
Security of RFID protocols

Ton van Deursen

Supervisor:

Prof. Dr. S. Mauw (University of Luxembourg)

Daily advisor:

Dr. S. Radomirović (University of Luxembourg)

c© 2011 T.F.P. van Deursen
Printed by Ipskamp Drukkers, Enschede
Cover design by N.J.A. van Deursen

The author was employed at the University of Luxembourg and received sup-
port from the Ministry of Culture, Higher Education, and Research Luxembourg
(reference BFR07/103) and the National Research Fund Luxembourg (references
TR-PHD-BFR07-103 and EXT-BFR07-103) in the project “Security Protocols in
Identity Management”.

Printing of this thesis was supported by the National Research Fund, Luxembourg
(reference FNR/11/AM4/58).

PhD-FSTC-2011-13
The Faculty of Sciences, Technology and Communication

DISSERTATION

Defense held on 27/09/2011 in Luxembourg

to obtain the degree of

DOCTEUR DE L’UNIVERSITÉ DU
LUXEMBOURG

EN INFORMATIQUE

by

Ton Frederik Petrus VAN DEURSEN
Born on 8 June 1984 in Eindhoven (The Netherlands)

Security of RFID protocols

Dissertation defense committee
Dr. Gildas Avoine
Professor, Université Catholique de Louvain

Dr. Sjouke Mauw, dissertation supervisor
Professor, Université du Luxembourg

Dr. Saša Radomirović, vice-chairman
Université du Luxembourg

Dr. Mark D. Ryan
Professor, University of Birmingham

Dr. Peter Y.A. Ryan, chairman
Professor, Université du Luxembourg

Summary

Radio-frequency identification (RFID) is a technology that uses radio waves to
exchange data between RFID readers and tags. The low manufacturing costs and
small size as well as the lack of need of a power source make RFID tags useful in
many applications, but also impose a strong need for secure RFID protocols.

We apply formal verification to analyze RFID protocols with respect to three
security requirements: untraceability, authentication, and ownership transfer. Un-
traceability and authentication are the two most basic security requirements for
RFID protocols. Informally, untraceability ensures that an attacker cannot rec-
ognize RFID tags with which he has communicated in the past. Authentication
ensures that an attacker cannot impersonate a legitimate party. Finally, in dy-
namic environments where RFID tags are exchanged, sold, or traded, the owner
of a tag may change. Secure ownership transfer ensures that ownership of the tag
can be securely handed over to the new owner.

We then focus on the analysis of RFID systems of which the cryptographic keys
can be recovered. Secrecy of cryptographic keys is often necessary for achieving
authentication. If these cryptographic keys are known to the adversary, he may
have access to data stored on RFID tags in the system. We develop a methodlogy
to recover the memory structure from a set of memory dumps. This enables the
formal analysis of the memory structure of RFID tags.

The first part of this thesis considers the analysis of untraceability of RFID proto-
cols. We start by designing a formal syntax and semantics for security protocols.
Within our formalization, one can precisely describe RFID protocols and systemat-
ically explore their execution traces. We define untraceability as a property on the
traces of a protocol. Our definition requires that each trace in which the adversary
could possibly deduce that a tag occurs twice, can also be understood as a trace
in which two different tags occur.

The academic literature provides an abundance of RFID protocols designed to sat-
isfy untraceability. We find untraceability flaws in a number of published RFID
protocols. We introduce a categorization of these flaws comprising attribute ac-
quisition attacks, man-in-the-middle attacks, insider attacks, compositionality at-
tacks, and pseudonym-based attacks.

We then turn our attention to computational proof models for untraceability. We
investigate the relation between two categories of computational proof models.
The first category of computational proof models describes untraceability as the
inability of the adversary to distinguish different tags. The second category defines
untraceability as the attacker’s inability to predict the messages sent by the tag.
We show that the two classes of definitions are incomparable. Furthermore, we

i

ii

show that a category of public-key based RFID protocols is susceptible to insider
attacks. As a result, we extend an existing computational proof model with insider
attackers. Finally, we propose a provably untraceable and authenticating RFID
protocol based solely on elliptic-curve operations. As a basis of the protocol, we
use an RFID protocol proposed by Vaudenay and the Cramer-Shoup encryption
scheme.

The second part of this thesis is concerned with authentication of RFID protocols.
We categorize authentication attacks into algebraic replay attacks, man-in-the-
middle attacks, compositionality attacks, and cryptanalytic attacks. For each of
these categories we give specific attacks on protocols from the academic literature.

The third part of this thesis deals with formalizing ownership in RFID systems
as well as related security properties. Within our security protocol formalization,
we define secure ownership, exclusive ownership, and secure ownership transfer.
We use the concept of ownership to define desynchronization resistance. For all of
these definitions, we show how they can be applied by exhibiting an attack on a
published protocol.

The fourth part of this thesis describes the generic problem of recovering memory
structures of systems. RFID tags often have a small portion of memory that can
be used by the RFID application. One could repeatedly dump this memory and
annotate each dump with the data suspected to be encoded on the tag. We define
the carving problem as recovering the structure of the memory, based on this
attributed dump set. We design and implement algorithms to find commonalities
and dissimilarities and apply them to an RFID system deployed in Luxembourg.

Acknowledgments

A thesis does not just appear out of nothing. It is the result of several years of
hard work. In the past four years, I have received support from many colleagues,
family, and friends. They have helped me in one way or another for which I wish
to thank them.

I owe my deepest gratitude to my daily advisor Saša Radomirović. The huge
amount of time we spent together was always fun and productive. Saša has a
passion for analyzing anything that can be analyzed. Aside from being an excellent
researcher, he is also a great teacher. He taught me how to do research, how to
write, how to give a talk, and how to teach. I could not have hoped for a better
daily advisor than Saša, nor for the amount of time we worked together.

This thesis would not have been possible without Sjouke Mauw. I am amazed by
how Sjouke leads his research group, by his devotion for formalizing anything that
can be formalized, and by his ability to find time for everything. I am grateful for
the time we worked together and for his scientific and moral support.

I thank the members of my defense committee, Gildas Avoine, Mark Ryan, and
Peter Ryan for their time and valuable feedback. It was an honor to have had
them in my defense committee. I would like to thank Alex Biryukov for taking
place in my comité d’encadrement de thèse.

Sjouke’s research group grew from five people when I started to thirteen people
right now. I enjoyed our research seminars, lunches, movie nights, dinners, and
coffee breaks. It is a great pleasure to thank my colleagues Baptiste Alcalde,
Naipeng Dong, Wojtek Jamroga, Hugo Jonker, Barbara Kordy, Piotr Kordy, Si-
mon Kramer, Matthijs Melissen, Tim Muller, Jun Pang, Georgios Pitsilis, Patrick
Schweitzer, and Chenyi Zhang.

I am grateful to Jan Joris Vereijken for giving me the opportunity to stay at ING
Direct Head Office. Furthermore, I would like to thank my colleagues Kino Verburg
and Christopher Tong for the informative discussions we had and Martin Vonk for
hosting me.

During my Ph.D., several master students finished a master’s thesis under my co-
supervision. They are Pim Vullers, Gerardo Iglesias, Xihui Chen, Davy Cox, and
Cheng Xing. It was a pleasure to work with them and I am happy to see that they
have found good jobs or Ph.D. positions.

I would like to thank my parents and brother for their support during critical
periods, for keeping track of the Dutch news, and for being proud of me. Thanks
to my friends for providing the necessary distractions and for their moral support.

Finally, I am forever indebted to my lovely wife Niki for her unconditional love,

iii

iv

time, support, and patience.

Ton van Deursen

Contents

1 Introduction 1

1.1 Formal verification . 2

1.2 RFID systems . 3

1.3 Research question . 3

1.4 Thesis overview . 5

I RFID protocols and untraceability 9

2 Preliminaries 11

2.1 Provable security . 11

2.1.1 Pseudo-random function . 11

2.1.2 Message authentication codes 11

2.1.3 Indistinguishability and non-malleability 11

2.1.4 Indistinguishability in the multi-user setting 12

2.2 Elliptic-curve cryptography . 13

3 Formalization of RFID protocols and untraceability 15

3.1 Basic concepts . 15

3.2 Syntax: protocol specification . 17

3.2.1 An RFID protocol . 17

3.2.2 Terms . 18

3.2.3 Events . 20

3.2.4 Protocols . 21

3.3 System model . 22

3.4 Semantics: protocol execution . 23

3.4.1 Composition rules . 24

3.4.2 Agent rules . 24

3.4.3 System behavior . 28

3.5 Untraceability . 29

v

vi

3.5.1 Defining untraceability . 30

3.5.2 An untraceable protocol . 32

3.5.3 A traceable protocol . 34

3.6 Related work . 35

3.7 Conclusion . 37

4 Untraceability attacks 39

4.1 Overview . 39

4.2 Attribute acquisition attacks . 40

4.2.1 The Kim, Choi, and Lee protocol 41

4.2.2 The EC-RAC protocol . 42

4.3 Man-in-the-middle attacks . 44

4.3.1 The Di Pietro and Molva protocol 46

4.4 Insider attacks . 48

4.4.1 The EC-RAC IV protocol 48

4.4.2 Protocols with IND-CCA1 encryption 50

4.5 Compositionality attacks . 51

4.5.1 The EC-RAC II protocols 53

4.6 Pseudonym-based attacks . 55

4.6.1 Pseudonym-update attacks: The Li and Ding protocol . . . 56

4.7 Related work . 58

4.7.1 Practical attacks . 58

4.7.2 Impossibility results . 59

4.8 Conclusion . 60

5 Untraceability proof models 61

5.1 Computational proof models . 62

5.2 Unpredictability-based proof models 64

5.2.1 The model by Ha, Moon, Zhou, and Ha 64

5.2.2 The model by Ma, Li, Deng, and Li 68

5.3 Insider attacks in Vaudenay’s model 76

5.3.1 Vaudenay’s model . 77

5.3.2 Modeling insider attacks . 80

5.4 Results by Ng, Susilo, Mu, and Safavi-Naini 86

5.5 Provable wide-strong privacy . 87

5.5.1 Preliminaries and notation 88

5.5.2 Mapping into the elliptic curve 88

vii

5.5.3 The basic protocol . 89

5.5.4 A purely elliptic-curve-based solution 89

5.5.5 Practicality . 91

5.6 Conclusion . 91

II RFID protocols and authentication 93

6 Authentication attacks 95

6.1 Forms of authentication . 95

6.2 Algebraic replay attacks . 97

6.2.1 The Chien and Huang protocol 98

6.3 Compositionality attacks . 99

6.4 Leakage attacks . 100

6.4.1 The Kang and Nyang protocol 101

6.4.2 The Di Pietro and Molva protocol 102

6.5 Conclusion . 105

III RFID protocols and ownership transfer 107

7 Formalization of ownership transfer 109

7.1 Preliminaries . 110

7.2 Ownership . 110

7.2.1 System view of ownership 110

7.2.2 Agent view of ownership . 113

7.2.3 Secure ownership . 113

7.3 Ownership transfer . 114

7.3.1 Ownership transfer protocols 114

7.3.2 Secure ownership transfer 115

7.3.3 The Yoon and Yoo protocol 116

7.4 Desynchronization . 118

7.4.1 The Song and Mitchell protocol 119

7.5 Related work . 121

7.6 Conclusion . 123

viii

IV Reverse engineering RFID systems 125

8 Carving 127

8.1 Carving attributed dump sets . 128

8.1.1 Definition of the carving problem 128

8.1.2 Commonalities . 130

8.1.3 Dissimilarities . 132

8.1.4 Reducing the search space 133

8.1.5 Cyclic attribute mappings 135

8.2 Algorithms . 137

8.2.1 Commonalities . 137

8.2.2 Dissimilarities . 138

8.3 The mCarve tool . 141

8.3.1 Performance . 142

8.3.2 Convergence . 143

8.4 Case study: The e-go system . 144

8.4.1 The e-go system . 144

8.4.2 Data collection . 144

8.4.3 Data analysis . 145

8.5 Related work . 150

8.6 Conclusion . 150

V Concluding remarks 153

9 Conclusion and future work 155

9.1 Conclusion . 155

9.2 Future work . 156

9.2.1 Automated verification . 157

9.2.2 Ownership transfer . 157

9.2.3 Carving . 158

Bibliography 159

Publications 168

Index of subjects 171

Curriculum Vitae 175

1

Introduction

The last few decades have seen a vast number of electronic systems penetrate our
daily lives. We use our cell phones to stay in contact with friends and family.
Books can be bought from online book stores, paid through an online portal of
the bank, and delivered the next day. Paper-based patient records have been re-
placed by electronic health records that provide medical staff with patient details
whenever and wherever they are necessary. Even everyday items such as public
transportation tickets have been replaced by electronic products. These technolo-
gies are meant to assist us in daily life, simplify tasks, and make our lives more
enjoyable in general. At the same time, service providers embrace new technologies
for their potential to increase efficiency, to reduce costs, and to bring new business
opportunities.

Common to many recent technologies is that we depend on their security. We
would not trust them if we knew that they were not secure, and thus we would
not use them. Indeed, the market for cell phones that send text messages to all
nearby burglars when you leave your house is arguably small. Any bank that
allows criminals to drain bank accounts through its online portal would quickly
lose its customers. People would be very skeptic toward electronic health records
that can be accessed by their neighbors, their employer, insurance companies,
financial institutes, and foreign governments. And finally, there is little use for
public transportation tickets that everybody can forge without being noticed.

Unfortunately, we often hear about systems whose security is broken. In a typical
week in spring 2011 the media reported on the following security incidents:

• Account details of 70 million online gamers were stolen. The details included
e-mail addresses, date-of-births, home addresses, and credit card numbers.

• A centralized database for fingerprints of all Dutch citizens was canceled.
The main reason was that the fingerprinting system incorrectly matched one
in five fingerprints against the database.

• Three major mobile operating systems keep track of the physical location of
the devices running their operating system. Periodically, these devices send
the location data to the vendor without notifying the owner of the device.

These examples indicate that building secure systems is a very complex task. For-
tunately, there are techniques to decide whether a system is secure before it is
deployed. Formal verification is one of these techniques.

1

2 Chapter 1 Introduction

1.1 Formal verification

The purpose of formal verification is to prove or disprove a property of a system.
The outcome of the analysis can be a confirmation of the security of a system
by means of a proof. Alternatively, the insecurity of a system can be shown by
revealing a flaw in the system. The first step in formal verification is to precisely
specify the system to be analyzed, the environment in which the system is run, and
the properties the system needs to satisfy. In particular, the following questions
need to be answered unambiguously:

• What does our system do? In order to decide whether a system is secure, we
first create an abstract model of our system. This model specifies the system
and allows one to analyze properties of the system.

• What do we mean by secure? If we do not have a clear security requirement in
mind, there will be no way of verifying whether a system satisfies it. We thus
need to specify precisely what security guarantees we require of a system. A
system relying on a fingerprinting scheme that incorrectly matches 20% of
the fingerprints cannot be considered secure for most purposes. But, is the
system secure if the number of incorrect matches is reduced to 1%, or do we
require no false match at all? To consider another example, is leaking cell
phone location data to a vendor a security breach? Many cell phone users
would argue that way, but the vendor might disagree.

• Who are we defending against? It is much harder to defend a system against
intelligence agencies than against a curious neighbor. Therefore, we need to
identify the powers of the attacker. For instance, do we protect our system
against outside attackers or also against legitimate users of the system? Do
we protect our location data from phone manufacturers, or from everybody
except our spouses?

• What assumptions do we make about the environment? To limit the scope
of the design and analysis of a security system, we rely on properties of the
building blocks of that system. These properties are called assumptions and
they express the relevant characteristics of the building blocks. A common
assumption is that nobody can decrypt a ciphertext without having the cor-
responding decryption key. Another assumption is that an honest user does
not execute a malicious program.

After formalizing the system, the security requirement, the attacker’s powers, and
the assumptions, we can answer the most important question: Does the model
of the system satisfy the security requirement? We can answer this question by
giving a formal derivation or a mathematical proof of its (in)validity. If we can
prove that the security requirement holds, then the model is secure under the
stated assumptions. If we can refute the security requirement, we find an explicit
weakness in the model. We can then fix the flaw and repeat the analysis.

A proof of security of the model of a system suggests that the system itself is secure.
After all, our main goal is to prove security properties of systems. However, even
if a model satisfies a security requirement, the actual system may be insecure.

1.2 RFID systems 3

To be able to apply formal verification, a model of a system abstracts away from
(potentially relevant) properties of the system. Furthermore, a proof of security
of the model relies on assumptions made by the verifier. One must, therefore, be
convinced that the abstraction faithfully models the behavior of a system and that
the assumptions made about the environment are realistic.

In this work, we use formal verification as a tool to analyze the security of radio-
frequency identification (RFID) systems.

1.2 RFID systems

RFID is a technology that uses radio waves to exchange data between devices.
The three main components of an RFID system are readers, tags, and a back-end.
A tag is a small device attached to the object it is meant to identify. It consists
of an integrated circuit with memory and processing capabilities and an antenna
to receive and send signals. A tag is called active if it has its own power source
and passive if it obtains power from the reader. Throughout this work, we concern
ourselves with passive tags unless mentioned otherwise. A reader is a device that
can detect the presence of RFID tags and communicate with them through radio
waves. It has its own source of power and can communicate with the back-end.
The back-end is a system that stores and processes information of tags and readers.
The communication between back-end, RFID readers, and RFID tags is defined
by RFID protocols.

Due to the miniaturization of electronic circuits, RFID tags can be incorporated
in almost any other item. The smallest RFID tags are, in fact, smaller than sand
particles. With prices starting at a few cents, RFID tags can be manufactured for
a relatively low price. Due to their unique properties and the ability to commu-
nicate wirelessly without a clear line-of-sight, RFID systems have the potential of
becoming ubiquitous.

The initial objective of RFID was identification of objects. Early applications of
RFID systems include tracking systems for farm animals, library items, and airport
baggage. Over the years, RFID tags have become more powerful and are used in
applications that require more than mere identification. At present, RFID systems
are found, for instance, in systems for public transportation ticketing, electronic
toll collection, and building access control. Most countries issue passports with
embedded RFID tags. RFID tags have even been implanted in humans.

1.3 Research question

Service providers that deploy RFID systems as well as the users of the system need
to trust that the RFID system is secure. For instance, the service providers rely
on the system to correctly identify a tag and on the inability of crooks to fabricate
tags that impersonate real tags. Owners of RFID-tagged items expect that the
tags they carry cannot be used to secretly track them. This is particularly relevant
if users are not aware that RFID tags are embedded in their items or if they are
forced to carry RFID-tagged items. For instance, in some countries citizens are

4 Chapter 1 Introduction

required by law to carry an identity document (with embedded RFID tag). If
we realize that one can communicate with these tags from a distance without the
owner noticing, we see that secretive tracking poses a realistic privacy threat.

To maximize their profits, RFID manufacturers wish to manufacture RFID tags
as cheaply as possible. For this reason, as well as due to the absence of a power
source on RFID tags, only very limited computational resources are available on
passive RFID tags. This complicates the design of secure RFID systems.

Their low manufacturing costs and small size as well as the lack of need for a power
source make RFID tags useful in many applications, but also impose a strong need
for secure RFID systems. This leads to the main research question of this thesis.

Research question. How can we apply formal verification to analyze the security
of RFID systems?

To answer this question we analyze the security of RFID protocols. RFID protocols
define the communication between RFID readers, RFID tags, and the back-end.
These protocols also provide a way for attackers to interact with the different
components of an RFID system. Therefore, RFID protocols must be able to thwart
attacks that violate the security of an RFID system.

We analyze RFID protocols with respect to three security requirements: untrace-
ability , authentication, and ownership transfer. Untraceability and authentication
are the two most basic security requirements for RFID protocols. Informally, un-
traceability ensures that an attacker cannot recognize RFID tags he has observed
or communicated with in the past. Authentication ensures that agents can not be
impersonated. Finally, in dynamic environments where RFID tags are exchanged,
sold, or traded, the owner of a tag may change. Secure ownership transfer ensures
that ownership of the tag can be securely handed over to the new owner. This
requirement is only relevant in RFID systems in which tag ownership can change.

In particular, for each of the security requirements we wish to answer the following
questions:

(a) How do we formalize the security requirement? A formal model is the first
step towards understanding whether protocols satisfy a certain requirement.
The model specifies protocols, protocol execution, and the adversary’s ca-
pabilities. The intuitive understanding of the security requirement can then
be transformed into a formal definition within this model. After finishing
these steps, we can use the model to decide whether a protocol satisfies the
security requirement.

(b) How do protocols fail to achieve the security requirement? In the case of RFID
protocols, there is a wide variety of protocol proposals in literature. Many
of these protocols do not satisfy the desired security requirement. Analyzing
how protocols fail to satisfy a security requirement gives insight in how to
design secure protocols. Classifying the flaws into a number of categories
results in a useful library of common mistakes.

(c) How do different formalizations compare to each other? There are different
ways of formalizing a security requirement, protocol execution, and the ad-
versary model. Comparing these definitions reveals how they relate to one

1.4 Thesis overview 5

another. This shows, for instance, whether one definition of the security
requirement is strictly stronger than another, or whether they are incompa-
rable. It may also identify inaccurate definitions that should not be used for
formal verification.

(d) How do we design secure protocols? The ultimate goal of understanding a
security requirement is to be able to design protocols that satisfy the re-
quirement. Therefore, we gain insight in how a security requirement can
be reached by designing protocols and proving that they satisfy the security
requirement.

We then turn our attention to the analysis of RFID systems of which the crypto-
graphic keys can be recovered. Secrecy of cryptographic keys is often necessary for
achieving authentication. If these cryptographic keys are known to the adversary,
he may have access to data stored on RFID tags in the system. Our final step
to answer the research question is to develop a structured way of recovering the
memory structure from a set of memory dumps with a similar structure. This
enables the formal analysis of the memory structure of RFID tags.

1.4 Thesis overview

This thesis is divided into four parts. Each of the three security requirements
mentioned above covers one part: Part I covers untraceability, Part II covers au-
thentication, and Part III covers ownership transfer. Part IV covers the generic
problem of recovering memory structures of systems.

Each of the chapters in the first three parts answers one of the above questions
about one of the three security requirements. We answer the questions for untrace-
ability. For authentication, there exists a significant body of work in traditional
protocol verification to answer the first and third question. For the other two
questions, we focus on the challenges that are specific to RFID protocols. Finally,
for ownership transfer we only answer the first question. The other three remain
for future work. Table 1.1 summarizes the relation between security requirements,
the above questions, and the chapters.

Table 1.1: Chapter contents (◦: future work, ×: extant work)

(a) (b) (c) (d)
Untraceability 3 4 5 5.5
Authentication × 6 × 5.5
Ownership transfer 7 ◦ ◦ ◦

We now summarize the specific contents of the chapters. The contributions are
based on the author’s research, which was actively supported by the involvement
of the daily advisor Saša Radomirović and supervisor Sjouke Mauw.

• Chapter 3: Formalization of RFID protocols and untraceability

We design a formal syntax and semantics for security protocols. Within our
formalization, one can precisely describe RFID protocols and systematically

6 Chapter 1 Introduction

explore their execution traces. The novelty of the approach lies in the ability
to model and analyze protocols that maintain a persistent state across dif-
ferent executions. Furthermore, the model captures RFID-specific properties
such as the inability of tags to run multiple concurrent runs.

We define untraceability as a property on the traces of a protocol. Our
definition requires that each trace in which the adversary could possibly
deduce that a tag occurs twice, can also be understood as a trace in which
two different tags occur.

This chapter is based on work with Sjouke Mauw and Saša Radomirović.
The formal definition of untraceability has been published in [Wistp08] and
the syntax and semantics have been published in [Esorics].

• Chapter 4: Untraceability attacks

The academic literature provides an abundance of RFID protocols designed
to satisfy untraceability. We find untraceability flaws in a number of pub-
lished RFID protocols. We categorize these flaws into attribute acquisition
attacks, man-in-the-middle attacks, insider attacks, compositionality attacks,
and pseudonym-based attacks.

This chapter is based on a series of papers [AIR, Wistp09, STM, RFIDSec]
and a technical report [ePrint] with Saša Radomirović and on [Prime]. At-
tribute acquisition attacks were first described in [Wistp09], man-in-the-
middle attacks in [ePrint, RFIDSec], insider attacks and compositionality
attacks in [RFIDSec], and pseudonym-based attacks in [AIR, STM].

• Chapter 5: Untraceability proof models

There exist a number of different computational proof models for untrace-
ability. The first category describes untraceability as the inability of the
adversary to distinguish different tags. The second category defines untrace-
ability as the attacker’s inability to predict the messages sent by the tag. We
show that the two classes of definitions are incomparable.

We show that a category of public-key based RFID protocols is susceptible to
insider attacks. This result has impact on prior results about untraceability
in the case where the fact whether a protocol run ended successfully is public
information. We extend an existing computational proof model with insider
attackers.

We propose a provably untraceable and authenticating RFID protocol based
solely on elliptic-curve operations. As a basis of the protocol, we use an RFID
protocol proposed by Vaudenay and the Cramer-Shoup encryption scheme.

This chapter is based on an article [IPL] and a paper [EuroPKI] with Saša
Radomirović.

• Chapter 6: Authentication attacks

We categorize authentication attacks into algebraic replay attacks, man-in-
the-middle attacks, compositionality attacks and cryptanalytic attacks. For
each of these categories we give specific attacks.

1.4 Thesis overview 7

This chapter is based on a series of papers with Saša Radomirović [Wistp08,
Wistp09, ePrint, RFIDSec] and on a case study with Xihui Chen and Jun
Pang [ICFEM]. Algebraic replay attacks were first described in [Wistp09],
compositionality attacks in [RFIDSec], and leakage attacks in [Wistp08,
Wistp09].

• Chapter 7: Formalization of ownership transfer

We extend the model of Chapter 3 to analyze ownership-related properties.
To this end, we devise definitions for secure ownership and secure ownership
transfer. We also use the concept of ownership to define desynchronization
resistance.

This chapter is based on a paper with Sjouke Mauw, Saša Radomirović, and
Pim Vullers [Esorics].

• Chapter 8: mCarve: Carving attributed dump sets

RFID tags often have a small portion of memory that can be used by the
RFID application. One could repeatedly dump this memory and annotate
each dump with the data suspected to be encoded on the tag. We define
the carving problem as recovering the structure of the memory, based on
this attributed dump set. We design algorithms to find commonalities and
dissimilarities and apply them to an RFID system deployed in Luxembourg.

This chapter is based on a paper with Sjouke Mauw and Saša Radomiro-
vić [Usenix]. Preliminary analysis results of the case study have been de-
scribed in [Prime].

Part I

RFID protocols and untraceability

9

2

Preliminaries

This chapter presents the preliminary knowledge necessary to understand the the-
sis. In particular, we discuss security notions used in provable security and the
basics of elliptic-curve cryptography.

2.1 Provable security

2.1.1 Pseudo-random function

A function f(x) is said to be negligible if for all positive integers c, there exists an
x0 such that for all x > x0 we have |f(x)| < 1

xc
. Let n be a security parameter and

let FK for K ∈ {0, 1}n be a family of functions from {0, 1}l1(n) to {0, 1}l2(n). The
function family FK is called a pseudo-random function family if

1. FK(x) is computable in polynomial time; and

2. if all polynomial-time algorithms have a negligible advantage in n of distin-
guishing an oracle simulating Fk (for a random k ∈ {0, 1}n) from a uniformly
random function.

2.1.2 Message authentication codes

A message authentication code (MAC) is a keyed cryptographic hash function.
Given a key k and a message m, the message authentication code MAC k(m) must
be easy to compute. A MAC is secure against existential forgery if, given a message
m, the adversary cannot create MAC k(m) without knowledge of k. A MAC is
secure against selective forgery if, for a message m of his choice, the adversary
cannot determine MAC k(m) without knowledge of k.

2.1.3 Indistinguishability and non-malleability

The standard security notion for a public-key cryptosystem is indistinguishability
under adaptive chosen ciphertext attacks (IND-CCA2). Its definition is based on
the following game [BDPR98]. The adversary starts by making arbitrary queries
to a “decryption oracle”, decrypting ciphertexts of his choice. Then the adversary
chooses two messages m0 and m1 of the same length and sends them to an “encryp-
tion oracle”. The encryption oracle chooses a random bit b ∈ {0, 1} and returns
the encryption of mb as a challenge to the adversary. The adversary is then given
access to the decryption oracle, decrypting all ciphertexts of his choice except the

11

12 Chapter 2 Preliminaries

challenge. At the end of the game, the adversary guesses a bit b′ ∈ {0, 1}. The
adversary wins the game if b = b′.

A related security notion is that of non-malleability under adaptive chosen ci-
phertext attacks (NM-CCA2). Intuitively, a cryptosystem is non-malleable if the
attacker cannot change a ciphertext in another ciphertext such that the underlying
plaintexts are meaningfully related. In particular, it prevents an adversary from
creating a second ciphertext with the same underlying plaintext. Non-malleability
is formalized using the following game [BDPR98]. The adversary starts by mak-
ing queries to a “decryption oracle”. It then chooses a set of messages M . The
encryption oracle chooses one of the messages at random, say x, and returns the
encryption y of that message. The adversary can then query the decryption oracle
on all ciphertexts of his choice except y. At the end of the game, the adversary
outputs a vector of ciphertexts y and a relation R. Let x be the vector of plain-
texts corresponding to the ciphertexts in y. The adversary wins if the relation
R(x,x) holds with a probability significantly higher than with which R(x′,x) for
some random x′ ∈M holds.

We say that a cryptographic scheme is secure against adaptive chosen ciphertext
attacks (CCA2) if the advantage of any polynomial-time adversary in winning the
game is negligible.

If we modify the game so that the attacker does not have access to the decryption
oracle after the challenge is issued, then we call a scheme secure against chosen
ciphertext attacks (CCA1) or lunchtime attacks if the advantage of any polynomial-
time adversary winning the game is negligible.

Bellare, Desai, Pointcheval, and Rogaway [BDPR98] showed that IND-CCA2 and
NM-CCA2 are equivalent properties.

2.1.4 Indistinguishability in the multi-user setting

Bellare, Boldyreva, and Micali [BBM00] proposed a notion of IND-CCA2 in the
multi-user setting. The idea behind the multi-user notion is that an adversary
may be able to obtain encryptions of related (possibly the same) message(s) under
different public keys. Also, the adversary may be able to obtain encryptions of
related messages under the same public key.

The main concept in the IND-CCA-MU game is that of a left-right oracle LR.
The left-right oracle LR(m0,m1, b) returns the encryption of plaintext m0 if the
bit b = 0 and the encryption of m1 if b = 1. At the start of the experiment a bit
b is chosen at random. The value of b is only chosen once and is the same across
all queries. The adversary has access to an encryption oracle that takes as input
two message m0 and m1, the bit b, and a public key pk. It returns {mb}pk: the
encryption of mb under public key pk. The adversary may also query a decryption
oracle on any ciphertext that was not the output of the encryption oracle. At
the end of the experiment the adversary guesses the value of bit b. A scheme is
IND-CCA-MU secure if the adversary has no non-negligible advantage in correctly
guessing the bit b.

Bellare, Boldyreva, and Micali [BBM00, Theorem 1] have proven that any adver-
sary that has negligible advantage in winning the IND-CCA2 experiment, also has

2.2 Elliptic-curve cryptography 13

negligible advantage in winning the IND-CCA-MU experiment.

2.2 Elliptic-curve cryptography

Elliptic curve cryptography has recently become popular as a tool to build pub-
lic key cryptosystems. Traditionally, RSA-based systems were used to implement
public key cryptosystems. Both approaches are based on intractable mathemati-
cal problems and, therefore, provide provable security. However, for elliptic curve
cryptography, smaller parameters (i.e. smaller key sizes) are possible with the same
security as RSA-based systems. They are, therefore, within reach to be imple-
mented on passive RFID tags.

Elliptic curves can be defined over various algebraic structures, such as the rationals
or the reals. To be used for cryptography, elliptic curves are defined over finite
fields Fp of large prime order p or over finite fields of the form F2n . The advantage
of using the latter type is that addition in the field is defined by bitwise exclusive
or. Multiplication is defined by considering the bitstrings as the coefficients of
polynomials and performing the multiplication of these polynomials modulo an
irreducible polynomial of degree n.

We call (x, y) for x, y ∈ F2n a point. We consider all points that satisfy the equation

y2 + xy + x3 + ax2 + b = 0, (2.1)

for some a, b ∈ F2n and refer to them as points on the elliptic curve. The number
of points N satisfying Equation (2.1) is approximately 2n. A more precise estimate
is given by Hasse’s theorem:

|N − (2n + 1)| ≤ 2
√

2n.

By defining a point at infinity O as a neutral element, a point addition operation
can be defined. The group of points on the curve, together with O and the addition
operation form an abelian group.

The coefficients a and b in Equation (2.1) ought to be chosen such that the elliptic
curve group has a large cyclic subgroup of prime order p. An element P of order
p can then be chosen as generator of that subgroup. One of the basic operations
in elliptic curve cryptography is scalar multiplication. That is, given an integer
n, compute n · P . The opposite problem, i.e. given P and Q, find an integer n
such that nP = Q is known as the discrete logarithm problem. There exist groups
for which the most efficient known algorithms for solving the discrete logarithm
problem are exponentially slower than algorithms for scalar multiplication.

There are several problems that are derived from the discrete logarithm (DL)
problem. In the following, let E be an elliptic curve and let P be a generator of a
large subgroup of the points on E.

• The computational Diffie-Hellman (CDH) problem: Given random points
aP, bP , compute abP .

14 Chapter 2 Preliminaries

• The decisional Diffie-Hellman (DDH) problem: Given random points aP , bP ,
and cP , decide whether c = ab modulo the order of the group generated by
P .

It follows that being able to solve DL means being able to solve CDH and being
able to solve CDH means being able to solve DDH.

One can test whether a point lies on the elliptic curve by plugging it into Equa-
tion (2.1). The trace function can be used to determine whether a given x-
coordinate is on the curve. The trace is a mapping from F2n to F2:

T (x) =
n−1∑
i=0

x2i .

The trace is a linear operator, i.e. T (a+ b) = T (a) + T (b) for all a, b ∈ F2n . Also,
T (x2) = T (x) for all x ∈ F2n . By setting z = y

x
and dividing by x2, Equation (2.1)

can be simplified to

z2 + z + x+ a+
b

x2
= 0. (2.2)

Equation (2.2) only has a solution in z if T (x+ a+ b
x2

) = 0. If that is the case and
z is a solution to (2.2), then z + 1 is also a solution. Since z = y

x
, if y is a solution

for a given x for Equation (2.1), then so is y + x.

To map a bitstring u of length n − l into the elliptic curve a simple try-and-
increment method [Ica09] can be used. Let x2 denote the integer x represented
as l-bit string. Using the previously defined trace function, the algorithm can be
defined as follows:

1. For i = 0 to 2l − 1 do

(a) Set x = u‖i2
(b) If T (x+ a+ b

x2
) = 0 then solve Equation (2.1) for y and return (x, y)

2. return “fail”

3

Formalization of RFID protocols and
untraceability

History has shown that designing protocols is a difficult and error-prone task and
that formal verification of security properties is necessary [CJ97, Low96]. While
traditional security properties such as authentication and secrecy have been studied
thoroughly, untraceability has only become relevant with the introduction of trav-
eling devices. It has typically been treated rather informally. In some cases, pro-
tocol designers argue untraceability of their protocols without providing a proper
definition of untraceability.

In this chapter, we develop a formal model for security protocol analysis. The
model allows protocol designers and verifiers to describe a protocol in an unam-
biguous way. Subsequently, the behavior of the protocol (i.e. all ways in which
the protocol can be executed) can be systematically derived. We define untrace-
ability as a property on all possible behaviors of the protocol. We define security
requirements related to ownership transfer in Chapter 7.

Intuitively, a protocol is untraceable if an attacker cannot recognize a tag he has
seen before. In other words, a protocol is untraceable if the adversary cannot
observe any difference between protocol executions of the same tag and protocol
executions of different tags. We formalize untraceability as a requirement on all
behaviors of the protocol. We then apply our formal model and untraceability
definition to show untraceability of one protocol and traceability of another.

3.1 Basic concepts

We start by explaining the main concepts used in our formal model after which we
formalize each of these concepts.

A protocol consists of a number of roles . Each of these roles describes the steps
that an agent is expected to carry out. There are different sorts of agents that can
be involved in protocols, such as computers, humans, or RFID tags. One execution
of a protocol role by an agent is called a run.

The role specifies the messages that need to be sent and received. These messages
are, for instance, encryptions or cryptographic hashes of simpler terms. Among
the basic terms, we find agent names, system-wide constants (such as the natural
numbers), and cryptographic keys. An important type of basic term is the nonce,
short for ‘number-used-once’. Nonces are fresh, unpredictable terms that can be
used to ensure that the messages in which they are used are not predictable.

15

16 Chapter 3 Formalization of RFID protocols and untraceability

Protocols embody several constructs to define the control flow in an execution.
The events describe the actions performed by an agent executing a role. An agent
can execute read and send events, in order to read messages from or send messages
to the network. There are several ways in which these events can be composed. For
instance, one can specify that events have to be executed in sequence, or that one of
two events must be executed. The agents in the system have two kinds of memory.
The temporary memory contains variables whose values are only accessible to a
single run of that agent. The persistent memory contains variables whose values
are shared across all runs of that agent. We call a protocol stateless if it does not
update any persistent variable during protocol execution, or stateful if it does. We
assume that RFID tags can run only one protocol execution at a time, but RFID
readers can run different executions concurrently.

We consider an asynchronous communication model where messages are not in-
stantly received after they are sent. Following Dolev and Yao [DY83], we assume
that the adversary (sometimes called intruder) controls the messages that are being
exchanged. This means that he can modify messages, block messages, eavesdrop
on messages, and inject messages. When describing an explicit attack on a pro-
tocol, we refer to one or more attackers that carry out the attack. The adversary
is thus an idealization of the capabilities that a real-world attacker (or set of at-
tackers) might have. Any agent that is not malicious is called honest and it runs
the protocol exactly as specified. If an agent does not receive the message he ex-
pects to receive according to his role specification, he simply does not continue the
execution.

A security requirement formalizes a security or privacy goal of the protocol. It de-
scribes a property that the protocol must enforce when executed by honest agents.
An example of a security requirement is secrecy, stating that the adversary cannot
deduce a certain message. Another security requirement is untraceability, requiring
that an adversary cannot recognize an agent he has previously observed. We call
a protocol secure with respect to a security requirement if the adversary has no
means to invalidate it. If the adversary can invalidate a claim, we call the protocol
flawed or vulnerable.

Central to our model is the concept of adversary knowledge. It contains the mes-
sages that the adversary has received in the past and all the public knowledge.
By combining messages, the adversary can derive new terms. For instance, if the
adversary knows a ciphertext and the corresponding decryption key, he can de-
rive the plaintext. We adopt the perfect cryptography assumption, stating that
a ciphertext leaks no information about the plaintext if the adversary does not
have the decryption key. Furthermore, cryptographic hash functions are assumed
to be perfect. That is, the cryptographic hash of a message does not leak any
information about the message.

3.2 Syntax: protocol specification 17

3.2 Syntax: protocol specification

3.2.1 An RFID protocol

In this chapter, we use the protocol by Ha, Moon, Nieto, and Boyd [HMNB07] as a
running example. We call the protocol HMNB after the last names of the authors.
The HMNB protocol is an RFID protocol that aims to mutually authenticate
RFID tag and reader, keep the tag untraceable, and resist a particular form of
denial-of-service attacks, known as desynchronization attacks. We give formal
definitions of untraceability in Section 3.5, of authentication in Chapter 6, and of
desynchronization resistance in Chapter 7. Furthermore, the HMNB protocol has
been designed with limited computational requirements on tags in mind employing
a hash function as the only cryptographic primitive.

The protocol assumes that all tags T have an identifier ID . This identifier is only
known to the reader R and tag T . It is updated at the end of a successful protocol
execution. Thus the protocol is stateful. The reader also stores the hash of the
ID in HID and the value of ID before the last update in ID ′. Therefore, for a
system with n tags, the reader stores n tuples (ID , ID ′,HID). The tag keeps track
of whether its last run ended successfully or not. For this purpose, the tags use a
variable S. If the last run ended successfully, the value of S is 0, otherwise 1.

We assume that before the reader starts its protocol execution, it does not know
the identity of the tag it is about to communicate with. By matching the first
message received from a tag against the list of tuples, the reader can identify the
tag. If this procedure is successful, the reader continues the protocol execution and
we say that the reader “accepts” the tag. Otherwise, the reader halts the protocol
execution and we say that the reader “rejects” the tag.

Table 3.1: Reader’s verification and update procedure in the HMNB protocol

Tag response Update
h(ID), nt ID ′ := ID ; ID := h(ID , nr); HID := h(ID)
h(ID , nt, nr), nt ID ′ := ID ; ID := h(ID , nr); HID := h(ID)
h(ID ′, nt, nr), nt ID := h(ID ′, nr); HID := h(ID)
other reject tag

We represent protocols graphically using message sequence charts. Every message
sequence chart shows the role names, framed, near the top of the chart. Above the
role names, the role’s secret terms are shown. Actions, such as nonce generation,
computation, verification of terms, and assignments are shown in boxes. Messages
to be sent and expected to be received are specified above arrows connecting the
roles. Other conditions that need to be satisfied are shown in diamond boxes.

The HMNB protocol is depicted in Figure 3.1. The protocol starts with the reader
challenging the tag with a nonce nr. The tag then generates a nonce nt. The
response of the tag depends on the value of S. In case the previous run ended
successfully, the tag responds with (h(ID), nt). In case it did not end successfully,
the value of S is 1 and the tag responds with (h(ID , nt, nr), nt). In either case,

18 Chapter 3 Formalization of RFID protocols and untraceability

the tag sets S to 1.

ID , ID ′

R

ID , S

T

nonce nr
nr

nonce nt

if S = 0 then P := h(ID)
else P := h(ID , nt, nr)

S := 1
P, nt

verify P, nt
update ID , ID ′

Q := h(ID ′, nt)

Q

if Q = h(ID , nt) then
ID := h(ID , nr), S := 0

Figure 3.1: The HMNB protocol

The reader first tries to identify the tag by searching whether the response, aside
from the nonce nt, matches any of the stored values of HID . This search can be
implemented in constant time if the reader stores the tuples in a hash table. If
this match is not successful, the reader iterates through its tuples for a value ID or
ID ′ for which h(ID , nt, nr) or h(ID ′, nt, nr) equals the first part of the response.
This search can be implemented in linear time in the number of tags n. If any of
the searches is successful, the reader accepts the tag and continues the protocol
execution. If this is not the case, the reader rejects the tag and halts. If the reader
accepts the tag, it updates the information for the tag according to Table 3.1 and
sends h(ID ′, nt) to the tag. Finally, if the message received by the tag matches
h(ID , nt), it replaces ID by h(ID , nr) and sets S to 0.

Since the value HID is only meant to improve the efficiency and does not have a
security purpose, we leave it out of the protocol specification.

3.2.2 Terms

Messages to be sent over the network are constructed by a term algebra. The
smallest elements of this term algebra are called basic terms. Basic terms can be
composed to construct complex terms. The basic terms are separated into six sets:

• Agent contains the names of the agents that are allowed to execute protocol
roles.

• Const contains all constants such as natural numbers, bitstrings, and strings.

• Nonce contains nonces; values that are freshly generated for each protocol
execution.

• Func contains all function symbols.

3.2 Syntax: protocol specification 19

• Var contains all variable names.

• RoleName contains all role names.

During protocol execution, values can be assigned to variables. Hence, variables
represent values that may be different across different protocol executions. There
are two different disjoint sets of variables:

• VarT : The set of temporary variables. These variables are local to one
particular run of the protocol. Initially, no value is assigned to temporary
variables. A value can be assigned to a temporary variable only once during
a protocol execution. After assignment the value can no longer be changed.
At the end of the protocol execution, the value is lost.

• VarP : The set of persistent variables. These variables are shared across all
protocol runs of the same agent.

There is one special variable θ ∈ VarT that is used to denote the identifier of a
run. This variable is used to disambiguate nonces from different runs. A fresh
value is assigned to θ when a role is instantiated. Table 3.2 contains representative
examples for each of the above set of constants and variables.

Table 3.2: Symbol sets.

Symbol set Description Representative examples
Agent Agent names a, b, r, t
Nonce Nonces na, nb, nr, nt
Const Constants 0, 1, 2, 3
Func Functions h
RoleName Role names R, T
VarP Persistent variables ID , k
VarT Temporary variables NR,NT, V,W, x, y, θ

Complex terms can be constructed by pairing terms, denoted by (,), encrypting
a term by another term, denoted by { } , or applying a function f ∈ Func to
a term, denoted by f(). We assume that pairing is right-associative and leave
out superfluous brackets to simplify terms. Unless stated otherwise, encryption is
assumed to be deterministic. Probabilistic encryption can be modeled by deter-
ministic encryption by including the randomness in the encryption. The set of all
terms, Term, is defined as follows.

Definition 3.1 (Term). Terms are constructed using the following term algebra.

Term ::= Agent | Const | Nonce(θ) | RoleName | VarP | VarT |
Func(Term) | (Term,Term) | {Term}Term

Example 3.2. As an example, we construct the tag response for the tag role of
the HMNB protocol. Let h ∈ Func be a function and let ID ∈ VarP be a persistent
variable. The nonce nr is generated by the reader and is, therefore, a temporary
variable for T : NR ∈ VarT . Finally, let nt ∈ Nonce. Then the tag response is
(h(ID , nt(θ),NR), nt(θ)).

20 Chapter 3 Formalization of RFID protocols and untraceability

To recover the plaintext from an encryption, the corresponding decryption key
must be known. The encryption key and decryption key are inverses of each other.
We use the unary function symbol ·−1 to denote the inverse of a term. We require
that ·−1 is its own inverse, i.e. for all terms t we have (t−1)−1 = t. For symmetric
key encryption, we require that encryption and decryption key are the same, i.e.
k = k−1. Throughout this thesis, we associate pk(a) with the public key of agent
a and sk(a) with the secret key. Therefore, for asymmetric encryption the public
key is the inverse key of the secret key: pk(a)−1 = sk(a). Note that, in general,
asymmetric encryption schemes have the property that for any agent a, given pk(a),
it is infeasible to compute sk(a).

3.2.3 Events

Agents can perform two types of events. A send event specifies that an agent sends
a message to the network. A read event specifies that an agent receives a message
from the network. The parameter of both send and read events is the message that
the agent sends or reads.

There are two types of variable assignments in our protocol specification language.
Temporary variables occur in the messages of an agent’s read event. Assignments
to temporary variables are carried out while an agent processes the message that he
received and are called implicit. In contrast, assignments to persistent variables are
explicit and can be combined with a read or send event of the agent. Assignments
to persistent variables are denoted by v := t for v ∈ VarP and t ∈ Term. We write
v1 := t1; . . . ; vn := tn for the sequential assignment of terms t1 . . . tn to v1 . . . vn for
any number n. Formally, the set of assignments is defined by:

Assignment ::= VarP := Term | Assignment ; Assignment

Events can be composed in three ways. Sequential composition, denoted by (·),
specifies consecutive execution of events, while alternative composition, denoted
by (+), models branching. Conditional branching , denoted by (/ .), chooses
the left branch if the value in the middle is true and the right branch otherwise.
We use parentheses around event compositions to allow for disambiguation of the
composed event. In order to simplify role specifications, we assume that sequential
composition (·) binds stronger than alternative composition (+) and alternative
composition binds stronger than conditional branching (/ .). We leave out
superfluous parentheses whenever no confusion can arise. Formally, the set of
events Ev is defined as follows.

Ev ::= send(Term) | send(Term)[Assignment] |
read(Term) | read(Term)[Assignment] |
Ev + Ev | Ev · Ev | Ev / Term = Term . Ev

Example 3.3. The tag role in the HMNB protocol consists of three events: a read
event, a send event, and another read event. In the second read event, the tag
expects to receive the message h(ID , nt(θ)). Upon receipt of the message, the tag
assigns the value h(ID ,NR) to the permanent variable ID and the value 0 to S. The

3.2 Syntax: protocol specification 21

specification of the second read event of the tag is thus read(h(ID , nt(θ)))[ID :=
h(ID ,NR);S := 0].

ProtSpec → ProtName(RoleName) = RoleSpec |
ProtSpec,ProtSpec

RoleSpec → (P(Nonce),P(VarT),P(VarP),Ev · ⊥)
Ev → send(Term) |

send(Term)[Assignment] |
read(Term) |
read(Term)[Assignment] |
(Ev + Ev) |
(Ev · Ev)
(Ev / Term = Term . Ev) |

Assignment → VarP := Term|
Assignment ; Assignment

Term → Agent |
Const |
Nonce(θ)|
VarT |
VarP |
Func(Term)|
(Term,Term)|
{Term}Term

Figure 3.2: Grammar for protocol specifications

3.2.4 Protocols

A protocol specification is a mapping of role names to role specifications . A role
specification consists of a declaration of the nonces and variables used by that role
and the events defining the messages that an honest agent sends and expects to
read, when executing the role. For technical reasons, we append the symbol ⊥ to
the list of events to denote that a protocol execution has finished.

Let ProtName be a set of protocol names and RoleName be a set of role names.
The syntax of our security protocol specification language is depicted in Figure 3.2.

Example 3.4. The HMNB protocol consists of two roles: a reader role R and a
tag role T . The tag role contains a nonce nt ∈ Nonce and has a temporary variable
NR ∈ VarT to store the nonce received from the reader. It has a persistent variable
ID ∈ VarP for its current identifier and S ∈ VarP to store whether the previous
run ended successfully. The full specification of the tag role is:

HMNB(T) =
({nt}, {NR}, {ID , S},
read(NR)·
(send(h(ID), nt(θ))[S := 1] / S = 0 . send(h(ID , nt(θ),NR), nt(θ))[S := 1])·
read(h(ID , nt(θ)))[ID := h(ID ,NR);S := 0] · ⊥)

22 Chapter 3 Formalization of RFID protocols and untraceability

The reader role R contains a nonce nr ∈ Nonce and a temporary variable NT ∈
VarT . There is a temporary variable P ∈ VarT to store the message that the reader
receives from the tag. If the first condition, P = h(ID), holds the reader responds
with h(ID ,NT). If it does not hold, it continues with the second condition, etc.
If none of the three conditions holds, the tag responds with the constant “reject”.
We thus have reject ∈ Const. The reader keeps track of the current and previous
identifier of the tag in persistent variables ID , ID ′ ∈ VarP . The specification is as
follows.

HMNB(R) =
({nr}, {NT , P}, {ID , ID ′},
send(nr(θ))·
read(P,NT)·
send(h(ID ,NT))[ID ′ := ID ; ID := h(ID , nr(θ))] / P = h(ID) . (
send(h(ID ,NT))[ID ′ := ID ; ID := h(ID , nr(θ))] / P = h(ID ,NT , nr(θ)) . (
send(h(ID ′,NT))[ID := h(ID ′, nr(θ))] / P = h(ID ′,NT , nr(θ)) . (
send(reject)))) · ⊥)

3.3 System model

If an agent starts an execution of a protocol role, a run is created. A run is identified
by a run identifier chosen from the set of natural numbers. A run contains the
agent name of the agent executing the run. It also contains the list of events to
be executed by the agent. During execution, events are removed from this list.
Finally, a temporary variable assignment is maintained to keep track of the values
that are assigned to the temporary variables. A run is thus defined by:

Run = N× Agent × Ev × (VarT → Term)

Aside from a temporary variable assignment, agents maintain persistent knowledge
that is shared across all runs of the agent. We call this the persistent variable
assignment , and define it as follows:

Pva = Agent → (VarP → Term)

For our analysis we assume that the adversary has full control over the network.
That is, he can see every message, he can modify messages, he can block messages,
and he can inject messages. We keep track of the messages obtained by the ad-
versary by adding them to the adversary knowledge. The adversary knowledge is
a monotonically increasing set of terms observed by the adversary.

The system state is defined by the runs, the persistent variable assignment, and
the adversary knowledge:

State = P(Run)× Pva × P(Term)

The agents and the adversary can combine terms from their knowledge and derive
new terms. For instance, given a ciphertext and the decryption key, the plaintext

3.4 Semantics: protocol execution 23

can be recovered. We call the process of deriving a term from a set of terms
knowledge inference.

Definition 3.5 (Knowledge inference). We say that a set K infers a term t (de-
noted by K ` t) if t can be obtained from K by repeatedly applying the following
rules:

K ` t1 ∧K ` t2⇒K ` (t1, t2) (pair)
K ` (t1, t2)⇒K ` t1 (unpair1)
K ` (t1, t2)⇒K ` t2 (unpair2)

K ` t1 ∧K ` t2⇒K ` {t1}t2 (encrypt)
K ` {t1}t2 ∧K ` t−1

2 ⇒K ` t1 (decrypt)
K ` t⇒K ` h(t) (hash)

Example 3.6. Let K = {{a}k, k−1} be the adversary knowledge. Then the adver-
sary can derive h(a) by applying the decrypt and hash rules.

A substitution σ is a mapping of variables to ground terms. We write a 7→ b ∈ σ
if σ(a) = b. The domain of a substitution is defined by dom(σ) = {a ∈ Var |
∃b∈Term σ(a) = b} and the range is defined by rng(σ) = {b ∈ Term | ∃a∈Var σ(a) =
b}. We denote by σ[b/a] the substitution σ modified such that σ(a) = b and
unmodified otherwise. The application of σ(t) for any term t is defined by replacing
all variables v in t for which v ∈ dom(σ) by σ(v). The composition σ ◦ σ′ of two
substitutions σ and σ′ is defined by σ◦σ′(t) = σ(σ′(t)) for all terms t. Substitutions
extend to events in the obvious way.

3.4 Semantics: protocol execution

In this section we describe how, through instantiation of variables, an abstract
role specification can be transformed into an execution by an agent, called a run.
Furthermore, we define how the interleaved execution of a collection of runs defines
the behavior of a system.

The behavior of the system is defined as a transition relation on system states.
The derivation rules are of the form

C

S
l−→ S ′

,

expressing that a system in state S may execute l and continue to state S ′ if
condition C is satisfied. A state transition from a state S to S ′ is the conclusion
of applying these rules. In this way, starting from an initial state, we can derive
all possible behavior of a system executing a set of protocols.

The semantics describe which conditions have to be satisfied for an agent to execute
a single event. We separate the derivation rules into two categories. The agent
rules express under which conditions an agent may execute a read or send event,
as well as start or end a protocol run. Agent rules can be composed in several
ways to model protocol flow, expressed by the composition rules . By adopting this
two-layer approach we can keep the number of rules to a minimum, at the cost of
having a slightly more complicated model. We first describe the composition rules
and then the agent rules.

24 Chapter 3 Formalization of RFID protocols and untraceability

3.4.1 Composition rules

The composition rules model the conditions that are induced by the event compo-
sition of the protocol. In the following, let e, e1, e2 ∈ Ev be events, a be an atomic
(i.e. send or read) event, and x, y ∈ Term be terms. We introduce the event X to
denote successful execution of an event. The rules in Figure 3.3 describe the se-
mantics for composing events. The sequential composition rule (seq) specifies that
an atomic event a followed by any event e can always be executed. As specified by
the exec rule, an atomic event a can always be executed. If two events e1 and e2

are composed using alternative composition, e1 + e2, then either of the branches
can be executed (choice1 and choice2). Finally, given two events e1 and e2 and two
terms x and y, the conditional branching statement e1 / x = y . e2 can execute
either of the branches. The left branch e1 can be chosen if x = y (cond1) and the
right branch e2 can be chosen if x 6= y (cond2). We take x = y to mean that x is
syntactically equivalent to y and x 6= y that x is not syntactically equivalent to y.

exec
a

a−→ X
seq

a
a−→ X

a · e a−→ e

choice1
e1

a−→ e′1

e1 + e2
a−→ e′1

choice2
e2

a−→ e′2

e1 + e2
a−→ e′2

cond1

e1
a−→ e′1

e1 / x = x . e2
a−→ e′1

cond2

e2
a−→ e′2 x 6= y

e1 / x = y . e2
a−→ e′2

Figure 3.3: Composition rules

Example 3.7 (Composition rules). Let e = (send(1)/0 = 1. send(2)) ·⊥ ∈ Ev be
an event. The following derivation shows that e can do a send(2) event resulting
in ⊥. Note that the rule cond2 needs to be applied since 0 is not syntactically
equivalent to 1.

seq

cond2

exec

send(2)
send(2)−−−−→ X 0 6= 1

send(1) / 0 = 1 . send(2)
send(2)−−−−→ X

(send(1) / 0 = 1 . send(2)) · ⊥ send(2)−−−−→ ⊥

3.4.2 Agent rules

The agent rules describe the effect of the execution of an agent on his run and on
the state. We define rules for creating a run, terminating a run, sending a message,
and reading message.

Creating a run. The create rule models the start of a protocol execution by an
agent. The environment in which RFID protocols are run imposes two restrictions
on run creation. First, there are two clearly separated sets of agents: tags and

3.4 Semantics: protocol execution 25

readers. Unless stated otherwise, we assume that tag agents can only execute the
tag role of an RFID protocol and reader agents can only execute the reader role.
Second, an RFID tag can only run one simultaneous protocol execution. Before a
tag can start a run, its previous execution must have finished or been terminated.
Readers can run multiple concurrent protocol executions. In order to faithfully
model RFID communication, the semantics of the create rule must allow both
restrictions to be enforced. Otherwise, the semantics would allow one to derive
attacks that cannot be executed in a deployed RFID system.

The create rule creates a run with a fresh run identifier f and adds it to the set of
active runs. Let S = 〈A, σ, I〉 ∈ State be a system state with active runs A. Recall
that an active run a = (f, n, e, v) ∈ A consists of a run identifier f , an agent name
n, a list of events e, and a temporary variable assignment v. We use the function
runids(A) to extract the run identifiers of the set of runs A.

runids(A) ≡ {f | (f, n, e, v) ∈ A}.

We introduce the function agents(R) to denote the set of agents that can execute
a role R. This allows modeling that certain agents can execute a role, while others
can not. We assume two types of agents: agents that cannot run concurrent
protocol executions (concur = 0) and agents that can (concur = 1). We further
assume the existence of a function concur of type Agent 7→ {0, 1} that captures for
each agent whether they can run concurrent protocol executions. In our setting,
for RFID tag agents t we have concur(t) = 0 and for RFID readers r we have
concur(r) = 1.

For a run to be created, the following two conditions have to be satisfied; (1) The
agent must belong to the set of agents that can execute a role, and (2) the agent
must be able to execute runs concurrently, or it must not have an unfinished run
at the time of run creation. Unfinished runs have an event list not equal to ⊥.
We say that an agent n is allowed to execute role R in a state with runs A if the
following condition is satisfied.

allowed(n,A,R)≡ n ∈ agents(R) ∧
(concur(n) = 1 ∨ n 6∈ {m | (f,m, e, v) ∈ A ∧ e 6= ⊥})

The new active run is a tuple containing the run identifier f , the agent name n,
the events of the role, and the initial temporary variable assignment. We assume
the existence of a function events : RoleName → Ev that takes a protocol name
and a role name and returns its corresponding list of events. The initial temporary
variable assignment maps the run identifier variable to its fresh value (θ 7→ f).

The operational semantics for the create rule are given by the following rule:

create
f ∈ N f 6∈ runids(A) allowed(n,A,R)

〈A, σ, I〉 create(f,R)−−−−−−→ 〈A ∪ {(f, n, events(R), {θ 7→ f})}, σ, I〉

Terminating a run. A run of an agent can be terminated at all times: right after
it is created, after executing a number of events, or after all events have been

26 Chapter 3 Formalization of RFID protocols and untraceability

executed. Upon termination of a run, the event list is replaced with ⊥. The rule
is as follows:

end
a = (f, n, e, ρ) ∈ A

〈A, σ, I〉 end(f)−−−→ 〈A\{a} ∪ {(f, n,⊥, ρ)}, σ, I〉

Sending a message. If an agent executes a send event, a message gets added to
the adversary knowledge. The message is obtained from the event by applying
the temporary variable assignment ρ and persistent variable assignment σ to the
parameter of the send event. Upon executing the send event, it is removed from
the list of events for that run.

A send event can be accompanied by a list of persistent variable assignments of the
form x := c. We denote by −→x := −→c the sequential assignment of a list of values c
to a list of variables x of the same length. The persistent variable assignment of all
agents is represented by σ. If a send event is accompanied by a list of assignments,
σ must be updated for one agent. For readability we use σn to denote the persistent
variable assignment for agent n. Given an assignment −→x := −→c , the substitution
σn for agent n must be updated to σn[−→c /−→x]. Therefore, the persistent variable
assignment σ must be updated to σ[n 7→ σn[−→c /−→x]].

send

σnρ(e)
send(σnρ(m))[−→x :=−→c]−−−−−−−−−−−−→ σnρ(e′)

a = (f, n, e, ρ) ∈ A σ′ = σ[n 7→ σn[−→c /−→x]]

〈A, σ, I〉 send(f,σnρ(m))−−−−−−−−−→ 〈A\{a} ∪ {(f, n, e′, ρ)}, σ′, I ∪ {σnρ(m)}〉
Example 3.8 (Agent rules). In this example, we show how the agent rules and
composition rules are combined to derive that an agent can do a send event. We
assume that there is an agent t ∈ Agent with an active run with runid θ = 3. We
further assume that the term 0 is assigned to the persistent variable S for agent t,
i.e. σt(S) = 0. Then we can derive:

send

(send(1) / 0 = 1 . send(2)) · ⊥ send(2)−−−−→ ⊥
a = (3, t, (send(1) / S = 1 . send(2)) · ⊥, ρ) ∈ A
〈A, σ, I〉 send(3,2)−−−−−→ 〈A\{a} ∪ {(3, t,⊥, ρ)}, σ, I ∪ {2}〉

We can complete the derivation by importing the derivation of Example 3.7.

Reading a message. The read rule defines when an agent can receive and inter-
pret a message from the network. Since we represent the network as the adversary
knowledge, any message that the adversary can infer from his knowledge can be
read by an agent. The role specification of an agent specifies the pattern of the
message that the agent receives. The message received from the network must,
therefore, be of the same format as the pattern. Upon receiving a message, the
agent updates his temporary variable assignment by assigning a value to all vari-
ables in the pattern. We define two auxiliary predicates, Rd and Match, to decide
whether a message is readable and how the temporary variable assignment of the
agent should be updated.

3.4 Semantics: protocol execution 27

A received term m is readable with respect to a pattern p if there is a substitution
ρ that makes them syntactically equivalent. Furthermore, every subterm of the
received message must be inferable from the agent’s knowledge or from the received
message itself. We first give the formal definition of the subterm operator. It is
used to decompose a term into the terms from which it was constructed.

Definition 3.9 (Subterms). Let t, t1, t2 ∈ Term be terms. The subterm operator
is defined as follows.

t v t t1 v (t1, t2) t2 v (t1, t2)
t1 v {t1}t2 t2 v {t1}t2 t v h(t)

Readability is then defined as follows.

Definition 3.10 (Readability). Let m, p ∈ Term, K ∈ P(Term), and ρ(p) = m.
Then, we define readability of term m by

RdK(ρ,m, p) ≡ ∀avp K ∪ {m} ` ρ(a) ∨K ∪ {m} ` ρ(a)−1.

The intuition behind the definition is that in case the agent receives a complex
term, all of its subterms must be interpretable by the agent. The agent can use his
knowledge to interpret the subterms, but also the message that he receives. This
is essential, for instance, if the message is the pairing of an encryption and the
decryption key.

Example 3.11 (Readability predicate). We assume that k 6= k−1 and l = l−1.
The following table illustrates the readability predicate on several examples. For
instance, the last line should be read as follows. Let K = ∅ be a knowledge set
and p = ({V }W ,W) be a pattern with variables V and W . The subterms of p are
V,W, {V }W , and ({V }W ,W). For a substitution ρ = {V 7→ a,W 7→ l} the message
m = ({a}l, l) is readable since {({a}l, l)} ` a, {({a}l, l)} ` l, and {({a}l, l)} ` {a}l.

K ρ p m Rd(K, ρ, p,m)
∅ V 7→ {a}k V {a}k true
k−1 V 7→ a {V }k {a}k true
∅ V 7→ a {V }k {a}k false
k V 7→ a {V }k {a}k false
a, k V 7→ a {V }k {a}k true
a V 7→ a h(V) h(a) true
∅ V 7→ a h(V) h(a) false
∅ V 7→ a,W 7→ l ({V }W ,W) ({a}l, l) true

The match predicate defines how the temporary variable assignment for the current
run must be extended. Given a pattern p and a message m, the match predicate
fixes a minimal substitution ρ that maps every variable in p to a ground term, such
that ρ(p) = m.

Definition 3.12 (Match). Let m, p ∈ Term, K ∈ P(Term), and ρ be a substi-
tution. Let vars(p) denote the set of variables in a pattern p. Then the match
predicate is defined by

28 Chapter 3 Formalization of RFID protocols and untraceability

MatchK(ρ,m, p) ≡ m = ρ(p) ∧ dom(ρ) = vars(p).

We now have all ingredients to define the read rule:

read

σnρ(e)
read(m)[−→x :=−→c]−−−−−−−−−→ σnρ(e′) a = (f, n, e, ρ) ∈ A I ` m

Match(ρ′,m, p) Rd rng(ρ)∪rng(σn)(ρ
′,m, p)

〈A, σ, I〉 read(f,m)−−−−−→ 〈A\{a} ∪ {(f, n, e′, ρ′ ◦ ρ)}, σ[n 7→ σn[−→c /−→x]], I〉

3.4.3 System behavior

The above semantics define a labeled transition system describing the behavior of a
system. The labels represent the protocol steps performed by the agents. Formally,

Label = {send(f,m), read(f,m), create(f,R), end(f) |
m ∈ Term, f ∈ N, R ∈ RoleName}.

The behavior of a protocol P is defined by its traces. A trace is a tuple of a list

of states s0, . . . , sn and a list of labels t1, . . . tn, such that s0
t1−→ s1

t2−→ . . .
tn−→ sn.

In other words, a trace is a derivation starting from state s0 representing one
possible interleaving of protocol executions. The length of the trace, denoted by
|(s0, . . . , sn, t1, . . . , tn)|, is n. Traces are defined by:

Traces = {(s0, . . . , sn, t1, . . . , tn)| s0 . . . sn ∈ State,
t1, . . . tn ∈ Label,
∀1≤i<n si

ti−→ si+1,
s0 = 〈∅, σ, I〉},

where I is the initial adversary knowledge and σ is the initial persistent variable
assignment.

Example 3.13 (Trace). In this example, we explore a trace of the HMNB protocol
in which a reader and a tag have a successful protocol execution. We assume that
0, ID0 ∈ Const. Let σ, σ′, ρ and ρ′ be the following substitutions:

σ = {r 7→ {ID 7→ ID0}, t 7→ {ID 7→ ID0, S 7→ 0}}
σ′ = {r 7→ {ID 7→ h(ID0, nr(1), ID ′ 7→ ID0},

t 7→ {ID 7→ h(ID0, nr(1)), S 7→ 0}}
ρ = {θ 7→ 1,NT 7→ nt(2)}
ρ′ = {θ 7→ 2,NR 7→ nr(1)}

Moreover, let s0 and s10 be states:

s0 = 〈∅, σ, ∅〉
s10 = 〈{(1, r,⊥, ρ), (2, t,⊥, ρ′)}, σ′, {nr(1), h(ID0), nt(2), h(ID0, nt(2))}〉

3.5 Untraceability 29

The following trace describes one interleaving of a reader run and a tag run.

s0
create(1,R)−−−−−−→ s1

create(2,T)−−−−−−→
s2

send(1,nr(1))−−−−−−−→ s3
read(2,nr(1))−−−−−−−→

s4
send(2,(h(ID0),nt(2)))−−−−−−−−−−−−→ s5

read(1,(h(ID0),nt(2)))−−−−−−−−−−−−→
s6

send(1,(h(ID0,nt(2),nt(2)))−−−−−−−−−−−−−−−→ s8
end(1)−−−→

s7
read(2,(h(ID0,nt(2),nt(2)))−−−−−−−−−−−−−−−→ s9

end(2)−−−→ s10

3.5 Untraceability

An RFID system satisfies untraceability if an attacker cannot infer whether different
actions were performed by the same tag or by two different tags. If untraceability is
not satisfied, an attacker can attribute different actions to one (possibly unknown)
tag. By linking one of these actions to a person that carries the tag the attacker
effectively traces that person.

Consider a building access system based on RFID-tagged employee badges. When
a user wants to open the door he swipes his RFID tagged badge across the RFID
reader. After successful execution of a protocol between reader and tag, the door is
unlocked and the user is granted access. The simplest RFID protocol one can think
of is the protocol in which a reader queries a tag and the tag responds with its
identifier. The reader then contacts a database server to verify whether the person
carrying the tag identifier should be granted access and subsequently unlocks the
door. It is essential for the protocol that tag identifiers are secret and not known
to the adversary.

In our analysis of RFID protocols we make several simplifying assumptions. One
of these assumptions is that we consider the communication between the reader
and the database server to be secure. This means that the adversary’s powers are
restricted to the protocol messages exchanged between the tag and the reader. We,
therefore, only model the protocol between the tag and the reader. Also, passive
tags cannot initiate a protocol execution, since they need to draw power from the
messages sent by the reader. For our analysis, we only model communication that
actually carries protocol messages and leave out empty reader messages.

We now present four RFID protocols that can be used in a building access control
system (Figure 3.4). The purpose of these protocols is to build our intuition about
untraceability of RFID protocols. In the next section, we make this intuition more
precise.

The message sequence chart in Figure 3.4a depicts the RFID protocol for building
access described above. The protocol consists of one message in which the RFID
tag transmits its identifier to the RFID reader. The protocol is not untraceable:
any time the tag executes a run of the protocol it broadcasts its identifier. An
eavesdropping adversary can easily recognize tags by eavesdropping on all commu-
nication on the network. If he observes an identifier twice, he can infer that the
same tag was present twice.

In the second protocol (Figure 3.4b), the tag does not send its identifier in plain
text, but rather a cryptographic hash of the identifier. Upon receiving the mes-

30 Chapter 3 Formalization of RFID protocols and untraceability

ID

R

ID

T
ID

(a) Protocol 1

ID

R

ID

T
h(ID)

(b) Protocol 2

ID

R

ID

T

nonce nr
nr

h(ID , nr)

(c) Protocol 3

ID

R

ID

T

nonce nr
nr

nonce nt

nt, h(ID , nr, nt)

(d) Protocol 4

Figure 3.4: Traceable and untraceable protocols

sage, the reader can go through his list of tag identifiers, compute the hash of every
identifier and compare it against the received message. Even though an eavesdrop-
ping attacker can no longer recover the identifier of the tag, the protocol is still
not untraceable. Since we assume cryptographic hash functions to be perfect, we
know that h(ID) = h(ID ′) if and only if ID = ID ′. The attacker can thus observe
that two runs of the protocol were performed by the same tag simply by comparing
messages sent by tags.

The third protocol (Figure 3.4c) adds a reader challenge to the protocol. The
challenge consists of a nonce, freshly generated by the reader. The tag responds
by pairing his identifier and the nonce and returning the cryptographic hash of the
pairing. Due to the reader’s randomness in the tag responses, an eavesdropping
adversary is not able to link two tag responses. However, an adversary can observe
one protocol execution with messages nr and h(ID , nr). If he replays the nonce nr
to another tag, he gets the response h(ID ′, nr). We have h(ID , nr) = h(ID ′, nr) if
and only if ID = ID ′. This gives the attacker a procedure to recognize a tag that
he previously observed: the adversary can trace a tag by repeatedly challenging
tags with the same nonce and comparing the responses.

Finally, the fourth protocol (Figure 3.4d) adds a tag-generated nonce nt to the
response. This ensures that the tag response always contains randomness generated
by the tag. The attacker cannot link any two executions of the tag. Therefore, the
protocol is untraceable.

3.5.1 Defining untraceability

We define untraceability as a trace property of a role in a protocol. We consider
traces in which an agent executes the same role twice. A protocol is untraceable if
for any such trace, there exists a trace that is indistinguishable to the adversary,
in which the role was executed by two different agents. Before presenting the defi-
nition of untraceability, we first define the concepts of linkability, reinterpretation,
and indistinguishability.

For ease of notation we define the agent of a run with run identifier f in system
state S = 〈a, σ, I〉 to be:

3.5 Untraceability 31

agentS(f) = n ≡ ∃a∈A a = (f, n, e, v)

Let (s, t) be a trace. The function role returns the rolename of a given run with
run identifier f :

role(s,t)(f) = R ≡ ∃1≤i≤|(s,t)| ti = create(f,R)

Definition 3.14 (Linkability of runs). Two runs f and f ′ of a trace (s, t) of length
l are linked, denoted by L(s,t)(f, f

′), if and only if they are executed by the same
agent:

L(s,t)(f, f
′) ≡ sl = (A, σ, I) ∧ agentsl(f) = agentsl(f

′)

The notion of reinterpretation has been introduced by Garcia, Hasuo, Pieters, and
Van Rossum [GHPvR05]. We use it to express that subterms of a message can be
substituted by other terms if the adversary is not able to read (or interpret) these
subterms. All terms that the adversary can interpret remain unchanged. Any
reinterpretation must, therefore, satisfy the following requirements. Basic terms
such as agent names, nonces, and constants can be interpreted by the adversary.
Hence, any reinterpretation must map such a term to itself. A ciphertext can be
mapped to another term if (1) the adversary cannot decrypt it, or (2) the adversary
does not know the plaintext and the encryption key. If the adversary can interpret
the structure of a message, the reinterpretation must maintain it. Therefore, in
case a message is a pairing of two other messages, its reinterpretation must be a
pairing of the reinterpretation of the two messages. A hash of a message which
is known to the adversary, must be mapped to the hash of the reinterpretation of
that message. The same condition holds for any message to which a function has
been applied.

Definition 3.15 (Reinterpretation). A map π from terms to terms is called a
reinterpretation under knowledge set K if it and its inverse π−1 satisfy the following
conditions:

π(m) = m if m ∈ Agent ∪ Nonce(N) ∪ Const
π(m) = (π(m1), π(m2)) if m = (m1,m2)
π({m}k) = {π(m)}k if K ` k−1

or K ` m ∧K ` k
π(f(m)) = f(π(m)) if K ` m

or f is not a hash function.

Reinterpretations of labels are defined in the following way:

π(send(f,m)) = send(f, π(m))
π(read(f,m)) = read(f, π(m))
π(create(f,R)) = create(f,R)
π(end(f)) = end(f)

32 Chapter 3 Formalization of RFID protocols and untraceability

K m π(m)
∅ a a
{k−1} {a}k {a}k
{a} {a}k {b}l
∅ ({a}k, h({a}k)) (h(b), h(h(b)))

Example 3.16. Let K ∈ P(Term) be a set of knowledge and m ∈ Term be a
ground term. The following table presents the reinterpretation function on several
examples.

Note that for the first and second example, the reinterpretation is unique, while for
the third and fourth example infinitely many reinterpretations exist. In the fourth
example, the reinterpretation must always satisfy the condition that the second part
of the pair is a hash of the first part of the pair.

We use reinterpretations to define indistinguishability of traces. Two traces are
indistinguishable to the adversary, if the adversary cannot see any meaningful
difference between the two traces, based on the knowledge he has.

Definition 3.17 (Indistinguishability of traces). Let (s, t) and (s′, t′) be traces of
length l and I the adversary knowledge in state sl. Trace (s, t) is indistinguishable
from trace (s′, t′), denoted by (s, t) ∼ (s′, t′), if there is a reinterpretation π under
I, such that π(ti) = t′i for all 1 ≤ i ≤ l.

We can now formally define untraceability. Untraceability is the property that
for every trace of a protocol in which two runs are linked, there is a trace that is
indistinguishable to the adversary in which these two runs are not linked.

Definition 3.18 (Untraceability). A protocol is untraceable with respect to role R
if

∀(s,t)∈Traces
∀f 6=f ′∈N L(s,t)(f, f

′) ∧ role(s,t)(f) = role(s,t)(f
′) = R⇒

∃(s′,t′)∈Traces (s, t) ∼ (s′, t′) ∧ ¬L(s′,t′)(f, f
′).

3.5.2 An untraceable protocol

Feldhofer, Dominikus, and Wolkerstorfer [FDW04] have shown that it is possible to
implement the symmetric cipher AES on an RFID tag. In their paper, they discuss
two simple protocols for unilateral and mutual authentication. These protocols are
based on the ISO/IEC 9798-2 standard [ISO08]. The unilateral authentication pro-
tocol is not untraceable. In this section, we prove that the mutual authentication
protocol is untraceable.

Figure 3.5 shows a graphical representation of the protocol specification. The
protocol assumes that every pair of reader R and tag T shares a unique key kT .
These shared keys are initially not part of the adversary’s knowledge. The reader
initiates the protocol by sending a freshly generated nonce nr to the tag. The
tag generates a nonce nt, encrypts the pair (nr, nt) under the shared key kT , and
sends it to the reader. The reader decrypts the message using the same shared key,

3.5 Untraceability 33

kT
R

kT
T

nonce nr
nr

nonce nt

{nr, nt}kT
{nt, nr}kT

Figure 3.5: An untraceable mutual authentication protocol.

reverses the order of the two nonces, encrypts the message under the shared key,
and sends it to the tag.

Theorem 3.19. The mutual authentication protocol of ISO/IEC 9798-2, depicted
in Figure 3.5, is untraceable with respect to role T .

Proof. We notice first that kT and nt remain secret throughout the protocol exe-
cution. This can be easily verified with an automated tool.

Let (s, t) be a trace with two runs with run identifiers f 6= f ′. We assume that
they are both executions of role T : role(s,t)(f) = role(s,t)(f

′). We consider the case
where f and f ′ were executed by the same agent, i.e. L(s,t)(f, f

′). For every such
trace, there must exist an indistinguishable trace (s′, t′) ∼ (s, t) in which f and f ′

were executed by different agents, i.e. ¬L(s′,t′)(f, f
′).

For ease of notation, we set agentsl(f) = agentsl(f
′) = agents′l(f) = Alice and

agents′l(f
′) = Bob. The general idea of the proof is that the trace (s′, t′) can be

constructed from (s, t) by replacing all occurrences of Alice in run f ′ by Bob. We
make this more precise below and motivate that the adversary cannot distinguish
(s, t) from (s′, t′).

Since we are verifying untraceability for role T , we may assume that the agent
executing T is trusted, i.e. that it executes all read and send events according
to the specification. By definition, there are f ′, i ∈ N such that the trace (s, t)
contains the event where {nr(i), nt(f ′)}kAlice

is sent.

We consider the map π with the following properties:

π({x, nt(f ′)}kAlice
) = {x, nt(f ′)}kBob

for any x,
π({nt(f ′), x}kAlice

) = {nt(f ′), x}kBob
for any x,

π(m) = m elsewhere.

Note that π is a reinterpretation under the adversary’s knowledge, by Defini-
tion 3.15 and secrecy of kT .

Let t′ = π(t). We show that (s′, t′) is a valid trace. The only difference between
t and t′ occurs in messages containing the nonce nt(f ′). By construction, the
changes produce a valid run for Bob while keeping the reader’s run valid. It
follows from the secrecy of nt and kT that any further occurrence of nt(f ′) must
be in {nr(i), nt(f ′)}kBob

or {nt(f ′), nr(i)}kBob
. Since nr(i) is produced by run i of

R, no other run of R will accept the former message. Similarly, since nt(f ′) is
produced by run f ′ of Bob, no other run of Bob will accept the latter message.

34 Chapter 3 Formalization of RFID protocols and untraceability

Finally, for run f we have agentsl(f) = agents′l(f) thus ¬L(s′,t′)(f, f
′).

3.5.3 A traceable protocol

In this section, we revisit the HMNB protocol of our running example. Using our
framework we can show that the protocol is not untraceable.

In the HMNB protocol, the tag’s response depends on the state S of the tag at
the start of the protocol execution. If S = 0 the tag responds with h(ID), nt and
otherwise the tag responds with h(ID , nr, nt), nt. Because the adversary does not
know ID , he can not conclude from the tag’s response in which state the tag was.
He may, however, take advantage of the reader’s ability to distinguish between
the two states. If the tag was in state S = 0 at the beginning of the protocol,
the reader cannot verify whether the value of the nonce nt has changed during
transmission. Thus, an accidental or malicious modification of nt does not result
in a rejection of the tag’s response by the reader. The reader completes its run by
sending the third message of the protocol. If the tag was in state S = 1, the reader
uses nt, its own nonce nr, and ID to compute a hash value and compare it with
the received one. In this case, a modification of nt can be detected and leads to a
rejection of the tag’s response and an early termination of the protocol execution
by the reader.

We exploit this weakness to find a trace that cannot be reinterpreted. Choose two
tags a0 and a1 and create a trace in which a0 is put into state S = 1. The adversary
can do this by challenging a0 with any value and terminating the protocol before
sending the third message. The adversary then performs a man-in-the-middle
attack. He obtains a challenge from the reader and sends it to the tag to obtain
a response. He then replaces the nonce provided by the tag with a different value
and submits the response to the reader. If the reader accepts the response, the tag
was in state S = 0, hence the selected tag is a1. If the reader rejects the response,
the tag was in state S = 1, hence the selected tag is a0. Figure 3.6 depicts the
trace for the rejection case.

ID = ID0, ID
′

r E

ID = ID0, S = 0

a0
0

h(ID0), nt(1)

ID = ID0, S = 1

a0

nr(2)
nr(2)

h(ID0, nt(3), nr(2)), nt(3)
h(ID0, nt(3), nr(2)), 0

reject

Figure 3.6: Attack on HMNB

To prove that the HMNB protocol is not untraceable, it suffices to show one trace
of the protocol in which a tag executes two runs of the protocol. For this trace,

3.6 Related work 35

there must not exist an indistinguishable trace in which the runs are executed by
different agents.

Theorem 3.20. If all tags initially are in state S = 0, then the HMNB protocol
does not satisfy untraceability.

Proof. Let s0 ∈ State be an initial system state in which all tags have value 0
assigned to their state variable S. That is, σai(S) = 0 for all tags ai. The following
trace represents the attack depicted in Figure 3.6.

s0
t0=create(1,T)−−−−−−−−→ s1

t1=read(1,0)−−−−−−−→
s2

t2=send(1,(h(ID0),nt(1)))−−−−−−−−−−−−−−−→ s3
t3=create(2,R)−−−−−−−−→

s4
t4=create(3,T)−−−−−−−−→ s5

t5=send(2,nr(2))−−−−−−−−−→
s6

t6=read(3,nr(2))−−−−−−−−−→ s7
t7=send(3,(h(ID0,nt(3),nr(2)),nt(3)))−−−−−−−−−−−−−−−−−−−−−→

s8
t8=read(2,(h(ID0,nt(3),nr(2)),0))−−−−−−−−−−−−−−−−−−−→ s9

t9=send(2,reject)−−−−−−−−−→
s10

t10=end(2)−−−−−−→ s11
t11=end(3)−−−−−−→ s12

The trace contains two runs of tag a0 with run identifiers 1 and 3. Therefore,
runs 1 and 3 are linked: L(s,t)(1, 3). We need to show that there does not exist a
reinterpretation function π that gives an indistinguishable trace for which runs 1
and 3 are not linked.

Following Definition 3.15, any reinterpretation π has to satisfy π(0) = 0, π(nt(1))
= nt(1), π(nr(2)) = nr(2), π(nt(3)) = nt(3), and π(reject) = reject . Additionally,
for t′7 = send(3, (v, w)) and t′8 = read(2, (x, y)), π must be such that v = x.

For any valid indistinguishable trace (s′, t′), the reader must reject the tag in run
2. Let a1 be the tag executing run 3. By construction, a1 is only rejected in run
2 if its variable S is assigned the value 1. Initially, S is assigned 0 for all tags ai.
The state variable S must, therefore, be changed as a result of a1 executing run 1
of trace (s′, t′). Hence, L(s′,t′)(1, 3) for all valid indistinguishable traces (s′, t′).

Therefore, the HMNB protocol does not satisfy untraceability.

3.6 Related work

Arapinis, Chothia, Ritter, and Ryan [ACRR10] analyze untraceability in the ap-
plied pi calculus. They give definitions for strong unlinkability and weak unlinkabil-
ity. Their definitions concern traces in which two messages from different sessions
were sent by the same agent. For weak unlinkability, for any such trace there must
exist another trace of the system that is indistinguishable to the adversary; in this
other trace, the messages must be sent by different agents. Indistinguishability of
traces is defined as static equivalence of processes [AC06]. Strong unlinkability is
defined as a bisimulation relation on processes. It is satisfied if the process in which
the original protocol can be executed by an arbitrary number of agents is bisimilar
to the process in which an agent never executes the protocol more than once. This
bisimulation relation is implied by observational equivalence in the applied pi cal-
culus and can sometimes be automatically verified using the ProVerif tool [Bla01].
Strong unlinkability is strictly stronger than weak unlinkability. Thus, when ana-
lyzing a protocol for weak unlinkability, it is useful to first verify whether it satisfies

36 Chapter 3 Formalization of RFID protocols and untraceability

strong unlinkability. The absence of attacks on the strong variant implies the weak
variant. However, if strong unlinkability is not satisfied then there does not neces-
sarily exist a practical attack on untraceability of the protocol. Our definition of
untraceability resembles weak unlinkability.

Brusò, Chatzikokolakis, and Den Hartog [BCdH10] define untraceability in a formal
model based on the applied pi calculus. They assign tag interfaces to RFID tags
through which communication with the tags is possible. The essential feature of
the model is that a single tag can have multiple interfaces. A priori, the attacker
cannot discover whether two tag interfaces belong to one tag, or to two different
tags. Their definition of unlinkability requires that the process in which the attacker
communicates with two different interfaces of the same tag is indistinguishable from
the process with two interfaces of two different tags. Two processes are defined to
be indistinguishable if they are observationally equivalent. Due to the choice of
using observational equivalence as a security property and the applied pi calculus
to model the protocols, parts of the protocol analysis can be performed using the
ProVerif tool [Bla01]. The protocol model takes two RFID-specific features into
account: (1) the limitation that RFID tags can only execute one session at a time
and (2) the statefulness of RFID protocols. Both properties are modeled by an
auxiliary channel, acting like a buffer, to store variables.

The notions of reinterpretation (Definition 3.15) and trace indistinguishability
(Definition 3.17) are based on the work by Garcia, Hasuo, Pieters, and Van
Rossum [GHPvR05]. They define a formal framework for the analysis of anony-
mous communication protocols. Central to their work is the concept of anonymity
sets: the set of agents among which a given agent cannot be identified. They give
epistemic logic-based definitions for sender anonymity (the receiver of a message
does not know who sent the message), unlinkability (the sender and receiver of a
message cannot be linked), and plausible deniability (an agent can show that he
did not know that he possessed a message). Finally, they analyze two anonymity
protocols in their framework.

The formal model developed in Sections 3.1 through 3.4 is an extension of the op-
erational semantics for security protocols by Cremers and Mauw [CM05, Cre06b].
Our model is different from their model in several ways:

• In the model by Cremers and Mauw the adversary is a parameter of the
system. Their system state includes a send buffer and a read buffer. The
adversary capabilities are formalized by semantic rules for the adversary that
act on these buffers. For instance, the capability of an adversary to eavesdrop
a certain message is modeled by a rule that moves a message from the send
buffer to the read buffer and adds it to the adversary knowledge. Since we
assume a Dolev–Yao adversary with full power over the network, we do not
have to separate the read buffer and the send buffer. Instead, we model
sending a message by adding it to the adversary knowledge and allow agents
to read any message from the adversary knowledge. The disadvantage of this
approach is that the agent semantics have to be adapted if we want to model
a weaker adversary.

• Cremers and Mauw make a distinction between role terms and run terms
to separate the specification from the execution level. Role terms are trans-

3.7 Conclusion 37

formed to run terms by applying an instantiation function. In our model,
the only difference between the specification and execution level is that at
specification level, terms can contain variables, while at execution level they
cannot. The side-effect of this choice is that it allows protocol specifications
to contain agent names.

• Our model incorporates persistent variables to allow agents to store and up-
date terms that are maintained across different runs. This enables modeling
stateful protocols. As a consequence, we can no longer verify readability of
terms at the syntactic level, but only at the time of execution of the protocol.

• The model by Cremers and Mauw only allows to compose events sequen-
tially. We have extended the model by adding alternative composition and
conditional branching.

• In our model, the sender and receiver of messages are not explicit in the
traces. The reason for this it that in RFID protocols, tags and readers do
not know who their communication partner is at the start of the protocol
execution. Furthermore, for untraceability it is important that the sender of
a message remains secret. To make sender and receiver explicit in the traces,
they can be added to the protocol specification, imitating the Cremers and
Mauw model.

• We do not have explicit create, end, and claim events in the protocol specifi-
cation. Instead, we assume that new runs can always be created and always
be terminated. We have no explicit claim events for the reason that it is not
observable by the adversary that at a certain point in the trace a security
property is satisfied.

3.7 Conclusion

We have developed a formal framework for analyzing RFID protocols. The syntax
allows users to describe a protocol in an unambiguous way. The protocol behavior
can then be systematically derived as described by the semantics. Security prop-
erties such as authentication, secrecy, untraceability, and ownership transfer can
be modeled as requirements on the traces of a protocol.

A protocol is untraceable if for any trace in which the adversary observes the same
tag twice, there is a trace in which two different tags appear. This second trace
should be indistinguishable to the adversary, i.e. the adversary cannot see any
meaningful difference between the two traces. We have formalized untraceability
based on the notion of reinterpretation as introduced by Garcia, Hasuo, Pieters,
and Van Rossum [GHPvR05]. We have then applied our model and definition to
existing RFID protocols. First, we have proven that the mutual authentication
protocol of ISO/IEC 9798-2 [ISO08] is untraceable. Second, we have proven that
the stateful RFID protocol by Ha, Moon, Nieto, and Boyd [HMNB07] is traceable.

4

Untraceability attacks

There are three main complicating factors in the design and verification of un-
traceable RFID protocols. First, untraceability has only relatively recently been
studied. Several (incomparable) definitions of untraceability have been proposed
in literature (see Chapter 5). A protocol proven untraceable in one model, may
thus be traceable in another model. Second, many protocols are designed under
the restriction that an RFID tag is not powerful enough to perform public-key
cryptography. Designing untraceable protocols under this restriction requires non-
standard techniques that may lead to unforeseen flaws. Finally, theoretical results
show that it is impossible to design an efficient symmetric-key protocol that satis-
fies authentication and untraceability based on symmetric keys (see Section 4.7.2).

For these reasons, many RFID protocols in literature have untraceability flaws. In
this chapter, we describe new attacks on the untraceability of a number of RFID
protocols. Based on the attack strategy of the adversary, we classify these attacks
into five categories. These five categories represent the most common attacks on
untraceability. As such, the categorization provides a library of attacks for protocol
designers to refer to, so as to minimize the chance that these flaws reappear in new
protocol proposals.

Note that we do not give a formal description of the attacks in any of the proof
models. Instead, we give a general high-level description of the attacks. Nev-
ertheless, these descriptions are sufficient to reconstruct a formal description of
the attack in any of the proof models and thus formally prove traceability of the
protocols.

4.1 Overview

Perhaps the least complicated type of attacks to carry out in practice is the attribute
acquisition attack (Section 4.2). In such an attack the attacker interacts with
tags and combines the messages to derive a unique attribute for a tag. This
unique attribute serves as an identifier by which the attacker can trace the tag. If
the attacker can derive the unique attribute from the messages of two seemingly
different tags, then he knows that the two tags are actually the same. Frequently,
only a few interactions with a tag are needed to execute the attack. In practice,
an attacker would install one of his rogue readers in a place where he expects to
observe many people carrying RFID tags. He then traces tags by interacting with
them and computing their unique attributes.

In a man-in-the-middle attack (Section 4.3) the attacker positions himself in the
communication channel between the legitimate reader and legitimate tag. He can

39

40 Chapter 4 Untraceability attacks

choose to forward messages, but also selectively block or modify messages. One
additional difficulty in designing untraceable RFID protocols is that the attacker
may have the possibility to observe whether a reader accepts a session with a tag
as valid or not. The attacker can exploit this capability in a man-in-the-middle
attack by modifying a message and then observing whether the tag is accepted
or rejected. Man-in-the-middle attacks are harder to execute than most attribute
acquisition attacks, since the attacker needs to have a simultaneous connection
with a genuine reader and a tag.

Insider attacks (Section 4.4) are a type of attacks that appear in traditional commu-
nication protocols as well as in RFID protocols. In an insider attack, the attacker
is assumed to possess the key material of one or more legitimate RFID tags in
the system. The attacker abuses such an insider tag to trace a tag that he has
not corrupted. RFID systems are usually closed systems, meaning that the adver-
sary does not have access to the key material of any legitimate tag. However, a
sufficiently motivated attacker may be able to insert one of his own tags into the
system or corrupt a legitimate tag to obtain its key material.

Several RFID protocols consist of a set of more than one protocol executable by
the tag. Each of these protocols is meant to achieve one or more goals. If different
protocols share key material, then the attacker may be able to combine messages
from different protocols to trace a tag. We call these attacks multi-protocol attacks,
or compositionality attacks (Section 4.5). Depending on the particular flaw, an
attacker can either interact with just the tag, or with the tag and a reader. In
the former case, it is easy to perform the attack in practice, in the latter case it is
more complicated.

Our last type of attacks results from the frequent use of pseudonyms instead of
unique identifiers for RFID protocols. Pseudonym-based protocols are stateful
and may be subject to pseudonym-based attacks (Section 4.6). Pseudonym-based
attacks exploit the adversary’s knowledge of the state in which a tag is to trace a
tag. An example of this attack is the attack on the HMNB protocol in the previous
chapter. Other untraceability attacks exist if an attacker can desynchronize the
pseudonym value of the reader and tag or exploit a weakness in the pseudonym-
update procedure. Most pseudonym-based attacks are hard to perform in practice
since they require an attacker to control all communication between all legitimate
tags and readers. Therefore, they generally are of limited impact.

4.2 Attribute acquisition attacks

A necessary condition for tag untraceability is that an adversary, who has observed
a particular tag once, must not be able to recognize the tag as being the same tag
in the future. To refine this condition, we call a term that the adversary can derive
from one or more runs of a tag and which identifies the tag to the adversary, a
unique attribute of the tag. The absence of unique attributes derivable by the
adversary is essential for untraceability of the protocol. In case the adversary is
able to compute a unique attribute, then we refer to the adversary’s steps to arrive
at such a term as the attribute acquisition attack.

A simple unique attribute can be found in protocols where the tag’s answer to a

4.2 Attribute acquisition attacks 41

challenge c is merely a function fk(c) of the challenge and a secret (or collection
of secrets) k and does not involve any nonce created by the tag. In this case, c
is under the adversary’s control, k is unique to the tag, and the adversary learns
fk(c) after one round of communication with the tag. Thus for constant c chosen
by the adversary, fk(c) is a unique attribute of the tag whose secret is k.

To prevent traceability in protocols that employ a challenge-response mechanism,
the tag typically includes a nonce in its response. This ensures that when twice
challenged with the same challenge c, the tag will respond with two different values.
Not surprisingly, this does not necessarily prevent unique attributes from existing
in a protocol.

Let c denote a reader challenge, r the tag’s nonce, k the tag’s secret, and fk(c, r)
the tag response to challenge c. Then a unique attribute for that tag exists if (for
n polynomial in the security parameter) the adversary can find challenges c1 . . . cn
and an efficiently computable function g(·) whose output does not depend on the
tag’s nonces r1, . . . rn:

g(c1, fk(c1, r1), . . . , cn, fk(cn, rn)) = g̃k(c1, . . . , cn).

We call g̃k(c1, . . . , cn) the unique attribute.

The existence of an efficiently computable function g implies a straightforward
way to trace tags. The attacker challenges a tag T with c1 . . . cn and records the
responses. He then computes g giving him the unique attribute g̃k(c1, . . . , cn).
In a later stage, the attacker repeats the same procedure for tag T ′ and obtains
g̃′k′(c1, . . . cn). If the two attributes are equal, the attacker knows that T and T ′

were the same tag, otherwise they were different tags.

4.2.1 The Kim, Choi, and Lee protocol

We show a new attribute acquisition attack on the protocol proposed by Kim, Choi,
and Lee [KCL07] depicted in Figure 4.1. The protocol is designed to authenticate
a tag T to a reader R. Each tag has an identifier ID and a key k, both known to
the reader. The reader initiates the protocol by generating a fresh random value
c. Upon receipt of the query c, the tag generates a nonce r. It then computes the
bitwise exclusive-or (⊕) of its identity ID and r as well as the exclusive-or of r and
the cryptographic hash of c and k. The response is then sent to the reader and
verified.

k, ID

R

k, ID

T

nonce c

c

nonce r

ID ⊕ r, h(c, k)⊕ r

Figure 4.1: The Kim, Choi, and Lee protocol

42 Chapter 4 Untraceability attacks

The exclusive-or function has the following algebraic properties. For any terms
a, b, and c and a constant term 0:

a⊕ a = 0 a⊕ b = b⊕ a
a⊕ 0 = a (a⊕ b)⊕ c = a⊕ (b⊕ c) (4.1)

An attribute acquisition attack can be carried out by an attacker that repeat-
edly queries tags with the same challenge a. We represent the tags secret by
the tuple (k, ID) and represent the tag’s response to query c by f(k,ID)(c, r) =
(ID ⊕ r, h(c, k) ⊕ r). We define the function g by g(x, (y, z)) = y ⊕ z. Then
a unique attribute is defined by g(a, f(k,ID)(a, r)) = g(a, (ID ⊕ r, h(a, k) ⊕ r) =
ID⊕r⊕h(a, k)⊕r. By repetitive application of Equations (4.1), we have g̃(k,ID) =
ID ⊕ h(a, k). Finally, for any k′, ID ′ 6= k, ID we have g̃(k,ID)(a) 6= g̃(k′,ID ′)(a).

4.2.2 The EC-RAC protocol

The construction of public-key protocols is interesting for several reasons. Public-
key protocols aim to maintain untraceability against strong attackers. It has been
shown that if the adversary is able to corrupt tags symmetric-key protocols cannot
be untraceable [Vau07].

To maintain untraceability, tags cannot simply send their identity to the reader.
Instead, the reader must learn the identity of the tag from the messages in the
authentication protocol. However, if these messages are encrypted under a sym-
metric key (or if they are hashed) the reader must find the appropriate key by
traversing its table of tag keys and trying each key to interpret the received mes-
sage. If the number of tags in a system is large an attacker could perform timing
attacks against a protocol [EA11]. Public-key protocols prevent this type of at-
tack by enabling scalable tag lookup procedures on the reader’s side. Based on
the previous observation, Damg̊ard and Pedersen have shown that in a system
relying on symmetric keys, either untraceability, security, or scalability has to be
sacrificed [DP08].

EC-RAC is a set of protocols aimed at providing untraceable tag authentica-
tion. The early EC-RAC protocols are among the first published and implemented
asymmetric-key RFID protocols. There are a number of publications describing
the protocols that belong to the EC-RAC protocol family. To distinguish the var-
ious revisions of EC-RAC, we call the original publication by Lee, Batina, and
Verbauwhede EC-RAC I [LBV08]. The first revision, by the same authors, is
called EC-RAC II [LBV09]. The second and third revision are by Lee, Batina,
Singelée, and Verbauwhede, and are called EC-RAC III [LBSV10a] and EC-RAC
IV [LBSV10b] respectively.

EC-RAC I is a challenge-response protocol initiated by the reader. EC-RAC II
through IV are commitment-challenge-response protocols initiated by the tag. In
this section we show a new attribute acquisition attack on EC-RAC I, while in the
next sections we show various types of new attacks on EC-RAC II through IV.

The EC-RAC I protocol (Figure 4.2) is based on a fixed, system-wide elliptic curve
over a finite field. The points P , Y = yP , x1P , x2P on the elliptic curve are
publicly known and the scalar y is only known to the reader. The scalars x1, x2

4.2 Attribute acquisition attacks 43

y, P, x1P, x2P

R

x1, x2, P, Y = yP

T

c ∈R Z
c

c 6= 0

r ∈R Z

T1 := rP

T2 := (r + x1)Y

v := rx1 + cx2

T1, T2, v

find x1P = y−1T2 − T1

(vP − x1T1)c
−1 = x2P

Figure 4.2: EC-RAC.

are unique to each tag and x1 is known to the reader. The elliptic curve is assumed
to have been chosen such that the computational Diffie-Hellman problem is hard.
That is, given only the points xP , yP , and P on the elliptic curve, it is hard to
compute xyP .

In the protocol, the reader challenges the tag with a random number c 6= 0 to which
the tag responds with two points T1 = rP , T2 = (r+x1)Y on the elliptic curve and
a scalar v = rx1+cx2. Using this information, the reader can compute y−1T2−T1 =
x1P to obtain the identity of the tag and then compute (vP − x1T1)c−1 = x2P to
authenticate the tag.

Hence, EC-RAC I is a challenge-response protocol with challenge c and a response
that can be written as f(x1,x2)(c, r) = rP, (r + x1)yP, rx1 + cx2. The points P
and yP are constant and publicly known. To find a unique attribute, the ad-
versary needs to find challenge terms c1, . . . , cn and functions g and g̃ such that
g(c1, f(x1,x2)(c1, r1), . . . , cn, f(x1,x2)(cn, rn)) = g̃(x1,x2)(c1, . . . , cn), where g̃ does not
depend on the tag’s random numbers r1, . . . , rn.

If we write f(x1,x2)(c, r) = T1, T2, v as in the protocol specification, then

g(c, f(x1,x2)(c, r), c, f(x1,x2)(c, r
′)) =

T1 − T ′1
v − v′ = x−1

1 P

depends only on x1. Thus g̃(x1,x2((c, c
′) = x−1

1 P is a unique attribute. Finally, for
any other tag with secrets x′1 and x′2, we have g̃(x1,x2)(c, c

′) 6= g̃(x′1,x
′
2)(c, c

′)

From the definition of the function g, it is now easy to obtain the attribute ac-
quisition attack. The adversary challenges the tag twice with the same value c.
The information received from the tag in the two runs can be used to compute the
term x−1

1 P as follows. Observe that v− v′ = (r1− r′1)x1 and T1− T ′1 = (r1− r′1)P ,
thus, multiplying T1−T ′1 with the inverse of v− v′ modulo the order of the elliptic
curve, the attacker obtains x−1

1 P .

Note that after executing this attack once, it suffices for the adversary to challenge
any given tag only once with the previously used value c to determine whether the
presented tag is equal to the tag identified by x−1

1 P .

44 Chapter 4 Untraceability attacks

A similar attribute acquisition attack was independently found by Bringer, Cha-
banne, and Icart [BCI08]. The authors observe that for any two protocol execu-
tions, the following equations hold:

cv′ − c′v = (cr′ − c′r)x1

cT ′1 − c′T1 = (cr′ − c′r)P

The attacker may then combine these two equations to obtain x−1
1 P and proceed

as described above.

4.3 Man-in-the-middle attacks

In this section, we assume that an attacker can observe whether a protocol exe-
cution was completed successfully. Attackers with this capability are sometimes
called wide and attackers without it narrow [Vau07]. The assumption of wide at-
tackers is reasonable in some settings. Consider, for instance, an RFID system that
is used for building access. In such a system, the fact that a door opens indicates
that the authentication protocol between the tag and the reader was carried out
successfully.

The first man-in-the-middle attack on RFID protocols was on the HB+ protocol
of Juels and Weis [JW05]. The protocol uses the binary inner product and xor
operator to prove knowledge of a key while keeping it secret. The attack by Gilbert,
Robshaw, and Sibert [GRS05] breaks secrecy of a tag’s key by first modifying the
messages exchanged between reader and tag, then observing whether the reader
accepts or rejects the tag, and finally using the observed information to set up and
solve a system of linear equations. Knowledge of the key allows an attacker to
trace tags in the system.

We now study man-in-the-middle attacks in which a wide attacker selectively mod-
ifies messages. Our first attack is a traceability attack on a public-key protocol
and our second attack is on a symmetric-key protocol.

In this section, we show a man-in-the-middle attack on EC-RAC IV by Lee, Batina,
Singelée, and Verbauwhede [LBSV10b]. The attack is also applicable to EC-RAC II
and EC-RAC III.

EC-RAC IV assumes a group of points on an elliptic curve. The publicly known
point P is chosen from a subgroup of prime order of the points on the curve. The
point yP can be considered as the RFID reader’s public key, y being a scalar only
known to the RFID reader. RFID tags store a secret scalar x. The corresponding
public key is xP and is used by the reader to identify a tag.

The protocol follows a commitment-challenge-response structure. It sends out a
random point on the elliptic curve T2 = bP which serves as a commitment. The
RFID reader challenges the tag with a random integer s upon which the tag answers
with a point T3 = (b + h(s)x)Y . The function h(z) in EC-RAC IV denotes the
x-coordinate of the point zP . Since our man-in-the-middle attack does not exploit
any algebraic property of the function h, we simply assume that h is a cryptographic

4.3 Man-in-the-middle attacks 45

hash function. The reader computes (y−1T3 − T2)h(s)−1 which equals xP . The
protocol is given in Figure 4.3.

y

R

x

T

b ∈R Zs ∈R Z

T2 := bP

s

T3 := (b + h(s)x)Y

find xP

Figure 4.3: The EC-RAC IV protocol

The idea of the scheme is that anybody able to produce the correct response
can also compute a particular secret. Thus successful completion of the protocol
constitutes a proof of knowledge for the secret. A moment’s thought shows that
knowledge of the points xY allows an agent to authenticate itself as the tag whose
public key is xP . Thus the intractability of the computational Diffie-Hellman
problem is necessary in order for the schemes to provide tag authentication.

We first show how an attacker can modify the first and third message of any valid
protocol execution without the tag being rejected. The attacker modifies the first
message T2 to T2 + δP and the third message T3 to T3 + δyP . At the end of
the execution, the reader computes xP = y−1(T3 + δyP) − (T2 + δP)h(s)−1. The
right-hand side of the equation equals (y−1T3 + δP − T2 + δP)h(s)−1 = (y−1T3 −
T2)h(s)−1. Thus, for any scalar δ, adding δP to the first message and δyP to the
third message of a protocol execution between a legitimate reader and tag never
leads to a rejection of the tag.

The attacker can trace a tag by eavesdropping on two protocol executions between
a tag and a reader. In these executions he observes the messages T2, s, T3 and
T ′2, s

′, T ′3, where T3 = (b + h(s)x)Y and T ′3 = (b′ + h(s′)x′)Y. In order to decide
whether the two executions were carried out by the same tag, the attacker needs
to be able to decide whether x = x′. We define α and β as follows.

α = h(s)T ′2 + h(s′)T2

= (h(s)b′ + h(s′)b)P
β = h(s)T ′3 − h(s′)T3

= h(s)(b′ + h(s′)x′)Y − h(s′)(b+ sx)Y
= (h(s)b′ + h(s′)b)Y + h(s)h(s′)(x′ − x)Y

(4.2)

It now follows that for s 6= s′, we have yα = β if and only if x = x′.

To find out whether this is the case, i.e. whether the two executions were carried
out by the same tag, the adversary uses a communication between any legitimate
tag and a reader as an oracle, as shown in Figure 4.4. As a man-in-the-middle,
the attacker modifies the first message by adding α to it and the third message by
adding β to it. The reader will accept the tag if and only if yα = β. Hence, the
reader accepts the tag if and only if x = x′. The attacker can use this decision

46 Chapter 4 Untraceability attacks

y, x′′P

S E

Y = yP, x′′

T

b′′ ∈R Zs′′ ∈R Z

T ′′
2 := b′′P

T ′′
2 + α

s′′
s′′

T ′′
3 := (b′′ + h(s′′))x′′)Y

T ′′
3 + β

find x′′P

Figure 4.4: Man-in-the-middle attack on EC-RAC IV

procedure to find out whether any two protocol executions were carried out by the
same tag.

A similar man-in-the-middle attack on the EC-RAC III protocol was found by Fan,
Hermans, and Vercauteren [FHV10].

4.3.1 The Di Pietro and Molva protocol

Di Pietro and Molva [DM07] designed an RFID protocol aimed at identifying and
authenticating a tag efficiently while keeping the tag untraceable. The protocol is
based on a lightweight hash function called dpm.

The majority function M(a, b, c) of three bits a, b, and c is defined by

M(a, b, c) = (a ∧ b) ∨ (a ∧ c) ∨ (b ∧ c).

For any bitstring of size `, where ` is a multiple of 3, the function dpm : {0, 1}` →
{0, 1} is defined as the parity of the majority functions of consecutive bit-triplets.
Its output is therefore one bit.

dpm(x0, . . . x`−1) =

(`/3)−1⊕
i=0

M(x3i, x3i+1, x3i+2).

The protocol assumes that every tag and reader share a key k. The reader initiates
the protocol by sending its name and a random value r0 to the tag. The tag then
generates q random bitstrings ri and computes αi = k ⊕ ri for 1 ≤ i ≤ q. It also
computes V by concatenating dpm(ri) for every random bitstring. Finally, ω is set
to h(k, r0, r1, k). All terms are sent to the reader. The reader can find a particular
tag’s key k with the help of the bitstrings αi and values dpm(ri) by going through
all the keys in its database and iteratively excluding the impossible ones, namely
those for which dpm(k ⊕ αi) 6= dpm(ri). It is expected that each αi reduces the
number of possible keys by approximately one half. At last, the reader uses ω to
uniquely identify the correct key and authenticate the tag. The last message of
the protocol allows the tag to authenticate the reader. The protocol is depicted in
Figure 4.5.

4.3 Man-in-the-middle attacks 47

k

R

k

T

nonce r0

R, r0

nonce r1, . . . , rq

αi := k ⊕ ri

V := dpm(r1), . . . , dpm(rq)

ω := h(k, r0, r1, k)

α1, . . . , αq, V, ω

find k
h(k, r1, k)

Figure 4.5: The Di Pietro and Molva protocol

The bitlength of k and the random numbers is a fixed constant ` which the protocol
designers suggest to be 117. For a system with n tags, the suggested value of q is
2 log n.

In the following we show that over several runs, the protocol leaks 2`
3

bits of k. Let
x = x1x2 · · ·x` be a bit string of length ` and let x̄i denote the complement of the
bit xi. It is easy to see that M(x̄1, x2, x3) = M(x1, x2, x3) if and only if x2 = x3.
Analogous equations hold for the complements of x2 and x3. It follows that

dpm(x̄1, x2, x3, . . .) = dpm(x1, x2, x3, . . .)⇔ x2 = x3, (4.3)

again with analogous equations for any other bit of x.

The adversary can take advantage of property (4.3) as follows. Suppose the ad-
versary intercepts the tag’s message, flips the first bit of α2 = r2 ⊕ k to obtain
α̃2 and forwards the modified message to the reader. If the second and third bit
of r2 are equal, then dpm(k ⊕ α̃2) = dpm(k ⊕ α2) = dpm(r2). In this case, the
reader will still be able to find the correct key k and answer the tag with the third
message of the protocol. However, if the second and third bit of r2 are not equal,
then dpm(k⊕ α̃2) 6= dpm(r2) and the reader will remove the key k from the list of
possible keys. No other key will pass the verification with ω, thus the reader will
not answer with the third message. The adversary can therefore distinguish the
two cases.

It follows that by selectively flipping bits of α2 an adversary may, after several
protocol executions, determine for each consecutive bit triplet of k which bits are
equal to each other. In other words, the adversary may determine the bits of k up
to complements of consecutive bit-triplets.

This information can be used to reduce the complexity of computing all bits of k
to a brute force search of a space whose size is the cubic root of the full key space.
For the parameters of the system suggested by the designers of the protocol, this
brute force search becomes feasible (239 keys).

To break untraceability, the brute force search is not necessary. The probability

48 Chapter 4 Untraceability attacks

that two keys are equal up to complements of consecutive bit-triplets is vanish-
ingly small. This follows from the fact that the shared keys k are chosen uniformly
at random. If we assume that the number of tags n in the system is small com-
pared to 2`, then the probability that for a given tag, there are one or more tags
indistinguishable by the above method is approximately 1 − (1 − 1

22`/3
)n. If we

choose ` = 117 as suggested by the authors and assume that there are n = 216

tags in the system, then the probability to find one or more tags which would be
indistinguishable from a given tag is approximately 2.17 · 10−19.

4.4 Insider attacks

Insider attacks are a major source of security breaches of computer systems. Some
estimates show that as much as 70% - 90% of the security breaches are caused
by insiders [Gol98]. One can think of various scenarios for insider attacks. For
instance, a malicious merchant may want to cheat one of his customers, a disgrun-
tled employee may want to inflict damage on his employer’s assets, or a legitimate
user of a system could be compromised and used in an attack against another
user. The latter is the case when a computer system is infected with malware or
trojan horses and used to attack another, more important, system. Common to all
insider attacks is that the adversary abuses the credentials and knowledge of one
compromised user to violate a particular security goal of another user.

Many cryptographic protocols achieve security in the absence of insider attackers,
but fail to achieve their security goals when insider attackers are present. A well-
known example is the the Needham-Schroeder protocol [NS78], which was first
proven to be secure [BAN89], but later shown to be flawed in the presence of insider
attackers [Low96]. It is therefore not surprising that standard frameworks for
security protocol analysis assume that the adversary controls one or more malicious
users in the system [Low98, Bla01, Cre06b].

To perform an insider attack, the adversary needs the key material stored in one
legitimate tag. Since RFID tags are often used as hardware tokens, the users of
RFID tags usually have no access to the key material. However, one can think of
several practical scenarios for the adversary to acquire the key material:

• The manufacturer of RFID tags may be compromised or malicious.

• RFID tags are often not sufficiently tamper resistant. If the adversary is a
user of the RFID system he can reverse engineer and obtain the key material
of one of his own tags.

4.4.1 The EC-RAC IV protocol

In this section, we show an insider attack on EC-RAC IV based on the flaw de-
scribed in Section 4.3. The flaw allows the adversary to modify the messages
exchanged in a protocol without either of the agents noticing the change. In par-
ticular, the homomorphic properties of the messages allow the adversary to combine
protocol messages into meaningful new messages.

4.4 Insider attacks 49

The man-in-the-middle attack requires the adversary to eavesdrop on two protocol
executions between a tag and a reader. Alternatively, the attacker could query a
tag twice with random s and s′. These protocol executions produce the messages
T2, s, T3 and T ′2, s

′, T ′3, where T3 = (b+ h(s)x)Y and T ′3 = (b′ + h(s′)x′)Y . In order
to decide whether x = x′ we follow Equation (4.2) and set α = (h(s)b′ + h(s′)b)P
and β = (h(s)b′ + h(s′)b)Y + h(s)h(s′)(x′ − x)Y .

The man-in-the-middle attack described in Section 4.3 modifies the messages of
a protocol execution between a legitimate tag and a reader as an oracle. We
stress that such an attack is hard to perform in practice since it requires the
adversary to intercept messages and modify them before they are forwarded to the
communicating partner.

We now assume that the adversary has the key material of one legitimate tag in
the system. We call this tag an insider tag. Using the key material of an insider
tag, the adversary can run the protocol with a legitimate reader. Recall that terms
α and β satisfy the following equation if and only if x = x′.

yα = β (4.4)

Let x′′ be the secret of the insider tag, i.e. the adversary knows x′′. To test whether
Equation (4.4) holds, the adversary sends T ′′2 = α to the reader. The reader
responds with a challenge s′′. The adversary responds with T ′′3 = β + (h(s′′)x′′)Y .
If the reader accepts the tag, the adversary knows that x = x′, otherwise x 6= x′.
Figure 4.6 depicts the protocol flow between the adversary and the reader.

y

R

x′′

A

T2 := α

s′′ ∈R Z
s′′

T3 := β + (h(s′′)x′′)Y

find x′′P

Figure 4.6: Insider attack on EC-RAC IV.

The insider attack is easier to execute than the man-in-the-middle attack in a
setting where the adversary has insider tags. It does not require legitimate protocol
messages to be captured and modified, but merely requires the attacker to interact
with a tag twice, and later once with a legitimate reader.

The man-in-the-middle attack of the previous section can be easily prevented by
introducing a message authentication code (MAC) based on a shared secret. Such
a MAC would take as input the three messages of the protocol. Since the attacker
does not know the shared secret of a legitimate tag, he would not be able to
construct a valid MAC. Therefore, the man-in-the-middle attack would no longer
be successful. The insider attack presented in this section would, however, not be
prevented with this modification.

The messages of the other EC-RAC protocols [LBSV10a, LBV09, LBSV10b], the
BCI protocol [BCI08], and the recently proposed hierarchical ECC-based proto-

50 Chapter 4 Untraceability attacks

col [BSSV11] possess homomorphic properties similar to the EC-RAC IV protocol.
Therefore, an insider attacker can perform an attack along the lines of the attack
described above. The latter two protocols were, however, proven untraceable in a
model that does not assume insider attackers.

4.4.2 Protocols with IND-CCA1 encryption

In this section, we show that IND-CCA1 encryption is not sufficient to prevent
insider attacks. Consider Vaudenay’s protocol [Vau07, HPVP11] depicted in Fig-
ure 4.7. The protocol assumes that every pair of reader and tag share a secret
key1 k. The reader starts the protocol by sending a random challenge c to the tag.
The tag combines the challenge with k and responds with the encryption of c and
k under the public key of the reader. The reader decrypts this message with its
public key and identifies and authenticates the tag based on the plaintext of the
encryption.

k, sk(R)

R

k, pk(R)

T

random c
c

Epk(R)(k, c)

Figure 4.7: RFID protocol with IND-CCA1 encryption

We show that if a homomorphic IND-CCA1 encryption scheme is used, then the
protocol is vulnerable to insider attacks. An encryption scheme is said to be
homomorphic if the elements of the plaintext set and the ciphertext set form a
group with operators ⊗ and ⊕, respectively, so that for any encryption key k
and for any messages m1 and m2 the encryption function {·}k satisfies {m1}k ⊕
{m2}k = {m1 ⊗m2}k. Examples of homomorphic encryption schemes are El-
Gamal [Gam85], DEG [Dam91], “lite” version of the Cramer-Shoup encryption
scheme [CS98, Section 5.4].

Let {m}pk denote a homomorphic IND-CCA1 encryption of message m under key
pk. By homomorphy of the encryption scheme, we have

{k, c}pk(R) ⊕ {k′, c′}pk(R) = {(k, c)⊗ (k′, c′)}pk(R).

To attack the protocol depicted in Figure 4.7, the adversary performs the following
insider attack. Suppose tags T1 and T2 share secret keys k1 and k2 with the reader.
Clearly, T1 and T2 are the same tag if k1 = k2. The attacker queries the two
tags with the same challenge c. The tags return the ciphertexts Epk(R)(k1, c) and
Epk(R)(k2, c), respectively.

By correctness of the protocol, the two observations concern the same tag if and
only if k1 = k2. The adversary can test this by using his insider tag with key kI

1This key represents the identity (ID) and the key (K) of the original proposal [Vau07,
HPVP11].

4.5 Compositionality attacks 51

and executing one protocol run with an RFID reader. Say, the reader’s challenge
is c′′. The adversary encrypts Epk(R)(kI , c

′′) and computes

{k1, c}pk(R) ⊕ {k2, c}−1
pk(R) ⊕ {kI , c′′}pk(R)

= {(k1, c)⊗ (k2, c)
−1 ⊗ (kI , c

′′)}pk(R).

The reader accepts the adversary’s response if k1 = k2 and rejects it otherwise.
If the reader accepts the response, the adversary knows that T1 = T2, otherwise
he knows that T1 6= T2. Thus, the insider attack breaks the untraceability of the
protocol. In the next chapter, we design a protocol based on IND-CCA2 encryption
that resists insider attacks.

4.5 Compositionality attacks

A simple strategy to decrease the design and verification complexity is to construct
protocols from smaller and simpler building blocks. It is then essential, however,
to prove that these building blocks do not break each others’ security properties.
In fact, it is well known [HT96, KSW97, Can00, Can01, ACG+08] that protocols
satisfying a security property when executed in isolation do not necessarily satisfy
the same security property when they are executed in an environment containing
other protocols. In particular, it has been shown that composition of secrecy-
preserving protocols may introduce attacks [Cre06a]. Similar results have been
obtained for the composition of authentication protocols [TH99].

We first demonstrate that the composition of two untraceable protocols is not
necessarily untraceable. We then discuss the significance of this fact for RFID
systems by showing two scenarios in which untraceability would be violated.

Consider the two protocols shown in Figure 4.8. The first protocol (A) is a tag
identification protocol and the second protocol (B) is a tag authentication protocol.
In both protocols we assume that a reader R and a tag T share a secret IDT , not
known to the adversary. The reader initiates the protocol by querying the tag.
Then the tag generates a random number nt and sends its response to the reader.

IDT

R

IDT

T

nonce nt

nt, h(nt, IDT)

(a) Protocol A

IDT

R

IDT

T

nonce nr
nr

nonce nt

nt, h(nt, h(nr, IDT))

(b) Protocol B

Figure 4.8: Protocols untraceable in isolation, not in a common environment.

If h is a cryptographic hash function and IDT is not known to the adversary, each
of the protocols can be shown to be untraceable in isolation. Let x, y, and z be
any terms. For protocol A the following mapping π is a valid reinterpretation.

π(x, h(x, y)) = x, h(x, f) for fresh f ∈ Agent
π(x) = x elsewhere

52 Chapter 4 Untraceability attacks

For protocol B the following mapping π′ is a valid reinterpretation.

π′(x, h(x, h(y, z)) = x, h(x, h(y, f)) for fresh f ∈ Agent
π′(x) = x elsewhere

For any trace (s, t) of protocol A, the trace π((s, t)) is indistinguishable from (s, t).
Similarly, for any trace (s, t) of protocol B, the trace π′((s, t)) is indistinguishable
from (s, t). Furthermore, all runs in the traces π((s, t)) and π′((s, t)) are executed
by different agents. Thus, both protocols are untraceable. In the next section, we
show that in a common environment the protocols do not satisfy untraceability.

Compositionality attack on protocols A and B.

We assume that tags can run both protocol A and protocol B and use the same
identifier IDT for both protocols. An attacker uses protocol A to build a database
of tags he is interested in tracing. By querying a tag T , he obtains nt, h(nt, IDT)
which he stores in the database. In order to test whether a random tag T ′ is equal
to a particular tag T in his database, the attacker uses protocol B. He sends the
challenge nt to the tag. In protocol B the tag answers with nt′, h(nt′, h(nt, IDT ′)).
The attacker can then obviously determine whether IDT = IDT ′ by computing
h(nt′, h(nt, IDT)) and comparing it with h(nt′, h(nt, IDT ′)).

There are at least two scenarios in which this type of attack can become a significant
problem.

Chosen protocol attack. It is not uncommon for smart cards to implement a
suite of protocols in order to host several applications. Therefore it is plausi-
ble that in the future RFID tags will host an implementation of several proto-
cols or even protocol versions. Additionally, in the RFID setting, ownership
transfer systems (Chapter 7) are frequently constructed by implementing
several protocols on the RFID tag. In view of the compositionality attack,
however, it is obvious that a tag which implements protocols A and B does
not provide untraceability, in spite of the fact that both protocol A and B
are untraceable in isolation.

Protocol revision attack. Consider an RFID-based system where a large num-
ber of RFID tags implementing protocol A have been deployed. Suppose
the RFID tag’s IDT value is linked to a particular customer in any of sev-
eral participating companies’ databases. Since protocol A is untraceable, the
RFID tag identifies the customer to an authorized entity, such as a retailer,
a transportation company, or the local post office, but not to any entity the
customer has not signed up with.

At a certain point in time it is decided that for future applications the identifi-
cation protocol’s security does not suffice, since its messages can be replayed.
Protocol B is thus developed for applications which need to authenticate an
RFID tag. To avoid the chosen protocol attack, customers will be provided
with new RFID tags implementing protocol B, but not protocol A, and their
old tags will be destroyed. For convenience and in order not having to update
all the customer entries in all distributed databases, the new tags will use

4.5 Compositionality attacks 53

the same credentials as the old tags. In particular, the tag identity commu-
nicated by a customer’s RFID tag remains the same for each customer. This
way, each retailer merely needs to update the firmware of its RFID readers
to communicate using protocol B.

The compositionality attack described above, however, still applies. Anybody
interested in tracing customers merely needs to be near a customer’s tag once
before the customer’s RFID tag is replaced. This suffices to record the tag’s
protocol Amessage. Long after the transition to new tags has been completed
and all protocol A tags are destroyed, the message recorded from protocol A
can still be used to test whether a tag implementing protocol B belongs to
the previously observed customer.

4.5.1 The EC-RAC II protocols

The protocols in Figure 4.8 are specially crafted protocols, designed to show that
untraceability is not a safely composable property and to illustrate the principle
of using one protocol as an oracle to attack another protocol. In this section, we
consider the protocols comprising EC-RAC II, proposed by Lee, Batina, and Ver-
bauwhede [LBV09]. We use the same principle to show that some of the protocol
compositions do not satisfy untraceability.

EC-RAC II consists of six protocols which are built from smaller building blocks.
We only consider the first and fourth protocol of this set. The first building block,
which we call protocol π1, is identical to the first protocol in the set (see Fig-
ure 4.9a). A second building block, which we call protocol π2, is the server authen-
tication protocol shown in Figure 4.9b. We restrict our analysis to Protocol 4 of
EC-RAC II, which is a composition of π1 and π2.

y

R

x

T

b ∈R Zs ∈R Z

T2 := bP

s

T3 := (b + sx)Y

find xP

(a) Protocol π1

y

R

x

T

a ∈R Z
T1 := aP

T1 is valid

S1 := yT1

aY = S1

(b) Protocol π2

Figure 4.9: Building blocks of EC-RAC II

The protocols in EC-RAC II assume a group of the points on an elliptic curve. The
publicly known point P is chosen from a subgroup of prime order of the points
on the curve. The point yP can be considered as the RFID reader’s public key, y
being a scalar only known to the RFID reader. RFID tags store a secret scalar x.
The corresponding public key is xP and is used by the reader to identify a tag.

Protocol π1 follows a commitment-challenge-response structure. The tag begins
by sending out a random point on the elliptic curve T2 = bP which serves as

54 Chapter 4 Untraceability attacks

a commitment. The RFID reader challenges the tag with a random integer
s upon which the tag answers with a point T3 = (b + sx)Y . The reader
computes (y−1T3−T2)s−1 which equals xP . The idea of such schemes is that
anybody able to produce the correct response can also compute a particular
secret. Thus successful completion of the protocol constitutes a proof of
knowledge for the secret. Knowledge of the points xY allows an agent to
authenticate itself as the tag whose public key is xP .

Protocol π2 is designed to provide the tag with assurance of the authenticity of
the reader. The tag initiates the protocol by challenging the reader with a
random point T1 = aP . The reader verifies whether the point is indeed a
valid point on the elliptic curve of the same order as P . In order to prove
knowledge of y, the reader responds with the scalar multiplication of y and
T1. The tag can verify the authenticity of the reader by verifying whether
the received value is equal to aY .

Protocol 4 (Figure 4.10) is a composition of protocol π1 and π2. The first (and
second) message is a concatenation of the first (and second) messages of π1

and π2. The third message is identical to the third message of protocol π1.
The protocol is claimed to provide tag authentication, reader authentication,
and untraceability.

y

R

x

T

s ∈R Z a, b ∈R Z
T1 := aP, T2 := bP

T1 is valid

S1 := yT1, s

aY = S1

T3 := (b + sx)Y

find xP

Figure 4.10: Protocol 4 of EC-RAC II

Untraceability attack

We show that there is a flaw in protocol 4 for which both building blocks of the
protocol are used. That is, we use the challenge-response loop of protocol π2 as an
oracle for attacking the untraceability of protocol π1.

The particular computation the oracle performs for the adversary is the multipli-
cation of any nonzero point X by the reader’s secret y. In the following we write
this loop oracle as the function O(X) = yX. To use the loop O in protocol 4 for
this purpose, the adversary sends a nonzero point T1 = X, along with a random
point T2 to the reader. The reader replies with a random s and yT1 = yX, the
scalar multiplication of the reader’s secret key y and the point X. The adversary
then simply drops the connection to the reader, aborting the protocol.

4.6 Pseudonym-based attacks 55

Consider the messages bP , s, (b + sx)Y an attacker learns from protocol 4 by
eavesdropping on a communication between an RFID reader and a tag. In order
to trace the tag, the attacker needs to be able to decide whether a tag presented
to him is the same as the one he eavesdropped on earlier. By eavesdropping on
another communication of a tag and reader (or by querying a tag himself) the
attacker learns b′P , s′, (b′ + s′x′)Y . He then computes

s(b′ + s′x′)Y − s′(b+ sx)Y ,

which can be rearranged as

(sb′ − s′b)Y + ss′(x′ − x)Y . (4.5)

For s, s′ 6= 0, the term in (4.5) is equal to (sb′− s′b)Y if and only if x = x′, that is,
if the tag being queried by the attacker later is the same tag as the one that was
observed earlier. The attacker uses the oracle to decide whether this is the case or
not by querying it with sb′P−s′bP : O(sb′P−s′bP) = O((sb′−s′b)P) = (sb′−s′b)Y .
This equals the term in (4.5) if and only if the tag has been observed before. Thus,
protocol 4 of EC-RAC II is not untraceable. It is worth noting that the attack only
requires two eavesdropped sessions between a reader and a tag and one interaction
with the reader. Alternatively, an attacker could twice query a tag and then have
one interaction with a genuine reader.

The attack is a typical compositionality attack. It cannot be executed on either
of the protocols π or π′. However, if π and π′ are combined into protocol 4, the
attacker has an efficient method for tracing tags.

4.6 Pseudonym-based attacks

One of the necessary conditions for untraceability is the ability for a tag to generate
randomness. Without randomness in the tag’s messages, the adversary can deduce
whether messages were sent by the same tag. Since it is not always possible to
implement a (pseudo) random number generator on a tag, protocol designers have
tried to design protocols based on pseudonyms. Rather than using their identifier,
tags use a pseudonym derived from their identifier in the protocol execution. After
the successful execution of the protocol, both tag and reader update the pseudonym
to a new value.

Pseudonym-based protocols are stateful since tags have a temporary identifier that
is repeatedly updated. This opens the possibility for several types of untraceability
attacks:

• State-discovery attacks: In stateful protocols, tags can be in different
states. For instance, a tag can keep track of how many times it has been
queried by a reader since the last pseudonym update. Depending on which
state it is in, tags can respond differently to challenges. If this is the case,
then the protocol must ensure that the adversary cannot discover in which
state the tag is based on the tag response. If an adversary can discover tag

56 Chapter 4 Untraceability attacks

states, then he can attack the untraceability of one tag as follows. He first
forces all tags to be in the same state. Then he chooses one tag T that he is
interested in tracing and puts that tag in a different state. In a later stage,
the adversary can recognize the one tag that is in a different state as tag
T . The HMNB protocol covered in the previous chapter is a protocol that is
vulnerable to this type of state-discovery attacks.

• Pseudonym-update attacks: Sometimes, pseudonym-based protocols are
designed to satisfy a property that is weaker than untraceability. The ad-
versary is not allowed to recognize a previously observed tag if between the
two observations, the tag has communicated with a legitimate reader and has
updated its pseudonym. We call this security property serial untraceability.
Serial untraceability is strictly weaker than untraceability: any untraceable
protocol is also serially untraceable, but not vice versa.

Frequently, pseudonyms are updated by applying a function to the previous
pseudonym and some terms shared between the reader and the tag. In some
cases, the pseudonym update procedure is weak in the sense that the adver-
sary can attribute messages from before and after the update to the same
tag. In the next section, we show an example of a protocol in which the
attacker can adapt his challenges across pseudonym-updates to let the tag
output the same unique attribute.

• Desynchronization-based attacks: If both tag and reader carry out an
update procedure for the pseudonym, then the protocol must ensure that
both agents always carry out the same update. Tags and readers executing
a protocol that does not satisfy this property can be desynchronized from
one another, rendering future successful protocol execution impossible. We
call protocols that do not suffer from this type of flaw desynchronization
resistant and we formally define this property in Chapter 7. A side-effect of a
desynchronization flaw is that an attacker can trace a tag by desynchronizing
it from the reader. A desynchronized tag is always rejected by the reader.
Thus, if the adversary can observe whether tags are accepted or rejected he
can trace desynchronized tags. A simple strategy to trace a single tag T is to
desynchronize it from the reader and to later eavesdrop on all communication
between readers and tags. Assuming that the attacker did not desynchronize
any other tag, a protocol execution that fails indicates that tag T was present.
We show a desynchronization attack in Section 7.4.

4.6.1 Pseudonym-update attacks: The Li and Ding protocol

Li and Ding [LD07] proposed a pseudonym-based RFID protocol that is meant
to provide serial untraceability. We call the protocol the LD protocol. The LD
protocol was designed to be a mutual authentication protocol for re-writable RFID
tags for supply chains. In the context of the LD protocol, a supply chain is assumed
to consist of a predetermined and ordered sequence of partners, each of which is
represented by a reader. Every such reader Ri contains its own secret ki as well as
the secret ki+1 of the next reader. Additionally, every reader stores the identity c of
every tag it may authenticate. Every tag T contains a pseudonym α representing

4.6 Pseudonym-based attacks 57

its current temporary identity. The value of α is equal to c ⊕ ki where ki is the
secret of some reader Ri currently allowed to identify and authenticate the tag.

The LD protocol is a challenge-response based protocol. The reader Ri challenges
tag T with a nonce r. The tag calculates the xor of its current secret α and
challenge r and responds with the hash of this value. The reader considers the
tag authentic if it finds a secret c for which h(c ⊕ r ⊕ ki) is equal to the received
response. The reader may then stop the protocol execution giving it the possibility
to authenticate the tag again in a future communication session. Alternatively, the
reader may send the update a = ki⊕ki+1, accompanied by b = h(a⊕ c⊕ki) to the
tag. The tag then verifies that b = h(a⊕ α) and updates its secret α by replacing
it with the xor of a and α. In doing this, ownership of tag T is transferred from
reader Ri to reader Ri+1. The secret c can be understood as the identifier of the
tag, while c ⊕ ki is the i-th pseudonym of the tag. The protocol is depicted as a
message sequence chart in Figure 4.11.

c, ki, ki+1

Ri

α = c⊕ ki
T

nonce r

r

h(r ⊕ α)

a := ki ⊕ ki+1

b := h(a⊕ c⊕ ki)

a, b

if b = h(a⊕ α)
then α := α⊕ a

Figure 4.11: The Li and Ding protocol.

The LD protocol has not been designed to be untraceable, but merely serially
untraceable2. Indeed, the fact that a tag does not introduce any randomness
in its response to a reader’s query implies that the tag is traceable between key
updates. In the following we show, however, that the protocol does not provide
serial untraceability either by exhibiting an attack on this property.

To show that the protocol does not satisfy serial untraceability, it suffices to exhibit
a scenario in which the adversary recognizes a previously observed tag after the
tag has updated its secret α.

By eavesdropping on a valid authentication session between a tag and a reader,
the adversary learns r, h(r ⊕ α), a, and b. At the end of its run, the tag updates
its secret α by replacing it with α ⊕ a. The adversary can now challenge the tag
with r′ = r ⊕ a, to which the tag responds with h(r′ ⊕ α′). By a simple algebraic
property of xor given in Equation (4.1), the response is equal to the previously
observed one:

h(r′ ⊕ α′) = h(r ⊕ a⊕ α⊕ a) = h(r ⊕ α). (4.6)

2Serial untraceability is called unlinkability by Li and Ding [LD07].

58 Chapter 4 Untraceability attacks

c, ki, ki+1

Ri

α = c⊕ ki
T E

nonce r

r

h(r ⊕ α)

a := ki ⊕ ki+1

b := h(a⊕ c⊕ ki)

a, b

α := α⊕ a

r ⊕ a

h(r ⊕ α)

Figure 4.12: Attack on the LD protocol

The attack is depicted in Figure 4.12.

4.7 Related work

4.7.1 Practical attacks

There exist several practical attacks on RFID protocols. Most attacks focus on
retrieving cryptographic keys from an RFID tag. These keys can then be used to
break authentication.

One of the most widely used RFID tags is the MIFARE classic designed by NXP.
The tags are mainly used in payment for public transportation and access control
for buildings. The MIFARE protocol relies on the CRYPTO1 cipher of which the
design was kept secret. Nohl and Plotz partially reverse engineered CRYPTO1
through hardware analysis. Garcia, De Koning Gans, Muijrers, Van Rossum, Ver-
dult, Whichers Schreur, and Jacobs [GdKGM+08] showed an attack on the protocol
that requires an attacker to eavesdrop on two protocol executions between a tag
and a reader. Garcia, Van Rossum, Verdult, and Wichers Schreur [GvRVS09] later
showed that the cryptographic keys can be recovered if an attacker is only given
access to the tag for a short period of time.

SecureMemory, CryptoMemory, and CryptoRF are chips that belongs to the Atmel
product family. They are used in smart cards (e.g. access cards and loyalty cards)
and embedded in hardware (e.g. print cartridges and set top boxes). SecureMemory
and CryptoMemory have a contact interface and CryptoRF has a wireless interface.
Their design is based on a proprietary cipher. Garcia, Van Rossum, Verdult, and
Wichers Schreur [GvRVS10] reverse engineered the cipher. They have also shown
practical attacks that can be executed by an eavesdropping adversary.

Since 2004, many nations have been issuing e-passports with RFID tags embedded
in them. Chothia and Smirnov [CS10] demonstrated that the RFID protocol im-
plemented for basic access control is traceable. The protocol is initiated by a tag
sending a nonce to the reader. The reader then responds with an encryption and

4.7 Related work 59

a MAC of that encryption. The MAC uses a shared secret between the e-passport
and the reader as key. The tag first verifies the MAC and then the encryption.
If one of these verifications fails, the tag immediately halts and outputs an error
message. The attacker can distinguish the two failures by measuring the time it
takes the tag to output the error message: a quick response means that the MAC
verification failed and a slow response means that the MAC verification succeeded
and the verification of the encryption failed. The attack by Chothia and Smirnov
works as follows. An attacker eavesdrops and records a valid reader-to-tag mes-
sage. It later replays this message to the tag. If a quick response follows, the
MAC verification succeeded and, therefore, the tag is the same as the one of the
eavesdropped message. If a slow response follows the tag is different.

KeeLoq IFF (identify friend or foe) is an RFID protocol that is used in wireless
car keys. The protocol is initiated by the reader by sending a random challenge
to the tag. The tag encrypts the message with the KeeLoq cipher under a 64-bit
key shared with the reader. Bogdanov [Bog07] and Indesteege, Keller, Dunkelman,
Biham, and Preneel [IKD+08] have shown practical attacks on the KeeLoq cipher
if the adversary has access to an RFID tag for an extended period of time.

4.7.2 Impossibility results

Damg̊ard and Pedersen [DP08] prove an interesting result concerning untraceabil-
ity and authentication of symmetric-key RFID protocols. Their adversary model
essentially allows corruption of all tags except the one that the adversary wants to
trace3. They prove that if a protocol is sound and complete4, there cannot be an
efficient reader lookup procedure. In particular, the reader has to access the keys
of all tags to find out with which tag he is communicating. The main idea behind
the proof is the intuition that there can only be an efficient lookup procedure if the
reader knows in advance which tag he is communicating with. If that were the case
then the adversary would also know this leading to an attack on untraceability.

The model used to prove the result defines untraceability as the ability to distin-
guish two non-corrupted tags. One of those tags is chosen at random and called
the target tag. The adversary breaks untraceability if he can guess with non-
negligible probability which of the tags was chosen. The proof starts by showing
that if keys are independently assigned to tags, the reader cannot determine if it
is communicating with a tag unless it actually has to access the key for that tag.
The adversary uses the following strategy to break untraceability. He queries the
target tag and performs the reader lookup procedure himself. If he needs access
to the key material of a tag he corrupts that tag. If one of the two non-corrupted
tags’ keys is required, he guesses that that tag is the target tag.

3It thus corresponds to our notion of insider attackers (see next chapter).
4Intuitively, a protocol is complete if legitimate tags are always accepted by the reader and

sound if illegitimate tags are never accepted by the reader. Formal definitions for both properties
will be treated in the next chapter.

60 Chapter 4 Untraceability attacks

4.8 Conclusion

There are various reasons why RFID protocols fail to satisfy their untraceability
requirement. We have identified five categories of untraceability flaws. In an
attribute acquisition attack the attacker interacts with tags and reader to derive
a unique attribute for that tag. Man-in-the-middle attacks take advantage of
the fact that in RFID protocols the attacker may have the possibility to observe
whether a reader accepts a session with the tag as valid or not. Insider attacks
requires a laboratory setting so that the attacker can obtain the key material
of one tag. He then uses this key material to trace other tags. Compositionality
attacks take advantage of the fact that several protocols use the same key material.
The messages of one protocol are used to break the security property of another
protocol. Finally, pseudonym-based attacks exploit the attacker’s knowledge of
the state of a tag to break untraceability. For each of the five categories, we have
shown one or more new attacks on RFID protocols proposed in literature.

5

Untraceability proof models

In the previous chapter we have seen that for various reasons, designing untrace-
able protocols is not trivial. Among these reasons are the resource limitation of
RFID tags and theoretical results of impossibility showing trade-offs between ef-
ficiency, soundness, and untraceability of an RFID protocol. Another reason for
the abundance of flawed protocols is the absence of a common definition of un-
traceability. Intuitively, untraceability is defined as the inability of an attacker to
recognize an RFID tag with which he has previously communicated. However, the
formalization of this intuition is tricky and has been carried out in different ways.
A protocol may thus be considered untraceable by one definition, yet traceable by
another.

To verify whether a communication protocol satisfies a security property, such as
untraceability, one creates a model which specifies what powers an adversary is
given, how the adversary interacts with his environment, and what the definition
of the security property within the model is. Proving a protocol correct in such a
model should guarantee that a real-world attacker with equal powers is not able
to invalidate the modeled security property.

There are two types of models to prove cryptographic protocols secure. The sym-
bolic protocol analysis approach considers protocol messages on a high abstraction
level and misses implementation details, but is therefore amenable to automation.
The model designed in Chapter 3 is an example of the symbolic protocol analysis
approach. The computational approach defines the security of a protocol by means
of a game played by an adversary. A protocol is secure if the adversary cannot win
the game. The standard way of proving security of a protocol is by reducing the
problem of winning the game to solving a mathematically hard problem. That is,
one proves that any adversary that can win the game can be used as a subroutine
of an algorithm that can solve a problem that is known to be hard. Compared
to the symbolic protocol analysis approach, the computational approach is more
difficult and prone to error due to the necessity of manual proofs. However, it
considers more implementation details and is therefore more widely applicable.

In this chapter we investigate computational proof models for untraceability. In
particular, the chapter is separated into the following four parts.

• Computational proof models for untraceability separate into two categories.
Indistinguishability-based definitions define untraceability as the inability of
the attacker to distinguish two tags. Unpredictability-based definitions re-
quire the adversary to be unable to distinguish the behavior from something
random. We show that two unpredictability-based proof models [HMZH08,
NSMSN08] do not coincide with the intuitive notion of untraceability.

61

62 Chapter 5 Untraceability proof models

• Vaudenay [Vau07] proposed an indistinguishability-based model with 8 dif-
ferent classes of adversarial powers. We show that insider attackers cannot
be naturally represented in the model and extend the model with the class of
insider attackers. We then show that this is a non-empty class of adversaries
by proving separation with the other classes in the model.

• Ng, Susilo, Mu, and Safavi-Naini [NSMSN08] suggested simplifications to
the model by Vaudenay. They claimed that under certain assumptions, some
of the adversary classes collapse and become identical. We show that these
simplifications are incorrect. To build a formally sound argument, we first
show a construction that turns a three-message ping-pong protocol π into a
protocol ρ that satisfies authentication while maintaining untraceability. We
then apply this construction to a protocol from literature to show that the
claims by Ng et al. are incorrect.

• Finally, we design a provably untraceable and authenticating RFID protocol
exclusively based on elliptic-curve operations.

5.1 Computational proof models

The first formal proof model for location privacy in the RFID setting is due to
Avoine [Avo05]. In Avoine’s model the adversary is a probabilistic polynomially-
bounded Turing machine (PPTM), which interacts with RFID tags and readers
through oracles. There is an oracle for communication with the reader, an oracle
for communication with tags, and an oracle that gives the adversary access only
to the messages sent from a reader to the tag. The last oracle is motivated by the
fact that in practice eavesdropping on reader-to-tag messages is much easier than
on tag-to-reader messages.

Finally, there is an oracle modeling the physical compromise of a tag by giving the
attacker access to the internal state of the tag. After it is queried, the adversary
is not allowed to further query the other oracles. The strength of the adversary
is modeled by selecting a subset of the available oracles. Untraceability is defined
through an experiment in which the adversary is first given access to a target tag.
Then the adversary is given access to two tags, of which one is the target tag. The
adversary wins if he correctly guesses which of the two tags is the target tag. The
protocol is said to be untraceable if the adversary has no non-negligible advantage
of correctly guessing the target tag compared to random guesses. Avoine sepa-
rates untraceability into existential and universal untraceability. An existentially
untraceable protocol allows the adversary to trace a tag for a restricted period of
time, while a universally untraceable protocol does not.

Juels and Weis [JW09] extend Avoine’s model by providing a slightly stronger defi-
nition of untraceability. In their proposal, tags and readers are probabilistic Turing
machines modeled as ideal functionalities resembling the equally named interactive
Turing machines in the universal composability paradigm by Canetti [Can01]. The
tag and reader functionalities each have several interfaces which can be addressed
by sending a particular message to the functionality. The adversary has access to
these interfaces and controls the channel between all the functionalities. Untrace-

5.1 Computational proof models 63

ability (called RFID privacy in [JW09]) is defined through a privacy experiment
in which the adversary may interact with all tag functionalities and may compro-
mise all but two tag functionalities. Two of the uncompromised tag functionalities
are selected by the adversary. One of them, say T , is chosen at random and the
adversary’s advantage in guessing which functionality was chosen decides whether
the protocol satisfies the privacy property. In order to make a guess about T , the
adversary is permitted to interact with T . Additionally, the adversary is permitted
to interact with and compromise all but the two selected tag functionalities in the
system’s environment. It is due to this last fact that the Juels–Weis adversary is
stronger than Avoine’s adversary.

Vaudenay [Vau07] proposes a more flexible, hierarchical model for location privacy.
His model captures eight classes of adversary capabilities ranging over four different
types of tag corruption and two modes of observation. An adversary is a PPTM
whose strength is defined by the set of oracles it is allowed to query. A weak
adversary is never allowed to corrupt a tag, that is, he may never query the corrupt
oracle. A forward private adversary may corrupt a tag at the end of the attack, a
destructive adversary may corrupt a tag at any time, which leads to the destruction
of the tag, that is, the adversary may no longer interact with the tag. A strong
adversary may corrupt a tag at any time without destroying it. Corresponding
to the two modes of observation, an adversary is called wide if he may observe
whether the protocol ended successfully, and narrow else. Since the four types of
corruption are orthogonal to the narrow/wide separation, eight different adversarial
classes are considered. Privacy is defined by comparing the adversary to a special
adversary which makes no use of protocol messages, as follows. An adversary
is called blinded if he is not allowed to communicate with tags and reader. An
adversary is trivial if there exists a blinded adversary which essentially performs
equally well at guessing a tag’s identity. More precisely, the trivial adversary has an
at most negligible advantage of guessing a tag’s ID over the blinded adversary. A
protocol is P -private, where P is one of the eight adversary classes, if all adversaries
that belong to that class are trivial. We give a more elaborate description of the
model in Section 5.3.1. Since it may corrupt tags, the Juels-Weis adversary is
stronger than the wide-weak adversary of Vaudenay. The Juels-Weis adversary is
weaker than the wide-strong adversary, since the wide-strong adversary may even
corrupt the target tag. Paise and Vaudenay [PV08] extended the model with the
notion of reader authentication.

Ng, Susilo, Mu, and Savavi-Naini [NSMSN08] extend Vaudenay’s work by showing
that under certain assumptions, the eight adversary classes can be reduced to
three. Their first assumption is that authentication protocols do not produce
“false-negatives”. The second assumption is that tags do not share key material. In
Section 5.4 we invalidate the results by Ng et al. by showing that both assumptions
are unrealistic and do not hold in the general case.

Ng, Susilo, Mu and Safavi-Naini [NSMSN09] extended their earlier work by cate-
gorizing different types of symmetric key protocols. They argue that none of the
categories can achieve narrow-forward and wide-weak privacy simultaneously. As
a result no symmetric key protocol can be wide-forward private.

64 Chapter 5 Untraceability proof models

5.2 Unpredictability-based proof models

Computational proof models typically define untraceability as the ability of the
attacker to distinguish a target tag from some other functionality. Ma, Li, Deng,
and Li [MLDL09] suggest a classification of computational proof models for un-
traceability in two classes. Their separation is based on the adversary’s goal in the
experiment of the proof model.

• In Indistinguishability-based proof models the adversary wins the experiment
if he can distinguish the target tag from some other tag. The main idea is
that if the attacker cannot observe any difference between the messages of
the target tag and some other tag, then he cannot trace the target tag. The
proof models discussed in the previous section are all considered to belong to
this class. The formal-languages based model of Chapter 3 follows the same
approach.

• In Unpredictability-based proof models the adversary wins the experiment if
he can distinguish the target tag from something random. The main idea is
that if the attacker cannot predict the messages of the target tag, then he
cannot trace it. The proof models by Ha, Moon, Zhou, and Ha [HMZH08],
Ma, Li, Deng, and Li [MLDL09], and Lai, Deng, and Li [LDL10] belong to
this class.

In this section, we consider the unpredictability-based proof models by Ha et al.
and Ma et al. In particular, we construct protocols that are intuitively (and by
all indistinguishability-based models) considered untraceable, but are traceable in
these unpredictability-based models. We also construct protocols that are intu-
itively (and by all indistinguishability-based models) considered traceable, but are
untraceable in these unpredictability-based models.

Untraceability is called differently depending on the authors of papers. Since our
goal is to compare different proof models, we use the terminology originally used
by the authors, whenever possible.

5.2.1 The model by Ha, Moon, Zhou, and Ha

We briefly outline the unpredictability-based proof model of Ha, Moon, Zhou, and
Ha. The reader is referred to the original paper [HMZH08] for full details. The
HMZH model defines two attack games: one for indistinguishability and one for
forward secrecy. We restrict our analysis to the authors’ definition of weak location
privacy, allowing us to only focus on the indistinguishability game. However,
similar results can be obtained when considering the authors’ notion of strong
location privacy.

The indistinguishability attack game consists of three phases. In the initialization
phase, tags are created and the RFID system’s database is populated. In the
learning phase, the adversary may, depending on his capabilities, query a set of
oracles allowing him to interact with tags and database. In the challenge phase, the
adversary chooses a target tag T and may again query a set of oracles. Additionally,

5.2 Unpredictability-based proof models 65

ID

R

ID

T
Query

c

c

Figure 5.1: Constant-response protocol

he may query the reveal -oracle that reveals the contents of the tag for every tag
except T . At the end of the challenge phase, the adversary calls the test-oracle.
The test oracle tosses a fair coin b.

• If b = 1: the message that T would send after being queried is given to the
adversary.

• If b = 0: a random value of the same bit length as T ’s messages is given to
the adversary.

It is then the adversary’s task to guess the value of b. The adversary wins the
game if his guess is correct.

Note that the test oracle does not provide a full transcript of the protocol execution
between the reader and the tag, but only a random message or the message the
tag would send to the reader.

The protocol is defined to be weakly location private if the adversary does not have
a non-negligible advantage of winning the indistinguishability game.

Constant-response protocol

Our first example is a protocol that is intuitively and by the notions of [Avo05,
Vau07, JW09] and our definition in Section 3.5 untraceable, but which can be
proven not to be weak location private in the HMZH model.

The protocol description is as follows. The reader R and tag T share a secret ID .
The term c is a public, system-wide constant. The protocol (Figure 5.1) starts
by R querying T for a response. The tag T responds with the constant c, after
which R sends c back to the tag. We emphasize that every tag responds with the
same constant c. For simplicity, we omit the communication between reader and
database, since it is assumed to be secure.

The protocol is intuitively untraceable since every tag responds with the same
message. In fact, the tags in this protocol could even be identically built and do
not need to have an ID . Thus, regardless of his behavior, it is not possible for the
adversary to recognize a tag he previously observed.

It is easy to give a proof for untraceability in any of the proof models cited above.

We now use the HMZH model to prove that the protocol is not location private.

Lemma 5.1. The constant-response protocol (Figure 5.1) does not satisfy weak
location privacy for an active adversary.

66 Chapter 5 Untraceability proof models

Proof. The adversary’s strategy is as follows. He does not query any oracle during
the learning phase. In the challenge phase, he selects one of the tags at random,
and he only queries the Test-oracle, in order to obtain an answer x. The adversary
guesses b = 1 if x = c, and b = 0 otherwise.

The adversary wins this game with probability 1−2−k−1, where k is the bit length of
the constant. He thus has a non-negligible advantage to win the game. Therefore,
the constant-response protocol does not satisfy weak location privacy in the sense
of [HMZH08].

This example shows a weakness in the indistinguishability game of [HMZH08]. At
the end of the challenge phase, the adversary must be able to distinguish a tag’s
response from a random value. The set of possible tag answers is not considered
in the game. Intuitively, what matters for untraceability is that the adversary
must not be able to distinguish one tag’s response from other tags’ responses, but
not necessarily that the adversary cannot distinguish the tag’s response from any
arbitrary value.

The flaw in the model extends to all protocols in which the tag responds with a
cryptographic hash or encryption that is not indistinguishable from a random bit
string of equal length. Since in general, pseudorandom output has not been an
explicit requirement for hash functions, it is not safe to assume that the outputs
are indistinguishable from random bitstrings. For instance, it is obvious that the
output of hash functions whose range are points on an elliptic curve [Ica09] can
be distinguished from random bit strings. Furthermore, there are proposals for
computationally “light-weight” RFID protocols emulating public-key encryption,
such as the EC-RAC protocol described in the previous chapter, where messages
communicated between reader and tag are constructed from points on an elliptic
curve. This class of protocols can also be expected to become more numerous in
the near future. The HMZH model, however, would not be adequate to prove
untraceability for these protocols, since their messages can be distinguished from
random bit strings.

Plaintext-ID protocol

Our second example concerns a protocol that is intuitively and by the notions
of [Avo05, Vau07, JW09] and our definition (Section 3.5) not untraceable, but can
be proven weak location private with respect to the HMZH model.

We assume that a legitimate reader R knows the IDs of all tags in the system.
Aside from the reader, nobody except for a tag itself knows the tag’s ID . Let pk(R)
be a reader’s public key with corresponding private key sk(R) and let {m}pk(R)

denote an IND-CCA2 public-key encryption of m with the public key pk(R). We
further assume that the encryption scheme has the ciphertext pseudo-randomness
property, such as the scheme proposed by Möller [Möl04] which makes ciphertexts
indistinguishable from pseudorandom strings of equal length. Figure 5.2 depicts
the protocol.

It is easy to see that the protocol is not untraceable, since the identity ID of the
tag is transmitted in the clear in every execution of the protocol. Thus even a
passive adversary, namely one which merely observes messages, can trace tags.

5.2 Unpredictability-based proof models 67

ID , sk(R)

R

ID , pk(R)

T

nonce nr

nr

nonce nt

{nr, nt, ID}pk(R)

ID , nt

Figure 5.2: Plaintext-ID protocol

Since all the adversaries considered in the models cited above are at least as strong
as a passive adversary, this protocol is not untraceable in any of the corresponding
models.

We now use the proposed model to prove that the protocol is weak location private.

Lemma 5.2. Protocol 2 satisfies weak location privacy for a passive adversary.

Proof. In the learning phase, the adversary may query the execute-oracle to build
a list of tuples (nr, {nr, nt, ID}pk(R), ID , nt), corresponding to observed communi-
cations.

In the challenge phase, the adversary selects a challenge tag T and queries the
reveal -oracle for all tags except T . He further extends his list of tuples (nr,
{nr, nt, ID}pk(R), ID , nt) by querying the execute-oracle.

Finally, the adversary queries the Test-oracle on T . The oracle tosses a fair coin b
and

• for b = 1 it outputs the message {nr, nt, ID}pk(R),

• for b = 0 it outputs a random value of the same length as the second protocol
message.

The adversary has to guess the bit b. If the adversary were able to guess this bit
with a non-negligible advantage, then he could distinguish {nr, nt, ID}pk(R) from
a random value with a non-negligible advantage. But this would contradict the
ciphertext pseudo-randomness assumption on the encryption scheme.

This example shows a weakness in the challenge phase of the indistinguishability
game. Before calling the test oracle, the adversary has full access to all messages
sent by the tag and reader. But once he calls the test oracle, his capabilities are
limited, in that the messages sent from the reader to the tag are not given to him
and he must make a decision based on a single message of the tag. Thus he is not
allowed to use information that in standard models would be available to a passive
adversary.

Note that if the reader would, in the third message, additionally transmit suffi-
cient information for the adversary to be able to verify whether the encryption in
message two is indeed an encryption of ID , then the proof would still go through,
while untraceability would seem even less plausible.

68 Chapter 5 Untraceability proof models

5.2.2 The model by Ma, Li, Deng, and Li

The unpredictability-based proof model by Ma, Li, Deng, and Li [MLDL09] was de-
signed to overcome the weaknesses of the HMZH model. We call the model MLDL
after the last names of the authors. The adversary model consists of four oracles
modeling capabilities of the intruder. Central to the model are the experiments
in which the adversary interacts with the oracles. An RFID protocol satisfies a
security property if the adversary has at most a negligible chance of performing
the experiment successfully.

We give a simplified, yet for our purposes sufficient, description of the model. For
more details on the model, refer to [MLDL09].

R T
c ∈R Pc

r ∈ Pr

f ∈ Pf

Figure 5.3: Canonical RFID protocol of the MLDL model

Ma et al. observe that the majority of proposed RFID protocols follow a three-
message ping-pong structure initiated by the reader. They restrict their proof
model and analysis to the type of protocols captured by their canonical RFID
protocol shown in Figure 5.3. The canonical RFID protocol is initiated by the
reader R choosing a challenge c at random from the set of challenges Pc. A tag T ,
chosen from the set T , computes the message r ∈ Pr and sends it to the reader.
The reader computes f ∈ Pf and sends it to the tag. This last message is optional.
We set S to be the set of session identifiers and M to be the set of all messages.

An adversary is modeled by a probabilistic polynomial-time interactive Turing ma-
chine. The capabilities of adversaries are modeled by the oracles they are allowed
to query. There are oracles for starting a session with a reader, starting a session
with a tag, and an oracle to send the tag response to the reader. The physical
compromise of a tag is modeled by an oracle that returns the cryptographic key(s)
of a tag. The oracles are formally defined as follows.

• InitReader: S×Pc invokes the reader R to start a session of the protocol.
It returns a fresh session identifier taken from S and a challenge message
c ∈R Pc.
• InitTag: T × S × Pc → S × Pr invokes the tag T ∈ T to start a session of

the protocol with session identifier sid ∈ S. The message c ∈ Pc to be read
by the tag is given as input. The tag responds with a message r ∈ Pr and
the session identifier sid .

• SetTag: M×T →M updates the key and state information of tag T ∈ T to
a new value m ∈M and returns the tag’s current key and state information
m′ ∈M .

• SendRes: S×Pc×Pr → Pf returns the challenge and the response messages
c ∈ Pc and r ∈ Pr to the reader’s session sid and returns the reader’s final
message f ∈ Pf .

5.2 Unpredictability-based proof models 69

In the remainder of this section, the oracles O1, O2, O3, and O4 denote the Ini-
tReader, InitTag, SetTag, and SendRes respectively.

The model specifies four (security) properties: completeness, soundness, indistin-
guishability, and unpredictability. Completeness is a functional requirement that
ensures that the protocol is well-specified. It requires a legitimate tag to always
be accepted by the reader if the adversary merely forwards the messages between
reader and tag.

Definition 5.3 (Completeness [MLDL09]). Let (c, r, f) be the protocol messages
as observed by the reader in session sid with tag T and let r be generated by T . A
protocol satisfies completeness if for any such session, the reader outputs “accept”.

Experiment ExpSound
A

1. setup the reader R and a set of tags T
2. {(csid , rsid , fsid), T} ← AO1,O2,O4(R, T)

Figure 5.4: Soundness experiment

A protocol satisfies soundness if illegitimate tags are always rejected by the legiti-
mate reader R. More specifically, soundness requires that if at the end of a protocol
execution reader R accepts tag T , then T is a legitimate tag and generated the
message r received by R in that session. This property is formalized by the ex-
periment in Figure 5.4. Let x ← AO1,O2,O4(R, T) denote the algorithm A with
access to oracles O1, O2, O4, which upon input (R, T), returns x. The adversarial
algorithm interacts with oracles O1, O2, and O4 polynomially many times. At the
end of the experiment, the algorithm outputs a session between a reader and a
tag. The adversary wins the experiment if at the end of this session, the reader
accepted the tag while it was not legitimate or the tag’s message was modified.

Definition 5.4 (Soundness [MLDL09]). Let E denote the event that in session
sid with protocol messages (csid , rsid , fsid), T was accepted by the reader, but T did
not send rsid . A protocol satisfies soundness if for any adversary A the probability
of E occurring is negligible.

Experiment Expind
A

1. setup the reader R and a set of tags T
2. {Ti, Tj, st} ← AO1,O2,O4

1 (R, T)
3. set T ′ = T \{Ti, Tj}
4. b ∈R {0, 1}
5. if b = 0 then Tc = Ti else Tc = Tj
6. b′ ← AO1,O2,O4

2 (R, T ′, st, Tc)
7. if b = b′ output 1 else output 0

Figure 5.5: Indistinguishability experiment

Ma et al. specify two definitions of untraceability: an indistinguishability-based
definition and an unpredictability-based definition. Their first definition, called

70 Chapter 5 Untraceability proof models

indistinguishability , defines untraceability as the ability of the adversary to distin-
guish two tags. The corresponding experiment (Figure 5.5) consists of two phases.
In the learning phase the adversary interacts with tags and reader polynomially
many times by querying the oracles. At the end of this phase, he selects two target
tags Ti and Tj. The experiment randomly chooses one of these tags as the chal-
lenge tag. In the challenge phase, the adversary may again interact with all oracles.
He is given access to the challenge tag, but not to the other tag. At the end of
the experiment, the adversary guesses which of Ti and Tj was chosen as challenge
tag. A protocol is indistinguishable if the adversary cannot perform better at the
experiment than random guessing.

Definition 5.5 (Indistinguishability [MLDL09]). An adversary A wins if the in-
distinguishability experiment Expind

A outputs 1. An RFID protocol satisfies in-
distinguishability if no adversary can win the indistinguishability experiment with
probability 1

2
+ ε for non-negligible ε.

Experiment Expunp
A

1. setup the reader R and a set of tags T
2. {Tc, c, st} ← AO1,O2,O4

1 (R, T)
3. set T ′ = T \{Tc}
4. b ∈R {0, 1}
5. if b = 0 then (r∗, f ∗) ∈R Pr × Pf

else (c, r, f)← π(R, Tc, sid) and (r∗, f ∗) = (r, f)

6. b′ ← AO1,O2,O4

2 (R, T ′, st, r∗, f ∗)
7. if b = b′ output 1 else output 0

Figure 5.6: Unpredictability experiment

The second definition of untraceability is called unpredictability and specifies that
the adversary cannot distinguish the protocol messages of one tag from random
messages. The learning phase is similar to that of the indistinguishability game.
At the end of the phase, the adversary outputs one target tag Tc and a challenge
c. The experiment then tosses a fair coin b. If b = 0 it gives the adversary random
messages r ∈R Pr and f ∈R Pf . If b = 1, the experiment runs a protocol execution
between R and Tc with challenge c (denoted by (c, r, f) ← π(R, Tc, sid)). The
messages r and f from that session are given to the adversary. In the challenge
phase the adversary may again interact with all oracles. He is not given access
to Tc. At the end of the experiment, the adversary guesses the value of b. The
experiment is depicted in Figure 5.6. A protocol is unpredictable if the adversary
cannot perform better at the experiment than random guessing.

Definition 5.6 (Unpredictability [MLDL09]). An adversary A wins if the unpre-
dictability experiment Expunp

A outputs 1. An RFID protocol satisfies unpredicta-
bility if no adversary can win the unpredictability experiment with probability 1

2
+ ε

for non-negligible ε.

Unpredictability and indistinguishability are two related, but different definitions of
untraceability. In the original paper, it was proven [MLDL09, Theorem 3] that for

5.2 Unpredictability-based proof models 71

complete and sound protocols, unpredictability implies indistinguishability. Fur-
thermore, a proof is given [MLDL09, Theorem 4] that there exist protocols that
are indistinguishable, but not unpredictable. Thus, unpredictability is claimed to
be strictly stronger than indistinguishability. Finally, the authors show that as a
minimal requirement for unpredictability, it is necessary that the tag’s computa-
tional capabilities must be equal or stronger than those necessary to compute a
pseudo-random function. The main result of the paper is that instead of prov-
ing indistinguishability, one can prove the stronger (but possibly easier to prove)
property of unpredictability.

We now show that the proof of [MLDL09, Theorem 4] is incorrect. To show that the
theorem still holds we provide an alternative proof. We also invalidate [MLDL09,
Theorem 3] by showing that there exist protocols that are unpredictable, but not
indistinguishable. By combining both proofs, we show that the definitions of unpre-
dictability and indistinguishability are incomparable, that is, neither of them is
stronger than the other.

Echo protocol

The first claim by Ma et al. is that indistinguishability does not imply unpredicta-
bility [MLDL09, Theorem 4]. We restate their theorem below (Theorem 5.7). The
proof consists of the following counter-example. Let π be an indistinguishable pro-
tocol with messages c ∈ Pc, r ∈ Pr, and f ∈ Pf . Let π′ be like π, but the second
message is concatenated with itself: r′ = (r, r) ∈ P ′r. The proof states that π′ is not
unpredictable since the adversary can easily distinguish a protocol message of the
form (c, (r, r), f) ∈ Pc×P 2

r ×Pf from a random tuple (c, (r1, r2), f) ∈ Pc×P 2
r ×Pf

by checking whether r1 = r2.

Unfortunately, the last observation is not sufficient for the proof. By changing
the protocol from π to π′ the authors assume the response set Pr changes to
P ′r = Pr × Pr. This is not true, since the only valid responses are the ones where
a value from Pr is concatenated with itself. The response set P ′r is thus defined
by P ′r = {(x, x) | x ∈ Pr}. As a result, the adversary does not have a way to
distinguish a random element from a tag response. In fact, π′ is unpredictable if
and only if π is.

Although the proof in the paper is incorrect, the theorem can still be shown to
be correct. We construct a protocol which we call echo protocol (Figure 5.7) by
slightly modifying the constant-response protocol of the Section 5.2.1. The reader
generates a random value c and sends it to the tag. The tag echoes the value to
the reader and the reader sends it to the tag again. The next Theorem shows that
the echo protocol is indistinguishable but not unpredictable.

Theorem 5.7. Indistinguishability (Definition 5.5) does not imply unpredictability
(Definition 5.6).

Proof. The echo protocol is indistinguishable since every tag responds with the
message it was queried with. The identifier ID of the tag is never used in the
protocol and, therefore, the tags in this protocol could even be identically built
and do not need to have an ID . Thus, regardless of their behavior, it is not possible
to distinguish two tags.

72 Chapter 5 Untraceability proof models

ID

R

ID

T

nonce c
c

c

c

Figure 5.7: Echo protocol.

The adversary can attack unpredictability as follows. He does not query any oracle
during the learning phase. He submits a random tag Tc and a random challenge
c. The experiment returns either a random pair (r, f) ∈R Pr × Pf or the tag’s
response (c, c). In the challenge phase, the adversary guesses 1 if the tag response
is (c, c) and 0 otherwise.

The adversary wins with probability 1 − 2−2k−2 where |c| = k. Thus, the echo
protocol is not unpredictable.

The echo protocol shows that there are protocols that are intuitively (and by
the definition of indistinguishability) untraceable, but which are not untraceable
according to the proposed definition of unpredictability.

Backdoor protocol

Ma et al. show that unpredictability implies indistinguishability [MLDL09, The-
orem 3] for any protocol that satisfies completeness and soundness. As a con-
sequence, unpredictability would be stronger than indistinguishability, allowing
protocol designers to only prove unpredictability of their protocol. The proof re-
lies on the fact that all queries made by the adversary in the indistinguishability
experiment, can be simulated in the unpredictability experiment. There is, how-
ever, one fundamental mistake in the simulation of the SendRes oracle: in the
unpredictability experiment the adversary is not allowed to modify the message
sent from the tag to the reader, but in the indistinguishability game he is. This
allows one to construct a protocol that is unpredictable as long as the attacker does
not modify messages, but which is not indistinguishable if messages are modified.
Lai, Deng, and Li [LDL10] have designed such a protocol. However, their protocol
is not sound. Since, the theorem only holds for complete and sound protocols, the
protocol does not invalidate the theorem.

We now construct a complete, sound, and unpredictable protocol that is not indis-
tinguishable. The protocol is based on the plaintext-ID protocol (Section 5.2.1).
Let ` be a security parameter. We assume that all tags are equipped with iden-
tifiers ID and IDS both known to the legitimate reader R. The identifiers ID
and IDS are chosen independently at random from the set {0, 1}`. Aside from the
reader, nobody except for a tag itself knows the tag’s ID and IDS . Let pk(R) be a
reader’s public key with corresponding private key sk(R) and let {m}pk(R) denote
an IND-CCA2 public-key encryption of m with the public key pk(R).

The reader R initiates the protocol (Figure 5.8) by sending a random value c to the
tag. The tag generates a random value r and sets V := {c, r, ID}pk(R) and s := r.

5.2 Unpredictability-based proof models 73

It sends the response V, s to the reader. The reader verifies V = {c, r, ID}pk(R),
learns r and ID , and checks whether r = s. If both checks succeed, he responds
with a random value and accepts the tag. If only the first check succeeds, he
responds with IDS and rejects the tag. If both checks fail, R halts and rejects the
tag. We call the protocol backdoor protocol since the protocol has a backdoor that
allows the attacker to easily recover IDS , a unique attribute that allows tracing a
tag. It is important to note that knowledge of IDS does not allow an attacker to
impersonate a tag.

A key observation is that if the adversary merely forwards messages, the third
message is random. If the adversary modifies s in the second message, then the
reader always responds with the IDS of the tag with which it is communicating.
Finally, the reader only accepts the tag if the adversary does not modify the first
and second message. We first show that the protocol is not indistinguishable and
then proceed by proving completeness, soundness, and unpredictability of it.

ID , IDS , sk(R)

R

ID , IDS , pk(R)

T

c ∈R {0, 1}ℓ
c

r ∈R {0, 1}ℓ

V := {c, r, ID}pk(R)

s := r

V, s

if V = {c, r, ID}pk(R):
if r = s:
f ∈R {0, 1}ℓ
a = accept

else:
f = IDS
a = reject

else:
halt

f

output a

Figure 5.8: Backdoor protocol.

The protocol is not indistinguishable since the attacker can obtain a unique at-
tribute for any tag T . By modifying s in the second message, the reader responds
with IDS . The adversary can, therefore, perform an attribute acquisition attack
on the protocol.

Lemma 5.8. The backdoor protocol is not indistinguishable (Definition 5.5).

Proof. We construct an adversary A that wins the indistinguishability experiment.
In the learning phase, A randomly selects two tags T1 and T2 with identifiers
(ID1, IDS 1) and (ID2, IDS 2). The adversary starts a protocol execution by query-
ing the InitReader oracle. He then calls the InitTag oracle for tag T1 with the
challenge obtained from the reader. The tag responds with V, s. The adversary

74 Chapter 5 Untraceability proof models

sets s to 0 and forwards the messages to the SendRes oracle. After verification
this oracle returns some value IDS .

The adversary initiates a second session with the reader and obtains a challenge c.
He then submits T1, T2, and c to the experiment. The experiment chooses one of
T1 and T2 at random and calls it Tc. In the challenge phase, A performs the same
steps as in the learning phase obtaining some IDS ′. The adversary guesses b′ = 0,
if IDS = IDS ′ and b = 1 otherwise.

Let l be the bitlength of r. Then A wins the experiment with probability 1−2−l−1.
Therefore, the backdoor protocol is not indistinguishable.

Completeness of the protocol follows directly from the protocol specification.

Lemma 5.9. The backdoor protocol satisfies completeness.

Proof. Let (c, r, f) be the protocol messages observed by the reader in session sid
with tag T and T generated response r. Since r was generated by a legitimate
tag, it must be of the form r = {c, r, ID}pk(R), s with r = s. Following the reader
lookup procedure, the reader responds with a random value f and output accept
with probability 1.

Soundness of the backdoor protocol follows from the IND-CCA2 property of the
ciphertext. Thus, the adversary must know the identifier ID to generate a valid
response.

Lemma 5.10. The backdoor protocol satisfies soundness.

Proof. Suppose towards a contradiction that there exists an adversary As that can
win the soundness experiment with non-negligible adversary. We show that As
can be turned into an adversary Ae that can break the IND-CCA2 property of the
encryption.

We first show that Ae can win the IND-CCA-MU experiment (Section 2.1.4). The
experiment generates a public key pk with corresponding secret key sk. The public
key is given to Ae. At the start of the experiment, a challenge bit b is selected
at random. To predict the value of b, Ae uses the advantage of the soundness
adversary As in winning the soundness experiment.

The main idea behind the proof is to construct two sets of IDs: ID0 and ID1. We let
the LR-oracle of the IND-CCA-MU generate a ciphertext for an ID selected from
ID b. If As can win the soundness experiment, he must be able to construct a valid
V different from all V ’s generated by the IND-CCA-MU experiment. Adversary
Ae is allowed to decrypt this V . The decryption reveals whether the ID was chosen
from ID0 or ID1 and thus the value of b.

Adversary Ae simulates responses to queries of the adversary As as follows:

• InitReader: Ae returns a randomly generated challenge c ∈R Pc and a
fresh session identifier sid. He stores the tuple (c, sid).

• InitTag(Ti, sid, c): Ae generates a random s ∈R {0, 1}` and queries the LR
oracle for the encryption V = LR((c, s, ID0,i), (c, s, ID1,i), b). He stores the
tuple (c, i, (V, s)) and returns (V, s).

5.2 Unpredictability-based proof models 75

• SendRes(sid, c, (V, s)): Ae searches its list for a tuple (sid′, c′, (V ′, s′)) with
matching session identifier and challenge, i.e. sid = sid′ and c′ = c.

– If (V, s) = (V ′, s′) then As simply forwarded the messages obtained from
the InitTag oracle. Adversary Ae returns a random f ∈R {0, 1}` and
accepts the tag.

– If V = V ′ and s 6= s′ then the encryption was forwarded, but the ran-
domness was changed. Following the protocol specification, adversary
Ae returns IDS i and rejects the tag.

– If V 6= V ′ then As forged or replayed the response. If V was replayed,
then Ae halts the protocol execution and rejects. Otherwise, Ae submits
V ′ to the decryption oracle of the IND-CCA-MU experiment obtaining
c′, r′, ID ′.

∗ If c = c′, r′ = s′, and (ID ′ = ID0,i ∨ ID ′ = ID1,i) then he returns a
random f ∈R {0, 1}` and accepts the tag.

∗ If c = c′, r′ 6= s′, and (ID ′ = ID0,i ∨ ID ′ = ID1,i) then he returns
IDS i and rejects.

– Otherwise Ae halts the protocol execution and rejects.

At the end of the soundness experiment the adversary As outputs a conversation
(c, (V, s), f, Ti) that was accepted by the reader while Ti did not send (V, s). Thus,
Ae has previously submitted V to the decryption oracle to obtain ID ′. If ID ′ =
ID0,i then Ae guesses b = 0, otherwise b = 1.

If As can win the soundness experiment with non-negligible probability, then Ae
can win the IND-CCA-MU experiment with non-negligible probability. An adver-
sary that can win the IND-CCA-MU experiment with non-negligible probability
can do so for the IND-CCA2 experiment as well [BBM00, Theorem 1]. This contra-
dicts the IND-CCA2 property of the encryption. Thus, the protocol must satisfy
soundness.

Finally, we show unpredictability of the backdoor protocol. The main weakness in
the model that allows us to show unpredictability is the way in which the exper-
iment generates the challenge to the adversary. The experiment merely forwards
the message from tag to reader. Man-in-the-middle attacks on untraceability, how-
ever, rely on the assumption that attackers can modify messages sent from reader to
tag. The backdoor protocol is unpredictable and is only traceable if the adversary
modifies the second message.

Lemma 5.11. The backdoor protocol is unpredictable (Definition 5.6).

Proof. We show unpredictability by contradiction. Let A be the adversary that
can break unpredictability. Then there exists an adversary B that breaks the
IND-CCA2 property of the encryption by using A.

Adversary B can be constructed as follows. He queries a key generation oracle that
generates a key pair sk(R) and pk(R). The adversary B obtains the public key
pk(R) and generates a set of tags T . Adversary B can answer queries from A in
the learning phase by using the decryption oracle. In between phases A chooses a

76 Chapter 5 Untraceability proof models

target tag Tc with secret ID and a challenge c. At this point B chooses r, r′, f , and
ID ′ at random and submits the following two plaintexts to the encryption oracle
of the IND-CCA2 game: r, c, ID and r′, c′, ID ′. The oracle chooses one at random,
encrypts it under pk(R) and returns it to B. Let E be this encryption returned by
the oracle. Adversary B continues by sending E, r and f to A. In the challenge
phase B again simulates all queries of A. At the end of the experiment A returns
a guess b′. If b′ = 1, then B guesses 1, otherwise 0.

If A has a non-negligible advantage in winning the unpredictability experiment,
then B has a non-negligible advantage in winning the IND-CCA2 game. This
contradicts the assumed IND-CCA2 property of the encryption. Thus the backdoor
protocol must be unpredictable.

The main Theorem of this section combines the previous four Lemmas. It shows
that indistinguishability and unpredictability are incomparable. As a result, prov-
ing unpredictability is not sufficient for proving indistinguishability. Furthermore,
it shows that there are protocols that are not untraceable, but can be proven to
be unpredictable. Hence, we believe that unpredictability does not properly model
the intuitive notion of untraceability.

Theorem 5.12. Unpredictability (Definition 5.6) does not imply indistinguish-
ability (Definition 5.5) for sound (Definition 5.4) and complete (Definition 5.3)
protocols.

Proof. The backdoor protocol is sound and complete as shown by Lemmas 5.9
and 5.10. Lemmas 5.11 and 5.8 show that the backdoor protocol is unpredictable,
but not indistinguishable. Hence, the backdoor protocol is an example protocol
showing that unpredictability does not imply indistinguishability for sound and
complete protocols.

5.3 Insider attacks in Vaudenay’s model

In the previous chapter we have shown a man-in-the-middle attack on EC-RAC IV.
The man-in-the-middle attack was a result of the attacker being able to modify
messages without the reader noticing. By adding a message authentication code
(MAC) based on an independent shared secret k, the protocol can be turned into
a protocol satisfying security. However, an attacker that has one insider tag in the
system can trace other tags.

In this section, we consider the computational proof model for untraceability by
Vaudenay [Vau07]. The model can be considered to be the most comprehensive
computational proof model, but has also been in need of refinements and clarifi-
cations in several ways [PV08, NSMSN08, NSMSN09, BCI09, HPVP11]. We show
that an adversary with insider capabilities cannot be naturally represented in the
model. To this end, we first present Vaudenay’s adversary model and security
definitions. We provide more precise definitions wherever the original paper was
underspecified. Subsequently, we extend the model with an adversary class that
contains attackers with insider capabilities.

5.3 Insider attacks in Vaudenay’s model 77

5.3.1 Vaudenay’s model

Adversary model

The powers of the adversaries are modeled by a set of oracles the adversary is
allowed to query. Tags may either be in the vicinity of the adversary (we call the
tag drawn) or out of the vicinity of the adversary (free). If a tag is drawn, it gets
a temporary identity vtag through which it can be addressed by the adversary.
Initially, all tags are free tags.

The following eight oracles define the capabilities of the adversary.

• CreateTagb(ID): Creates a new tag with fresh identifier ID . The adversary
may choose to create a legitimate tag (b = 1) or an illegitimate tag (b = 0).
In case of a legitimate tag, the tag is added to the database.

• DrawTag(distr)→ vtag : Moves a tag from the set of free tags to the set of
drawn tags creating a fresh identifier vtag by which the tag can be addressed.
The tag is drawn at random following the distribution distr.

• Free(vtag): Moves vtag to the set of free tags. Oracle access to vtag is no
longer allowed after calling the Free oracle.

• Launch → π: makes the reader launch a new protocol instance π.

• SendReader(m,π) → m′: Sends the message m to the reader’s protocol
instance π. If the message m corresponds to the message that the reader
expected, he responds with message m′.

• SendTag(m, vtag) → m′: Sends the message m to the tag with identifier
vtag. If the message m corresponds to the message that the tag expected, he
may respond with a message m′.

• Result(π) → x: when the protocol instance with identifier π completed
successfully, the oracle returns 1, otherwise 0.

• Corrupt(vtag) → S: Returns the state S of the tag. The state contains
the current values of the variables mentioned as initial knowledge of the tag.

Vaudenay defines eight adversary classes by restricting access to the Corrupt and
Result oracles. There are four different types of adversaries related to restrictions
on the Corrupt oracle:

• Weak : The adversary controls all communication channels and may forward,
inject, block, or modify messages. He does not have access to the Corrupt
oracle. This means that the attacker cannot recover the keys of a tag by any
other means than communicating with the tag and reader.

This adversary corresponds to a Dolev–Yao [DY83] attacker.

• Forward : In addition to the capabilities of a weak adversary, a forward ad-
versary may make queries to the Corrupt oracle. However, the adversary
may no longer query the other oracles after the first Corrupt query.

78 Chapter 5 Untraceability proof models

A forward adversary models the possibility of an attacker breaking a tag’s
untraceability with respect to the tag’s past interactions as soon as the tag’s
keys are revealed to the attacker.

• Destructive: A destructive adversary has more flexible access to the Cor-
rupt oracle than a forward adversary in that he may query all oracles after
querying the corrupt oracle. The adversary is limited with respect to the tags
he has corrupted, in that corrupting a tag makes the tag inaccessible. De-
structive adversaries therefore model the real-world attacker that can obtain
the tag’s keys, but destroys the tag in the process.

• Strong : A strong adversary is not restricted with respect to the usage of the
Corrupt oracle. This models the case in which an adversary can obtain
the secrets of a tag without having to physically destroy the tag. The secrets
obtained from the tag can then be used to mount a traceability attack on
the corrupted tag in a later stage.

A second separation concerns the ability of the attacker to recognize whether a
protocol execution between a reader and a tag was successful. In many practical
situations this is a reasonable assumption. For instance, in an RFID system for
electronic transport tickets, a reader flashing a green light indicates that authen-
tication was successful while a red light indicates it failed. In the model, we call
an adversary with access to the Result oracle wide, while an adversary with no
access to the Result oracle is called narrow .

The relations between the 8 adversary classes are depicted in the diagram below
(N stands for “narrow”, W stands for “wide”), where A ⇒ A′ means that A′ is
more restricted with respect to oracle access than A.

N-Strong N-Destructive N-Forward N-Weak

W-Strong W-Destructive W-Forward W-Weak

⇓ ⇓ ⇓ ⇓
⇒ ⇒ ⇒

⇒ ⇒ ⇒

Security definitions

Untraceability, called privacy in the model, is defined by comparing the adversary
to a special adversary which makes no use of protocol messages, as follows. An
adversary is called blinded if he is not allowed to communicate with tags and
reader. An adversary is trivial if there exists a blinded adversary which essentially
performs equally well at guessing a tag’s identifier.

More precisely, let A be an adversarial algorithm that outputs True or False. A
blinder B for an adversary A is an algorithm that sees the same messages as
A, and simulates the Launch, ReaderTag, SendTag, and Result oracles to
A. A blinded adversary AB is an adversary that does not access the Launch,
ReaderTag, SendTag, and Result oracles. Let pA be the probability that A
outputs True and pB be the probability that AB outputs true. An adversary A is
trivial if there exists a B such that |pA − pB| is negligible.

Definition 5.13 (Privacy [Vau07]). A protocol is P -private, where P is one of the
eight adversary classes, if all adversaries that belong to that class are trivial.

5.3 Insider attacks in Vaudenay’s model 79

One can show privacy of a protocol by proving that all oracle access to the Launch,
ReaderTag, SendTag, and Result oracles can be perfectly simulated. Con-
versely, one shows that a protocol is not private by showing that there exists an
adversary A for which these oracle accesses cannot be simulated.

Vaudenay defines authentication as the impossibility of a reader accepting a tag
with which it did not have a matching conversation. Matching conversation, in
turn, is defined as a combination of well-interleaved and faithful exchange of mes-
sages. We first formalize the notions of faithfulness, well-interleaving, and matching
conversation and then give the definition of authentication.

We state our definitions in terms of protocol runs. A protocol specifies the actions
to be carried out by a reader or a tag. A protocol run is a sequence of events
which occur as a consequence of the actions specified by a protocol. The possible
events of a run are send, receive, accept, and reject. The send and receive events are
associated with messages, the accept event is associated with a particular RFID
tag. We say that a run ends successfully if all its events have occurred and no
reject event has occurred.

Well-interleaving specifies that messages between a reader run and a tag run are
never received before they were sent. It prevents replay and pre-play attacks.

Definition 5.14 (Well-interleaving). We say that a target run r1 and another run
r2 are well-interleaved, if for all i, j ∈ N the i-th receive event of r1 is preceded by
the i-th send event of r2 and j-th receive event of r2 is preceded by the j-th send
event of r1.

Faithfulness defines that messages exchanged between a reader run and a tag run
are not modified by the adversary.

Definition 5.15 (Faithfulness). We say that a target run r1 and another run r2

have exchanged messages faithfully, if for all i, j ∈ N the message of the i-th receive
event of r1 is equal to the message of the i-th send event of r2 and the message of
the j-th receive event of r2 is equal to the message of the j-th send event of r1.

A tag and reader have a matching conversation if the pair of reader run and tag
run satisfies well-interleaving and faithfulness.

Definition 5.16 (Matching conversation). A reader R and a tag T have a match-
ing conversation for a target run r of the reader, if there is a run t of T such that
r and t are well-interleaved and exchange messages faithfully.

Authentication, called security in the model, is defined by requiring matching
conversations on accepted runs. Whenever the reader accepts a tag in a target
run, then there must exist a run of that tag that has a matching conversation with
the target run.

Definition 5.17 (Security). A protocol is said to be secure if for each target run
r for which the reader accepts an uncorrupted legitimate tag T , there is a run t of
T such that r and t have a matching conversation.

Finally, correctness of an RFID protocol is defined as the property that a legitimate
tag is always accepted in a protocol execution in which the reader merely forwards
the messages.

80 Chapter 5 Untraceability proof models

Definition 5.18 (Correctness). Let S be an RFID system with a reader R and a
set of tags T . Draw a tag T ∈ T and execute a protocol between R and T with
runs r and t. A protocol is correct if R accepts T if and only if T is legitimate.

5.3.2 Modeling insider attacks

Vaudenay’s model for security and privacy of RFID protocols does not discuss the
possibility of insiders. In the model, there are initially no legitimate tags under
the control of the adversary. Adversaries can obtain the contents of legitimate tags
through tag corruption. Insider attacks are a very weak form of corruption: the
tag whose contents are obtained is never the subject of the traceability attack. In
practice, the adversary can purchase one tag and spend an extended amount of
time to break the tag’s security. The adversary does not even need physical access
to the tag he wants to trace.

We extend the adversary model by introducing an InsiderTag oracle defined as
follows:

- InsiderTag(ID)→ S: creates a legitimate tag with identifier ID and runs
the SetupTag algorithm to update the system database. The new tag is
immediately corrupted and destroyed and the state S of the tag is returned.

The InsiderTag oracle call are not blinded. Also, calling the oracle gives the
blinder access to the tag state S. This is to prevent the adversary from having an
advantage by tracing the insider tag, which would lead to a false attack. Note that
the same restrictions hold for the Corrupt oracle [Vau07].

We define a ninth class of adversaries, called wide-insider, to model adversaries
that have access to to the InsiderTag oracle and all other oracles except for the
corrupt oracle. Figure 5.9 shows how the class wide-insider fits in the hierarchy
of privacy models. By construction, wide-destructive is stronger than wide-insider
which in turn is stronger than wide-weak. In the following sections we show pro-
tocols that separate the class of wide-insider attackers from all other classes of
adversaries. This shows that the Vaudenay adversary model does not capture in-
sider attackers and that the extension with the class of wide-insider adversaries is
useful.

N-Strong N-Destructive N-Forward N-Weak

W-Strong W-Destructive W-Forward W-Weak

⇓ ⇓ ⇓ ⇓
⇒ ⇒ ⇒

⇒ ⇒ ⇒

W-Insider

⇒ ⇒

Figure 5.9: Extension of the adversary classes in Vaudenay’s model.

Separation with wide-destructive and wide-weak

To show separations between the class weak-insider and the other 8 classes, we
take the wide-weak private protocol from [Vau07]. The protocol is depicted in

5.3 Insider attacks in Vaudenay’s model 81

Figure 5.10. The protocol is initiated by the reader by sending a random value a
to the tag. The tag selects a random value b and computes FK(R,T)(a, b) where F
is a pseudo-random function (PRF) and K(R, T) is a shared secret between reader
and tag. The reader accepts the tag if it has a pair (ID , K(R, T)) in its database.

IDT , k(R, T)

R

k(R, T)

T

a ∈R {0, 1}n
a

b ∈R {0, 1}n
b, Fk(R,T)(a, b)

Figure 5.10: Protocol P : Wide-weak private RFID protocol based on a PRF.

Theorem 5.19. Protocol P is wide-insider private.

Proof. The protocol is wide-weak private by [Vau07, Theorem 13]. Therefore, there
exists a blinder B for adversary A that simulates the all oracles perfectly. Since
tag keys are chosen independently at random, the InsiderTag oracle does not
give useful information to break privacy. We construct a blinder B′ for A′ from B
as follows:

• The simulation for SendTag queries of blinder B′ remains the same as for
B. Since tag keys are chosen independently at random, this simulation is
perfect. If it were not, then A could have generated his own set of random
keys to obtain an advantage over AB for the wide-weak privacy game.

• In protocol P , there are only two types of SendReader events. The first
one takes no argument and returns a random value. The second does not
return a value. These can be trivially simulated.

• Launch queries can be trivially simulated.

• For the Result oracle there are two cases. The oracle can be queried on
a session concerning the insider tag or on a session with another legitimate
tag. The blinder can distinguish these two cases as follows. If there is a well-
interleaved and faithful sequence of SendReader and SendTag queries for
π then the blinder outputs 0. Otherwise, the query relates to a session with
the insider tag.

Since the blinder knows a, b and k, he can verify whether Fk(a, b) submitted
to π with the SendReader query for π is correct. If it is, the blinder
outputs 1, otherwise 0. By definition of a PRF, Fk(a, b) = Fk′(a

′, b′) iff
(k, a, b) = (k′, a′, b′). Thus, the simulation of the Result oracle is perfect.

Since the simulation of all oracles is perfect, A′ does not have a non-negligible
advantage over A′B′ . Therefore, protocol P is wide-insider private.

82 Chapter 5 Untraceability proof models

Since protocol P is wide-insider private, but not wide-forward [Vau07, Note 14]
private, we have that wide-insider privacy does not imply wide-forward privacy. As
a consequence, wide-insider privacy also does not imply wide-destructive privacy.

To show separation of the adversary classes of wide-insider and wide-forward, we
first show how a three-message ping-pong protocol can be turned into a protocol
that is secure (according to Definition 5.17).

Three-message ping-pong protocols

Let π be a three-message ping-pong protocol with messages m1,m2, and m3 ini-
tiated by the tag T . A standard way of providing security is to add a message
authentication code (MAC) based on a shared secret. Let R and T share a key k
generated independently at random. To ensure security, we append a MAC over
the three messages m1,m2,m3 to the last message. For privacy, we encrypt the
MAC under the public key of the reader pk(R). Protocol ρ is thus constructed from
π by appending the IND-CCA2 encryption of MAC k(m1,m2,m3) under the public
key of the reader pk(R) to the third message. Protocol ρ is depicted in Figure 5.11.
This construction allows us to turn any three-message ping-pong protocol into a
protocol satisfying security.

sk(R), k

R

pk(R), k

T
m1

m2

E := {MAC k(m1,m2,m3)}pk(R)

m3, E

Figure 5.11: Protocol ρ: 3-message ping-pong protocol with IND-CCA2 encrypted
MAC.

In the following two lemmas, we show that protocol ρ satisfies security and that
it satisfies the same privacy property as π. We denote the entropy of mi (for
i ∈ {1, 2}) by ei(l), where l is a security parameter, and we denote the length of
k by |k|. We assume that ei(l) and |k| are such that there exists a constant c > 0
with e1(l), e2(l), |k| > c · l.

Lemma 5.20. Protocol ρ (Figure 5.11) satisfies security (Definition 5.17).

Proof. If security is not satisfied then there must be a run r in which the reader
accepts an uncorrupted legitimate tag T , while there is no run t of T for which r and
t have a matching conversation. Therefore, either there exists no corresponding
run of T or there exists a run t of T , but well-interleaving (Definition 5.14) or
faithfulness (Definition 5.15) between r and t is violated. We show that in all
three cases, the adversary breaks the IND-CCA2 property of the encryption, or is
able to generate existential MAC forgeries.

Let poly(x) be a polynomial. The adversary is allowed up to poly(l) observations
and computations. We have the following 3 cases:

5.3 Insider attacks in Vaudenay’s model 83

(1) No corresponding run of T :

The adversary wins the game if the reader R successfully completes a target
run r without a corresponding run of T . The adversary must choose an m1

after which the reader generates a fresh m2. The adversary wins if he can
find a valid pair m3, E.

The adversary must either reuse an old E or generate a new, valid one.

The probability that the adversary already observed a run with messages m1

and m2 together with a valid m3, E is bounded above by poly(l)/2e2(l), thus
negligible.

Otherwise, the adversary needs to forge m3, E. Such an adversary can be
turned into an adaptive algorithm which constructs existential MAC forgeries
as follows. Let (m3, E) = A(m1,m2, transcript) be the adversary’s output,
where transcript consists of a poly(l) list of quadruples (m1,m2,m3, E).

Let k be the key in the MAC existential forgery game. Let tr be a poly-
nomial list of ((m1,m2,m3),MAC k(m1,m2,m3)) pairs obtained from the ex-
istential MAC forgery game upon submission of m1,m2,m3 queries. We
create the list transcript from tr by replacing MAC k(m1,m2,m3) in tr by
Epk(R)(MAC k(m1,m2,m3)).

Let (m3, E) = A(m1,m2, transcript) be the adversary’s output. We submit
(m1,m2,m3) and the decryption of E to the forgery game. If the adversary
A wins with non-negligible probability, then our algorithm wins the forgery
game with non-negligible probability. Thus by the existential forgery prop-
erty of the MAC, the adversary’s advantage to produce a correct pair (m3, E)
is negligible for sufficiently large |k|.

(2) Faithfulness:

The adversary wins the game if there is a protocol instance between a tag
and a reader where the reader’s view of the protocol messages differs from the
tag’s view. Thus at least one of the terms m1,m2,m3, E has been modified
by the adversary, yet the reader accepts the received pair (m3, E).

If one or more of m1,m2,m3 are modified by the adversary, we can turn the
adversary into an algorithm which creates existential MAC forgeries as in
case (1) above.

If m1,m2,m3 are not modified, then except with negligible probability, the
MAC is the same. Thus, the adversary must produce a second ciphertext E ′

from E, violating non-malleability of the IND-CCA2 encryption.

(3) Well-interleaving:

The adversary wins the game if a target run of the reader ends successfully
without a well-interleaved run of a tag. Thus a receive event must have
occurred for which no corresponding send event had occurred according to
Definition 5.14. By faithfulness, it follows that the adversary has successfully
predicted one of the three messages m1,m2,m

′
3, where m′3 = (m3, E).

Since for i = 1, 2, the messages mi have entropy ei(l), the adversary has only
a negligible probability of poly(l)/2ei(l) to predict mi.

84 Chapter 5 Untraceability proof models

Else, the adversary must have predicted m′3. The probability of successfully
predicting m′3 is bounded by the probability of the adversary winning the
ciphertext indistinguishability game of the IND-CCA2 encryption scheme,
hence, negligible.

Thus, protocol ρ satisfies security.

Lemma 5.21. If a protocol π satisfies narrow-{strong, destructive, forward, weak}
privacy, then so does ρ.

Proof. Let c ∈ {strong, destructive, forward, weak} and let P be a narrow-c private
protocol. Then, there must exist a blinder B that simulates messages m1,m2 and
m3. It remains to construct a blinder B′ from B that simulates E.

To simulate E, B generates a random value r, of length equal to the output size
of the MAC function, and returns {r}pk(R). By the ciphertext indistinguishability
property of the IND-CCA2 encryption, the simulation is perfect.

Thus, P ′ must be narrow-c private.

We can now show our theorem that allows to turn any 3-message ping-pong proto-
col initiated by the tag into a protocol that satisfies security. The privacy property
of the protocol is maintained across the transformation.

Theorem 5.22. Let l be a security parameter, c > 0 a constant, e1(l), e2(l) be
greater than c · l.
Let π be a three-message ping-pong protocol between a reader R and a tag T , ini-
tiated by the tag. For i ∈ 1, 2, 3, let mi be the i-th message of π and ei(l) be the
entropy of the i-th message. Let, furthermore, pk(R) be R’s public key and k a
unique, randomly generated, shared secret key between R and T with |k| > c · l.
Then the protocol ρ obtained from π by concatenating m3 with the IND-CCA2
encryption {MAC k(m1,m2,m3)}pk(R) satisfies security.

If π satisfies narrow-{strong, destructive, forward, weak} privacy, then so does ρ.

Proof. Security follows from Lemma 5.20 and privacy follows from Lemma 5.21.
Correctness follows from the correctness of the IND-CCA2 encryption and the fact
that the reader can identify the tag based on the key k used in the MAC .

Separation with wide-forward

To show separation between wide-forward and wide-insider privacy we modify the
randomized Schnorr protocol [BCI08] using the construction in Section 5.3.2. The
randomized Schnorr protocol is based on a cyclic group of points on an elliptic
curve. The group is of order q and P is a generator element. The group is chosen
so that the decisional Diffie-Hellman problem is hard. The protocol is initiated
by the tag generating two random values a and b. The tag sends aP and byP to
the reader upon which it responds with a random challenge c. The tag computes
z = a+ b+x · c and sends it to the reader for verification. We modify the protocol

5.3 Insider attacks in Vaudenay’s model 85

y, P, xP, sk(R), k(R, T)

R

x, P, yP, pk(R), k(R, T)

T

a, b ∈R Zqc ∈R Zq

aP, byP

c

z := a + b + x · c

E := {MAC k(R,T)(aP, byP, c, z)}pk(R)

z, E

find xP
verify E

Figure 5.12: Protocol Q: BCI with encrypted MAC

by appending an IND-CCA2 encrypted MAC as in Theorem 5.22. The protocol is
depicted in Figure 5.12.

The protocol is narrow-strong and secure by [BCI08, Theorem 2] and Theorem 5.22.
We now show that the protocol is vulnerable to insider attacks.

Theorem 5.23. The randomized Schnorr protocol [BCI08] with IND-CCA2-en-
crypted MAC (Figure 5.12) is not wide-insider private.

Proof. The attack strategy is as follows. The attacker eavesdrops on two valid
protocol executions of tags T and T ′. He combines the tag responses and uses a
protocol execution between an insider tag and the reader to verify whether T = T ′.

We construct an adversary that eavesdrops on two protocol executions between
tags T and T ′ and a legitimate reader. The protocol transcripts for these execu-
tions are (aP, byP, c, z, E) and (a′P, b′yP, c′, z′, E ′), respectively. By the protocol
specification, z and z′ are defined by z = (a+ b+x · c) and z′ = (a′+ b′+x′ · c′). It
is the attacker’s goal to decide whether T = T ′ which amounts to deciding whether
x = x′.

The adversary computes α, β, and γ as follows:

α = c′ · aP − c · a′P
β = c′ · byP − c · b′yP
γ = c′ · z − c · z′

(5.1)

Terms α, β, and γ satisfy the following equation if and only if x = x′.

α + β · y−1 = γP (5.2)

The adversary now calls the InsiderTag oracle and receives yP , P , and x′′ of a
legitimate tag T ′′. To test whether Equation (5.2) holds, the adversary initiates
a protocol execution with a reader. He sends α and β, upon which the reader
challenges with c′′. The adversary computes z′′ = γ+x′′ · c′′ and the corresponding
encrypted MAC. The reader accepts the adversary’s insider tag if and only if

86 Chapter 5 Untraceability proof models

x = x′. Therefore, if the reader accepts the insider tag, we know that T = T ′,
otherwise T 6= T ′. The protocol flow between the reader and adversary is depicted
in Figure 5.13.

y, P, x′′P, sk(R), k(R, T ′′)

R

x′′, P, yP, pk(R), k(R, T ′′)

A

c′′ ∈R Zq

α, β

c′′

z′′ := γ + x′′ · c′′

E ′′ := {MAC k(R,T ′′)(α, β, c
′′, z′′)}pk(R)

z′′, E ′′

Figure 5.13: Insider attack on BCI with encrypted MAC.

Thus, the protocol is not wide-insider private.

Bringer et al. [BCI08, Theorem 2] showed that BCI is narrow-forward private and
Theorem 5.22 shows that BCI with encrypted MAC is narrow-forward private
and satisfies security. Vaudenay has shown [Vau07, Lemma 8] that any narrow-
forward private protocol that satisfies security is also wide-forward private. BCI
with encrypted MAC is, therefore, wide-forward private. By Theorem 5.23 it is not
wide-insider private. Therefore, wide-forward privacy does not imply wide-insider
privacy and wide-weak privacy does not imply wide-insider privacy.

5.4 Results by Ng, Susilo, Mu, and Safavi-Naini

Vaudenay showed that any narrow-weak (or narrow-forward) private protocol is
also wide-weak (or wide-forward) private if it satisfies security and always accepts
a legitimate tag with which it has a matching conversation [Vau07, Lemma 8]. The
only difference between a narrow and a wide adversary is that the wide adversary
can access the Result oracle. To show that any narrow-private protocol is also
wide-private, the blinder needs to simulate answers to Result queries. By security,
the oracle always returns 0 if there no matching conversation with a legitimate tag.
By the hypothesis, the oracle always returns 1 if there is a matching conversation
with a legitimate tag. Forward and weak adversaries can not query the Result
oracle after a Corrupt oracle access. Thus, to simulate answers to Result
queries, the blinder returns 1 if there is a matching conversation and 0 otherwise.
This simulation is perfect, proving the lemma.

The above result was extended for destructive and strong adversaries by Ng, Susilo,
Mu, and Safavi-Naini [NSMSN08, Proposition 2]. They claim that a narrow-private
protocol can be turned into a wide-private protocol under the assumption that it is
secure and legitimate tags are always accepted. Their proof relies on the fact that
whenever a reader runs a protocol execution, there is always some tag with which it
is communicating (be it legitimate or not). However, irrespective of the protocol, a

5.5 Provable wide-strong privacy 87

destructive or strong adversary can corrupt a tag and simulate a protocol execution
with the adversary. In such a case, there is no tag present in the communication
with the reader. Building on our notion of insider attacks, we can now show that
Proposition 2 by Ng et al. [NSMSN08] is invalid.

Lemma 5.24. A narrow-destructive (narrow-strong) private protocol that satisfies
security is not necessarily wide-destructive (wide-strong) private.

Proof. We show the narrow-destructive case by exhibiting a counter-example. Take
the narrow-destructive private protocol BCI by Bringer et al. [BCI08]. By apply-
ing Theorem 5.22, it can be turned into a narrow-destructive protocol satisfying
security (Figure 5.12). Theorem 5.23 shows that this protocol is not wide-insider
private. Since wide-destructive implies wide-insider privacy, we know that the
protocol can also not be wide-destructive private.

Since the BCI protocol is also narrow-strong, the narrow-strong case can be shown
analogously.

Lemma 5.24 shows that Proposition 2 by Ng et al. [NSMSN08] does not apply to all
narrow-destructive protocols. In particular, it shows that the separation between
narrow and wide classes of protocols achieving security is indeed necessary for the
classes destructive and strong, as opposed to what was claimed.

A second result [NSMSN08, Proposition 3] states that under the assumption that
tags do not share correlated keys, the destructive class is unnecessary. The follow-
ing lemma contradicts this statement by showing that there exist protocols without
correlated keys that are wide-forward private, but not wide-destructive private.

Lemma 5.25. For the class of RFID protocols employing uncorrelated keys among
tags, forward privacy does not imply destructive privacy.

Proof. We take the narrow-destructive private BCI protocol by Bringer, Chabanne,
and Icart [BCI08]. In the BCI protocol, tag keys are not shared. By applying The-
orem 5.22, it can be turned into a narrow-destructive protocol satisfying security
(Figure 5.12). The resulting protocol is wide-forward private by Lemma 8 of Vau-
denay [Vau07]. However, Theorem 5.23 shows that the protocol is not wide-insider
private and as a consequence not wide-destructive private. The example shows
that wide-forward privacy does not imply wide-destructive privacy for protocols
employing uncorrelated keys.

5.5 Provable wide-strong privacy

We present the first provably wide-strong and authenticating RFID protocol exclu-
sively based on elliptic-curve and scalar operations. Such a scheme is interesting for
two reasons. A public-key-based scheme permits more efficient tag identification:
As shown by Damg̊ard and Pedersen [DP08], for symmetric schemes, RFID privacy
can only be obtained at the cost of an inefficient tag lookup procedure for the RFID
reader. The implementation of a typical IND-CCA2 public-key cryptosystem on
an RFID tag is, however, quite expensive. To achieve IND-CCA2 security, most

88 Chapter 5 Untraceability proof models

cryptosystems rely on three components. An intractable number-theoretic prob-
lem, a symmetric block cipher, and a cryptographic hash function. The main cost
in such a scheme is incurred by the large number of gates required to implement
the number-theoretic operations on one side and an even larger number of gates to
implement the cryptographic hash function on the other. Thus, there is interest
in attempting to do away with the hash function by reusing the number-theoretic
circuits to implement the same functionality provided by the hash function.

Our protocol is an implementation1 of Vaudenay’s public-key RFID protocol which
has been proved to satisfy authentication in [Vau07] and wide-strong privacy
in [HPVP11]. The privacy proof requires the protocol to employ an IND-CCA2
public-key encryption scheme. The encryption scheme we use in the protocol is
the hash-free variant of the Cramer-Shoup scheme [CS98]. It provides IND-CCA2
security assuming only the decisional Diffie-Hellman assumption.

5.5.1 Preliminaries and notation

In the following we first briefly recall the Cramer-Shoup public-key encryption
scheme. The RFID protocol requires RFID tags to encrypt messages for the sys-
tem’s RFID readers, thus one private key and public key pair needs to be gener-
ated. The RFID readers store the private key, the RFID tags are equipped with
the public key.

Let F2n be a finite field with 2n elements. Let E be the group of F2n-rational
points of an ordinary elliptic curve over F2n . That is, E denotes the set of points
which satisfy the equation y2 + xy = x3 + ax2 + b, with a, b ∈ F2n being fixed
parameters, together with O, the “point at infinity”, which serves as the group’s
neutral element. We will assume that the group E contains a subgroup G of large
prime order p and small index in E .

Let P1 ∈ G, P1 6= O and 1 < w, c, d, z < p be randomly chosen, system-wide
parameters and let h be a collision-resistant hash function. Set P2 = wP1, C = cP1,
D = dP1, H = zP1. The tuple (P1, P2, C,D,H) is the RFID reader’s public key
and (w, c, d, z) its secret key.

To encrypt a message M ∈ G, we choose a random integer 1 < r < p and compute
U1 = rP1, U2 = rP2, E = rH + M , α = h(U1, U2, E), and V = rC + rαD. The
ciphertext is (U1, U2, E, V).

To decrypt, correctness of V and U2 needs to be verified first. For this, α =
h(U1, U2, E) is computed, then V is compared to cU1 + αdU1 and U2 is compared
to wU1. If the terms are equal, then the plaintext is recovered via M = E − zU1.

5.5.2 Mapping into the elliptic curve

During the course of the protocol, a tag needs to encrypt a message M . This
message needs to be a concatenation of ID and challenge to avoid algebraic attacks
as well as an element of the group G. Thus we represent ID and challenge as bit
strings and map their concatenation into the group G.

1The implementation is due to Saša Radomirović.

5.5 Provable wide-strong privacy 89

To map the reader’s challenge and the tag’s identity into the elliptic curve, we use
a simple try-and-increment method [Ica09]. In the following, we identify elements
in finite extensions of F2 with bit strings. Let k be a security parameter. The map
φ : F2n−k → G ∪ {fail} is defined as follows. It assigns to x ∈ F2n−k an element
(x′, y) ∈ G, where the n− k most significant bits of x′ ∈ F2n are equal to x and the
remaining k bits are such that (x′, y) ∈ G. To find such a pair (x′, y) we simply
step through all 2k possible bit strings. If no such bit string is found the map
returns fail. Since the expected number of try-and-increment steps is 2 [Ica09], the
probability of failure is 1/22k . Thus the security parameter k can be fairly small.
We refer to [Ica09] for a discussion on how to implement the try-and-increment
algorithm securely, that is, resistant to timing attacks.

Lemma 5.26. If E has cardinality 2p, p prime, then the map φ can be implemented
with 2k+1 computations of the trace function of F2n over F2, and one square root
computation over F2n.

Remark 5.27. There are several more sophisticated algorithms to map bit strings
to points on an elliptic curve than the try-and-increment method we employ above.
The most efficient, deterministic maps are Icart’s fa,b function [Ica09] and the SWU
map [CI09, SvdW06, Ula07]. However, special care needs to be taken in order to
implement them securely. The fa,b function, for instance, can have up to four
elements in the preimage of a point (x, y). For the case of characteristic 2, where
the point satisfies the equation y2 + xy = x3 + ax2 + b, with a, b ∈ F2n being
fixed parameters, these four elements are the solutions of the quartic polynomial
u4 +u2 +xu+(y+a) over F2n . If Icart’s function is used in the way our φ function
is used above, an adversary might be able to launch a man-in-the-middle insider
attack. The attacker’s goal would be that the victim’s answer is accepted by the
reader if and only if the quartic polynomial contains the adversary’s solution as
well as the victim’s which would identify the victim to the adversary.

5.5.3 The basic protocol

For simplicity, we first demonstrate how the regular Cramer-Shoup scheme can be
used to implement the protocol. In the next section we replace the cryptographic
hash function by elliptic-curve point operations to obtain a purely elliptic-curve-
based protocol.

Let IDT be a tag T ’s identity, encoded as a randomly chosen bit string of length
1
2
(n − k), where k is the security parameter associated with the φ function. The

basic protocol now runs as follows. The reader challenges the tag with a randomly
generated bit string N of length m = 1

2
(n− k). The tag concatenates its identity

IDT with the challenge string N and applies the φ function to obtain the point M =
φ(IDT , N) on the elliptic curve. Thus, the tag sends rP1, rP2, rH+φ(IDT , N), rC+
rαD to the reader. The reader accepts the tag if the response verifies correctly.
The protocol is depicted in Figure 5.14 (left).

5.5.4 A purely elliptic-curve-based solution

We now use the hash-free variant of the Cramer-Shoup scheme [CS98, Section 5.3]
to implement a purely elliptic-curve-based protocol. Recall that E is an elliptic

90 Chapter 5 Untraceability proof models

IDT , (w, c, d, z)

R

IDT , (P1, P2, C,D,H)

T

N ∈R {0, 1}m
N

r ∈R Zq

E := rH + φ(IDT , N)
α := h(rP1, rP2, E)
V := rC + rαD

rP1, rP2, E, V

IDT , (w, c, d1...4, z)

R

IDT , (P1, P2, C,D1...4, H)

T

N ∈R {0, 1}m
N

r ∈R Zq

E := rH + φ(IDT , N)
A := h(rP1, rP2, E)
V := r(C + A)

rP1, rP2, E, V

Figure 5.14: Elliptic-curve-based protocol with a cryptographic hash function
(left) and with an elliptic-curve-based hash function (right).

curve over a finite field F2n such that it contains a subgroup G of order p, where p
is a large prime.

Let P ∈ G and c, d1, . . . , d4, w, z ∈ Zp be randomly chosen, system-wide parame-
ters. Set C = cP , Di = diP for 1 ≤ i ≤ 4, and H = zP1. Then the reader’s public
key is (P1, P2, C,D1, . . . , D4, H) and its secret key is (c, d1, . . . , d4, w, z). Encryp-
tion and decryption are as in the regular scheme, but the value αD is replaced by
A = hE(U1, U2, E), where hE is a function whose range is a subset of the elliptic
curve E . It remains to define the function hE .

The hash function hE . The hash function in the encryption scheme needs to hash
three points on the elliptic curve onto a single point in a collision-resistant manner.
Let x(Q) be the x-coordinate of a point Q and y(Q) be its y-coordinate. In
characteristic 2, a pair (x(P), y(P)) is a point on the elliptic curve if and only
if (x(P), x(P) + y(P)) is [Ser98]. Thus for each point on the curve, given its x-
coordinate, there are only two possible y-coordinates. Therefore, only one bit is
needed to encode the y-coordinate.

Define hE(X1, X2, X3) as follows. For i = 1, 2, 3, let si be the n + 1-bit strings
obtained from the n + 1-bit encoding of the points X1, . . . , X3. We then split the
string s1, s2, s3 into the four blog2 pc-bit strings a1, . . . , a4. Then h(X1, X2, X3) =∑4

i=1 aiDi.

Let IDT be a bit string of length 1
2
(n − k). The hash-free variant of the protocol

is depicted in Figure 5.14 (right). The protocol can be implemented with 8 point
multiplications, 5 point additions, 2k+1 computations of the trace function of F2n

over F2, and one square root computation over F2n .

Correctness, security, and privacy Correctness of the hash-free scheme follows
immediately from correctness of the Cramer-Shoup encryption scheme [CS98]. Pri-
vacy and security follow Vaudenay [Vau07] and Hermans et al. [HPVP11] and the
IND-CCA2 security of the hash-free Cramer-Shoup encryption scheme.

5.6 Conclusion 91

5.5.5 Practicality

The protocol presented in the preceding section cannot be considered practical
for most applications. There are several aspects to our approach that could be
attempted in a different manner. Our current solution employs four elliptic curve
point multiplications to implement the “hash-free” collision resistant function sug-
gested by Cramer and Shoup [CS98]. The main reason for using a purely elliptic-
curve based function is that existing circuits can be reused.

If we allow for hybrid encryption approaches, then a particularly efficient solution
would be the OTP-PSEC-3 encryption scheme [OP00]. This scheme uses two
elliptic curve point multiplications and two hash function applications. The scheme
has been shown to be IND-CCA2 secure in the random oracle model and based on
the elliptic curve gap Diffie-Hellman assumption. One of the two hash functions
takes as input a random bitstring, the other takes two bitstrings and two points
on the elliptic curve. Using the methods above to produce a purely elliptic-curve
based solution, it can be easily seen that the number of point multiplications is at
least as large as in our solution.

5.6 Conclusion

There are two types of computational proof models for untraceability of RFID pro-
tocols: indistinguishability-based proof models and unpredictability-based proof
models. We have shown that the unpredictability based definitions by Ha, Moon,
Zhou, and Ha [HMZH08] and by Ma, Li, Deng, and Li [MLDL09] do not coin-
cide with the intuitive notion of untraceability. Specifically, for both models we
have given protocols that should be untraceable but can be proven to be traceable.
Conversely, we have also given protocols that are traceable but can be proven to
be untraceable in both models.

We have argued that insider attacks are a plausible and important class of attacks,
relevant for wide adversaries. In Vaudenay’s model, insider attacks are not natu-
rally represented, but can be modeled by assuming a destructive adversary. This
is, however, an unreasonable over-approximation of the powers of an attacker who
cannot corrupt tags, but who does have means to introduce insiders in the system.
We have constructed a new class of adversaries modeling insider attackers. We
have shown its relevance by showing separations with existing adversary classes
in Vaudenay’s model. Using the intuition behind insider attacks, we have shown
that the eight privacy classes introduced by Vaudenay do not collapse into three,
as was suggested by Ng, Susilo, Mu, and Safavi-Naini [NSMSN08].

As a final contribution, we have constructed the first provably secure and wide-
forward private RFID protocol based only on elliptic-curve operations.

Part II

RFID protocols and authentication

93

6

Authentication attacks

Authentication is a security property that is not specific to RFID protocols. In
fact, various frameworks for proving authentication have been developed, e.g. BAN
logic [BAN90], strand spaces [THG99], and the applied pi calculus [Bla01]. Further-
more, several automatic tools for verifying authentication have been developed, e.g.
AVISPA [ABB+05], Scyther [Cre06b], ProVerif [Bla01], and Casper/FDR [Low98].
For this reason, in this chapter, we focus on authentication problems that are
specific to RFID protocols.

The main difficulty in designing RFID protocols that satisfy authentication is that
the protocols run in a resource-constrained environment. RFID protocol designers
often assume that it is not possible to implement cryptographic hash functions or
public key cryptography on a tag. Instead, they design protocols using operators
such as exclusive or, bitwise shifting, modular addition, and logical and and or. The
advantage of using these operators is that the footprint of the chip implementing
the RFID protocol is much smaller. The disadvantage is that it becomes much
harder (if not impossible) to formally prove security requirements of the protocol.
Furthermore, attack-finding using existing tools becomes harder since they cannot
deal with these operators.

The purpose of this chapter is to show the different types of authentication flaws
from which current RFID protocols suffer. To this end we first discuss different
definitions of authentication and argue when they should be used. We then describe
three types of flaws and for each of these types illustrate attacks on protocols from
literature. The main theme in these attacks is that the attacker abuses some
algebraic property of the messages being exchanged between reader and tag.

This chapter is of a very similar nature as the chapter on untraceability attacks
(Chapter 4). It also serves as a reference to protocol designers showing common
mistakes in designing authentication protocols. Like in Chapter 4 we do not give
explicit protocol traces of the attack. We thus give a description of the attack that
is sufficient to reconstruct attack traces.

6.1 Forms of authentication

One of the most common requirements on security protocols is authentication.
The goal of an authentication protocol is to convince one agent of the identity
of another. Authentication is a local property: a protocol between a reader and
a tag may, for instance, provide tag-to-reader authentication, but not reader-to-
tag authentication. In most cases, we are mainly concerned with tag-to-reader
authentication, but some applications also require reader-to-tag authentication. If

95

96 Chapter 6 Authentication attacks

a protocol satisfies both, we say the protocol satisfies mutual authentication.

For most applications, assurance of the identity of the communicating party is too
weak as an authentication requirement. Consider an RFID system used to unlock
garage doors. An authentication protocol would ensure that at the end of the
protocol execution, the RFID reader is convinced that he communicated with the
valid tag. There is no guarantee, however, that the RFID tag executed his run of
the protocol at the same time. An attacker could have captured messages generated
by the tag and replayed them to the reader. For this reason, we consider recentness
of the tag’s protocol execution to be essential. Recentness can be formalized by
requiring that between the start and the end of the run, the communicating party
has generated a message. We consider recent aliveness to be a minimal requirement
for tag-to-reader authentication.

Definition 6.1 (Recent aliveness [Low97]). A protocol guarantees to an agent
a recent aliveness of an agent b if, whenever a completes a run of the protocol,
apparently with b, then b has been running the protocol during a’s run.

This definition has been formalized in different ways. For instance, Lowe [Low97]
defined the property in CSP and Cremers [CM05, Cre06b] gave a definition in a
trace model similar to the one developed in Chapter 3.

If an RFID tag implements more functionality than mere identification and authen-
tication of objects, the RFID protocol may have to provide stronger guarantees
of authenticity. These RFID tags can be found in applications such as electronic
transportation cards, electronic payment cards, and e-passports. In all these ap-
plications data is transferred between reader and tag. The integrity of this data
must be protected during transmission. This property is formalized by requiring
agreement on the data: at the end of their protocol executions the agents agree on
the values of the data exchanged in the protocol.

Definition 6.2 (Agreement [Low97]). A protocol guarantees to an agent a in role A
agreement of an agent b in role B on a set of data items ds if, whenever a completes
a run of role A, apparently with b, then b has been running the protocol with a.
Furthermore, a and b agree on the values of ds and each run of a corresponds to a
unique run of b.

The requirement of unique correspondence of runs is necessary to prevent replay
attacks. It ensures that the messages of one run of an agent cannot be reused to
complete another run. Most RFID applications allow agents to execute only one
role: a tag can only execute the tag role and a reader can only execute the reader
role. However, some applications, such as near-field communication (NFC) allow
agents to act both as initiator and as responder in the protocol.

The formalization of the above definition has been carried out in different ways.
Lowe defined the requirement in CSP [Low97], Cremers in the aforementioned
trace model [CM05, Cre06b], and Blanchet in the applied-pi calculus [Bla07]. In
the computational setting, it is often formalized by the concept of matching con-
versations [War03]. The definition of soundness by Ma, Li, Deng, and Li (Defini-
tion 5.4, Section 5.2.2) and the definition of security by Vaudenay (Definition 5.17
, Section 5.3.1) are both computational definitions of agreement.

6.2 Algebraic replay attacks 97

6.2 Algebraic replay attacks

A common way to authenticate RFID tags is by means of the challenge-response
mechanism depicted in Figure 6.1. The RFID reader challenges the tag with a
nonce c. The tag generates a nonce r and derives a response from c, r, and some
shared information s that identifies the tag. The nonce r is not necessary for
authentication, but frequently ensures indistinguishability of tag responses. In
case of a mutual authentication protocol, it may serve as a challenge to the reader.
We can thus represent the tag’s response to the reader’s challenge as the term
r, g(c, r, s) with the understanding that r may be constant or empty. The reader
verifies the authenticity by applying the inverse of the function g to the term and
checking whether the response contains c and a valid s. If g is a one-way function
then the reader verifies the authenticity of the tag by computing the function
g(c, r, s) and comparing it to the received value. The reader can compute this
function, since it generated the value c itself, the value r is supplied by the tag,
and the reader has a database with values of s for every tag it may authenticate.

R T

nonce c
c

nonce r
r, g(r, c, s)

Figure 6.1: Basic challenge-response structure

The following two properties are necessary in order for the challenge-response mech-
anism to guarantee authentication of the tag.

Freshness For fixed r and s the range of the function c→ g(c, r, s) must be large.
More precisely, for r and s, the adversary’s advantage in guessing g(c, r, s)
correctly for a randomly chosen c must be negligible.

Algebraic replay resistance (ARR) Let Os(x) be an oracle which upon input
x randomly chooses y and returns y and g(x, y, s). If s is unknown, then
given access to a polynomial number of oracle outputs Os(x1), . . . , Os(xl), it
is infeasible to compute g(c, r, s) for a given c 6∈ {x1, . . . , xl} and any choice
of r.

If freshness is satisfied, then the probability of the adversary guessing g(c, r, s)
is negligible. Thus with overwhelming probability, a response r, g(c, r, s), to the
reader’s challenge c must have been generated after the challenge was sent. This
property is necessary for recentness and in particular excludes classical replay at-
tacks.

Algebraic replay resistance (ARR) guarantees that there is no efficient algorithm
to compute a response r, g(c, r, s) to the challenge c even after having observed
polynomially many challenge-response pairs. An attacker’s ability to compute
such a response violates authentication. Such an attack generalizes replay attacks
in that instead of merely replaying previously observed messages, the attacker

98 Chapter 6 Authentication attacks

combines previously obtained challenge-response pairs to compute the response to
a fresh challenge. Hence, we refer to attacks on challenge-response authentication
protocols exploiting the lack of the ARR property as algebraic replay attacks.

For a function g(c, r, s) to have the ARR property, it must preserve the secrecy of s.
Indeed, cryptographic hash functions are frequently used for the type of challenge-
response mechanism considered here. Since the collision resistance property of
cryptographic hash functions does not seem necessary for the challenge-response
mechanism, the question arises whether all one-way functions satisfy the ARR
property. In general, this is not true for homomorphic one-way functions. The
following example shows the case of the Rabin function.

Example 6.3 (Rabin function does not satisfy ARR). Let N be the product of two
large primes. The Rabin function f(x) is defined by f(x) = x2 mod N . Let the
function g be defined by g(c, r, s) = (c·r ·s)2 mod N . Then given a single challenge-
response pair (c, g(c, r, s)) one can compute g for any challenge c′: g(c′, r, s) =
g(c, r, s) · (c′/c)2. Therefore, the protocol in Figure 6.1 instantiated with the Rabin
function is not resistant to algebraic replay attacks.

Even non-homomorphic one-way functions in general do not have the ARR prop-
erty if their argument has algebraic properties. We show that several protocols
fail to achieve authentication for this reason. In these protocols the challenge-
response construction can typically be represented as g(c, r, s) = f(c ◦ r, s), where
f is a (non-homomorphic) cryptographic hash function and ◦ denotes an operator
with the following algebraic property. Given a, b, and c, it is easy to find d with
a ◦ b = c ◦ d. This construction does not have the ARR property, regardless of the
properties of f . The algebraic replay attack on such a protocol works as follows.
An adversary observes one execution of the protocol and learns c, r, and f(c◦r, s).
When challenged with c′, the adversary finds r′ such that c◦r = c′◦r′ and responds
with r′, f(c ◦ r, s). The attack succeeds because f(c ◦ r, s) = f(c′ ◦ r′, s).
Examples of operators ◦ for which this type of attack succeeds are bitwise exclusive
or, bitwise disjunction/conjunction, and modular addition/multiplication.

The EC-RAC I protocol discussed in Chapter 4, is vulnerable to an algebraic
replay attack in which the adversary needs to observe three protocol executions.
The algebraic replay attack can then be executed by solving a small system of
equations yielding a constant particular to the tag. While this constant does not
reveal the tag’s secret information, it can still be used to compute the correct
response to a reader’s challenge. This attack has been first described by Bringer,
Chabanne, and Icart [BCI08].

6.2.1 The Chien and Huang protocol

The protocols by Chien and Huang [CH07], Kim, Choi, Lee, and Lee [KCLL06],
Lee, Asano, and Kim [LAK06], Cai, Zhan, and Wang [CZW08] and Song and
Mitchell [SM08] all suffer from algebraic replay attacks. These attacks abuse the
fact that a hash-like function or a cryptographic hash function is composed with
xor and fit into the challenge-response construction with the function f(c ◦ r, s)
shown above.

6.3 Compositionality attacks 99

k, ID

R

k, ID

T

nonce c
c

nonce r

g̃ := h(c⊕ r ⊕ k)

ID2 := rotate(ID , g̃)

r,LeftHalf (ID2 ⊕ g̃)

find k, ID consistent with
r,LeftHalf (ID2 ⊕ g̃) for
g̃ := h(c⊕ r ⊕ k)
ID2 := rotate(ID , g̃)

RightHalf (ID2 ⊕ g̃)

Figure 6.2: The Chien and Huang protocol

We illustrate a complete attack on the protocol proposed by Chien and Huang
[CH07], depicted in Figure 6.2. The reader R and tag T share secrets k and ID .
The reader starts by sending a random bit string c. The tag generates a random
string r and hashes the xor of c, r, and the secret k. This hash and ID are used
as input for a function in which the ID is rotated by a value depending on the
hash. The tag computes the xor of the rotated ID and the hash, before sending
the left half of the resulting bits and r to the reader. The reader performs the
same operations on every pair of ID and k until it finds the corresponding tag. It
then sends the right half of the corresponding bits to the tag.

To impersonate a tag, it suffices to notice that the tag’s response to the reader’s
challenge only depends on c⊕ r and a shared secret. The composition of functions
applied to the xor and shared secret can be represented by the function f , defined
above. Thus, the adversary can challenge a tag with any c to obtain a valid
combination of c, r, and Left(ID2⊕ g̃). This information suffices for the adversary
to be able to respond to any future challenge c′ received from a reader. When
challenged, the adversary sets r′ = c′ ⊕ c⊕ r and sends r′,Left(ID2 ⊕ g̃).

6.3 Compositionality attacks

We revisit protocol 4 of EC-RAC II of Section 4.5 (see Figure 6.3). The attack
described in Section 4.5 shows that there exists a compositionality attack on un-
traceability of the protocol. We here show that there also exists a compositionality
attack on authentication of the protocol.

In order to break tag authentication in the protocol, an adversary needs to know
xY . Recall that an adversary can obtain the multiplication of any nonzero point X
by the reader’s secret y. In the following we write this loop oracle as the function
O(X) = yX. To use the loop O in protocol 4 for this purpose, the adversary sends
a nonzero point T1 = X, along with a random point T2 to the reader. The reader
replies with a random s and yT1 = yX, the scalar multiplication of the reader’s

100 Chapter 6 Authentication attacks

y

R

x

T

s ∈R Z a, b ∈R Z
T1 := aP, T2 := bP

T1 is valid

S1 := yT1, s

aY = S1

T3 := (b + sx)Y

find xP

Figure 6.3: Protocol 4 of EC-RAC II

secret key y and the point X.

By eavesdropping on one communication between a tag and a reader, an attacker
obtains bP , the challenge s, and (b+ sx)Y . He then computes s−1bP and s−1(b+
sx)Y = (s−1b + x)Y . Using the oracle, the attacker obtains O(s−1bP) = s−1bY
and computes the difference (s−1b+ x)Y − s−1bY = xY .

After learning xY the adversary can impersonate a tag as follows. The attacker
chooses a random integer r and submits rP, rP to the reader. The reader responds
with rY and a challenge s. To answer this challenge, the attacker responds with
sxY + rY = (r + sx)Y .

6.4 Leakage attacks

The authentication and untraceability properties of RFID protocols often rely on
the secrecy of shared keys. In some cases, revealing parts of a secret key may
already be enough to trace the tag. If sufficiently many bits of a key can be
revealed, brute-forcing the remaining bits may become feasible. This allows an
attacker to impersonate the tag to a reader and break authentication.

In an effort to keep RFID tags cheap, a number of lightweight protocols have been
proposed. These protocols do not use standard cryptographic primitives, but in-
stead rely on simple operators such as modular addition and rotation. A natural
point of attack is to set up equations involving the terms on whose secrecy the
protocol depends. Such equations may be obtained by observing several protocol
runs. Alternatively, one could modify parts of messages and observe the responses
generated by reader or tag. One may then attempt to apply any known cryptana-
lytic method to recover (parts of) the shared secret. Recovering the shared secret
immediately breaks untraceability and authentication.

We show two examples of protocols that can be broken with simple cryptanalytic
methods.

6.4 Leakage attacks 101

k, ID

R

k, ID

T
Query

nonce r0, r1

h(ID , r0), h(r1, k), ID ⊕ r1

nonce r2

h(r1, r2), ID ⊕ r2

r1 + r2 mod 2n

k := r1 + r2 mod 2nk := r1 + r2 mod 2n

ID := ID ⊕ r1 ⊕ r2ID := ID ⊕ r1 ⊕ r2

Figure 6.4: The Kang and Nyang protocol.

6.4.1 The Kang and Nyang protocol

We consider the protocol by Kang and Nyang [KN05] that uses modular addition,
exclusive or, and hash functions. The tag initiates the protocol by generating a
random value r0 from a small domain and a random value r1 of length n. The tag
sends the two hashes h(ID , r0), h(r1, k) and ID⊕r1 to the reader. Using h(ID , r0),
the reader finds ID by trying out all combinations of values for ID stored in its
database and of all possible values for r0. This is possible for the reader because
r0 is chosen from a small domain and the number of IDs stored in its database is
very small compared to the number of possible IDs. Using ID the reader retrieves
k from its database, and using ID ⊕ r1 and ID , the reader finds r1 and may then
verify the correctness of the value of h(r1, k). The reader then generates a random
value r2 of length n and sends ID ⊕ r2 and h(r1, r2) to the tag. The tag verifies
these and sends r1 + r2 mod 2n back to the reader. Both tag and reader update
the ID by xor -ing it with r1 ⊕ r2. The protocol is depicted in Figure 6.4.

Since hash functions are assumed to be perfect, we consider the terms ID ⊕ r1,
ID⊕r2, and r1+r2 mod 2n, setting up a system of equations involving the variables
ID , r1, r2, and the values observed during runs of the protocol. A moment’s
thought shows that we may combine the first two equations to obtain r1 ⊕ r2.

For convenience, we set V = r1 + r2 mod 2n and W = r1 ⊕ r2. Let V [i] be the
i-th bit of V , and similarly for W , r1, and r2. Furthermore, let V [1] be the least
significant bit of V . By comparing addition modulo 2n with xor it is easy to see
that V [i+ 1] 6= W [i+ 1] only if there is a carry bit in the computation of V [i]. If
this is the case, then r1[i] 6= r2[i]⇔ W [i] = 1 and r1[i] = r2[i] = 1⇔ W [i] = 0.

Since the latter case determines r1[i] and r2[i] uniquely, it follows that it can be
used to find the i-th bit of ID . More bits from ID can be obtained by noticing that
a carry bit in V [i] followed by no carry bit in V [i+1] implies r1[i+1] = r2[i+1] = 0.

Since r1 and r2 are chosen at random, on average, every communication session
leaks roughly n−1

4
bits of ID . Revealing all bits of ID , once sufficiently many bits

are known, can be achieved with a brute-force search over possible values for ID
and r0 and comparing their hash to h(ID , r0). Revealing all bits of ID is made a
little more complicated by the fact that reader and tag update ID at the end of
every protocol execution by setting it to ID⊕r1⊕r2. The adversary may therefore

102 Chapter 6 Authentication attacks

need to keep track of two or three consecutive protocol executions between the tag
and reader before performing the exhaustive search in order to completely reveal
the tag’s ID . Knowing the ID , the adversary can impersonate both tag and reader
and trace the tag.

6.4.2 The Di Pietro and Molva protocol

In this section, we show a passive attack1 on the Di Pietro and Molva protocol
discussed in Section 4.3.1. The protocol is depicted in Figure 6.5.

k

R

k

T

nonce r0

R, r0

nonce r1, . . . , rq

αi := k ⊕ ri

V := dpm(r1), . . . , dpm(rq)

ω := h(k, r0, r1, k)

α1, . . . , αq, V, ω

find k
h(k, r1, k)

Figure 6.5: The Di Pietro and Molva protocol

For ease of notation, we represent bitstrings as vectors over the finite field with two
elements F2. The majority function M : F3

2 → F2 and the function dpm : F`2 → F2

are then defined as follows:

M(x, y, z) = xy + yz + xz

dpm(x1, . . . , x`) =

`/3∑
i=1

M(x3i−2, x3i−1, x3i)

Our goal is to recover the key k from a collection of αi’s and corresponding V [i]’s
generated by the same tag. To this end, we set up a system of linear equations
involving αi’s and V [i]’s that when solved yields the key k.

We first observe that for (a, b, c), (x, y, z) ∈ F3
2,

M(a+ x, b, c) = ac+ bc+ ab+ cx+ bx

with analogous equations for M(a, b + y, c) and M(a, b, c + z). Furthermore, we
have

M(a+x, b+ y, c+ z) = M(a+x, b, c) +M(a, b+ y, c) +M(a, b, c+ z) +M(x, y, z).

1The attack and analysis are due to Saša Radomirović.

6.4 Leakage attacks 103

It follows that

M(a+ x, b+ y, c+ z) = M(a, b, c) +M(x, y, z) + a(y + z) + b(x+ z) + c(x+ y)

which after reordering we write as

(y + z, x+ z, x+ y) ·

ab
c

 = M(a+x, b+y, c+z)+M(a, b, c)+M(x, y, z). (6.1)

For convenience, we define the function cross : F`2 → F`2:

cross(x1, y1, z1, . . . , x`/3, y`/3, z`/3) =

(y1 + z1, x1 + z1, x1 + y1, . . . , y`/3 + z`/3, x`/3 + z`/3, x`/3 + y`/3).

The cross function is linear and it follows that cross(r1)+cross(r2) = cross(r1+r2) =
cross(α1 + α2). We now represent cross(ri) as a row vector and transpose the key
vector k. From Equation (6.1) and the definition of dpm we get

cross(r1) · kT = dpm(k + r1) + dpm(k) + dpm(r1) (6.2)

cross(r2) · kT = dpm(k + r2) + dpm(k) + dpm(r2) (6.3)

If we add Equations (6.2) and (6.3) we obtain

cross(r1 + r2) · kT = dpm(α1) + dpm(α2) + dpm(r1) + dpm(r2). (6.4)

For i = 2, . . . , `+1, let the `×` matrix A be given by the row vectors cross(α1 +αi)
and let the column vector v be given by the entries dpm(α1)+dpm(αi)+dpm(r1)+
dpm(ri). Consider then the linear equation Ax = v, viz.

cross(α1 + α2)
cross(α1 + α3)

...
cross(α1 + α`+1)

x =

dpm(α1) + dpm(α2) + dpm(r1) + dpm(r2)
dpm(α1) + dpm(α3) + dpm(r1) + dpm(r3)

...
dpm(α1) + dpm(α`+1) + dpm(r1) + dpm(r`+1)

By construction, the vector x = kT is a solution of the linear equation. Any y such
that Ay = 0 (i.e. any y in the null space

of A) yields a solution kT + y to the equation. Thus, the null space of A can be
considered the adversary’s uncertainty about k. From the definition of the cross
function, one can see that the null space of A contains the `/3 vectors

(1, 1, 1, 0, . . . , 0)T , (0, 0, 0, 1, 1, 1, 0, . . . , 0)T , . . . , (0, . . . , 0, 1, 1, 1)T . (6.5)

We now show that the null space of A is actually spanned by these vectors whenever
A is constructed from linearly independent vectors α1, . . . , α`+1. Therefore, if one
solution x is found, all others can be constructed by adding (a subset) of the
vectors in (6.5). No other solutions exist. In other words, the adversary can learn
all bits of k up to complements of `/3 consecutive bit-triplets.

104 Chapter 6 Authentication attacks

Theorem 6.4. If α1, . . . , α`+1 are linearly independent, then the null space of A is
spanned by the vectors in (6.5). Equivalently, the number of linearly independent
rows (i.e. the rank) of A is 2

3
`.

Proof. We know that the `/3 vectors listed in (6.5) are in the null space of A. Since
they are linearly independent, the rank of A is at most 2

3
`.

Conversely, consider the matrix Ã obtained from A by deleting every third column
of A. We construct a matrix B consisting of the rows α1 + α2, . . . , α1 + α`+1. By
construction, the vectors in B are linearly independent and, therefore, B has rank
`. We now construct B̃ from B by adding every third column to the preceding
two columns and swapping those preceding two columns. The rank of B̃ is equal
to the rank of B. Now, Ã can be obtained from B̃ by deleting every third column
of B̃. Since deleting a column of a matrix decreases its rank by at most 1, and B̃
had rank `, the rank of Ã is at least 2

3
`. Thus, the rank of A is at least 2

3
`.

The theorem assumes that the matrix A contains ` linearly independent rows. A
legitimate tag generates ri’s at random, thus if the ri’s are linearly independent,
then so are the αi’s.

To estimate the number of ri’s needed to obtain a matrix of rank n, we use a
theorem about the rank of a random (n + s) × n matrix M by Cooper [Coo00,
Theorem 1]. The theorem states that the probability pn that the rank of M equals
n converges to

lim
n→∞

pn(s) =
∞∏

j=s+1

(
1−

(
1

2

)j)
. (6.6)

Equation (6.6) gives a lower bound on the probability that a random (n + s)× n
matrix is of rank n. For instance, for s = 1 the probability is greater than 0.58
and for s = 7, the probability is greater than 0.99.

It thus follows that we need at most ` + 7 random vectors to obtain ` linearly
independent vectors with probability 0.99. Hence, after roughly (`+ 7)/q protocol
executions, the adversary is able to compute the secret key of the tag up to comple-
ments of consecutive bit-triplets with high probability. As discussed, the protocol
designers suggest for a system with 216 tags, the value ` to be 117 and q to be 2 log n.
For these values, the attacker needs to observe (or execute) d(117 + 7)/32e = 4
protocol executions with the tag. The attacker can then with high probability
efficiently recover the key up to complements of consecutive bit-triplets.

The procedure outlined above reduces the complexity of computing the secret key
of a tag to a brute force search of a space with 2`/3 elements. Each of the candidate
keys k in this space can be verified by computing the hash h(k, α1 ⊕ k, k) and
comparing the value against the third message of the protocol. For the suggested
parameter ` = 117 this brute-force search is feasible in practice. If the key is
recovered, the adversary can successfully complete a protocol execution with the
reader violating authentication.

6.5 Conclusion 105

6.5 Conclusion

Authentication is a reasonably well-studied and well-understood security property
in security protocol design. In RFID authentication protocols, the majority of
the flaws are of an algebraic nature. That is, the attacker can abuse algebraic
properties of the operators in the protocol to construct new valid messages. In
standard protocol analysis, these algebraic properties often do not play a role since
cryptography is assumed to be perfect (see Chapter 3).

We have identified three classes of algebraic attacks on authentication of RFID pro-
tocols. In an algebraic replay attack, an attacker combines a number of challenge-
response pairs to compute a response to a fresh challenge. Compositionality attacks
combine messages from different protocols to break authentication of one of them.
Finally, leakage attacks aim at recovering the secret key used in a protocol by set-
ting up equations involving messages from the protocol. For each of these three
categories, we have pointed out flaws in RFID protocols from literature.

In a case study [ICFEM], we have been able to automate the process of find-
ing algebraic replay attacks on protocols with exclusive or (XOR). The approach
we have used extends the verification method by Küsters and Truderung [KT08].
Their method reduces protocols with XOR to their XOR-free equivalents, enabling
automatic verification by the ProVerif [Bla01] tool. By introducing bounded verifi-
cation we have been able to analyze the protocols by Lee, Asano, and Kim [LAK06]
and Cai, Zhan, and Wang [CZW08] and we have confirmed the presence of their
algebraic replay attacks. We expect that the process of finding algebraic replay at-
tacks based on the algebraic properties of other operators can be automated along
the lines of this work.

Part III

RFID protocols and ownership transfer

107

7

Formalization of ownership transfer

Because of its large potential to save costs, RFID is becoming a key technology in
supply chain management. RFID-tagged products can be scanned automatically
without requiring line-of-sight. This ability significantly reduces labor-intensive
tasks such as checking and scanning incoming and outgoing inventory [MM05].
Moreover, item-level tracking allows organizations to have an accurate view on
their current stock levels. This enables organizations to reduce the size of their
stock as well as preventing out-of-stock occurrences. Finally, since RFID tags can
store and process information and execute simple communication protocols, they
can be used to detect counterfeit products [STF05].

As products flow through a supply chain, they are processed and stored by multiple
supply chain partners. Therefore, ownership of products changes during the life
cycle of a product. This transfer of ownership extends to the RFID tags attached
to these products. This means that at some point in time a supply chain partner
owns the products and RFID tags legally, by means of a title, and physically by
the fact that the goods are at his premises.

Ownership of an RFID tag allows one to interact with it and use its functionality.
This functionality could, for instance, be to obtain the identifier of a product for
tracking purposes. Other examples include access to the data stored on the tag
or the ability to transfer ownership of the tag to another party. Note that we do
not require a tag to have exactly one owner at all times: tags could have multiple
owners or even zero owners.

Since ownership of a tag implies access to tag functionality, ownership changes must
be sufficiently protected. For instance, since owning a tag means being able to trace
the tag, previous owners must be properly “disowned”. The purchaser of a product
may not want previous owners (of the tag) such as the manufacturer, retailer, and
post office to be able to trace him. A second reason to protect ownership of tags
is that they may provide access to valuable data. This data could be stored on
the tag, but could also be obtained from other sources such as sensors attached
to the tag [Wan04]. A third reason to protect the process of ownership transfer is
to prevent denial-of-service attacks. If an attacker can steal ownership of tags, he
could critically disrupt business processes relying on a functioning RFID system.
In extreme cases, an attacker could extort a supply chain partner by grabbing
ownership of a batch of tags and only releasing them after his demands are fulfilled.

The common way of transferring ownership of a tag from one party to another is
by means of an ownership transfer protocol. One of the most basic requirements
in an RFID system with ownership transfer protocols is that of secure ownership.
Secure ownership ensures that an agent’s ownership can only be transferred to

109

110 Chapter 7 Formalization of ownership transfer

another agent, but can never be “stolen” from him. As a second requirement,
Secure ownership transfer states that if an agent becomes owner of a tag, it must
be as a result of the execution of an ownership transfer protocol.

In this chapter, we formalize the concept of ownership as well as its corresponding
security requirements using the formal model introduced in Chapter 3. We find
several attacks on ownership-related requirements by applying our definitions to
existing RFID protocols. Finally, we discuss the connection between ownership
and desynchronization resistance and give a formal definition of the latter.

7.1 Preliminaries

Our formalization is based on our model designed in Chapter 3. To be able to give
a formal definition of ownership transfer protocols, we first introduce and define
the notion of sequential composition of protocols.

We define the sequential composition P ·Q of two protocols P and Q by concate-
nating their event sequences for every role R. Let N and N ′ be sets of nonces, T
and T ′ be sets of temporary variables, P and P ′ be sets of permanent variables,
and Ev and Ev′ be lists of events. Without loss of generality, we may assume
that the nonce sets and temporary variable sets are pairwise distinct. Let role R
of protocol P be defined by P [R] = (N, T, P,Ev · ⊥) and let role R of protocol Q
be defined by Q[R] = (N ′, T ′, P ′,Ev ′ · ⊥). We define the sequential composition
of P and Q for role R by (P · Q)[R] = (N ∪ N ′, T ∪ T ′, P ∪ P ′,Ev · Ev ′ · ⊥). If
role R is not defined for protocol P (or Q) then we define (P · Q)[R] = Q[R] (or
(P ·Q)[R] = P [R]).

7.2 Ownership

We consider two views on tag ownership. The first view, which we call the system
view , defines ownership of a tag as the ability to interact with the tag in a predefined
manner. Ownership of a tag can, for instance, be defined as an agent’s ability to
inspect the tag’s identifier. The second view is called the agent view . It is based
on the fact that each agent records in a local data structure the tags it believes to
be the owner of. It is important to note that the agent view can only change due
to an action of that particular agent, while the system view can change due to an
action of any agent in the system. We define consistency between the two views
as a security requirement.

7.2.1 System view of ownership

Ownership test protocol

Central to our definitions of ownership and ownership transfer is the notion of an
(ownership) test protocol . A test protocol defines a sequence of actions that an
owner of a tag must be able to carry out successfully. If an agent can execute the
test protocol, then he has access to the tag and can thus be considered to be owner

7.2 Ownership 111

of the tag. This leads to a natural definition of tag ownership as the ability to
successfully execute the test protocol.

In a typical setting, the test protocol involves a reader and a tag. However, we do
not exclude the possibility of having (trusted) third parties in the test protocol.
We stress that the test protocol is a protocol that is not necessarily implemented
on the tag. It merely represents the protocol designer’s idea of what constitutes an
owner of a tag. In this sense it is used by the protocol verifier as a tool to provide
an objective statement about whether an agent owns a tag. As a consequence, in
every state of the system, the ownership relation between tags and other agents is
precisely defined.

Since we define ownership properties relative to a test protocol, the choice of a
proper test protocol is an important step in all verification efforts. In some contexts
the knowledge of a tag key may be the defining notion of ownership. In this
case, a simple proof-of-knowledge protocol would be a suitable test protocol. If a
tag implements multiple protocols including an ownership transfer protocol, then
frequently only an owner is allowed to transfer ownership to another agent. In this
setting, the ownership transfer protocol can be used as test protocol.

Choosing an insufficient test protocol may lead to ownership-related vulnerabilities
being overlooked. A trivial example is the test protocol that can be successfully
executed by any agent and thus declares everyone as the owner of a tag. This
problem is, however, mitigated by the fact that an intuitive notion of ownership
frequently coincides with the ability to complete an authentication protocol with a
tag. In such cases, the authentication protocol can simply be taken to be the test
protocol.

Micro traces: Testing for ownership

We define ownership as the ability to execute the test protocol. This means that
the test protocol is not actually executed by the agents in the system. To test
whether an agent owns a tag in state s, one can simply generate all traces starting
from s. If the agent is owner of the tag then one of these traces must contain the
successful execution of the test protocol.

To simplify the analysis we only consider a subset of the traces. In particular,
we exclude all agents except for the testing agent and the other agents involved
in the test protocol. Furthermore, we allow only one run to be created for every
role. Finally, since ownership is a functional property of the system rather than
a security requirement, we disallow the adversary from injecting, modifying, or
blocking any messages. We call the resulting set of traces micro traces.

Let P (R1, R2, . . . , Rn) be a test protocol that tests whether an agent a1 in role
R1 owns an agent a2 in role R2, involving a finite number of other agents a3 . . . an
in roles R3 . . . Rn. Let s = 〈A, σ, I〉 be a system state for which we want to
test ownership of a1 with respect to a2. It is rather straightforward to adapt the
framework introduced in Chapter 3 to define micro traces:

• The initial state s0 is set to 〈∅, σ, ∅〉 to maintain the persistent variable as-
signment of all agents.

112 Chapter 7 Formalization of ownership transfer

• To enforce agents a1 . . . an to execute the correct role we set Agent(Ri) = {ai}
for all 1 ≤ i ≤ n.

• The create rule should prevent any role from being executed more than once.
To this end we extend the temporary variable assignment with a variable rn
that stores the role name. That is, {θ 7→ f} is replaced by {θ 7→ f, rn 7→ R}.
We can now restrict the create rule by adding the conjunct R 6∈ {v(rn) |
(f, n, e, v) ∈ A} as a precondition, requiring that no role with the same name
has been created yet.

• Since roles can be executed at most once, no run needs to be prematurely
ended. Therefore, we remove the end rule from the semantics.

• The original read rule allows any term that can be deduced from the ad-
versary knowledge to be readable. To enforce that the adversary merely
forwards messages, we set the initial adversary knowledge to ∅ and replace
I ` m by m ∈ I.

Given these conditions, micro traces are defined in the same way as traces in
Chapter 3:

µTracesP (a1,...,an) = {(s0, . . . , sn, t1, . . . , tn)| s0 . . . sn ∈ State,
t1, . . . tn ∈ Label,
∀1≤i<n si

ti−→ si+1,
s0 = 〈∅, σ, ∅〉}.

It now follows from the semantics that a run of a protocol ended successfully if its
list of events contains only the symbol ⊥. Formally, for a run r = (f, n, e, v) we
define success(r) ≡ e = ⊥.

Tag owner

We can now define tag ownership as a property on the micro traces of the test
protocol. Informally, an agent r owns a tag t with respect to a test protocol P , if
r and t have a way of successfully completing the protocol P . In this context, R
is called the owner of T and T is called R’s property. In case the test protocol P
involves other agents than r and t, any agents that allow successful execution of
the test protocol may be involved.

Definition 7.1 (Tag owner). For any state s = 〈A, σ, I〉, let Active(s) = A denote
the set of active runs. Ownership of agent r of tag t with respect to test protocol
P (R, T,O1, . . . , On) is defined by

ownsP (r, t, s)≡ ∃o1...on∈Agent
∃(s′,t′)∈µtracesP (r,t,o1,...on)(s)

∀a∈Active(s′|(s′,t′)|)
success(a).

We stress that our definition of ownership is not the definition of a security re-
quirement. Instead, we use our notion of ownership as a basis to define security
requirements such as secure ownership and secure ownership transfer.

7.2 Ownership 113

7.2.2 Agent view of ownership

The tag owner definition precisely describes for each state of the system whether
an agent owns a tag. It misses, however, the fact that the owner of a tag only has
a partial view of the system. This partial view is entirely based on the messages
sent and received in the agent’s protocol executions. The agent’s view is important
when discussing the intention of an agent to engage in a transfer of ownership, i.e.
the fact that the owner executes an ownership transfer protocol. Thus we introduce
the agent’s view regarding ownership of a tag by defining tag holders .

We model tag holding explicitly by requiring that agents store in their memory of
which tags they are the owner. More specifically, we model whether an agent r
holds a tag T with respect to test protocol P by a variable holds(P, T). The value
(True or False) is stored as a persistent variable and is thus accessible across pro-
tocol executions. We call an agent a tag holder if based on its protocol executions
and local data structure, it believes to be the owner of a tag.

Definition 7.2 (Tag holder). Let s = 〈A, σ, I〉 be a system state. We define agent
r to be the tag holder of a tag t with respect to test protocol P in system state s by

holdsP (r, t, s) ≡ σr(holds(P, T)) = True.

Our decision to require that agents keep track of which tags they believe to own
has two advantages. First, we can let the protocol execution depend on the value
of the holds variable. This allows us, for instance, to specify that an agent shall
not transfer ownership of a tag, unless it actually holds the tag. Second, it sim-
plifies modeling ownership-related properties that involve the belief of an agent’s
ownership.

7.2.3 Secure ownership

In an ideal world, the notions of tag owner and tag holder coincide. In general,
tag ownership changes when a tag updates its knowledge, while a change in tag
holder is carried out by a different agent. Since we assume communication to be
asynchronous, it is impossible to guarantee that changes of tag owner and tag
holder occur simultaneously.

We define secure ownership as a consistency requirement between the system view
and the agent view of ownership. Since the tag may implement multiple protocols,
we define our security requirements as properties of the set of protocols in the
system. Formally, a set of protocols π can be modeled by one protocol P that
contains the roles of all protocols in π. We say that a set of protocols provides
secure ownership, if whenever an agent is holder of a tag it is also an owner of that
tag. Note that we do not require the converse, i.e. owning a tag implies holding it,
to be true. As a consequence, an agent may own a tag, yet not be aware about it.
Secure ownership enforces that if an agent believes to be the owner of a tag, then
this is indeed true. An agent can thus never falsely believe to be the owner of a
tag and can thus never lose ownership unintentionally.

114 Chapter 7 Formalization of ownership transfer

Definition 7.3 (Secure ownership). A set of protocols Π provides secure ownership
with respect to test protocol P if and only if

∀(s,t)∈Traces(Π) ∀0≤i≤|(s,t)| ∀R,T∈Agent holdsP (R, T, si)⇒ ownsP (R, T, si).

Secure ownership guarantees that an owner cannot be “disowned” of a tag as long
as he holds it. It does, however, not prevent other agents from owning the same tag
simultaneously. We define exclusive ownership as the requirement that if an agent
holds a tag, no other agent is owner of the tag. It is clear that in an environment
where owners can trace tags, exclusive ownership is a necessary condition to satisfy
untraceability against previous and future owners of tags.

Definition 7.4 (Exclusive ownership). A set of protocols Π provides exclusive
ownership with respect to test protocol P if and only if

∀(s,t)∈Traces(Π) ∀0≤i≤|(s,t)| ∀R,T∈Agent
holdsP (R, T, si)⇒ ¬∃R′∈Agent\{R} ownsP (R′, T, si).

It follows that secure ownership and exclusive ownership are incomparable security
properties: one does not imply the other.

7.3 Ownership transfer

In this section we define the notion of an ownership transfer protocol and the
natural security requirement for such a protocol. We call a protocol Q an ownership
transfer protocol if it can be used to make somebody owner of a tag. That is, by
executing Q an agent can become the owner of a tag that he currently does not
own.

Definition 7.5 (Ownership transfer protocol). Let P be an ownership test protocol.
We say that Q ∈ Π is an ownership transfer protocol with respect to P if and only
if

∃(s,t)∈Traces(Π) ∃0≤i≤|(s,t)| ∃R,T∈Agent ¬ownsP (R, T, si) ∧ ownsQ·P (R, T, si).

Informally, the definition states that Q is an ownership transfer protocol, if there
exists an agent R for whom the following two conditions are met. First, R is not an
owner of T and hence cannot successfully complete the protocol P with T . Second,
R is able to successfully complete the sequential composition of Q followed by P
with a tag T .

7.3.1 Ownership transfer protocols

Signals

In order to reason about secure ownership transfer we need to capture the inten-
tion of the participants when running an ownership transfer protocol. An agent
engaging in an ownership transfer protocol may have the intention to release a tag

7.3 Ownership transfer 115

to a new owner or to obtain the tag from a previous owner. To keep track of these
intentions we decorate protocols and protocol executions with obtain and release
signals. A release signal indicates that at that point in the protocol (execution),
the agent releases the tag for transfer to the new owner. Similarly, an obtain signal
indicates that at that point in the protocol (execution), the agent obtains the tag
from a previous owner.

We formalize signals as predicates on traces. To this end, we assume that there
exists a temporary variable NO in the releasing role representing the new owner of
the tag. The signal obtainP (A, T) now indicates that agent A assigned True to its
holds(P, T) variable. Similarly, the signal releaseP (A, T,B) denotes that agent A
assigned False to holds(P, T). Furthermore, the agent name B is assigned to the
A’s temporary variable NO of the run in which the tag was released.

Definition 7.6 (Signals). Let (s, t) be a trace and let runidof : Label → N return
the run identifier of a label in the trace. Signals are then defined by

signal (s,t)(i) =
obtainP (A, T) if ¬holdsP (R, T, si) ∧ holdsP (R, T, si+1)
releaseP (A, T,B) if holdsP (R, T, si) ∧ ¬holdsP (R, T, si+1) ∧

si+1 = 〈A, σ, I〉 ∧ a = (f, n, e, v) ∈ A ∧
runidof (ti) = f ∧ v(NO) = B

⊥ otherwise

Remark 7.7. For secure ownership it is important to release and obtain tags in
the correct position in the ownership transfer protocol. A tag must be released at
a point causally preceding a tag’s ownership update, typically at the start of the
role for the current owner of the tag. The tag can be obtained at a point causally
following a tag’s confirmed ownership update, thus typically at the end of the role
for the new owner. It is easy to see that if a tag is released too late or obtained
too early, an agent may be holder of a tag while not owning the tag, thus violating
secure ownership.

7.3.2 Secure ownership transfer

We say that a set of protocols provides secure ownership transfer if every ownership
change is carried out as intended. That is, whenever an agent becomes owner of
a tag, it must be as a result of an execution of an ownership transfer protocol.
For changes in ownership, making an agent R owner of a tag T , we require the
following conditions to be met.

• The ownership change must be preceded by a release signal. This captures
the fact that the previous owner intended to hand over ownership of the tag.

• Ownership changes must be in one-to-one correspondence with release sig-
nals. If this were not the case then a tag can be obtained more than once as
a result of one release.

116 Chapter 7 Formalization of ownership transfer

• No corresponding release and ownership changes related to T may interleave
with other corresponding release and ownership-change events of T . That is,
the one-to-one map must be such that the ownership change for T is mapped
to the latest preceding release signal for T .

The formalization of secure ownership transfer is complicated by the fact that we
do not disallow the adversary to own tags. The adversary does not have to follow
the protocol specification and, therefore, does not have to update his holds variable.
As a consequence, no signals need to be issued if the adversary releases or obtains
a tag. Therefore, the above requirements cannot be enforced for tags owned by or
released to the adversary. As a final condition we allow an ownership change of
any tag to happen immediately after the tag was released to an agent E controlled
by the adversary.

Definition 7.8 (Secure ownership transfer). Let E ∈ Agent be any agent controlled
by the adversary. Let R′ ∈ Agent be any honest agent and let R′′ ∈ Agent be any
agent. A set of protocols Π provides secure ownership transfer with respect to P if
and only if

∀t∈Traces(Π) ∃f :N→N,injective ∀0≤k<|t| ∀R,T∈Agent
¬ownsP (R, T, k) ∧ ownsP (R, T, k + 1)⇒
∃0≤i≤k f(k) = i ∧ ¬∃i<j≤k signal (s,t)(j) = releaseP (R′, T, R′′)∧

(signal (s,t)(i) = releaseP (R′, T, R) ∨ signal (s,t)(i) = releaseP (R′, T, E)).

7.3.3 The Yoon and Yoo protocol

We demonstrate our definitions on the ownership transfer protocol by Yoon and
Yoo [YY08].

ID , k, p = {ID}k
R

p = {ID}k
T

nonce nr
nr

h(p⊕ nr)

key k′

a := h(p)⊕ {ID}k′
b := h(p⊕ {ID}k′)

a, b

if b = h(p⊕ h(p)⊕ a)
then p := h(p)⊕ a

(a) Authentication protocol

Old owner T New owner

release

First Phase

Secure: ID , k′, {ID}k′

Third Phase

obtain

(b) Ownership transfer protocol

Figure 7.1: The Yoon and Yoo protocol

The Yoon and Yoo protocol is an authentication protocol (Figure 7.1a) that relies
on a shared secret p = {ID}k between owner and tag. The shared secret is called a
pseudonym and can be changed by the owner of a tag by executing the authentica-
tion protocol. The protocol is initiated by the reader by sending a nonce nr to the

7.3 Ownership transfer 117

tag. The tag responds with h(p⊕nr). The reader can identify a tag by exhaustively
searching its database for a pseudonym p′ such that h(p′⊕ nr) equals the received
message. The reader can then update the pseudonym of the tag by generating a
fresh key k′ and responding with a = h(p) ⊕ {ID}k′ and b = h(p ⊕ {ID}k′). The
tag then updates p to {ID}k′ .
The ownership transfer protocol (Figure 7.1b) consists of three phases involving the
old owner, new owner, and the tag. The first and third phase are instantiations
of the authentication protocol. In the first phase, the old owner updates the
pseudonym p, using a fresh key k′. This key together with the real identity and
the pseudonym are sent over a secure channel to the new owner in the second
phase. The use of a secure channel ensures that no attacker can eavesdrop, modify,
block, or inject messages in the second phase. The final phase consists of another
pseudonym update executed by the new owner and the tag using a fresh key.

Since the pseudonym p of the tag is all that is used in communication with the tag,
we take as ownership test protocol a proof-of-knowledge protocol of p. Following
Remark 7.7 the tag is released by the old owner at the start of the first phase and
obtained by the new owner at the end of the third phase. We can now analyze
the protocol with respect to exclusive ownership, secure ownership, and secure
ownership transfer.

Lemma 7.9. The Yoon and Yoo protocol does not satisfy exclusive ownership.

Proof. Let s be a state of the system such that reader R is holder of tag T , i.e.
holdsP (R, T, s). We further assume that there is no R′ 6= R that owns T . That is,
R is the only agent that knows the pseudonym p.

Let 0 be the neutral element with respect to ⊕, known to all agents in the system.
The attacker sends 0 to T . The tag T responds with h(p) after which E returns
a = h(p) and b = h(p). Tag T verifies B and updates p to h(p)⊕h(p) = 0. Let s′ be
the state in which T has updated its secret. The attack is depicted in Figure 7.2a.

The ownership test protocol declares any agent that knows the pseudonym to be
owner of the tag. Since the tag’s pseudonym p equals 0, all agents are owners of T .
However, R has not released tag T and is still tag holder. This violates exclusive
ownership.

Lemma 7.10. The Yoon and Yoo protocol does not satisfy secure ownership.

Proof. Lemma 7.9 shows that there exists a state s′ in which R is holder of the tag
T and all agents own the tag. In particular, the adversary owning the tag allows
him to execute the authentication protocol. In state s′, tag T ’s pseudonym is 0.
This allows the adversary to execute the authentication protocol with T and to
update the pseudonym to a new freshly generated value ke. Since R does not own
the tag while still being tag holder, secure ownership is not satisfied. The attack
is depicted in Figure 7.2b.

Lemma 7.11. The Yoon and Yoo protocol does not satisfy secure ownership trans-
fer.

118 Chapter 7 Formalization of ownership transfer

E

p = {ID}k
T

0

h(p)

a := h(p); b := h(p))

a, b

p := h(p)⊕ a

(a) Exclusive ownership

E

p = 0

T

nonce nr
nr

h(0⊕ nr)

key ke
a := h(0)⊕ ke
b := h(0⊕ ke)

a, b

p := h(0)⊕ a

(b) Secure ownership

Figure 7.2: Ownership attacks on the Yoon and Yoo protocol.

Proof. Consider an execution of the ownership transfer protocol by R, T , and
R′, where initially R is the tag holder (and owner) of the tag T and intends R′

to become the new tag holder (and owner). We show that the adversary E can
obtain ownership of the tag without being the intended new owner. To achieve
this, he queries the target tag T with the constant 0 to which the tag responds with
h(p). By eavesdropping on the first phase of the ownership transfer protocol, the
adversary obtains a = h(p) ⊕ {ID}k′ . As soon as the tag updates its pseudonym
to {ID}k′ the adversary becomes owner of the tag. Since T was not released to E,
secure ownership transfer is not satisfied.

7.4 Desynchronization

The execution of a stateful RFID protocol frequently ends with reader and tag
updating shared information. An attacker may attempt to disrupt the communi-
cation between reader and tag so that the updates of the two agents are not related.
A flawed protocol does not allow the agents to recover from this disruption and
the reader and tag will be in a state of desynchronization: they will no longer be
able to successfully communicate with each other. We call a protocol that is not
vulnerable to this type of attack desynchronization resistant.

For a given protocol, one can characterize desynchronization as a relation on the
persistent variables of reader and tags. Unfortunately, it is not straightforward
to transform this into a generic definition of desynchronization resistance. We
argue, however, that our notion of ownership is closely related to desynchronization
resistance.

In general, RFID authentication protocols do not need to satisfy secure ownership
requirements, since the owner of a tag never changes. However, observe that if
there does not exist a reader that can successfully communicate with a tag using
its protocol P , then the tag has no owners with respect to P . We thus define
desynchronization resistance as the property that a protocol P never loses all its
owners with respect to P . This guarantees that there always exists an agent R
that can execute P . Note that we require R to be honest to prevent the case that

7.4 Desynchronization 119

only the adversary can communicate with the tag, but nobody else.

Definition 7.12 (Desynchronization resistance). Let HA ⊂ Agent be the set of
honest agents. A protocol P ∈ Π is desynchronization resistant if and only if

∀(s,t)∈Traces(Π) ∀0≤i<|(s,t)| ∀T∈Agent
∃R∈HA ownsP (R, T, si)⇒ ∃R′∈HA ownsP (R′, T, si+1).

It is interesting to note that desynchronization resistance together with exclusive
ownership can imply secure ownership. Therefore in order to prove secure owner-
ship with respect to a test protocol P it is sufficient, under the conditions stated
in the following theorem, to prove desynchronization resistance of P and exclusive
ownership with respect to P . Note that the second condition in the theorem cor-
responds to placing obtain signals in protocols at a point in which an agent is sure
to have become owner of a tag, as described in Remark 7.7

Theorem 7.13. Let Π be a set of protocols containing the test protocol P . Suppose
that Π provides exclusive ownership with respect to P and that P is desynchroniza-
tion resistant. Then Π provides secure ownership for every trace which satisfies
the following two conditions.

(1) In the initial state every holder of a tag is owner of the tag.

(2) An agent only becomes holder of a tag if it owns the tag.

Proof. Suppose towards a contradiction that there is a trace (s, t) ∈ Traces(Π)
such that in a state si an agent R holds a tag T , but does not own the tag. By
exclusive ownership, if R holds tag T , then no other agent R′ owns the tag in state
si. Thus, tag T is not owned by anybody in state si. Desynchronization resistance
implies that if no agent owned tag T in state si, then no agent owned the tag in
si−1. This argument can be repeated to conclude that no agent owned T in states
s0 . . . si. Since R did not own tag T in states s0 . . . si, by condition (2) he cannot
have become the holder in states s0 . . . si. Thus, R must have been the holder of
tag T in the initial state contradicting condition (1). Therefore, secure ownership
must be satisfied.

7.4.1 The Song and Mitchell protocol

Song and Mitchell [SM08] proposed a stateful RFID protocol, called the SM pro-
tocol, that relies on a shared secret for authentication. Their protocol is claimed
to achieve identification and authentication of the tag which are necessary in sce-
narios like supply chain management or access control. They notice that in many
proposed protocols tags and readers can be desynchronized by blocking certain
messages from reader to tag. They attempt to prevent desynchronization attacks
by storing additional information, allowing the reader to re-synchronize with a tag
in case messages are blocked.

Figure 7.3 shows the SM protocol. Tag and reader share a pseudonym k that is
updated at the end of a successful protocol execution. The value of k is equal to

120 Chapter 7 Formalization of ownership transfer

k, s, k̄, s̄

R

k

T

nonce nr
nr

nonce nt
a := k ⊕ nt
b := fk(nr ⊕ nt)

a, b

c := s⊕ (nt ≫ ℓ/2)

c

k̄, s̄ := k, s
s := (s ≪ ℓ/4)⊕ (k ≫ ℓ/4)⊕ nr ⊕ nt
k := h(s)

s := c⊕ (nt ≫ ℓ/2)
if h(s) = k then
k := h((s ≪ ℓ/4)⊕(k ≫ ℓ/4)⊕nr⊕nt)

Figure 7.3: The Song and Mitchell protocol.

the hash of another secret s. The reader stores s and a backup of k and s in k̄ and
s̄.

We use fk(·) to denote a keyed hash function with key k. Bit rotations are denoted
by � and � where a � b means a shifted cyclically to the right by b bits. All
secrets and random values are of length `.

The protocol is initiated by the reader sending a random value nr to the tag.
The tag responds by generating a random value nt and sending a := k ⊕ nt and
b := fk(nr⊕nt) to the reader. The reader verifies the validity of a and b and sends
c := s ⊕ (nt � `/2) to the tag. At the end of the protocol execution, the reader
stores the values of k and s in k̄ and s̄. It also updates s to (s� `/4)⊕(k � `/4)⊕
nr⊕nt and k to h(s). The tag updates its k to h((s� `/4)⊕(k � `/4)⊕nr⊕nt),
which under normal circumstances is the same value as the reader’s value of k.

We now apply our definition of desynchronization resistance to demonstrate that
by modifying and blocking certain messages an attacker can force a tag and reader
to carry out different updates of their shared secret.

Theorem 7.14. The Song and Mitchell protocol does not satisfy desynchronization
resistance.

Proof. To show that a protocol does not satisfy desynchronization resistance, we
need to show that starting from a state where a tag has at least one owner, a state
is reachable in which the tag does not have any owners. An agent owns a tag if he
can successfully execute the SM protocol with it.

Consider an RFID system with a reader R, a tag T , and the adversary’s agent
E. Suppose R owns T in state s = 〈A, σ, I〉. That is, there exists a value k0 such
that σR(k) = σT (k) = k0 and a value s0 such that σR(s) = s0 and h(s0) = k0.
Furthermore, suppose R is the only owner of tag T . Finally, let the adversary
knowledge I = ∅.
To attack the protocol, the attacker can force tag and reader to carry out different
pseudonym updates. The attack is depicted in Figure 7.4 and works as follows.

7.5 Related work 121

R E T

nonce nr
nr

nonce nt
a := k0 ⊕ nt
b := fk0(nr ⊕ nt)

a, b

c := s0 ⊕ (nt ≫ ℓ/2)

c

nonce ni
ni

nonce nt′

a′ := k0 ⊕ nt′

b′ := fk0(ni⊕ nt′)

a′, b′

c′ := c⊕ ((a⊕ a′) ≫ ℓ/2)

c′

k̄, s̄ := k0, s0
s := (s0 ≪ ℓ/4)⊕ (k0 ≫ ℓ/4)⊕ nr⊕ nt
k := h(s)

k := h((s0 ≪ ℓ/4)⊕ (k0 ≫ ℓ/4)⊕ ni⊕ nt′)

Figure 7.4: Desynchronization attack on the Song and Mitchell protocol.

The attacker eavesdrops on the first two messages nr and a, b exchanged between a
reader R and tag T and then aborts the protocol execution after the reader sends
the third message c. The reader updates k̄, s̄, k, and s. In particular, k is set to
h((s0 � `/4)⊕ (k0 � `/4)⊕ nr ⊕ nt). The tag has not successfully completed its
run and therefore does not carry out its update. In this state, R still owns T since
k̄ contains k0 and s̄ contains s0 and the tag has not updated his value for k.

The attacker then challenges the same tag with his own nonce ni. The tag responds
with a′ = k0 ⊕ nt′ and b′ = fk0(ni ⊕ nt′). Using distributivity of ⊕ over �, the
attacker can now construct a valid reader response c′ = c ⊕ ((a ⊕ a′) � `/2) =
s ⊕ (nt′ � `/2). The tag accepts the message and updates its value for k to
h((s0 � `/4)⊕ (k0 � `/4)⊕ ni⊕ nt′).
Let s′ = 〈A′, σ′, I ′〉 be the state at the end of the attack. It follows that σ′T (k) =
h((s0 � `/4)⊕ (k0 � `/4)⊕ ni⊕ nt′). Since R does not know (s0 � `/4)⊕ (k0 �
`/4)⊕ ni⊕ nt′, he can not successfully execute the test protocol. Therefore, he no
longer owns T . Furthermore, the adversary also does not know (s0 � `/4)⊕ (k0 �
`/4)⊕ ni⊕ nt′. Hence, nobody can complete the protocol with the tag in state s′.
Therefore, the Song and Mitchell protocol is not desynchronization resistant.

7.5 Related work

Work on ownership transfer in RFID systems has thus far mostly focused on design-
ing ownership transfer protocols, but not on their security requirements. An excep-
tion is the work by Song [Son08]. It provides a first informal discussion of security

122 Chapter 7 Formalization of ownership transfer

requirements related to ownership transfer. Song also proposes a set of protocols
for secure ownership transfer based on earlier work by Song and Mitchell [SM08].
The SM protocol is not desynchronization resistant (Section 7.4) and does not
satisfy tag authentication (Section 6.2). Since the ownership transfer protocol by
Song is an extension of the SM protocol it suffers from the same flaws.

The first treatment of ownership transfer in RFID systems is due to Molnar, Sop-
pera, and Wagner [MSW05]. They describe a protocol that relies on a trusted
center. Readers send tag pseudonyms to the center requesting the real identity
of a tag. If the reader is the owner of the tag it receives the identity. Owners of
tags can ask the trusted center to transfer the ownership of a tag to a new owner.
The trusted center subsequently refuses identity requests from the old owner, and
accepts them from the new owner. A trusted party is also used by the protocol of
Saito, Imamoto, and Sakurai [SIS05]. Here, the trusted party shares a key with the
tag which is used to update the owner’s key. Hence an ownership transfer consists
of a request to the trusted party to encrypt the new owner’s key for the tag.

Lim and Kwon [LK06] propose a stateful authentication protocol based on key
chains. Upon successful execution of the protocol, the tag and reader update
the tag pseudonym. They argue that the protocol satisfies forward untraceability
under the assumption that the adversary cannot eavesdrop on all future protocol
executions of the tag. That is, the adversary cannot trace the tag, even if it knows
previous pseudonyms and corresponding keys of the tag. Lim and Kwon reason
that due to forward untraceability, their protocol can be used as an ownership
transfer protocol.

Osaka, Takagi, Yamazaki, and Takahashi [OTYT06] are among the first to propose
an ownership transfer protocol. Unfortunately, the protocol does not satisfy reader
authentication allowing an adversary to corrupt the key of the tag. As a result,
the protocol does not satisfy desynchronization resistance and secure ownership.

The flaw in the OTYT protocol triggered several others to propose improved pro-
tocols. Lei and Cao [LC07] propose an ownership transfer protocol that mitigates
the flaw in the OTYT protocol. Vullers [Vul09] analyzed the protocol for secure
ownership and secure ownership transfer and showed that the protocol does not
satisfy exclusive ownership. Jäppinen and Hämäläinen [JH08] proposed a protocol
designed to improve the OTYT protocol. Unfortunately, it does not fix the flaw
in the protocol, allowing an adversary to break desynchronization resistance and
secure ownership.

Koralalage, Reza, Miura, Goto, and Cheng [KSM+07] and Fouladgar and Afi-
fi [FA07] propose protocols based on symmetric cryptography. Both protocols
carry out updates of the key material at the end of the protocol and are thus pseu-
donym-based protocols. Ownership can be transferred by sending the key to the
new owner after which the new owner updates it to “disown” the previous owner.

Finally, one of the most recent protocols in this area is due to Dimitriou [Dim08].
Its distinguishing feature is that it enables the owner of a tag to revert the tag to
its original state. This is useful for after-sales services, since it makes it possible for
the tag’s new owner to let a retailer recognize a sold tag without losing ownership
of the tag.

7.6 Conclusion 123

7.6 Conclusion

Ownership of RFID tags is not only concerned with physical possession of the
tags, but more importantly with the ability to interact with the RFID tag. We
have identified the latter as a property of RFID protocols and formalized it using
the notion of test protocols. In the course of its lifetime, RFID tags may change
hands a multitude of times, in particular when they are used in supply chains.
To facilitate this process, a number of ownership transfer protocols have been
proposed in literature. These protocols are often accompanied by informal security
requirements and informal security analyses.

In the absence of precise definitions of any security property it is hard to verify
whether a given protocol is secure. For this reason, we have given formal defini-
tions of ownership and ownership transfer, as well as their secure variants. Secure
ownership guarantees that tags cannot be stolen from an agent. Secure ownership
transfer states that an agent can only become owner by running an ownership
transfer protocol. Finally, if exclusive ownership is satisfied only the agent believ-
ing to be the owner of the tag can actually be the owner. We have shown the
applicability of our definitions by exhibiting attacks on secure ownership, exclusive
ownership, and secure ownership transfer on the Yoon and Yoo [YY08] protocol.
Finally, we have used our concept of ownership to formalize desynchronization re-
sistance and shown that the protocol by Song and Mitchell [SM08] does not satisfy
the property.

Security properties such as secrecy and authentication can be defined as local or
role-specific security requirements. The main reason behind locality is that agents
only have a partial view on the system state, based on the messages they receive.
The protocol should ensure that based on this local view, the user can be certain
that the security property holds. For instance, an authentication protocol could
provide the guarantee that at the end of a protocol execution, the communicating
partner has been recently alive. Similarly, an untraceable protocol provides the
guarantee to an agent that a run cannot be linked to an earlier run of that agent.
Secure ownership, exclusive ownership, secure ownership transfer, and desynchro-
nization resistance are properties of the system rather than of one role. Therefore,
we have defined them as global security properties.

Part IV

Reverse engineering RFID systems

125

8

Carving

In the previous chapters we have studied RFID systems at the level of the crypto-
graphic communication protocols. These protocols aim to achieve security proper-
ties such as authentication and untraceability. One of the most important require-
ments to satisfy these properties is that the attacker must not be able to obtain
the cryptographic keys. One quickly sees that this requirement is not specific to
the protocol, but must be satisfied by the entire RFID system. If the attacker can
obtain the keys of a tag through side-channel analysis or from a central database,
the security of many RFID systems cannot be guaranteed. Making RFID tags
tamper resistant, however, results in more expensive RFID tags.

At the same time, there is a tendency to implement more functionality on a tag.
Some of the more expensive RFID tags are equipped with memory that can contain
several kilo bytes of data. For instance, the electronic passport stores a picture of
its holder and several public transportation cards can store products purchased by
the user or an electronic wallet. Furthermore, in some cases the contact interface
of a smart card is replaced with a contactless RFID interface. The applications
using RFID tags with memory often regard the RFID tags as a trusted storage for
their data.

Of course, one must be careful when storing valuable information on a tag that
is not tamper resistant. As discussed in Section 4.7.1, several practical attacks
on RFID protocols have been reported. These attacks recover the cryptographic
keys used for authentication between a tag and a reader. An attacker with these
keys can read and modify the data on the RFID tag. However, having access to
the contents of a tag does not immediately allow an attacker to abuse the system
in which the tags are used. It merely allows the attacker to read and modify the
raw binary data of the card. For a more sophisticated attack, the attacker has to
find the relevant data on the card and he has to understand how to interpret and
modify this data.

In this chapter, we focus on recovering the structure and information from raw
binary data. In digital forensics, this process is called carving. The main objective
of current file carving approaches is to reconstruct (partially) deleted, damaged,
or fragmented files. A typical example is the analysis of memory dumps from cell
phones [BH10]. Because a file can be permuted in many possible ways, the process
of reassembling files is very labor intensive. Therefore, fully and semi-automatic
file carving tools have been developed that aid the human inspection process.

Traditional carving approaches aim to analyze a single memory dump. In some
cases, however, one may have access to a series of similarly structured dumps. This
may result from observing a system that progresses in time, while making memory

127

128 Chapter 8 Carving

dumps at regular time intervals, or from dumping the memory of a collection of
similar systems. If we assume that an attacker has obtained the cryptographic
keys, he can collect dumps of several cards after each usage. Since the amount of
available memory is limited, we expect these dumps to be similarly structured and
to contain little metadata on the structure. Therefore, we aim to take advantage
of the fact that we have many similarly-structured small memory dumps rather
than one large dump.

We will investigate the problem of carving sets of dumps under two simplifying
assumptions. The first assumption is that we can observe certain relevant prop-
erties of the system at the moment of dumping its memory. In this way, we can
collect the values of a number of attributes that characterize part of the state of the
system, and link that information to the memory dump. An example of such an
attribute is the number of rides left on a public transportation card, which can be
easily observed from the display of the card reader when validating the card. The
carving problem for such attributed dump sets is then described as the problem of
finding at which location in the memory dump the attributes are stored.

The second assumption is that the memory layout is either static or semi-dynamic.
A memory layout is static if the attributes are stored at the same location in
every dump and the dumps have the same length. An attribute is stored semi-
dynamically if it is stored alternatingly in a number of different locations.

8.1 Carving attributed dump sets

8.1.1 Definition of the carving problem

The central concept to the carving problem is the concept of a dump. A dump
consists of raw binary data that is captured from a system, for instance, from a
computer’s memory, a data carrier, or a communication transcript. We assume
that the process of creating a dump can be repeated, allowing a number of dumps
of the same system to be collected. We call such a collection of dumps a dump set.

Example 8.1 (Public transportation card). Consider an electronic fare collection
system for public transportation systems. The users of such a system carry an
RFID tag with non-volatile memory. The system stores the number of rides the
user is entitled to on the card. Upon entering a bus, the user swipes his card across
an RFID reader. The RFID reader deducts one trip and stores the new number of
rides on the card. A dump of a card can be created by reading the entire memory of
a card after it has been used. In repeating this process, a dump set can be created.

We assume that different dumps of the same system have the same length. If we
denote the bit strings of length n ∈ N by Bn and bit strings of arbitrary, finite
length B∗, then a set of dumps of length n is denoted by S ⊆ Bn. The length
n of bit string s ∈ Bn is denoted by |s| and the number of elements in set S is
denoted by |S|. We denote by the closed interval [i, j] the set of integers z such
that i ≤ z ≤ j. The half-open interval [i, j) denotes the set of integers z such that
i ≤ z < j. For i ∈ [0, |s|) we denote the i-th bit of s by si. For I ⊆ [0, |s|), we
denote the subsequence of s that consists of all elements with index in I by s|I .

8.1 Carving attributed dump sets 129

A dump contains information about the state of the system. We call these state
properties attributes. For each dump set we consider a set A of attributes. The
function type: A → D assigns to every attribute a finite value domain, where D
denotes the set of all finite value domains. The value of attribute a ∈ A expressed
in dump s is denoted by vala : S → type(a).

A dump contains the system’s attribute values in a binary representation. The
mapping from an attribute domain to its binary representation is called an encod-
ing . We assume that for a given attribute a ∈ A the length of an encoding is fixed,
so an encoding of a is a function from type(a) to Bn for some n ∈ N. This function
is required to be injective and deterministic. The set of all encodings of D ∈ D is
denoted by ED.

Example 8.2 (Type, value, encoding). An example of an attribute encoded on a
public transportation card is the number of rides the user is entitled to. The type
of the attribute rides-left ∈ A is [0, 15]. A particular dump s ∈ S of a card can
have 5 rides left, so valrides-left(s) = 5. The encoding of the attribute rides-left is
the 5-bit binary representation. Thus, the value 5 is encoded by 00101.

The type of the attribute last-used is the set of all dates between 1/1/2000 and
1/1/2050, extended with the time of day in hh:mm:ss format. A possible encoding
of the attribute is the number of seconds since 1/1/2000, 00:00 hrs expressed in
binary format.

We start with the assumption that an attribute is always stored at the same loca-
tion in all dumps of the system. In Section 8.1.5 we extend this to semi-dynamic
attributes. With this assumption we can identify which bits of the dump are related
to a given attribute. This is captured in the notion of an attribute mapping .

Definition 8.3 (Attribute mapping). Let S ⊆ Bn be a dump set with dumps of
length n. An attribute mapping for S is a function f : A→ P([0, n)), such that

∀a∈A ∃e∈Etype(a)
∀s∈S s|f(a) = e(vala(s)).

An attribute mapping is non-overlapping if

∀a1,a2∈A a1 6= a2 ⇒ f(a1) ∩ f(a2) = ∅.

An attribute mapping is contiguous if

∀a∈A ∃0≤i,j≤n f(a) = [i, j).

Given a dump set S and all attribute values for each dump in S, the carving
problem for attributed dump sets is the problem of finding an attribute mapping
for S. The existence of an attribute mapping does not imply that the attributes are
indeed encoded in the dump, but merely that they could have been encoded at the
indicated positions in the dumps. Conversely, if an attribute cannot be mapped
in S, it means that this attribute is not present through a deterministic, injective
encoding. Of course, this does not rule out the possibility that a non-deterministic
encoding is used, such as a probabilistic encryption, or that the attribute is stored
dynamically, i.e. not always at the same location. We consider the search for
high-entropy information and semi-dynamic attributes later in this chapter.

130 Chapter 8 Carving

Example 8.4 (Attribute mapping). The notion of an attribute mapping is il-
lustrated in Figure 8.1. This example consists of five dumps, s1, . . . s5, of length
n = 18. We look at the attribute rides-left (rl) with the values as given in the
figure and we consider two possible encodings enc1 and enc2. The first encoding
is the standard binary encoding of natural numbers. It can be found in the dumps
at two different (contiguous) positions: [5, 8] and [12, 15]. The second encoding,
which is not standard, occurs at positions [3, 6]. Each of these three cases de-
fines a contiguous attribute mapping for rides-left. There might be more candidate
encodings.

rl dump enc1 enc2

s1 4 010100100111010000 0100 1001

s2 4 001100100001010010 0100 1001

s3 5 101110101011010100 0101 1101

s4 6 001010110111011011 0110 0101

s5 6 111010110011011001 0110 0101

Figure 8.1: Example of a dump set with three possible attribute mappings.

If we assume that the sizes of the attribute value domains are known, we have an
information-theoretic lower bound on the number of bits that must have been used
for encoding the attribute. This is expressed in the following lemma, which can
be used to further limit the search space. The lemma follows from the pigeonhole
principle.

Lemma 8.5. Let A be an attribute set and let f be an attribute mapping for dump
set S ⊆ Bn, then ∀a∈A|f(a)| ≥ log2(|type(a)|).

Given the values of an attribute for the dumps in a dump set S, we can use
the commonalities and dissimilarities of these dumps to derive restrictions on the
possible attribute mappings for S. Such restrictions are derived in two steps. In
the first step we look at dumps that have the same attribute value. In this case,
we can derive those positions in the bit strings that cannot occur in the encoding
of the attribute. In the second step we look at dumps of which the attribute values
differ, allowing us to determine positions in the bit strings that should occur in the
encoding of the attribute.

In the next sections, we first investigate restrictions induced by the commonal-
ities of a dump set, then by the dissimilarities of a dump set, and finally by a
combination of commonalities and dissimilarities.

8.1.2 Commonalities

We start by observing that an attribute a ∈ A induces a partition

bundles(a, S) = {{s ∈ S | vala(s) = d} | d ∈ type(a)}
on a dump set S. An element of this partition is called a bundle. Thus, a bundle
is a set of dumps with the same attribute value.

8.1 Carving attributed dump sets 131

The common set determines which bits in the dumps of a dump set are equal if
the attribute values are equal.

Definition 8.6 (Common set). Let a ∈ A be an attribute and S ⊆ Bn be a dump
set. The common set of S with respect to a, denoted by comm(a, S) ⊆ [0, n), is
defined by

comm(a, S) =
⋂

b∈bundles(a,S)

{i ∈ [0, n) | ∀s,s′∈b si = s′i}.

Example 8.7 (Bundles and commonalities). Consider the dump set S contain-
ing the five dumps shown in Figure 8.1. The attribute rides-left induces a parti-
tion of the five dumps into three bundles: bundles(rides-left, S) = {{s1, s2}, {s3},
{s4, s5}}.
The common set for set S with respect to rides-left is comm(rides-left, S) = {3, 4,
5, 6, 7, 8, 11, 12, 13, 14, 15}. This set includes, among others, the three contiguous
subsequences of Example 8.4.

Given that the encoding of an attribute value is deterministic, this gives an up-
per bound on the bits used for this attribute. The following lemma states two
properties about the relation between attribute mappings and the commonalities
set. The first property states that every possible attribute mapping is enclosed
in the common set, so one can restrict the search for attribute mappings to the
locations in the common set. The second property expresses that every extension
of an attribute mapping is also an attribute mapping, provided that it does not
extend beyond the common set.

Lemma 8.8. Let A be an attribute set and let f be an attribute mapping for dump
set S ⊆ Bn, then

1. ∀a∈A f(a) ⊆ comm(a, S),

2. if Ia ⊆ [0, n) is a family of sets for a ∈ A, such that f(a) ⊆ Ia ⊆ comm(a, S),
then the function f ′ : A → P([0, n)), defined by f ′(a) 7→ Ia, is an attribute
mapping.

Proof. We show the first property by contradiction. Assume that there exists an
attribute a such that f(a) * comm(a, S). Then there exists an index i ∈ f(a)
such that i 6∈ common(a, S). It follows from the definition of comm that there is
a bundle that contains bit strings s and s′ such that si 6= s′i. However, since f is
an attribute mapping, index i ∈ f(a), and vala(s) = vala(s

′), we have that si = s′i.
Thus, f(a) must be a subset of comm(a, S).

The second property follows from the fact that if we extend an encoding, it remains
an encoding. We know that e(vals(a)) = s|f(a) is an encoding for attribute mapping
f . The map e′(vals(a)) = s|f ′(a) is an encoding as long as for all j ∈ f ′(a) we have
sj = s′j if vala(s) = vala(s

′) and e′ is injective. The former follows from the
assumption that j ∈ comm(a, S). The latter follows from the fact that extending
the range of the encoding maintains the injectivity of it. Hence, f ′(a) 7→ Ia is an
attribute mapping.

132 Chapter 8 Carving

8.1.3 Dissimilarities

For the second step, we look at dumps with different attribute values. Injectivity
of the encoding function implies that the encoding of two different values must
differ at least in one bit. This is captured in the notion of a dissimilarity set. This
set consists of all intervals that, for each pair of dumps with a different attribute
value, contain at least one location where the two dumps differ.

Definition 8.9 (Dissimilarity set). Let a ∈ A be an attribute and S ⊆ Bn be a
dump set. The dissimilarity set of S with respect to a, denoted by diss(a, S) ⊆
P([0, n)), is defined by

diss(a, S) = {I ⊆ [0, n) | ∀s,s′∈S (vala(s) 6= vala(s
′)⇒ ∃i∈I si 6= s′i)}.

Example 8.10 (Dissimilarities). Consider the dump set S containing the five
dumps shown in Figure 8.1 and the attribute rides-left (rl). The interval [3, 4]
satisfies the condition that for any dumps s and s′, if the values of rl differ, then
s|[3,4] 6= s′|[3,4]. Other elements in the dissimilarity set are the intervals [4, 6] and
[13, 16] and all supersets of these intervals.

The next lemma expresses that every attribute mapping is enclosed in the dissimi-
larity set. Consequently, we can restrict the search for possible attribute mappings
to the elements of the dissimilarity set.

Lemma 8.11. Let A be an attribute set and let f be an attribute mapping for
dump set S ⊆ Bn, then ∀a∈A f(a) ∈ diss(a, S).

Proof. Let a ∈ A and let s, s′ ∈ S, such that vala(s) 6= vala(s
′). Due to the

injectivity requirement on encodings we know that e(vala(s)) 6= e(vala(s
′)). From

the definition of an attribute mapping we derive that s|f(a) 6= s′|f(a). Therefore,
there exists an i ∈ f(a), such that si 6= s′i, and thus f(a) satisfies the definition of
diss(a, S).

An encoding of an attribute value a must at least contain the indexes from one of
the sets in diss(a, S). This implies that we are mainly interested in the smallest
sets in diss(a, S), i.e. those sets of which no proper subset is in diss(a, S). In order
to make this precise, we introduce some notation.

Let F be a set and let P ⊆ P(F). We define the superset closure of P , notation P ,
by P = {p ⊆ F | ∃p′∈P p′ ⊆ p}. A set P is superset closed if P = P . We observe
from its definition that diss(a, S) is superset closed.

Given P ⊆ P(F), we say that P is subset minimal if for every p, p′ ∈ P , p′ ⊆
p ⇒ p′ = p. The following lemma states that for every P ⊆ P(F) a unique
subset-minimal Q exists such that their superset closures are equal.

Lemma 8.12. Let F be a finite set and let P ⊆ P(F). Then there exists a unique
subset-minimal set Q such that Q = P .

Proof. We define Q = {p ∈ P | ∀p′∈P p′ ⊆ p ⇒ p′ = p} and prove that this is the
required set. From the definition of Q it follows directly that Q is subset minimal.

8.1 Carving attributed dump sets 133

The inclusion Q ⊆ P follows directly from Q ⊆ P . For the converse, P ⊆ Q, we
use the fact that strict set inclusion on P(F) is well-founded for finite F .

Let p ∈ P , then there exists p′ ∈ P , such that p′ ⊆ p. We consider two cases: p′ ∈ Q
and p′ 6∈ Q. If p′ ∈ Q, then from p′ ⊆ p it follows that p ∈ Q, as required. In the
second case, p′ 6∈ Q, we use the definition of Q to find p′′ ∈ P such that p′′ (p′.
Again, we can consider two cases: p′′ ∈ Q and p′′ 6∈ Q. In the first case, p′′ ∈ Q
we have p′′ (p′ ⊆ p, so p ∈ Q, as required. In the second case we can repeat this
construction to find p′′′ (p′′ (p′ ⊆ p. Given well-foundedness, it is impossible to
create an infinite sequence in this way. Therefore, there is a point where the loop
will be broken by finding p(k) ∈ P , such that p(k) (p(k−1) (. . . (p′ ⊆ p. We
know that there exists no p̂ ∈ P such that p̂ (p(k). Therefore, from the definition
of Q we have that p(k) ∈ Q, which implies that p ∈ Q.

Finally, we prove uniqueness. Assume that X and Y are two subset-minimal sets
with X 6= Y and X = P = Y . Without loss of generality, we may assume that
there exists x ∈ X, such that x 6∈ Y . We derive a contradiction and conclude
X = Y as follows. If x ∈ X, then x ∈ Y . From x 6∈ Y , we find y ∈ Y , such that
y (x. From y ∈ Y , it follows that y ∈ X, so there exists x′ ∈ X with x′ ⊆ y.
Thus, we have x′ ⊆ y (x for x′, x ∈ X, which contradicts the assumption of
subset minimality of X.

Given P as in Lemma 8.12, we denote the unique subset-minimal set by smin(P).
Then, in order to determine whether an encoding of an attribute contains at least
the indexes from one of the sets in diss(a, S), it suffices to verify that it at least
contains one of the sets from smin(diss(a, S)).

By combining the results of the previous lemmas, we get the following main result.

Theorem 8.13. Let A be an attribute set and let f be an attribute mapping for
dump set S ⊆ Bn, then

∀a∈A∃I∈smin(diss(a,S)) I ⊆ f(a) ⊆ comm(a, S).

This theorem says that if an attribute is expressed in a dump set, then its encoding
position should contain at least one of the minimal dissimilarity sets and must
be contained in the common set. Thus, by calculating these common set and
dissimilarity sets, we can limit the search space when looking for this attribute in
the dumps. In Section 8.2, we will investigate algorithms for determining the two
sets smin(diss(a, S)) and comm(a, S).

A consequence of the theorem is that by calculating diss(a, S) and comm(a, S),
we can limit the search space when looking for the attribute mapping f(a) in the
dumps. We will now investigate how to further limit the search space.

8.1.4 Reducing the search space

In this section, we investigate how to further limit the search space. The main
idea behind our reduction is that we do not compute the commonalities and dis-
similarities separately. Instead, we restrict the computation of the dissimilarities
by taking only one dump from each bundle into account.

134 Chapter 8 Carving

Let filter(A, c) = {a ∈ A | a ⊆ c} denote the filtration of a collection of sets
in A with respect to a set c. The sets of interest for an attribute mapping in
Theorem 8.13 are characterized by the set

smin(filter(diss(a, S), comm(a, S))). (8.1)

Let R be a set of representatives of bundles(a, S), i.e. ∀b∈bundles(a,S) ∃!s∈R s ∈ b.
The following theorem states that the set

smin(diss(a,R|comm(a,S))) (8.2)

contains the same index sets as (8.1). Expression (8.2) suggests, however, a smaller
search space than (8.1), since the diss function is computed only over a restricted
set of indexes and a subset of the dump set.

Theorem 8.14. Let a ∈ A be an attribute and S ⊆ Bn a dump set. Let R
be a set of representatives of bundles(a, S). Then smin(diss(a,R|comm(a,S))) =
smin(filter(diss(a, S), comm(a, S))).

To build up our intuition, we first formulate the lemma that by expanding a dump
set we might be able to locate an attribute more precisely.

Lemma 8.15. Let S, S ′ ⊆ Bn be dump sets and a ∈ A an attribute. Then
S ′ ⊆ S ⇒ diss(a, S ′) ⊇ diss(a, S).

Proof. By Lemma 8.12, let T be the unique subset-minimal set for which T =
diss(a, S). We show that T ⊆ diss(a, S ′).

Let I ∈ T . Then by definition of diss, ∀s,s′∈S (vala(s) 6= vala(s
′) ⇒ ∃i∈I si 6= s′i).

But since S ′ ⊆ S, the statement holds in particular for any two dumps in S ′. Thus
I ∈ diss(a, S ′).

The preceding lemma indicates in particular that a dump set contains more in-
formation about an attribute than its subset of representatives. If we filter the
diss(a, S) sets with respect to the comm(a, S) set, however, then the representa-
tives are sufficient.

Lemma 8.16. Let S ⊆ Bn be a dump set and a ∈ A an attribute. Let R be
a set of representatives of bundles(a, S). Then filter(diss(a, S), comm(a, S)) =
filter(diss(a,R), comm(a, S)).

Proof. We obtain filter(diss(a, S), comm(a, S)) ⊆ filter(diss(a,R), comm(a, S)) by
Lemma 8.15.

For the reverse inclusion, let I ∈ filter(diss(a,R), comm(a, S)) be an index set in
the filtration of diss(a,R) with respect to the common set of the attribute a of the
dumps in S. Then we have that I ∈ diss(a,R) and I ⊆ comm(a, S).

Suppose towards a contradiction that I 6∈ filter(diss(a, S), comm(a, S)). Then by
definition of diss(a, S), there must be dumps s, s′ ∈ S such that s|I = s′|I , but
vala(s) 6= vala(s

′).

8.1 Carving attributed dump sets 135

Consider representatives r, r′ ∈ R of s and s′ such that vala(r) = vala(s) 6=
vala(s

′) = vala(r
′). Since I ⊆ comm(a, S), it follows that r|I = s|I = s′|I = r′|I .

However, since vala(r) 6= vala(r
′), we have I 6∈ diss(a,R). This contradicts

I ∈ filter(diss(a,R), comm(a, S)).

The filter with respect to the comm(a, S) set in the preceding lemma is indeed
necessary. In general, the set diss(a,R) does not coincide with diss(a, S).

Consider, for instance, the three two-bit dumps s1 = 01, s2 = 00, and s3 = 11.
Suppose the dumps encode the attribute a with vala(s1) = vala(s2) = A and
vala(s3) = B. Then we have the following bundles and dissimilarity sets.

bundles(a, {s1, s2, s3}) = {{s1, s2}, {s3}}
diss(a, {s1, s2, s3}) = {{0}, {0, 1}}

= {{0}}
diss(a, {s2, s3}) = {{0}, {1}, {0, 1}}

= {{0}, {1}}
Thus, in spite of the fact that s1 and s2 have a common value for the attribute a,
considering both in the dissimilarities set provides more information.

Proof of Theorem 8.14. It follows from Lemma 8.16 that it is sufficient to prove
that smin(diss(a,R|comm(a,S))) = smin(filter(diss(a,R), comm(a, S))).

By uniqueness of subset minimal sets (Lemma 8.12), it suffices to show that
diss(a,R|comm(a,S)) = filter(diss(a,R), comm(a, S)).

The inclusion diss(a,R|comm(a,S)) ⊆ filter(diss(a,R), comm(a, S)) holds as follows.
Let I ∈ diss(a,R|comm(a,S)). Then by the fact that dissimilarity sets are superset
closed, we have that I ∈ diss(a,R) and I ⊆ comm(a, S). Therefore, we have
I ∈ filter(diss(a,R), comm(a, S)).

The inclusion diss(a,R|comm(a,S)) ⊇ filter(diss(a,R), comm(a, S)) holds as follows.
Let I ∈ filter(diss(a,R), comm(a, S)). Then by definition of filter, we have that
I ∈ diss(a,R) and I ⊆ comm(a, S), thus I ∈ diss(a,R|comm(a,S)).

8.1.5 Cyclic attribute mappings

In this section we extend our results to a class of dynamic mappings, which we call
semi-dynamic or cyclic attribute mappings1. Whereas a static mapping always
encodes an attribute in a single location, cyclic mappings store the attributes
cyclically in a fixed set of locations. This data structure resembles a ring buffer.
We will show that cyclic mappings can be straightforwardly derived from normal
attributes. Therefore, the theory developed in Section 8.1 as well as the algorithms
of Section 8.2 can be reused.

Example 8.17 (Cyclic mappings). Cyclic mappings can be used to store trip
frames on a public transportation card. Such a trip frame contains all information
related to a single ride. Trip frames are stored in one of a fixed number of slots
in the card’s memory. When validating the card for a new ride, a new trip frame

1The formalization and analysis of cyclic attribute mappings is due to Sjouke Mauw.

136 Chapter 8 Carving

will be written to the next available slot. If all slots have been filled, the next trip
frame will be written to the first slot again, etc. In this manner, a trip frame with
x slots will keep a history of the x most recent rides.

Because cyclic mappings consider the evolution of a given object in time, we first
assume additional structure on the dump set corresponding to the history of an
object. We assume that for each dump we can determine to which object it belongs
through the attribute ID (e.g. the unique identifier of a public transportation card).
For each object we further assume that its dumps are ordered as expressed by an
attribute seqnr .

Definition 8.18 (Bundle ordering). Let S ⊆ Bn be a dump set and let ID and
seqnr be attributes. We say that the pair (ID , seqnr) is a bundle ordering if
type(seqnr) = N and

∀b∈bundles(ID ,S) ∀s,s′∈b s 6= s′ ⇒ valseqnr(s) 6= valseqnr(s
′).

Because the combination of a device identifier and a sequence number uniquely
determines a dump, we can consider an attribute a as a function on type(ID)×N.
Given i ∈ type(ID) and n ∈ N we write a(i, n) for vala(s), where s ∈ S is the
dump uniquely determined by valID(s) = i and valseqnr(s) = n. Based on the ID
and seqnr , we are able to generate new attributes from a given attribute a. We
call these attributes derived attributes .

Example 8.19 (Derived attribute). We consider the history of a device. In par-
ticular, suppose we want to verify whether the previous value of an attribute a is
stored. We derive the attribute a−1, which is the a-value of the direct predecessor of
a dump. This attribute is defined by a−1(i, n) = a(i, n−1). It is defined on a subset
of S, viz. {s ∈ S | ∃s′ ∈ S valID(s′) = valID(s)∧valseqnr(s

′) = valseqnr(s)−1}. This
generalizes to a−r for r ∈ N.

Derived attributes are particularly useful when dealing with cyclic attribute map-
pings. A cyclic mapping of attribute a considers a number of locations to store
the value of a, for instance, [i0, j0), [i1, j1) and [i2, j2). In the first dump of an or-
dered ID-bundle the value of a is stored at [i1, j1). In the second dump a is stored
at [i2, j2), etc. The location for the fourth value of a is again [i0, j0). The main
observation here is that the attribute a is stored in the dumps as three derived
attributes.

In order to locate a cyclic mapping of cycle length c for attribute a we derive c new
attributes acycle(x/c) (for 0 ≤ x < c). Using notation brc for the floor of rational
number r, we obtain the following definition of these new attributes:

acycle(x/c)(i, n) = a(i, c ·
⌊
n− x
c

⌋
+ x).

In order to find the cycle length of a cyclically mapped attribute, it suffices to
search for attributes acycle(0/c), where c ranges from 2 to the expected maximum
cycle length.

8.2 Algorithms 137

rl rlcycle(0/3) rlcycle(1/3) rlcycle(2/3) seqnrmod(3)

s1 8 8 - - 1
s2 7 8 7 - 2
s3 6 8 7 6 3
s4 5 5 7 6 1
s5 4 5 4 6 2
s5 3 5 4 3 3

Figure 8.2: Derived attributes with cycle length 3.

Example 8.20 (Cyclic mapping: rides left). We consider 6 consecutive dumps of
a single public transportation card. Furthermore, we assume that the rides-left (rl)
attribute is a cyclic attribute of cycle length 3. Figure 8.2 shows the attribute rl
and the three derived attributes rlcycle(x/3) (for x = 0, 1, 2).

We conclude our observations on cyclic mappings by considering pointers to such
attributes. An example is the use of a pointer (at a static location), pointing at the
block in memory where the information on the most recent trip is stored. Clearly,
if the trip information is stored cyclically at different locations, the pointer has
a similar cyclic behavior. We can search for such cyclic pointers by introducing
attributes seqnrmod(c), which consider the sequence number of the dump modulo
cycle length c. Figure 8.2 contains an example for cycle length c = 3.

8.2 Algorithms

8.2.1 Commonalities

The algorithm computing the comm function identifies all positions in which given
bitstrings have the same value. We implement it using the function fc : P(B∗) ×
P(N) → P(N) which we define recursively as follows, using the symbol ·∪ for the
disjoint union of sets.

fc(∅, I) = I

fc({s}, I) = I

fc(S ·∪{s, s′}, I) = fc(S ∪ {s}, {i ∈ I | si = s′i})

For dumps of length n,

comm(a, S) =
⋂

b∈bundles(a,S)

fc(b, [0, n)).

The time complexity of this step is O(n · |S|).

Example 8.21 (Commonalities algorithm). The function comm is explained in
Figure 8.3. For each of the three bundles fc is calculated as the set of all positions
where all dumps from the bundle agree on the bit value (indicated by the asterisk
symbols). Finally, the comm set cm is the intersection of these fc sets.

138 Chapter 8 Carving

rl dump
s1 4 010100100111010000

s2 4 001100100001010010

*..******..*****.* fc
s3 5 101110101011010100

****************** fc
s4 6 001010110111011011

s5 6 111010110011011001

..*******.******.* fc

...******..*****.* cm

Figure 8.3: Calculation of the comm set.

8.2.2 Dissimilarities

Given a set of bundles, the algorithm for the diss function identifies intervals in
which any two bitstrings from different bundles differ in at least one position.

We implement the diss function in the case where the attribute mapping is assumed
to be contiguous using the dissimilarity interval function iva,S(i). It denotes the
shortest interval that a contiguous encoding of attribute a must have if it is to
start at position i. Such an interval does not exist if there are dumps in S which
do not differ at any position in [i, n). In the remainder of this chapter, we adopt
the conventions min(∅) = ∞, max(∞, k) = ∞, and max(−∞, k) = k for all
k ∈ N ∪ {−∞,∞}.

Definition 8.22 (Dissimilarity interval function). Let a ∈ A be an attribute and
S ⊆ Bn be a dump set. The dissimilarity interval function iva,S : [0, n)→ N∪{∞}
of S with respect to attribute a is defined by

iva,S(i) = min{k ∈ [i, n) | ∀s,s′∈S (vala(s) 6= vala(s
′)⇒ ∃i≤j≤k sj 6= s′j)}.

The following lemma expresses that the dissimilarity set for contiguous attribute
maps can be obtained from the dissimilarity interval function. To state the lemma,
we first need to define subset minimality and superset closure for sets of intervals.

Let In = {[i, j] ⊆ N | i, j < n} be the set of intervals in [0, n). We define the
interval-superset closure of a set P ⊆ In by {p ∈ In | ∃p′∈P p′ ⊆ p}. The interval-
superset closure of P is equal to P ∩ In. A set P is said to be interval-superset
closed if P ⊆ In and P = P ∩ In. We say that P is interval-subset minimal if
P ⊆ In, and for every p, p′ ∈ P , p′ ⊆ p⇒ p′ = p. One can see that for every set of
intervals P ⊆ In, there is a unique interval-subset minimal set Q ⊆ In such that
Q ∩ In = P ∩ In. The proof is analogous to the proof of Lemma 8.12.

Lemma 8.23. Let S ⊆ Bn be a dump set and a ∈ A an attribute. Let the set T be
defined by

T = {[i, j) ⊆ N | i ∈ [0, n) ∧ j = iva,S(i) ∧ j < iva,S(i+ 1)}

then T is the interval-subset-minimal set that satisfies T ∩ In = diss(a, S) ∩ In.

8.2 Algorithms 139

Proof. T is interval-subset-minimal by definition.

From the definition of T , we observe that T ⊆ diss(a, S)∩In. Since diss(a, S)∩In
is interval-superset closed, it follows that T ∩ In ⊆ diss(a, S) ∩ In.

Suppose towards a contradiction that T ∩ In (diss(a, S) ∩ In. Then there exists
I ∈ diss(a, S) ∩ In such that I 6∈ T ∩ In. Let I = [i, j) and consider iva,S(i). By
definition of iva,S, we have [i, iva,S(i)) ⊆ I and we know that [i, iva,S(i)) ∈ T ∩ In.
This contradicts I 6∈ T ∩ In.

To compute iva,S(i) for i ∈ [0, n), we assume that no two dumps in S have the same
value for attribute a, that is, we are restricting ourselves to a set of representatives
R of bundles(a, S).

A naive algorithm for iva,R(i) is to select a dump r ∈ R and compare it to all
other dumps in R. In each comparison the minimal position k after i in which the
two dumps differ is sought for. The output of this step is the maximal value of k
and it defines the minimal interval in which r differs from all other dumps in R.
This process is repeated for all dumps in R and the maximum k of all iterations
is returned. More precisely, let fiv : P(B∗) × N → N ∪ {−∞,∞} be recursively
defined as follows.

fiv(∅, i) = −∞
fiv({r}, i) = −∞

fiv({r, r′}, i) = min{k ∈ N | k ≥ i ∧ rk 6= r′k})
fiv(R ·∪{r}) = max(fiv(R, i),max

r′∈R
{fiv({r, r′}, i)})

The number of comparisons of two dumps, i.e. the number of calls to fiv({r, r′}, i),
is easily seen to be quadratic in |R|. We can improve the number of comparisons
to O(|R| log |R|) by sorting the set of dumps first. We write r <i r

′ if and only if
∃j∈[i,n)rj < r′j ∧ ∀i≤k<jrk = r′k. We write r ≤i r′ if r <i r

′ or ∀j∈[i,n)rj = r′j.

A more efficient algorithm A to compute iva,S(i) runs as follows.

1. Set k = −∞.

2. Sort the dump set R in ascending order with respect to ≤i. Let r(1) ≤i r(2) ≤i
. . . ≤i r(|R|) be the sorted list of these dumps.

3. For j from 1 to |R| − 1, compare r(j) with r(j+1). For the comparison, start
with the i-th bit and move towards the n − 1-st bit. Let kj be the index of

the first bit for which r
(j)
kj
6= r

(j+1)
kj

. If no such bit exists, output ∞ and stop.

Otherwise, set k = max(k, kj)

4. Output k.

Example 8.24 (Dissimilarity intervals). The calculation of the diss intervals is
illustrated in Figure 8.4. We start by taking a representative of each of the bundles.
Then, starting from the left, we calculate for each position how far to the right we
must go in order to find a distinguishing bit for each pair of dumps. For position 0

140 Chapter 8 Carving

the first two bits already make a distinction between the three dumps, which gives
the interval [0, 1] (indicated by the first line with asterisk symbols). For position 1
we need three bits, because s3 and s4 coincide at positions 1 and 2. This gives the
interval [2, 4], etc. Those sets belonging to the subset-minimal diss set are marked
with “minimal”.

rl dump
s1 4 010100100111010000

s3 5 101110101011010100

s4 6 001010110111011011

**................ minimal
.***..............
..**.............. minimal
...**............. minimal
....****.......... minimal
.....****.........
......***.........
.......**......... minimal
etc.

Figure 8.4: Calculation of the diss intervals.

Example 8.25 (Commonalities and dissimilarities). If we combine the comm set
from Figure 8.3 and the diss set from Figure 8.4, under the assumption that the
number of rides is encoded with 4 bits, we obtain the four remaining possibilities
from Figure 8.5. This result includes the three possible attribute mappings from
Figure 8.1.

rl dump
s1 4 010100100111010000

s2 4 001100100001010010

s3 5 101110101011010100

s4 6 001010110111011011

s5 6 111010110011011001

...****...........

....****..........

.....****.........

............****..

Figure 8.5: The resulting attribute mappings.

Theorem 8.26. Let R be a set of representatives of the sets in bundles(a, S ′). Let
n be the bit length of the dumps in R. Then iva,R(i) is computed for all 0 ≤ i < n
by A in time O(n2|R|+ n|R| log |R|).

Proof. We first prove correctness of the algorithm and then compute its time com-
plexity.

Correctness We need to show that for all r, r′ ∈ R there exists an index ind ∈
[i, k] such that rind 6= r′ind. To this end we show the following invariant of the
algorithm A:

inv = ∀1≤x<y<j+1 ∃i≤ind≤k r(x)
ind 6= r

(y)
ind.

8.3 The mCarve tool 141

The invariant inv implies that any intermediate result k in step j is correct.
For j = 0, inv trivially holds. Assume inv holds for j, we show that it also
holds for j + 1.

To maintain inv we set k′ = max(k, kj+1) and show that for all 1 ≤ x < y <

j + 2 there exists an index ind such that i ≤ ind ≤ k′ and r
(x)
ind 6= r

(y)
ind. Since

we know that inv holds for j, we need to show that for all 1 ≤ x < j+1, there
exists such an index and r

(x)
ind 6= r

(j+1)
ind . This amounts to showing that the

dump r(j+1) differs from all dumps r ≤i r(j+1). The case x = j is immediately
satisfied since the algorithm computes kj+1 such that r

(j)
kj+1
6= r

(j+1)
kj+1

. For any

x < j, due to the sorting step r(x) ≤i r(j) <i r
(j+1), thus r

(x)
kj+1

< r
(j+1)
kj+1

. Since

k′ = max(k, kj+1), the invariant inv holds for j + 1. It thus holds for all j,
in particular |R| − 1, showing correctness of the algorithm.

Complexity The complexity of the algorithm is given by the complexity to sort
the dump set and the complexity to compare adjacent dumps in the sorted
list. The bit-complexity for comparing the adjacent dumps r(j), r(j+1) is
bounded above by the bit length n of the dumps. Sorting the dumps in
R can be done in |R|log|R| comparisons. Thus iva,R(i) can be computed in
time O((n− i)|R|+ (n− i)|R| log |R|) = O((n− i)|R| log |R|).
If iva,R(i) is computed for all i ∈ [0, n), the sorting complexity for i > 0 can
be lowered by taking advantage of the sorted list of dumps with respect to
>i−1. We merely need to perform a merge-sort for <i on two sets given by
the restrictions ri−1 = 0 and ri−1 = 1 and ordered with respect to <i−1. This
can be performed in time O((n − i)|R|). By summing up the time it takes
to compute iva,R(i) for i ∈ [0, n) we obtain the theorem.

8.3 The mCarve tool

We have implemented the algorithms of Section 8.2 in a prototype. The prototype,
called mCarve2, allows the forensic analyst to input a collection of dumps and a
collection of attributes. Each of the dumps can be accompanied by its attribute
values. The prototype was written in Python and consists of approximately 1200
lines of code (excluding graphical user interface).

After entering the dumps and attributes the user can run the commonalities al-
gorithm for an attribute. The output of the algorithm is the set of indexes I for
which all dumps with the same attribute value are the same. The set I is used
as a coloring mask to display any dump d selected by the user: if i ∈ I, then di
is colored blue, otherwise red. The dissimilarities algorithm computes a subset-
minimal set of dissimilarity intervals. Since these intervals may be overlapping, the
prototype enumerates them rather than showing them as one coloring mask. This
allows the user to step through the intervals. The prototype displays the interval iv
by applying a yellow coloring mask to all bits di for i ∈ iv. A combined procedure
consolidates the results from the commonalities and dissimilarities algorithms.

2mCarve is available at http://satoss.uni.lu/mcarve.

142 Chapter 8 Carving

The prototype further allows users to specify two types of special attributes: a
constant attribute and a hash

attribute. The former has a constant value for all dumps and can be used to
determine which bits never change. The latter has a different value for all pairwise
different dumps and can be used to detect encrypted attributes. The tool allows
one to derive new attributes from other attributes. These derived attributes can
be used to find cyclic attribute mappings. The tool further allows one to apply an
encoding to a selected interval in each dump. A number of standard encodings,
such as ASCII and base 10, are implemented. Aside from displaying the output
on-screen, the user can choose to export the results to JPEG or to LATEX (see
Figure 8.7 for an example).

8.3.1 Performance

We illustrate the performance of our prototype by running our prototype on a
generated test suite. The test suite consists of dumps of sizes 8KB, 16KB, 32KB,
64KB, 128KB, and 256KB. For each file size, 5 dump sets were generated. Each
dump embeds one attribute at a random position which is encoded in at most 64
bits. The remaining bits are randomly generated.

The running time of the commonalities procedure is linear in the number of dumps
and the dissimilarities procedure is quadratic in the number of bundles. Therefore,
the execution time of the combined procedure is mainly dependent on the number
of bundles in the dump set. Convergence tests show that (Section 8.3.2), in general,
fewer than 10 bundles are needed to find an attribute in a dump set. This allows
us to restrict our performance tests to dump sets of 10 bundles.

bbbb0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10

bundles

ti
m
e
(s
)

bc bc bc bc bc bc bc bc bc bc× × × × × × × × × ×rs rs rs rs rs rs rs rs rs rs
ut ut ut ut ut ut ut ut ut ut

qp qp qp qp qp qp qp qp
qp

qp

b
b

b

b

b

b

b

b

b

b
b 256 KBqp 128 KBut 64 KBrs 32 KB

× 16 KBbc 8 KB

Figure 8.6: Performance

The tests were run on a Linux machine (kernel 2.6.31-22) with Intel Core 2 6400 @
2.13 GHz processor running Python 2.6.4. Figure 8.6 shows on the horizontal axis
the number of bundles included in the dump set. On the vertical axis it shows for
each of the file sizes the time in seconds (averaged over the 5 dump sets) needed
to perform the combined procedure. The test shows that our prototype is best
suited for dumps of size smaller than 32KB, but it can deal reasonably well with
size up to 256KB. Initial experiments have shown that performance of the tool
can be significantly improved by implementing the core procedures in a lower-level
language.

8.3 The mCarve tool 143

8.3.2 Convergence

Another interesting measure for the mCarve tool is the rate of convergence of the
carved intervals3. We will measure it by computing the number of dumps that are
necessary in order to find an attribute in a dump set. For simplicity, we assume
that the dumps as well as the attribute values are given by a uniformly random
distribution.

Let q denote the bit length of the attribute’s encoding in the dump, let N denote
the number of dumps and let x be the number of bundles. We first compute the
probability of false positives, i.e. the probability of an accidental occurrence of
values matching an attribute. The probability that the bit string formed by a
particular interval of q bits in all N dumps matches a particular given string of

bits is 2−qN . There are

(
2q

x

)
· x! possible encodings of x different values. The

probability that the q bits in all N dumps match one of these representations is

therefore 2−qN
(

2q

x

)
· x!.

Thus if l denotes the length of the bit strings representing dumps, then the prob-
ability pnfp of no false positives is given by

pnfp ≥
(

1− 2−qN · 2q!
(2q − x)!

)l−q+1

.

The inequality is due to the fact that the product on the right does not concern
independent trials. We are interested in those values of x and N for which the
probability pnfp is large enough that the discovery of an attribute is not coinciden-
tal.

Using the inequality

(
n

k

)
≤ nk

k!
we obtain

(
1− 2−qN · 2q!

(2q − x)!

)l−q+1

≥
(
1− 2q(x−N)

)l−q+1
.

Fixing the number of bundles x and a false positive probability ε, we obtain the
following inequality for the number of dumps N :(

1− 2−(N−x)q
)l−q+1

> 1− ε.
Thus

N >
−1

q
log2

(
1− (1− ε) 1

l−q+1

)
+ x.

This formula can be used in two ways. If we know the length q of the encoding,
we fix a number of bundles x and a false positive probability ε and compute the
number of dumps N needed for convergence. If we do not know the length of q,
we set it to log2(x) and perform the same computation. For instance, for dumps
of length l = 1024, false positive probability of ε = 0.05, number of bundles x = 4,
and length q = log2(x) = 2 we get N > 11.14. This means that to have convergence
with probability 0.95 we need to analyze 12 dumps comprising 4 different attribute
values.

3The convergence analysis is due to Saša Radomirović.

144 Chapter 8 Carving

8.4 Case study: The e-go system

We illustrate our methodology by reverse engineering part of the memory structure
of the Luxembourg public transportation card.

8.4.1 The e-go system

The fare collection system for public transportation in Luxembourg, called e-go,
is based on radio frequency identification (RFID) technology. The RFID system
consists of credit-card shaped RFID tags that communicate wirelessly with RFID
readers. Readers communicate with a central back-end system to synchronize their
data. Travelers can buy e-go cards with, for instance, a book of 10 tickets loaded
on it. Upon entering a bus, the user swipes his e-go card across a reader and a
ticket is removed from the card.

Since most RFID readers of the e-go system are deployed in buses the e-go is an off-
line RFID system [GvR10]. Readers do not maintain a permanent connection with
the back-end system, but synchronize their data only infrequently. Since readers
may have data that is out-of-date and tags may communicate with multiple readers,
the e-go system stores information on the card.

The RFID tags used for the e-go system are, in fact, MIFARE classic 1k tags.
These tags have 16 sectors that each contain 64 bytes of data, totaling 1 kilo
byte of memory. Sector keys are needed to access the data of each sector. Gar-
cia et al. [GdKGM+08, GvRVS09] showed that these keys can be efficiently ob-
tained with off-the-shelf hardware. Therefore, it is easy to create a memory dump
of an e-go card.

8.4.2 Data collection

Over a period of 2 months, we collected 68 dumps for 7 different e-go cards of
different types. Four cards are of type 10-rides/2nd-class, two of type 1-ride/2nd-
class and one of type 1-ride/1st-class. According to information published by the
transportation companies, a card can contain up to 6 products of the same type.
We considered two classes of events that change the state of a card: (1) charging
the card with a new product (including the purchase of a new, charged card),
and (2) validating a ride by swiping the card. After each event we dumped the
memory of the card as a binary file. This gave a sequence of consecutive events
for each card. Because the e-go system is an off-line system, we expected to find
several attributes encoded on the card. For each event we therefore collected some
contextual information, which we attributed to the dump following the event. For
charge events we collected the following attributes: card ID (the decimal number
printed on the card); charged product; date, time and location of charging; card
charger ID (as printed on the receipt). For validation events we collected: card ID;
date and time of swiping; expiration time of the ride; card reader ID (because the
card readers have no visible identification we collected the license plate number of
the bus and the location of the reader within the bus); rides left; bus number; bus
stop.

8.4 Case study: The e-go system 145

These are the attributes that one would expect to find on the card and that are
easy to observe. Most of these attributes can be obtained by reading the sales slips
or the display of the reader. Since cards are purchased anonymously, no personal
identifying information, such as name, address, or date-of-birth can be stored on
the card.

In addition to our basic set of dumps, we had access to 47 dumps from earlier
experiments which were less structured and less documented. We used these dumps
to validate the results of the experiments with our main set of dumps.

It is important to note that our analysis is entirely passive: no data on the card
needs to be modified and no data needs to be written to the card.

8.4.3 Data analysis

Using our mCarve tool, we verified the presence of three classes of attributes: (1)
external attributes (i.e. the observable attributes mentioned above); (2) internal
attributes (related to the organization of the data within the card’s memory); and
(3) attributes with high entropy (such as CRCs and cryptographic checksums). We
searched for static as well as cyclic mappings of these attributes.

Memory layout

shell sector

product
sectors

transaction
sectors

empty
sectors

= constant 0 = constant 1 = variant

Figure 8.7: E-go memory layout (applying common to a unique attribute)

The first step in our analysis is to determine the general memory layout of an
e-go card. For this purpose we define a constant attribute with the same value for
all dumps. Applying the commonalities algorithm for this attribute results in the
high-level memory layout shown in Figure 8.7. The card’s memory is displayed in
64 lines of 128 bits, giving a total of 8192 bits (1KB). Bits that have a constant
value in all dumps are colored differently from bits that vary in value. The recurring
structures immediately suggest a partitioning of the memory into 16 sectors of 4
lines each. There seem to be four different types of sectors. The structure of the
first sector is unique. We call this sector the shell sector . Lines 2 and 3 of the

146 Chapter 8 Carving

shell sector are identical. Next there are seven sectors with a similar appearance
(three of these look a bit less dense than the others because they are used less
frequently in our dump set). We call these sectors the product sectors . The next
five sectors are similar. We call them transaction sectors . Finally, there are three
empty sectors, which we ignore for the rest of our analysis.

Further inspection shows that the last line of each sector is constant across all
dumps. This line contains the two 48-bit sector keys as described by the MIFARE
classic standard. Because the last lines of each of the sectors (except the empty
sectors) are equal, we can conclude that the same key is used for all sectors.4

External attributes

The second step in our analysis is to carve the external attributes. This step only
revealed the card ID. We can conclude that the other external attributes are either
not represented on the card or not at a static location. Figure 8.8 shows for each
sector type which attributes were discovered with our tool. The card ID, which is
located in the shell sector in Figure 8.8, is detected as follows. The output of our
tool on the card ID attribute consists of a number of intervals between bits 0 to
37 plus the interval 35 to 108. Clearly, the last interval is too large to contain the
card ID, so we can consider that interval a false positive. We conclude that bits
0 to 37 are related to the card ID. Indeed, the MIFARE standard describes that
identification numbers are hard-coded in the first 32 bits (4 bytes). If we reverse
these 4 bytes and interpret them as a decimal number, we obtain the number
printed on the card. The fact that bits 32 to 37 relate to the card ID is also
consistent with the MIFARE standard because bits 32 to 39 contain the checksum
of the card ID.

Internal attributes

The tool can be used to step through a sequence of dumps and observe the changes
between consecutive dumps. In this way, one can step through the “history” of a
particular card and observe recurring patterns. This process indicates a periodicity
in the updates of the transaction sectors of the e-go card. Successive validation
events write to successive transaction sectors, thereby cycling back from the fifth
transaction sector to the first. One would expect a similar periodicity in the
product sectors, but that is not the case. Writing to the product sectors occurs in
an alternating way between two selected sectors.

Based on the hypothesis that there is a notion of a “current” sector, we carve for
pointers with cycle lengths 2 to 7. By making a selection of those sequences of
dumps that showed the cyclic behavior, we can locate a pointer to the currently
active transaction sector (see tsec-ptr in the shell sector of Figure 8.8). This 3-bit
pointer has a cycle of length 5 from 000 to 100. In a similar way one obtains a
pointer with cycle 2, located at bit 169. Inspection of dumps reveals that this
concerns a 3-bit pointer to the next active product sector (next-psec-ptr, bits 168-
170). Two other pointers with cycle length 2 are only revealed when carving

4In order to not reveal sensitive data, we display keys that are different from those used in
the e-go system.

8.4 Case study: The e-go system 147

Shell sector
card-id
(0–31)

bcc card-id
(32–39)

seal
(176–239)

CRC
(240–255)

psec-ptr-A
(146–148)

psec-ptr-B
(149–151)

tsec-ptr
(165–167)

next-psec-ptr
(168–170)

Product sector
card type
(19–23)

rides left 2
(72–75)

CRC
(112–127)

rides left
(206–209)

exp-time
(221–231)

CRC
(240–255)

Transaction sector
date

(128–141)
time

(142–152)
CRC

(240–255)

CRC
(368–383)

reader id
(256–271)

date 2
(277–290)

time 2
(291–301)

Figure 8.8: Attributes located in the three sector types

well-chosen subsets of the collection of dumps. In the figure they are labeled with
psec-ptr-A and psec-ptr-B. When stepping through the dumps, it becomes clear
that after each validation event the values of next-psec-ptr and one of psec-ptr-A
or psec-ptr-B are swapped. When charging the card, psec-ptr-A and psec-ptr-B
change roles.

Cyclic external attributes

After having been able to locate only a single static external attribute, we continue
by searching for dynamically stored external attributes. By using cycle length 5,
we can find two locations in each of the transaction sectors related to the date of
the most recent validation In Figure 8.8 these locations are labeled with “date”
and “date 2”. By stepping through a sequence of dumps swiped on consecutive
days, it becomes clear that the date field is a counter. It counts the number of days
since 1/1/1997. In our dump set the two dates are always identical. In a similar
way we can find two fields related to the time of the most recent validation event.
They count the number of minutes since midnight. The first and second time
are different, but, surprisingly, their difference is not constant, which would have
indicated a relation to the expiration time. The last attribute that can be located
in the transaction sector is the reader ID. As explained, we use the license plate of
the bus and the location of the reader within the bus to identify each reader. By
combining these two attributes we obtain a new attribute that relates to the reader
ID. Surprisingly, this new attribute does not occur in the dumps, but the license
plate attribute does. This means that all readers in a given bus have the same ID.
When interpreting the reader as a decimal number, one typically obtains numbers
in the range from 1 to 150 for readers in a bus and from 10150 to 10200 for readers
in a train station. This is consistent with carving for the attribute “bus-or-train”,
which points at the most significant bits of the reader ID.

148 Chapter 8 Carving

These attributes were found by reducing cyclic attributes to static attributes as
described in Section 8.1.5. With this approach an attribute of cycle length 5 will
change its value only every 5 dumps. As a consequence, this attribute has a rather
slow convergence. Convergence can be improved, however, by focusing on the
active transaction sector. In order to do this we created a new set of dumps, each
of which only contained the active transaction sector of the old dump. Carving for
the static external attributes in this new set of dumps results in the same findings,
but the attributes can be located with significantly fewer dumps.

Using this approach we can easily locate three more attributes in the product
sectors: the card type, the number of rides left on the card and the expiration time
of the current product. A second field related to the number of rides left was also
located (rides left 2 in the figure), which equals 12 minus rides left for 10-rides
cards and 3 minus rides left for 1-ride cards.

High-entropy attributes

While using the mCarve tool, one quickly observes that the diss function returns
intervals of varying widths sliding through the index set of the dumps. Heuris-
tically, one expects the width of these sliding windows to be shorter over inter-
vals corresponding to high-entropy attributes than over indexes corresponding to
low-entropy attributes. Furthermore, the step size or distance between two such
windows is expected to be smaller for high-entropy intervals. The observation of
short-step narrow sliding windows led to the conjecture that the cards contain
cryptographic data.

To confirm the existence of high-entropy attributes we carved for the hash at-
tribute. This serves as an indicator for equality or inequality of two dumps and is
a more robust approach to labeling distinct dumps with different attribute values
than simply enumerating all dumps in a set. Carving for this artificial attribute
amounts to looking for attribute values which change whenever the contents of the
dump change. The tool revealed an 80-bit string in the shell sector. The same
method applied to dumps of the product and transaction sectors revealed 16-bit
strings which only change when the data in the corresponding sector changes.

Whereas an 80-bit string was expected to be a cryptographic hash, the 16-bit
strings were suspected to be checksums such as CRCs. By trying out a list of
commonly used CRCs to the data in the product and transaction sectors, the CRC-
16-ANSI with polynomial x16 + x15 + x2 + 1 was found to produce the observed
values. This step led to the suspicion that a CRC might also be part of the 80 bit
string in the shell sector, which was indeed found to be the case. The remaining 64
bits are expected to be a cryptographic seal protecting the integrity of the card’s
data.

Evaluation

Our tool performed quite well in this case study. We located the attributes as dis-
played in Figure 8.8 and have been able to infer the encoding scheme for most of
them. On the other hand, we have not been able to locate all collected attributes.

8.4 Case study: The e-go system 149

We did not find the date, time and location of charging, the card charger ID, the
bus number and the bus stop. Our experiments prove that they are not stored
in a static or cyclic way on the card. We may assume that if the date and time
of charging and the card charger ID were represented in the card’s memory, they
would have been encoded in the same way as the other dates, times and IDs. A
search for these encoded values in the binary dumps did not give a hit. Therefore,
we conjecture that these attributes are not stored on the card, not even at a dy-
namically determined location. Given that a validated ride allows for unrestricted
travel through the whole country for two hours, there is also no need to store the
bus number and bus stop on the card.

As a consequence of carving for internal attributes we have not only located four
pointers, but we have also reverse engineered part of the dynamics of updating
e-go cards. The transaction sectors are written to cyclically. They contain data
related to the history of the card. The current state of each of the products on
the card is stored in the product sectors. Every product is assigned to one sector,
except the currently active product. This product is updated alternatingly in two
sectors. This redundancy is probably built in to keep a consistent product state
even if a transaction does not finish successfully. More safeguards against update
errors are found in the frequent checksums that we have been able to locate. A
protection against intentional modification of the stored data is the cryptographic
seal in the shell sector.

Even though we found the majority of observable attributes, there are still locations
in the card’s memory that we have not been able to assign a meaning to. Of course,
the current dump set provides no information on the meaning of the constant
(blue) bits in Figure 8.8. The variant (red) bits either have to do with the internal
organization of the card or with attributes that we did not or could not observe.

With respect to convergence, we see that the dumps in this case study behave
slightly worse than the dumps in the idealized set from Section 8.3.2. Finding an
attribute requires roughly 12 dumps covering 5 bundles. The time performance
of the tool is sufficient to quickly perform experiments on the dump set. A single
experiment with the tool typically costs one to a few seconds.

Occasionally, we incorrectly entered an attribute value. The algorithms that we
developed are not robust against such mistakes, since a single modification in the
input can drastically change the output. In practice, however, such mistakes were
quickly identified by regularly performing experiments on a subset of the dump
set, such as all dumps belonging to a single card.

A very useful feature of our methodology is that in the search for an attribute
we do not presuppose a particular encoding of that attribute. This allowed us to
search for the combination of license plate number and reader location in order to
find the reader ID. Similarly, we found a rides-left counter counting down and one
that counts up while searching for one attribute.

150 Chapter 8 Carving

8.5 Related work

Closest to our work are file carving approaches for recovering files from raw data.
These approaches try to recover the data of a single dump whereas we focus on
recovering data (and data structures) of a set of dumps. Garfinkel [Gar07] describes
several carving algorithms that recover files by searching for headers of known
file formats. These algorithms reconstruct files based on their raw data, rather
than using the metadata that points to the content. Cohen [Coh07] formalizes file
carving as a construction of a mapping function between raw data bytes and image
bytes. Based on this formalization, he derives a carving algorithm and applies it
to PDF and ZIP file carving. Sencar and Memon [SM09] describe an approach
to identify and recover JPEG files with missing fragments. Common to these file
carving approaches is that they are designed for one (or a small set of) known file
format(s). In contrast to our approach, they cannot be applied if the encoding of
the attributes is not known. However, if the encoding is known, the algorithms are
more efficient than ours.

More general, but perhaps less powerful than the previously mentioned approaches
is visual inspection of binary data. Conti, Dean, Sinda, and Sangster [CDSS08]
describe a tool that allows analysts to visually reverse engineer binary data and
files. Their tool supports simple techniques such as displaying bytes as pixels, but
also more complicated techniques that visualize self-similarity in binary data. Helf-
man [Hel96] first visualized self-similarity in binary data using dotplot patterns.
Using dotplot patterns he revealed redundancy in various encodings of informa-
tion. Although these visualization techniques require more manual labor than our
approach, our mCarve tool might benefit from these research efforts.

Some information in a memory dump may be constructed using CRCs, cryp-
tographic hashes, or encryption. Since the entropy of these pieces of data is
higher than of structured data, they can be detected using entropy analysis. Sev-
eral methods to efficiently find cryptographic keys are described by Shamir and
Van Someren [SvS99]. Some of these techniques are based on trial-and-error,
while others identify possible keys by measuring entropy. Testing whether a given
string is random has been studied extensively. An overview and implementation
of the most important algorithms is given by Rukhin, Soto, Nechvatal, Smid, and
Banks [RSN+00]. It remains to be explored how these approaches relate to the
analysis of high-entropy attributes as discussed in Section 8.4.3.

8.6 Conclusion

If an attacker obtains the cryptographic keys of an RFID tag he gets access to
the raw binary data on the card. Understanding the structure of this raw data is
essential for executing sophisticated attacks. In this chapter, we have developed a
methodology for reverse engineering such data structures. This methodology takes
advantage of the fact that an attacker can repeatedly dump the memory of a device
and record attributes associated with each dump.

In terms of contributions, we have defined the carving problem for attributed dump
sets as the problem of recovering the attribute mapping and encoding of attributes

8.6 Conclusion 151

in a dump. We have proposed algorithms for recovering the attribute mapping
and proven their correctness. The first algorithm computes the commonalities
to determine the positions in a dump that cannot be contained in the mapping.
The second algorithm computes subset-minimal dissimilarity intervals to give a
lower-bound on the bits that need to be contained in the attribute mapping. By
combining these two algorithms, a set of possible mappings is derived.

We have validated our approach by implementing a prototype application, called
mCarve, with commonality and dissimilarity algorithms. A case study performed
on data from the electronic fare collection system in Luxembourg showed that
mCarve is valuable in analyzing real-world systems. Using mCarve, we have located
more than a dozen attributes on the e-go card as well as their encoding. We have
also partly reverse engineered the dynamics of updating e-go cards.

Part V

Concluding remarks

153

9

Conclusion and future work

9.1 Conclusion

We restate the main research question of this thesis.

Research question. How can we apply formal verification to analyze the security
of RFID systems?

Throughout this thesis we have applied formal verification to analyze the security
of RFID systems. As a first step, we have created a model for analyzing RFID
protocols (see Chapter 3). The model includes a language for describing RFID pro-
tocols and allows one to systematically derive the execution traces of the protocol.
As such, it provides a rigorous way of describing attacks and proofs.

Within the model we have expressed the security requirement of untraceability.
Our definition very closely resembles the intuitive definition of the property, i.e. a
protocol is untraceable if an attacker cannot recognize a previously observed tag.
We have shown how to apply our model to analyze the untraceability of existing
RFID protocols.

We have analyzed a large number of existing RFID protocols with untraceability
claims. Many of these protocols do not satisfy untraceability. It turns out that
techniques to attack one protocol can often be used to attack another protocol.
We have, thus, been able to classify attacks on untraceability into a number of cat-
egories (see Chapter 4). This classification can be used as a reference for common
attacks, so that new RFID protocol proposals do not suffer from the same flaws.

There exist a number of different computational proof models for proving untrace-
ability. They can be separated into unpredictability-based and indistinguishability-
based proof models. We have studied two unpredictability-based proof models and
have shown that they are neither sound, nor complete with respect to the intuitive
notions of untraceability and to indistinguishability-based models (see Chapter 5).
That is, in the unpredictability-based models, one can prove traceable protocols
untraceable and vice versa. This shows that current unpredictability-based proof
models should not be used to prove or disprove untraceability.

We have shown that insider attacks are a realistic threat to RFID protocols when
implementing public-key operations on RFID tags becomes feasible (see Chap-
ter 5). Insider attackers are attackers that have corrupted one or more legitimate
tags in the system. They use the cryptographic key material of those tags to trace
other tags in the same RFID system. We have extended an existing computational
proof model with the notion of insider attackers. With this extension, it can be
used to prove protocols (un)traceable against insider attackers.

155

156 Chapter 9 Conclusion and future work

We have proposed an RFID protocol that uses solely elliptic-curve operations (see
Section 5.5). As a basis for the protocol, we have used an RFID protocol proposed
by Vaudenay and the Cramer-Shoup encryption scheme. The construction of an
elliptic-curve based protocol is interesting for several reasons. First, it has been
shown that one cannot design an untraceable protocol without public-key cryptog-
raphy if the attacker can corrupt tags. Second, it has been shown that it is feasible
to implement public-key operations on a low-cost passive tag.

The majority of authentication flaws in RFID protocols is of an algebraic nature.
That is, the attacker can abuse algebraic properties of the operators in the protocol
to construct new valid messages. We have identified three classes of algebraic
attacks on authentication of RFID protocols (see Chapter 6). For each of these
classes, we have shown protocols that suffer from the attack.

We have argued that ownership of an RFID tag is not only concerned with physical
possession of the tag, but also with the ability to interact with it in a meaningful
manner. Since RFID tags may change hands during their lifetime, their “vir-
tual” ownership must change as well. This is achieved by using ownership transfer
protocols. We have extended our formal model with definitions of ownership and
ownership transfer, as well as their secure variants (see Chapter 7). Our definitions
can be used by protocol designers to formally prove secure ownership and secure
ownership transfer of their protocols. We have also been able to use our notion of
ownership to formalize desynchronization resistance. We have used this definition
to show an attack on desynchronization resistance of a published protocol.

As a final topic, we have analyzed the problem of reverse engineering memory
structures from a set of similarly structured dumps. This problem is relevant to
RFID systems if the attacker can repeatedly dump the memory of an RFID tag.
We have designed algorithms that recover the location of attributes in dumps based
on the commonalities and dissimilarities between dumps (See Chapter 8). We have
implemented these algorithms in a tool called mCarve and we have applied this
tool to reverse engineer the memory structure of the public transportation card
used in Luxembourg.

These contributions show how formal verification can be used to analyze RFID
systems, answering our main research question. They show that formal verification
is a useful approach to analyze the security of RFID systems. In particular, formal
verification provides ways to define relevant security properties, identify pitfalls in
designing secure RFID protocols, show the absence of flaws in RFID protocols,
and ultimately design secure RFID systems.

9.2 Future work

There are several research directions that remain to be explored. We discuss re-
search directions related to automated verification, ownership transfer, and carv-
ing.

9.2 Future work 157

9.2.1 Automated verification

We have only briefly touched upon automatic verification of RFID protocols. In
Chapter 6 we have reported on a case study on an automated verification method
for protocols employing the exclusive-or operator. The method developed in this
case study was able to find an algebraic replay attack on a published RFID protocol.

A first direction is the automated verification of RFID protocols based on the pro-
tocol syntax and semantics developed in Chapter 3. The model was deliberately
developed along the lines of the operational semantics for security protocols by
Cremers and Mauw. The latter model is supported by a tool, called Scyther, that
implements automated ways of checking secrecy and authentication of stateless
security protocols. A possible next step is to extend the algorithms to support
stateless security protocols. Of interest is also the design of algorithms to verify
or falsify untraceability. We expect to be able to build on results by Arapinis,
Chothia, Ritter, and Ryan [ACRR10] and Brusò, Chatzikokolakis, and Den Har-
tog [BCdH10].

A second direction concerns automating the process of finding attacks on RFID
protocols. We believe that automated attack finding is possible for algebraic replay
attacks and attribute acquisition attacks. Since exploring possible attacks requires
repeated application of functions, we expect to be able to build on existing tools
for state-space exploration.

9.2.2 Ownership transfer

Ownership transfer has not been studied in the same depth as untraceability and
authentication. Our formalization of ownership and ownership-related properties
is the first effort in formally analyzing ownership transfer.

We concern the construction and analysis of ownership transfer protocols as the
most important next step. Most protocols in literature do not satisfy secure own-
ership and secure ownership transfer. A further direction concerns automatic ways
of verifying their security properties. The shape of the secure ownership transfer
definition suggests that correspondences as defined by Blanchet [Bla09] as well as
the tool ProVerif [Bla01] can be used for automatic verification.

While we consider a formal definition of ownership to be of independent interest,
it will clearly become much more valuable when combined with existing security
and privacy properties. For instance, in a parcel delivery system, where RFID tags
are attached to parcels, non-repudiation for obtaining ownership of RFID tags
and untraceability of these tags by unauthorized entities become important. We
have only briefly indicated the connections between untraceability and exclusive
ownership. A useful next step is to study conditions under which untraceable
protocols can be safely composed with ownership transfer protocols. This requires
in particular an investigation into the interplay between two or more untraceable
protocols out of a set of protocols.

158 Chapter 9 Conclusion and future work

9.2.3 Carving

Our algorithms and our tool mCarve have been designed to recover the location of
attributes. To be able to understand the attribute values themselves, the encoding
has to be recovered as well. In our case study, we have recovered the encoding of
attributes manually, while automatic approaches should in some cases be feasible.
Heuristic approaches seem most viable, possibly approaches based on file carving
techniques. Secondly, the robustness of our algorithms can be improved. Currently,
a small error in the data, due to, for instance, a transmission error or a mistake
in inputting the attribute value will make the results unreliable. Although these
mistakes can be found by hand, an automatic way would be preferable.

We would like to apply mCarve to other case studies. An interesting application
would be the memory of a cell phone. Our performance results show that we have to
optimize the implementation of our algorithms to analyze cell phone dumps. Initial
experiments have shown that performance of the tool can be significantly improved
by implementing the core procedures in a lower-level language. Another use of our
mCarve will be to analyze proprietary communication protocols. By recording the
data and applying our algorithms, we could reconstruct their specification. For
all these applications, the user can create multiple dumps and observe values for
possible attributes. Therefore, mCarve will be helpful in these reverse engineering
case studies.

Finally, our procedure for combining commonalities and dissimilarities simply
merges the outputs of the two algorithms. We would like to design a more ef-
ficient algorithm that exploits knowledge of commonalities to find dissimilarity
intervals.

Bibliography

[ABB+05] A. Armando, D.A. Basin, Y. Boichut, Y. Chevalier, L. Compagna,
J. Cuéllar, P.H. Drielsma, P-C. Héam, O. Kouchnarenko, J. Manto-
vani, S. Mödersheim, D. von Oheimb, M. Rusinowitch, J. Santiago,
M. Turuani, L. Viganò, and L. Vigneron. The AVISPA tool for
the automated validation of internet security protocols and applica-
tions. In CAV, volume 3576 of Lecture Notes in Computer Science,
pages 281–285. Springer, 2005.

[AC06] M. Abadi and V. Cortier. Deciding knowledge in security proto-
cols under equational theories. Theor. Comput. Sci., 367(1-2):2–32,
2006.

[ACG+08] S. Andova, C.J.F. Cremers, K. Gjøsteen, S. Mauw, S.F. Mjølsnes,
and S. Radomirović. A framework for compositional verification
of security protocols. Information and Computation, 206:425–459,
February-April 2008.

[ACRR10] M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing un-
linkability and anonymity using the applied pi calculus. In CSF,
pages 107–121. IEEE Computer Society, 2010.

[Avo05] G. Avoine. Adversary model for radio frequency identification.
Technical report, Swiss Federal Institute of Technology (EPFL),
Security and Cryptography Laboratory (LASEC), 2005.

[BAN89] M. Burrows, M. Abadi, and R.M. Needham. A logic of authentica-
tion. SIGOPS Oper. Syst. Rev., 23(5):1–13, 1989.

[BAN90] M. Burrows, M. Abadi, and R.M. Needham. A logic of authentica-
tion. Trans. Comput. Syst., 8(1):18–36, 1990.

[BBM00] M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in
a multi-user setting: Security proofs and improvements. In EURO-
CRYPT, volume 1807 of Lecture Notes in Computer Science, pages
259–274. Springer, 2000.

[BCdH10] M. Brusò, K. Chatzikokolakis, and J. den Hartog. Formal verifi-
cation of privacy for RFID systems. In CSF, pages 75–88. IEEE
Computer Society, 2010.

[BCI08] J. Bringer, H. Chabanne, and T. Icart. Cryptanalysis of EC-RAC,
a RFID identification protocol. In CANS, volume 5339 of Lecture
Notes in Computer Science, pages 149–161. Springer, 2008.

159

160 Bibliography

[BCI09] J. Bringer, H. Chabanne, and T. Icart. Efficient zero-knowledge
identification schemes which respect privacy. In ASIACCS, pages
195–205. ACM, 2009.

[BDPR98] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations
among notions of security for public-key encryption schemes. In
CRYPTO, volume 1462 of Lecture Notes in Computer Science,
pages 26–45. Springer, 1998.

[BH10] D. Billard and R. Hauri. Making sense of unstructured flash-memory
dumps. In SAC, pages 1579–1583. ACM, 2010.

[Bla01] B. Blanchet. An efficient cryptographic protocol verifier based on
Prolog rules. In CSFW, pages 82–96. IEEE Computer Society, 2001.

[Bla07] B. Blanchet. Computationally sound mechanized proofs of corre-
spondence assertions. In CSF, pages 97–111. IEEE Computer Soci-
ety, 2007.

[Bla09] B. Blanchet. Automatic verification of correspondences for security
protocols. Journal of Computer Security, 17(4):363–434, 2009.

[Bog07] Andrey Bogdanov. Linear slide attacks on the keeloq block cipher.
In Inscrypt, volume 4990 of Lecture Notes in Computer Science,
pages 66–80. Springer, 2007.

[BSSV11] L. Batina, S. Seys, D. Singelée, and I. Verbauwhede. Hierarchical
ECC-based RFID authentication protocol. In RFIDSec, 2011. To
appear.

[Can00] R. Canetti. Universally composable security: A new paradigm
for cryptographic protocols. Cryptology ePrint Archive, Report
2000/067, 2000.

[Can01] R. Canetti. Universally composable security: A new paradigm for
cryptographic protocols. In FOCS, pages 136–145. IEEE Computer
Society, 2001.

[CDSS08] G.J. Conti, E. Dean, M. Sinda, and B. Sangster. Visual reverse
engineering of binary and data files. In VizSEC, volume 5210 of
Lecture Notes in Computer Science, pages 1–17. Springer, 2008.

[CH07] H.-Y. Chien and C.-W. Huang. A lightweight RFID protocol using
substring. In EUC, volume 4808 of Lecture Notes in Computer
Science, pages 422–431. Springer, 2007.

[CI09] J.-S. Coron and T. Icart. An indifferentiable hash function into
elliptic curves. Cryptology ePrint Archive, Report 2009/340, 2009.

[CJ97] John A. Clark and Jeremy L. Jacob. A survey of authentication
protocol literature. Technical Report 1.0, 1997.

Bibliography 161

[CM05] C.J.F. Cremers and S. Mauw. Operational semantics of security
protocols. In Scenarios: Models, Transformations and Tools, volume
3466 of Lecture Notes in Computer Science, pages 66–89. Springer,
2005.

[Coh07] M. I. Cohen. Advanced carving techniques. Digital Investigation,
4(3-4):119–128, 2007.

[Coo00] C. Cooper. On the distribution of rank of a random matrix over a
finite field. Random Struct. Algorithms, 17(3-4):197–212, 2000.

[Cre06a] C.J.F. Cremers. Feasibility of multi-protocol attacks. In ARES,
pages 287–294. IEEE Computer Society, 2006.

[Cre06b] C.J.F. Cremers. Scyther - Semantics and Verification of Security
Protocols. Ph.D. dissertation, Eindhoven University of Technology,
2006.

[CS98] R. Cramer and V. Shoup. A practical public key cryptosystem prov-
ably secure against adaptive chosen ciphertext attack. In CRYPTO,
volume 1462 of Lecture Notes in Computer Science, pages 13–25.
Springer, 1998.

[CS10] T. Chothia and V. Smirnov. A traceability attack against e-
passports. In Financial Cryptography, volume 6052 of Lecture Notes
in Computer Science, pages 20–34. Springer, 2010.

[CZW08] Q. Cai, Y. Zhan, and Y. Wang. A minimalist mutual authentication
protocol for RFID system and BAN logic analysis. In CCCM, pages
449–453. IEEE Computer Society, 2008.

[Dam91] I. Damg̊ard. Towards practical public key systems secure against
chosen ciphertext attacks. In CRYPTO, volume 576 of Lecture Notes
in Computer Science, pages 445–456. Springer, 1991.

[Dim08] T. Dimitriou. Proxy framework for enhanced RFID security and
privacy. In CCNC, pages 843–847. IEEE, 2008.

[DM07] R. Di Pietro and R. Molva. Information confinement, privacy, and
security in RFID systems. In ESORICS, volume 4734 of Lecture
Notes in Computer Science, pages 187–202. Springer, 2007.

[DP08] I. Damg̊ard and M.Ø. Pedersen. RFID security: Tradeoffs between
security and efficiency. In CT-RSA, volume 4964 of Lecture Notes
in Computer Science, pages 318–332. Springer, 2008.

[DY83] D. Dolev and A.C. Yao. On the security of public key protocols.
IEEE Transactions on Information Theory, 29(2):198–207, 1983.

[EA11] I. Erguler and E. Anarim. Scalability and security conflict for RFID
authentication protocols. Wireless Personal Communications, 59,
2011.

162 Bibliography

[FA07] S. Fouladgar and H. Afifi. A simple privacy protecting scheme en-
abling delegation and ownership transfer for RFID tags. volume 2,
pages 6–13. Academy Publisher, 2007.

[FDW04] Martin Feldhofer, Sandra Dominikus, and Johannes Wolkerstorfer.
Strong authentication for RFID systems using the AES algorithm.
In CHES, volume 3156 of Lecture Notes in Computer Science, pages
357–370. Springer, 2004.

[FHV10] J. Fan, J. Hermans, and F. Vercauteren. On the claimed privacy of
ec-rac iii, 2010.

[Gam85] T. El Gamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information
Theory, 31(4):469–472, 1985.

[Gar07] S.L. Garfinkel. Carving contiguous and fragmented files with fast
object validation. Digital Investigation, 4s:2–12, 2007.

[GdKGM+08] F.D. Garcia, G. de Koning Gans, R. Muijrers, P. van Rossum,
R. Verdult, R. Wichers Schreur, and B. Jacobs. Dismantling MI-
FARE classic. In ESORICS, volume 5189 of Lecture Notes in Com-
puter Science, pages 97–114. Springer, 2008.

[GHPvR05] F.D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable
anonymity. In FMSE, pages 63–72. ACM, 2005.

[Gol98] D. Gollmann. Insider fraud (position paper). In Security Proto-
cols Workshop, volume 1550 of Lecture Notes in Computer Science,
pages 213–219. Springer, 1998.

[GRS05] Henri Gilbert, Matt Robshaw, and Herve Sibert. An active attack
against HB+ - A provably secure lightweight authentication proto-
col. Cryptology ePrint Archive, Report 2005/237, 2005.

[GvR10] F.D. Garcia and P. van Rossum. Modeling privacy for off-line rfid
systems. In CARDIS, volume 6035 of Lecture Notes in Computer
Science, pages 194–208. Springer, 2010.

[GvRVS09] F.D. Garcia, P. van Rossum, R. Verdult, and R. Wichers Schreur.
Wirelessly pickpocketing a MIFARE classic card. In IEEE Sympo-
sium on Security and Privacy, pages 3–15. IEEE Computer Society,
2009.

[GvRVS10] F.D. Garcia, P. van Rossum, R. Verdult, and R. Wichers Schreur.
Dismantling SecureMemory, CryptoMemory and CryptoRF. In
ACM Conference on Computer and Communications Security,
pages 250–259, 2010.

[Hel96] J. Helfman. Dotplot patterns: A literal look at pattern languages.
TAPOS, 2(1):31–41, 1996.

Bibliography 163

[HMNB07] J. Ha, S.-J. Moon, J.M. González Nieto, and C. Boyd. Low-cost and
strong-security RFID authentication protocol. In EUC Workshops,
volume 4809 of Lecture Notes in Computer Science, pages 795–807.
Springer, 2007.

[HMZH08] J. Ha, S.-J. Moon, J. Zhou, and J. Ha. A new formal proof model
for RFID location privacy. In ESORICS, volume 5283 of Lecture
Notes in Computer Science, pages 267–281. Springer, 2008.

[HPVP11] J. Hermans, A. Pashalidis, F. Vercauteren, and B. Preneel. A new
RFID privacy model. In ESORICS, Lecture Notes in Computer
Science. Springer, 2011. To appear.

[HT96] N. Heintze and J.D. Tygar. A model for secure protocols and their
compositions. IEEE Trans. Software Eng., 22(1):16–30, 1996.

[Ica09] T. Icart. How to hash into elliptic curves. In CRYPTO 2009, vol-
ume 5677 of Lecture Notes in Computer Science, pages 303–316.
Springer, 2009.

[IKD+08] S. Indesteege, N. Keller, O. Dunkelman, E. Biham, and B. Preneel.
A practical attack on keeloq. In EUROCRYPT, volume 4965 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

[ISO08] ISO. ISO/IEC 9798-2,Information technology - security techniques
entity authentication - Part 2: Mechanisms using symmetric enci-
pherment algorithms, 2008.

[JH08] P. Jäppinen and H. Hämäläinen. Enhanced RFID security method
with ownership transfer. In CIS (2), pages 382–385. IEEE Computer
Society, 2008.

[JW05] A. Juels and S.A. Weis. Authenticating pervasive devices with hu-
man protocols. In CRYPTO, volume 3621 of Lecture Notes in Com-
puter Science, pages 293–308. Springer, 2005.

[JW09] A. Juels and S.A. Weis. Defining strong privacy for rfid. volume 13,
2009.

[KCL07] I.J. Kim, E.Y. Choi, and D.H. Lee. Secure mobile RFID system
against privacy and security problems. In SecPerU 2007, pages 67–
72. IEEE Computer Society, 2007.

[KCLL06] K.H. Kim, E.Y. Choi, S.-M. Lee, and D.H. Lee. Secure EPCglobal
class-1 gen-2 RFID system against security and privacy problems.
In OTM Workshops (1), volume 4277 of Lecture Notes in Computer
Science, pages 362–371. Springer, 2006.

[KN05] J. Kang and D. Nyang. RFID authentication protocol with strong
resistance against traceability and denial of service attacks. In
ESAS, volume 3813 of Lecture Notes in Computer Science, pages
164–175. Springer, 2005.

164 Bibliography

[KSM+07] K.H.S.S. Koralalage, M.R. Selim, J. Miura, Y. Goto, and J. Cheng.
POP method: an approach to enhance the security and privacy of
RFID systems used in product lifecycle with an anonymous owner-
ship transferring mechanism. In SAC, pages 270–275. ACM, 2007.

[KSW97] J. Kelsey, B. Schneier, and D. Wagner. Protocol interactions and
the chosen protocol attack. In Security Protocols Workshop, volume
1361 of Lecture Notes in Computer Science, pages 91–104. Springer,
1997.

[KT08] R. Küsters and T. Truderung. Reducing protocol analysis with xor
to the xor-free case in the horn theory based approach. In ACM
Conference on Computer and Communications Security, pages 129–
138, 2008.

[LAK06] S. Lee, T. Asano, and K. Kim. RFID mutual authentication scheme
based on synchronized secret information. In Symposium on Cryp-
tography and Information Security, 2006.

[LBSV10a] Y.K. Lee, L. Batina, D. Singelée, and I. Verbauwhede. Low-cost
untraceable authentication protocols for RFID. In WISEC, pages
55–64. ACM, 2010.

[LBSV10b] Y.K. Lee, L. Batina, D. Singelée, and I. Verbauwhede. Wide-weak
privacy-preserving rfid authentication protocols. In MOBILIGHT,
volume 45 of Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering, pages 254–
267. Springer, 2010.

[LBV08] Y.K. Lee, L. Batina, and I. Verbauwhede. EC-RAC (ECDLP based
randomized access control): Provably secure RFID authentication
protocol. In IEEE RFID, pages 97 –104. IEEE, 2008.

[LBV09] Y.K. Lee, L. Batina, and I. Verbauwhede. Untraceable RFID au-
thentication protocols: Revision of EC-RAC. In IEEE RFID, pages
178–185. IEEE, 2009.

[LC07] H. Lei and T. Cao. RFID protocol enabling ownership transfer
to protect against traceability and DoS attacks. In ISDPE, pages
508–510. IEEE Computer Society, 2007.

[LD07] Y. Li and X. Ding. Protecting RFID communications in supply
chains. In ASIACCS, pages 234–241. ACM, 2007.

[LDL10] J. Lai, R.H. Deng, and Y. Li. Revisiting unpredictability-based
RFID privacy models. In ACNS, volume 6123 of Lecture Notes in
Computer Science, pages 475–492. Springer, 2010.

[LK06] C.H. Lim and T. Kwon. Strong and robust RFID authentication en-
abling perfect ownership transfer. In ICICS, volume 4307 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2006.

Bibliography 165

[Low96] G. Lowe. Breaking and fixing the Needham-Schroeder public-key
protocol using FDR. In TACAS, volume 1055 of Lecture Notes in
Computer Science, pages 147–166. Springer, 1996.

[Low97] G. Lowe. A hierarchy of authentication specification. In CSFW,
pages 31–44. IEEE Computer Society, 1997.

[Low98] G. Lowe. Casper: a compiler for the analysis of security protocols.
J. Comput. Secur., 6(1-2):53–84, 1998.

[MLDL09] C. Ma, Y. Li, R.H. Deng, and T. Li. RFID privacy: relation between
two notions, minimal condition, and efficient construction. In ACM
Conference on Computer and Communications Security, pages 54–
65. ACM, 2009.

[MM05] K. Michael and L. McCathie. The pros and cons of RFID in sup-
ply chain management. In ICMB, pages 623–629. IEEE Computer
Society, 2005.

[Möl04] B. Möller. A public-key encryption scheme with pseudo-random ci-
phertexts. In ESORICS, volume 3193 of Lecture Notes in Computer
Science, pages 335–351. Springer, 2004.

[MSW05] David Molnar, Andrea Soppera, and David Wagner. A scalable, del-
egatable pseudonym protocol enabling ownership transfer of RFID
tags. In Selected Areas in Cryptography, volume 3897 of Lecture
Notes in Computer Science, pages 276–290. Springer, 2005.

[NS78] R.M. Needham and M.D. Schroeder. Using encryption for authenti-
cation in large networks of computers. Commun. ACM, 21(12):993–
999, 1978.

[NSMSN08] C.Y. Ng, W. Susilo, Y. Mu, and R. Safavi-Naini. RFID privacy
models revisited. In ESORICS, volume 5283 of Lecture Notes in
Computer Science, pages 251–266, 2008.

[NSMSN09] C.Y. Ng, W. Susilo, Y. Mu, and R. Safavi-Naini. New privacy results
on synchronized RFID authentication protocols against tag tracing.
In ESORICS, volume 5789 of Lecture Notes in Computer Science,
pages 321–336. Springer, 2009.

[OP00] T. Okamoto and D. Pointcheval. PSEC-3: Provably secure elliptic
curve encryption scheme - V3 (Submission to P1363a). In IEEE
P1363a, 2000.

[OTYT06] K. Osaka, T. Takagi, K. Yamazaki, and O. Takahashi. An efficient
and secure RFID security method with ownership transfer. In CIS,
volume 4456 of Lecture Notes in Computer Science, pages 778–787.
Springer, 2006.

[PV08] R.-I. Paise and S. Vaudenay. Mutual authentication in rfid: security
and privacy. In ASIACCS, pages 292–299. ACM, 2008.

166 Bibliography

[RSN+00] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and D.L. Banks. A sta-
tistical test suite for random and pseudorandom number generators
for statistical applications. NIST Special Publication in Computer
Security, pages 800–22, 2000.

[Ser98] G. Seroussi. Compact representation of elliptic curve points over
F2n . Technical report, Research Contribution to IEEE P1363, 1998.

[SIS05] J. Saito, K. Imamoto, and K. Sakurai. Reassignment scheme of an
RFID tag’s key for owner transfer. In EUC Workshops, volume 3823
of Lecture Notes in Computer Science, pages 1303–1312. Springer,
2005.

[SM08] B. Song and C.J. Mitchell. RFID authentication protocol for low-
cost tags. In WISEC, pages 140–147. ACM, 2008.

[SM09] H.T. Sencar and N. Memon. Identification and recovery of JPEG
files with missing fragments. Digital Investigation, 6:88–98, 2009.

[Son08] B. Song. RFID Tag Ownership Transfer. In Workshop on RFID
Security - RFIDSec’08, Budapest, Hungary, July 2008.

[STF05] T. Staake, F. Thiesse, and E. Fleisch. Extending the EPC network:
the potential of RFID in anti-counterfeiting. In SAC, pages 1607–
1612. ACM, 2005.

[SvdW06] A. Shallue and C. van de Woestijne. Construction of rational points
on elliptic curves over finite fields. In ANTS, volume 4076 of Lecture
Notes in Computer Science. Springer, 2006.

[SvS99] A. Shamir and N. van Someren. Playing ”hide and seek” with stored
keys. 1648:118–124, 1999.

[TH99] W.-G. Tzeng and C.-M. Hu. Inter-protocol interleaving attacks on
some authentication and key distribution protocols. Inf. Process.
Lett., 69(6):297–302, 1999.

[THG99] F.J. Thayer, J.C. Herzog, and J.D. Guttman. Strand spaces: Prov-
ing security protocols correct. Journal of Computer Security, 7(1),
1999.

[Ula07] M. Ulas. Rational points on certain hyperelliptic curves over finite
fields. Bull. Pol. Acad. Sci. Math., 55(2):97–104, 2007.

[Vau07] S. Vaudenay. On privacy models for rfid. In ASIACRYPT, volume
4833 of Lecture Notes in Computer Science, pages 68–87. Springer,
2007.

[Vul09] P. Vullers. Secure ownership and ownership transfer RFID systems.
Master’s thesis, Technische Universiteit Eindhoven, 2009.

[Wan04] R. Want. Enabling ubiquitous sensing with RFID. IEEE Computer,
37(4):84–86, 2004.

Bibliography 167

[War03] B. Warinschi. A computational analysis of the Needham-Schröeder-
(Lowe) protocol. In CSFW, pages 248–262. IEEE Computer Society,
2003.

[YY08] E-J. Yoon and K. Yoo. Two security problems of RFID security
method with ownership transfer. In NPC Workshops, pages 68–73.
IEEE Computer Society, 2008.

Publications

[ICFEM] X. Chen, T. van Deursen, and J. Pang. Improving automatic verifi-
cation of security protocols with XOR. In ICFEM, volume 5885 of
Lecture Notes in Computer Science, pages 107–126. Springer, 2009.

[Prime] T. van Deursen. 50 ways to break RFID privacy. In PrimeLife, volume
352 of IFIP AICT, pages 192–205. Springer, 2011.

[Wistp08] T. van Deursen, S. Mauw, and S. Radomirović. Untraceability of RFID
protocols. In WISTP, volume 5019 of Lecture Notes in Computer Sci-
ence, pages 1–15. Springer, 2008.

[Esorics] T. van Deursen, S. Mauw, S. Radomirović, and P. Vullers. Secure
ownership and ownership transfer in RFID systems. In ESORICS,
volume 5789 of Lecture Notes in Computer Science, pages 637–654.
Springer, 2009.

[AIR] T. van Deursen and S. Radomirović. Security of an RFID protocol for
supply chains. In AIR, pages 568–573. IEEE Computer Society, 2008.

[Wistp09] T. van Deursen and S. Radomirović. Algebraic attacks on RFID pro-
tocols. In WISTP, volume 5746 of Lecture Notes in Computer Science,
pages 38–51. Springer, 2009.

[ePrint] T. van Deursen and S. Radomirović. Attacks on RFID protocols (ver-
sion 1.1). Cryptology ePrint Archive, Report 2008/310, 2009.

[IPL] T. van Deursen and S. Radomirović. On a new formal proof model for
RFID location privacy. Information Processing Letters, 110(2):57–61,
2009.

[STM] T. van Deursen and S. Radomirović. Security of RFID protocols – A
case study. In STM, volume 244 of ENTCS, pages 41–52. Elsevier,
2009.

[RFIDSec] T. van Deursen and S. Radomirović. EC-RAC: Enriching a capacious
RFID attack collection. In RFIDSec, volume 6370 of Lecture Notes in
Computer Science, pages 75–90. Springer, 2010.

[Usenix] T. van Deursen, S. Mauw, and S. Radomirović. mCarve: Carving
attributed dump sets. In USENIX Security Symposium, pages 107–
121. USENIX Association, 2011.

169

170 Publications

[EuroPKI] T. van Deursen and S. Radomirović. Insider attacks and privacy of
RFID protocols. In EuroPKI, Lecture Notes in Computer Science.
Springer, 2011. To appear.

Index of subjects

advantage, 12
adversary, 12, 16, 30
adversary knowledge, 16, 22, 32
AES, 32
agent, 15, 18, 22, 24, 30
agent rules, 23, 24
agent view, 110
agreement, 96
algebraic replay attack, 97
algorithm, 137, 141
allowed, 25
alternative composition, 20
applied pi calculus, 96
applied pi calculus, 35
assignment, 20
assumption, 2, 29
attribute acquisition attack, 39, 40, 72
attribute mapping, 129
authentication, 4, 15, 95
automated verification, 157

behavior, 3, 23, 28
blinded adversary, 78
bundle, 130
bundle ordering, 136

carving, 127, 158
ciphertext indistinguishability, 11
ciphertext pseudo-randomness, 66
commonalities, 130, 137, 141
completeness, 69, 72
composition rules, 23
compositionality attack, 40, 51, 99
computational approach, 61
computational Diffie-Hellman problem,

13, 43, 45
conditional branching, 20
constant attribute, 142, 145
constant response protocol, 65
contiguous, 129
convergence, 143, 149
correctness, 79, 84

corruption, 77, 80
Cramer-Shoup, 88
CRC, 148
cryptographic hash function, 15, 88
cyclic attribute, 142, 147
cyclic attribute mapping, 135

decisional Diffie-Hellman problem, 14,
84, 88

decomposition, 27
derivation, 23, 28
derived attribute, 136, 142
desynchronization resistance, 110, 118,

120
desynchronization-based attack, 56
discrete logarithm problem, 13
dissimilarities, 132, 138, 141
dissimilarity interval function, 138
Dolev-Yao adversary, 16, 77
dump, 128

e-go, 144
e-passport, 58, 96, 127
elliptic curve cryptography, 13, 42, 44,

87
encoding, 129, 142, 158
encryption, 15
entropy, 148
event, 16, 22, 79

read, 16, 20
send, 16, 20

exclusive ownership, 114, 117, 119
existential forgery, 11
experiment, 62, 68
external attribute, 146

faithfulness, 79, 83
filtration, 134
finite field, 13, 102
formal verification, 15
formal verification, 2
freshness, 97

171

172 Index of subjects

game, 11, 61
generator, 13

hash, see cryptographic hash
hash attribute, 142, 148
honest, 16

identifier, 29, 55
IND-CCA, 50, 72, 82, 85, 87
IND-CCA-MU, 12, 74
indistinguishability, 32, 33, 35, 61, 64,

70–72
initial adversary knowledge, 28, 112
insider attack, 40, 48, 76, 80, 85
instantiation, 23
interleaving, 28
internal attribute, 146
inverse, 20

knowledge, 31
knowledge inference, 23

label, 28
labeled transition system, 28
leakage attack, 100
linkability, 31
linking, 29

malicious, 16
man-in-the-middle attack, 34, 39, 44,

75, 76
mapping, 88
matching, 26
matching conversation, 79, 86
matrix, 103
mCarve, 141
memory, 5

persistent, 16
temporary, 16

memory layout, 145
message, 15
message authentication code, 11, 49, 82,

85
micro trace, 111
MIFARE, 58, 144
mutual authentication, 96

narrow adversary, 78
narrow adversary, 44
negligible, 11

network, 16, 22
NM-CCA, see non-malleability
non-malleability, 11
non-overlapping, 129
non-repudiation, 157
nonce, 15, 18
null space, 103

owner, 3
ownership, 57, 109
ownership test protocol, 110
ownership transfer, 4, 52, 109, 114, 157
ownership transfer protocol, 114

pairing, 19
pattern, 26
perfect cryptography, 16, 105
performance, 142, 149
persistent variable assignment, 22, 26,

111
plaintext, 16
plaintext-ID protocol, 66
point, 13
point addition, 13
pointer, 137, 146
privacy, 78, 82, 84, 87
product sector, 146
proof model

Avoine, 62
HMZH, 64
HPVP, 88
Juels-Weis, 62
MLDL, 68
NSMS, 86
Paise-Vaudenay, 63
Vaudenay, 63, 76, 86, 88

protocol, 15
protocol execution, 15, 28
protocol specification, 21
protocol syntax, 17
prototype, see mCarve
pseudo-random function, 11, 81
pseudonym, 116, 119
pseudonym-based attack, 40, 55
pseudonym-update attack, 56

rank, 104
readability, 26
recent aliveness, 96

Index of subjects 173

reinterpretation, 31, 33, 35
replay attack, 97
representatives, 134
requirement, see security requirement
research question, 3, 155
RFID protocol

BCI, 87
RFID protocol, 4

BCI, 84
CH, 98
CZW, 98, 105
DM, 46
EC-RAC I, 42, 98
EC-RAC II, 44, 53, 99
EC-RAC III, 44
EC-RAC IV, 44, 48
FDW, 32
HB+, 44
HMNB, 34, 56
KCL, 41
KCLL, 98
KN, 101
LAK, 98, 105
LD, 56
SM, 98, 119
YY, 116

RFID protocols
HMNB, 17

RFID reader, 16
RFID tag, 15
role, 15, 25, 31
role name, 21
role specification, 21
rule

choice, 24
cond, 24
create, 24, 112
end, 25, 112
exec, 24
read, 26, 112
send, 26
seq, 24

run, 15, 22, 23, 30, 79
run identifier, 22, 25, 115

scalar multiplication, 13
secrecy, 15, 33
secure channel, 116

secure ownership, 109, 113, 115, 117,
119

secure ownership transfer, 110, 115, 117
security, 1, 2, 79, 82, 86, 96
security requirement, 2, 4, 15, 16, 95,

113
selective forgery, 11
semantics, 23
sequential composition, 20, 110
serial untraceability, 56
shell sector, 145
signal, 114
simulation, 81, 84
soundness, 69, 72, 96
state, 22, 28
state-discovery attack, 55
stateful, 16, 55, 118
stateless, 16
subset minimal, 132, 138
substitution, 23, 26
subterm, 27, 31
superset closure, 132, 138
supply chain, 56, 109
symbolic protocol analysis, 61
syntax, 21
system view, 110

tag holder, 113, 119
tag owner, 113, 118
technology, 1
temporary variable assignment, 22, 25,

112
term algebra, 18
test protocol, 110
three-message ping-pong protocol, 68,

82
trace, 28, 30, 33, 34, 111
transaction sector, 146
trivial adversary, 78
try-and-increment, 14
type, 129

unique attribute, 39, 40, 73
unpredictability, 61, 64, 70–72
untraceability, 4, 15, 29, 39

definition, 15
untraceable, 32

variable, 16, 19

174 Index of subjects

persistent, 19
temporary, 19

well-interleaving, 79, 83
wide adversary, 44, 78, 86

Curriculum Vitae

2011 – present Security consultant at Madison Gurkha, Eindhoven, The
Netherlands.

2007 – 2011 Ph.D. student in the Security and Trust of Software Systems
group, University of Luxembourg, Luxembourg.

2009 Traineeship, ING Direct Head Office, Hoofddorp, The Nether-
lands.

2005 – 2007 Master of Science in Computer Science and Engineering, Eind-
hoven University of Technology, The Netherlands.

2002 – 2005 Bachelor of Science in Computer Science and Engineering,
Eindhoven University of Technology, The Netherlands.

1996 – 2002 Secondary education, Scholengemeenschap Were Di, Valkens-
waard, The Netherlands.

Born on June 8, 1984, Eindhoven, The Netherlands.

175

