. They can be accessed
using the scroll function of the mouse wheel, the standard keyboard shortcuts or
the Fit to Window entry from the View menu.

ADTrees created with the ADTool can be saved as special .adt files. This enables
their reuse and modification. Models can also be exported to vector graphics files
(.pdf), raster graphics files (.png and .jpg) and LATEX files (.tex). Resulting figures
can be used as illustrations in scientific and industrial presentations, research pa-
pers and posters. Finally, large-scale trees can be printed on a specified number of
pages, as illustrated in Figure 5.13.

The ADTool assists users in providing input values for computations
The tool supports evaluation of eleven attributes, which can be accessed using the
Add Attribute Domain entry from the Domain menu. After selecting an attribute,
see Figure 5.14, the currently active ADTree is immediately decorated with default
values. To initiate an attribute evaluation, a user customizes the input values of the
relevant non-refined nodes. The tool ensures that the provided values are consistent.
This is especially important when several specialists supply values for different

5.6 The ADTool 135

Figure 5.12: An ADTree modeled in the ADTool.

Figure 5.13: Large-scale printing in the ADTool.

136 Chapter 5 Practical Applications of ADTrees

parts of the tree. The application does not accept values which do not belong to
the specified value domain. Furthermore, nodes labeled with the same name, i.e.,
representing the same actions, automatically receive the same value. This design
choice is consistent with the ADTree methodology, as specified in this thesis. A
table giving an overview of all non-refined nodes is accessible from the Windows
menu after selecting Valuations View, see Figure 5.15. It can be used to easily
modify the input values and is helpful when modeling large scenarios.

Figure 5.14: Attribute selection in the ADTool.

The ADTool automates computations on ADTrees The bottom-up algo-
rithm (see Definition 4.4) for the evaluation of attributes has been implemented in
the ADTool. Given an attribute domain and values for all non-refined nodes, the
values for the refined nodes are calculated automatically. By restricting the user
input and by automating computations, calculation errors are avoided.

Furthermore, the tool can easily be extended with new attribute domains. For this
purpose, a new class implementing the set of possible values and the necessary op-
erators needs to be created and compiled. No recompilation or other modifications
of the program are required thanks to the use of Java reflection.

The ADTool is free and easy to access The ADTool is free software that
runs on all common operating systems (Windows, Linux, Mac OS). It is imple-
mented in Java and requires JDK 6 or later. Additionally, the ADTool depends
on the following free libraries: abego TreeLayout [abe11], implementing an effi-
cient and customizable tree layout algorithm in Java, and InfoNode Docking Win-
dows [NNL09], a pure Java Swing based docking windows framework.

The ADTool is available for download10. It can also be launched as an online appli-
cation that uses Java Web Start technology [Ora13]. Finally, a manual, explaining
step by step how to use the tool, is available [12KSADTMan].

10http://satoss.uni.lu/software/adtool/

http://satoss.uni.lu/software/adtool/

5.6 The ADTool 137

Figure 5.15: Attribute evaluation in the ADTool.

6

Formal Applications of ADTrees

In Chapters 2, 3 and 4, we designed the syntax, the semantics and a procedure
for quantitative analysis for the ADTree methodology. In the previous section, we
have seen that our approach is applicable in practice. In this chapter we explain
that the rigorous formalization enables us to link ADTrees to other well-studied
research areas. Having the view of different syntaxes and semantics provides us
with different capabilities to strengthen, apply and draw conclusions about the
ADTree methodology. The formal definitions enable us to prove theorems about
the functionality and capabilities of ADTrees. In this chapter we outline several
examples of such applications of the formal model.

Concretely, we show that propositional ADTrees increase the expressiveness of the
model compared to propositional attack trees without increasing the complexity
(Section 6.1). Then we show how to combine ADTrees and Bayesian networks to be
able to handle computation in the presence of conditionally dependent nodes (Sec-
tion 6.2). And finally, we summarize a connection between propositional ADTrees
and a specific class of games that frequently occur in game theory (Section 6.3).

6.1 Complexity Considerations of the De Morgan Seman-

tics

The objective of this section is to compare the computational complexity of the
propositional ADTerms language with the computational complexity of the propo-
sitional attack terms language.

6.1.1 Positive, Negative and Monotone Boolean Functions

In order to compare the computational complexity of ADTrees, we first analyze
the classes of Boolean functions represented by both languages. Of particular im-
portance for our studies are positive, negative and monotone Boolean functions.
This section makes use of the definition of a configuration, see Definition 3.6, and
our related conventions. A more detailed introduction can be found in [PK11].

Definition 6.1 (Positive, negative and monotone Boolean functions in one vari-
able) Let R be a countable set of propositional variables, let f be a Boolean func-
tion with finite domain D ⊆ R and let x ∈ D be a propositional variable.

• f is positive in x if f(x, 0) ≤ f(x, 1), for all x ∈ {0, 1}D\{x},

• f is negative in x if f(x, 0) ≥ f(x, 1), for all x ∈ {0, 1}D\{x},

139

140 Chapter 6 Formal Applications of ADTrees

• f is monotone in x ∈ D if it is either positive or negative in x.

In this definition we use the notation that for a Boolean function f : D → {0, 1} the
expression f(x, i), where x ∈ {0, 1}D\{x} expresses that i is assigned to x (which is
not necessarily the last variable). Note that if x ∈ R does not occur in the domain
of a Boolean function f , then f is insensitive to the values assigned to x. In this
case, we say that f is positive, negative and monotone in x.

Definition 6.2 (Positive, negative and monotone Boolean functions) A Boolean
function f is positive (resp. negative) if it is positive (resp. negative) in every
variable x ∈ R. It is monotone if it is either positive in all variables or negative in
all variables.

Alternatively, a partial ordering can be defined on {0, 1}D by setting u ≤ v if
and only if u ∨ v = v. This definition is equivalent to writing u ≤ v if and only
if ui ≤ vi for every i ∈ D.

The following lemma shows that the classes of Boolean functions that are positive
in a variable as well as those that are negative in a variable are closed under
conjunction and disjunction.

Lemma 6.3 Let f and g be Boolean functions.

• If f and g are positive in x, then f ∧ g and f ∨ g are positive in x.

• If f and g are negative in x, then f ∧ g and f ∨ g are negative in x.

Proof. Both statements follow directly from Definition 3.9 and the monotonicity
of minimization and maximization.

Note, however, that the results from Lemma 6.3 do generally not hold for monotone
Boolean functions. This can be seen as follows:

Example 6.4 The Boolean function f(x, y) = x∧ ¬y is positive in x and negative
in y. Thus, f is monotone in x and monotone in y. For similar reasons, the Boolean
function g(x, y) = y ∧ ¬x is also monotone in x and monotone in y. However, it
can easily be checked that the function f ∨ g is neither monotone in x nor in y.

Next we show that Boolean functions that are monotone in a variable are closed
under negation.

Lemma 6.5 Let f be a Boolean function and let x ∈ R be a propositional variable.
If f is positive (resp. negative) in x, then ¬f is negative (resp. positive) in x.

Proof. Let us assume that f is positive in x and let D be the domain of f . If x 6∈ D,
then, by convention, f is positive in x and ¬f is negative in x. If x ∈ D, then from
the positivity of f in x, we have that for the projected configurations f(x↓D\{x}, 0) ≤
f(x↓D\{x}, 1), for all x ∈ {0, 1}D. Therefore,

(¬f)(x↓D\{x}, 0) = 1 − f(x↓D\{x}, 0) ≥ 1 − f(x↓D\{x}, 1) = (¬f)(x↓D\{x}, 1).

This shows that ¬f is negative in x. The proof for the other case is similar.

6.1 Complexity Considerations of the De Morgan Semantics 141

Note that Lemma 6.5 holds because logical negation ¬ reverses the order, i.e.,
for a, b ∈ {0, 1}, we have a ≤ b if and only if ¬a ≥ ¬b.

Corollary 6.6 The Boolean functions that are monotone in a variable are closed
under negation.

This is crucial in Section 6.1.4, where we generalize this result from Boolean func-
tions to De Morgan valuations. This extension mimics the extension of the propo-
sitional semantics to the De Morgan semantics, see Section 3.2.

From Lemmas 6.3 and 6.5, we deduce the following result.

Corollary 6.7 If f and g are two Boolean functions, such that f is positive (resp.
negative) in a variable x and g is negative (resp. positive) in x, then the Boolean
function f ∧ ¬g is positive (resp. negative) in x.

6.1.2 Expressiveness of Propositional ADTerms

In order to compare the propositional attack–defense trees with the propositional
attack trees, we start by analyzing the language of propositional attack terms. At-
tack terms constitute formal representations of attack trees. As in Section 3.5.2,
let XG = {xb | b ∈ Bp} be the set of propositional variables that, in the propo-
sitional semantics, correspond to the basic actions of the proponent. Recall from
Definition 3.7 that the propositional variables xb represent the Boolean indica-
tor functions fb. Using this notation, every propositional attack term is a formula
generated by the following grammar AT , using the start symbol P :

P : XG | P ∨ P | P ∧ P. (AT)

The following theorem characterizes propositional attack terms using Boolean func-
tions.

Theorem 6.8 Boolean functions represented by propositional attack terms are
positive.

Proof. Consider the grammar AT . The Boolean function represented by xb ∈ XG

is positive. The positivity of the Boolean functions represented by P ∨P and P ∧P
is a direct consequence of Lemma 6.3.

Since all positive Boolean functions have at least one positive disjunctive normal
form [CH11], it is easy to see that for all positive Boolean functions except the
tautology there exists a corresponding propositional attack term.

In order to characterize the language of propositional ADTerms, we extend the
grammar AT to the grammar ADT . We have already seen in Theorem 3.34
that ADT generates all propositional ADTerms. We let Y G = {xb | b ∈ Bo}
be the set of propositional variables that, in the propositional semantics, corre-
spond to the basic actions of the opponent. Using the start symbols P and N and
the production rules

P : XG | P ∨ P | P ∧ P | P ∧ ¬N

N : Y G | N ∨N | N ∧N | N ∧ ¬P,
(ADT)

142 Chapter 6 Formal Applications of ADTrees

we obtain the two grammars ADT P and ADT N , respectively. We define ADT =
ADT P ∪ ADT N . Like before, the terminal symbols from XG and Y G could also
be seen as the Boolean indicator function fb.

In order to prove Theorem 6.10, we use the following Lemma.

Lemma 6.9 Consider the grammar ADT . Every Boolean function represented by
a formula of the form P (resp. N) is

• positive (resp. negative) in every variable xb, for b ∈ Bp,

• negative (resp. positive) in every variable xb, for b ∈ Bo.

Proof. We provide a proof for the cases of P and N , simultaneously. We reason by
induction over the length of the constructed expression. If ψ = xp ∈ Bp, then the
Boolean function generated from the start symbol P is positive in xp. According to
our convention, P is also positive in every other variable in Bp as well as negative
in every xb ∈ Bo. Following a similar reasoning, if φ = xo ∈ Bp, then the Boolean
function generated from the start symbol N is negative in xo.

Now, consider a formula ψ which is not a single variable and assume that the
lemma holds for all formulas derivable from P or N with shorter derivation. If ψ is
of the form P ∨ P or P ∧ P , the result follows from Lemma 6.3 and the induction
hypothesis. Similarly, if φ is of the form N ∨N or N ∧N , the result follows from
Lemma 6.3 and the induction hypothesis. If ψ is of the form P ∧ ¬N , the result
follows from Corollary 6.7 and the induction hypothesis for N . Similarly, if φ is of
the form N ∧ ¬P .

The following theorem characterizes propositional ADTerms using Boolean func-
tions.

Theorem 6.10 Boolean functions represented by propositional ADTerms are in
every variable either positive or negative.

Proof. Since the sets Bp and Bo are disjoint, we can conclude that every formula
generated by ADT represents a Boolean function that is monotone in every vari-
able. This concludes the proof.

Note that the assumption that Bp and Bo are disjoint is crucial. Without this
assumption, Lemma 6.9 would not hold, as shown in Example 6.4. The converse of
the theorem does not hold since, for example, ADTerms cannot represent constant
functions.

6.1.3 From Propositional ADTerms to Propositional Attack Terms

Since every attack term is also an ADTerm, it is obvious that all Boolean func-
tions represented by propositional attack terms can be represented by propositional
ADTerms. In this section, we show that the converse holds as well.

6.1 Complexity Considerations of the De Morgan Semantics 143

Theorem 6.11 Let f be a Boolean function with domain D and let x ∈ D. We
define a Boolean function g with the same domain, as follows

g(x, 0) = f(x, 1) and g(x, 1) = f(x, 0),

for all x ∈ {0, 1}D\{x}. The function g is positive (resp. negative) in x if and only
if the function f is negative (resp. positive) in x.

Proof. If f is positive in x ∈ D, then, for all x ∈ {0, 1}D\{x}, we have g(x, 1) =
f(x, 0) ≤ f(x, 1) = g(x, 0), i.e., g is negative in x. The other case is similar.

Note that the functions f and g in Theorem 6.11 are not equivalent in the sense of
Definition 3.10, but there is a one-to-one correspondence between their satisfying
assignments, i.e., between the elements of the sets of f−1({1}) and g−1({1}).

It follows from Theorem 6.11 that every Boolean function that is in every variable
either positive or negative can always be transformed to a positive form. Moreover,
Lemma 6.9 guarantees that such a transformation is linear in the size of the func-
tion’s domain. Consequently, whenever we want to reason about a propositional
ADTerm, we can analyze a positive Boolean function instead of a monotone one.
Hence, the following result holds.

Corollary 6.12 Propositional ADTerms represent positive Boolean functions.

This proves that the language of propositional ADTerms and the language of propo-
sitional attack terms both represent positive Boolean functions. Practical conse-
quences of this fact are discussed in Section 6.1.5.

6.1.4 Generalization to De Morgan ADTerms

An important feature of ADTerms is that they can be equipped with different
semantics. The previous results focus on the propositional semantics, where basic
actions are allowed to take propositional values and ADTerms over the set of
variables D represent Boolean functions of the form {0, 1}D → {0, 1}. In this
section we show that the transformation from ADTerms to attack terms, presented
in Section 6.1.3 for the propositional semantics, also applies to all semantics induced
by a De Morgan lattice. To distinguish between positive, negative and monotone
functions of the form {0, 1}D → A, over a De Morgan lattice 〈A,+,×,¬〉, the set A
must exhibit a partial order that behaves monotonically under the operations +
and ×. Recall the monotonic partial order � defined on De Morgan lattices given
in Equivalence (3.1): for all a, b ∈ A it holds that a � b if and only if a+ b = b.

To validate Lemma 6.5 for the De Morgan semantics, we show that in De Morgan
lattices the order � is indeed reversed under negation.

Lemma 6.13 In a De Morgan lattice we have a � b if and only if ¬b � ¬a.

Proof. Assume that a � b, i.e., a + b = b. It follows from the definition of a De
Morgan lattice that ¬b = ¬(a + b) = (¬a) × (¬b). Moreover, in every lattice we
have b = a × b if and only if a = a + b, see [DP90]. Therefore, we conclude
that ¬b = (¬a) × (¬b) if and only if ¬a = (¬a) + (¬b). This proves that a � b

144 Chapter 6 Formal Applications of ADTrees

implies ¬b � ¬a. Conversely, assume ¬b � ¬a. From the first part of this proof we
know that ¬b � ¬a implies ¬(¬a) � ¬(¬b) and, therefore, we have a � b.

Consider a De Morgan lattice 〈A,+,×,¬〉, two finite sets D,U ⊆ R of variables
and two De Morgan valuations f : {0, 1}D → A and g : {0, 1}U → A as defined in
Definition 3.16. Recall from Definition 3.2 that two De Morgan valuations f and g
are said to be equivalent if and only if for every x ∈ {0, 1}D∪U we have f(x↓D) =
g(x↓U).

We define positive, negative and monotone De Morgan valuations by modifying
Definition 6.1 in the obvious way: In the definition we replace Boolean functions
by De Morgan valuations and the order ≤ by �.

Then, Corollary 6.7 and Theorem 6.11 still hold if Boolean functions are replaced
by De Morgan valuations. This means that the transformation of propositional
ADTerms to propositional attack terms, described in Section 6.1.3 actually holds
for De Morgan ADTerms. In other words, we can apply Theorem 6.11 and reduce
De Morgan ADTerms to De Morgan attack terms. We summarize by generalizing
Corollary 6.12:

Theorem 6.14 De Morgan ADTerms represent positive De Morgan valuations.

6.1.5 Consequences for Complexity Considerations

The results in Sections 6.1.3 and 6.1.4 help us to compare attack trees and ADTrees
on a computational level. We formally proved that, under a semantics induced by
a De Morgan lattice, both models represent positive valuations. Since they can be
transformed into each other, they exhibit the same complexity on computational
tasks. This has several consequences.

First, ADTrees extend attack trees to a richer model without increasing the com-
putational complexity, provided that their semantics is induced by a De Morgan
lattice.

This result can be applied, for instance, to query evaluation on ADTerms. A query
on ADTerms is a function Q̃ : TΣ → A which assigns to every ADTerm t an
element Q̃(t) ∈ A called the answer for Q̃ on t.

Example 6.15 Consider the function Q̃sat, which assigns true to an ADTerm t if
the corresponding Boolean function modeled by the satisfiability attribute admits
at least one satisfying assignment and otherwise false. In other words, Q̃sat(t)
is true if there exists a configuration x, such that f(x) = 1. Otherwise it is false.
The function Q̃sat is an example of a query on ADTerms which is derived from the
satisfiability attribute sat.

Second, when a semantics induced by a De Morgan lattice is used, the complexity
of query evaluation on ADTerms is the same as the corresponding complexity on
attack terms.

This means, when a semantics induced by a De Morgan lattice is used, a query
can efficiently be solved on ADTerms if and only if it can efficiently be solved on

6.2 ADTrees and Dependent Nodes 145

attack terms. For example, when the propositional semantics is used, satisfiability
checks on ADTerms can be performed in constant time because all positive Boolean
functions are satisfiable.

Theorem 6.11 and subsequent considerations in Section 6.1.4 show that, for a
large class of semantics, we can effectively transform ADTerms to attack terms.
Therefore, we obtain the following implication.

When using a semantics induced by a De Morgan lattice, ADTerms can always be
processed by algorithms developed for attack terms.

Finally, knowing that not all Boolean functions are positive and taking into account
Corollary 6.12, we deduce that there exist Boolean functions which cannot be
represented by any propositional ADTerm.

The propositional language defined by propositional ADTerms is a proper subset
of the positive Boolean functions since there is no ADTerm corresponding to the
tautology.

6.2 ADTrees and Dependent Nodes

In this section, we develop means to combine the ADTree methodology with
Bayesian networks in order to evaluate probabilistic measures on attack–defense
scenarios involving dependent actions. In our approach, the Bayesian network does
not replace the information represented by the structure of an ADTree, but com-
plements it with additional probabilistic dependencies between attack steps, which
cannot be depicted using AND-OR relations. Hence, we keep both models sepa-
rated, which allows us to reuse existing expertise and previous models.

To combine the two methodologies, we proceed as follows. In Section 6.2.1, we
introduce an example showing consequences of dropping the assumption that all
actions in a model occur independently. We then introduce Bayesian networks and
Bayesian networks for ADTrees with the help of this example, in Section 6.2.2,
before we explain how to compute probabilities of dependently occurring actions on
Bayesian networks for ADTrees, in Section 6.2.3. The following Sections 6.2.4–6.2.7
explain how to speed up the calculation of the probabilities in practice. We conclude
the treatment of Bayesian networks for ADTrees by extending the framework to
dependent success probabilities, in Section 6.2.8.

6.2.1 Computation of Independently Occurring Actions

In this section, we provide an example that is well-suited to illustrate how addi-
tional dependencies can be incorporated into the ADTree framework.

Example 6.16 In order to infect a computer with a virus, the attacker needs
to ensure that the virus file is accessible from the targeted computer and that a
user of the computer executes the file. There are two possibilities to make the file
accessible. An attacker can send the virus in an email attachment or distribute
a USB stick to the computer user. The computer user, on his part, can protect
himself against a virus with an anti-virus program (AV). For the AV to be effective,
it needs to be installed and it needs to be running. A resourceful attacker, in turn,

146 Chapter 6 Formal Applications of ADTrees

Infect
Computer

Put
Virus File

on
System

Send
Email
with

Attach-
ment

Distribute
USB Stick Have AV

Install AV Run AV

Fake AV

Execute
File

Figure 6.1: An ADTree for infecting a computer and protecting against infection
using an anti-virus program (AV).

could attack the AV by distributing a fake version of an AV that only pretends
to be running. The described attack–defense scenario is depicted in Figure 6.1.
For this tree, the attacker is the proponent and the defender is the opponent. In
the ADTree, the proponent is the attacker and his basic actions are EA (“Send
Email with Attachment”), DU (“Distribute USB Stick”), FA (“Fake AV”) and EF
(“Execute File”). Consequently, the opponent is the defender and his basic actions
are IA (“Install AV”) and RA (“Run AV”). The ADTerm corresponding to the
ADTree from Figure 6.1 is given by

t = ∧p(cp(∨p(EA,DU),∧o(IA, co(RA,FA))),EF). (6.1)

We recall the use of the propositional semantics that makes use of Boolean func-
tions, as defined in Section 3.1. Following Remark 3.22, we apply Definition 3.20
to construct the propositional ADTerm associated to t in the form of Boolean
functions.

Example 6.17 We continue Example 6.16 by constructing the propositional AD-
Term for the ADTree given by Equation 6.1. First, we create the propositional
variables xEA, xDU, xIA, xRA, xFA and xEF for the basic actions in t. We then con-
struct a Boolean function fb : {0, 1}{xb} → {0, 1} with fb(xb = v) = v, for v ∈ {0, 1}
and b ∈ {EA,DU, IA,RA,FA,EF}. Since all of these Boolean functions are, in fact,
indicator functions, we abuse notation and write xb instead of fb. This allows us

6.2 ADTrees and Dependent Nodes 147

to express the ADTerm t in the propositional semantics as Boolean function:

tP = ft ≡ ((xEA ∨ xDU) ∧ ¬(xIA ∧ (xRA ∧ ¬xFA))) ∧ xEF. (6.2)

Remark 6.18 The attack–defense scenario described in the previous example is
used as the running example throughout this section. Since the root of the AD-
Tree in Figure 6.1 represents an attack goal (infecting a computer), this section is
concerned with attacks on a system. In the case of an ADTree having a defensive
root node, we would talk about defenses for a system.

To be able to compare ADTrees with Bayesian networks for ADTrees in Sec-
tion 6.2.7, we illustrate the standard bottom-up algorithm on the attribute domain
that models the probability of occurrence, which uses the same operators as the
probability of success already discussed in Section 4.4.3. We use the attribute
domain:

Aocc = ([0, 1],+O,×O,+O,×O, ⋆O, ⋆O),

where +O and ×O denote probabilistic addition and multiplication of independent
events and ⋆O denotes the probabilistic complement. Note that this attribute domain
is used to compute the probability of occurrence, assuming that all actions are
independently executed.

Example 6.19 Let t be as in Equation 6.1 and let us assume the basic assignment
satisfies the following:

βocc(EF) = 0.393, βocc(DU) = 0.35, βocc(FA) = 0.3,

βocc(EA) = 0.48, βocc(RA) = 0.54, βocc(IA) = 0.6.

Then αocc(t) is computed as follows:

αocc(t) = αocc(∧p(cp(∨p(EA,DU),∧o(IA, co(RA,FA))),EF))

= ×O(⋆O(+O(βocc(EA), βocc(DU)),×O(βocc(IA), ⋆O(βocc(RA), βocc(FA)))),

βocc(EF))

= ×O(⋆O(0.48 + 0.35 − 0.48 · 0.35,×O(0.6, (0.54 · (1 − 0.3)))), 0.393)

= ×O(⋆O(0.662, (0.6 · 0.378)), 0.393)

= ×O(0.662 · (1 − 0.2268), 0.393)

≈ 0.5119 · 0.393 ≈ 0.2012.

Hence, the probability that this attack occurs is roughly 20 % assuming that all
actions are independent.

Usually, the assumption that all actions occur independently, does not hold for
real scenarios. In our example, for instance, the probability that the defender ac-
tually runs the AV if it is installed, is high. The probability is zero, if the AV is
not installed. Unfortunately the simplistic bottom-up procedure used to compute
attributes on ADTerms is not suited to handle dependencies between the involved
basic actions. It is used to determine the values of the remaining nodes as a func-
tion of the values of their children. In the procedure, the value of a refined or
countered node only depends on the values of its children and not on their mean-
ing. Therefore, the bottom-up procedure cannot take dependencies between actions

148 Chapter 6 Formal Applications of ADTrees

into account. If we, nevertheless, want to be able to deal with dependent actions,
we need to choose a different strategy. We opted to combine the ADTree methodol-
ogy with Bayesian networks, which are a standard formalism used when reasoning
about dependent actions. In the following sections we first drop the assumption
that the occurrence of actions is independent. Then we drop the assumption that
every action that occurs is always successful. Before, we describe our framework in
the next section, we need to introduce some terminology.

Given an ADTerm t, we denote by var(t) the set of propositional variables corre-
sponding to the basic actions involved in t. A configuration x ∈ {0, 1}var(t) (Defi-
nition 3.6) represents which actions are executed (the corresponding variables are
set to 1) and which are not (the corresponding variables are set to 0). Following
our terminological convention from Remark 6.18, we say that x is an attack with
respect to t if ft(x) = 1. This allows us to express the partitions of the proposi-
tional semantics in the following way: The ADTerms t and t′ belong to the same
equivalence class if for all x ∈ {0, 1}R it holds that the configuration x↓var(t) is an
attack with respect to t if and only if the configuration x↓var(t′) is an attack with
respect to t′. When talking about the set of all possible attacks with respect to an
ADTerm t, we speak of an attack suite for the system.

6.2.2 Bayesian Networks for ADTerms

A Bayesian network [Pea88] is a graphical representation of a joint probability
distribution of a finite set of variables with finite domains. The network itself is
a directed, acyclic graph that reflects the conditional interdependencies between
variables associated with nodes of the network. A directed edge from the node
associated with the variable x1 to the node associated with the variable x2 means
that x2 conditionally depends on x1. Each node contains a conditional probability
table that quantifies the influence between the variables. The joint probability
distribution p of a Bayesian network over {x1, . . . , xn} is given by

p(x1, . . . , xn) =
n∏

i=1

p(xi | par(xi)),

where par(xi) denotes the parents of xi in the network, defined as all nodes that
have an outgoing edge that points into xi. If the set par(xi) is empty, the conditional
probability becomes an ordinary probability distribution and the operation that
computes the joint probability distribution turns into a simple multiplication. This
holds, in particular, for nodes (or subgraphs) of the Bayesian network that are
unconnected since they represent stochastically (sets of) variables.

Example 6.20 A Bayesian network describing causal dependencies that may occur
when an attacker tries to infect a computer with a virus is illustrated in Figure 6.2.
We are assuming the following causal dependencies. If an attacker has managed to
distribute a fake version of an AV, he is also more likely to send a virus in an email
attachment or distribute the virus on USB sticks than if he has not distributed a
fake AV. Furthermore, we assume that a user who has received an infected email
attachment or a USB stick is more likely to execute the virus. However, if he
has not received the virus via these two channels, he might still obtain the virus

6.2 ADTrees and Dependent Nodes 149

Send
Email
with

Attach-
ment

Fake AV

Distribute
USB Stick

Execute
File

Figure 6.2: The Bayesian network BNt associated with the ADTerm t from Equa-
tion (6.1).

by different means. The conditional probability tables expressing the probability
whether certain actions occur (xb = 1) or not (xb = 0), are given in the following.

p(xEF = 1 | xEA = 1, xDU = 1) = 0.9
p(xEF = 1 | xEA = 1, xDU = 0) = 0.2
p(xEF = 1 | xEA = 0, xDU = 1) = 0.8
p(xEF = 1 | xEA = 0, xDU = 0) = 0.1

p(xEF = 1) = 0.393

p(xDU = 1 | xFA = 1) = 0.7
p(xDU = 1 | xFA = 0) = 0.2

p(xDU = 1) = 0.35

p(xEA = 1 | xFA = 1) = 0.9
p(xEA = 1 | xFA = 0) = 0.3

p(xEA = 1) = 0.48p(xFA = 1) = 0.3

The corresponding joint probability distribution is given by

p(xEF, xEA, xDU, xFA) = p(xEF | xEA, xDU)·p(xEA | xFA)·p(xDU | xFA)·p(xFA). (6.3)

In the next section, we develop a framework for computing the probability of
occurrence of attacking a system, which makes use of Bayesian networks. In
order to use this framework, we first show how to construct a Bayesian network
associated with an ADTerm.

Let t be an ADTerm. A Bayesian network associated with t, denoted by BNt, is a
Bayesian network, i.e., a directed acyclic graph, over the set of propositional vari-
ables var(t), such that there exists a directed edge from xb1 ∈ var(t) to xb2 ∈ var(t)
if and only if the action b2 depends on the action b1. Recall that in the ADTree
methodology, refined nodes do not contain any additional information, other than
how the information presented by their children is composed (conjunctively or dis-
junctively). This means that the refined nodes do not represent any additional
actions. This is why, when constructing a Bayesian network for an ADTerm, we
take only basic actions into account. The construction is illustrated in the next
example.

Example 6.21 The ADTree corresponding to the ADTerm t from Equation (6.1)
and the associated Bayesian network BNt are illustrated in Figure 6.3. The con-
ditional probability tables expressing the probability whether the actions occur
(xb = 1) or not (xb = 0), for the attacker are given in Example 6.20. For the basic
actions of the defender they are given in the following.

150 Chapter 6 Formal Applications of ADTrees

Infect
Computer

Virus File
on

System

Send
Email
with

Attach-
ment

Distribute
USB Stick Have AV

Install AV Run AV

Fake AV

Execute
File

=⇒

Send
Email
with

Attach-
ment

Distribute
USB Stick

Install AV Run AV

Fake AV

Execute
File

Figure 6.3: Left: An ADTree for infecting a computer corresponding to the AD-
Term t from Equation (6.2). Right: A Bayesian network BNt associated with t.

p(xRA = 1 | xIA = 1) = 0.9
p(xRA = 1 | xIA = 0) = 0.0

p(xRA = 1) = 0.54

p(xIA = 1) = 0.6

The joint probability distributions for the defender is given by

p(xRA, xIA) = p(xRA | xIA) · p(xIA). (6.4)

The ADTree methodology assumes that the defender does not know which actions
the attacker will actually execute and the attacker does not know which counter-
measures the defender will put in place. Thus, execution of actions by the two
players is considered to be independent. Hence, also the variables associated with
basic actions of the attacker and those associated with basic actions of the defender
are stochastically independent. This implies that the joint probability distribution
for BNt is obtained by multiplying Equations (6.3) and (6.4) to yield:

p(xEF, xEA, xDU, xFA, xRA, xIA) = p(xEF | xEA, xDU)·

p(xEA | xFA) · p(xDU | xFA) · p(xFA) · p(xRA | xIA) · p(xIA). (6.5)

Let us assume that we are interested in the scenario that the attacker will attempt
to install the virus file on the system by sending an email with attachment (xEA = 1
and xDU = 0), will execute the virus (xEF = 1) and install a fake AV program
(xFA = 1) while the defender will install and run a real AV (xIA = 1 and xRA =
1). By instantiating Equation (6.5) appropriately, we obtain the probability of
occurrence of one specific situation (attack or defense) with respect to t as:

6.2 ADTrees and Dependent Nodes 151

p(xEF = 1, xEA = 1, xDU = 0, xFA = 1, xRA = 1, xIA = 1)

= p(xEF = 1 | xEA = 1, xDU = 0) · p(xEA = 1 | xFA = 1) · p(xDU = 0 | xFA = 1)

· p(xFA = 1) · p(xRA = 1 | xIA = 1) · p(xIA = 1)

= 0.2 · 0.9 · (1 − 0.7) · 0.3 · 0.9 · 0.6 = 0.008748.

Naturally, the computed probability is not comparable to the probability computed
in Example 6.19. This is caused by the fact that we are only examining one given
situation which might not even lead to an attack and not all possible attacks, i.e.,
the attack suite.

From the example we can nevertheless draw the following conclusion.

Remark 6.22 Every Bayesian network associated with an ADTerm has at least two
disjoint connected components.

6.2.3 Computing Probabilities of Attacks Using Bayesian Network

In this section, we present our framework for probability computations on an AD-
Term t, taking the dependencies between the involved actions into account. Our
computation makes use of the Boolean function ft and the Bayesian network BNt.

Given a configuration x ∈ {0, 1}var(t), we define:

ψt(x) = ft(x) · p(x), (6.6)

where p is the joint probability distribution of BNt. If the configuration x is an
attack with respect to t, then ft(x) = 1 and ψt(x) returns the probability value
for x from the Bayesian network, representing the probability that the attack x
is attempted. Contrarily, if x is not an attack with respect to t, ft(x) = 0 and
thus ψt(x) = 0. Note that ψt can, therefore, be seen as an unnormalized proba-
bility distribution. For an attack x, Equation (6.6) still yields the same value as
in Example 6.21. If x, however, is not an attack, Equation (6.6) always yields 0,
while p(x) does not.

Sometimes, we might not be interested in calculating the probability of occur-
rence of a specific attack, but more generally in the probability of the set of all
attacks. This represents the probability that the system is being attacked according
to the ADTerm t, similarly to the subject matter of Example 6.19. This corresponds
to the sum of the probabilities of all possible attacks with respect to t. Since the
value for configurations that do not yield an attack is 0, this is the same as the
sum over all configurations. We thus have

P(t) =
∑

x∈{0,1}var(t)

ψt(x)
(6.6)
=

∑

x∈{0,1}var(t)

ft(x) · p(x). (6.7)

We refer to the value P(t) as the probability of occurrence of the attack suite
related to the ADTerm t, i.e., the occurrence of any attack. It is this value that
we compare with the probability of occurrence computed for ADTrees in Sec-
tion 6.2.1. Finally, to get the probability of the most probable attack with respect

152 Chapter 6 Formal Applications of ADTrees

to the term t, we must compute

Pmax(t) = max
x∈{0,1}var(t)

ψt(x)
(6.6)
= max

x∈{0,1}var(t)
ft(x) · p(x). (6.8)

The previous formula computes a value but it is not returning the corresponding
configuration. In Section 6.2.6, we discuss how to make use of the fusion algorithm
to obtain both the probability value and the corresponding configuration.

Example 6.23 We continue Examples 6.20 and 6.21, depicted in Figure 6.3, using
the previously used conditional probability tables. To compute the probability
of occurrence of the attack suite, we need to deduce all possible situations that
yield an attack. For the scenario there exist 21 situations that lead to attacks. They
are listed in Table 6.1. In Example 6.21, we have illustrated how to compute the
probability that corresponds to Line 8 of Table 6.1.

xEA xDU xEF xIA xRA xFA p(x)
1 1 1 1 1 1 1 0.091854
2 1 1 1 1 0 1 0.010206
3 1 1 1 1 0 0 0.002268
4 1 1 1 0 1 1 0
5 1 1 1 0 1 0 0
6 1 1 1 0 0 1 0.06804
7 1 1 1 0 0 0 0.01512
8 1 0 1 1 1 1 0.008748
9 1 0 1 1 0 1 0.000972

10 1 0 1 1 0 0 0.002016
11 1 0 1 0 1 1 0
12 1 0 1 0 1 0 0
13 1 0 1 0 0 1 0.00648
14 1 0 1 0 0 0 0.01344
15 0 1 1 1 1 1 0.009072
16 0 1 1 1 0 1 0.001008
17 0 1 1 1 0 0 0.004704
18 0 1 1 0 1 1 0
19 0 1 1 0 1 0 0
20 0 1 1 0 0 1 0.00672
21 0 1 1 0 0 0 0.03136

Table 6.1: All 21 configurations that lead to an attack for the scenario depicted in
Figure 6.3 and their corresponding probabilities of occurrence.

The probability of occurrence of the attack suite is then obtained by summing
up over the probability values. We obtain P(t) = 0.272008. Since the marginalized
probabilities are the same as the probabilities in Example 6.19, it is reasonable to
compare the two results. We observe that taking the conditions between the basic
actions into account, the probability actually increases from roughly 20 % to 27 %.

The complexity of this computation grows exponentially with the number of in-
volved basic actions. Without prior elimination of the configurations that do not

6.2 ADTrees and Dependent Nodes 153

yield attacks, there are 2Number of basic actions = 26 = 64 possibles configurations to
consider. For large systems, it is therefore not feasible to explicitly enumerate or
store all values of the Boolean function and the joint probability distribution asso-
ciated with an ADTerm. In Section 6.2.4, a factorized representation for Boolean
functions is introduced. This allows us to increase the efficiency of the computation
of Equations (6.7) and (6.8).

An important aspect of the ADTree methodology is to use an appropriate com-
putational procedure in combination with an appropriate semantics, in order to
guarantee compatibility, as we discussed in Section 4.3. We conclude this section
by making a link to the compatibility notion and show that the framework proposed
in this section is a sound extension of the ADTree methodology.

Definition 6.24 (Compatible computational procedure for ADTerms) We say
that a computational procedure for ADTerms is compatible with a semantics for
ADTerms, if and only if, computations performed on equivalent ADTerms result
in the same numerical value.

The following theorem shows under which condition the computational framework
developed in this chapter is compatible with the propositional semantics.

Theorem 6.25 Let t and t′ be two ADTerms and BNt and BNt′ be the corre-
sponding Bayesian networks with the joint probability distributions p and p′, respec-
tively. If t and t′ are equivalent in the propositional semantics and the marginalized
probability distributions over the set of common variables of p and p′ are equal,
then P(t) = P(t′).

Proof. First, the condition that the marginalized probability distributions over
the set of common variables of p and p′ are equal translates into the following
condition: ∀z ∈ {0, 1}var(t)∩var(t′) it holds that

∑

u∈var(t)\(var(t)∩var(t′))

p(z,u) =
∑

u′∈var(t′)\(var(t)∩var(t′))

p′(z,u′). (6.9)

Since ft ≡ ft′ , we know that variables from var(t) \ (var(t) ∩ var(t′)) do not
influence the value of ft. Thus, for every z ∈ {0, 1}var(t)∩var(t′) and every u ∈
{0, 1}var(t)\(var(t)∩var(t′)), we have ft(z,u) = ft(z, 0), where 0 is the configuration
assigning 0 to every variable from its domain. A similar property holds for ft′

and we have ft(z, 0) = ft′(z, 0), for all z ∈ {0, 1}var(t)∩var(t′). The domains of the
two configurations 0 in the preceding equation have been omitted for the sake of
readability.

154 Chapter 6 Formal Applications of ADTrees

We obtain,

P(t)
(6.7)
=

∑

x∈{0,1}var(t)

(
ft(x) · p(x)

)

=
∑

z∈{0,1}var(t)∩var(t′)

∑

u∈{0,1}var(t)\(var(t)∩var(t′))

(
ft(z,u) · p(z,u)

)

=
∑

z∈{0,1}var(t)∩var(t′)

(
ft(z, 0) ·

∑

u∈{0,1}var(t)\(var(t)∩var(t′))

p(z,u)
)

ft≡ft′ ,(6.9)
=

∑

z∈{0,1}var(t)∩var(t′)

(
ft′(z, 0) ·

∑

u′∈{0,1}var(t′)\(var(t)∩var(t′))

p′(z,u′)
)

=
∑

z∈{0,1}var(t)∩var(t′)

∑

u′∈{0,1}var(t′)\(var(t)∩var(t′))

(
ft′(z,u′) · p′(z,u′)

)

=
∑

x∈{0,1}var(t′)

(
ft′(x) · p′(x)

)
(6.7)
= P(t′),

where the second equality follows from the fact that (var(t) ∩ var(t′)) and (var(t) \
(var(t) ∩ var(t′))) are disjoint sets, the sixth equality from that fact that (var(t) ∩
var(t′)) and (var(t′) \ (var(t) ∩ var(t′))) are disjoint sets.

The previous theorem implies that the probability related to an ADTerm t is the
same for all ADTerms equivalent to t in the propositional semantics. This means
that the choice of the representative of the equivalence class is not relevant for
probability computations. This is of great value for efficiency considerations, as
it allows us to choose the Boolean function we work with. For instance, when
evaluating probabilities for the ADTerm b∧p (c∨p b), instead of using f(xb1 , xb2) =
xb1 ·max{xb2 , xb1}, we can employ f ′(xb1) = xb1 because the ADTerms b1∧p(b2∨pb1)
and b1 are equivalent in the propositional semantics. Since f ′ has a smaller domain
than f , using f ′ is more efficient.

6.2.4 ADTerms as Constraint Systems

In this section, we employ an encoding technique from constraint reasoning and
transform an ADTerm t into its factorized indicator function φt. Such a function
maps to 1 if and only if it represents a valid assignment with respect to the Boolean
function ft. The use of factorized indicator functions allows us to improve the
efficiency of computations proposed in the previous section.

In order to obtain a factorization of the global indicator function for the Boolean
function interpreting an ADTerm in the propositional semantics, we first show
how to construct local indicators for ADTerms. Local indicators make use of addi-
tional variables, called inner variables, to represent composed subterms. They are
constructed as follows:

1. If t = ∨s(t1, . . . , tk), then the propositional variables y, y1, . . . , yk are associ-
ated with t, t1, . . . , tk, respectively, and the local indicator function for t is

6.2 ADTrees and Dependent Nodes 155

defined as:

φ(y, y1, . . . , yk) =

1 if y = max{y1, . . . , yk};

0 otherwise.

2. If t = ∧s(t1, . . . , tk), then the propositional variables y, y1, . . . , yk are associ-
ated with t, t1, . . . , tk, respectively, and the local indicator function for t is
defined as:

φ(y, y1, . . . , yk) =

1 if y = y1 · . . . · yk(= min{y1, . . . , yk});

0 otherwise.

3. If t = cs(t1, t2), then the propositional variables y, y1 and y2 are associated
with t, t1 and t2 respectively, and the local indicator function for t is defined
as:

φ(y, y1, y2) =

1 if y = y1 · (1 − y2)(= min{y1, 1 − y2});

0 otherwise.

Example 6.26 A step-wise construction of the local indicator functions for the
ADTerm t given in Example 6.16 proceeds as follows:

t = ∧p(cp(∨p(EA,DU)︸ ︷︷ ︸
y1

,∧o(IA, co(RA,FA)︸ ︷︷ ︸
y2

)

︸ ︷︷ ︸
y3

)

︸ ︷︷ ︸
y4

,EF)

︸ ︷︷ ︸
yt

.

We define:

t1 = ∨p(EA,DU), thus φ1(y1, xEA, xDU) = 1 exactly if y1 = max(xEA, xDU).

t2 = co(RA,FA), thus φ2(y2, xRA, xFA) = 1 exactly if y2 = xRA · (1 − xFA).

t3 = ∧o(IA, y2), thus φ3(y3, xIA, y2) = 1 exactly if y3 = xIA · y2.

t4 = cp(y1, y3), thus φ4(y4, y1, y3) = 1 exactly if y4 = y1 · (1 − y3).

t5 = ∧p(y4,EF), thus φ5(yt, y4, xEF) = 1 exactly if yt = y4 · xEF.

In this case, the inner variables are y1, y2, y3, y4 and yt. We illustrate the meaning
of an indicator for an ADTerm using the function φ2 corresponding to the sub-
term co(RA,FA). The defense represented by this subterm only works (y2 = 1)
if an AV is running (xRA = 1) and there is no fake AV installed on the com-
puter (xFA = 0). The configuration z = (y2 = 1, xRA = 1, xFA = 0) is, there-
fore, logically admissible and thus φ2(z) = 1. The same holds for the config-
uration z′ = (y2 = 0, xRA = 1, xFA = 1), which represents that the defense
does not work (y2 = 0) when the AV is running (xRA = 1) but there is a fake
AV installed (xFA = 1). Thus we also have φ2(z′) = 1. However, the configura-
tion z′′ = (y2 = 1, xRA = 1, xFA = 1) corresponds to the case when the defense is
working (y2 = 1) while the AV is running (xRA = 1) and a fake AV is installed
(xFA = 1). Since the configuration z′′ is logically inadmissible, we have φ2(z′′) = 0.

156 Chapter 6 Formal Applications of ADTrees

Having constructed all local indicators for t, we can build the global indicator
function φt. The domain of φt contains all variables used by the local indicator
functions associated to the subterms of t, i.e., the inner variables and the variables
corresponding to the basic actions of t. An assignment over all variables is valid
if and only if each local assignment is valid. Hence, we may compute the global
indicator function for an ADTerm t by multiplying all its local indicators. We use
the following notation: Given the global indicator function φt for t, we denote by yt

the inner variable corresponding to the entire term t. The set of all inner variables
of φt is denoted by Dt.

Example 6.27 For the term discussed in Example 6.26, we obtain the following
global indicator function:

φt(y1, y2, y3, y4, yt, xEA, xDU, xRA, xFA, xIA, xEF) = φ1(y1, xEA, xDU)·

φ2(y2, xRA, xFA) · φ3(y3, xIA, y2) · φ4(y4, y1, y3) · φ5(yt, y4, xEF). (6.10)

Remark 6.28 The local and global indicator functions are Boolean functions. Fur-
thermore, the construction of the indicators implies that, if t and t′ are two AD-
Terms equivalent in the propositional semantics, then φt ≡ φt′ .

In practice, the global indicator function can still not be computed due to the
exponential growth of the number of inputs. However, its factorization, in terms
of local indicators which are bounded in size, introduces additional structure that
can be exploited for local computation [PK11]. In Section 6.2.6, we show that
meaningful computational tasks can be performed on the factorization. This implies
that the global indicator function does not need to be explicitly constructed.

The inner variables, such as y1, . . . , y4, yt in Example 6.26, are important for re-
vealing the factorization of the global indicator function, but they actually contain
only redundant information.

Theorem 6.29 Consider an ADTerm t consisting of the basic actions b1, . . . , bn

and the global indicator function φt. Given a specific configuration x of the vari-
ables xb1 , . . . , xbn

corresponding to basic actions, there is exactly one configuration y
of the inner variables from Dt, such that φt(y,x) = 1.

Proof. Consider an ADTerm t = ξs(t1, . . . , tk), for some t1, . . . , tk ∈ TΣ, ξ ∈
{c,∨,∧}, s ∈ S, k ∈ N+ and the corresponding indicator function φ(y, y1, . . . , yk).
Let z be a configuration of the variables y1, . . . , yk. There is, by definition, exactly
one value y ∈ {0, 1}, such that for every local indicator it holds that φ(y, z) = 1.
Since the global indicator function is obtained by multiplication, we may directly
conclude the theorem.

An immediate consequence of the previous theorem is that, for a specific configu-
ration x ∈ {0, 1}var(t) of the variables associated with basic actions, we have

max
y∈{0,1}Dt

φt(y,x) =
∑

y∈{0,1}Dt

φt(y,x) = 1. (6.11)

6.2 ADTrees and Dependent Nodes 157

6.2.5 Indicators for Probability Computation

We use the propositional interpretation for ADTerms in order to evaluate which
combinations of basic actions correspond to attacks. The global indicator func-
tion φt maps all valid configurations to 1, including those that do not correspond
to attacks. For instance, in the case of the function given by Equation (6.10), we
have φt(y1 = 1, y2 = 0, y3 = 0, y4 = 1, yt = 0, xEA = 1, xDU = 1, xRA = 1, xFA =
1, xIA = 1, xEF = 0) = 1. The considered configuration, although valid, does not
correspond to an infection of a computer because yt = 0. In general, when reason-
ing in terms of global indicator functions, we are only interested in configurations
where the variable yt equals 1. Therefore, we condition φt on yt = 1, which means
that we invalidate all configurations with yt = 0. This is achieved by defining a
filter Ft for the ADTerm t that satisfies Ft(yt) = 1 if and only if yt = 1. In other
words, Ft : {0, 1}{yt} → {0, 1} is the indicator function for the variable yt. Multi-
plying the filter Ft and the global indicator function φt results in a function which
maps to 1 if and only if the assignment of values for the variables represents an
attack with respect to the ADTerm t. For our running example, we obtain:

φt|yt=1(y1, y2, y3, y4, yt, xEA, xDU, xRA, xFA, xIA, xEF)

= Ft(yt) · φt(y1, y2, y3, y4, yt, xEA, xDU, xRA, xFA, xIA, xEF)

= Ft(yt) · φ1(y1, xEA, xDU) · φ2(y2, xRA, xFA) · φ3(y3, xIA, y2)·

φ4(y4, y1, y3) · φ5(yt, y4, xEF).

(6.12)

Remark 6.30 By construction, we know that, if t and t′ are two ADTerms that are
equivalent in the propositional semantics, then Ft and Ft′ are equivalent Boolean
functions. Thus, using Remark 6.28, we have φt|yt=1 ≡ φt′ |yt′=1.

We now make use of conditioning to express the probabilistic values we are inter-
ested in. Let t be an ADTerm, φt be its global indicator function and Ft be the filter
for t. Assume that we are given a specific configuration x ∈ {0, 1}var(t). The con-
figuration x is an attack with respect to t if and only if, there exists y ∈ {0, 1}Dt,
such that φt|yt=1(y,x) maps to 1. From Equation (6.11) it follows that

max
y∈{0,1}Dt

(
φt|yt=1(y,x)

)
=

∑

y∈{0,1}Dt

φt|yt=1(y,x) (6.13)

= ft(x) =

1 if x is an attack;

0 if x is not an attack.

Making use of the previous equation, the probability computation procedure de-
veloped in Section 6.2.3 can be redefined as follows.

Let t be an ADTerm and x ∈ {0, 1}var(t) be a configuration of the variables corre-
sponding to the basic actions involved in t. If x is an attack with respect to t, then
its probability of occurrence is computed as:

ψt(x)
(6.6)
= ft(x) · p(x)

(6.13), distrib.
=

∑

y∈{0,1}Dt

(
φt|yt=1(y,x) · p(x)

)
(6.14)

(6.13), distrib.
= max

y∈{0,1}Dt

(
φt|yt=1(y,x) · p(x)

)
.

158 Chapter 6 Formal Applications of ADTrees

The probability of occurrence of the attack suite related to the ADTerm t is
expressed as

P(t)
(6.7)
=

∑

x∈{0,1}var(t)

ψt(x)
(6.14)
=

∑

x∈{0,1}var(t)

∑

y∈{0,1}Dt

(
φt|yt=1(y,x) · p(x)

)

=
∑

z∈{0,1}var(t)∪Dt

(
φt|yt=1(z) · p(z↓var(t))

)
. (6.15)

Finally, it follows from Equation (6.14) that the probability of occurrence of
the most probable attack with respect to t is

Pmax(t)
(6.8)
= max

x∈{0,1}var(t)
ψt(x)

(6.14)
= max

z∈{0,1}var(t)∪Dt

(
φt|yt=1(z) · p(z↓var(t))

)
. (6.16)

Example 6.31 Let U be the set {y1, y2, y3, y4, yt, xEA, xDU, xRA, xFA, xIA, xEF} for
our running example. Then the probability of occurrence of the attack suite
related to the ADTerm t from Equation (6.1) gives

P(t)
(6.15),(6.12),(6.5)

=
∑

z∈{0,1}U

(
Ft(z↓{yt}) · φ1(z↓{y1,xEA,xDU}) · . . . · p(z↓{xIA})

)
.

Moreover, the probability of occurrence Pmax(t) of the most probable attack
gives

max
x∈{0,1}var(t)

ψt(x) = max
U

(
Ft(z

↓{yt}) · φ1(z↓{y1,xEA,xDU}) · . . . · p(z↓{xIA})
)
.

While performing the previous computation is possible, it is unfortunately not
efficient. For instance, every z has eleven components, i.e., the following shape:

z = (y1 = 1, y2 = 0, y3 = 0, y4 = 1, yt = 0, xEA = 1, xDU = 1,

xRA = 1, xFA = 1, xIA = 1, xEF = 0).

Moreover, the sum that needs to be evaluated to obtain a result for P(t) runs
over 211 different possible z. In the following two sections, we explain how to
reduce the complexity of this computation.

6.2.6 Semiring Valuation Algebras

As we already pointed out, in most cases it is impossible to construct the global in-
dicator function and the joint probability distribution efficiently. Hence, we require
a method of computation that limits the size of intermediate results and, there-
fore, diminishes the exponential growth. In this section, we introduce an algorithm,
called fusion, that allows us to improve the efficiency of computing Equations (6.15)
and (6.16).

In order to do so, we first introduce semiring valuations. LetD ⊆ R be a finite set of
propositional variables and 〈A,⊕,⊙〉 be a commutative semiring (Section 4.3.2).
A semiring valuation over 〈A,⊕,⊙〉 is a function φ : {0, 1}D → A associating a

6.2 ADTrees and Dependent Nodes 159

value from A with each configuration from {0, 1}D. We denote by dom(φ) = D the
domain of valuation φ. Consider two valuations φ and ψ over a semiring 〈A,⊕,⊙〉,
with domains dom(φ) = D and dom(ψ) = U . The combination of φ and ψ, denoted
by φ⊗ ψ, is defined, for all x ∈ {0, 1}D∪U , as:

(φ⊗ ψ)(x) = φ(x↓U) ⊙ ψ(x↓W).

The elimination of the variable x ∈ D is defined for all x ∈ {0, 1}D\{x} as:

φ−x(x) = φ(x, 0) ⊕ φ(x, 1).

Note that, due to associativity of semiring addition ⊕, we can eliminate variables
in any order. For {x1, . . . , xm} ⊆ dom(φ) we may, therefore, write

φ−{x1,...,xm} =
(

· · ·
(
(φ−x1)−x2

)
· · ·

)−xm

.

The indicator functions, used in Section 6.2.4 for modeling ADTerms in the propo-
sitional semantics, are Boolean semiring valuations over 〈{0, 1},max, ·〉. Arith-
metic semiring valuations over 〈R,+, ·〉 capture the conditional probability tables
from Bayesian networks in Section 6.2.2, and product t-norm semiring valuations
over 〈[0, 1],max, ·〉 compute maximum attack probabilities, as in Equation (6.16).

In [PK11] it was shown that semiring valuations over arbitrary commutative semir-
ings always satisfy the axioms of a valuation algebra. The computational inter-
est in valuation algebras arises from the inference problem. Given a set of (semi-
ring) valuations {φ1, . . . , φn}, called knowledgebase, with domains Di = dom(φi),
for i = 1, . . . , n and a set of variables {x1, . . . , xm} ⊆ D1 ∪ · · · ∪Dn, the inference
problem consists of computing

φ−{x1,...,xm} = (φ1 ⊗ · · · ⊗ φn)−{x1,...,xm}. (6.17)

For instance, computing the probability in Example 6.31 amounts to solving the
inference problem

(
Ft(z↓{yt}) · φ1(z↓{y1,xEA,xDU}) · . . . · p(z↓{xIA})

)−(var(t)∪Dt)

=
∑

z∈{0,1}var(t)∪Dt

(
Ft(z

↓{yt}) · φ1(z
↓{y1,xEA,xDU}) · . . . · p(z↓{xIA})

)
.

Here, the knowledgebase consists of all local indicator functions, filter Ft and all
conditional probability tables, which instantiate arithmetic semiring valuations.
Likewise, computing most probable attacks in Equation (6.16) amounts to solving
the inference problem over the product t-norm semiring:

(
Ft(z↓{yt}) · φ1(z↓{y1,xEA,xDU}) · . . . · p(z↓{xIA})

)−(var(t)∪Dt)

= max
z∈{0,1}var(t)∪Dt

(
Ft(z↓{yt}) · φ1(z↓{y1,xEA,xDU}) · . . . · p(z↓{xIA})

)
.

160 Chapter 6 Formal Applications of ADTrees

In most cases a direct computation of Equations (6.15), and (6.16) and, more
generally, of Equation (6.17) is not possible, due to the exponential complexity
when combining semiring valuations. However, because the computational tasks
are stated with respect to a factorization of the global indicator function and the
joint probability distribution, we may exploit the additional structure inside the
factorization and perform calculations locally on the domain of the factors. This
general technique is called local computation. Correctness of local computation
algorithms for arbitrary valuation algebras has been proven in [PK11]. One such
algorithm is the fusion [She92] or bucket-elimination [Dec99] algorithm presented
in the following section. Fusion is typically applied to evaluate Bayesian networks.
However, it can also be applied to factorizations of arbitrary (semiring) valuation
algebras. Thus, we may use fusion for processing inference problems obtained from
ADTerms.

6.2.7 The Fusion Algorithm

Let us first consider the elimination of a single variable x ∈ dom(φ) = dom(φ1) ∪
· · · ∪ dom(φn) from a set {φ1, . . . , φn} of valuations. This operation can be per-
formed as follows:

Fusx({φ1, . . . , φn}) = {ψ−x} ∪ {φi : x /∈ dom(φi)}, (6.18)

where ψ =
⊗

{i : x∈dom(φi)} φi. The fusion algorithm for removing several variables
then is obtained by repeated application of this operation:

(φ1 ⊗ · · · ⊗ φn)−{x1,...,xm} =
⊗

Fusxm
(· · · (Fusx1({φ1, . . . , φn})) · · ·),

where
⊗

extends the binary combination operator ⊗ to a finite set of valua-
tions. For proofs see [Koh03]. In every step i = 1, . . . , m of the fusion algorithm,
the combination in Equation (6.18) creates an intermediate factor ψi with do-
main dom(ψi). Then, the variable xi is eliminated only from ψi in Equation (6.18).
We define λ(i) = dom(ψi)\{xi} and call this the fusion label. Observe that λ(m) =
(dom(φ1) ∪ · · · ∪ dom(φn)) \ {x1, . . . , xm}. It follows that the size of the domains
of all intermediate results of the fusion algorithm are at most one larger than the
largest fusion label. The smaller the fusion labels are, the more efficient fusion
is. We remark that the labels depend on the chosen elimination sequence for the
variables from x1 to xm

Finding which sequences lead to the smallest fusion labels is NP-complete [ACP87],
however, there are good heuristics that achieve reasonable execution times [Dec03].
In summary, the worst case complexity of computing Equation (6.17) is still ex-
ponential, however, we improved the bound in terms of the number of variables
involved in the problem to a bound in terms of the size of the largest label that
occurs during fusion.

Fusion applies to computational tasks that take the form of Equation (6.17), i.e.,
that amount to computing projections of a factorized global semiring valuation.
Due to the encoding with indicator functions, both the probability of occur-
rence of the attack suite related to an ADTerm, see Equation (6.15), and the
probability of occurrence of the most probable attack, see Equation (6.16), can
be written in this form.

6.2 ADTrees and Dependent Nodes 161

Example 6.32 Let U be the set {y1, y2, y3, y4, yt, xEA, xDU, xRA, xFA, xIA, xEF} as
in the previous example. We recompute Example 6.23 with the help of the fusion
algorithm using the following elimination sequence

(xIA, xRA, y2, xFA, y3, xEA, xDU, xEF, y1, y4, yt).

Then, the probability of occurrence of the attack suite related to the ADTerm t
given in Equation (6.1) is computed as follows:

P(t) =
∑

z∈{0,1}U

(
Ft(z↓{yt}) · φ1(z↓{y1,xEA,xDU}) · . . . · p(z↓{xIA})

)

=
∑

U

Ft(yt) · φ1(y1, xEA, xDU) · φ2(y2, xRA, xFA) · φ3(y3, xIA, y2)

· φ4(y4, y1, y3) · φ5(yt, y4, xEF) · p(xEF | xEA, xDU) · p(xEA | xFA)

· p(xDU | xFA) · p(xFA) · p(xRA | xIA) · p(xIA)

=
∑

yt

Ft(yt) ·
∑

y4

∑

y1

∑

xEF

φ5(yt, y4, xEF)

·
∑

xDU

∑

xEA

φ1(y1, xEA, xDU) · p(xEF | xEA, xDU) ·
∑

y3

φ4(y4, y1, y3)

·
∑

xFA

p(xEA | xFA) · p(xDU | xFA) · p(xFA) ·
∑

y2

∑

xRA

φ2(y2, xRA, xFA)

·
∑

xIA

φ3(y3, xIA, y2) · p(xRA | xIA) · p(xIA).

In this computation, we have abused the notation in the sums by only indicating the
exponent in the domains of the configurations. We iteratively compute the sums,
starting with the sum over IA. We have illustrated this computation in Table 6.2,
where f(y3, y2, xRA, xIA) = φ3(y3, xIA, y2) · p(xRA | xIA) · p(xIA).

y3 y2 xRA f(y3, y2, xRA, 0) f(y3, y2, xRA, 1) f(y3, y2, xRA, 0) + f(y3, y2, xRA, 1)
1 1 1 0 · 0 · 0.4 1 · 0.9 · 0.6 0.54
1 1 0 0 · 1 · 0.4 1 · 0.1 · 0.6 0.06
1 0 1 0 · 0 · 0.4 0 · 0.9 · 0.6 0
1 0 0 0 · 1 · 0.4 0 · 0.1 · 0.6 0
0 1 1 1 · 0 · 0.4 0 · 0.9 · 0.6 0
0 1 0 1 · 1 · 0.4 0 · 0.1 · 0.6 0.4
0 0 1 1 · 0 · 0.4 1 · 0.9 · 0.6 0.54
0 0 0 1 · 1 · 0.4 1 · 0.1 · 0.6 0.46

Table 6.2: An exemplary computation step in the fusion algorithm.

The result of this first computation is a conditional probability table that depends
on the values of the variables that occur as factors in the sum. The table is reused
in the computation of the next sum, i.e., the sum over RA. Continuing the com-
putation, we obtain P(t) = 0.272008, which is, as expected, the same result as in
Example 6.23.

There are eleven sums in the computation, so eleven conditional probability tables
need to be computed. The largest number of variables occurring in any of the

162 Chapter 6 Formal Applications of ADTrees

tables is the size of the largest fusion label. Hence, we have to compute a maximum
number of 11 · 24 = 176 configurations. (The actual number is lower, since not all
tables have four variables.)

In summary, we have a complexity of O(2number of largest label) compared to a com-
plexity of O(2number of basic actions) in Example 6.23. Since in practice, the size of
the largest label is smaller than the number of basic actions, this can yield to
considerable speed-ups.

Sometimes we are less interested in the concrete value, such as the maximum attack
probability, but rather in finding one or more configurations that map to this value,
as they describe the most probable attacks. Fusion can be modified to additionally
output such solution configurations [Pou08] under the condition that the semiring
is totally ordered and idempotent. This is the case for the product t-norm semiring
so that we may use fusion to compute maximum attack probabilities and the most
probable attacks.

The algorithmic technique based on semiring valuations to combine probabilistic
information with the ADTree formalism also works in a broader context. From
an algebraic perspective, the combination of indicator functions and probabilities
is possible because the Boolean semiring for indicator functions is a subalgebra
of both semirings used for expressing probabilities, i.e., the arithmetic and prod-
uct t-norm semiring. Consequently, we may directly apply the same construction
to other semiring valuations under the additional condition that the correspond-
ing semiring has the Boolean semiring as subalgebra. The large family of t-norm
semirings [PK11] are important candidates used in possibility and fuzzy set the-
ory [Zad78]. In the next section, we briefly hint at one such generalized application.

6.2.8 Probability of Successful Attacks

Equations (6.6), (6.7) and (6.8) compute the probability that a certain attack or
a set of attacks occurs. However, security experts may also be interested in the
probability that an attack or a set of attacks is successful. In the following we
elaborate how to extend the previously mentioned formulas in order to compute
the probability of success of an attack, which in our terms is the probability of
success of an attack suite related to an ADTerm.

First, for every basic action b, we introduce an additional propositional variable sb

representing whether the action b is successful or not. Recall that the previously
used variable xb represents whether b is executed or not, so the two variables do
not represent the same events. We set

Psuc(sb = 1 | xb = 1) = psuc (probability that b is successful if executed),

Psuc(sb = 0 | xb = 1) = 1−psuc (probability that b is unsuccessful if executed),

Psuc(sb = 1 | xb = 0) = 0 (probability that b is successful if not executed),

Psuc(sb = 0 | xb = 0) = 1 (probability that b is unsuccessful if not executed).

Note that psuc is a probability distribution from the point of view of the player
corresponding to the node’s type.

6.3 ADTrees and Games 163

Remark 6.33 To incorporate success rates, we could model the Bayesian net-
work BNsuc

t over the set of variables {xb | b ∈ B} ∪ {sb | b ∈ B}, where for each b,
there is an edge from xb to sb. In this case the probability distribution is denoted
by psuc. Note that, for b 6= b′, the variables sb and sb′ are stochastically independent.
In fact, the probability of the execution of b may depend on the probability of the
execution of b′, but whether b succeeds is independent from whether b′ succeeds.

To ease presentation, we set

wb(xb) = psuc(sb = xb | xb),

which we call success weights for b.

Given a configuration, we are interested in its success probability. For b such
that x(xb) = 1, we take wb(xb = 1) = psuc(sb = 1 | xb = 1) = psuc and for b
such that x(xb) = 0, we consider wb(xb = 0) = psuc(sb = 0 | xb = 0) = 0. We set

wt(x) =
∏

xb∈var(t)

wb(x↓{xb}).

Using this notation, we can extend the previously introduced formulas for compu-
tation of probability of occurrence (i.e., Equations (6.6), (6.7) and (6.8)) into
formulas representing the probability of success, as follows:

ψsuc
t (x) = ft(x) · p(x) · wt(x),

P suc(t) =
∑

x∈{0,1}var(t)

ψsuc
t (x) =

∑

x∈{0,1}var(t)

ft(x) · p(x) · wt(x),

P suc
max(t) = max

x∈{0,1}var(t)
ψsuc

t (x) = max
x∈{0,1}var(t)

ft(x) · p(x) · wt(x).

It can be shown that computation of P suc is compatible with the propositional
semantics. In other words, by adding success weights w(xB), for xB ∈ var(t)∪var(t′)
to the assumptions of Theorem 6.25, we have P suc(t) = P suc(t′).

6.3 ADTrees and Games

In the previous sections we have already seen how to combine the ADTrees with two
mathematical concepts, namely Boolean functions and Bayesian networks, to ob-
tain powerful results. In this section we relate the ADTree methodology to another
research area. As we have seen, ADTrees are interleaving attacks and defenses, i.e.,
actions by attackers and defenders. This alternating notion of opposing players is
a concept that is commonly found in game theory [Ras06]. A connection to game
theory is desirable because on the one hand, visual ADTrees are more intuitive
while game theory profits from the well-studied theoretical properties of games.
In [10KMMS] we have made this connection between ADTrees and game theory
explicit, which we highlight next.

To be able to provide more details, we define specific games called two-player bi-
nary zero-sum extensive form games, in which a proponent p and an opponent o
(two-player) play against each other. In these games, we allow only for the out-
comes (1, 0) and (0, 1) (binary, zero-sum), where (1, 0) means that the proponent

164 Chapter 6 Formal Applications of ADTrees

succeeds in his goal (breaking the system if he is the attacker, keeping the sys-
tem secure if he is the defender) and (0, 1) means that the opponent succeeds.
Moreover, the proponent is not necessarily the player who plays first in the game.
Finally, we restrict ourselves to extensive form games, i.e., games in tree format.
Our presentation of games differs from the usual one because we present games as
terms due to technical reasons.

Definition 6.34 (Two-player binary zero-sum extensive form games) Let S =
{p, o} denote the set of players, L denote a leaf of a term, NL denote a non-leaf of
a term and Out = {(1, 0), (0, 1)} the set of possible outcomes. A two-player binary
zero-sum extensive form game is a term t, where

t : ψp | ψo

ψp : NLp(ψo, . . . , ψo) | Lp(1, 0) | Lp(0, 1)

ψo : NLo(ψp, . . . , ψp) | Lo(1, 0) | Lo(0, 1).

We denote the set of all two-player binary zero-sum extensive form games by G.
For s ∈ S, we define the first player of a game ψs as the function τ : G → S such
that τ(ψs) = s. It is easy to check that this is well-defined since each term can
only be derived from either ψp or ψo.

Example 6.35 An example of a two-player binary zero-sum extensive form game
is the term NLp(NLo(Lp(0, 1),Lp(1, 0)),Lo(0, 1)). This game is displayed in Fig-
ure 6.4 (left). When displaying extensive form games, we use dashed (red) edges
for choices made by the proponent and solid (green) edges for those made by the
opponent. In this example, the proponent first picks from two options: If he chooses
the first option, the opponent is allowed to choose between the two outcomes (0, 1)
and (1, 0). If the proponent chooses the second option, the game ends with out-
come (0, 1).

In games every player has a strategy that determines his behavior whenever he has
a choice in the game. If the strategies of both players are known, we can compute
the outcome of the game.

When showing a connection between game theory and ADTrees, we restrict our-
selves to the propositional semantics, see Section 3.1 and the satisfiability at-
tribute, as introduced in Example 4.5.

Although the two formalisms have much in common, their expressive equivalence
is not immediate. Whereas the mapping from games to ADTree is rather straight
forward, the other direction is not. There are two notions in the domain of ADTrees
that have no direct correspondence in the world of games: conjunctive nodes and
refinements. The first problem is solved by transforming conjunctive nodes for one
player to disjunctive nodes for the other player. The second problem is addressed
by adding additional moves in which the other player only has a single option. Due
to these two problems, the transformations will not necessarily be each other’s
inverse.

The transformation of the game introduced in Example 6.35 into an ADTree is
illustrated in Figure 6.4. Since the formal description of the mapping is rather
technical and brings few insights, we refer to [10KMMS] for details.

6.3 ADTrees and Games 165

a = NLp

b = NLo

d = Lp(0, 1) e = Lp(1, 0)

c = Lo(0, 1) Game to ADTree
−−−−−−−−−→

a

b

d e

c

Figure 6.4: A two-player binary zero-sum extensive form game is mapped to an
ADTree. The letters indicate subgames and mark corresponding subtrees in the
ADTree. (Other node labels are omitted.)

When conversely transforming ADTrees into games, the above mentioned prob-
lems need to be addressed. The transformation is defined inductively. The leaves
for player s ∈ S are transformed into two options for player s, a losing and a win-
ning one. Disjunctive nodes for player s are transformed into choices for player s
in the game. Conjunctive nodes are transformed into choices for the other player.
This reflects the fact that a player can succeed in all his options exactly when
there is no way for the other player to pick an option which allows him to suc-
ceed. Finally, countermeasures against player s are transformed into a choice for
player s. Here, the first option corresponds to player s not choosing the counter-
measure, so that it is up to player s whether he succeeds or not while the second
option corresponds to player s choosing the countermeasure. The transformation
of the ADTree corresponding to ADTerm t = cp(∧p(E,F),∨o(G)) is illustrated in
Figure 6.5.

As mentioned in Chapter 4, the semantics by itself are not enough to quantify
a scenario. We have also provided a mapping between strategies in games and
corresponding basic assignments in ADTrees as well as a function in the reverse
direction that maps a basic assignment to a strategy in the game. We show that
for every winning strategy, there exists a basic assignment that yields a satisfiable
ADTree. Reciprocally, we show that if a player has a basic assignment for an
ADTree in which he is successful, the corresponding strategy in the corresponding
game guarantees him to win.

In conclusion, the results of [10KMMS] can be summarized by the following theo-
rem.

Theorem 6.36 ADTrees in propositional semantics together with the satisfiabil-
ity attribute and two-player binary zero-sum extensive form games have equivalent
expressive power.

Proof. See [10KMMS].

166 Chapter 6 Formal Applications of ADTrees

A

B

E F

C

G

ADTree to game
−−−−−−−−−→

A = NLo

NLp

B = NLo

NLp

E = NLo

NLp

Lo(1, 0) Lo(0, 1)

NLp

F = NLo

NLp

Lo(1, 0) Lo(0, 1)

C = NLp

NLo

G = NLp

NLo

Lp(0, 1) Lp(1, 0)

Figure 6.5: An ADTree mapped to a two-player binary zero-sum extensive form
game. The letters indicate subtrees and mark corresponding subgames in the game.

Note that the theorem also shows that, when considering the satisfiability at-
tribute, the class of conjunction-free ADTrees has the same expressive power as
the class of all ADTrees.

7

Related Formalisms

Graphical security models provide a useful method to represent and analyze se-
curity scenarios that examine vulnerabilities of systems and organizations. They
constitute a valuable support tool to facilitate threat assessment and risk manage-
ment of real-life systems. The great advantage of graph-based approaches lies in
the fact that they are combining user-friendly, intuitive, visual features with formal
semantics and algorithms that allow for qualitative and quantitative analysis. They
have become popular in the industrial sector and are, for example, used in security
analysis of supervisory control and data acquisition (SCADA) systems [BFM04,
TLM07, TA10], voting systems [LDEH11, BM07], vehicular communication sys-
tems [HAF+09,ABD+06], Internet related attacks [TLFH01,LZRL09], secure soft-
ware engineering [JEBR10] and socio-technical attacks [12BKMS] and [EPPC11,
RVOC08]. Historically, graph-based security formalisms have their origin in safety
modeling. In the present day, however, they are regarded as separate research areas.
Even though the security and the safety modeling fields are still influencing each
other, security modeling approaches are a stand-alone research area. An overview
presenting all graph-based approaches, is beyond the scope of this thesis. There-
fore, the choice has to be made to concentrate on formalisms based on directed
acyclic graphs (DAGs).

In Section 7.1, we introduce DAG-based graphical security models covering attacks
and defenses. Then, in Section 7.2, we introduce keywords used in the field of graph-
based security modeling and present which aspects we analyzed. In Section 7.3,
we provide a template for the description of the formalisms. Section 7.4 is the
main part of the related work and presents the DAG-based attack and defense
modeling approaches published before 2013. In Section 7.5, we provide a concise
tabular overview of the presented formalisms. We illustrate how to use the tables in
order to select the most relevant modeling technique, depending on the application
requirements. Section 7.6 briefly mentions alternative graphical security models.

7.1 Graphical Security Modeling on DAGs

We focus on DAG-based graphical methods for the analysis of attack and defense
scenarios. We understand attack and defense scenarios in a general sense: they
encompass any malicious action of an attacker who wants to harm or damage
another party or its assets as well as any defense or countermeasure that could be
used to prevent or mitigate such malicious actions. Generally, models for attack and
defense scenarios are used to analyze cause–consequence situations. For this kind
of reasoning, acyclic structures are often sufficient. This statement is supported by

167

168 Chapter 7 Related Formalisms

the existence of many models that use only acyclic structures. Today, more than 30
different approaches for the analysis of attack and defense scenarios exist. Most of
them extend the original methodology in one or several aspects or dimensions which
include defensive components, timed and ordered actions, dynamic aspects and
different types of quantification. Moreover, methods for computation of security
related parameters, such as the cost, the impact or likelihood of an attack, the
efficiency of necessary protection measures, or the environmental damage of an
attack, have been developed or adapted. Consequently the approaches based on
trees, or more generally, on directed acyclic graphs (DAGs) form an important
class of methodologies for attack and defense modeling. They can be divided into
two subclasses: formalisms derived from or extending threat trees and formalisms
based on Bayesian networks.

The model creation in all threat tree-based methodologies starts with the identi-
fication of a feared event represented as the root node. The refinement process is
illustrated in Figure 7.1, which recreates the first threat tree model proposed by
Weiss [Wei91].

Obtain
Admin.

Privileges

Access
System
Console

Enter
Computer

Center

Break In
to Comp.

Center

Unattended
Guest

Corrupt
Operator

Obtain
Admin.

Password

Guess
Password

Obtain
Password

File

Encounter
Guessable
Password

Look Over
Sys. Admin.

Shoulder

Trojan
Horse SA
Account

Corrupt
Sys. Admin.

Legend
Objectives

Disjunctive refinement

Conjunctive refinement

Figure 7.1: A threat logic tree taken from [Wei91]: Obtaining administrator privi-
leges on a UNIX system.

The DAG structure allows us to use refinements with a customizable level of de-
tail. Starting from the root, the nodes of a DAG are refined as long as the refining
children provide useful and adequate information about the modeled scenario. Re-
finements paired with the acyclic structure allow for modularization which in turn
allows different experts to work in parallel on the same model. This is highly useful
in case of large-scale, complex models, where analysis of different parts requires
different types of expertise. A big advantage of the DAG-based approaches is that
they are scalable. They do not suffer from the state space explosion problem, which
is common for models based on general graphs with cycles. In the case of trees,
most of the analysis algorithms are linear with respect to the number of nodes
of the model. Due to multiple incoming edges, this property is no longer true for
DAGs and the complexity of the analysis methods is exponential in the worst case.
However, in practice, the actual running times are still acceptable since the algo-
rithms exploit common structural properties of the underlying cycle-free graphs.

7.2 Keywords and Examined Aspects 169

This is, for instance, the case for Bayesian inference algorithms used for the anal-
ysis of security models based on Bayesian networks. Figure 7.2 depicts a simple
Bayesian attack graph borrowed from [PDR12] and illustrates how to compute the
unconditional probability of a vulnerability exploitation, see also Section 6.2.2.

Root / FTP Server
A

Matu FTP BOF
(requires no privilege)

B

Remote BOF on SSH daemon
(requires no privilege)

C

Remove attacker
D

0.65 1.00

0.85 0.70

Legend

Threat sources and
Internal states

0.65
Probability of
Successful exploit
Local conditional
probability distribution

B C P(A) P(¬A)
1 1 1.00 0.00
1 0 0.65 0.35
1 1 1.00 0.00
0 0 0.00 0.00

P(A) = 0.61

D P(B) P(¬B)
1 0.85 0.15
0 0.00 1.00
P(B) = 0.60

D P(C) P(¬C)
1 0.70 0.30
0 0.00 1.00
P(C) = 0.49

P(D) P(¬D)
0.70 0.30
P(D) = 0.70

Figure 7.2: A Bayesian attack graph taken from [PDR12]: A test network with local
conditional probability distributions (tables) and updated unconditional probabil-
ities (below each table).

The contribution of this chapter is to provide an almost complete overview of the
field and systematize existing knowledge. More specifically, the survey

• presents the state of the art in the field of DAG-based graphical attack and
defense modeling;

• identifies key aspects which allows us to compare different formalisms;

• proposes a taxonomy of the presented approaches, which helps in selecting
an appropriate formalism;

• lays a foundation for future research in the field.

7.2 Keywords and Examined Aspects

In this section we introduce our terminology and make a link to existing definitions
and concepts. We accept some repetition with respect to the previous chapters of
this thesis in order for this section to be self-contained. We then present and define
the aspects on the basis of which we have analyzed the different formalism.

When examining different models in the same context, it is imperative to have
a common language. Over the last 20 years, numerous concepts and definitions
have emerged in the field of graphical security modeling. This section is intended
to introduce the language used throughout this chapter and to serve as a quick

170 Chapter 7 Related Formalisms

reference guide over the most commonly occurring concepts. Our goal here is not
to point out the differences in definitions or other intricate details.

Attack and defense modeling By techniques for attack and defense modeling
we understand formalisms that serve for representation and analysis of malicious
behavior of an attacker and allow us to reason about possible defending strategies
of the attacker’s opponent, called the defender. In our survey we use attacks in a
broad sense. Attacks can also be thought of as threats, obstacles and vulnerabilities.
Contrarily, defenses can appear in the form of protections, mitigations, responses
and countermeasures. They oppose, mitigate or prevent attacks.

Nodes Nodes, also called vertices, are one of the main components of graph-based
security models. They are used to depict the concept that is being modeled. Nodes
may represent events, goals, objectives and actions. Depending on whether the
models are constructed in an inductive or deductive way, nodes may also express
causes or consequences.

Root node In a rooted DAG (and, therefore, in any rooted tree) the root is the
single designated node that does not have any predecessor. From it, all other nodes
can be reached via a directed path. This distinguished node usually depicts the
entire concept which is being modeled. In the context of security models, existing
names for this special node include top event, main goal, main consequence, main
objective or main action.

Leaf nodes In a DAG, nodes that do not have any children are called leaves.
They usually display an atomic component of a scenario that is no longer refined.
They are also called primary events, basic components, elementary attacks, elemen-
tary components or basic actions.

Edges Edges are the second main component of graph-based security models.
They link nodes with each other and, in this way, determine relations between the
modeled concepts. Edges are also called arcs, arrows, or lines. In some models,
edges may have special semantics and may detail a cause–consequence relation, a
specialization or some other information.

Connectors Connectors usually specify more precisely how a parent node is
connected with its children. A connector may be a set of edges or a node of a special
type. Connectors are also called refinements or gates. Some examples include: AND,
OR, XOR, k-out-of-n, priority AND, triggers, etc.

Priority AND A priority AND (PAND) is a special kind of AND connector
which prescribes an order in which the nodes are to be treated. The origin of the
prescribed order is usually time or some priority criterion. The PAND is also called
an ordered AND, an O-AND or a sequential AND. Sometimes the underlying reason
behind the priority is specified, as in the case of the time-based AND.

Attributes Attributes represent aspects or properties that are relevant for quan-
titative analysis of security models. Examples of attributes, sometimes also called
metrics, include: impact of an attack, costs of necessary defenses, risk associated
with an attack etc. Proposed computation methods range from versatile approaches
that can be applied for evaluation of a wide class of attributes, to specific algorithms

7.3 The Template of the Formalism Descriptions 171

developed for particular measures. An example of the former is the formalization
of an attribute domain proposed in [MO05], which is well-suited for calculation of
any attribute whose underlying algebraic structure is a semiring. An example of
the latter is the specific method for probability computation proposed in [Yag06].

One of the goals of this chapter is to provide a classification of existing formalisms
for attack and defense modeling. For this purpose, all DAG-based approaches,
described in detail in Section 7.4, were analyzed based on the same 13 criteria,
which we refer to as aspects and define in this section.

The formalisms are grouped according to the following two main aspects:

1. Attack and/or defense modeling: Attack modeling techniques are fo-
cused on an attacker’s actions and vulnerabilities of systems; defense model-
ing techniques concentrate on defensive aspects, such as detection, reaction,
responses and prevention.

2. Static or sequential approaches: Sequential formalisms take temporal
aspects, such as dynamics or time variations, and dependencies between con-
sidered actions, such as order or priority, into account; static approaches
cannot model any such relations.

The above two aspects provide a partition of all considered approaches. Further-
more, they correspond to questions that a user selecting a suitable formalism is
most likely to ask, namely “What do we want to model?” and “How do we want
to model?”. The proposed classification allows a reader to easily make a primary
selection and identify which formalisms best fit his needs.’

Besides the two main aspects, each formalism is analyzed according to additional
criteria, listed in Table 7.1. All aspects taken into account in our work, can be
grouped into three categories:

• Aspects relating to the formalism’s modeling capabilities, i.e., what we can
model: attack or defense modeling, sequential or static modeling, quantifica-
tion, main purpose and extensions.

• Aspects relating to the formalism’s characteristics, i.e., how we can model:
structure, connectors and formalization.

• Aspects relating to the formalism’s maturity and usability: software tool avail-
ability, case study, external use, related research paper count and year of
invention.

In Table 7.1, we define all 13 aspects in the form of questions and provide possible
values that answer the questions.

7.3 The Template of the Formalism Descriptions

The description of each formalism presented in Section 7.4 complies with the fol-
lowing detailed template.

172 Chapter 7 Related Formalisms

Aspect
Aspect
Description

Possible
Values

Value Explanation

Attack or
defense

Is the formalism
offensively or
defensively
oriented?

Attack Only attack modeling

Defense Only defense modeling

Both
Integrates attack and defense
modeling

Static or
sequential

Can the formalism
deal with dependen-
cies and time
varying scenarios?

Static
Does not support any dependen-
cies

Sequential
Supports time and order depen-
dencies

Quantifi-
cation

Can numerical
values be computed
using the
formalism?

Versatile
Supports numerous generic and
diverse metrics

Specific Tailored for specific metrics

No Does not support quantification

Main
purpose

Why was the
formalism invented?

Sec. mod. General security modeling

Unification
Unification of existing formal-
ism

Quant.
Provide better methods for
quantitative analysis

Risk Support risk assessment

Soft. dev.
Support secure software devel-
opment

Int. det.
Automated intrusion detection
and response analysis

Req. eng.
Support security requirements
engineering

Extensions

What are added
features of the
formalism with
respect to the state
of the art?

Structural
New connectors, extended graph
structure

Computa-
tional

How the formalism handles com-
putations (e.g., top-down)

Quant.
Which computations can be per-
formed (e.g., specific attributes)

Time
The formalism can handle tem-
poral dependencies

Order
The formalism can handle order
dependencies

New
formalism

Entirely new formalism

7.3 The Template of the Formalism Descriptions 173

Structure
Which graphical
structure is the
formalism based on?

Tree Tree (possibly repeated nodes)

DAG Directed acyclic graph

Unspecified
It is not specified whether the
models are DAGs or trees

Connectors
What type of
connectors does the
formalism use?

List of
connectors

AND, OR, priority AND, OWA
nodes, split gate, trigger, coun-
termeasures, counter leaves, k-
out-of-n

Formali-
zation

Is the formalism
formally defined?

Formal
Defined using a mathematical
framework; with clear syntax and
semantics

Semi-
formal

Parts of the definitions are given
verbally, parts are precise

Informal Models only verbally described

Tool
availability

Does a software tool
supporting the
formalism exist?

Commercial Commercial software exists

Prototype A prototype tool exists

No No implementation exists

Case study
Do papers or
reports describing
case studies exist?

Real(istic) Real or realistic case study exists

Toy case
study

Described toy case study exists

No No documented case study exists

External
use

Do papers or
reports having a
disjoint set of
authors from the
formalism inventors
exist?

Indepen-
dent

People or institutions who did
not invent the formalism have
used it

Collabora-
tion

The formalism has been used by
external researchers or institu-
tions in collaboration with its in-
ventors

No
The formalism has only been
used by its inventors or within
the inventing institution

Paper count
How many papers
exist?

Number
Number of identified papers con-
cerning the formalism11

Year
When was the
formalism first
published?

Year Before 2013

Table 7.1: Summary of aspects taken into account in the formalism description.

11Different versions of the same paper (e.g., an official publication and a corresponding technical
report) have been counted as the same publication.

174 Chapter 7 Related Formalisms

General presentation The first paragraph mentions the name of the formal-
ism, its authors and a list of the most relevant papers relating to the formalism.
The year when the approach was proposed is given. Here we also present the main
purpose for which the technique was introduced. If nothing is indicated about the
formalism structure, it means that it is a generic DAG. If the structure is, more
specifically, a tree, then it is indicated either in the formalism’s name or in the first
paragraph of the description.

Main features In the second paragraph, we briefly explain the main features
of the formalism, in particular what its added features are with respect to the
state of the art at the time of its invention. Moreover, we state whether the mod-
eling technique is formalized, i.e., whether it complies with proper mathematical
definitions.

Quantification The next paragraph in the descriptions of the formalisms fo-
cuses on quantitative aspects of the considered methodology. We explain whether
the formalism is tailored for a couple of specific parameters or metrics, or whether
a general framework has been introduced to deal with computations. In the first
case, we list relevant attributes, in the second case, we briefly explain the new
algorithms or calculation procedures.

Practical aspects When relevant, we mention industrialized or prototype soft-
ware tools supporting the described approach. We also indicate when real or re-
alistic scenarios have been modeled and analyzed with the help of the described
approach. In this paragraph, we also refer to large research projects and Ph.D.
theses applying the methodology. This paragraph is optional.

Additional remarks We finish the description of the formalism by relating it
to follow-up methodologies. We mention the formalism’s limitations when they
have been identified by its authors or other researchers from the field. In this part
we also point out other peculiarities related to the formalism. This paragraph is
optional.

7.4 Description of the Formalisms

This section describes numerous DAG-based approaches for graphical attack and
defense modeling according to the template outlined in Section 7.3. Models gath-
ered within each subsection are ordered chronologically with respect to the year of
their introduction.

7.4.1 Static Modeling of Attacks

Attack Trees

Inspired by research in the reliability area, Weiss [Wei91] in 1991 and a couple of
years later Amoroso [Amo94] in 1994 proposed to adopt a tree-based concept of
visual system reliability engineering to security. Today, threat trees [Amo94,SS04,
HL02,MHH+09,US 88], threat logic trees [Wei91], cyber threat trees [OTT+10], fault

7.4 Description of the Formalisms 175

trees for attack modeling [SS02] and the attack specification language [TLFH01] can
be subsumed under attack trees, which are AND-OR tree structures used in graphi-
cal security modeling. The name attack trees was first mentioned by Salter et al. in
1998 [SSSW98] but is often only attributed to Schneier and cited as [Sch99,Sch04b].

In the attack tree formalism, an attacker’s main goal (or a main security threat)
is specified and depicted as the root of a tree. The goal is then disjunctively or
conjunctively refined into subgoals. The refinement is repeated recursively, until
the reached subgoals represent basic actions. Basic actions correspond to atomic
components, which can easily be understood and quantified. Disjunctive refine-
ments represent different alternative ways of how a goal can be achieved, whereas
conjunctive refinements depict different steps an attacker needs to take in order
to achieve a goal [QL04]. In 2005, Mauw and Oostdijk formalized attack trees by
defining their semantics and specifying tree transformations consistent with their
framework [MO05]. Kienzle and Wulf presented an extensive general procedure for
tree construction [KW97] while other researchers were engaged in describing how
to generate attack tree templates using attack patterns [MEL01,LM01].

Quantification of security with the help of attack trees is an active topic of re-
search [WPWP11]. A first simple procedure for quantification using attack trees
was proposed by Weiss [Wei91] and is based on a bottom-up algorithm. In this
algorithm, values are provided for all leaf nodes and the tree is traversed from the
leaves towards the root in order to compute values of the refined nodes. Depend-
ing on the type of refinement, different functional operators are used to combine
the values of the children. This procedure allows us to analyze simple aspects,
such as the costs of an attack, the time of an attack or the necessary skill level
[Wei91,Amo94,SSSW98,Sch99,BFM04,HUJ+04,FCW+05,MO05,BDP06,Yag06,
EDRM06, SDP08, HAF+09, LLFH09, ACK10, BP10, TA10, WPWP11]. Whenever
more complicated attributes, such as probability of occurrence, probability of suc-
cess, risk or similar measures are analyzed, additional assumptions, for exam-
ple, mutual independence of all leaf nodes, are necessary, or methods different
from the bottom-up procedure have to be used [Sch99,BFM04,BLP+06,EDRM06,
Yag06,JW08,HAF+09,LLFH09,Buo10,ACK10,BFM10,OTT+10,BFM11,MTF11,
WWPP11, RSK+12, RKT12a, ZY12]. Propagation of fuzzy numbers that model
fuzzy preference relations has initially been proposed in [BFG11] and extended
in [BF12]. Using Choquet integrals it is possible to take interactions between nodes
into account.

Commercial software for attack tree modeling, such as SecurITree [Ame12] from
Amenaza or AttackTree+ [Iso11] from Isograph provides a large database of attack
tree templates. Academic tools, including SeaMonster [Mel10] developed within
the SHIELDS project [SHI10a] offer visualization and library support. Attack
trees may occur in the SQUARE methodology [MHS05]. The entire methodol-
ogy and, therefore, visualization of attack trees are supported by the SQUARE
tool [Car09]. AttackDog [Laz10] was developed as a prototype software tool for
managing and evaluating attack trees with voting systems in mind but is believed
to be much more widely applicable to evaluating security risks in systems [ACC07].
Numerous case studies during the last decade [MEL01, TLFH01, BFM04, CCF04,
EHK+04, HUJ+04, BPU+05, FCW+05, MHS05, ABD+06, KS07, TLM07, CSTH08,
GJ08,Mar08,NXYS08,PLC+08,RVOC08,SDP08,HAF+09,LZRL09,MMCJ09] and

176 Chapter 7 Related Formalisms

more recently [CKK10,FBMJ10,MPM10a,MPM+10b,TML10,EPPC11,LDEH11,
MCM11, SWX11, WLR11, SS12, ZY12] account for the applicability of the attack
tree methodology. Moreover, attack trees are used in large international research
projects [EVI11, SHI10a, ATR12, TRE16, US 10]. They have been focus of a mul-
titude of Ph.D. and master’s theses [Kie98, Pum99, Mob00, Fos02, Sch04a, Ope05,
Kar05,Edg07,Esp07,Hog07,Mäg07,Har10,Jür10,PC10,Roy10,Nie11,Ost11,Sam11,
Zon11,Buo12,Koo12,Pos12].

Since attack trees only focus on static modeling and only take an attacker’s be-
havior into account, numerous extensions that include dynamic modeling and a
defender’s behavior, exist. Except for formalisms involving Bayesian inference tech-
niques, all other DAG-based formalisms refer back to the attack tree methodology.
They point out a need for modeling defenses, dynamics and ordered actions, as well
as propose computation procedures for probability or highly specified key figures.
Neither the name attack trees, nor the initial formalization of Mauw and Oostdijk
is universally accepted. Some researchers consider attack trees, threat trees or fault
trees to essentially be the same [vL04,MY11,SEN09,And01,SS02] while other re-
searchers point out specific differences [LLFH09, MM08]. As common ground, all
mentioned methodologies use an AND-OR tree structure but are divided on what
the tree can actually model (attacks, vulnerabilities, threats, failures, etc.).

Augmented Vulnerability Trees

Vulnerability trees [VJ03] have been proposed by Vidalis and Jones in 2003 to
support the decision making process in threat assessment. Vulnerability trees are
meant to represent hierarchical interdependence between different vulnerabilities
of a system. In 2008, Patel, Graham and Ralston [PGR08] extended this model
to augmented vulnerability trees which combine the concepts of vulnerability trees,
fault tree analysis, attack trees and cause–consequence diagrams. The aim of aug-
mented vulnerability trees is to express the financial risk that computer-based
information systems face, in terms of a numeric value, called degree of security.

The root of a vulnerability tree is an event that represents a vulnerability; the
branches correspond to different ways of exploiting it. The leaves of the tree sym-
bolize steps that an attacker may perform in order to get to the parent event. The
model, which is not formally defined, uses only AND and OR connectors depicted
as logical gates. Vulnerability trees are similar to attack trees, they differ in how
the root event is defined (vulnerability event vs. an attacker’s goal). A step-wise
methodology consisting of a sequence of six steps is proposed in [PGR08] to create
an augmented vulnerability tree and analyze security related indices.

The authors of [VJ03] propose attributes on vulnerability trees, including a com-
plexity value that denotes the number of steps that an attacker has to employ in
order to achieve his goal, educational complexity, which measures which qualifica-
tions an attacker has to acquire in order to exploit a given vulnerability, and the
time necessary to exploit a vulnerability. However, the paper [VJ03] does not detail
how to compute these attributes. In [PGR08], the model is augmented with two
indices: the threat-impact index and the cyber-vulnerability index. The first index,
represented by a value from [0, 100], expresses the financial impact of a probable
cyber threat. The lower the index the smaller the impact from a successful cyber

7.4 Description of the Formalisms 177

attack. The second index, also expressed by a value from [0, 100], represents sys-
tem flaws or undesirable events that would help an intruder to launch attacks. The
lower this index, the more secure the system is.

In [TA10], the augmented vulnerability tree approach has been used to evaluate
risks posed to a SCADA system exposed to the mobile and the Internet environ-
ment.

Augmented Attack Trees

In 2005, Ray and Poolsappasit12 first developed augmented attack trees to provide
a probabilistic measure of how far an attacker has progressed towards compromis-
ing the system [RP05]. This tree-based approach was taken up by H. Wang et al.
in 2006 and extended to allow more flexibility in the probabilistic values provided
for the leaf nodes [WLZ06]. When again publishing in 2007, Poolsappasit and Ray
used a different definition of augmented attack trees to be able to perform a foren-
sic analysis of log files [PR07]. Using the second definition of augmented attack
trees, J. Wang et al. performed an analysis of SQL injection attacks [WPWP10b]
and distributed denial of service (DDoS) attacks [WPWP10a]. They also extended
augmented attack trees further to measure the quality of detectability of an at-
tack [WPWP10c]. Poolsappasit and Ray formalized attack trees as AND-OR struc-
ture where every node is interpreted to answer a specific Boolean question, as
co-authors of Dewri et al. [DPRW07, DRPW12]. This formalization is then again
extended to augmented attack trees by adding to every node an indicator variable
and an additional value with the help of which the residual damage is computed.
On the enhanced structure they are able to optimize how to efficiently trade-off
between spent money and residual damage.

The various ways of defining augmented attack trees are based on attack trees
(Section 7.4.1). In the first definition, attack trees are augmented by node labels
that quantify the number of compromised subgoals on the most advanced attack
path as well as the least-effort needed to compromise the subgoal on the most ad-
vanced path to be able to compute the probability of attack [RP05]. H. Wang et al.
generalized this definition from integer values to general weights. Both approaches
include tree pruning and tree trimming algorithms to eliminate irrelevant nodes
with respect to intended operations (behavior) of a user [WLZ06]. In the second
definition, attack trees are augmented by descriptive edge labels and attack sig-
natures. Each edge defines an atomic attack which is described by the label and
represents a state transition from a child node to the corresponding parent. An at-
tack signature is a sequence of groups of incidents. From it, a sequence of incidents
can be formed, which, when executed, constitutes an atomic attack. The sequences
are then exploited to filter log files for relevant intrusion incidences [PR07] and
used to describe state transitions in SQL injection attacks using regular expres-
sions [WPWP10b]. Moreover, they are exploited to model state transition in DDoS
attacks [WPWP10a] and adapted to provide a measure for quality of service de-
tection, called quality of detectability [WPWP10c]. In an extension of the third
definition [DRPW12] the system administrator’s dilemma is thoroughly examined.
The purpose of this extension is to be able to compute a bounded minimization

12In early papers spelled Poolsapassit [RP05,PR07]

178 Chapter 7 Related Formalisms

problem of the cost of the security measures while also keeping the residual damage
at a minimum.

Augmented attack trees were designed with a specific quantitative purpose in mind.
The first formalization of augmented attack trees was introduced to compute the
probability of a system being successfully attacked. Additionally to increasing the
descriptive capabilities of the methodology, the second definition is accompanied by
several algorithms that help compute the quality of detectability in [WPWP10c].
As mentioned before, the third definition was advanced in order to solve the system
administrator’s dilemma. This is achieved by using a simple cost model and a
multiobjective optimization algorithm which guides the optimization process of
which security hardening measures best to employ.

The authors of the first formalism state that attempts by system administrators
to protect the system will not change the outcome of their analysis. A similar
shortcoming is suggested for the second formalization.

OWA Trees

In 2005, Yager proposed to extend the AND and OR nodes used in attack trees
by replacing them with ordered weighted averaging (OWA) nodes. The resulting
formalism is called OWA trees [Yag06] and it forms a general methodology for
qualitative and quantitative modeling of attacks.

Regular attack trees make use of two (extreme) operators only: AND (to be used
when all actions need to be fulfilled in order to achieve a given goal) and OR (to be
used when the fulfillment of at least one action is sufficient to reach a desired result).
OWA operators represent quantifiers such as most, some, half of, etc. Thus, OWA
trees are well suited to model uncertainty and to reason about situations where
the number of actions that need to be satisfied is unknown. OWA trees are static
in the sense that they do not take interdependencies between nodes into account.
They have been formally defined in [Yag06] using the notion of an OWA weighting
vector. Since AND and OR nodes can be seen as special cases of OWA nodes,
mathematically, attack trees form a subclass of OWA trees. Therefore, algorithms
proposed for OWA trees are also suitable for the analysis of attack trees.

In [Yag06], Yager provides sound techniques for the evaluation of success probabil-
ity and cost attributes on OWA trees. For the probability attribute, he identifies
two approaches that can be explained using two different types of attackers. The
first approach assumes that the attacker is able to try all available actions until he
finds one that succeeds. Since in most situations such an assumption is unrealistic,
the author proposes a second model, where an attacker simply chooses the action
with the highest probability of success. Furthermore, [Yag06] presents two algo-
rithms for computing the success probability attribute: one assumes independent
actions which leads to a simpler calculation procedure, the other can deal with
dependent actions. Finally, the author discusses how to join the two attributes
together, in order to correctly compute the cheapest and most probable attack.

In [BFG11], Bortot et al. proposed the use of Choquet integrals in order to reason
about OWA trees involving dependent actions.

7.4 Description of the Formalisms 179

Parallel Model for Multi-Parameter Attack Trees

In 2006, Buldas et al. initiated a series of papers on rational choice of economi-
cally relevant security measures using attack trees. The proposed model is called
multi-parameter attack trees and was first introduced in [BLP+06]. Between 2006
and 2010, researchers from different research institutes in Estonia published six
follow-up papers [BM07,JW07,JW08,WJ10,JW10,Nii10], extending and improv-
ing the original model proposed in [BLP+06].

Most approaches for quantitative analysis using attack trees, prior to [BLP+06],
focus on one specific attribute, e.g., cost or feasibility of an attack. In reality,
interactions between different parameters play an important role. The aim of
the mentioned series of papers was to study how tree computations must be
done when several interdependent parameters are considered. The model of multi-
parameter attack trees assumes that the attacker’s behavior is rational. This means
that attacks are considered unlikely if their costs are greater than the related
benefits and that the attacker always chooses the most profitable way of at-
tacking. The parallel model for multi-parameter attack trees has been studied
in [BLP+06, BM07, JW07, JW08, JW10, Jür10]. This model assumes that all ele-
mentary attacks take place simultaneously, thus the attacker does not base his
decisions on success or failure of some of the elementary attacks.

Multi-parameter attack trees concentrate on the attribute called expected at-
tacker’s outcome. This outcome represents a monetary gain of the attacker and
depends on the following parameters: gains of the attacker in case the attack suc-
ceeds, costs of the attack, success probability of the attack, probability of getting
caught and expected penalties in case of being caught. First, a game theoretical
model for estimation of the expected attacker’s outcome was proposed by Bul-
das et al. [BLP+06], where values of all parameters are considered to be precise
point estimates. In [JW07], Jürgenson and Willemson extend the computation
methods proposed in [BLP+06] to the case of interval estimations. Later it turned
out that the computational model from [BLP+06] was imprecise and inconsistent
with the mathematical foundations of attack trees introduced in [MO05]. Hence,
an improved approach for the parallel attack tree model was proposed by Jürgen-
son and Willemson [JW08]. Since this new approach requires exponential running
time to determine the possible expected outcome of the attacker, an optimization
solution, based on a genetic algorithm for fast approximate computations, has been
proposed by the same authors in [JW10].

In [BM07], Buldas and Mägi applied the approach developed in [BLP+06] to evalu-
ate the security of two real e-voting schemes: the Estonian E-voting System in use at
the time and the Secure Electronic Registration and Voting Experiment performed
in the USA in 2004. A detailed description of this case study is given in the mas-
ter’s thesis of Mägi [Mäg07]. A prototype computer tool supporting the security
analysis using the multi-parameter attack trees has been implemented [And10a]
and described in [And10b].

In Section 7.4.2, we describe the serial model for multi-parameter attack trees,
which extends the parallel model with an order on the set of elementary compo-
nents.

180 Chapter 7 Related Formalisms

Extended Fault Trees

Extended fault trees (EFT) were presented by Masera et al. at the European safety
and reliability conference in 2007 [MFC07] and published in an extended journal
version in 2009 [FMC09]. The formalism aims at combining malicious deliberate
acts, which are generally captured by attack trees (Section 7.4.1), and random
failures, which are often associated with classical fault trees (Section 7.4.1).

Extended fault trees and attack trees are structurally similar. The main difference
between the two formalisms is in the type of basic events that can be modeled.
In EFT basic events can represent both non-malicious, accidental failures as well
as attack steps or security events. Basic events of attack trees usually correspond
to a malicious attacker’s actions only. Logical AND and OR gates are explicitly
represented in the same way as in classical fault trees. A step by step model con-
struction process is described in [FMC09], defining how existing fault trees can
be extended with attack-related components to form extended fault tree models.
The modeling technique complies with proper mathematical foundations, directly
adopted from fault trees as defined in the safety and reliability area.

Quantification capabilities are focused on the computation of the probability of oc-
currence of the top-event (root node). Generic formulas from fault tree quantitative
analysis are recalled in [FMC09], including treatment of independent or mutually
exclusive events. However, no concrete examples of quantification are provided.

A simple example, analyzing the different failure and attack scenarios leading to
the release of a toxic substance by a chemical plant, is described in [FMC09]. No
particular tool has been developed to support extended fault trees, however, all
classical fault tree tools may be used directly.

One of the limitations explicitly stressed by the inventors of extended fault trees
is that they do not take into account time dynamics.

7.4.2 Sequential Modeling of Attacks

Cryptographic DAGs

Meadows described cryptographic DAGs in 1996 (proceedings published in 1998), in
order to provide a simple representation of an attack process [Mea96]. The purpose
of the formalism is limited to visual description. The attack stages of the overall
attack process correspond to the nodes of a DAG. The difficulty of each stage is
shown by a color code. In 1996, the novelty of cryptographic DAGs was to provide
a simple representation technique of sequences and dependencies of attack steps
towards a given attacker’s objective.

From a modeling point of view, each stage (represented as a colored box) contains a
textual description of atomic actions needed for the realization of the stage. Arrows
represent dependencies between the boxes. A simple arrow indicates that one stage
is needed to realize another stage. Two arrows fanned out symbolize that one stage
enables another one repeatedly. More generally speaking, cryptographic DAGs are
an informal formalism targeted at high-level system descriptions.

Cryptographic DAGs do not support any type of quantification.

7.4 Description of the Formalisms 181

Cryptographic DAGs have been used in [Mea96] to demonstrate attacks on cryp-
tographic protocols (with SSL and Needham-Schroeder scheme as a use cases),
however, this representation technique may be used to model other types of at-
tacks as well.

This formalism allows the representation of sequences of attack steps and depen-
dencies between those steps, but cannot capture static relations like AND and OR.
Moreover, the clarity and usability of the models depends heavily on the text inside
the boxes, which is not standardized.

Fault Trees for Security

Fault tree analysis was born in 1961 and has initially been developed into a safety,
reliability and risk assessment methodology [Wat61, VGRH81, SVD+02]. A short
history of non-security related fault trees was published by Ericson II [Eri99]
in 1999. Fault trees have also been used in software analysis [LH83,Lev95,HWS+02,
HWS+07] and were even considered to be equivalent to attack trees by Steffen and
Schumacher [SS02]. In 2003, Brooke and Paige adopted fault trees for security, ex-
tending the classical AND-OR structure of attack trees (Section 7.4.1), to include
well-known concepts from safety analysis [BP03].

Based on an AND-OR structure, three additional connectors (priority AND, ex-
clusive OR and inhibit), specific node types (basic, conditioning, undeveloped,
external and intermediate) as well as transfer symbols (transfer in, transfer out)
to break up larger trees are adopted from fault tree analysis in its widest sense.
Fault trees for security are an aid to the analysis of security-critical systems, where
first an undesired (root) event is identified. Then, new events are constructed by
inserting connectors that explicitly identify the relationship of the events to each
other. Several rules, like the no miracle rule, the complete the gate rule and the no
gate to gate rule are adopted directly from fault trees. Construction stops when
there are no more uncompleted intermediate events. In the end, a completed fault
tree serves as an attack handbook by providing information about the interactions
by which a security critical system fails.

In [BP03], Brooke and Paige state that in computer security “it is difficult to assign
useful probabilities to the events”. Consequently probabilistic quantitative analysis
is debatable. Instead, the authors recommend that risk analysis is performed, which
answers how the system fails based on the primary events (leaf nodes).

While [BP03] only provides a toy example, the authors state that any tool used
in fault tree analysis can be used. They refer to [Dep03] as a good overview of
available programs.

Bayesian Networks for Security

Starting in 2004, different researchers proposed, seemingly independently, to adopt
Bayesian networks, whose origin lies in artificial intelligence, as a security mod-
eling technique [Pea86,Pea88,Nea03, JN07]. Bayesian networks are also known as
belief network or causal network. In Bayesian networks, nodes represent events
or objects and are associated with probabilistic variables. Directed edges repre-

182 Chapter 7 Related Formalisms

sent causal dependencies between nodes. Mathematical algorithms developed for
Bayesian networks are suited to solve probabilistic questions on DAG structures.
They achieve reasonable running times in practice while being exponential in the
worst case. They are polynomial if the DAG is actually a tree.

According to Qin and Lee, the objective of Bayesian networks for security is to “use
probabilistic inference techniques to evaluate the likelihood of attack goals and pre-
dict potential upcoming attacks” [QL04]. They proposed the following procedure
that converts an attack tree into a Bayesian network. Every node in the attack tree
is also present in the Bayesian network. An OR relationship from an attack tree
is modeled in the Bayesian network with edges pointing from refining nodes that
represent causes into the corresponding refined nodes that represent consequences.
Deviating from regular attack trees, an AND relationship is assumed to have an ex-
plicit (or implicit) order in which the actions have to be executed. This allows us to
model the AND relationship by a directed path, which starts from the first (accord-
ing to the order) child and ends with the parent node. Dantu et al. follow a different
strategy when using Bayesian networks to model security risk management starting
from behavior-based attack graphs13 [DLK04,DK05,DKAL07,DKaWC09]. When
processing multi-parameter attack trees with estimated parameter values (Sec-
tion 7.4.1), Jürgenson and Willemson use Qin and Lee’s conversion of an attack
tree to a Bayesian network [JW07]. An et al. propose to add a temporal dimension
and to use dynamic Bayesian networks for intrusion detection without specifying
how the graph is set up [AJC06]. Althebyan and Panda use knowledge graphs and
dependency graphs as basis for the construction of a Bayesian network [AP08].
They analyze a specific type of insider attack and state that their computational
procedures were inspired by Dantu et al. Another approach involving Bayesian net-
works is described by Xie et al. who analyze intrusion detection systems [XLO+10].
They state that the key to using Bayesian networks is to “correctly identify and
represent relevant uncertainties” which governs their setup of the Bayesian net-
work.

Bayesian networks are used to analyze security under uncertainty. The DAG struc-
ture is of great value because it allows the use of efficient algorithms. On the one
hand there exist efficient inference algorithms that compute a single query (vari-
able elimination, bucket-elimination and importance, which are actually equivalent
according to Pouly and Kohlas [PK11]) and on the other hand there are infer-
ence algorithms that compute multiple queries at once (bucket tree algorithm and
Lauritzen-Spiegelhalter algorithm). In fact, the efficiency of these algorithms can
be seen as main reason for the success of Bayesian networks since querying general
graphs is an NP-hard problem [Arn85,Bod93]. Another strength of Bayesian net-
works is their ability to update the model, i.e., compute a posteriori distribution
when new information is available.

We have not found any dedicated tools for the analysis of Bayesian networks for
security. However, numerous tools exist that allow a visual treatment of standard
Bayesian networks. One such tool is the Graphical Network Interface (GeNIE) that

13The authors do not appear to make a distinction between attack trees and attack graphs.
Since their methodology is only applicable to cycle-free structures and they do not mention how
to deal with cycles, we assume that the methodology is actually based on attack DAGs or attack
trees.

7.4 Description of the Formalisms 183

uses the Structural Modeling, Inference and Learning Engine (SMILE) [Dec13]. It
was, for example, used in [NJL+09] to analyze the interoperability of a small cluster
of services and mentioned as hypothetical use in [FSEJ08]. Another one, called
MulVAL [OGA05], was actually developed for attack graphs (Section 7.6.2), but
used in [XLO+10] to implement a Bayesian network model. A third tool, tailored
to statistical learning with Bayesian networks is bnlearn [Scu10].

There also exist isolated papers that promote the use of Bayesian networks in
security without any relation to attack trees or attack graphs. Houmb et al. quantify
security risk level from Common Vulnerability Scoring System (CVSS) estimates
of frequency and impact using Bayesian networks [HFE09]. Feng and Xie also
use Bayesian networks and provide an algorithm of how to merge two sources
of information, expert knowledge and information stored in databases, into one
graph [FX12]. Note that in this section we have gathered approaches that rely on
Bayesian networks whose construction starts from graphs that do not contain any
cycles. Graphical models that make use of Bayesian networks and that initially
contain cycles are treated under the heading Bayesian attack graphs, ones that
include defenses are treated in Section 7.4.4.

Bayesian Attack Graphs

Bayesian Attack Graphs combine (general) attack graphs (Section 7.6.2), with
computational procedures of Bayesian networks (Section 7.4.2). However, since
Bayesian inference procedures only work on cycle-free structures, the formalism
includes instructions on how to remove any occurring cycles. Hence, any final
Bayesian attack graph is acyclic. After the elimination of cycles, Bayesian at-
tack graphs model causal relationships between vulnerabilities in the same way
as Bayesian networks. Bayesian attack graphs were first proposed by Liu and Man
in order to analyze network vulnerability scenarios with the help of Bayesian infer-
ence methods in 2005 [LM05]. Therefore, the formalism advances computational
methods in security where uncertainty is considered.

The formalism of Man and Liu is not the only fusion of attack graphs and Bayesian
networks. Starting in 2008 a group of researchers including Frigault, Noel, Jajo-
dia and Wang published a paper on a modified version of Bayesian attack graphs.
Their goal was to be able to calculate general security metrics regarding infor-
mation system networks which also contain probabilistic dependencies [NJWS10,
FW08]. Later they extended the formalism, using a second copy of the model as
time slice, to also capture dynamic behavior in so called dynamic Bayesian net-
works [FWSJ08]. In 2012, Poolsappasit et al. revisited the framework to be able
to deal with asset identification, system vulnerability and connectivity analysis as
well as mitigation strategies [PDR12]. All three approaches eliminate cycles that
possibly exist in the underlying attack graph. A shortcoming of Liu and Man is
that they do not provide a specific procedure on how to achieve this. The group in-
cluding Frigault refers to a paper on attack graphs [WIL+08] which removes cycles
through an intricate procedure. Poolsappasit et al. state that they rather analyze
why an attack can happen and not how an attack can happen and therefore, “cycles
can be disregarded using the monotonicity constraint” mentioned in [AWK02].

Since Bayesian attack graphs are cycle-free, evaluation on them can make use

184 Chapter 7 Related Formalisms

of Bayesian inference techniques. For this it is necessary to provide probabilis-
tic information. The three approaches differ in how they compute quantitative
values. Liu and Man provide edge probabilities [LM05], Frigault et al. give condi-
tional probability tables for nodes which are estimated according to their CVSS
score [FW08] and Poolsappasit et al. use (local) conditional probability distri-
butions for nodes [PDR12]. Furthermore, Poolsappasit et al. augment Bayesian
attack graphs with additional nodes and values representing hardening measures
(defenses). On the augmented structure they propose a genetic algorithm that
solves a multiobjective optimization problem of how to assess the risk in a network
system and select optimal defenses [PDR12].

The research group including Wang uses a Topological Vulnerability Analysis
(TVA) tool [JNO05, NEJ+09] to create the attack graphs that serve as basis for
constructing Bayesian attack graphs. Poolsappasit et al. have developed an unref-
erenced in-house tool that allows them to compute with conditional probability
distributions.

Wang et al. [FW08, FWSJ08] state that their work is also based on a paper by
An et al. [AJC06], who use Bayesian networks without cycles for modeling risks of
violating privacy in a database.

Compromise Graphs

McQueen et al. introduced compromise graphs in 2006 [MBFB06]. Compromise
graphs are based on directed graphs14 and are used to assess the efficiency of tech-
nical security measures for a given network architecture. The nodes of a compromise
graph represent the phases of an attack, detailing how a given target can become
compromised. The edges are weighted according to the estimated time required to
complete the corresponding phase for this compromise. The overall time needed
for the attacker to succeed is computed and compared along different defensive
settings, providing a metric to assess and compare the efficiency of these different
defensive settings.

The formalism has a sound mathematical formalization: a time to compromise
(TTC) metric is modeled for each edge as a random process combining three sub-
processes. Each of these processes has a different probability distribution (mixing
exponential, gamma and beta-like distributions). The values for the process model
parameters are based on the known vulnerabilities of the considered component
and the estimated skill of the attacker. A complete description and justification
of such a stochastic modeling are provided by the same authors in a previous pa-
per [MBFB05]. In compromise graphs, five types of stages, corresponding to the
vertices of the graph, are modeled: recognition, breaching the perimeter, penetra-
tion, escalation of privilege, damage.

Compromise graphs are used to evaluate the efficiency of security measures, such
as system hardening, firewalls or enhanced authentication. This is achieved by
comparing the shortest paths (in terms of TTC) of compromise graphs with and
without such measures in place.

14The authors do not state whether these directed graphs are acyclic or not, but the description
of compromise graphs and their examples led us to consider compromise graphs as DAGs.

7.4 Description of the Formalisms 185

The approach is illustrated in [MBFB06] by modeling attacks on a SCADA system.

Leversage and Byres adopt a similar approach in [LB08, LB07], called state-time
estimation algorithm (STEA), directly inspired by McQueen et al. They combine
a slightly modified TTC calculation approach with a decomposition of the attack
according to the architectural areas of the targeted system.

Enhanced Attack Trees

Enhanced attack trees have been introduced by Çamtepe and Yener to support an
intrusion detection engine by modeling complex attacks with time dependencies.
This model was first described in a technical report [ÇY06] in 2006. One year later,
the corresponding proceedings [ÇY07] were published.

In addition to classical AND and OR gates, enhanced attack trees rely on the
use of a new gate, the ordered AND, which allows us to capture sequential be-
havior and constraints on the order of attack steps. The model of enhanced at-
tack trees has sound mathematical foundations. Additionally to the formalism
description, [ÇY07] devises a new technique for the detection of attacks. The new
technique is based on automata theory and it allows us to verify completeness of
enhanced attack tree models with respect to the observed attacks.

The quantification capabilities described in [ÇY07] are directly related to intrusion
detection (probability of a given attack occurring based on a set of observed events).
A confidence attribute measured in percent is defined for subgoals as “the chance
of reaching the final goal of the attacker when a subgoal is accomplished”. It is
computed as the ratio of all accomplished events until a subgoal is realized, over
all events of the modeled scenario. This attribute aims at supporting an early
warning system, supporting decision-making and reaction before actual damages
occur. Moreover, [ÇY07] introduces an original parameter called time to live which
allows us to express that some steps are only available in a given time window.

In [MKY12], Mishra et al. also make use of ordered AND operators, referring
to [ÇY07]. The authors visually describe Stuxnet and similar attacks, but do not
use Çamtepe and Yener’s rigorous formalization to analyze the models.

Vulnerability Cause Graphs

Vulnerability cause graphs (VCG) were invented in 2006 by Ardi et al. as a key
element of a methodology that supports security activities throughout the entire
software development lifecycle [ABS06].

The formalism can be seen as a root cause analysis for security-related software
failures because it relates vulnerabilities with their causes. In a VCG, every node
except for one, has an outgoing directed edge. The single node without a successor
is called the exit node and represents the considered vulnerability. All other nodes
represent causes. The predecessor–successor (parent–child) relationship shows how
certain conditions (nodes) may cause other conditions (nodes) to be a concern.
In an improved version of VCGs [BASD06], nodes can be simple, compound or
conjunctions. Simple nodes represent conditions that may lead to a vulnerability.
Compound nodes facilitate reuse, maintenance and readability of the models. Con-

186 Chapter 7 Related Formalisms

junctions represent groups of two or more nodes. Contrarily, disjunctions occur if a
node has two or more predecessors. In this case, the original node may have to be
considered if either of its predecessors has to be considered. Finally, if the causes
have to follow a certain order, they are modeled as sequences of nodes. To construct
a VCG, the exit node is taken as a starting point and refined with causes.

In VCGs, nodes can be annotated as blocked if the underlying causes are mitigated.
The blocked flag allows the user to compute whether the underlying vulnerability
(exit node) is also mitigated. VCGs are also equipped with a notion of graph
transformations that do not change whether the vulnerability is mitigated or not.
The transformations include conversions of conjunctions, reordering of sequences,
combination of nodes, conversion to compound nodes as well as derived transfor-
mations.

In [BASD06] the vulnerability CVE-2003-0161, in [BS07] the vulnerability CVE-
2005-2558 and in [MCM+09] the vulnerability CVE-2005-3192 is analyzed with
the help of VCGs. Furthermore, [CH07] contains an additional three case studies
on common software vulnerabilities which have been performed using VCGs. The
SHIELDS project [SHI10a] has developed a software tool GOAT [SHI10c] to be
used in conjunction with VCGs.

VCGs were developed as part of a comprehensive methodology to reduce software
vulnerabilities that arise in ad hoc software development. They are the starting
point to build security activity graphs (Section 7.4.3). By introducing compound
nodes, the inventors of the formalism have created a model that allows different
layers of abstraction, which in turn introduced a problematic design decision of
how many layers of abstraction are needed.

Dynamic Fault Trees for Security

In 2009, Khand [Kha09] adapted several dynamic fault tree [DBB90,DBB92] gates
to attack trees, in order to add a dynamic dimension to classical attack trees. The
aim of the formalism is similar to that of attack trees (Section 7.4.1).

To overcome limitations of static fault trees, dynamic fault trees [DBB90,DBB92]
were invented by Dugan et al. in the early 1990s. They aim at combining the
dynamic capacities of Markovian models with the look and feel of fault trees.
To achieve this, four dynamic gates are used: the priority AND (PAND), the se-
quence gate (SEQ), the functional dependency gate (FDEP) and the cold spare
gate (CSP). Khand reuses directly the three first gates (although renaming FDEP
gates by CSUB, for Conditional Subordination, gates), leaving out the CSP gates.
The PAND gate reaches a success state if all of its input are realized in a pre-
assigned order (from left to right in the graphical notation). The SEQ gate allows
us to model that a series of events necessarily occurs in exactly one order (from
left to right in the graphical notation). Once all the input events are realized, the
gate is verified. The CSUB gate models the need of the realization of a trigger
event to allow a possible realization of others events. The Dynamic fault tree com-
bines dynamic gates with classical logical gates (AND and OR). Dynamic gates are
formally defined with truth tables in [Kha09] and by Markov processes in the gen-
eral definitions of dynamic fault trees from the safety literature [DBB90, DBB92]

7.4 Description of the Formalisms 187

(although the description is still incomplete [Bou07]).

There are no quantification aspects developed in [Kha09].

The paper by Khand does not specify which tool to use in order to treat the
models, but several tools exist for dynamic fault trees in the reliability area, e.g.,
Galileo [DSC00].

In safety studies, quantifications associated with dynamic fault trees are usually
made using Markovian analysis techniques; those may be used here also although
nothing is said about computational aspects.

Serial Model for Multi-Parameter Attack Trees

In 2010, the parallel model for multi-parameter attack trees (Section 7.4.1) has been
extended by adding a temporal order on the set of elementary attacks [WJ10]. This
new methodology is called serial model for multi-parameter attack trees and was
studied further in [Jür10,Nii10] and [BS12].

The model described in [Jür10] and [Nii10] assumes that an adversary performs the
attacks in a given prescribed order. In [BS12], the authors introduce the so-called
fully-adaptive adversary model, where an attacker is allowed to try atomic attacks
in an arbitrary order which is not fixed in advance and can be modified based on
the results of the previous trials. With either order, the serial approach allows for
a more accurate modeling of an attacker’s behavior than the parallel approach.
In particular, the attacker can skip superfluous elementary attacks and base his
decisions on success or failure of the previously executed elementary attacks.

In [WJ10], an efficient algorithm for computing an attacker’s expected outcome
assuming a given order of elementary attacks is provided. Taking temporal de-
pendencies into account allows the attacker to achieve a better expected outcome
than when the parallel model (Section 7.4.1) is used. As remarked in [JW10], find-
ing the best permutation of the elementary attacks in the serial model for multi-
parameter attack trees may turn computing the optimal expected outcome into
a super-exponential problem. In [Nii10], Niitsoo proposed a decision-theoretical
framework which makes it possible to compute the maximal expected outcome of
a goal oriented attacker in linear time. In [BS12], Buldas and Stepanenko propose
a game theoretical framework to compute upper bounds of the utility of fully-
adaptive adversaries.

A prototype computer tool supporting the security analysis using the serial model
of multi-parameter attack trees has been implemented [And10a] and has been
described in [And10b].

A thorough comparison of the parallel and the serial model for multi-parameter
attack trees has been given in the Ph.D. thesis of Jürgenson [Jür10]. Baca and
Petersen mention that in order to use parametrized attack trees, the user needs to
have a good understanding of the motivations of the attacker [BP10]. To overcome
this difficulty, cumulative voting is used in countermeasure graphs (Section 7.4.3).

188 Chapter 7 Related Formalisms

Improved Attack Trees

Improved attack trees aim at dealing with security risks that arise in space-based in-
formation systems. They were proposed by Wen-ping and Wei-min [WW11] in 2011
to more precisely describe attack on the information transmitting links, acquisi-
tions systems and ground-based supporting and application systems.

The formalism is based on attack trees and explicitly incorporates the use of the
sequential AND operator. It is not defined in a formal way. Improved attack trees
rely heavily on the description by Schneier and only detail how to specifically
compute the system risk.

Improved attack trees provide a specific formula to evaluate a risk value for each
leaf node. Starting from these risk values, the risk rate and the risk possibility
are computed and multiplied to compute the overall system risk. The formulas
distinguish between OR, AND and sequential AND nodes.

7.4.3 Static Modeling of Attacks and Defenses

Anti-Models

Anti-models [vLBLJ03] have been introduced by van Lamsweerde et al. in 2003.
They are closely related to AND-OR goal-refinement structures [vLL00] (some-
times called goal models) used for goal analysis in requirements engineering. Anti-
models extend such AND-OR goal-refinement structures with the possibility of
modeling malicious and intentional obstacles to security goals, called anti-goals.
They can be used to generate subtle attacks, discard non-realizable or unlikely
ones and derive more effective customized resolutions.

In [vLBLJ03] and later in an extended version [vL04], van Lamsweerde et al. pro-
vide a six-step procedure for a systematic construction of anti-models. First, anti-
goals, representing attackers’ goals, are obtained by negating confidentiality, pri-
vacy, integrity, availability, authentication or non-repudiation requirements. For
each anti-goal, the questions “Who?” and “Why?” are asked to identify poten-
tial classes of attackers and their higher-level anti-goals. An AND-OR refinement
process is then applied to reach terminal anti-goals that are realizable by the at-
tackers. The resulting AND-OR anti-models relate “attackers, their anti-goals,
referenced objects and anti-operations (necessary to achieve their anti-goals) to
the attackees, their goals, objects, operations and vulnerabilities”. The construc-
tion of anti-models is only informally presented in [vLBLJ03]. Formal techniques
developed for AND-OR goal-refinement structures (such as refinement obstacle
trees) [vLL00] can be used for the generation and analysis of anti-models. In par-
ticular, real-time temporal logic can be employed to model anti-goals as sets of
attack scenarios. After identifying possible anti-goals, countermeasures expressed
as epistemic extensions of real-time temporal logic operators are selected based on
severity or likelihood of the corresponding threat and non-functional system goals
that have been identified earlier. Possible resolutions tactics, inspired by solutions
proposed for the analysis of non-functional requirements in software engineering,
are described in [vLL00] and [vL04]. Applying resolution operators yields new se-
curity goals to be integrated in the model. These new goals are then again refined

7.4 Description of the Formalisms 189

with the help of AND-OR structures. These, in turn, may require a new round of
anti-model construction and analysis.

Anti-models do not include quantitative analysis of security goals or anti-goals.

Defense Trees

Defense trees15 are attack trees where leaf nodes are decorated with a set of counter-
measures. They were introduced by Bistarelli et al. in 2006 [BFP06]. The approach
combines qualitative and quantitative aspects and serves general security modeling
purposes.

The approach proposed by Bistarelli et al. was a first step towards integrating
a defender’s behavior into models based on attack trees. The analysis methodol-
ogy for defense trees proposed in [BFP06] and [BDP06] uses rigorous and formal
techniques, such as calculation of economic indices and game theoretical solution
concepts. However, the model itself is only introduced verbally and a formal defi-
nition is not given.

In [BFP06], the return on attack (ROA) and return on investment (ROI) indices
are used for quantitative analysis of defense trees from the point of view of an
attacker and a defender, respectively. The calculation of ROI and ROA is based on
the following parameters: costs, impact, number of occurrences of a threat and gain.
The indices provide a useful method to evaluate IT security investments and to
support the risk management process. In [BDP06], game theoretical reasoning was
introduced to analyze attack–defense scenarios modeled with the help of defense
trees. In this paper, a defense tree represents a game between two players: an
attacker and a defender. The ROI and ROA indices, are used as utility functions
and allow us to evaluate the effectiveness and the profitability of countermeasures.
The authors of [BDP06] propose using Nash equilibria to select the best strategy
for the players.

In [BPT08], defense trees have been extended to so-called CP-defense trees, where
modeling of preferences between countermeasures and actions is possible. Trans-
forming CP-defense trees into answer set optimization (ASO) programs, allows us
to select the most suitable set of countermeasures, by computing the optimal an-
swer set of the corresponding ASO program. Formalisms such as attack–defense
trees (Section 7.4.3), and attack countermeasure trees (Section 7.4.3) extended de-
fense trees by allowing defensive actions to be placed at any node of the tree and
not only at leaf nodes.

Protection Trees

Protection trees are a tree-based formalism which allow a user to allocate limited
resources towards the appropriate defenses against specified attacks. The method-
ology was invented by Edge et al. in 2006, in order to incorporate defenses in the
attack tree methodology [EDRM06].

15Papers by Bistarelli et al. use British English, thus originally, the name of their formalism is
defence trees.

190 Chapter 7 Related Formalisms

Protection trees are similar to attack trees since both decompose high-level goals
into smaller manageable pieces by means of an AND-OR tree structure. The dif-
ference is that in protection trees the nodes represent protections. A protection
tree is generated from an already established attack tree by finding a protection
against every leaf node of the attack tree. Then the attack tree is traversed in a
bottom-up way and new protection nodes are added to the protection tree if the
protection nodes do not already cover the parent attack node.

The AND-OR structure of protection trees is enriched with three metrics, namely
probability of success, financial costs and performance costs on which the stan-
dard bottom-up approach is applied [EDRM06, ERG+07, Edg07]. In [DEMR10],
an additional metric, the impact, helps to further prioritize where budget should
be spent.

The formalism has been investigated in case studies on how the U.S. Depart-
ment of Homeland Security can allocate resources to protect their computer net-
works [EDRM06], how an attack on an online banking system can be mitigated
cost-efficiently [ERG+07], how to cheaply protect against an attack on computer
and RFID networks [DEMR10] as well as a mobile ad hoc network [Edg07]. When
evaluating which defenses to install, the authors propose to first prune the tree
according to the attacker’s assumed capabilities. A larger, more applied case study
to “evaluate the effectiveness of attack and protection trees in documenting the
threats and vulnerabilities present in a generic Unmanned Aerial Systems (UAS)
architecture” was performed by Cowan et al. [CGP08].

In [ERG+07] a slightly different algorithm for the creation of a protection tree
was proposed. Here a designer starts by finding defenses against the root of an
attack tree instead of the leaves, as in [EDRM06,Edg07]. An approach similar to
protection trees has been proposed in [RHCM12] to deal with the problem of threat
modeling in software development. The paper uses so-called identification trees to
identify threats in software design and introduces the model of mitigation trees
to describe countermeasures for identified threats. Despite an obvious modeling
analogy between protection trees and mitigation trees, no connection between the
two models has been made explicit in the literature.

Security Activity Graphs

In 2006, Ardi, Byers and Shahmehri introduced a formalism called security activ-
ity graphs (SAGs). The methodology was invented in order to “improve security
throughout the software development process” [ABS06]. SAGs depict possible vul-
nerability cause mitigations and are algorithmically generated from vulnerability
cause graphs (Section 7.4.2).

SAGs are a graphical representation of first order predicate calculus and are based
loosely on ideas from fault tree analysis. In [ABS06] the root of a SAG is associ-
ated with a vulnerability, taken from a vulnerability cause graph. The vulnerability
mitigations are modeled with the help of activities (leaf nodes). The syntax, fur-
thermore, consists of AND-gates, OR-gates and split gates. The AND and OR-gates
strictly follow Boolean logic, whereas the split gate allows one activity to be used
in several parent activities, essentially creating a DAGs structure. The syntax of

7.4 Description of the Formalisms 191

SAGs was changed in [BS08] for a more concise illustration of the models. Split
gates no longer appear in the formalism. The functionality that simple activities
can be distinguished from compound activities (complex activities that may re-
quire further breakdown) was added. Moreover, cause references (possible attack
points) serve as placeholders for a different SAG associated with a particular cause.

In the SAG model, Boolean variables are attached to the leaves of the SAG. A
Boolean variable corresponding to an activity is true when it is implemented per-
fectly during software development otherwise, it is false. Then a value corresponding
to the root of the SAG is deduced in a bottom-up fashion according to Boolean
logic.

Visually representing SAGs is supported by the tools SeaMonster [MSH+08] and
GOAT [SHI10c]. Furthermore, SAGs have been used in [BS08,BS07] to model the
vulnerability CVE-2005-2558 in MySQL that leads to denial of service or arbitrary
code execution.

Even though the model was devised in order to aid the software development cycle,
the authors explicitly state that SAGs “lend themselves to other applications such
as process analysis”. SAGs are the middle step of a broader three-step approach
for secure software development, with vulnerability cause graphs as a first step,
and process component definition as a final step. In 2010 SAGs were replaced by
security goal models (Section 7.4.4)

Attack Countermeasure Trees

Roy et al. proposed attack countermeasure trees (ACTs) [RKT10a,RKT10b] in 2010
as a methodology for attack and defense modeling which unifies analysis methods
proposed for attack trees (Section 7.4.1) with those introduced on defense trees
(Section 7.4.3). The main difference of ACTs with respect to defense trees is that
in ACTs defensive measures can be placed at any node of the tree. Also, the quanti-
tative analysis proposed for defense trees is extended by incorporating probabilistic
analysis into the model. ACTs were first introduced in [RKT10b] and then further
developed in [RKT12a].

ACTs may involve three distinct classes of events: attack events, detection events
and mitigation events. The set of classical AND and OR nodes, as defined for
attack trees, is extended with the possibility of using k-out-of-n nodes. Generation
and analysis of attack countermeasure scenarios is automated using minimal cut
sets (mincuts). Mincuts help to determine possible ways of attacking and defending
a system and to identify the system’s most critical components.

A rigorous mathematical framework is provided for quantitative analysis of ACTs
in [RKT10b] and [RKT12a]. The evaluation of the ROI and ROA attributes, as
proposed for defense trees (Section 7.4.3), has been extended by adding the proba-
bility of attack, detection and mitigation events. The authors of [RKT12a] provide
algorithms for probability computation on trees with and without repeated nodes.
With the help of probability parameters, further metrics, including cost, impact,
Birnbaum’s importance measure and risk, are evaluated. The use of the Birnbaum’s
importance measure (also called reliability importance measure, in the case of fault
trees) is used to prioritize defense mechanisms countering attack events. Further-

192 Chapter 7 Related Formalisms

more, in [RKT12a], Roy et al. propose a cubic algorithm to select an optimal set of
countermeasures for an ACT. This addresses the problem of state-space explosion
that the intrusion response and recovery engine based on attack-response trees
(Section 7.4.4) suffers from. Finally, in [RKT12b] the problem of selecting an opti-
mal set of countermeasures with and without having probability assignments has
been discussed.

The authors of [RKT12a] implemented a module for automatic description and
evaluation of ACTs in a modeling tool called Symbolic Hierarchical Automated
Reliability and Performance Evaluator [TS09]. This implementation uses already
existing algorithms for the analysis of fault trees and extends them with algorithms
to compute costs, impact and risk. Case studies concerning attacks on the Border
Gateway Protocol (BGP), SCADA systems and malicious insider attacks have been
performed using ACTs, as described in the master’s thesis of Roy [Roy10].

The model of attack countermeasure trees is similar to attack–defense trees. The
main differences between the two models are listed in Section 7.4.3.

Attack–Defense Trees

In 2010, Kordy et al. proposed Attack–defense trees (ADTrees) [10KMRS]. They
allow for the illustration of security scenarios that involve two opposing players: an
attacker and a defender. Consequently it is possible to model interleaved attacker
and defender actions qualitatively and quantitatively. ADTrees can be seen as
merging attack trees (Section 7.4.1) and protection trees (Section 7.4.3) into one
formalism. They are the topic of discussion in this thesis.

In ADTrees, both types of nodes, attacks and defenses, can be conjunctively as well
as disjunctively refined. Furthermore, the formalism allows for each node to have
one child of the opposite type. Children of opposite type represent countermeasures.
These countermeasures can be refined and countered again. Two sets of formal
definitions build the basis of ADTrees: a graph-based definition and an equivalent
term-based definition. The graph-based definition ensures a visual and intuitive
handling of ADTree models. The term-based representation allows for formal rea-
soning about the models. The formalism is enriched through several semantics that
allow us to define equivalent ADTree representations of a scenario [12KMRS]. The
necessity for multiple semantics is motivated by diverse applications of ADTrees,
in particular unification of other attack tree related approaches and suitability for
different kinds of computations. In [11KPS], the authors showed that, for a wide
class of semantics (i.e., every semantics induced by a De Morgan lattice), ADTrees
extend the modeling capabilities of attack trees without increasing the compu-
tational complexity of the model. In [12KMRS] every frequently used semantics
for ADTrees has been characterized by finite axiom schemes, which provides an
operational method for defining equivalent ADTree representations. The authors
of [10KMMS], have established a connection between game theory and graphical
security assessment using ADTrees. More precisely, ADTrees under a semantics
derived from propositional logics are shown to be equally expressive as two-player
binary zero-sum extensive form games.

The standard bottom-up algorithm, formalized for attack trees in [MO05], has

7.4 Description of the Formalisms 193

been extended to ADTrees in [12KMRS]. This required the introduction of four
new operators (two for conjunction and disjunction of defense nodes and two for
countermeasure links) [12KMRS]. Together with the two standard operators (for
conjunctions and disjunctions of attack nodes) and a set of values, the six operators
form an attribute domain. Specifying attribute domains allows the user to quan-
tify a variety of security relevant parameters, such as time of attack, probability of
defense, scenario satisfiability and environmental costs. The authors of [12KMRS]
show that every attribute for which the attribute domain is based on a semiring
can be evaluated on ADTrees using the bottom-up algorithm. Proper specifica-
tion of attribute domains in terms of questions in natural language was presented
in [12KMS].

An extensive case study on an existing, real-life RFID goods management sys-
tem was performed by academic and industrial researchers with different back-
grounds [12BKMS]. The case study resulted in specific guidelines about the use
of attributes on ADTrees. A software tool, called the ADTool, see Section 5.6,
supporting ADTree methodology, has been developed as one of the outcomes of
the ATREES project [ATR12]. The main features of the tool are easy creation,
efficient editing and quantitative analysis of ADTrees [13KKMS]. Since from a for-
mal perspective, attack trees (Section 7.4.1), protection trees (Section 7.4.3), and
defense trees (Section 7.4.3) are instances of attack–defense trees, the ADTool also
supports all these formalisms.

Finally, ADTrees can be seen as a natural extension of defense trees (Section 7.4.3),
where defenses are only allowed as leaf nodes. The ADTree formalism is similar to
the formalism of attack countermeasure trees (Section 7.4.3), however, there exist
a couple of fundamental differences between the two models. On the one hand, in
ADTrees defense nodes can be refined and countered, which is not possible in attack
countermeasure trees. On the other hand, attack countermeasure trees distinguish
between detection and mitigation events which are both modeled with defense
nodes in ADTrees. Another difference is that attack countermeasure trees are well-
suited to compute specific parameters, including probability, return on investment
(ROI) and return on attack (ROA). ADTrees, in turn, focus on general methods for
attribute computation. A different formalism, also called attack–defense trees, was
used by Du et al. in [DLDZ12] to perform a game-theoretic analysis of Vehicular
ad hoc network security by utilizing the ROA and ROI utility functions. Despite
sharing the same name with the formalism introduced in [12KMRS], the attack–
defense tree approach used in [DLDZ12] is built upon defense trees (Section 7.4.3)
and does not contain the possibility to refine countermeasures. Moreover, it does
not consider any formal semantics.

Countermeasure Graphs

Countermeasure graphs provide a DAG-based structure to identify and prioritize
countermeasures. They were introduced by Baca and Petersen [BP10] in 2010 as an
integral part of the countermeasure method for security which aims at simplifying
countermeasure selection through cumulative voting.

To build the graphical model, actors, goals, attacks and countermeasures are iden-
tified. Goals explain why actors attack a system, attacks detail how the system

194 Chapter 7 Related Formalisms

could get attacked and countermeasures describe how attacks could be prevented.
When the representing events are related, edges are drawn between goals and ac-
tors, actors and attacks as well as between attacks and countermeasures. More
specifically, an edge is drawn between a goal and an actor if the actor pursues the
goal. An edge is inserted between an actor and an attack if the actor is likely to
be able to execute the attack. Finally, an edge is drawn between an attack and
a countermeasure if the countermeasure is able to prevent the attack. Priorities
are assigned to goals, actors, attacks and countermeasures according to the rules
of hierarchical cumulative voting [BS09]. The higher the assigned priority is, the
higher is the threat level of the corresponding event.

With the help of hierarchical cumulative voting [BS09] the most effective counter-
measures can be deduced. Clever normalization and the fact that countermeasures
that prevent several attacks contribute more to the final result than isolated coun-
termeasures guarantee that the countermeasure with the highest computed value
is most efficient and should, therefore, be implemented.

The methodology is demonstrated on an open source system, a first person shooter
called Code 43 [BP10].

7.4.4 Sequential Modeling of Attacks and Defenses

Insecurity Flows

In 1997, Moskowitz and Kang described a model called insecurity flows to support
risk assessment [MK97]. It combines graph theory and discrete probability theory,
offering both graphical representation and quantification capabilities to analyze
“How can an invader penetrate through security holes to various protective security
domains?” This analysis aims at identifying the most vulnerable paths and the most
appropriate security measures to eliminate the vulnerabilities of the system.

From a high-level perspective, insecurity flows are similar to reliability block dia-
grams [DP08] used in reliability engineering. The source corresponds to the starting
point of the attacker, the sink corresponds to the objective of the attacker and the
asset under protection. An insecurity flow diagram is a circuit connecting security
measures, as serial or in parallel, from the sink to the source. Serial nodes must be
passed by the attacker one after another, whereas for parallel nodes only one out
of n must be passed to continue on the path to the sink. The graph is used to iden-
tify insecurity flows and quantify them using probabilistic calculations. The paper
provides a sound description of the formalism and the associated quantifications.

Based on the circuit, the probability that the insecurity flow can pass through the
modeled security measures of a given system or architecture can be computed.
Probability computation formulas for simple serial and parallel patterns are pro-
vided, whereas reduction formulas are proposed for more elaborated circuits (de-
composing them into the simple patterns). Several defensive architectures can be
compared along this metric.

7.4 Description of the Formalisms 195

Intrusion DAGs

Intrusion DAGs (I-DAGs) have been introduced by Wu et al. [WFM+03] as the
underlying structure for attack goals representation in the Adaptive Intrusion Tol-
erant System, called ADEPTS in 2003. The global goal of ADEPTS is to localize
and automatically respond to detected, possibly multiple and concurrent intrusions
on a distributed system.

I-DAGs are directed acyclic graphs representing intrusion goals in ADEPTS. I-
DAGs are not necessarily rooted DAGs, i.e., they may have multiple roots. The
nodes of an I-DAG represent goals or subgoals of an attack and can be associated
with an alert from the intrusion detection framework described in [WFMB03].
A goal represented by a node can only be achieved if (some of) the goals of its
children are achieved. To model the connection, I-DAGs use standard AND and
OR refinement features similar to the refinements in attack trees. Each node stores
two information sets: a cause service set (including all services that may/must
be compromised in order to achieve the goal) and an effect service set (including
all services that are taken to be compromised once the goal is achieved). The
method presented in [WFM+03] allows us to automatically trigger a response of
appropriate severity, based on a value which expresses the confidence that the goal
corresponding to a node has been achieved. This provides dynamic aspects to the
ADEPTS methodology.

Three algorithms have been developed in order to support automated responses to
detected incidents. The goal of the first algorithm is to classify all nodes as can-
didates for responses as follows. A bottom-up procedure assigns the compromised
confidence index to each node situated on the paths between the node representing
a detected incident and a root node. Then, a value called threshold is defined by
the user and is used by a top-down procedure to label the nodes as strong, weak or
non-candidates for potential responses. The second algorithm assigns the response
index to nodes. The response index is a real number used to determine the re-
sponse to be taken for a given node in the I-DAG. Finally, the third algorithm is
based on a so-called effectiveness index. It is responsible for dynamically deciding
which responses are to be taken next. Intuitively, the effectiveness index of a node
is reduced for every detected failure of a response action and increased for every
successful deployment.

A lightweight distributed e-commerce system has been deployed to serve as a test
bed for the ADEPTS tool. The system contained 6 servers and has 26 nodes in the
corresponding I-DAG. The results of the experiments and analysis are described
in [WFM+03].

In [FWM+05] and [WFM+05], the authors extend the model of intrusion DAGs
to intrusion graphs (I-GRAPHs). The main difference is that, contrary to I-DAGs,
I-GRAPHs may contain cycles. Nodes of an I-GRAPH do not need to be indepen-
dent. All dependencies between the nodes are depicted by the edges between nodes.
Additionally to AND and OR refinements, I-GRAPHs also make use of quorum
edges. A value called minimum required quorum is assigned to quorum edges and
represents the minimal number of children that need to be achieved in order to
achieve the parent node.

196 Chapter 7 Related Formalisms

Bayesian Defense Graphs

In a series of papers starting in 2008, Sommestad et al. construct a Bayesian
network for security (Section 7.4.2) that includes defenses to perform enterprise
architecture analysis [FSEJ08, SEJ08, SEJ09, ES09, SEN09]. Their model, explic-
itly called Bayesian defense graphs in [SEJ09], is guided by the idea of depicting
what exists in a system rather than what it is used for [SEJ09]. This philosophy
was adapted from [JJSU07]. Bayesian defense graphs are inspired by defense trees
(Section 7.4.3) and, therefore, add countermeasures to Bayesian networks. As a
result, the formalism supports a holistic system view including attack and defense
components.

Bayesian defense graphs build up on extended influence diagrams (Section 7.6.4),
including utility nodes, decisions nodes, chance nodes and arcs. Chance nodes and
decision nodes are associated with random variables that may assume one of sev-
eral predefined and mutually exclusive states. The random variables are given as
conditional probability tables (or matrices). Utility nodes express the combination
of states in chance nodes and decision nodes. Countermeasures, which are control-
lable elements from the perspective of the system owner, are represented as chance
nodes with adapted conditional probability tables. Finally, causal arcs (including
an AND or OR label) are drawn between the nodes indicating how the conditional
probabilities are related. A strength of Bayesian defense graphs is that they allow
a trade-off between collecting as much data as possible and the degree of accuracy
of the collected data. Through the use of iterative refinements, it is possible to
reduce the complexity of the model [SEJ09].

Like all formalisms that involve Bayesian statistics, Bayesian defense graphs use
conditional probability tables to answer “How do the security mechanisms influence
each other?” and “How do they contribute to enterprise-wide security?” [SEJ08].
The authors of [SEJ08] exemplify how to compute the expected loss for both the
current scenario and potential future scenarios. In [FSEJ08], a suitable subset of
a set of 82 security metrics known as Joint Quarterly Readiness Review (JQRR)
metrics has been selected and adapted to Bayesian defense graphs. The metrics
serve as “a posteriori indicators on the historical success rates of hostile attacks”
or “indicate the current state of countermeasures”. The formalism can handle causal
and uncertainty measurements at the same time, by specifying how to combine the
conditional probability tables.

With the help of a software tool for abstract models [JJSU07], Bayesian defense
graphs were applied by Sommestad et al. to analyze enterprise architectures on
numerous occasions. In [ES09], ongoing efforts related to Bayesian defense graphs
within the EU research project VIKING [VIK11] are summarized. The methodol-
ogy is expanded in three follow-up papers that illustrate security assessment based
on an enterprise architecture model [SEJ08,SEJ09] and information flow during a
spoofing attack on a server [FSEJ08]. In [SEN09], a real case study was performed
with a power distribution operator to assess the security of wide-area networks
(WANs) used to operate electrical power systems. Since the results could not be
published, the methodology was demonstrated on a fictitious example assessing
the security of two communication links with the help of conditional probability
tables [SEN09].

7.4 Description of the Formalisms 197

A similar but less developed idea of using random variables, defenses and an infer-
ence algorithm to compute the expected cost of an attack is presented by Mirembe
and Muyeba [MM08].

Security Goal Indicator Trees

Peine et al. devised security goal indicator trees (SGITs) in 2008, in order to support
security inspections of software development and documents [PJM08].

A SGIT is a tree which combines negative and positive security features that can be
checked during an inspection, in order to see if a security goal (e.g., secure password
management) is met. With this objective in mind, indicators can be linked in the
resulting tree structure by three types of relations: Conditional dependencies are
represented by a special kind of edge, Boolean combinations are modeled by AND
and OR gates and a specialization relation is represented by a UML-like inheri-
tance symbol. Moreover, a notion of polarity is defined for each node, attributing a
positive or negative effect of a given property on security. The definition of SGITs
is semi-formal.

The formalism does not support quantitative evaluations.

SGITs are implemented in a prototype tool, which was mentioned in [PJM08]. They
are used to formalize security inspection processes for a distributed repository of
digital cultural data in an e-tourism application in [JEBR10]. The formalism is
extended to dependability inspection in [KEE10].

Attack-Response Trees

In 2009, Zonouz et al. introduced attack-response trees (ARTs) as a part of a
methodology called response and recovery engine (RRE), which was proposed to
automate the intrusion response process. The goal of the RRE is to provide an
instantaneous response to intrusions and thus eliminate the delay which occurs
when the response process is performed manually. The approach is modeled as a
two-player Stackelberg stochastic game between the leader (RRE) and the follower
(attacker). Attack-response trees have been used in [ZKSY09], for the first time.
This paper constitutes a part of the Ph.D. thesis of Zonouz [Zon11].

ARTs are an extension of attack trees (Section 7.4.1) that incorporate possible re-
sponse actions against attacks. They provide a formal way to describe the system
security based on possible intrusion and response scenarios for the attacker and
the response engine, respectively. An important difference between attack trees and
attack-response trees is that the former represent all possible ways of achieving an
attack goal and the latter are built based on the attack’s consequences16. In an
attack-response tree, a violation of a security property, e.g., integrity, confidential-
ity or availability, is assigned to the root node (main consequence). Refining nodes
represent subconsequences whose occurrence implies that the parent consequence
will take place. Some consequence nodes are then tagged by response nodes that
represent response actions against the consequence to which they are connected.

16What the authors of [ZKSY09] call subconsequences is, in the literature also called the causes
of the main consequence.

198 Chapter 7 Related Formalisms

The goal of attack-response trees is to probabilistically verify whether the security
property specified by the root of an attack-response tree has been violated, given
the sequence of the received alerts and the successfully taken response actions.
First, a simple bottom-up procedure is applied in the case when values 0 and 1 are
assigned to the leaf nodes. More precisely, when a response assigned to a node v
is activated (i.e., when it is assigned 1), the values in the subtree rooted in v are
reset to 0. Second, [ZKSY09] also discusses the situation when uncertainties in
intrusion detections and alert notifications render the determination of Boolean
values impossible. In this case, satisfaction probabilities are assigned to the nodes
of attack-response trees and a game-theoretic algorithm is used to decide on the
optimal response action. In [ZSR+11], the RRE has been extended to incorporate
both IT system-level and business-level metrics to the model. Here, the combined
metrics are used to recommend optimal response actions to security attacks.

The RRE has been implemented on top of the intrusion detection system (IDS)
Snort 2.7, as described in [Zon11]. A validation of the approach on a SCADA
system use case [ZKSY09] and a web-based retail company example [ZSR+11] has
shown that this dynamic method performs better than static response mechanisms
based on lookup tables. The RRE allows us to recover the system with lower costs
and is more helpful than static engines when a large number of IDS alerts from
different parts of the system are received.

As pointed out in [RKT10b], the approach described in this section suffers from
the state space explosion problem. To overcome this problem, attack countermea-
sure trees (Section 7.4.3) have been introduced. Their authors propose efficient
algorithms for selecting an optimal set of countermeasures.

Boolean Logic Driven Markov Process

Boolean logic driven Markov processes (BDMPs) are a general security model-
ing formalism, which can also complete generic risk assessment procedures. The
formalism was invented by Bouissou and Bon in 2003 in the safety and reliabil-
ity area [BB03] and was adapted to security modeling by Piètre-Cambacédès and
Bouissou in 2010 [PCB10a, PCB10b].17 Its goal is to find a better trade-off be-
tween readability, modeling power and quantification capabilities with respect to
the existing formalisms in general and attack trees in particular.

BDMPs combine the readability of classical attack trees with the modeling power of
Markov chains. They change the attack tree semantics by augmenting it with links
called triggers. In a first approach, triggers allow modeling of sequences and simple
dependencies by conditionally activating subtrees of the global structure. The root
(top event) of an BDMP is the objective of the attacker. The leaves correspond
to attack steps or security events. They are associated with Markov processes,
dynamically selected depending on the states of some other leaves. They can be
connected by a wide choice of logical gates, including AND, OR and PAND gates,
commonly used in dynamic fault trees (Section 7.4.2). The overall approach allows
for sequential modeling in an attack tree-like structure while enabling efficient
quantifications. BDMPs for security are well-formalized [PCB10a].

17The original idea was introduced in an abstract by the same authors in 2009 [PCB09]

7.4 Description of the Formalisms 199

Success or realization parameters (mean time to success or to realization) are as-
sociated with the leaves, depending on the basic event modeled. Defense-centric
attributes can also be added, reflecting detection and reaction capabilities (the
corresponding parameters are the probability or the mean-time to detection for a
given leaf and the reduction of chance of success in case of detection). BDMPs for
security allow for different types of quantification. These quantifications include the
computation of time-domain metrics (overall mean-time to success, probability of
success in a given time, ordered list of attack sequences leading to the objectives),
attack tree related metrics like costs of attacks, handling of Boolean indicators
(e.g., specific requirements), and risk analysis oriented tools like sensibility graphs
by attack step or event [PCDB11], etc.

The model construction and its analysis are supported by an industrial tool, called
KB3 [Ele12]. In [PCDB11], implementation issues and user feedback are discussed
and analyzed. BDMPs are used in [PCB10c,Joh11] to integrate safety and security
analyses while [KBPC12] develops a realistic use case based on the Stuxnet attack.

In several papers [PCB10b,PCB10a,PCDB11], the authors point out the intrinsic
limits of BDMPs to model cyclic behaviors and loops, as well as the difficulties in
assigning relevant values for the leaves.

Security Goal Models

In 2010, Security goal models (SGMs) were formalized by Byers and Shahmehri
in order to identify the causes of software vulnerabilities and model their depen-
dencies [BS10]. They were introduced as a more expressive replacement for attack
trees (Section 7.4.1), security goal indicator trees (Section 7.4.4), vulnerability
cause graphs (Section 7.4.2) and security activity graphs (Section 7.4.3). The main
goal of a SGM corresponds to a vulnerability. “Starting with the root, subgoals are
incrementally identified until a complete model has been created” [SMdO+12].

In SGMs, a goal can be anything that affects security or some other goal, e.g., it can
be a vulnerability, a security functionality, a security-related software development
activity or an attack. SGMs have two types of goal refinements: one type repre-
sents dependencies and one type modeling information flow. Dependency nodes
are connected with solid edges (dependence edge) and are depicted by white nodes
for contributing subgoals and by black nodes for countering subgoals. Information
edges are displayed with dashed edges. The formalism consists of a syntactic do-
main (elements that make up the model), an abstract syntax (how elements can
be combined), a visual representation (using graphical symbols) and a semantic
transformation from the syntactic domain to the semantic domain. The syntactic
domain consists of the root, subgoals (contributing or counteracting), dependency
edges, operators AND and OR that express the connection of dependency edges,
annotation connected to nodes by annotation edges, stereotype (usually an anno-
tation about a dependency edge), ports that model information flow and infor-
mation edges that connect ports. The abstract syntax is defined in a UML class
diagram [SMdO+12].

It is possible to evaluate whether a security goal was successfully reached or not.
To do this, each cause is defined with a logical predicate (true or false). Then the

200 Chapter 7 Related Formalisms

predicates are composed using Boolean logic and taking the information from the
information edges into account.

SGMs were used in a case study about passive testing vulnerability detection,
i.e., examining the traces of a software system without the need for specific test
inputs. In a four step testing procedure vulnerabilities are first modeled using
SGMs. In the next step, causes are formally defined before SGMs are converted
into vulnerability detection conditions (VDC). In the final step vulnerabilities are
checked based on the VDCs. In [SMdO+12] this procedure is performed on the
xine media player [xp12] where an older version contained the CVE-2009-1274
vulnerability. The case study is executed with the help of TestInv-Code, a program
developed by Montimage that can handle VDCs.

In [BS10], the authors explicitly state that they have defined transformations to
and from attack trees VCGs, SAGs and SGITs so that SGMs can be used with
possibly familiar notation. (The transformations, however, were omitted due to
space restrictions.)

Unified Parameterizable Attack Trees

In 2011, Wang et al. introduced unified parameterizable attack trees18 [WWPP11].
As the name suggests, the formalism was created as a foundation to unify numerous
existing extensions of attack trees (Section 7.4.1). The formalism generalizes the
notions of connector types, edge augmentations and (node) attributes. With the
help of these generalizations it is possible to describe other extensions of attack
trees as structural extensions, computational extensions or hybrid extensions.

Unified parameterizable attack trees are defined as a 5-tuple, consisting of a set
of nodes, a set of edges, a set of allowed connectors (O-AND i.e., a time or pri-
ority based AND, U-AND i.e., an AND with a threshold condition and OR), a
set of attributes and a set of edge augmentation structures that allows us to spec-
ify edge labels. Using this definition, the authors of [WWPP11] identify defense
trees (Section 7.4.3), attack countermeasure trees (Section 7.4.3), attack-response
trees (Section 7.4.4), attack–defense trees (Section 7.4.3), protection trees (Sec-
tion 7.4.3), OWA trees (Section 7.4.1), and augmented attack trees (Section 7.4.1)
as structure-based extensions of attack tree that are covered by unified param-
eterizable attack trees. They classify multi-parameter attack trees (Section 7.4.1
and 7.4.2) as a computational extension of attack trees.

The formalism classifies attributes into the categories of attack accomplishment
attributes, attack evaluation attributes and victim system attributes, but does not
specify how to perform quantitative evaluations.

Unified parameterizable attack trees are primarily built upon augmented attack
trees (Section 7.4.1). In fact, the authors indicate how to instantiate the node
attributes, the edge augmentation and the connector type to obtain an augmented
attack tree.

18Wang et al. use British English, thus originally, the name of their formalism is unified

parametrizable attack trees.

7.5 Summary of the Surveyed Formalisms 201

7.5 Summary of the Surveyed Formalisms

In this section, we provide a consolidated view of all formalisms introduced in
Section 7.4. Tables 7.2–7.4 characterize the described methodologies (ordered al-
phabetically) according to the 13 aspects presented in Table 7.1. The aspects are
grouped into formalism features and capabilities (Table 7.2), formalism character-
istics (Table 7.3) and formalism maturity and usability factors (Table 7.4). This
tabular view allows the reader to compare the features of the formalisms more
easily, it stresses their similarities and differences. Furthermore, the tables sup-
port a user in selecting the most appropriate formalism(s) with respect to specific
modeling needs and requirements. We illustrate such a support on two exemplary
situations.

Example 1 Let us assume that during a risk assessment, analysts want to in-
vestigate and compare the efficiency of different defensive measures and controls
with respect to several attack scenarios. Thereto, they need quantitative elements
to support the analysis technique they will choose. Furthermore, a software tool
and pre-existing use cases are required to facilitate their work. Using the corre-
sponding columns from Tables 7.2–7.4 (i.e., attack or defensive, quantification,
tool availability and case study) and choosing the formalisms characterized by
appropriate values (respectively: both, versatile or specific, industrial or prototype
and real(istic)), would help the analysts to pre-select attack countermeasure trees,
attack–defense trees, BDMPs, intrusion DAGs, and security activity graphs as po-
tential modeling and analysis techniques. The most suitable methodology could
then be selected based on more detailed information provided in Section 7.4. For
instance, let us assume that the analysis requires the use of measures for probabil-
ity of success, the attacker’s costs and the attacker’s skills. Checking descriptions
of the pre-selected formalisms, given in Section 7.4, would convince the analysts
that security activity graphs and intrusion DAGs would not allow them to compute
the desired quantitative elements. Therefore, it would reduce the choice to attack
countermeasure trees, attack–defense trees and BDMPs. A more thorough inves-
tigation of the computational procedures and algorithms described in the referred
papers would help the analysts to make the final decision on the formalism that
best fits their needs.

Example 2 Now, let us assume that a team of penetration testers wants to illus-
trate which attack paths they have used to compromise different systems. Initially,
this does not significantly reduce the choice of possible formalisms since they could
use all attack-oriented and all attack and defense oriented approaches. However,
to keep the model as simple as possible, they start the selection process by looking
at the attack-oriented methodologies only. Let us assume further that the pene-
tration testers also do not need to represent sequences of actions. With a similar
reasoning as before, they first investigate a possibility of using a static model-
ing technique. The team does not foresee to perform any quantitative analysis.
An important requirement, however, is to employ a methodology which is already
broadly used, with at least rudimentary documented use cases on which they could
rely to build their own models. Using relevant columns from Tables 7.2–7.4 (i.e.,
attack or defense, sequential or static, paper count, use cases and quantification)
and selecting formalisms characterized with appropriate values (respectively: at-

202 Chapter 7 Related Formalisms

tack or both, sequential or static, > 4, real(istic) or toy and versatile, specific or
no), the team obtains a large number of applicable formalisms. In order to keep
the formalism as simple as possible, the analysts decide to narrow the set of values
they are interested in to: attack, static, > 4, real(istic) or toy and no. This strategy
yields the following most suitable formalisms: attack trees, augmented attack trees
and parallel model for multi-parameter attack trees. The team would then be able
to make a final choice of the methodology based on complementary investigations
starting from the information and references provided by the corresponding textual
descriptions from Section 7.4.

7.6 Alternative Graphical Security Methodologies

We close this survey with a short overview of alternative methodologies for security
modeling and analysis. The formalisms described here are outside the scope of this
thesis because they were not originally introduced for the purposes of attack and
defense modeling or they are not based on the DAG structure. However, for the sake
of completeness, we find it important to briefly present those approaches as well.
The objective of this section is to give pointers to other existing methodological
tools for security assessment, rather than to perform a thorough overview of all
related formalisms. To this end, the description of the formalisms given here is less
complete and structured than the information provided in Section 7.4.

7.6.1 Petri Nets for Security

In the mid 1990s, models based on Petri nets have been applied for security analy-
sis [KS94,Dac94]. In 1994, Kumar and Spafford [KS94] adopted colored Petri nets
for security modeling. They illustrate how to model reference scenarios for an in-
trusion detection device. Also in 1994, Dacier [Dac94] used Petri nets in his Ph.D.
thesis as part of a larger quantification model that describes the progress of an at-
tacker taking over a system. A useful property of Petri nets is their great modeling
capability and in particular their ability to take into account the sequential aspect
of attacks, the modeling of concurrent action and different forms of dependency.
Petri nets are widely used and have various specific extensions. To corroborate
this statement, we list a few existing ones. Kumar and Spafford’s work relies on
colored Petri nets [KS94], Dacier’s on stochastic Petri nets [Dac94], McDermott’s
on disjunctive Petri nets [McD00], Horvath and Dörges’s on reference nets [HD08],
Dalton II et al.’s on generalized stochastic Petri nets [DMCR06], Pudar et al.’s on
deterministic time transition Petri nets [PML10] and Xu and Nygard’s on aspect-
oriented Petri nets [XN06]. Several articles on Petri nets merge the formalism with
other approaches. Horvath and Dörges combine Petri nets with the concept of
security patterns [HD08] while Dalton II et al. [DMCR06], and more thoroughly
Pudar et al. [PML10], combine Petri nets and attack trees.

In 1994, Dacier embedded Petri nets into a higher level formalism called privilege
graphs. They model an attacker’s progress in obtaining access rights for a desired
target [Dac94,DD94]. In a privilege graph, a node represents a set of privileges and
an edge a method for transferring these privileges to the attacker. This corresponds
to the exploitation of a vulnerability. The model includes an attacker’s memory

7
.6

A
lte

rn
a

tiv
e

G
ra

p
h

ic
a

l
S

e
c
u

rity
M

e
th

o
d

o
lo

g
ie

s
203

Name of formalism
Attack or
defense

Sequential
or static

Quantifi-
cation

Main
Purpose

Extension(s)

Anti-models (Section 7.4.3) Both Static No Req. eng. New formalism
Attack countermeasure trees (Section 7.4.3) Both Static Specific Sec. mod. Structural, Computational
Attack–defense trees (Section 7.4.3) Both Static Versatile Sec. mod. Structural, Computational
Attack-response trees (Section 7.4.4) Both Sequential Specific Int. det. Structural, Quantitative
Attack trees (Section 7.4.1) Attack Static Versatile Sec. mod. New formalism
Augmented attack trees (Section 7.4.1) Attack Static Specific Sec. mod. Structural, Computational
Augmented vulnerability trees (Section 7.4.1) Attack Static Specific Risk Quantification
Bayesian attack graphs (Section 7.4.2) Attack Sequential Specific Risk Structural, Computational
Bayesian defense graphs (Section 7.4.4) Both Sequential Specific Risk Structural, Computational
Bayesian networks for security (Section 7.4.2) Attack Sequential Specific Risk Structural, Computational
BDMPs (Section 7.4.4) Both Sequential Versatile Sec. mod. Order, Time
Compromise graphs (Section 7.4.2) Attack Sequential Specific Risk New formalism
Countermeasure graphs (Section 7.4.3) Both Static Specific Sec. mod. Structural, Computational
Cryptographic DAGs (Section 7.4.2) Attack Sequential No Risk New formalism
Defense trees (Section 7.4.3) Both Static Specific Sec. mod. Structural, Computational
Dynamic fault trees for security (Section 7.4.2) Attack Sequential No Sec. mod. Order, Time
Enhanced attack trees (Section 7.4.2) Attack Sequential Specific Int. det. Order, Time
Extended fault trees (Section 7.4.1) Attack Static Specific Unification Structural
Fault trees for security (Section 7.4.2) Attack Sequential No Sec. mod. Order
Improved attack trees (Section 7.4.2) Attack Sequential Specific Risk Structural, Computational
Insecurity flows (Section 7.4.4) Both Sequential Specific Risk New formalism
Intrusion DAGs (Section 7.4.4) Both Sequential Specific Int. det. Structural, Computational
OWA trees (Section 7.4.1) Attack Static Specific Quant. Structural, Computational
Parallel model for multi-parameter attack trees (Section 7.4.1) Attack Static Specific Quant. Quantitative, Computational
Protection trees (Section 7.4.3) Defense Static Specific Sec. mod. New formalism
Security activity graphs (Section 7.4.3) Both Static Specific Soft. dev. New formalism
Security goal indicator trees (Section 7.4.4) Defense Sequential No Soft. dev. New formalism
Security goal models (Section 7.4.4) Both Sequential Specific Unification Structural, Computational
Serial model for multi-parameter attack trees (Section 7.4.2) Attack Sequential Specific Quant. Computational, Order
Unified parameterizable attack trees (Section 7.4.4) Both Sequential Versatile Unification Structural
Vulnerability cause graphs (Section 7.4.2) Attack Sequential Specific Soft. dev. Structural, Order

T
able

7.2:
A

sp
ects

relating
to

the
form

alism
’s

m
odeling

capabilities.

204
C

h
a

p
te

r
7

R
e
la

te
d

F
o

rm
a

lism
s

Name of formalism Structure Connectors Formalization

Anti-models (Section 7.4.3) Tree AND, OR Semi-formal
Attack countermeasure trees (Section 7.4.3) Tree AND, OR, k-out-of-n, counter leaves Formal
Attack–defense trees (Section 7.4.3) Tree AND, OR, countermeasures Formal
Attack-response trees (Section 7.4.4) Tree AND, OR, responses Formal
Attack trees (Section 7.4.1) Tree AND, OR Formal
Augmented attack trees (Section 7.4.1) Tree AND, OR Formal
Augmented vulnerability trees (Section 7.4.1) Tree AND, OR Informal
Bayesian attack graphs (Section 7.4.2) DAG AND, OR, conditional probabilities Formal
Bayesian defense graphs (Section 7.4.4) DAG AND, OR, conditional probabilities Formal
Bayesian networks for security (Section 7.4.2) DAG AND, OR, conditional probabilities Formal
BDMPs (Section 7.4.4) DAG AND, OR, PAND, approx. OR, triggers Formal
Compromise graphs (Section 7.4.2) Unspecified None Formal
Countermeasure graphs (Section 7.4.3) DAG Countermeasures Informal
Cryptographic DAGs (Section 7.4.2) DAG Dependence edges Informal
Defense trees (Section 7.4.3) Tree AND, OR, counter leaves Semi-formal
Dynamic fault trees for security (Section 7.4.2) Tree AND, OR, PAND, SEQ, FDEP, CSP Informal
Enhanced attack trees (Section 7.4.2) Tree AND, OR, ordered AND Formal
Extended fault trees (Section 7.4.1) Tree AND, OR, merge gates Formal
Fault trees for security (Section 7.4.2) Tree AND, OR, PAND, XOR, inhibit Informal
Improved attack trees (Section 7.4.2) Tree AND, OR, sequential AND Informal
Insecurity flows (Section 7.4.4) Unspecified None Formal
Intrusion DAGs (Section 7.4.4) DAG AND, OR Semi-formal
OWA trees (Section 7.4.1) Tree OWA operators Formal
Parallel model for multi-parameter attack trees (Section 7.4.1) Tree AND, OR Formal
Protection trees (Section 7.4.3) Tree AND, OR Informal
Security activity graphs (Section 7.4.3) DAG AND, OR, split gate Semi-formal
Security goal indicator trees (Section 7.4.4) Tree AND, OR, dependence edge, specialization edge Semi-formal
Security goal models (Section 7.4.4) DAG AND, OR, dependence edge, information edge Formal
Serial model for multi-parameter attack trees (Section 7.4.2) Tree AND, OR, ordered leaves Formal
Unified parameterizable attack trees (Section 7.4.4) Tree AND, OR, PAND, time-based AND, threshold AND Formal
Vulnerability cause graphs (Section 7.4.2) DAG AND, OR, sequential AND Informal

T
able

7.3:
A

sp
ects

relating
to

the
form

alism
’s

characteristics.

7
.6

A
lte

rn
a

tiv
e

G
ra

p
h

ic
a

l
S

e
c
u

rity
M

e
th

o
d

o
lo

g
ie

s
205

Name of formalism Tool availability Case study External use Paper count Year

Anti-models (Section 7.4.3) No No No 3 2006
Attack countermeasure trees (Section 7.4.3) Prototype Real(istic) No 4 2010
Attack–defense trees (Section 7.4.3) Prototype Real(istic) Collaboration 6 2010
Attack-response trees (Section 7.4.4) Prototype Toy case study No 3 2009
Attack trees (Section 7.4.1) Commercial Real(istic) Independent > 100 1991
Augmented attack trees (Section 7.4.1) No Real(istic) Independent 6 2005
Augmented vulnerability trees (Section 7.4.1) No Real(istic) Independent 3 2003
Bayesian attack graphs (Section 7.4.2) Commercial Toy case study Independent 10 2005
Bayesian defense graphs (Section 7.4.4) Prototype Real(istic) No 5 2008
Bayesian networks for security (Section 7.4.2) Commercial Real(istic) Independent 14 2004
BDMPs (Section 7.4.4) Commercial Real(istic) Independent 5 2010
Compromise graphs (Section 7.4.2) No Real(istic) Collaboration 3 2006
Countermeasure graphs (Section 7.4.3) No Toy case study No 1 2010
Cryptographic DAGs (Section 7.4.2) No No No 1 1996
Defense trees (Section 7.4.3) No No No 3 2006
Dynamic fault trees for security (Section 7.4.2) No No No 1 2009
Enhanced attack trees (Section 7.4.2) No No No 1 2007
Extended fault trees (Section 7.4.1) No No No 1 2007
Fault trees for security (Section 7.4.2) Commercial Real(istic) Independent 3 2003
Improved attack trees (Section 7.4.2) No No No 1 2011
Insecurity flows (Section 7.4.4) No No No 1 1997
Intrusion DAGs (Section 7.4.4) Prototype Real(istic) No 2 2003
OWA trees (Section 7.4.1) No No No 2 2005
Parallel model for multi-parameter attack trees (Section 7.4.1) Prototype Real(istic) Collaboration 5 2006
Protection trees (Section 7.4.3) No Toy case study No 4 2006
Security activity graphs (Section 7.4.3) Prototype Real(istic) No 2 2006
Security goal indicator trees (Section 7.4.4) Prototype Real(istic) No 3 2008
Security goal models (Section 7.4.4) No Real(istic) No 2 2010
Serial model for multi-parameter attack trees (Section 7.4.2) Prototype No No 3 2010
Unified parameterizable attack trees (Section 7.4.4) No No No 1 2011
Vulnerability cause graphs (Section 7.4.2) Commercial Real(istic) Independent 4 2006

T
able

7.4:
A

sp
ects

relating
to

the
form

alism
’s

m
aturity

and
usability.

206 Chapter 7 Related Formalisms

which forbids him to go through privilege states that he has already acquired. In
addition, an attacker’s good sense is modeled which prevents him from regressing.
In [DDK96], Dacier et al. proposed to transform a privilege graph into a Markov
chain corresponding to all possible successful attack scenarios. The method has
been applied to help system administrators to monitor the security of their systems.

In [ZF11], Zakrzewska and Ferragut presented a model extending Petri nets in
order to model real-time cyber conflicts. This formalism is able to represent situ-
ational awareness, concurrent actions, incomplete information and objective func-
tions. Since it makes use of stochastic transitions, it is well-suited to reason about
stochastic non-controlled events. The formalism is used to run simulations of cy-
ber attacks in order to experimentally analyze cyber conflicts. The authors also
performed a comparison of their extended Petri nets model with other security
modeling techniques. In particular, they showed that extended Petri nets are more
readable and more expressive than attack graphs, especially with respect to the
completeness of the models.

7.6.2 Attack Graphs

The term attack graph was first introduced by Phillips and Swiler [PS98,SPEC01]
in 1998 and has extensively been used ever since. The nodes of an attack graph
represent possible states of a system during the attack. The edges correspond to
changes of states due to an attacker’s actions. An attack graph is generated auto-
matically based on three types of inputs: attack templates (generic representations
of attacks including required conditions), a detailed description of the system to
be attacked (topology, configurations of components, etc.) and the attacker’s pro-
file (his capability, his tools, etc.). Quantifications, such as average probabilities or
time to success, can be deduced by assigning weights to the edges and by finding
shortest paths in the graph.

Starting in 2002, Sheyner et al. [SHJ+02, She04] made extensive contributions to
popularize attack graphs by associating them with model checking techniques. To
limit the risk of combinatorial explosion, a large number of methods were devel-
oped. Ammann et al. [AWK02] restricted the graphs by exploiting a monotony
property, thereby eliminating backtracking in terms of privilege escalation. Noel
and Jajodia and others [NJOJ03,JNO05] took configuration aspects into account.
A complete state of the art concerning the contributions to the field between 2002
and 2005 can be found in [LI05]. In 2006, Wang et al. introduced a relational
model for attack graphs [WYSJ06]. The approach facilitates interactive analysis
of the models and improves its performance. Ou et al. [OBM06] optimized the
generation and representation of attack graphs by transforming them into logi-
cal attack graphs of polynomial size with respect to the number of components
of the computer network analyzed. During the same year, Ingols et al. [ILP06]
proposed multiple-prerequisite graphs, which also severely reduce the complexity
of the graphs. In [MBZ+06], Mehta et al. proposed an algorithm for the classifi-
cation of states in order to identify the most relevant parts of an attack graph.
In 2008, Malhotra et al. [MBG08] did the same based on the notion of an attack
surface described in [Man08]. The vast majority of the authors mentioned have
also worked on visualization aspects [NJ04, NJKJ05, WLI07, HVOM08]. Kotenko

7.6 Alternative Graphical Security Methodologies 207

and Stepashkin [KS06] described a complete software platform for implementing
concepts and metrics of attack graphs. On a theoretical level, Braynov and Jadli-
wala [BJ03] extended the model to several attackers.

Starting in 2003, the problem of quantitative assessment of the security of net-
worked systems using attack graphs has been extensively studied [NJOJ03,WNJ06,
WSJ07a,WSJ07b,WIL+08]. The work presented in [NJOJ03] and [WNJ06] focuses
on minimal cost of removing vulnerabilities in hardening a network. In [WSJ07a],
the authors introduced a metric, called attack resistance, which is used to compare
the security of different network configurations. The approach was then extended
in [WSJ07b] into a general abstract framework for measuring various aspects of
network security. In [WIL+08], Wang et al. introduced a metric incorporating prob-
abilities of the existence of the vulnerabilities considered in the graph.

In his master’s thesis, Louthan IV [Lou11] proposed to extend the attack graph
modeling framework to permit modeling of continuous, in addition to discrete,
system elements and their interactions. In [WIL+08], Wang et al. addressed the
problem of likelihood quantification of potential multistep attacks on networked en-
vironments that combine multiple vulnerabilities. They developed an attack graph-
based probabilistic metric for network security and proposed heuristics for efficient
computation. In [NJWS10], Noel et al. used attack graphs to understand how
different vulnerabilities can be combined to form an attack on a network. They
simulated incremental network penetration and assessed the overall security of a
network system by propagating attack likelihoods. The method allows us to give
scores to risk mitigation options in terms of maximizing security and minimizing
cost. It can be used to study cost/benefit trade-offs for analyzing return on security
investment.

Dawkins and Hale [DH04] developed a concept similar to attack graphs called
attack chains. The model is based on a deductive tree structure approach but
also allows for inductive reasoning using goal-inducing attack chains, to extract
scenarios leading to a given aim. These models are also capable of generating
attack trees, which may be quantified by conventional methods. Aspects concerning
software implementation are described in [CTDH04].

7.6.3 Approaches Derived from UML Diagrams

We start this section with a short description of two formalisms derived from UML
diagrams, namely the abuse cases of McDermott and Fox [MF99] and the misuse
cases of Sindre and Opdahl [SO00, SO01, SOB02, Ale03, SL05] which were later
extended by Røstad in [Rø06]. These techniques are not specifically intended to
model attacks but rather to capture threats and abusive behavior which have to be
taken into account when eliciting security requirements (for misuse cases) as well
as for design and testing (for abuse cases). The flexibility of misuse and abuse cases
allows for expressive graphical modeling of attack scenarios without mathematical
formalization that supports quantification.

In [Fir03], Firesmith argues that misuse and abuse cases are “highly effective ways
of analyzing security threats but are inappropriate for the analysis and specification
of security requirements”. The reasoning is that misuse cases focus on how misusers

208 Chapter 7 Related Formalisms

can successfully attack the system. Thus they often model specific architectural
mechanisms and solutions, e.g., the use of passwords, rather than actual security
requirements, e.g., authentication mechanisms. To specify security requirements,
he suggested the use of security use cases. Security use cases focus on how an
application achieves its goals. According to Firesmith, they provide “a highly-
reusable way of organizing, analyzing and specifying security requirements” [Fir03].

Diallo et al. presented a comparative evaluation of the common criteria [ISO12],
misuse cases and attack trees [DRMS+06]. Opdahl and Sindre [OS09] compared
usability aspects and modeling features of misuse cases and attack trees. UML-
based approaches can be combined with other types of models. The combination
of misuse cases and attack trees appears not only to be simple but also use-
ful and relevant [TJR10, MTJ10]. In [KSO10b], Kárpáti et al. adapted use case
maps to security as misuse case maps. Katta et al. [KKO+10] combined UML
sequence diagrams with misuse cases in a new formalism called misuse sequence
diagrams. A misuse sequence diagram represents a sequence of attacker interactions
with system components and depicts how the components were misused over time
by exploiting their vulnerabilities. The authors of [KKO+10] performed usability
and performance comparison of misuse sequence diagrams and misuse case maps.
In [KSO10a], Kárpáti et al. integrated five different representation techniques in a
method called hacker attack representation method (HARM). The methodologies
used in HARM are: attack sequence descriptions (summarizing attacks in natural
language), misuse case maps (depicting the system architecture targeted by the
attack and visualizing the traces of the exploits), misuse case diagrams (showing
threats in relation to the wanted functionality) attack trees (representing the hi-
erarchical relation between attacks) and attack patterns (describing an attack in
detail by adding information about context and solutions). Combining such diverse
representation techniques has two goals. First, it provides “an integrated view of
security attacks and system architecture”. Second, the HARM method is especially
well-suited when different stakeholders, including non-technical people preferring
informal representations, are involved in modeling the security scenario.

In [Sin07], Sindre adapted UML activity diagrams to security. The resulting mal-
activity diagrams constitute an alternative to misuse cases when the user considers
the latter to be unsuitable. This is for instance the case in situations where a
large numbers of interactions need to be specified within or outside a system. Case
studies mainly concern social engineering attacks [KSM12].

7.6.4 Isolated Models

In this section we gather a number of isolated models. Most of the graphs that
the models use, allow cycles and, therefore, are outside of the main scope of this
chapter. However, we mention them because they build upon one of the formalisms
described in Section 7.4.

The stratified node topology was proposed by Daley et al. [DLD02] as an extension
of attack trees, in 2002. The formalism consists of a directed graph which is aimed
at providing a context-sensitive attack modeling framework. It supports incident
correlation, analysis and prediction and extends attack trees by separating the
nodes into three distinct classes based on their functionality: event-level nodes,

7.6 Alternative Graphical Security Methodologies 209

state-level nodes and top-level nodes. The directed edges between the nodes are
classified into implicit and explicit links. Implicit links allow individual nodes to
imply other nodes in the tree; explicit links are created when an attack provides a
capability to execute additional nodes, but does not actually invoke a new instance
of a node. As in attack trees, the set of linked nodes can be connected disjunctively
as well as conjunctively. In comparison with attack trees, the authors drop the
requirement of a designated root node, along with the requirement that the graphs
have to be acyclic. Due to the functional distinction of the nodes, the stratified
node topology can keep the vertical ordering, even if the modeled scenario is cyclic.

In 2010, Abdulla et al. [ACK10] described a model called attack jungles. When
trying to use attack trees as formalized by Mauw and Oostdijk in [MO05] to illus-
trate the security of a GSM radio network, the authors of [ACK10] encountered
modeling problems related to the presence of cycles as well as analysis problems
related to reusability of nodes in real life scenarios. This led them to propose attack
jungles, which extend attack trees with multiple roots, reusable nodes and cycles
that allow for modeling of attacks which depend on each other. Attack jungles are
formalized as multigraphs and their formal semantics extend the semantics based
on multisets proposed in [MO05]. In order to find possible ways of attacking a
system, a backwards reachability algorithm for the analysis of attack jungles was
described. Moreover, the notion of an attribute domain for quantitative analysis,
as proposed for attack trees in [MO05], is extended to fit the new structure of at-
tack jungles. By dividing attack components (nodes) into reusable and not reusable
ones, it is possible to reason about and analyze realistic scenarios. For instance, in
attack jungles it is possible to indicate whether or not a component can be reused
without inducing extra costs.

Extended influence diagrams [JLNS07] form another related formalism which is not
based on a DAG structure. Extended influence diagrams are built upon influence
diagrams, introduced by Matheson and Howard in the 1960s [MH68], which, in
turn, are an extension of Bayesian networks. Influence diagrams are used to pro-
vide a high-level visualization of decision problems under uncertainty [EBv+10].
Extended influence diagrams allow us to model the relationships between decisions,
events and outcomes of an enterprise architecture. They employ the following three
types of nodes: ellipses which represent events (also known as chance nodes), rect-
angles which depict decision nodes and diamonds which represent utility nodes
(or outcomes). In addition the formalism allows us to specify how a node is de-
fined, how well it can be controlled and how the nodes relate to each other. The
latter is achieved using different types of edges. Moreover, transformation rules be-
tween graphs govern switching between different levels of abstraction of a scenario
(expanding and collapsing). The rules also ensure that graphs do not contradict
each other. In [LJN07], the authors show how to elicit knowledge from scientific
texts, generating extended influence diagrams and in [ES09] the authors outline
how extended influence diagrams can be used for cyber security management.

8

Conclusion and Future Work

In this chapter, we summarize the thesis and relate it to the field of graphical
security modeling. Within this bigger picture, we then suggest future work in the
field in general and on the ADTree formalism in particular.

8.1 Conclusion

In this thesis we have developed the concept of attack–defense trees (ADTrees), a
new graphical security method that combines visual and formal aspects into one
methodology. The structure and syntax of ADTrees are intentionally kept simple.
ADTrees are an extension of attack trees which allows us to depict alternation
between attacks and defenses at any level in the tree.

ADTrees are equipped with three different syntaxes, allowing the user to select his
preferred representation for every application. The tree representation is visually
appealing. It allows us to quickly capture a rough qualitative and quantitative
estimate of the modeled scenario. Subtrees that mainly contain red attack nodes,
hint at possibly vulnerable areas (non-existent defenses), whereas subtrees that
are dominated by green defense nodes indicate a potential abundance of available
protective measures (redundant defenses). The alternation of attack and defense
nodes can also be used to capture which defenses were put in place because of
which specific attacks. In other words, the illustration provides details about the
evolution of attack scenarios and tells the user when certain attacks or defenses
have become obsolete. The algebraic ADTerm representation is concise, allows for
convenient formal treatment and is especially well-suited to link the methodology
to other scientific areas, in particular those based on formal definitions or algebraic
structures. Moreover, sound formalization in the form of ADTerms is necessary for
a reliable algorithmic treatment of attack and defense scenarios. Finally, the textual
representation combines fast input with a well-arranged output. Hence, the design
of the ADTree methodology provides excellent presentation methods that are at
the same time especially well-suited for computation of security relevant values.

The formalism of ADTrees is also equipped with several unambiguous semantics.
Semantics are defined as equivalence relations and, therefore, allow us to say which
trees actually represent the same scenario. This constitutes a first step towards
comparing the expressiveness and the completeness of one ADTree with another.
Among graphical security formalisms, the ADTree methodology is the only for-
malism that explicitly allows the selection of a semantics. The two most common
semantics in the literature are the propositional and the multiset semantics. Un-
fortunately they are often only used implicitly and, therefore, mistakenly inter-

211

212 Chapter 8 Conclusion and Future Work

changed.

ADTrees also support quantitative analysis of security scenarios with the help of
attributes. A simple bottom-up algorithm has been extended from the attack tree
approach and formalized with the help of attribute domains. Security relevant
parameters that can be modeled with an attribute domain include costs, time,
skill level, impact and risk. With the help of attribute domains, these parameters
are specified more precisely to, for example, express the minimal cost of an attacker
who cannot reuse an attack to overcome more than one defense. We have classified
precise questions that allow us to unambiguously determine an attribute domain.
A great advantage of the ADTree formalism is its ability to cope with bivariate
questions. This class of questions makes use of knowledge about the attacker and
the defender. A compatibility criterion specifies which attributes can be used in
combination with which semantics. If the criterion is violated, attribute evaluation
on equivalent trees may no longer be the same.

Throughout the development of the ADTree methodology, numerous case studies
helped to polish the formalization and guaranteed its continued applicability. They
resulted in detailed guidelines for the realization of use cases based on the method-
ology. The performance of scenario evaluations is enhanced by and supported with
a software tool, the ADTool. It is especially useful in the analysis of large-scale
models since it supports features to enable focusing on sections and details of a
scenario.

With the help of valuations, we have shown that ADTrees in the De Morgan se-
mantics enrich the modeling power of attack trees without increasing their compu-
tational complexity. We have also shown how to combine ADTrees with Bayesian
networks to model dependent events as well as demonstrated an explicit link to
game theory. This makes the ADTree methodology not only a useful tool in prac-
tice, but its sound formalization lays a foundation for further research.

As is the case for any method performing quantitative analysis, our framework
may suffer from the problem of identifying input values for the algorithms. We
have provided several suggestions on how to circumvent this difficulty. We can
construct the input from historical data, use expert estimations, use categories
instead of precise values, use ranges or use sets of possible values if we want to
exclude certain values.

With respect to Bayesian ADTrees, we even need to provide dependency relations
between nodes and appropriate conditional probability values. In this case, we
may directly use knowledge engineering techniques existing for Bayesian networks
in order to collect and process data and structural information. Such approaches
combine expert knowledge with machine learning techniques. They have already
been successfully applied in the security context. In [SDHH98], for instance, the
authors make use of probabilistic learning methods and introduce Bayesian Spam
filters which learn conditional probability distributions with user interaction. Fur-
thermore, there exist techniques, e.g., noisy OR, that simplify the construction
of conditional distributions with many parent nodes [HS13]. Setting up condi-
tional probability tables requires, in the worst case, initialization of exponentially
many values. However, it is often possible to reason with parameterized families
of distributions, where it is sufficient to only provide the respective parameters of

8.2 Future Work 213

the distribution. This, in turn, is no more complicated than estimating regular,
non-probabilistic parameters. Finally, our algorithmic framework is also suitable
to work with imprecise probabilities [Hal03], which also reduces the size of the
necessary input.

The presentation of the related work provides a methodical overview over DAG-
based techniques for modeling attack and defense scenarios and a short summary on
alternative graphical security modeling techniques. Some of the described method-
ologies have extensively been studied and are widely used to support security and
risk assessment processes. Others emerged from specific, practical developments
and have remained isolated methods. This overview provides a systematic descrip-
tion of the existing formalisms, gives pointers to related papers, tools and projects
and proposes a general classification of the presented approaches.

8.2 Future Work

Two general trends can be observed in the field of graphical security modeling: uni-
fication and specification. The objective of the methodologies developed within the
first trend is to unify existing approaches and propose general solutions that can be
used for the analysis of a broad spectrum of security scenarios. The corresponding
formalisms are well-suited for reasoning about situations involving diversified as-
pects, such as digital, physical and social components, simultaneously. Such models
usually have sound formal foundations and are extensively studied from a theo-
retical point of view. They are augmented with formal semantics and a general
mathematical framework for quantitative analysis. The ADTree methodology falls
into the unification trend. Other examples of such models are unified parameteriz-
able attack trees, multi-parameter attack trees, OWA trees, Bayesian attack graphs
and Bayesian defense graphs.

The second observed trend, i.e., the specification trend, aims at developing method-
ologies for addressing domain specific security problems. Studied domains include
intrusion detection (e.g., attack-response trees, intrusion DAGs), secure software
development (e.g., security activity graphs, security goal indicator trees) and se-
curity requirements engineering (e.g., anti-models). Formalisms developed within
this trend are often based on empirical studies and practical needs. They concen-
trate on domain specific metrics, such as the response index, which is used for the
analysis of intrusion DAGs. These approaches often remain isolated and seldom
relate to or build upon other existing approaches.

The multitude of methodologies shows that graphical security modeling is a young
but rapidly growing area. Thus, further development is necessary and new direc-
tions need to be explored before security assessment can fully benefit from graphical
models. Naturally, there is an abundance of research directions from which the area
would benefit.

First and foremost a more formal classification of the existing formalisms would be
beneficial to the entire field. A general classification should be a community wide
effort. It will, for example, support the design of a meta-language or the definition
of a compatibility notion between different models. Moreover, this classification will
help in defining the most general unification of related approaches. For attack trees,

214 Chapter 8 Conclusion and Future Work

a first unification has been published by Wang et al. [WWPP11]. Contrarily, little
research has been done in formalizing which other formalisms can be expressed
in terms of ADTrees. While attack trees, defense trees and protection trees can
straightforwardly be modeled within the ADTree framework, this connection might
not be as obvious for attack countermeasure trees, attack-response graphs or any
other attack tree-like methodology.

A unified model is also useful in another research direction which has possibly not
yet received enough attention. The problem of how to build graphical models from
pre-existing attack templates and patterns remains unsolved. Addressing this prob-
lem would make automatic model creation possible and would replace the tedious,
error-prone, manual construction process. It would, therefore, relieve the industrial
sector from manual model construction when building large-scale practical models.

The idea of reusing attack patterns is not new. It has already been mentioned
in 2001 by Moore et al. [MEL01]. An excellent initiative was taken by the FP7
project SHIELDS [SHI10a], in which the Security Vulnerability Repository Service
(SVRS) has been developed. The SVRS is an online library of different security
models including attack trees [SHI10d]. Using security patterns makes threat anal-
ysis more efficient and accurate. Generating a model from existing libraries consti-
tutes a good starting point for further model refinement and analysis. A natural
follow-up step would be to propose methods for automatic or semi-automatic con-
struction of complex, specific models from general attack or vulnerability patterns.
Composition of models is the primary challenge that any security methodology has
to overcome. A fast algorithm that can determine where and how two arbitrary
ADTrees differ would be an excellent start when attempting to merge ADTrees.

Since unification of models is not always possible, another research topic would
be the combination of graphical security models. We have shown that the AD-
Tree methodology can be combined with Bayesian networks. It would be chal-
lenging to attempt to combine other methodologies. This is especially challenging
when also considering non-DAG-based methodologies like STRIDE [MS05] and
SQUARE [HLOS06] that were outside the scope of this thesis.

Specifically for the ADTree approach, we envision the following improvements.
While the tree-based structure has the advantage of being simple and appealing,
for certain situations a model based on directed acyclic graphs may be superior.
Naturally, as a consequence the treatment of repetitive nodes will have to be recon-
sidered. Another suitable extension that may help improve the expressive power of
ADTrees would be to introduce dynamical modeling. Similar to dynamical Bayesian
networks proposed by An et al. [AJC06], dynamical ADTrees could consist of a
finite number of ADTrees each representing a certain time instance or interval.

Identification of new, meaningful structures for semantics and attributes would
increase the versatility of the ADTree approach. There exists a need for ordered
or time-respecting semantics that has not yet been fulfilled. The search for new
semantics and attribute domains could start from constraint semirings with as-
sociated t-norms. One could also investigate whether a semantics or an attribute
domain with non-commutative operators can be defined.

The ADTree methodology could certainly benefit from more research on algorithms
for quantitative evaluation. The provided bottom-up procedure is not the only suit-

8.2 Future Work 215

able algorithm to evaluate quantitative scenarios. Evaluating a scenario top down,
might uncover model inconsistencies. Another line of research could continue to
use the bottom-up algorithm. It would be useful to describe a complete set of con-
ditions that is necessary to increase the speed of the evaluation, or to, for example,
construct a sublinear algorithm. To this end, it might be possible to employ super-
modular functions or generalize reduction properties from the minimax algorithm.
A challenging algorithmic task would be to advance equivalence testing of ADTrees
in different semantics. When equivalence testing can be performed sufficiently fast,
it might be possible to construct a partial (or total) order on ADTrees.

Finally, the advice to construct node labels that contain a verb and a noun has
empirically proven to be useful. Limiting the pool of possible node labels even fur-
ther, may come at the expense of versatility but would benefit possible algorithmic
treatment. By doing so, it might be possible to introduce role specifications or
agents into the ADTree language. A promising attempt in the case of attack trees
was published in [PAB+12].

Bibliography

[ABD+06] Amer Aijaz, Bernd Bochow, Florian Dötzer, Andreas Festag, Matthias
Gerlach, Rainer Kroh, and Tim Leinmüller. Attacks on Inter Vehicle Com-
munication Systems - an Analysis. In Proceedings of the 3rd International
Workshop on Intelligent Transportation, pages 189–194. Hamburg Institute
of Technology, March 2006.

[abe11] abego. TreeLayout. http://code.google.com/p/treelayout/, 2011. Ac-
cessed July 2, 2013.

[ABS06] Shanai Ardi, David Byers, and Nahid Shahmehri. Towards a structured
unified process for software security. In Proceedings of the 2006 International
Workshop on Software Engineering for Secure Systems, pages 3–10, New
York, NY, USA, 2006. ACM.

[ACC07] ACCURATE. A Center for Correct Usable Reliable Auditable and Trans-
parent Elections: Annual Report 2006. http://accurate-voting.org/wp-

content/uploads/2007/02/AR.2007.pdf, 2007. Accessed July 2, 2013.

[ACK10] Parosh Aziz Abdulla, Jonathan Cederberg, and Lisa Kaati. Analyzing
the Security in the GSM Radio Network Using Attack Jungles. In Tiziana
Margaria and Bernhard Steffen, editors, Proceedings of the 4th International
Symposium on Leveraging Applications of Formal Methods, Verification and
Validation, volume 6415 of LNCS, pages 60–74, October, 2010. Springer.

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Com-
plexity of Finding Embeddings in a k-Tree. SIAM Jornal of Algebraic and
Discrete Methods, 8:277–284, 1987.

[AJC06] Xiangdong An, Dan Jutla, and Nick Cercone. Privacy intrusion detection
using dynamic Bayesian networks. In Proceedings of the 8th International
Conference for Electronic Commerce, pages 208–215, Fredericton, Canada,
August 2006. ACM.

[Ale03] Ian Alexander. Misuse cases: Use cases with hostile intent. IEEE Software,
20(1):58–66, 2003.

[Ame12] Amenaza. SecurITree. http://www.amenaza.com/, 2001–2012. Accessed
July 2, 2013.

[Amo94] Edward G. Amoroso. Fundamentals of Computer Security Technology.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

217

http://code.google.com/p/treelayout/
http://accurate-voting.org/wp-content/uploads/2007/02/AR.2007.pdf
http://accurate-voting.org/wp-content/uploads/2007/02/AR.2007.pdf
http://www.amenaza.com/

218 Bibliography

[And01] Ross J. Anderson. Security engineering - a guide to building dependable
distributed systems. John Wiley & Sons, Inc., 1st edition, 2001.

[And10a] Alexander Andrusenko. Attack Forest. http://research.cyber.ee/

~alexander/, 2010. Accessed July 2, 2013.

[And10b] Alexander Andrusenko. Ründepuude Metoodika Ja Seda Toetav Tark-
varaline Raamistik. Master’s thesis, Tallinn University, 2010.

[ANI14] ANIKETOS. ANIKETOS: Ensuring Trustworthiness and Security in
Service Composition, FP7 project, grant agreement 257930. http://www.

aniketos.eu/, 2010–2014. Accessed July 2, 2013.

[AP08] Qutaibah Althebyan and Brajendra Panda. A Knowledge-Based Bayesian
Model for Analyzing a System after an Insider Attack. In Sushil Jajodia,
Pierangela Samarati, and Stelvio Cimato, editors, Proceedings of the IFIP
TC 11 23rd International Information Security Conference, volume 278 of
IFIP, pages 557–571. Springer, 2008.

[Arn85] Stefan Arnborg. Efficient algorithms for combinatorial problems on graphs
with bounded decomposability – A survey. BIT Numerical Mathematics,
25(1):1–23, 1985.

[ATR12] ATREES. Attack Trees, project funded by the Fonds National de la
Recherche, Luxembourg under grants C08/IS/26 and PHD-09-167. http://

satoss.uni.lu/projects/atrees/, 2009–2012. Accessed July 2, 2013.

[AWK02] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable,
graph-based network vulnerability analysis. In Proceedings of the 9th ACM
Conference on Computer and ommunications Security, pages 217–224, Wash-
ington, DC, USA, November 2002. ACM.

[BASD06] David Byers, Shanai Ardi, Nahid Shahmehri, and Claudiu Duma. Mod-
eling software vulnerabilities with vulnerability cause graphs. In Proceedings
of the International Conference on Software Maintenance, pages 411–422.
IEEE, September 2006.

[BB03] Marc Bouissou and Jean-Louis Bon. A new formalism that combines ad-
vantages of fault-trees and Markov models: Boolean logic driven Markov
processes. Reliability Engineering & System Safety, 82(2):149–163, Novem-
ber 2003.

[BDP06] Stefano Bistarelli, Marco Dall’Aglio, and Pamela Peretti. Strategic
Games on Defense Trees. In Theodosis Dimitrakos, Fabio Martinelli, Peter
Y. A. Ryan, and Steve A. Schneider, editors, Proceedings of the 4th Interna-
tional Workshop on Formal Aspects in Security and Trust, volume 4691 of
LNCS, pages 1–15. Springer, 2006.

[BF12] Alessandro Buoni and Mario Fedrizzi. Consensual Dynamics and Choquet
Integral in an Attack Tree-based Fraud Detection System. In Joaquim Filipe
and Ana L. N. Fred, editors, Proceedings of the 4th International Conference
on Agents and Artificial Intelligence, pages 283–288. SciTePress, 2012.

http://research.cyber.ee/~alexander/
http://research.cyber.ee/~alexander/
http://www.aniketos.eu/
http://www.aniketos.eu/
http://satoss.uni.lu/projects/atrees/
http://satoss.uni.lu/projects/atrees/

Bibliography 219

[BFG11] Silvia Bortot, Mario Fedrizzi, and Silvio Giove. Modelling fraud detec-
tion by attack trees and Choquet integral. DISA Working Papers 2011/09,
Department of Computer and Management Sciences, University of Trento,
Italy, August 2011.

[BFM04] Eric J. Byres, Matthew Franz, and Darrin Miller. The Use of Attack
Trees in Assessing Vulnerabilities in SCADA Systems. In Proceedings of the
International Infrastructure Survivability Workshop. IEEE, December 2004.

[BFM10] Alessandro Buoni, Mario Fedrizzi, and József Mezei. A Delphi-Based
Approach to Fraud Detection Using Attack Trees and Fuzzy Numbers. In
Proceedings of the IASK International Conferences, pages 21–28. Interna-
tional Association for the Scientific Knowledge, 2010.

[BFM11] Alessandro Buoni, Mario Fedrizzi, and József Mezei. Combining Attack
Trees and Fuzzy Numbers in a Multi-Agent Approach to Fraud Detection.
International Journal of Electronic Business, 9(3):186–202, 2011.

[BFP06] Stefano Bistarelli, Fabio Fioravanti, and Pamela Peretti. Defense Trees
for Economic Evaluation of Security Investments. In Proceedings of the 1st
International Conference on Availability, Reliability and Security, pages 416–
423. IEEE Computer Society, 2006.

[BH95] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments of For-
mal Methods. IEEE Computer, 28(4):56–63, 1995.

[BH06] Jonathan P. Bowen and Michael G. Hinchey. Ten Commandments of For-
mal Methods ...Ten Years Later. IEEE Computer, 39(1):40–48, 2006.

[BJ03] Sviatoslav Braynov and Murtuza Jadliwala. Representation and analysis of
coordinated attacks. In Proceedings of the 2003 ACM Workshop on Formal
Methods in Security Engineering, pages 43–51, Washington, DC, USA, 2003.
ACM.

[BJL06] Christoph Buchheim, Michael Jünger, and Sebastian Leipert. Drawing
rooted trees in linear time. Software: Practice and Experience, 36(6):651–
665, May 2006.

[BLP+06] Ahto Buldas, Peeter Laud, Jaan Priisalu, Märt Saarepera, and Jan
Willemson. Rational Choice of Security Measures Via Multi-parameter At-
tack Trees. In Javier López, editor, Proceedings of the 1st International
Workshop on Critical Information Infrastructures Security, volume 4347 of
LNCS, pages 235–248. Springer, 2006.

[BM07] Ahto Buldas and Triinu Mägi. Practical Security Analysis of E-Voting
Systems. In Miyaji et al. [MKR07], pages 320–335.

[BN98] Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cam-
bridge University Press, New York, NY, USA, 1998.

220 Bibliography

[Bod93] Hans L. Bodlaender. A linear time algorithm for finding tree-decom-
positions of small treewidth. In Proceedings of the 25th Annual ACM Sym-
posium on Theory of Computing, pages 226–234, New York, NY, USA, 1993.
ACM.

[Bou07] Marc Bouissou. A Generalization of Dynamic Fault Trees through Boolean
logic Driven Markov Processes (BDMP). In Terje Aven and Jan Erik Vinnem,
editors, Proceedings of the 16th European Safety and Reliability Conference,
Stavanger, Norway, June 2007. Taylor & Francis Group.

[BP03] Phillip J. Brooke and Richard F. Paige. Fault trees for security system
design and analysis. Computers & Security, 22(3):256–264, 2003.

[BP10] Dejan Baca and Kai Petersen. Prioritizing Countermeasures through the
Countermeasure Method for Software Security (CM-Sec). In Muhammad Ali
Babar, Matias Vierimaa, and Markku Oivo, editors, Proceedings of the 11th
International Conference on Product-Focused Software Process Improvement,
volume 6156 of LNCS, pages 176–190. Springer, 2010.

[BPT08] Stefano Bistarelli, Pamela Peretti, and Irina Trubitsyna. Analyzing Secu-
rity Scenarios Using Defence Trees and Answer Set Programming. Electronic
Notes in Theoretical Computer Science, 197(2):121–129, 2008.

[BPU+05] Donald L. Buckshaw, Gregory S. Parnell, Willard L. Unkenholz, Don-
ald L. Parks, James M. Wallner, and O. Sami Saydjari. Mission Oriented
Risk and Design Analysis of Critical Information Systems. Military Opera-
tions Research, 10(2):19–38, 2005.

[BS07] David Byers and Nahid Shahmehri. Design of a Process for Software Se-
curity. In Proceedings of the 2nd International Conference on Availability,
Reliability and Security, pages 301–309. IEEE Computer Society, April 2007.

[BS08] David Byers and Nahid Shahmehri. A Cause-Based Approach to Prevent-
ing Software Vulnerabilities. In Proceedings of the 2008 Third International
Conference on Availability, Reliability and Security, pages 276–283, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

[BS09] Patrik Berander and Mikael Svahnberg. Evaluating two ways of calcu-
lating priorities in requirements hierarchies - An experiment on hierarchical
cumulative voting. Journal of Systems and Software, 82(5):836–850, May
2009.

[BS10] David Byers and Nahid Shahmehri. Unified modeling of attacks, vulner-
abilities and security activities. In Proceedings of the 2010 ICSE Workshop
on Software Engineering for Secure Systems, pages 36–42, New York, NY,
USA, 2010. ACM.

[BS12] Ahto Buldas and Roman Stepanenko. Upper Bounds for Adversaries’ Util-
ity in Attack Trees. In Jens Grossklags and Jean C. Walrand, editors, Pro-
ceedings of the 3rd International Conference on Decision and Game Theory
for Security, volume 7638 of LNCS, pages 98–117. Springer, 2012.

Bibliography 221

[Buo10] Alessandro Buoni. Fraud Detection: From Basic Techniques to a Multi-
Agent Approach. In Proceedings of the 2010 International Conference on
Management and Service Science, pages 1516–1519. IEEE, August 2010.

[Buo12] Alessandro Buoni. Fraud Detection in the Banking Sector. PhD thesis,
Åbo Akademi University, Finland, 2012.

[Car09] Carnegie Mellon University. SQUARE: System Quality Requirements En-
gineering. http://www.cert.org/sse/square-tool.html, 2004–2009. Ac-
cessed July 2, 2013.

[CCF04] Sean Convery, David Cook, and Matt Franz. An Attack Tree for the Bor-
der Gateway Protocol. http://tools.ietf.org/html/draft-ietf-rpsec-

bgpattack-00, 2004. Accessed July 2, 2013.

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree Automata Techniques and Appli-
cations. http://www.grappa.univ-lille3.fr/tata, 2007. Accessed July
2, 2013.

[CGP08] Robert Cowan, Michael Grimaila, and Raju Patel. Using Attack and
Protection Trees to Evaluate Risk in an Embedded Weapon System. In
Proceedings of the 3rd International Conference on Information Warfare and
Security, pages 97–108, Omaha, Nebraska, USA, April 2008.

[CH07] Nicolas Chaufette and Tommie Haag. Vulnerability Cause Graphs:
A Case of Study. http://www.ida.liu.se/~TDDD17/oldprojects/2007/

projects/3.pdf, 2007. Accessed July 2, 2013.

[CH11] Yves Crama and Peter L. Hammer. Boolean Functions: Theory, Algo-
rithms, and Applications. Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 2011.

[CK00] Horatiu Cirstea and Claude Kirchner. The simply typed rewriting calculus.
Electronic Notes in Theoretical Computer Science, 36:24–42, 2000.

[CKK10] Giovanni Cagalaban, Taihoon Kim, and Seoksoo Kim. Improving
SCADA control systems security with software vulnerability analysis. In
Proceedings of the 12th WSEAS International Conference on Automatic Con-
trol, Modelling & Simulation, pages 409–414, Stevens Point, USA, 2010.
World Scientific and Engineering Academy and Society (WSEAS).

[CS05] Maria Chudnovsky and Paul D. Seymour. The structure of claw-free
graphs. In Bridget S. Webb, editor, Surveys in Combinatorics, volume 327
of London Mathematical Society Lecture Note Series, pages 153–171. Cam-
bridge University Press, 2005.

[CSTH08] Kevin Clark, Ethan Singleton, Stephen Tyree, and John Hale. Strata-
Gem: risk assessment through mission modeling. In Proceedings of the 4th
ACM Workshop on Quality of Protection, pages 51–58, Alexandria, VA, USA,
October 2008. ACM.

http://www.cert.org/sse/square-tool.html
http://tools.ietf.org/html/draft-ietf-rpsec-bgpattack-00
http://tools.ietf.org/html/draft-ietf-rpsec-bgpattack-00
http://www.grappa.univ-lille3.fr/tata
http://www.ida.liu.se/~TDDD17/oldprojects/2007/projects/3.pdf
http://www.ida.liu.se/~TDDD17/oldprojects/2007/projects/3.pdf

222 Bibliography

[CTDH04] Kevin Clark, Stephen Tyree, Jerald Dawkins, and John Hale. Qualita-
tive and quantitative analytical techniques for network security assessment.
In Proceedings of the 5th IEEE Systems, Man and Cybernetics Information
Assurance Workshop, pages 321–328, West Point, NY, USA, June 2004.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal Methods: State of the
Art and Future Directions. ACM Computing Surveys, 28(4):626–643, 1996.

[ÇY06] Seyit Ahmet Çamtepe and Bülent Yener. A Formal Method for Attack
Modeling and Detection. Technical Report TR-06-01, Rensselaer Polytechnic
Institute, Troy, NY, USA, 2006.

[ÇY07] Seyit Ahmet Çamtepe and Bülent Yener. Modeling and detection of com-
plex attacks. In Proceedings of the 3rd International Conference on Secu-
rity and Privacy in Communications Networks, pages 234–243, Nice, France,
September 2007. IEEE.

[Dac94] Marc Dacier. Vers une évaluation quantitative de la sécurité informatique.
PhD thesis, Laboratoire d’Analyse et d’Architecture des Systèmes du CNRS
(LAAS), 1994.

[DBB90] Joanne Bechta Dugan, Salvatore J. Bavuso, and Mark A. Boyd. Fault
Trees and Sequence Dependencies. In Proceedings of the Annual Reliabil-
ity and Maintainability Symposium, pages 286–293, Los Angeles, CA, USA,
January 1990. IEEE Computer Society.

[DBB92] Joanne Bechta Dugan, Salvatore J. Bavuso, and Mark A. Boyd. Dynamic
fault tree models for fault tolerant computer systems. IEEE Transactions on
Reliability, 41(3):363–377, 1992.

[DD94] Marc Dacier and Yves Deswarte. Privilege graph: An extension to the
typed access matrix model. In Dieter Gollmann, editor, Proceedings of the
3rd European Symposium on Research in Computer Security, volume 875 of
LNCS, pages 319–334. Springer, 1994.

[DDK96] Marc Dacier, Yves Deswarte, and Mohamed Kaâniche. Models and tools
for quantitative assessment of operational security. In Sokratis K. Katsikas
and Dimitris Gritzalis, editors, Information Systems Security, Facing the
information society of the 21st Century, volume 54 of IFIP, pages 177–186.
Chapman & Hall, 1996.

[Dec99] Rina Dechter. Bucket Elimination: A Unifying Framework for Reasoning.
Artificial Intelligence, 113(1–2):41–85, 1999.

[Dec03] Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[Dec13] Decision Systems Laboratory, University of Pittsburgh. GeNIe & SMILE.
http://genie.sis.pitt.edu/, 1996–2013. Accessed July 2, 2013.

[DEMR10] George C. Dalton II, Kenneth S. Edge, Robert F. Mills, and Richard A.
Raines. Analysing security risks in computer and Radio Frequency Identi-
fication (RFID) networks using attack and protection trees. International
Journal of Security and Networks, 5(2):87–95, 2010.

http://genie.sis.pitt.edu/

Bibliography 223

[Dep03] Department of Engineering, University of Maryland. Fault Tree Analysis
Programs. http://www.enre.umd.edu/tools/ftap.htm, 2003. Accessed
October 5, 2012.

[DH04] Jerald Dawkins and John Hale. A systematic approach to multi-stage net-
work attack analysis. In Proceedings of the 2nd IEEE International Infor-
mation Assurance Workshop, pages 48–56, Charlotte, NC, USA, April 2004.
IEEE.

[DK05] Ram Dantu and Prakash Kolan. Risk Management Using Behavior Based
Bayesian Networks. In Paul B. Kantor, Gheorghe Muresan, Fred Roberts,
Daniel Dajun Zeng, Fei-Yue Wang, Hsinchun Chen, and Ralph C. Merkle,
editors, Proceedings of the 2005 IEEE International Conference on IEEE
Intelligence and Security Informatics, volume 3495 of LNCS, pages 115–126.
Springer, 2005.

[DKAL07] Ram Dantu, Prakash Kolan, Robert Akl, and Kall Loper. Classification
of attributes and behavior in risk management using bayesian networks. In
Proceedings of the 2007 IEEE International Conference on Intelligence and
Security Informatics, pages 71–74. IEEE, 2007.

[DKaWC09] Ram Dantu, Prakash Kolan, and Jo ao W. Cangussu. Network risk
management using attacker profiling. Security and Communication Net-
works, 2(1):83–96, 2009.

[DLD02] Kristopher Daley, Ryan Larson, and Jerald Dawkins. A Structural Frame-
work for Modeling Multi-Stage Network Attacks. In Proceedings of the 31st
International Conference on Parallel Processing Workshops, pages 5–10. 31st
International Conference on Parallel Processing Workshops, August 2002.

[DLDZ12] Suguo Du, Xiaolong Li, Junbo Du, and Haojin Zhu. An attack-and-
defence game for security assessment in vehicular ad hoc networks. Peer-to-
Peer Networking and Applications, 5(1):1–14, 2012.

[DLK04] Ram Dantu, Kall Loper, and Prakash Kolan. Risk management using
behavior based attack graphs. In Proceedings of the International Conference
on Information Technology: Coding and Computing, volume 1, pages 445–
449, April 2004.

[DMCR06] George C. Dalton II, Robert F. Mills, John M. Colombi, and Richard A.
Raines. Analyzing Attack Trees using Generalized Stochastic Petri Nets. In
Proceedings of the IEEE Information Assurance Workshop, pages 116–123,
West Point, NY, USA, June 2006. IEEE.

[DMRW09] Erik D. Demaine, Shay Mozes, Benjamin Rossman, and Oren Wei-
mann. An Optimal Decomposition Algorithm for Tree Edit Distance. ACM
Transactions on Algorithms, 6(1):2:1–2:19, December 2009.

[DP90] Brian A. Davey and Hilary A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 1990.

http://www.enre.umd.edu/tools/ftap.htm

224 Bibliography

[DP08] Salvatore Distefano and Antonio Puliafito. Dependability evaluation using
dynamic reliability block diagrams and dynamic fault trees. IEEE Transac-
tions on Dependable and Secure Computing, 6(1):4–17, 2008.

[DPRW07] Rinku Dewri, Nayot Poolsappasit, Indrajit Ray, and Darrell Whitley.
Optimal security hardening using multi-objective optimization on attack tree
models of networks. In Proceedings of the 14th ACM Conference on Computer
and Communications Security, pages 204–213, New York, NY, USA, 2007.
ACM.

[DRMS+06] Mamadou H. Diallo, Jose Romero-Mariona, Susan E. Sim, Thomas A.
Alspaugh, and Debra J. Richardson. A Comparative Evaluation of Three
Approaches to Specifying Security Requirements. In Proceedings of the 12th
International Working Conference on Requirements Engineering: Foundation
for Software Quality, June 2006.

[DRPW12] Rinku Dewri, Indrajit Ray, Nayot Poolsappasit, and Darrell Whitley.
Optimal security hardening on attack tree models of networks: a cost-benefit
analysis. International Journal of Information Security, 11(3):167–188, June
2012.

[DSC00] Joanne Bechta Dugan, Kevin J. Sullivan, and David Coppit. Developing
a Low-Cost, High-Quality Software Tool for Dynamic Fault Tree Analysis.
IEEE Transactions on Reliability, 49(1):49–59, 2000.

[EBv+10] Barry Charles Ezell, Steven P. Bennett, Detlof von Winterfeldt, John
Sokolowski, and Andrew J. Collins. Probabilistic risk analysis and terrorism
risk. Risk analysis an official publication of the Society for Risk Analysis,
30(4):575–589, 2010.

[Edg07] Kenneth S. Edge. A Framework for Analyzing and Mitigating the Vulnera-
bilities of Complex Systems via Attack and Protection Trees. PhD thesis, Air
Force Institute of Technology, Wright Patterson Air Force Base, OH, USA,
July 2007.

[EDRM06] Kenneth S. Edge, George C. Dalton II, Richard A. Raines, and
Robert F. Mills. Using Attack and Protection Trees to Analyze Threats
and Defenses to Homeland Security. In Proceedings of the 2006 Military
Communications Conference, pages 1–7. IEEE, 2006.

[EHK+04] Shelby Evans, David Heinbuch, Elizabeth Kyule, John Piorkowski, and
James Wallner. Risk-based systems security engineering: stopping attacks
with intention. IEEE Security and Privacy, 2(6):59–62, 2004.

[Ele12] Electricité de France - Research and Development. KB3 Plat-
form tools. http://research.edf.com/research-and-the-scientific-

community/software/kb3-44337.html, 2011–2012. Accessed July 2, 2013.

[EPPC11] Jung-Ho Eom, Min-Woo Park, Seon-Ho Park, and Tai-Myoung Chung.
A Framework of Defense System for Prevention of Insider’s Malicious Be-
haviors. In Proceedings of the 13th International Conference on Advanced
Communication Technology, pages 982–987. IEEE, February 2011.

http://research.edf.com/research-and-the-scientific-community/software/kb3-44337.html
http://research.edf.com/research-and-the-scientific-community/software/kb3-44337.html

Bibliography 225

[ERG+07] Kenneth Edge, Richard Raines, Michael Grimaila, Rusty Baldwin,
Robert Bennington, and Christopher Reuter. The Use of Attack and Protec-
tion Trees to Analyze Security for an Online Banking System. In Proceed-
ings of the 40th Annual Hawaii International Conference on System Sciences,
page 144b. IEEE, January 2007.

[Eri99] Clifton A. Ericson II. Fault Tree Analysis - A History. In Proceedings of
the 17th International System Safety Conference, Orlando, FL, USA, August
1999.

[ES09] Mathias Ekstedt and Teodor Sommestad. Enterprise architecture models
for cyber security analysis. In Proceedings of the 2009 IEEE/PES Power
System Conference and Exposition, pages 1–6, Seattle, USA, March 2009.
IEEE.

[Esp07] Jeanne H. Espedalen. Attack Trees Describing Security in Distributed
Internet-Enabled Metrology. Master’s thesis, Gjøvik University, 2007.

[EVI11] EVITA. E-safety vehicle intrusion protected applications: FP7 project,
grant agreement 224275. http://www.evita-project.org/, 2008–2011. Ac-
cessed July 2, 2013.

[FBMJ10] Plínio César Simões Fernandes, Tania Basso, Regina Moraes, and Mario
Jino. Attack Trees Modeling for Security Tests in Web Applications. In
Proceedings of the 4th Brazilian Workshop on Systematic and Automated
Software Testing, pages 3–12. SBC, November 2010.

[FCW+05] Casey Fung, Yi-Liang Chen, Xinyu Wang, J. Lee, R. Tarquini, M. An-
derson, and R. Linger. Survivability analysis of distributed systems using
attack tree methodology. In Proceedings of the 2005 IEEE Military Commu-
nications Conference, volume 1, pages 583–589. IEEE, October 2005.

[Fir03] Donald J. Firesmith. Security Use Cases. Journal of Object Technology,
2(3):53–64, May 2003.

[FJN93] Ralph Freese, Jaroslav Ježek, and James B. Nation. Term Rewrite Sys-
tems for Lattice Theory. Journal of Symbolic Computation, 16(3):279–288,
1993.

[FMC09] Igor Nai Fovino, Marcelo Masera, and Alessio De Cian. Integrating
cyber attacks within fault trees. Reliability Engineering & System Safety,
94(9):1394–1402, September 2009.

[Fos02] Nathalie L. Foster. The application of software and safety engineering
techniques to security protocol development. PhD thesis, University of York,
2002.

[FSEJ08] Ulrik Franke, Teodor Sommestad, Mathias Ekstedt, and Pontus John-
son. Defense Graphs and Enterprise Architecture for Information Assurance
Analysis. In Proceedings of the 26th Army Science Conference, Orlando, FL,
USA, December 2008.

http://www.evita-project.org/

226 Bibliography

[FW08] Marcel Frigault and Lingyu Wang. Measuring Network Security Using
Bayesian Network-Based Attack Graphs. In Proceedings of the 32nd An-
nual IEEE International Computer Software and Applications, pages 698–
703. IEEE, Jul–Aug 2008.

[FWM+05] Bingrui Foo, Yu-Sung Wu, Yu-Chun Mao, Saurabh Bagchi, and Eugene
Spafford. ADEPTS: adaptive intrusion response using attack graphs in an
e-commerce environment. In Proceedings of the International Conference on
Dependable Systems and Networks, pages 508–517. IEEE Computer Society,
Jun–Jul 2005.

[FWSJ08] Marcel Frigault, Lingyu Wang, Anoop Singhal, and Sushuil Jajodia.
Measuring network security using dynamic Bayesian network. In Proceedings
of the 4th ACM Workshop on Quality of Protection, pages 23–30, Alexandria,
VA, USA, October 2008. ACM.

[FX12] Nan Feng and Jing Xie. A Bayesian networks-based security risk analysis
model for information systems integrating the observed cases with expert
experience. Scientific Research and Essays, 7(10):1103–1112, 2012.

[GGR93] Jens Grabowski, Peter Graubmann, and Ekkart Rudolph. The Stan-
dardization of Message Sequence Charts. In Proceedings of the Software
Engineering Standards Symposium, pages 48–63, 1993.

[GJ08] Lars Grunske and David Joyce. Quantitative risk-based security prediction
for component-based systems with explicitly modeled attack profiles. Journal
of Systems and Software, 81(8):1327–1345, 2008.

[Grä03] George A. Grätzer. General Lattice Theory. Birkhäuser, 2003.

[GTWW77] Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B.
Wright. Initial Algebra Semantics and Continuous Algebras. Journal of the
ACM, 24(1):68–95, 1977.

[Gur89] Eitan M. Gurari. Introduction to the Theory of Computation. Computer
Science Press, 1989.

[HAF+09] Olaf Henniger, Ludovic Apvrille, Andreas Fuchs, Yves Roudier, Alastair
Ruddle, and Benjamin Weyl. Security requirements for automotive on-board
networks. In Proceedings of the 9th International Conference on Intelligent
Transport Systems Telecommunications, pages 641–646, Lille, France, Octo-
ber 2009. IEEE.

[Hal03] Joseph Y. Halpern. Reasoning about Uncertainty. MIT Press, Cambridge,
MA, USA, 2003.

[Har10] Patrick D. Harrington. Noncooperative potential Games to improve net-
work security. PhD thesis, Oklahoma State University, USA, 2010.

[HD08] Viktor Horvath and Till Dörges. From security patterns to implementa-
tion using petri nets. In Proceedings of the 4th International Workshop on
Software Engineering for Secure Systems, pages 17–24, New York, NY, USA,
2008. ACM.

Bibliography 227

[HFE09] Siv Hilde Houmb, Virginia N. L. Franqueira, and Erlend A. Engum.
Quantifying security risk level from CVSS estimates of frequency and im-
pact. Journal of Systems and Software, 83(9):1662–1634, 2009.

[HL02] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft Press,
2nd edition, 2002.

[HLOS06] Shawn Hernan, Scott Lambert, Tomasz Ostwald, and Adam Shostack.
Uncover Security Design Flaws Using The STRIDE Approach. http://

msdn.microsoft.com/en-us/magazine/cc163519.aspx, 2006. Accessed
July 2, 2013.

[Hog07] Ida Hogganvik. A graphical approach to security risk analysis. PhD thesis,
Faculty of Mathematics and Natural Sciences, University of Oslo, 2007.

[HS13] Yoni Halpern and David Sontag. Unsupervised Learning of Noisy-Or
Bayesian Networks. In Proceedings of the 29th Conference on Uncertainty in
Artificial Intelligence , pages 272–281. AUAI Press, 2013.

[HUJ+04] Victoria Higuero, Juan José Unzilla, Eduardo Jacob, Purificación Sáiz,
and David Luengo. Application of ‘Attack Trees’ Technique to Copyright
Protection Protocols Using Watermarking and Definition of a New Transac-
tions Protocol SecDP (Secure Distribution Protocol). In Proceedings of the
2nd International Workshop on Multimedia Interactive Protocols and Sys-
tems, volume 3311 of LNCS, pages 264–275, Grenoble, France, September
2004. Springer.

[HVOM08] John Homer, Ashok Varikuti, Xinming Ou, and Miles A. McQueen.
Improving Attack Graph Visualization through Data Reduction and Attack
Grouping. In Proceedings of the 5th International Workshop on Visualization
For Computer Security, pages 68–79, Cambridge, MA, USA, September 2008.
Springer.

[HWS+02] Guy Helmer, Johnny Wong, Mark Slagell, Vasant Honavar, Les Miller,
and Robyn Lutz. A Software Fault Tree Approach to Requirements Analysis
of an Intrusion Detection System. Journal of Requirements Engineering,
7(4):207–220, December 2002.

[HWS+07] Guy Helmer, Johnny Wong, Mark Slagell, Vasant Honavar, Les Miller,
Yanxin Wang, Xia Wang, and Natalia Stakhanova. Software fault tree and
coloured Petri net-based specification, design and implementation of agent-
based intrusion detection systems. International Journal of Information and
Computer Security, 1(1/2):109–142, 2007.

[ILP06] Kyle W. Ingols, Richard Lippmann, and Keith Piwowarski. Practical At-
tack Graph Generation for Network Defense. In Proceedings of the 22nd
Annual Computer Security Applications Conference, pages 121–130, Wash-
ington, DC, USA, December 2006. IEEE Computer Society.

[Iso11] Isograph. AttackTree+. http://www.isograph-software.com/2011/

software/attacktree/, 1986–2011. Accessed July 2, 2013.

http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://www.isograph-software.com/2011/software/attacktree/
http://www.isograph-software.com/2011/software/attacktree/

228 Bibliography

[ISO12] ISO/IEC 15408. Common Criteria for Information Technology Security
Evaluation (version 3.1, revision 4). http://www.commoncriteriaportal.

org/files/ccfiles/CCPART1V3.1R4.pdf, 2012. Accessed July 2, 2013.

[JEBR10] Christian Jung, Frank Elberzhager, Alessandra Bagnato, and Fabio Rai-
teri. Practical Experience Gained from Modeling Security Goals: Using
SGITs in an Industrial Project. In Proceedings of the 5th International Con-
ference on Availability, Reliability and Security, pages 531–536, Los Alamitos,
CA, USA, February 2010. IEEE Computer Society.

[JJSU07] Pontus Johnson, Erik Johansson, Teodor Sommestad, and Johan Ull-
berg. A Tool for Enterprise Architecture Analysis. In Proceedings of the
11th IEEE International Enterprise Distributed Object Computing Confer-
ence, pages 142–156, Annapolis, MD, USA, October 2007. IEEE Computer
Society.

[JLNS07] Pontus Johnson, Robert Lagerström, Per Närman, and Mårten Simons-
son. Enterprise architecture analysis with extended influence diagrams. In-
formation Systems Frontiers, 9(2-3):163–180, July 2007.

[JN07] Finn V. Jensen and Thomas D. Nielsen. Bayesian Networks and Decision
Graphs. Springer, 2nd edition, 2007.

[JNO05] Sushil Jajodia, Steven Noel, and Brian O’Berry. Managing Cyber Threats:
Issues, Approaches, and Challenges, chapter Topological Analysis of Network
Attack Vulnerability, pages 247–266. Springer, 2005.

[Joh11] Chris W. Johnson. Using Assurance Cases and Boolean logic Driven
Markov Processes to Formalise Cyber Security Concerns for Safety-Critical
Interaction with Global Navigation Satellite Systems. Electronic Commu-
nication of the European Association of Software Science and Technology,
45:1–18, 2011.

[Jür10] Aivo Jürgenson. Efficient Semantics of Parallel and Serial Models of At-
tack Trees. PhD thesis, Tallinn University of Technology, Faculty of Infor-
mation Technology, Department of Informatics, 2010.

[JW07] Aivo Jürgenson and Jan Willemson. Processing Multi-Parameter Attack-
trees with Estimated Parameter Values. In Miyaji et al. [MKR07], pages
308–319.

[JW08] Aivo Jürgenson and Jan Willemson. Computing Exact Outcomes of Multi-
parameter Attack Trees. In Robert Meersman and Zahir Tari, editors, Pro-
ceedings of the OTM Conferences (2), volume 5332 of LNCS, pages 1036–
1051. Springer, 2008.

[JW10] Aivo Jürgenson and Jan Willemson. On Fast and Approximate Attack
Tree Computations. In Proceedings of the 6th International Conference on
Information Security Practice and Experience, pages 56–66. Springer, 2010.

[Kar05] Kaarina Karppinen. Security Measurement Based on Attack Trees in a
Mobile Ad Hoc Network Environment. Master’s thesis, VTT and University
of Oulu, 2005.

http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R4.pdf

Bibliography 229

[KBPC12] Siwar Kriaa, Marc Bouissou, and Ludovic Piètre-Cambacédès. Model-
ing the Stuxnet Attack with BDMP: Towards More Formal Risk Assessments.
In Proceedings of the 7th International Conference on Risks and Security of
Internet and Systems, Cork, Ireland, October 2012. IEEE Computer Society.

[KEE10] Johannes Kloos, Frank Elberzhager, and Robert Eschbach. Systematic
Construction of Goal Indicator Trees for Indicator-Based Dependability In-
spections. In Proceedings of the 36th EUROMICRO Conference on Software
Engineering and Advanced Applications, pages 279–282. IEEE, September
2010.

[Kha09] Parvaiz Ahmed Khand. System level security modeling using attack trees.
In Proceedings of the 2nd International Conference on Computer, Control and
Communication, pages 115–120, Karachi, Pakistan, February 2009. IEEE.

[Kie98] Darrell M. Kienzle. Practical Computer Security Analysis. PhD thesis,
School of Engineering and Applied Science, University of Virginia, USA,
1998.

[Kim05] Suh-Ryung Kim. Graphs with One Hole and Competition Number One.
Journal of the Korean Mathematical Society, 42(6):1251–1264, 2005.

[KKO+10] Vikash Katta, Péter Kárpáti, Andreas L. Opdahl, Christian Raspotnig,
and Guttorm Sindre. Comparing Two Techniques for Intrusion Visualization.
In Patrick van Bommel, Stijn Hoppenbrouwers, Sietse Overbeek, Erik Proper,
and Joseph Barjis, editors, Proceedings of the 3rd IFIP WG 8.1 Working
Conference on the Practice of Enterprise Modeling, volume 68 of LNBIP,
pages 1–15. Springer, 2010.

[Koh03] Jürg Kohlas. Information Algebras: Generic Structures for Inference.
Springer, 2003.

[Koo12] Laurens Koot. Security of mobile TAN on smartphones. PhD thesis,
Radboud University Nijmegen, Faculty of Science, The Netherlands, 2012.

[KS94] Sandeep Kumar and Eugene H. Spafford. A Pattern-Matching Model for
Misuse Intrusion Detection. In Proceedings of the 17th National Computer
Security Conference, pages 11–21, Baltimore, USA, October 1994.

[KS06] Igor Kotenko and Mikhail Stepashkin. Analyzing Network Security using
Malefactor Action Graphs. International Journal of Computer Science and
Network Security, 6(6):226–235, 2006.

[KS07] Parvaiz Ahmed Khand and Poong Hyun Seong. An Attack model develop-
ment process for the Cyber Security of Safety Related Nuclear Digital I&C
Systems. In Proceedings of the Korean Nuclear Society, Fall Meeting, Korea,
October 2007.

[KSM12] Péter Kárpáti, Guttorm Sindre, and Raimundas Matulevicius. Compar-
ing Misuse Case and Mal-Activity Diagrams for Modelling Social Engineering
Attacks. International Journal of Secure Software Engineering, 3(2):54–73,
2012.

230 Bibliography

[KSO10a] Péter Kárpáti, Guttorm Sindre, and Andreas L. Opdahl. Towards
a Hacker Attack Representation Method. In Proceedings of the 5th In-
ternational Conference on Software and Data Technologies, pages 92–101.
Springer, July 2010.

[KSO10b] Péter Kárpáti, Guttorm Sindre, and Andreas L. Opdahl. Visualizing
cyber attacks with misuse case maps. In Proceedings of the 16th International
Working Conference on Requirements Engineering: Foundation for Software
Quality, volume 6182 of LNCS, pages 262–275, Essen, Germany, June 2010.
Springer.

[KSZM13] Martin Korp, Christian Sternagel, Harald Zankl, and Aart Middel-
dorp. Tyrolean Termination Tool 2. http://cl-informatik.uibk.ac.at/

software/ttt2/index.php, 2009–2013. Accessed July 2, 2013.

[KW97] Darrell M. Kienzle and William A. Wulf. A Practical Approach to Security
Assessment. In Proceedings of the 1997 New Security Paradigms Workshop,
pages 5–16. ACM, September 1997.

[Laz10] Eric L. Lazarus. AttackDog. http://decisionsmith.com/doc/adog,
2010. Accessed July 21, 2010.

[LB07] David John Leversage and Eric James Byres. Comparing Electronic Battle-
fields: Using Mean Time-To-Compromise as a Comparative Security Metric.
In Proceedings of the 4th International Conference on Methods, Models, and
Architectures for Network Security, pages 213–227, St Petersburg, Russia,
September 2007. Springer.

[LB08] David John Leversage and Eric James Byres. Estimating a System’s Mean
Time-to-Compromise. IEEE Security and Privacy, 6(1):52–60, January 2008.

[LDEH11] Eric L. Lazarus, David L. Dill, Jeremy Epstein, and Joseph Lorenzo
Hall. Applying a Reusable Election Threat Model at the County Level.
In Proceedings of the 2011 Conference on Electronic voting Technology /
Workshop on Trustworthy Elections, pages 1–14, Berkeley, CA, USA, August
2011. USENIX Association.

[Lev95] Nancy G. Leveson. Safeware: System Safety and Computers. Addison-
Wesley Professional, April 1995.

[LH83] Nancy G. Leveson and Peter R. Harvey. Software fault tree analysis. Jour-
nal of Systems and Software, 3(2):173–181, 1983.

[LI05] Richard Lippmann and Kyle W. Ingols. An annotated review of past papers
on attack graphs. Project Report ESC-TR-2005-054, Massachusetts Institute
of Technology (MIT), Lincoln Laboratory, March 2005.

[LJN07] Robert Lagerström, Pontus Johnson, and Per Närman. Extended Influ-
ence Diagram Generation. In Ricardo Jardim-Gonçalves, Jörg P. Müller, Kai
Mertins, and Martin Zelm, editors, Proceedings of the 3th International Con-
ference on Interoperability for Enterprise Software and Applications, pages
599–602. Springer, 2007.

http://cl-informatik.uibk.ac.at/software/ttt2/index.php
http://cl-informatik.uibk.ac.at/software/ttt2/index.php
http://decisionsmith.com/doc/adog

Bibliography 231

[LLFH09] Xiaohong Li, Ran Liu, Zhiyong Feng, and Ke He. Threat modeling-
oriented attack path evaluating algorithm. Transactions of Tianjin Univer-
sity, 15(3):162–167, 2009.

[LM01] Richard C. Linger and Andrew P. Moore. Foundations for Survivable Sys-
tem Development: Service Traces, Intrusion Traces, and Evaluation Models.
http://www.cert.org/archive/pdf/01tr029.pdf, 2001. Accessed July 2,
2013.

[LM05] Yuan Liu and Hong Man. Network vulnerability assessment using Bayesian
networks. In SPIE Data Mining, Intrusion Detection, Information Assur-
ance, and Data Networks Security, volume 5812, pages 61–71, Orlando, FL,
USA, March 2005.

[Lou11] George Robert Louthan IV. Hybrid Attack Graphs for Modeling Cyber-
physical Systems. Master’s thesis, University of Tulsa, USA, 2011.

[LZRL09] Xiaoli Lin, Pavol Zavarsky, Ron Ruhl, and Dale Lindskog. Threat Mod-
eling for CSRF Attacks. In Proceedings of the International Conference on
Computational Science and Engineering, volume 3, pages 486–491. IEEE
Computer Society, August 2009.

[Mäg07] Triinu Mägi. Practical Security Analysis of E-voting Systems. Master’s
thesis, Tallin University of Technology, Faculty of Information Technology,
Department of Informatics, Estonia, 2007.

[Man08] Pratyusa K. Manadhata. An Attack Surface Metric. PhD thesis, Carnegie
Mellon University, December 2008.

[Mar08] Charles Marshall. Attack Trees and Their Uses in BGP and SMTP Analy-
sis. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.

3609, 2008. Accessed July 2, 2013.

[MBFB05] Miles A. McQueen, Wayne F. Boyer, Mark A. Flynn, and George A.
Beitel. Time-to-compromise model for cyber risk reduction estimation. In
Proceedings of the 1st Workshop on Quality of Protection, pages 49–64, Milan,
Italy, September 2005. Springer.

[MBFB06] Miles A. McQueen, Wayne F. Boyer, Mark A. Flynn, and George A.
Beitel. Quantitative Cyber Risk Reduction Estimation Methodology for a
Small SCADA Control System. In Proceedings of the 39th Annual Hawaii In-
ternational Conference on System Sciences, volume 9, pages 226–237, Hawaii,
USA, January 2006. IEEE.

[MBG08] Samresh Malhotra, Somak Bhattacharya, and S. K. Ghosh. A Vulner-
ability and Exploit Independent Approach for Attack Path Prediction. In
Proceedings of the 8th IEEE International Conference on Computer and In-
formation Technology Workshops, pages 282–287, Sydney, Australia, July
2008. IEEE Computer Society.

http://www.cert.org/archive/pdf/01tr029.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.3609
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.3609

232 Bibliography

[MBZ+06] Vaibhav Mehta, Constantinos Bartzis, Haifeng Zhu, Edmund Clarke,
and Jeannette Wing. Ranking Attack Graphs. In Proceedings of the 9th
International Symposium on Recent Advances in Intrusion Detection, vol-
ume 4219 of LNCS, pages 127–144, Hamburg, Germany, September 2006.
Springer.

[McD00] John P. McDermott. Attack net penetration testing. In Proceedings of
the 2000 New Security Paradigms Workshop, pages 15–21, Cork, Ireland,
September 2000. ACM.

[MCM+09] Amel Mammar, Ana Cavalli, Edgardo Montes de Oca, Shanai Ardi,
David Byers, and Nahid Shahmehri. Modélisation et Détection Formelles
de Vulnérabilités Logicielles par le Test Passif. In 4ème Conférence sur la
Sécurité des Architectures Réseaux et des Systèmes d’Information, page 12pp,
June 2009.

[MCM11] Anderson Morais, Ana Cavalli, and Eliane Martins. A Model-Based
Attack Injection Approach for Security Validation. In Proceedings of the 4th
International Conference on Security of Information and Networks, pages
103–110, New York, NY, USA, 2011. ACM.

[Mea96] Catherine Meadows. A representation of Protocol Attacks for Risk Assess-
ment. In Proceedings of the DIMACS Workshop on Network Threats, pages
1–10, New Brunswick, NJ, USA, December 1996. American Mathematical
Society.

[MEL01] Andrew P. Moore, Robert J. Ellison, and Richard C. Linger. Attack Mod-
eling for Information Security and Survivability. Technical Note CMU/SEI-
2001-TN-001, Carnegie Mellon University, March 2001.

[Mel10] Per Håkon Meland. SeaMonster. http://sourceforge.net/projects/

seamonster/, 2010. Accessed July 2, 2013.

[MF99] John P. McDermott and Chris Fox. Using abuse case models for security
requirements analysis. In Proceedings of the 15th Annual Computer Security
Applications Conference, pages 55–64, Phoenix, USA, December 1999. IEEE
Computer Society.

[MFC07] Marcelo Masera, Igor Nai Fovino, and Alessio De Cian. Integrating cyber
attacks within fault trees. In Terje Aven and Jan Erik Vinnem, editors,
Proceedings of the 16th European Safety and Reliability Conference, pages
1–8, Stavanger, Norway, 2007. Taylor & Francis Group.

[MH68] Jim E. Matheson and Ron A. Howard. An Introduction to Decision Anal-
ysis. Strategic Decisions Group, Menlo Park, CA, 1968.

[MHH+09] Aaron Marback, Do Hyunsook, Ke He, Samuel Kondamarri, and Di-
anxiang Xu. Security test generation using threat trees. In Proceedings of
the 2009 ICSE Workshop on Automation of Software Testing, pages 62–69.
IEEE, May 2009.

http://sourceforge.net/projects/seamonster/
http://sourceforge.net/projects/seamonster/

Bibliography 233

[MHS05] Nancy R. Mead, Eric D. Hough, and Theodore R. Stehney II. Secu-
rity Quality Requirements Engineering (SQUARE) Methodology. Technical
Report CMU/SEI-2005-TR-009, Carnegie Mellon University, 2005.

[MHW09] Luke Mirowski, Jacqueline Hartnett, and Raymond Williams. An RFID
Attacker Behavior Taxonomy. IEEE Pervasive Computing, 8(4):79–84, 2009.

[MK97] Ira S. Moskowitz and Myong H. Kang. An insecurity flow model. In
Proceedings of the 1997 New Security Paradigms Workshop, pages 61–74.
ACM, September 1997.

[MKR07] Atsuko Miyaji, Hiroaki Kikuchi, and Kai Rannenberg, editors. Proceed-
ings of the 2nd International Workshop on Security Advances in Information
and Computer Security, volume 4752 of LNCS. Springer, October 2007.

[MKY12] Shivani Mishra, Krishna Kant, and R. S. Yadav. Multi Tree View of
Complex Attack – Stuxnet. In Proceedings of the 2nd International Confer-
ence on Advances in Computing and Information Technology, pages 171–188,
Chennai, India, July 2012.

[MM08] Drake Patrick Mirembe and Maybin Muyeba. Threat Modeling Revisited:
Improving Expressiveness of Attack. In Proceedings of the 2008 2nd UKSIM
European Symposium on Computer Modeling and Simulation, pages 93–98,
Washington, DC, USA, 2008. IEEE Computer Society.

[MMCJ09] Anderson Nunes Paiva Morais, Eliane Martins, Ana R. Cavalli, and
Willy Jimenez. Security Protocol Testing Using Attack Trees. In Proceedings
of the International Conference on Computational Science and Engineering,
pages 690–697. IEEE Computer Society, August 2009.

[MO05] Sjouke Mauw and Martijn Oostdijk. Foundations of Attack Trees. In
Dongho Won and Seungjoo Kim, editors, Proceedings of the 8th International
Conference on Information Security and Cryptology, volume 3935 of LNCS,
pages 186–198. Springer, 2005.

[Mob00] Fredrik Moberg. Security Analysis of an Information System Using an
Attack Tree-based Methodology. Master’s thesis, Chalmers University of
Technology, 2000.

[MPM10a] Stephen McLaughlin, Dmitry Podkuiko, and Patrick McDaniel. Energy
theft in the advanced metering infrastructure. In Proceedings of the 4th
International Conference on Critical Information Infrastructures Security,
pages 176–187. Springer, 2010.

[MPM+10b] Stephen McLaughlin, Dmitry Podkuiko, Sergei Miadzvezhanka,
Adam Delozier, and Patrick McDaniel. Multi-vendor penetration testing
in the advanced metering infrastructure. In Proceedings of the 26th An-
nual Computer Security Applications Conference(ACSAC), pages 107–116,
Austin, TX, USA„ December 2010. ACM.

[MRZ05] Claude Marché, Albert Rubio, and Hans Zantema. Termination Prob-
lem Data Base: format of input files. http://www.lri.fr/~marche/tpdb/

format.html, 2005. Accessed July 2, 2013.

http://www.lri.fr/~marche/tpdb/format.html
http://www.lri.fr/~marche/tpdb/format.html

234 Bibliography

[MS05] Nancy R. Mead and Ted Stehney. Security quality requirements engineer-
ing (SQUARE) methodology. ACM SIGSOFT Software Engineering Notes,
30(4):1–7, May 2005.

[MSH+08] Per Håkon Meland, Daniele Giuseppe Spampinato, Eilev Hagen,
Egil Trygve Baadshaug, Kris-Mikael Krister, and Ketil Sandanger Velle. Sea-
Monster: Providing tool support for security modeling. In Proceedings of the
Norsk Informasjonssikkerhetskonferanse. Tapir akademisk forlag, November
2008.

[MTF11] Theodore W. Manikas, Mitchell A. Thornton, and David Y. Feinstein.
Using Multiple-Valued Logic Decision Diagrams to Model System Threat
Probabilities. In Proceedings of the 41st IEEE International Symposium on
Multiple-Valued Logic, pages 263 –267. IEEE, May 2011.

[MTJ10] Per Håkon Meland, Inger Anne Tøndel, and Jostein Jensen. Idea:
Reusability of Threat Models - Two Approaches with an Experimental Eval-
uation. In Proceedings of the 2nd International Symposium on Engineering
Secure Software and Systems, volume 5965 of LNCS, pages 114–122, Pisa,
Italy, February 2010. Springer.

[MY11] Ikuya Morikawa and Yuji Yamaoka. Threat Tree Templates to Ease Diffi-
culties in Threat Modeling. In Proceedings of the 14th International Confer-
ence on Network-Based Information Systems, pages 673–678. IEEE, Septem-
ber 2011.

[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, Inc.,
2003.

[NEJ+09] Steven Noel, Matthew Elder, Sushil Jajodia, Pramod Kalapa, Scott
O’Hare, and Kenneth Prole. Advances in Topological Vulnerability Anal-
ysis. In Proceedings of the 2009 Cybersecurity Applications & Technology
Conference for Homeland Security, pages 124–129, Washington, DC, USA,
2009. IEEE Computer Society.

[Nie11] Jason R. Nielsen. Evaluating Information Assurance Control Effective-
ness on An Air Force Supervisory Control And Data Acquisition (SCADA)
System. Master’s thesis, US Air Force Institute of Technology, March 2011.

[Nii10] Margus Niitsoo. Optimal adversary behavior for the serial model of fi-
nancial attack trees. In Proceedings of the 5th International Conference on
Advances in Information and Computer Security, pages 354–370. Springer,
2010.

[NJ04] Steven Noel and Sushil Jajodia. Managing attack graph complexity through
visual hierarchical aggregation. In ACM, pages 109–118, Fairfax, VA, USA,
October 2004.

[NJKJ05] Steven Noel, Michael Jacobs, Pramod Kalapa, and Sushil Jajodia. Mul-
tiple coordinated views for network attack graphs. In Proceedings of the
2005 IEEE Workshop on Visualization for Computer Security, pages 99–106,
Minneapolis, USA, October 2005. John Wiley & Sons, Inc.

Bibliography 235

[NJL+09] Per Närman, Pontus Johnson, Robert Lagerström, Ulrik Franke, and
Mathias Ekstedt. Data Collection Prioritization for System Quality Analysis.
Electronic Notes in Theoretical Computer Science, 233:29–42, March 2009.

[NJOJ03] Steven Noel, Sushil Jajodia, Brian O’Berry, and Michael Jacobs. Effi-
cient Minimum-cost Network Hardening via Exploit Dependency Graphs. In
Proceedings of the 19th Annual Computer Security Applications Conference,
pages 86–95, Las Vegas, NV, USA, December 2003. IEEE Computer Society.

[NJWS10] Steven Noel, Sushil Jajodia, Lingyu Wang, and Anoop Singhal. Mea-
suring Security Risk of Networks Using Attack Graphs. International Journal
of Next-Generation Computing, 1(1):135–147, 2010.

[NNL09] NNL Technology AB. InfoNode Docking Windows. http://www.

infonode.net/index.html?idw, 1998–2009. Accessed July 2, 2013.

[NXYS08] Zhu Ning, Chen Xin-yuan, Zhang Yong-fu, and Xin Si-yuan. Design and
Application of Penetration Attack Tree Model Oriented to Attack Resistance
Test. In Proceedings of the International Conference on Computer Science
and Software Engineering, pages 622–626. IEEE Computer Society, 2008.

[OBM06] Xinming Ou, Wayne F. Boyer, and Miles A. McQueen. A Scalable Ap-
proach to Attack Graph Generation. In Ari Juels, Rebecca N. Wright, and
Sabrina De Capitani di Vimercati, editors, Proceedings of the 13th ACM con-
ference on Computer and Communications Security, pages 336–345. ACM,
2006.

[OGA05] Xinming Ou, Sudhakar Govindavajhala, and Andrew W. Appel. Mul-
VAL: A logic-based network security analyzer. In Proceedings of the 14th
USENIX Security Symposium, pages 113–128, 2005.

[Ohl02] Enno Ohlebusch. Advanced Topics in Term Rewriting. Springer, New
York, NY, USA, 2002.

[Ope05] Alexander Opel. Design and Implementation of a Support Tool for Attack
Trees. Master’s thesis, Technische Universiteit Eindhoven, March 2005.

[Ops82] Robert J. Opsut. On the Computation of the Competition Number of
a Graph. SIAM Journal on Algebraic and Discrete Methods, 3(4):420–428,
1982.

[Ora13] Oracle. Java Web Start. http://www.java.com/en/download/faq/

java_webstart.xml, 1995–2013. Accessed July 2, 2013.

[OS09] Andreas L. Opdahl and Guttorm Sindre. Experimental comparison of at-
tack trees and misuse cases for security threat identification. Information
and Software Technology, 51(5):916–932, 2009.

[Ost11] Ryan T. Ostler. Defensive Cyber Battle Damage Assessment through
Attack Methodology Modeling. Master’s thesis, Air Force Institute of Tech-
nology, Department of Electrical and Computer Engineering, USA, 2011.

http://www.infonode.net/index.html?idw
http://www.infonode.net/index.html?idw
http://www.java.com/en/download/faq/java_webstart.xml
http://www.java.com/en/download/faq/java_webstart.xml

236 Bibliography

[OTT+10] Poramate Ongsakorn, Kyle Turney, Mitchell A. Thornton, Suku Nair,
Stephen A. Szygenda, and Theodore Manikas. Cyber threat trees for large
system threat cataloging and analysis. In Proceedings of the 4th Annual IEEE
Systems Conference, pages 610–615, April 2010.

[PA11] Mateusz Pawlik and Nikolaus Augsten. RTED: A Robust Algorithm for
the Tree Edit Distance. Very Large Data Base Endowment, 5(4):334–345,
2011.

[PAB+12] Huong Phan, George Avrunin, Matt Bishop, Lori A. Clarke, and Leon J.
Osterweil. A Systematic Process-Model-Based Approach for Synthesizing At-
tacks and Evaluating Them. In Proceedings of the 2012 International Confer-
ence on Electronic Voting Technology/Workshop on Trustworthy Elections,
pages 1–16, Berkeley, CA, USA, 2012. USENIX Association.

[PC10] Ludovic Piètre-Cambacédès. Des relations entre sûreté et sécurité. PhD
thesis, Télécom ParisTech, 2010.

[PCB09] Ludovic Piètre-Cambacédès and Marc Bouissou. The promising potential
of the BDMP formalism for security modeling. In Proceedings of the 39th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, Supplemental Volume, Estoril, Portugal, June 2009. IEEE.

[PCB10a] Ludovic Piètre-Cambacédès and Marc Bouissou. Attack and Defense
Modeling with BDMP. In Igor Kotenko and Victor Skormin, editors, Pro-
ceedings of the 5th International Conference on Mathematical Methods, Mod-
els and Architectures for Computer Network Security, volume 6258 of LNCS,
pages 86–101. Springer, 2010.

[PCB10b] Ludovic Piètre-Cambacédès and Marc Bouissou. Beyond attack trees:
dynamic security modeling with Boolean logic Driven Markov Processes
(BDMP). In Proceedings of the 8th European Dependable Computing Confer-
ence, pages 199–208, Valencia, Spain, April 2010. IEEE Computer Society.

[PCB10c] Ludovic Piètre-Cambacédès and Marc Bouissou. Modeling safety and
security interdepedencies with BDMP (Boolean logic Driven Markov Pro-
cesses). In Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, pages 2852–2861, Istanbul, Turkey, October 2010.
IEEE.

[PCB13] Ludovic Piètre-Cambacédès and Marc Bouissou. Cross-fertilization be-
tween safety and security engineering. Reliability Engineering & System
Safety, 110:110–126, February 2013.

[PCDB11] Ludovic Piètre-Cambacédès, Yann Deflesselle, and Marc Bouissou. Se-
curity modeling with BDMP: from theory to implementation. In Proceedings
of the 6th IEEE International Conference on Network and Information Sys-
tems Security, pages 1–8, La Rochelle, France, May 2011. IEEE.

[PDR12] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray. Dynamic Security
Risk Management Using Bayesian Attack Graphs. IEEE Transactions on
Dependable and Secure Computing, 9(1):61–74, Jan–Feb 2012.

Bibliography 237

[Pea86] Judea Pearl. Fusion, propagation, and structuring in belief networks. Ar-
tificial Intelligence, 29(3):241–288, 1986.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann, 1988.

[PGR08] Sandip C. Patel, James H. Graham, and Patricia A. S. Ralston. Quan-
titatively assessing the vulnerability of critical information systems: A new
method for evaluating security enhancements. International Journal of In-
formation Management, 28(6):483–491, December 2008.

[PJM08] Holger Peine, Marek Jawurek, and Stefan Mandel. Security Goal Indi-
cator Trees: A Model of Software Features that Supports Efficient Security
Inspection. In Proceedings of the 2008 11th IEEE High Assurance Systems
Engineering Symposium, pages 9–18, Washington, DC, USA, 2008. IEEE
Computer Society.

[PK11] Marc Pouly and Jürg Kohlas. Generic Inference: A Unifying Theory for
Automated Reasoning. John Wiley & Sons, Inc., 2011.

[Pla93] David A. Plaisted. Equational Reasoning and Term Rewriting Systems,
pages 274–364. Oxford University Press, Inc., New York, NY, USA, 1993.

[PLC+08] Gee-Yong Park, Cheol Kwon Lee, Jong Gyun Choi, Dong Hoon Choi,
Young Jun Lee, and Kee-Choon Kwon. Cyber Security Analysis by Attack
Trees for a Reactor Protection System. In Proceedings of the Korean Nuclear
Society, Fall Meeting, Pyeong Chang, Korea, October 2008.

[PML10] Srdjan Pudar, Govindarasu Manimaran, and Chen-Ching Liu. PENET:
a practical method and tool for integrated modeling of security attacks and
countermeasures. Computers & Security, 28(8):754–771, May 2010.

[Pos12] Simona Posea. Renewal Periods for Cryptographic Keys. Master’s the-
sis, Eindhoven University of Technology, Department of Mathematics and
Computer Science, Eindhoven, The Netherlands, August 2012.

[Pot04] Michael D. Potter. Set Theory and its Philosophy: a Critical Introduction.
Oxford University Press, Inc., 2004.

[Pou08] Marc Pouly. A Generic Framework for Local Computation. PhD thesis,
Department of Informatics, University of Fribourg, 2008.

[PR07] Nayot Poolsapassit and Indrajit Ray. Investigating Computer Attacks Us-
ing Attack Trees. In Proceedings of the IFIP International Conference on
Digital Forensics, volume 242 of IFIP, pages 331–343. Springer, 2007.

[PS98] Cynthia Phillips and Laura Painton Swiler. A Gaph-Based System for
Network-Vulnerability Analysis. In Proceedings of the 1998 New Security
Paradigms Workshop, pages 71–79, Charlottesville, VA, USA, September
1998. ACM.

238 Bibliography

[Pum99] David Pumfrey. The Principled Design of Computer System Safety Anal-
yses. PhD thesis, Department of Computer Science, University of York, York,
UK, September 1999.

[QL04] Xinzhou Qin and Wenke Lee. Attack plan recognition and prediction us-
ing causal networks. In Proceedings of the 20th Annual Computer Security
Applications Conference, pages 370–379. IEEE Computer Society, December
2004.

[Ras06] Eric Rasmusen. Games and Information: An Introduction to Game The-
ory. John Wiley & Sons, Inc., 2006.

[RHCM12] Guifré Ruiz, Elisa Heymann, Eduardo César, and Barton P. Miller.
Automating Threat Modeling through the Software Development Life-
Cycle. http://research.cs.wisc.edu/mist/papers/Guifre-sep2012.

pdf, 2012. Accessed July 2, 2013.

[RKT10a] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. ACT: Attack
Countermeasure Trees for Information Assurance Analysis. In Proceedings of
the INFOCOM IEEE Conference on Computer Communications Workshops,
pages 1–2, San Diego, CA, USA, March 2010. IEEE.

[RKT10b] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Cyber security
analysis using attack countermeasure trees. In Proceedings of the 6th Annual
Workshop on Cyber Security and Information Intelligence Research, pages
28:1–28:4, New York, NY, USA, 2010. ACM.

[RKT12a] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Attack counter-
measure trees (ACT): towards unifying the constructs of attack and defense
trees. Security and Communication Networks, 5(8):929–943, 2012.

[RKT12b] Arpan Roy, Dong Seong Kim, and Kishor S. Trivedi. Scalable optimal
countermeasure selection using implicit enumeration on attack countermea-
sure trees. In Robert S. Swarz, Philip Koopman, and Michel Cukier, edi-
tors, Proceedings of the 42nd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 299–310, Boston, MA, USA,
June 2012. IEEE.

[Rø06] Lillian Røstad. An extended misuse case notation: Including vulnerabilities
and the insider threat. In Proceedings of the 12th International Working
Conference on Requirements Engineering: Foundation for Software Quality,
pages 33–43, Luxembourg, Luxembourg, June 2006.

[Roy10] Arpan Roy. Attack Countermeasure Trees: A Non-state-space Approach
Towards Analyzing Security and Finding Optimal Countermeasure Sets.
Master’s thesis, Duke University, Department of Electrical and Computer
Engineering, USA, 2010.

[RP05] Indrajit Ray and Nayot Poolsapassit. Using Attack Trees to Identify Ma-
licious Attacks from Authorized Insiders. In Sabrina di Vimercati, Paul
Syverson, and Dieter Gollmann, editors, Proceedings of the 10th European

http://research.cs.wisc.edu/mist/papers/Guifre-sep2012.pdf
http://research.cs.wisc.edu/mist/papers/Guifre-sep2012.pdf

Bibliography 239

Symposium on Research in Computer Security, volume 3679 of LNCS, pages
231–246. Springer, 2005.

[RSF+09] Martin Rehák, Eugen Staab, Volker Fusenig, Michal Pěchouček, Martin
Grill, Jan Stiborek, Karel Bartoš, and Thomas Engel. Runtime Monitoring
and Dynamic Reconfiguration for Intrusion Detection Systems. In Engin
Kirda, Somesh Jha, and Davide Balzarotti, editors, Proceedings of the 12th
International Symposium on Recent Advances in Intrusion Detection, volume
5758 of LNCS, pages 61–80. Springer, 2009.

[RSK+12] Andreas Reinhardt, Daniel Seither, André König, Ralf Steinmetz, and
Matthias Hollick. Protecting IEEE 802.11s Wireless Mesh Networks Against
Insider Attacks. In Proceedings of the 37th IEEE Conference on Local Com-
puter Networks, pages 224–227. IEEE, 2012.

[RVOC08] Kamil Reddy, Hein S. Venter, Martin S. Olivier, and Iain Currie. To-
wards Privacy Taxonomy-Based Attack Tree Analysis for the Protection of
Consumer Information Privacy. In Larry Korba, Steve Marsh, and Reihaneh
Safavi-Naini, editors, Proceedings of the 6th Annual Conference on Privacy,
Security and Trust, pages 56–64. IEEE, October 2008.

[RWT13] RWTH Aachen, Research Group Computer Science 2. Automated Pro-
gram Verification Environment (AProVE). http://aprove.informatik.

rwth-aachen.de/, 2001–2013. Accessed July 2, 2013.

[Sam11] K. C. Sameer. Attack Generation From System Models. Master’s thesis,
Technical University of Denmark, Denmark, 2011.

[Sch24] Moses Schönfinkel. Über die Bausteine der mathematischen Logik. Math-
ematische Annalen, 92(3):305–316, 1924.

[Sch99] Bruce Schneier. Attack Trees. Dr. Dobb’s Journal of Software Tools,
24(12):21–29, 1999.

[Sch04a] Stuart Edward Schechter. Computer Security Strength and Risk - A
Quantitative Approach. PhD thesis, Harvard University, Cambridge, MA,
USA, May 2004.

[Sch04b] Bruce Schneier. Secrets and lies. John Wiley & Sons, Inc., Indianapolis,
USA, 2004.

[Scu10] Marco Scutari. Learning Bayesian Networks with the bnlearn R Package.
Journal of Statistical Software, 35(3):1–22, July 2010.

[SDHH98] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz.
A Bayesian Approach to Filtering Junk E-Mail. In Proceedings of the 1998
AAAI Workshop on Learning for Text Categorization, pages 55–62. AAAI
Press, 1998.

[SDP08] Vineet Saini, Qiang Duan, and Vamsi Paruchuri. Threat Modeling Using
Attack Trees. Journal of Computing in Small Colleges, 23(4):124–131, 2008.

http://aprove.informatik.rwth-aachen.de/
http://aprove.informatik.rwth-aachen.de/

240 Bibliography

[SEJ08] Teodor Sommestad, Mathias Ekstedt, and Pontus Johnson. Combining
defense graphs and enterprise architecture models for security analysis. In
Proceedings of the 12th IEEE International Conference on Enterprise Dis-
tributed Object Computing, pages 349–355, München, Germany, September
2008. IEEE Computer Society.

[SEJ09] Teodor Sommestad, Mathias Ekstedt, and Pontus Johnson. Cyber Se-
curity Risks Assessment with Bayesian Defense Graphs and Architectural
Models. In Proceedings of the 42nd Annual Hawaii International Conference
on System Sciences, pages 941 941–950, Hawaii, USA, January 2009. IEEE.

[SEN09] Teodor Sommestad, Mathias Ekstedt, and Lars Nordström. Modeling
security of power communication systems using defense graphs and influence
diagrams. IEEE Transactions on Power Delivery, 24(4):1801–1808, October
2009.

[She92] Prakash P. Shenoy. Valuation-Based Systems: A Framework for Managing
Uncertainty in Expert Systems. In Lotfi A. Zadeh and Janusz Kacprzyk,
editors, Fuzzy Logic for the Management of Uncertainty, pages 83–104. John
Wiley & Sons, Inc., 1992.

[She04] Oleg Sheyner. Scenario Graphs and Attack Graphs. PhD thesis, Carnegie
Mellon University (CMU), Pittsburgh, PA, 2004.

[SHI10a] SHIELDS. FP7 project, grant agreement 215995. http://www.shields-

project.eu/, 2008–2010. Accessed July 2, 2013.

[SHI10b] SHIELDS. FP7 project, grant agreement 215995, Detecting known secu-
rity vulnerabilities from within design and development tools. http://www.

shields-project.eu/, 2008–2010. Accessed July 2, 2013.

[SHI10c] SHIELDS. FP7 project, grant agreement 215995, GOAT. http://www.

ida.liu.se/divisions/adit/security/goat/, 2008–2010. Accessed July
2, 2013.

[SHI10d] SHIELDS. FP7 project, grant agreement 215995, Final SHIELDS ap-
proach guide - Deliverable D1.4. http://www.shields-project.eu/files/

docs/D1.4%20Final%20SHIELDS%20Approach%20Guide.pdf, 2010. Accessed
July 2, 2013.

[SHJ+02] Oleg Sheyner, Joshua W. Haines, Somesh Jha, Richard Lippmann, and
Jeannette M. Wing. Automated Generation and Analysis of Attack Graphs.
In Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages
273–284, Los Alamitos, CA, USA, 2002. IEEE Computer Society.

[Sin07] Guttorm Sindre. Mal-Activity Diagrams for Capturing Attacks on Business
Processes. In Proceedings of the 13th International Working Conference on
Requirements Engineering: Foundation for Software Quality, volume 4542 of
LNCS, pages 355–366, Trondheim, Norway, June 2007. Springer.

[SL05] Guttorm Sindre and Andreas L.Opdahl. Eliciting security requirements
with misuse cases. Requirements Engineering, 10(1):34–44, 2005.

http://www.shields-project.eu/
http://www.shields-project.eu/
http://www.shields-project.eu/
http://www.shields-project.eu/
http://www.ida.liu.se/divisions/adit/security/goat/
http://www.ida.liu.se/divisions/adit/security/goat/
http://www.shields-project.eu/files/docs/D1.4%20Final%20SHIELDS%20Approach%20Guide.pdf
http://www.shields-project.eu/files/docs/D1.4%20Final%20SHIELDS%20Approach%20Guide.pdf

Bibliography 241

[SMdO+12] Nahid Shahmehri, Amel Mammar, Edgardo Montes de Oca, David By-
ers, Ana Cavalli, Shanai Ardi, and Willy Jimenez. An advanced approach for
modeling and detecting software vulnerabilities. Information and Software
Technology, 54(9):997–1013, 2012.

[SO00] Guttorm Sindre and Andreas L. Opdahl. Eliciting Security Requirements
by Misuse Cases. In Proceedings of the 37th International Conference on
Technology of Object-Oriented Languages and Systems, pages 120–131, Syd-
ney, Australia, November 2000. IEEE Computer Society.

[SO01] Guttorm Sindre and Andreas L. Opdahl. Templates for misuse case de-
scription. In Proceedings of the 7th International Working Conference on
Requirements Engineering: Foundation for Software Quality, pages 125–136,
Interlaken, Switzerland, June 2001.

[SOB02] Guttorm Sindre, Andreas L. Opdahl, and Gøran F. Brevik. Generaliza-
tion/specialization as a structuring mechanism for misuse cases. In Proceed-
ings of the 2nd Symposium on Requirements Engineering for Information
Security, Raleigh, NC, USA, October 2002.

[SPEC01] Laura Painton Swiler, Cynthia Phillips, David Ellis, and Stefan Chake-
rian. Computer-attack graph generation tool. In Proceedings of the DARPA
Information Survivability Conference and Exposition II, volume 2, pages 307–
321, Anaheim, CA, USA, June 2001. IEEE Computer Society.

[SS02] Jan Steffan and Markus Schumacher. Collaborative attack modeling. In
Proceedings of the 2002 ACM Symposium on Applied Computing, pages 253–
259, Madrid, Spain, March 2002. ACM.

[SS04] Frank Swiderski and Window Snyder. Threat modeling. Microsoft Press,
Redmond, USA, 2004.

[SS12] Husam Suleiman and Davor Svetinovic. Evaluating the effectiveness of the
security quality requirements engineering (SQUARE) method: a case study
using smart grid advanced metering infrastructure. Requirements Engineer-
ing, :1–29, 2012.

[SSSW98] Chris Salter, O. Sami Saydjari, Bruce Schneier, and Jim Wallner. To-
ward a Secure System Engineering Methodolgy. In Proceedings of the 1998
New Security Paradigms Workshop, pages 2–10, Charlottesville, VA, USA,
September 1998. ACM.

[SVD+02] Michael Stamatelatos, William Vesely, Joanne Dugan, Joseph Fragola,
Joseph Minarick III, and Jan Railsback. Fault Tree Handbook with
Aerospace Applications (NASA). http://www.hq.nasa.gov/office/

codeq/doctree/fthb.pdf, 2002. Accessed July 2, 2013.

[SWX11] Michael Sanford, Daniel Woodraska, and Dianxiang Xu. Security Anal-
ysis of FileZilla Server Using Threat Models. In Proceedings of the 23rd
International Conference on Software Engineering and Knowledge Engineer-
ing, pages 678–682. Knowledge Systems Institute Graduate School, 2011.

http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

242 Bibliography

[TA10] Eedee Tanu and Johnnes Arreymbi. An examination of the security impli-
cations of the supervisory control and data acquisition (SCADA) system in a
mobile networked environment: An augmented vulnerability tree approach.
In Proceedings of the 5th Annual Conference on Advances in Computing and
Technology, pages 228–242. University of East London, School of Computing,
Information Technology and Engineering, 2010.

[TDL13] TDL. Trust in Digital Life research community. http://www.

trustindigitallife.eu/, 2008–2013. Accessed July 2, 2013.

[TJR10] Inger Anne Tøndel, Jostein Jensen, and Lillian Røstad. Combining Misuse
Cases with Attack Trees and Security Activity Models. In Proceedings of the
5th International Conference on Availability, Reliability and Security, pages
438–445, Los Alamitos, CA, USA, February 2010. IEEE Computer Society.

[TLFH01] Terry Tidwell, Ryan Larson, Kenneth Fitch, and John Hale. Modeling
Internet Attacks. In Proceedings of the 2001 IEEE Workshop on Information
Assurance and Security, pages 54–59, West Point, NY, USA, June 2001.

[TLM07] Chee-Wooi Ten, Chen-Ching Liu, and Govindarasu Manimaran. Vul-
nerability Assessment of Cybersecurity for SCADA Systems Using Attack
Trees. In Proceedings of the IEEE Power Engineering Society General Meet-
ing, pages 1–8, Tampa, FL, USA, June 2007. IEEE.

[TML10] Chee-Wooi Ten, Govindarasu Manimaran, and Chen-Ching Liu. Cyber-
security for Critical Infrastructures: Attack and Defense Modeling. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Hu-
mans, 40(4):853–865, July 2010.

[TRE16] TREsPASS. Technology-supported Risk Estimation by Predictive As-
sessment of Socio-technical Security, FP7 project, grant agreement 318003.
http://www.trespass-project.eu/, 2012–2016. Accessed July 2, 2013.

[TS09] Kishor S. Trivedi and Robin Sahner. SHARPE at the age of twenty two.
ACM SIGMETRICS Performance Evaluation Review, 36(4):52–57, March
2009.

[US 88] US Department of Defense (DoD). Standard Practice For System Safety.
Technical Report MIL-STD-882D, US Department of Defense (DoD), June
1988.

[US 10] US Nuclear Regulatory Commission (NRC). Cyber Security Pro-
grams For Nuclear Facilities. http://pbadupws.nrc.gov/docs/ML0903/

ML090340159.pdf, 2010. Accessed July 2, 2013.

[VGRH81] William E. Vesely, Francine F. Goldberg, Norman H. Roberts, and
David F. Haasl. Fault Tree Handbook. Technical Report NUREG-0492, US
Regulatory Commission, 1981.

[VIK11] VIKING. FP7 project, grant agreement 225643. http://www.

vikingproject.eu, 2008–2011. Accessed July 2, 2013.

http://www.trustindigitallife.eu/
http://www.trustindigitallife.eu/
http://www.trespass-project.eu/
http://pbadupws.nrc.gov/docs/ML0903/ML090340159.pdf
http://pbadupws.nrc.gov/docs/ML0903/ML090340159.pdf
http://www.vikingproject.eu
http://www.vikingproject.eu

Bibliography 243

[VJ03] Stilianos Vidalis and Andy Jones. Using vulnerability trees for decision
making in threat assessment. Technical Report CS-03-02, School of Com-
puting, University of Glamorgan, Pontypridd, Wales, UK, 2003.

[vL04] Axel van Lamsweerde. Elaborating security requirements by construction of
intentional anti-models. In Proceedings of the 26th International Conference
on Software Engineering, pages 148 – 157. IEEE Computer Society, May
2004.

[vLBLJ03] Axel van Lamsweerde, Simon Brohez, Renaud De Landtsheer, and
David Janssens. From System Goals to Intruder Anti-Goals: Attack Gen-
eration and Resolution for Security Requirements Engineering. In Proceed-
ings of the 2nd International Workshop on Requirements for High Assurance
Systems, pages 49–56, 2003.

[vLL00] Axel van Lamsweerde and Emmanuel Letier. Handling Obstacles in Goal-
Oriented Requirements Engineering. IEEE Transactions on Software Engi-
neering, 26(10):978–1005, October 2000.

[Wal90] John Q. Walker II. A Node-positioning Algorithm for General Trees.
Software: Practice and Experience, 20(7):685–705, July 1990.

[Wat61] H. A. Watson. Launch Control Safety Study, volume 1. Bell Labs, Murray
Hill, NJ, 1961.

[Wei91] Jonathan D. Weiss. A system security engineering process. In Proceedings
of the 14th National Computer Security Conference, pages 572–581, 1991.

[WFM+03] Yu-Sung Wu, Bingrui Foo, Blake Matheny, Tyler Olsen, and Saurabh
Bagchi. ADEPTS: Adaptive Intrusion Containment and Response using At-
tack Graphs in an E-commerce Environment. Technical Report 2003-33,
Purdue University, School of Electrical and Computer Engineering, Decem-
ber 2003.

[WFM+05] Yu-Sung Wu, Bingrui Foo, Yu-Chun Mao, Saurabh Bagchi, and Eu-
gene Spafford. Automated Aaptive Intrusion Containment in Systems of
Interacting Services. Technical Report Paper 68, Purdue University, School
of Electrical and Computer Engineering, West Lafayette, IN, USA, 2005.

[WFMB03] Yu-Sung Wu, Bingrui Foo, Yongguo Mei, and Saurabh Bagchi. Col-
laborative Intrusion Detection System (CIDS): A Framework for Accurate
and Efficient IDS. In Proceedings of the 19th Annual Computer Security
Applications Conference, pages 234–244. IEEE Computer Society, 2003.

[WIL+08] Lingyu Wang, Tania Islam, Tao Long, Anoop Singhal, and Sushil Jajo-
dia. An Attack Graph-Based Probabilistic Security Metric. In Proceedings
of the 22nd Annual IFIP WG 11.3 Working Conference on Data and Appli-
cations Security, volume 5094 of LNCS, pages 283–296, London, UK, July
2008. Springer.

[Win90] Jeannette M. Wing. A Specifier’s Introduction to Formal Methods. IEEE
Computer, 23(9):8–23, September 1990.

244 Bibliography

[WJ10] Jan Willemson and Aivo Jürgenson. Serial Model for Attack Tree Com-
putations. In D. Lee and S. Hong, editors, Proceedings of the 13th Inter-
national Conference Information Security and Cryptology, volume 5984 of
LNCS, pages 118–128. Springer, 2010.

[WLI07] Leevar Williams, Richard Lippmann, and Kyle W. Ingols. An interactive
attack graph cascade and reachability display. In Proceedings of the 2007
Workshop on Visualization for Computer Security, pages 221–236, Sacra-
mento, CA, USA, October 2007. Springer.

[WLR11] Mathew Warren, Shona Leitch, and Ian Rosewall. Attack vectors against
social networking systems : the Facebook example . In Proceedings of the 9th
Australian Information Security Management Conference. SECAU - Security
Research Centre, 2011.

[WLZ06] Hui Wang, Shufen Liu, and Xinjia Zhang. An improved model of at-
tack probability prediction system. Wuhan University Journal of Natural
Sciences, 11(6):1498–1502, 2006.

[WNJ06] Lingyu Wang, Steven Noel, and Sushil Jajodia. Minimum-cost network
hardening using attack graphs. Computer Communications, 29(18):3812–
3824, November 2006.

[WPWP10a] Jie Wang, Raphael C.-W. Phan, John N. Whitley, and David J.
Parish. Augmented Attack Tree Modeling of Distributed Denial of Services
and Tree Based Attack Detection Method. In Proceedings of the 10th IEEE
International Conference on Computer and Information Technology, pages
1009–1014, Bradford, UK, June 2010. IEEE Computer Society.

[WPWP10b] Jie Wang, Raphael C.-W. Phan, John N. Whitley, and David J.
Parish. Augmented attack tree modeling of SQL injection attacks. In Pro-
ceedings of the 2nd IEEE International Conference on Information Man-
agement and Engineering, volume 6, pages 182–186, Chengdu, China, April
2010. IEEE.

[WPWP10c] Jie Wang, Raphael C.-W. Phan, John N. Whitley, and David J.
Parish. Quality of detectability (QoD) and QoD-aware AAT-based attack
detection. In Proceedings of the 2010 International Conference for Internet
Technology and Secured Transactions, pages 131–136, London, UK, Novem-
ber 2010. IEEE.

[WPWP11] John N. Whitley, Raphael C.-W. Phan, Jie Wang, and David J. Parish.
Attribution of attack trees. Computers & Electrical Engineering, 37(4):624–
628, 2011.

[WSJ07a] Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Measuring the Over-
all Security of Network Configurations Using Attack Graphs. In Steve Barker
and Gail-Joon Ahn, editors, Proceedings of the 21st Annual IFIP WG 11.3
Working Conference on Data and Applications Security, volume 4602 of
LNCS, pages 98–112. Springer, 2007.

Bibliography 245

[WSJ07b] Lingyu Wang, Anoop Singhal, and Sushil Jajodia. Toward measur-
ing network security using attack graphs. In Proceedings of the 2007 ACM
Workshop on Quality of Protection, pages 49–54, New York, NY, USA, 2007.
ACM.

[WW11] Lv Wen-ping and Li Wei-min. Space Based Information System Security
Risk Evaluation Based on Improved Attack Trees. In Proceedings of the
3rd International Conference on Multimedia Information Networking and
Security, pages 480–483. IEEE, November 2011.

[WWPP11] Jie Wang, John N. Whitley, Raphael C.-W. Phan, and David J. Parish.
Unified Parametrizable Attack Tree. International Journal for Information
Security Research, 1(1):20–26, 2011.

[WYSJ06] Lingyu Wang, Chao Yao, Anoop Singhal, and Sushil Jajodia. Interac-
tive Analysis of Attack Graphs Using Relational Queries. In Ernesto Damiani
and Peng Liu, editors, Proceedings of the 20th Annual IFIP WG 11.3 Work-
ing Conference on Data and Applications Security, volume 4127 of LNCS,
pages 119–132. Springer, 2006.

[XLO+10] Peng Xie, Jason H. Li, Xinming Ou, Peng Liu, and Renato Levy. Using
Bayesian networks for cyber security analysis. In Proceedings of the 40th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks, pages 211–220. IEEE, Jun–Jul 2010.

[XN06] Dianxiang Xu and Kendall E. Nygard. Threat-driven modeling and verifi-
cation of secure software using aspect-oriented Petri nets. IEEE Transactions
on Software Engineering, 32(4):265–278, 2006.

[xp12] The xine project. xine multimedia engine. http://www.xine-project.

org/home, 2002–2012. Accessed July 2, 2013.

[Yag06] Ronald R. Yager. OWA trees and their role in security modeling using
attack trees. Information Sciences, 176(20):2933–2959, 2006.

[Zad78] Lotfi A. Zadeh. Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy
Sets and Systems, 1:3–28, 1978.

[Zan91] Hans Zantema. Termination of term rewriting, from many-sorted to one-
sorted. Technical Report RUU-CS-91-18, Department of Information and
Computing Sciences, Utrecht University, 1991.

[Zan00] Hans Zantema. Termination of Term Rewriting. Technical Report UU-
CS-2000-04, Department of Information and Computing Sciences, Utrecht
University, 2000.

[ZF11] Anita N. Zakrzewska and Erik M. Ferragut. Modeling cyber conflicts using
an extended Petri Net formalism. In Proceedings of the 2011 IEEE Sympo-
sium on Computational Intelligence in Cyber Security, pages 60–67. IEEE,
April 2011.

http://www.xine-project.org/home
http://www.xine-project.org/home

246 Bibliography

[ZKSY09] Saman A. Zonouz, Himanshu Khurana, William H. Sanders, and Tim-
othy M. Yardley. RRE: A game-theoretic intrusion Response and Recovery
Engine. In Proceedings of the 39th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, pages 439–448. IEEE, July
2009.

[Zon11] Saman Aliari Zonouz. Game-theoretic Intrusion Response and Recovery.
PhD thesis, University of Illinois at Urbana-Champaign, USA, 2011.

[ZSR+11] Saman Aliari Zonouz, Aashish Sharma, HariGovind V. Ramasamy, Zbig-
niew T. Kalbarczyk, Birgit Pfitzmann, Kevin McAuliffe, Ravishankar K. Iyer,
William H. Sanders, and Eric Cope. Managing business health in the pres-
ence of malicious attacks. In Proceedings of the 41st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks Workshops,
pages 9–14. IEEE Computer Society, June 2011.

[ZY12] Chengli Zhao and Zhiheng Yu. Quantitative Analysis of Survivability
Based on Intrusion Scenarios. Advances in Electronic Engineering, Com-
munication and Management Vol. 2, 140:701–705, 2012.

Author’s Publications

[10KMMS] Barbara Kordy, Sjouke Mauw, Matthijs Melissen, and Patrick Schwei-
tzer. Attack–Defense Trees and Two-Player Binary Zero-Sum Extensive Form
Games Are Equivalent. In Tansu Alpcan, Levente Buttyán, and John S.
Baras, editors, Proceedings of the 1st Conference on Decision and Game
Theory for Security, volume 6442 of LNCS, pages 245–256. Springer, 2010.

[10KMMSTec] Barbara Kordy, Sjouke Mauw, Matthijs Melissen, and Patrick
Schweitzer. Attack–Defense Trees and Two-Player Binary Zero-Sum Exten-
sive Form Games Are Equivalent – Technical report with proofs. Computing
Research Repository, abs/1006.2732:1–15, 2010. http://arxiv.org/abs/

1006.2732.

[10KMRS] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schwei-
tzer. Foundations of Attack–Defense Trees. In Pierpaolo Degano, Sandro
Etalle, and Joshua D. Guttman, editors, Proceedings of the 7th International
Workshop on Formal Aspects of Security and Trust, volume 6561 of LNCS,
pages 80–95. Springer, 2010.

[10KS] Frank C. Krysiak and Patrick Schweitzer. The optimal size of a permit
market. Journal of Environmental Economics and Management, 60(2):133 –
143, 2010.

[10SS] Pascal Schweitzer and Patrick Schweitzer. Connecting face hitting sets in
planar graphs. Information Processing Letters, 111(1):11–15, 2010.

[11KPS] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. Computational As-
pects of Attack–Defense Trees. In Proceedings of the 19th International Con-
ference Security & Intelligent Information Systems, volume 7053 of LNCS,
pages 103–116. Springer, 2011.

[12BKMS] Alessandra Bagnato, Barbara Kordy, Per Håkon Meland, and Patrick
Schweitzer. Attribute Decoration of Attack–Defense Trees. International
Journal of Secure Software Engineering, 3(2):1–35, 2012.

[12KMRS] Barbara Kordy, Sjouke Mauw, Saša Radomirović, and Patrick Schwei-
tzer. Attack–Defense Trees. Journal of Logic and Computation, 2012. To ap-
pear. http://logcom.oxfordjournals.org/content/early/2012/06/21/

logcom.exs029.

[12KMS] Barbara Kordy, Sjouke Mauw, and Patrick Schweitzer. Quantitative
Questions on Attack–Defense Trees. In Taekyoung Kwon, Mun-Kyu Lee,
and Daesung Kwon, editors, Proceedings of the 15th Annual International

247

http://arxiv.org/abs/1006.2732
http://arxiv.org/abs/1006.2732
http://logcom.oxfordjournals.org/content/early/2012/06/21/logcom.exs029
http://logcom.oxfordjournals.org/content/early/2012/06/21/logcom.exs029

248 Author’s Publications

Conference on Information Security and Cryptology, volume 7839 of LNCS,
pages 49–64. Springer, 2012.

[12KMSTec] Barbara Kordy, Sjouke Mauw, and Patrick Schweitzer. Quantita-
tive Questions on Attack–Defense Trees. Computing Research Repository,
abs/1210.8092:1–17, 2012. http://arxiv.org/abs/1210.8092.

[12KSADTLib] Barbara Kordy and Patrick Schweitzer. The ADTree Library.
http://satoss.uni.lu/projects/atrees/library.php, 2012. Accessed
July 1, 2013.

[12KSADTMan] Piotr Kordy and Patrick Schweitzer. The ADTool Manual.
http://satoss.uni.lu/software/adtool/manual.pdf, 2012. Accessed
July 1, 2013.

[12MS] Tim Muller and Patrick Schweitzer. A Formal Derivation of Composite
Trust. In Joaquín García-Alfaro, Frédéric Cuppens, Nora Cuppens-Boulahia,
Ali Miri, and Nadia Tawbi, editors, Proceedings of the 5th International Sym-
posium on Foundations & Practice of Security, volume 7743 of LNCS, pages
132–148. Springer, 2012.

[12SADTSty] Patrick Schweitzer. The ADTree Style File. http://satoss.uni.

lu/projects/atrees/library.php, 2012. Accessed July 1, 2013.

[13KKMS] Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schweitzer.
ADTool: Security Analysis with Attack–Defense Trees (Tool Demonstration
Paper). In Proceedings of the 10th International Conference on Quantitative
Evaluation of SysTems, volume 8054 of LNCS, pages 173–176. Springer, 2013.

[13KKMSTec] Barbara Kordy, Piotr Kordy, Sjouke Mauw, and Patrick Schwei-
tzer. ADTool: Security Analysis with Attack–Defense Trees (Tool Demon-
stration Paper — Extended Version). Computing Research Repository,
abs/1305.6829:1–10, 2013. http://arxiv.org/abs/1305.6829.

[13KPSFor] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick Schweitzer.
DAG-Based Attack and Defense Modeling: Don’t Miss the Forest for the At-
tack Trees. http://arxiv.org/abs/1303.7397, 2013. Submitted to Com-
puter Science Review.

[13KPSPro] Barbara Kordy, Marc Pouly, and Patrick Schweitzer. A Probabilistic
Framework for Security Scenarios with Dependent Actions, 2013. Submitted
to the 35th IEEE Symposium on Security and Privacy.

[13MSS] Brendan McKay, Pascal Schweitzer, and Patrick Schweitzer. Competi-
tion Numbers, Quasi-Line Graphs and Holes. SIAM Journal on Discrete
Mathematics, 2013. To appear.

[13MS] Tim Muller and Patrick Schweitzer. On Beta Models with Trust Chains.
In Proceedings of the 7th IFIP WG 11.11 International Conference on Trust
Management, volume 401 of IFIP Advances in Information and Communi-
cation Technology, pages 49–65. Springer, 2013.

http://arxiv.org/abs/1210.8092
http://satoss.uni.lu/projects/atrees/library.php
http://satoss.uni.lu/software/adtool/manual.pdf
http://satoss.uni.lu/projects/atrees/library.php
http://satoss.uni.lu/projects/atrees/library.php
http://arxiv.org/abs/1305.6829
http://arxiv.org/abs/1303.7397

Index

Page references in bold indicate pages containing the definition or an extensive
explanation of the keywords.

action
basic, 14, 30, 34, 36, 37, 43, 45,

57, 59–62, 66, 82, 86, 107,
109, 143, 147, 149–151, 156,
162, 170

opponent, 18, 19, 20, 39, 50, 63
proponent, 18, 19, 20, 39, 50,

63
set of all, 19, 59

AD–Signature, 19, 40, 42, 44
ADTerm, 20, 19–21, 24, 27, 29, 41,

58, 59, 63, 66, 68–70, 72, 78,
82, 84, 85, 120, 133, 144,
153–158, 160, 161, 165, 211

De Morgan, 36, 34–38, 143–145
equivalence, see semantics,

ADTerm
multiset, 38, 40, 43, 49–53, 71
opponent type, 20, 45, 50
proponent type, 20, 45, 50, 52
propositional, 30, 32–34, 42–48,

139, 141–151, 159
set of all, 20, 42
typed, 40, 69

ADTool, 132–136, 193, 212
ADTree, 13–17, 18, 20–21, 27, 29,

31, 40, 52, 55, 57, 60, 68, 72,
76, 78, 88, 90, 93, 94, 97–104,
112, 115, 117–121, 130,
132–134, 139, 144–148, 150,
163–166, 189, 192, 200, 211

equivalence, see semantics,
ADTree

methodology, 6, 29, 42, 71,
93–95, 118, 122, 127, 129,

130, 131, 133, 150, 153, 211
ADTree methodology, see ADTree,

methodology
anti-models, 188
arity, 19
assignment, 32

basic, 59, 60, 64, 65, 73, 75, 78,
80, 82, 83, 90, 94, 95, 109,
112, 117, 125–127, 147, 165

ATerm, see attack term
ATree, see attack tree
attack countermeasure trees, 189,

191, 193, 198, 200
attack term, 20, 58, 144

De Morgan, 36, 144
propositional, 31, 34, 139,

141–143, 145
attack tree, 4, 13, 15, 20, 30, 39, 56,

58, 68, 72, 73, 89, 96, 99, 106,
115, 117, 128, 141, 144, 174,
176, 177, 180, 181, 186,
191–193, 197, 199, 200

attack–defense term, see ADTerm
attack–defense tree, see ADTree
attack-response trees, 197, 200
attribute, 4, 55, 56–92, 94, 95, 101,

104–116, 121–127, 130–134,
136, 144, 148, 164, 171, 212

absence, 61
attack time, 56, 73
composition

Cartesian, 88, 89
dependent, 89

confidence, 89, 106–114, 116,
117, 122, 124, 125, 127, 129,

249

250 Index

131
costs, 56, 61, 62–63, 66, 68, 70,

71, 73, 75, 76, 81, 82, 85, 89,
91, 104, 105, 107, 109,
111–117, 123, 127, 130, 133

coverage, 89, 131
cspb, 64, 65, 82
derived, 89, 90
detectability, 56, 73, 105, 107,

123
difficulty, 56, 73, 90, 105, 106,

107, 109–111, 114, 116, 117,
122, 123, 127

disagree with node, 122, 126,
129, 131

domain, 58, 60, 61, 63, 64,
66–68, 74, 75, 78, 80–82,
84–92, 114, 115, 125, 127,
134, 136, 171, 212

compatible, 69, 70–72
elapsed time, 90
electricity, 61, 106, 123, 128
expertise, 56, 90
impact, 56, 74, 90, 105, 107, 123,

124
insider knowledge, 61, 106
knowledge of system, 56, 90
mcw, 66, 67, 68
meta, see meta-attribute
number of possible

countermeasures, 56
outcome, 56, 90
penalty, 56, 73, 90, 105, 107,

123, 124
point of view, 61, 73, 75, 85, 105,

113, 123
presence, 61
probability, 56, 74, 89, 107, 123,

148
of occurrence, 56, 133, 147,

149–152
of success, 56, 86, 106

profit, 73, 90, 105, 107, 123, 124
reachability, 133
required attack potential, 56
required equipment, 56, 90
response time, 56
risk, 90

satisfiability, 59, 61, 66, 74, 78,
91, 133, 164

severity, 56
skill, 56, 133
special skill, 61, 73, 106, 107, 123
survivability, 56, 90
time, 106, 107, 109, 111, 114,

116, 117, 122, 123, 133
unmitigable, 61
value, 55–57, 59, 68, 72, 88, 94,

101, 106, 108–116, 121, 123,
125, 126, 131

window of opportunity, 56, 90
winner, 61, 66

attribute domain, see attribute,
domain

augmented attack trees, 177, 200
augmented vulnerability trees, 176

Bayesian attack graphs, 169, 183
Bayesian defense graphs, 196
Bayesian networks

for ADTrees, 149, 148–154, 159,
160

for security, 181, 183, 196
BDMPs, 198
Boolean algebra, 35, 37, 71
Boolean driven Markov processes, see

BDMPs
Boolean function, 33, 34, 35, 37,

139–145, 147, 151, 153, 154,
156, 157

conjunction, 33
disjunction, 33
equivalence, see equivalence,

Boolean functions
monotone, 47, 48, 140, 141–143
monotone in one variable, 139
negation, 33, 141
negative, 140, 142
negative in one variable, 139
positive, 140, 141–143, 145
positive in one variable, 139

Boolean values, 31, 32, 33, 57, 157
bottom-up algorithm, 57, 59, 61,

68–70, 72, 74, 75, 82, 90, 95,
112–115, 125–128, 131, 132,
136, 147–148, 215

bundle, 39

Index 251

complete set of axioms, see set of
axioms, complete

compromise graphs, 184
configuration, 33, 35, 144, 148, 151,

152, 154, 157, 162, 163
conjunctive refinement, see

refinement, conjunctive
consensus meeting, 111, 112, 122,

125, 126, 129, 131
countermeasure, 14, 20–22, 27, 39,

55, 77, 79, 85, 87, 96, 117,
127, 150, 165, 170

countermeasure graphs, 187, 193
cryptographic DAGs, 180

De Morgan lattice, see lattice, De
Morgan

De Morgan semantics, see semantics,
De Morgan

De Morgan valuation, see valuation,
De Morgan

defense trees, 189, 191, 193, 196, 200
disjunctive refinement, see

refinement, disjunctive
dynamic fault trees for security, 186

enhanced attack trees, 185
equation, 40, 41, 42, 49, 51, 69
equivalence

ADTerm, see semantics, ADTerm
ADTree, see semantics, ADTree
Boolean functions, 33, 157
classes, 29, 32, 148, 154
De Morgan valuations, 37
multisets, 40, 42
propositional formulas, 32, 34
relation, 30, 33, 40, 41

extended fault trees, 180

fault trees for security, 181
finite ordered tree, 17
function

unranked, 19, 44, 46, 50, 58, 59
fusion algorithm, 158, 160, 161, 162

game
outcome, 164
strategy, 164, 165
two-player binary zero-sum

extensive form, 164, 165, 166

goal, 14, 18, 27, 31, 39, 60, 71, 77,
96, 122, 133, 164, 170

main, 15, 19, 31, 71, 111, 122,
133, 170

grammar, 24, 26, 45
ADTerms, 20
propositional ADTerms, 45, 141

disjunctive form, 46
propositional attack term, 141

improved attack trees, 188
insecurity flows, 194
intrusion DAGs, 195, 201

lattice
De Morgan, 35, 36, 38, 43, 48,

91, 141, 143, 144
distributive, 34

library, 128, 175, 214
of ADTrees, 17, 94, 118

meta-attribute, 88, 106, 112, 116,
122, 124, 129–131

metrics, see attribute
multiset union, 39

node
non-refined, 14, 18, 62, 75, 79,

81, 90, 107, 112, 116, 123,
126, 131, 136

non-owner, see question,non-owner

opponent, 14, 17–19, 31, 39, 49, 61,
66, 85, 146, 163, 164, 170

OWA trees, 178, 200
owner, see question,owner

parallel model for multi-parameter
attack trees, 179, 187

powermultiset, 39, 50, 52
powerset, 39, 64
product

distributive, 39
projection, 33, 160
proponent, 14, 17–19, 21, 31, 38, 39,

41, 49, 58–61, 63, 64, 66, 68,
70, 71, 80–85, 88, 91, 92, 146,
163

protection trees, 189, 192, 193, 200
pruning, 75, 76, 82, 84, 118, 128, 129

252 Index

formally, 78, 79, 80
graphically, 76, 78

query, 144
answer, 144

question, 3, 4, 30, 55, 59, 61, 65, 72,
73, 74–75, 80–82, 85–88,
90–91, 212

execution, 80, 81, 82, 83, 86, 87
modality, 80, 81, 82, 83, 86, 87,

91
non-owner, 75, 77, 79, 81, 82,

90–91
notion, 80, 82, 83, 85, 87
owner, 73, 75–84, 87, 88, 90–91

rank, 19
refinement, 14, 19, 27, 57, 85, 87,

118, 120, 121, 129, 164, 168,
170

conjunctive, 14, 22, 40, 77, 85,
87, 119, 121

countermeasure, see
countermeasure

disjunctive, 14, 22, 76, 85
non-refined, see node, non-refined
proper, 76

security activity graphs, 186, 190,
199

security goal indicator trees, 197
security goal models, 191, 199
semantics, 29–53, 68–72, 91, 94, 96,

117–120, 170, 211
ADTerm, 29, 37, 41–43, 68–70,

157
ADTree, 29, 68
coarser, 43
compatible, 69, 68–72, 91, 153,

212
computation, 153

De Morgan, 37, 34–38, 44, 48,
91, 119, 139, 143, 144, 192

equational, 41, 40–42, 49
finer, 43, 48, 69
multiset, 38–39, 40, 41, 43,

49–53, 68, 71–72, 91, 119
propositional, 32, 30–35, 37,

40–48, 70, 143, 145–148, 153,
156, 159, 163–165

semiring, 72, 82
arithmetic, 71, 162
Boolean, 71, 162
commutative, 71, 159
idempotent, 71
t-norm, 71, 162
tropical, 71
truncation, 71
valuation, see valuation, semiring
valuation algebra, 158–162

serial model for multi-parameter
attack trees, 179, 187

set of axioms
complete, 42, 43, 69

multiset, 49, 50–53, 72
propositional, 44, 45–48

specification
algebraic, 40, 42

structure
algebraic, 34, 35, 81, 171

subgoal, 14, 18, 38–40, 96
syntax, 13–27

algebraic, 19, 20, 20
graphical, 18, 13–18, 20
term-based, see syntax, algebraic
textual, 21, 22–26

term, 13, 20, 29, 41, 79, 84, 120, 164
position, 18, 20
typed, 19
typed ground, 20

type, 14, 19–21, 23, 30, 39, 58, 107,
117, 133

opposite, 14, 20, 27

unified parameterizable attack trees,
200

valuation
De Morgan, 35, 37, 38, 43, 141,

144
monotone, 144
negation, 36, 143
negative, 144
positive, 144
product, 36
sum, 36

semiring, 159, 160, 162
value domain, 56–57, 58, 63, 65, 67,

80, 83, 85, 88, 89, 104, 106,

Index 253

110, 111, 114, 116, 123, 127,
129, 136

vulnerability cause graphs, 185, 190,
199

	Introduction
	Graphical Security Modeling
	Formal Security Modeling
	The Research Question
	Contribution
	Thesis Structure
	Further Research

	Syntax and Definitions
	ADTrees
	Defining ADTrees
	An Introductory Example
	A Running Example
	A Formal Definition of ADTrees

	ADTerms
	Transformations between ADTrees and ADTerms
	Textual Syntax
	Design Choices

	Semantics
	Propositional Semantics ()
	Semantics Induced by a De Morgan Lattice
	Multiset Semantics ()
	Equational Semantics
	Axiomatization of Semantics for ADTerms
	The Notion of a Complete Set of Axioms
	A Complete Set of Axioms for propositional semantics
	A Complete Set of Axioms for multiset semantics

	Quantitative Analysis
	Historical Overview of Attributes
	Attributes for Attack Trees
	Attributes for Defensive Aspects
	Value Domains
	Calculation Procedure

	Formal Definition of Attributes on ADTrees
	The Satisfiability Attribute
	The Minimal Costs Attribute
	The Cheapest Successful Proponent's Bundle Attribute
	The Minimal Costs of the Winner Attribute

	Compatibility of an Attribute with a Semantics
	Consistent Bottom-up Evaluation
	Attribute Domains Compatible with the Multiset Semantics

	Practical Use of Attributes
	Classification of Questions
	Questions Referring to One Player
	Questions Where Answers Can Be Deduced from Each Other
	Questions Relating to an Outside Third Party

	Constructing New Attributes and Attribute Domains
	Cartesian Composition
	Dependent Composition
	Derived Attributes
	Switching the Owner of the Question
	Switching the Perspectives

	Practical Applications of ADTrees
	Selecting Suitable Case Studies and Research Aspects
	Initial Case Study
	Subsequent Case Studies
	The RFID Goods Management System
	The ADTree Model
	Attribute Selection
	Attribute Decoration
	Preparation of Attribute Values
	Bottom-up Calculation of Attribute Values
	Evaluation of the RFID Goods Management Case Studies

	Practical Observations
	Question Q1: Meaning and Visualization of Defenses
	Question Q2: Usefulness of Transformations
	Question Q3: Practical Model Restrictions
	Question Q4: Attribute Decoration
	Question Q5: The Basic Assignment
	Question Q6: Bottom-up Computation

	Design Choices and Guidelines for Case Studies
	The ADTool

	Formal Applications of ADTrees
	Complexity Considerations of the De Morgan Semantics
	Positive, Negative and Monotone Boolean Functions
	Expressiveness of Propositional ADTerms
	From Propositional ADTerms to Propositional Attack Terms
	Generalization to De Morgan ADTerms
	Consequences for Complexity Considerations

	ADTrees and Dependent Nodes
	Computation of Independently Occurring Actions
	Bayesian Networks for ADTerms
	Computing Probabilities of Attacks Using Bayesian Network
	ADTerms as Constraint Systems
	Indicators for Probability Computation
	Semiring Valuation Algebras
	The Fusion Algorithm
	Probability of Successful Attacks

	ADTrees and Games

	Related Formalisms
	Graphical Security Modeling on DAGs
	Keywords and Examined Aspects
	The Template of the Formalism Descriptions
	Description of the Formalisms
	Static Modeling of Attacks
	Sequential Modeling of Attacks
	Static Modeling of Attacks and Defenses
	Sequential Modeling of Attacks and Defenses

	Summary of the Surveyed Formalisms
	Alternative Graphical Security Methodologies
	Petri Nets for Security
	Attack Graphs
	Approaches Derived from UML Diagrams
	Isolated Models

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Author's Publications
	Index

