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Summary

Trust is a concept used in everyday life, both in off-line interactions and increas-
ingly often in on-line interactions. On-line trust appears in e-commerce, as most
transactions leave a party vulnerable at some point (the buyer when there is an
advance payment, and the seller if there is no advance payment). On-line trust
appears in the cloud, as clients need to trust providers not to destroy, lose or snoop
into the data. In public key infrastructures, websurfers need to trust certifiers to be
honest and not to be compromised, especially since even a (Dutch) governmental
certifier “DigiNotar” turned out not to be trustworthy. Furthermore, on-line trust
appears when users provide private information to third parties, who may or may
not be trusted to respect the privacy of their users.

In computer security, the goal is typically to remove the necessity of trust in on-
line communication. Often, cryptographic commitments, signatures or encryptions
can be used to guarantee a satisfactory outcome of an interaction. In some cases,
however, there are no known techniques to remove the need for trust altogether,
and sometimes the need for trust is shifted from one party to another party; a
party which is often called a trusted third party. This thesis focusses on dealing
with trust, in the perspective of security. That means that we focus on analysing
and formulating the most precise trust assessments users can make. In lieu of hard
guarantees, as in classical computer security, we want to enable users to be able
to make accurate assessments, and to enable users to deduce the probability that
their assessment is mistaken.

Rather than analysing probabilities on a case-by-case basis, we want to generalise
the procedure that leads to accurate trust assessments. We refer to such a gener-
alised procedure as a correctness trust model, and to a trust assessments as trust
opinions. In a correctness trust model, basic real-world data is translated into
trust opinions. Trust opinions can be combined in different ways to reflect more
complex real-world data. These ways of combining trust opinions – called trust
operations – are central to this thesis.

The trust operations that we study are trust aggregation, trust chaining, trust
disjunction, trust conjunction and trust negation. Each of these operations com-
bines two trust opinions into a more sophisticated trust opinion. (Except for trust
negation, which transforms a single trust opinion.) Trust aggregation allows us to
merge collections of data. Trust chaining allows us to construct a trust opinion
from a recommendation. Trust conjunction, trust disjunction and trust negation,
together called the logical trust operations, allow us to construct trust opinions
about groups of users in various combinations. These five operations together al-
low us to construct all opinions from just two data points: successful interactions
and failed interactions. In the thesis, we study the properties of these five oper-

v



vi

ations using two different methodologies. We study the operations axiomatically,
and we study the operations in provability theory.

In the axiomatic method, we first study the mathematical structure of an existing
model called Subjective Logic. Subjective Logic contains five operations with the
same objectives as our five operations. In the exploration of the mathematical
structure of Subjective Logic, we formulate axioms, statements which should be
self-evident. After having formulated Subjective Logic in the language of axioms,
we remove or alter those axioms which are not self-evident. The remaining axioms
can be seen as a rule-book for the operations that we study.

In the probabilistic method, we encode the assumptions about the relationships
between data points into probability theory. We also provide a probabilistic seman-
tics for each of the operations. On the basis of these assumptions and semantics,
we can mathematically deduce computations which perform the trust operations.
These computations are undoubtedly true under the assumptions. We analyse the
computations in several ways. First, we compare them to computations found in
the literature which have similar assumptions. We find that some common aspects
of existing computations that are consistently implemented wrongly, and some
aspects that are commonly implemented correctly. Second, we analyse mathemat-
ical properties of the computations. Notably, this contains a formal analysis of the
possible behaviour of recommenders. Finally, we combine the computations into a
comprehensive model. This model is finally compared to the rule-book set up in
the axiomatic method.
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Introduction

What people mean with the concept of trust differs from person to person, and
from research field to research field. When one asks an ethicist for a definition
of trust, one might expect a response such as: “Trust (. . . ) is letting other per-
sons (natural or artificial, such as firms, nations, etc.) take care of something
the trustor cares about, (. . . )” [Bai86]. An economist might say: “Trust is the
willingness to permit the decisions of others to influence your welfare” [Sob02]. A
sociological definition is: “(Trust is the) undertaking of a risky course of action on
the confident expectation that all persons involved in the action will act compe-
tently and dutifully.” [LW85]. A game theoretical view on the issue is formulated
as: “(Trust) is the mutual confidence that one’s vulnerability will not be exploited
in an exchange.” [BH95]. The exact interpretation of trust depends not only on
taste, but for a large part on the viewpoint and the context. Our viewpoint is
related to computer security.

The notion of trust over the internet is becoming increasingly relevant. People
submit personal information to social media, trusting these sites to handle their
data prudently. There are people buying (and selling) goods over the internet.
They need to trust that their goods will be delivered correctly (or that they will
receive the correct payment). Websites may have a certification from a certain
certifier, who may in turn possess a certificate from another certifier, essentially
forming a chain of certifiers. Users may or may not trust certain certificates,
websites or certifiers. Amazon provides a list of products to people, which Amazon
expects those people to enjoy. A user may decide to trust the recommendation by
Amazon. Trust over the internet is, therefore, an interesting subject of study.

Trust over the internet usually concerns a certain transaction involving two par-
ties, where one party has no control over the outcome of the transaction. That
party simply needs to trust the other party, if that transaction happens. Such a
transaction is called an asymmetric interaction, due to the asymmetry between the
two parties. The party that has no control over the outcome is the subject , and the
other is the target . The subject has a desired outcome from the asymmetric inter-
action, if the outcome matches the expectation, then the interaction was a success ,
otherwise it was a failure. There are many reasons why an interaction may fail,
including maliciousness and incompetence of the target. We will not distinguish
between motives. The subject will estimate the likelihood of success and failure,
we call such an estimate the trust opinion.

Assume that a user wishes to purchase goods from a second-hand seller from a site
like eBay, where the seller requires (partial) payment up front. Such a purchase is
an example of an asymmetric interaction, since the buyer needs to pay in advance
without controlling the seller. Hence, the buyer is called the subject and the seller is

1
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Figure 1.1: A depiction of trust aggregation, trust chaining and trust conjunction
(as an instance of a logical trust operation).

called the target. The buyer expects the goods advertised by the seller delivered on
time and in advertised condition. If the goods do arrive as such, then the purchase
was successful, if, on the other hand, the goods were damaged, late or not delivered
at all, the purchase was a failure. The buyer wants to avoid failures, and uses his
trust in the seller as a guide to deciding whether to initiate the purchase.

The fact that a decision based on a trust opinion tends to be binary (either you
interact, or you do not), may seem to suggest that trust is black-and-white. In
reality, however, trust is far more nuanced. First off, trust opinions reflect a degree
of trust. Users may want to buy a cheap bracelet from a shady merchant, but not
purchase a car from a similarly shady salesman, for example. And secondly, trust
opinions have a degree of certainty or confidence. For example, a new customer
of a seller, when confronted with a non-delivery, will drastically lower his trust
in the seller, in the belief that the seller may be scamming. On the other hand,
a regular customer may be sufficiently confident in the seller not to let a single
non-delivery affect his opinion too much. The different nuances, assumptions and
intended application areas constitute a paradigm. We will refer to this paradigm
as the Beta paradigm in this thesis, and explain it in Section 1.1.1.

Ways to combine trust opinions are called (trust) operations. We focus on several
trust operations: trust aggregation, trust chaining , and logical trust operations ,
depicted in Figure 1.1. Trust aggregation is the act of taking several trust opinions
about a single target, and combining them into a single trust opinion. Under the
Beta paradigm, a mathematically correct and unique computation that performs
trust aggregation has been found [MM02, JI02]. Hence, we do not analyse trust
aggregation with an intent to solve it, but for the interplay with other operations,
as well as similarities to other operations. The second operation, trust chaining, is
the act of taking a trust opinion on an intermediate user and a recommendation
(about a target) made by that user, and combining them into a single trust opinion
(about that target). Trust chaining has also received much attention, but there is
no consensus on an approach, even within our paradigm. In this thesis, we derive
trust chaining rigourously, in a way similar to the way trust aggregation is derived.
Contrary to trust aggregation, trust chaining does not have a unique computation,
but a family of computations. Finally, the three logical trust operations that we
study are trust conjunction, trust disjunction and trust negation. Trust conjunc-
tion (or disjunction) is the act of taking two trust opinions about different targets,
and turning it into a trust opinion that represents that both (either) user(s) suc-
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ceed(s). Logical trust operations already have a computational definition in other
paradigms; in this thesis we derive their computations in the Beta paradigm.

The choice of a representation of trust opinions plus the choice of computations
for operations is called a trust model . It is possible to roughly distinguish trust
models in two groups (see Figure 1.2). Models that attempt to capture trust opin-
ions that people hold in certain contexts – cognitive trust models , and models that
adhere to notions of correctness – correctness trust models . Both types of trust
models share characteristics. In both, trust in a user will increase with successes
and distrust will increase with failure in interactions with that user. Similarly,
certainty or confidence increases with more information, in both types of models.
The rationale for these effects, however, differs. In cognitive models, the effects are
simply mirroring people’s tendency to adjust their opinions of that user in such
a manner; the effect is empirically understood. Similarly, more interactions make
people feel more confident, which the cognitive trust models merely reflects. Cor-
rectness models, however, increase trust with successes because the likelihood that
the user is trustworthy has increased (by Bayes’ theorem). And mathematically,
more interactions means more data points, which in turn implies more certainty.
The paradigm used in this thesis concerns correctness models.

There are two different classes of correctness models that we discuss in the paper,
differing in methodology. First, we present the axiomatic approach. There, we
define models in which correctness is defined by a small set of axioms (self-evident
statements). There may be several models that exist under a set of axioms. In
each of the models, the operations are defined as a collection of axioms. Second,
we present the probabilistic approach. There, we define random variables and
their relations as basic principles. We then derive the operations from the basic
principles.

1.1 Problem Statement

The description provided above, regarding the contents of the thesis, can be con-
cisely formulated as the following research question: How can we correctly combine
trust opinions of users on a system where users interact sparsely and with an ex-
plicit goal? In this section, we make this question more precise. We define the
types of situations and contexts that we use in our paradigm, i.e. what we mean
by “a system where users interact sparsely” and “explicit goals”, in the section on
the scope. The ways in which we want to combine trust opinions are trust aggrega-
tion, trust chaining and logical trust operations. These are explained in the section
on objectives. The phrase “correctly combine trust opinions” is explained in the
section about methodology. There are two methodologies, that are not mutually
exclusive, in this thesis.

It is important to note the level of abstraction in which the thesis is set. In
Figure 1.2, we show the relationship between trust systems – explained below –
and trust models. The dotted line marks the area of interest of this thesis. Note
that that area partially contains game theory and applications of trust models,
because we merely touch upon these subjects.

A reason that the study of trust has gained much traction, is the rise of trust
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Figure 1.2: An overview of the relationships between trust systems and models.

systems on the internet. A trust system is a system that assists in or automates
the construction of trust opinions. Examples of trust systems are movie rating
systems, user feedback rating systems, or even Public Key Infrastructures (PKI’s).
Some trust systems are considered to be more effective or accurate than others. To
understand why, we need a higher level of abstraction: analysis of trust systems.
There are several ways of analysing trust systems, experimentally or by using trust
models. An experimental analysis of a trust system could consist of surveying users
of an existing and running system, or by feeding a certain (annotated) data set
into a prototype of a trust system, and comparing results. The downside is that
these methods may not provide insight on possible improvements, nor can it be
properly determined how changing circumstances will affect its operations. Trust
models can help providing insights, and they can model changing circumstances.
Again, we note that one trust model may be more effective than another, which
requires analysis of trust models. For cognitive models experiments, surveys and
intuition are appropriate choices, due to the empirical nature of cognitive models.
For correctness models, we need logics and mathematics, due to the formal nature
of correctness models. We focus on the trust model analysis layer, but also look
at the trust model layer. See also Figure 1.2 for a graphical depiction of the
relationships mentioned in this paragraph.

In the section on the scope, we look at the setting and context that we work in.
In particular, the assumptions of the model are discussed in detail. In the section
on objectives, we look at the type of trust operations we analyse in trust models.
In the section on methodology, we identify the mathematical tools that we apply
in the analysis of trust models.
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1.1.1 Scope

Our general perspective is that of computer security. The perspective strongly
influences the scope of any discussion on trust. We are interested in constructing
trust opinions from observation data and extracting (probabilistic) information
from them. Unlike perspectives from social psychology and artificial intelligence,
we are not primarily interested in motives, reciprocity, becoming trusted or the
value of trust. As a consequence, our choice of perspective largely eliminates the
need for a game-theoretic view in favour of a probabilistic view at trust. The view
can be considered probabilistic, since our view focusses on the expected probability
of success, the certainty tied to that expectation and how to update probabilities
when new data is available. The three main restrictions that we introduce in
this section are justified from a security perspective. However, unless all users
are assumed to be rational, the issue of establishing a trust opinion based on
observations is at least a subproblem of the alternative views on trust. Therefore,
the work in the thesis – of which we are currently defining its scope – has value
even in a perspective where the scope-restrictions cannot be justified.

There are many different situations and interactions to which we tend to ascribe
trust. Given that different perspectives on trust occasionally contradict each other,
is impossible to create a single trust model that captures all notions of trust. We
restrict our paradigm to the appearance of trust in e-commerce and e-services,
giving rise to three particular restrictions: 1) That trust is completely interaction-
oriented, rather than based on personality or character (and subjects are thus
completely interchangeable in the target’s view1), and that these interactions are
sufficiently similar to be grouped into a single category. 2) That interactions have a
clear goal, and failure or success to achieve the goal can be objectively determined.
3) That the available information is too restricted to discover a user’s full internal
state, motives and incentives.

Before expanding upon these three restrictions, we observe a threefold motivation
for these restrictions. The first is on a theoretical level: there is a rigourous
correctness model of trust aggregation in the Beta paradigm. It is interesting
to view a model – called the Beta model – with trust chaining and logical trust
operations as merely extensions of that model (within the same paradigm). The
Beta model is explained in Section 2.4.1. The second is on a pragmatic level:
there currently is no other rigourous formal model of trust chaining or the logical
trust operations. Liberally generalising the paradigm complicates both the formal
results and their presentation. We consider it more sensible to first study the new
operations within the paradigm, and then generalise the results. A rigourous model
(the Beta model) and generalisations thereof already exist for models restricted to
only trust aggregation, we discuss them in Section 2.4.3. An argument against
trying to be too general with regards to trust is made in [MC01]. The third is on
a practical level: Trust in security – trust in clouds, trust on online market places
and trust in PKI’s and Webs of Trust (WoT’s) – fit the paradigm remarkably well.
In short, we believe this paradigm allows us to rigourously formulate ideas which
are interesting on a theoretical and practical level, without obfuscating the ideas

1 This is relevant when subjects communicate with each other about interactions with a certain
target.
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with additional problems.

The notion (1) that our paradigm restricts to interaction-oriented trust allows us
to tie a concrete meaning to trust opinions: Trust opinions reflect an estimate that
the next interaction is successful. Since we assume that interactions are similar,
we can form a trust opinion on a target, which applies to any next interaction we
may have with that user. Another restriction of interaction-oriented trust (rather
than interpersonal trust) is that a target’s likelihood to succeed does not depend
on the subject, since the target is not interested in the subjects themselves.

The restriction (2) that interactions are binary, i.e. results can objectively be clas-
sified as successes or failures, together with the fact that the target’s behaviour
is independent of the subject, entail that trust opinions can be shared between
all subjects (the implication is argued in Section 2.3). Hence, an honest recom-
mendation provides completely reliable information, since the observations by the
recommender are identical to the observations the subject would have made in
his place (since outcomes are objective) and targets behave the same towards the
recommender as to the subject. That implies that subjects that receive recom-
mendations need only be concerned with the honesty of these recommendations,
not with their relevance (due to differences in taste or attitude of target). Systems
under this assumption are often called reputation systems , whereas systems where
subjective taste is the key factor are called recommender systems2. Of course, this
distinction is not black-and-white; a recommendation about a hotel may be bad
for subjective reasons (e.g. kitsch interior) and objective reasons (e.g. unannounced
extra charges). We discuss recommender systems, provide existing examples, and
their relation to reputation systems in Section 2.3.1

The inability (3) to deduce anything about the full internal states, motives and
incentives of targets, means that subjects can only really know one thing about
targets, namely how often they succeeded and failed in interactions. This reduces
a target to a single, but unknown, quantity which represents how likely successes
and failures are, called the integrity of that user. He may, in reality, have two
states of mind, with different integrities. However, under the restriction that we
cannot have knowledge regarding his state of mind, there is no point in representing
both integrities. Similarly, a user may be more inclined to fail in certain types of
interactions, due to differences in incentives. By not incorporating such incentives
and internal states we can only reason about the typical interaction. In other
words, operating under this assumption may force subjects not to use certain
(statistical) information. We can classify this extra information into two types:
information that transcends particular users, and information that does not. A
typical example of the former case, is that the price of a product may influence
the likelihood that it will not be delivered. A typical example of the latter case,
is a user who has fallen ill and fails to deliver for that reason. Influences as in the
former case are measurable. Our results can be easily updated to deal with these
kinds of effects, when simply provided (due to measurements). Influences as in
the latter case cannot be measured on a system-wide scale. However, for systems
over the internet, the number of interactions between two users is so small, that

2 Despite the fact that “recommender” is part of the term “recommender system” and not
in “reputation system”, reputation systems may have recommenders. In the thesis, the word
recommender refers any user making trust-related claims.
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it is infeasible to distinguish information about user-specific incentives or their
internal states from statistical noise. Intuitively speaking, after n interactions,
we merely have n pieces of binary data (for some small n), which is not nearly
enough to draw conclusions regarding personality and character (other than the
very broad and general). We look at systems that do look at the internals of users
in Section 2.4.3.

The Beta paradigm is the paradigm laid out in this section. In other words, in the
beta paradigm, we want to be able to make formally correct statements about the
integrity of targets. To allow us to make such rigourous statements, the paradigm
makes restrictions along the lines of (1), (2) and (3). The beta distribution is a
central tenet of the Beta paradigm.

1.1.2 Objectives

We study trust in a trust-over-the-internet paradigm (outlined in Section 1.1.1, and
explained in Section 2.4). The basic building block of trust is the trust opinion.
The trust opinion reflects the estimate of the integrity of a target by the subject,
and is based on a number of interactions with that target. Since we are interested
in a correctness model (rather than a cognitive model), we demand that these
estimates correspond with the actual integrity (rather than correspond to estimates
of actual people). Recall that the actual integrity is the relevant information
in the perspective of computer security, hence our choice for correctness models.
Moreover, it is possible to combine trust opinions into new trust opinions. In this
thesis we look at the following ways of combing trust opinions:

• Trust aggregation (also known as fusion, consensus or Dempster’s rule of
combination). Given two valid trust opinions on a target (based on distinct
data), the aggregate trust opinion reflects the estimate based on those two
trust opinions.

• Trust chaining (also known as transitive trust, dilution, discounting or trust
propagation). Given a trust opinion on a recommender, and a recommen-
dation by the recommender, the chained trust opinion reflects the estimate
based on these two pieces of data.

• Logical trust operations (trust conjunction, trust disjunction and trust nega-
tion). Given a trust opinion on target A and a trust opinion on target B, the
trust conjunction (disjunction) reflects the estimate that both (either) users
succeed. Trust negation reinterprets successes as failures, and vice versa.

Due to the fact that we are interested in correctness models, we can dismiss def-
initions of these operators as incorrect when they are inconsistent with the basic
principles of the Beta paradigm. We can also characterise those definitions that are
correct. In fact, when considering only trust aggregation in our paradigm, there
is a uniquely correct definition of this operator (modulo isomorphism). In other
words, in that setting every correct definition of trust aggregation is the same (that
definition was formulated in [JI02, MM02])

For trust chaining and the logical trust operations, such characterisations do not yet
exist. Nor was it known in advance whether there exist (uniquely) correct models
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with these operators. Furthermore, given the existing model of trust aggregation,
we cannot know in advance whether its definition remains correct with the addition
of extra operations. In other words, there is little known about correctness models
on these trust operations.

The goal of this paper is to provide insight into and to formally characterise these
operations and their interplay, and ultimately to define these operations. We do
so in two ways, first axiomatically, then probabilistically.

1.1.3 Methodology

Assume we are interested in constructing a simple trust model based on intuition.
We would reason how the result of certain trust operations correlate with their in-
put, and choose the definition of the operation to reflect this. Say that the amount
of belief or trust contained in an aggregate trust opinion positively correlates with
the belief in the constituent trust opinions, we could simply define the resulting
belief as a sum of the belief in its components. However, this raises the question
of why not using a product or maximum. Intuition or experiments may or may
not provide satisfying answers. As an alternative to picking a seemingly arbitrary
specific operation, we can make a restriction to those operators where belief of the
output correlates positively with belief of the inputs. Such a restriction may be
called an axiom.

The axiomatic approach requires us to define a set of axioms. These axioms are
statements that are undoubtedly true. A set of axioms does not necessarily define
a unique model. There may not be any model for axiomatisations. This would
imply that there cannot be a proper definition of the operations, and that at least
one of the things believed to be undoubtedly true was not. This does not happen
for any axiomatisations we consider in this thesis. There may be several models
that satisfy the axioms, but that are essentially the same, just different ways of
describing the same thing. We call such models isomorphic, and consider them
to be identical. An axiomatisations of which all models are isomorphic is called a
complete axiomatisations. Complete axiomatisations are useful, because they show
that a model for such axioms is the only correct model (provided all the axioms
are indeed true). Finally, there may be several models that satisfy the axioms,
but that are fundamentally different. Even if this is the case, axiomatisations is
useful. First, because we gain the insight that there may be alternative models
which appear equally correct. Secondly, because we can still identify properties of
all models under an axiomatisations. These properties automatically hold for all
correct models.

We apply the axiomatic approach in two ways. We start by taking an existing
trust model (Subjective Logic), and build an incrementally more powerful axioma-
tisations of that trust model. These candidate axioms are analysed, and we study
whether or not they are undoubtedly true. Axioms that are not undoubtedly true
may have alternative axioms, or generalisations, that we also analyse. Further-
more, we study a core group of axioms that remain after elimination of dubious
axioms.

Another alternative to simply thinking up intuitive trust models, is to attempt to
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derive a (family of) models from a small number of basic principles. This is a prob-
abilistic approach, meaning that these basic principles are formulated as relations
between random variables. We distinguish the probabilistic approach from the ax-
iomatic approach (despite the existence of basic principles that could function as
axioms) for several reasons, one of which is the fact that objects (trust opinions,
subjects, targets, recommendations, integrity, etc) have immediate semantics, al-
lowing a better interpretation as a (family of) model(s). To note some of those
direct semantics, trust opinions are taken to be probability distributions, each tar-
get has a random variable denoting their integrity and the interactions between
every pair of subjects and targets are captured in random variables. Given these
translations to random variables and the relations between random variables, trust
aggregation, trust chaining and the logical trust operations can be formulated as
equations. The equations belonging to the operations can be seen as a direct trans-
lation of the semantics of the operations. The main objective becomes to find a
general solution for these equations. Other interesting things to study are the prop-
erties of the equations. Every theorem or proposition regarding the equations has
a direct semantics regarding the operations. Therefore, the probabilistic approach
allows us to make general statements regarding operations (and their appearance
in existing models) in the form of theorems.

There are two popular philosophical interpretations of probability: the frequentist
and the Bayesian interpretation [Sti86]. Under the probabilistic assumptions that
we formulate, the interpretation is irrelevant. However, the assumptions are not
god-given. The assumptions that define the models are justified under the Bayesian
interpretation. The reason for this is that the integrity effectively models an un-
known (if you could read the mind of the target, you would most likely see that the
outcome has already been determined, like a face-down card waiting to be turned).
The integrity parameter can be seen as a hypothesis about future behaviour, which
is not 1 or 0, but any value in between. We also apply Bayes’ theorem to update a
prior distribution into a posterior distribution, which in turn can be used as a prior
distribution for yet another update; another characteristic of Bayesian methods. In
general, therefore, we do probability under the Bayesian interpretation, although
we do justify our assumptions under the frequentist interpretation in Section 6.2.

The axiomatic approach and the probabilistic approach are not mutually exclusive,
and many conclusions are shared. In fact, we can show that a model derived in the
probabilistic approach is a model of an axiomatisation that we provided. However,
we discuss their overlap only where relevant, and mainly treat the two approaches
in isolation.

1.2 Contributions

We can classify our contributions according to the two methods we have em-
ployed. First the results obtained axiomatically, then the results of the probabilistic
method.

In Part I – Chapters 4 and 5, we apply the axiomatic approach to trust. First,
we axiomatise a fragment of Subjective Logic, then we analyse those axioms, and
reduce these axioms to those that qualify as self-evident. In the axiomatisation of
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parts of Subjective Logic, we have the following contributions in particular:

• We define several sound axiomatisations of subtly different fractions of Sub-
jective Logic. The axioms are studied, and problematic expressions are re-
viewed.

• We prove that all non-dogmatic opinions (with rational numbers as elements)
can be constructed using fusion (trust aggregation) and dilution (trust chain-
ing) and two constants.

• We introduce tuple averaging – averaging over tuples of rational numbers
– as a generalisation of both arithmetic means and opinion averages, and
provide a complete axiomatisation of tuple averaging.

• Using the new operation of opinion averaging, we provide a complete and
finite axiomatisation of non-dogmatic opinions in the fraction of Subjective
Logic that concerns with fusion, dilution and AND, OR and inverse.

• We discuss alternate axiomatisations, with respect to dogmatic opinions,
alternative basic experiments and alternate interpretations for trust chaining.

We furthermore select the self-evident axioms that we have identified above. We
discuss why certain axioms are selected and others are removed. Important items
noted are:

• Axioms of Subjective Logic allow an unreliable recommender to strongly alter
parts of the subject’s opinion, which is generally undesirable.

• We argue that left commutativity of dilution holds, while associativity does
not.

• We provide an axiomatisation of the expected value and weight of a trust
opinion.

In part II – Chapters 6, 7, 8, 9 and 10 – we apply the probabilistic approach to
trust. First, we provide a clear and systematic formalisation of the assumptions
in the paradigm, also called the Beta model. Second, we formulate the logical
trust operations in the setting of the Beta model, and derive the equations for the
logical trust operations. Third, we formulate trust chaining in the setting of the
Beta model, and derive the family of equations for trust chaining. Fourth, we link
the choice for a particular equation for trust chaining to information theory and
game theory. Finally, we use these techniques to formulate a single trust model
(and a methodology to create similar trust models). In particular, we note the
following achievements:

• We provide the only correct definition of trust conjunction and trust disjunc-
tion (of independent opinions) and trust negation, up to isomorphism, in the
Beta paradigm.

• We prove that existing models in the Beta paradigm that attempt to capture
logical operations either fall outside of the Beta paradigm, or incorrectly
implement the logical trust operations.
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• We provide the correct parameterised definition of trust chaining, where the
parameters are called the lying strategy and the entanglement , w.r.t. the Beta
paradigm.

• We prove that the trust operations do not interfere with each other.

• We prove that endogenous filtering – an effective tool in trust chaining in
other settings – does not work in the Beta paradigm; only exogenous filtering
works. In endogenous filtering, the weight of a recommendation is determined
by the likelihood that its contents are true, and in exogenous filtering, by the
likelihood that its issuer is honest.

• We prove that existing models in the Beta paradigm that attempt to cap-
ture trust chaining either fall outside of the Beta paradigm, or incorrectly
implement the logical trust operations.

• We show the relationship between recommendations and information theory
and game theory.

• We provide a correctness trust model that captures all operations (trust
aggregation, trust chaining and the logical trust operations), and prove that
it satisfies the axioms derived in Part I.

1.3 Organisation

The organisation of this paper is as follows: There are three parts: Part I details
the axiomatic approach, Part II details the probabilistic approach and Part III
concludes the thesis.

Part I contains three chapters. Chapter 3 provides the preliminary knowledge for
Part I. It introduces the notion of trust networks, a fraction of the existing trust
model Subjective Logic, and the formal notions surrounding axiomatisations. The
fraction of Subjective Logic is completely and finitely axiomatised in an iterative
fashion, in Chapter 4. Each axiomatisation, and its implications, are analysed.
In Chapter 5 we identify those candidate axioms that are not self-evident, and
reject them. We also provide additional axioms that we deem self-evident but not
consistent with Subjective Logic.

Part II contains five chapters. The first chapter, Chapter 6, serves both as source
of preliminary knowledge and to provide a formal definition of the Beta model; an
example of the probabilistic approach. The following two chapters both build on
the foundation of the Beta model. The first of these two chapters, Chapter 7, adds
the logical trust operations to the Beta model. The other chapter, Chapter 8, add
the notion of trust chaining to the Beta model to yield a family of models. The
family of models differs in the amount of information carried in recommendations,
which we study in Chapter 9. Finally, in Chapter 10, we merge the results discussed
in Part II into a single trust model.

Finally, in Part III, we conclude the thesis and discuss future work.
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Background

Trust is an everyday concept. Similar to most everyday concepts, there are many
distinct ways of interpreting trust. Some interpretations may be mutually exclu-
sive. For example, is the use of Trusted Third Parties (TTP’s) application of trust.
Some say it is, since the subject has no control over the behaviour of the TTP (e.g.
[BFL96]). Others say it is not, since depending on the TTP is not optional (e.g. in
[LIB+07] “trusted” is contrasted with “trustworthy”). Therefore, there cannot be
a completely general notion of trust. In Section 1.1.1, we have precisely described
our interpretation of trust, dubbed the Beta paradigm.

In this chapter, we have three goals: The first is to put the choices from Sec-
tion 1.1.1 (Scope) into context, relative to the current state of research. The
second is to discuss the implications of alternate choices (e.g. is it possible to ob-
tain similar results by changing a particular choice). The third is to define the
terminology concretely, within the restrictions of the Beta paradigm.

Sections 2.1, 2.2, 2.3 and 2.4.3 address the first two goals. These sections are not
prerequisites for understanding our results, but rather assist in placing results into
context. Sections 2.4.1 and 2.4.2 address the third goal. Most basic terminol-
ogy used throughout the thesis is formally defined here. The definitions are not
technical in nature. Since technical definitions vary between the axiomatic and
probabilistic approaches, technical definitions are provided separately for the part
they apply to.

2.1 Asymmetric Interactions

By trust concerning asymmetric interactions, we consider trust along the lines of:

“Trust is a particular level of the subjective probability with which a user assesses
that another user or group of users will perform a particular action, both before
he can monitor such action and in a context in which it affects his own action.”

(Gambetta [Gam88], condensed for readability.)

The quote asserts that trust involves interactions, since there is an action that
the target performs that affects the subject . And the quote asserts that those
interactions have some level of asymmetry, since it happens before the subject can
monitor the action of the target (which implies that the subject cannot control the
action). The exact asymmetry of the interaction is not captured in the quote.

In the most asymmetric case, potential subjects and potential targets are mutually
exclusive. In that case, an asymmetric interaction between Alice as subject and
Bob as target can never happen with Bob as subject and Alice as target. The

13
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only game-theoretical reason for Bob to attempt to be perceived as trustworthy, is
because of social capital [Put93]. If he is trusted by many, more people will want
to interact with Bob, which (presumably) is beneficial to Bob.

Alternatively, we can imagine that both Alice and Bob may fulfill the roles as
subjects and targets at different times. So each interaction is asymmetric, but
their roles are symmetric. Now, Bob has an additional reason to attempt to be
perceived as trustworthy, namely reciprocity [BDM95]. If Bob is trusted as a target
by many, people are more likely to act beneficial when Bob is a subject.

Game-theoretical trust models , such as Liu et al., assign or calculate values for
social capital and reciprocity [LZL12]. One problem with applying game-theory
(directly) to our problem is that we do not know a priori whether reciprocity is
relevant. Another, more general, problem is that the value of social capital and
reciprocity strongly depends on specific costs that are hard to quantify, like the
cost to create an account on a trust system.

The game-theoretical trust models are often contrasted with cognitive trust model
(which not always require asymmetric interactions, hence they are explained in
more detail in Section 2.1.1). We argue that such a division would be a false
dichotomy, as better antitheses of the cognitive trust models are correctness trust
models (see Figure 1.2). In fact, it makes sense to see game-theoretical trust
models as a special case of correctness trust models, since the former are interested
in finding sensible trust opinions which represent actual (subjective) probabilities,
much like the latter. The essential difference is that not all correctness trust models
apply game-theory in finding trust opinions.

Many correctness trust models derive notions of trust opinions from observa-
tions [SFE08, ZLTV10]. We previously defined a notion of trust where observations
are an integral part of the definition [Mul11]:

“An observation is any contingent fact, that is witnessed to be true. A trust assess-
ment is a boolean expectation based on own observations and possibly observations
of others. Trust is a positive trust assessment, and distrust a negative.”

These observations could be about interactions similar to the interaction that an
assessment is being made upon, essentially applying induction. This approach
is popular in several computational models [Mar94] – known as evidence based
trust – and in Eigentrust [KSGM03], as well as probabilistic models (such as
TRAVOS [PTJL05]). However, the observations can also be completely different,
such as certifications [BFL96], certain relationships [GS03] or credentials [EFL+99].
All these views can be characterised as having their philosophy rooted in Dempster-
Shafer theory [Dem67, Sha76].

Asymmetric interactions can be of the sort “good or bad”, or they could be more
nuanced. To offer some examples of classifications that are more nuanced than just
a binary classification: First, different types of bad behaviour may be classified
according to intention (e.g. malicious versus incompetent), which adds an extra
(cognitive) dimension to trust, as in [FC01]. Second, different types of bad (or
good) behaviour may be classified according to result (e.g. late delivery versus
delivery of broken goods), which allows subjects to differentiate between types of
bad outcomes, as in [JH07]. Finally, a continuous range of outcomes with an order,
and a supremum (e.g. response in n seconds versus m seconds), as in [ARH00]. And
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of course combinations of those three nuances may exist, as in [SS01].

We remark that these additional nuances are not in our paradigm, but that they
are compatible to it. Our setting (where the beta distribution is effective), can
be generalised to a setting with extra nuances on the behaviour (using Dirichlet
distributions), as is done formally in [JH07]. In the case that categories are causally
linked (e.g. a successful interaction requires good intent and competence), our
techniques on logical trust operations can also be applied. This follows from a
generalisation of logical trust models where categories of outcomes are allowed,
such as [MS13b].

2.1.1 Alternate Types of Trust

Not all notions of trust are strictly based on asymmetric interactions, or even
on interactions, particularly, many notions are based on character. The general
sentiment of trust not regarding interactions is, quoted liberally after McKnight
and Chervany: “If one is predictable, benevolent, competent and honest, then one
is worthy of trust indeed.” [MC96] Such a notion of trust is far more suitable for
situations where information is paramount, and it makes sense to reason about
motives and internal states. That means, in a social setting, rather than an online
setting. As we are interested in trust over the internet, notions as from McKnight
and Chervany are less suitable for our purpose.

Another reason we opted for trust based on interactions, is because our objective
is to study (and develop) correctness trust models. Whereas for trust not based on
asymmetric interactions, it may not be possible to define a correct notion of trust
chaining. That is the point argued by Christianson et al. [CH97], where the au-
thors show that social notions of trust and cognitive trust models are (necessarily)
intertwined when it comes to the transitivity of trust (i.e. whether trust chaining
can be defined).

There are many interesting relations between such character-based trust notions,
as explored by Robert Demolombe in [Dem04]. There, he uses modal logics to
find relationships between trust notions such as sincerity, cooperativity, credibility
and vigilance. The techniques used in that paper rely heavily on modal logic, and
cannot be immediately quantified. By having a less rigourous relation between
partial notions of trust, Castelfranchi and Falcone have quantified partial trust
notions [CF98]. In particular, the four notions they treat are called competence,
disposition, dependence and fulfilment.

Rather than looking just at interaction-based history, or just at alternatives, it is
possible to look at trust at a level general enough to encompass both. Moyano
et al. analyse trust in a top-down fashion, where concepts related to trust are
viewed as components [MFGL12]. Rather than looking at how these components
work (e.g. how trust is established, how it is used), they study the relationships
between these components. What we call trust models based on interactions, they
call evaluation models. These evaluation models comprise only a part, albeit a
critical part, of their notion of trust models.
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2.2 Aspects of Trust Opinions

A trust decision regarding asymmetric interactions is, in a sense, binary. Either
the subject places enough trust in the target to interact, or he does not. That the
decision is binary does not mean that our trust opinions need only be boolean.
To reinforce this notion, a distinction between so-called decision trust and reli-
ability trust is made in [JKD05]. They propose the term decision trust as “(..)
willingness to depend on something or somebody in a given situation with a feel-
ing of relative security, even though negative consequences are possible.” Which
means that the argument about trust being boolean may apply to decision trust
(although arguably, one can be more or less inclined to trust, implying a gradual
scale rather than boolean). An example of a trust model purely for decision trust
is given in [QH07]. The other type of trust, reliability trust, they defined using
the aforementioned quote from Gambetta. Our notion of trust opinions relates
to their notion of reliability trust. Deriving decision trust from reliability trust is
the objective of another field, namely risk management [LGTL85, KMRS12]. On
a high level, decision trusts consists of reliability trust, (relative) risk a (relative)
value [LSS10].

The notion of trust opinions must be sufficiently powerful to fulfill the role of
reliability trust. In its role it should contain enough data, not just to reflect
likelihood of success, but also uncertainty ([SYHL05]) and potentially more. The
notion of trust opinions must also be powerful enough to operate as a carrier
set for the trust operations (i.e. trust aggregation, trust chaining and the logical
trust operations). By that, we mean that the result of these operations should be
expressible as a trust opinion. We look at some existing representations of trust
opinions, and study whether they are powerful and flexible enough to fulfill these
two objectives.

2.2.1 Binary Trust Opinions

The obvious representations for binary trust opinions, are first order logic and
modal logics. Logical representations are limited in the sense that they cannot
provide quantified opinions. However, as a positive trade-off, logical representa-
tions tend to be capable of being both general and formal. Hence, we discuss these
models here.

Many logical trust models have the ideas of Castelfranchi and Falcone [CF98, FC01]
as their basis. A model where the ideas of Castelfranchi and Falcone are formalised
and axiomatised can be found in [HLHV10], where reputation is furthermore de-
fined similarly to trust. The predicates in such models usually refer to beliefs and
other internal states, and their relation to actual entities is not always provided
or analysed. Kramer et al. not only provide a logical trust model, like Castel-
franchi and Falcone, but relate this to entities such as TTP’s and cryptographic
primitives [KGO10].

Finally, Katz et al. look at using default logic to study trust [KG06]. In default
logic, one can express, for example, that birds can typically fly. Also, by default,
animals with flippers cannot fly. Hence, we can conclude both that penguins can
typically fly and that they typically cannot. To resolve this issue, one can prioritise
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defaults, making it prioritised default logic. Katz et al. propose to use a trust
metric to obtain the required priorities, in a model called TidalTrust ([Gol05]).
Interestingly, TidalTrust uses natural numbers, which have more possible values
than a boolean. Hence, even for a model designed for binary trust predicates,
internally, trust opinions need a richer representation.

2.2.2 Degrees of Freedom in Trust Opinions

Closest to binary trust opinions, are trust opinions expressed in three-valued logic,
or in fuzzy logic [Zad65]. Rather than having “yes” or “no” on trust-predicates,
they allow “unknown” or “somewhat”. The advantage of such an approach is
that it maps directly to cognitive notions. Direct trust is represented in this way
in [ARH00]. Fuzzy logic is not very suitable as a representation for trust opinions
with respect to the trust operations. Since all opinions are discrete, nuances may
be lost, which due to particular nesting of operations have large effects on the
resulting opinion.

A more informative scale is achieved by using a single continuous parameter. Such
a parameter may range in [0, 1], e.g. UniTEC [KBR05], [−1, 1] e.g. [Mar94], or even
R e.g. EigenTrust [KSGM03]. In the first two, 0 and 1 correspond to distrust and 1
to trust. In all three, values halfway the range, such as 0 or 1/2 represent neutrality.
With just one parameter, it is difficult to distinguish whether a target with trust
0 is unknown or whether it is known that the target can neither be trusted nor
distrusted. For example, 1 good experience and no bad ones, may lead to a trust
opinion of 1/2, and 93 good experiences and 46 bad ones may also lead to 1/2. If we
want to aggregate (0, 1), i.e. no good and a single bad experience, with (93, 46),
it means we trust aggregate (−1/2) with 1/2 which naturally becomes 0. However,
(93, 47) – the pair of total successes and failures – should not be represented by
0. Another issue with one dimensional representations of trust opinions is the
Ellsberg paradox, termed in [Ell61], which shows that uncertainty by itself may be
an interesting measure to report.

A standard representation of trust opinions uses two dimensions, one to repre-
sent the ratio of successes versus failures, and one to represent the number of
interactions (which functions as a measure of certainty). Such a representation
maps trivially to beta distributions (see Section 2.4.1). A representation with
two degrees of freedom corresponding to beta distributions is used often (e.g. in
[Jøs97, TPJL06, Rie07, SFE08]). The aforementioned issue for one-dimensional
metrics with trust aggregation can be solved using the second dimension; the mea-
sure of uncertainty. Whether these two degrees of freedom are sufficient for the
other operators (trust chaining, trust conjunction and trust disjunction) was an
open question. We prove that two degrees of freedom is not enough for all three
operators (Theorems 7.10 and 8.11).

2.3 Recommendations

The most informative type of information are first-hand experiences. That is, ob-
serving the outcomes of interactions in which the subject was involved is more
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informative than observing claims of outcomes (called recommendations) of inter-
actions where others were involved. The two main reasons for this effect, are the
fact that people may make false claims, and the fact that others may perceive the
same interactions differently. The former applies to all situations, the latter tends
to hold only in situations where outcomes are subjective. For that reason, we sub-
divide this section into a part about subjective recommendations and a part about
objective recommendations. Subjective recommendations are relevant in recom-
mender systems , whereas objective recommendations are relevant in reputation
systems .

In the analysis of recommendations, we need to be careful with our terminology.
We distinguish trust in a recommendation (an opinion on the likelihood that the
recommendation is honest), trust expressed by a recommendation (the opinion
that the recommender claims to have) and trust from a recommendation (the
trust opinion that is the result of the trust chain of the previous two). An increase
in trust in a recommendation does not necessarily lead to an increase in trust
from a recommendation (rather a decrease of uncertainty [JMP06, AM09]). The
uncertainty in the trust expressed by a recommendation is at most as large as
the uncertainty from the recommendation, since there is uncertainty added by the
fact that there is a non-zero probability that the recommendation was dishonest
[AM09].

2.3.1 Subjective Recommendations

When recommendations regard taste or other subjective qualifications, the impor-
tant concern is whether the recommendation is applicable. To use movie recom-
mender systems (e.g. CinemaScreen [SA06]) as an example, the recommendation
from a fan of romantic comedy may be irrelevant to a horror fan. Other types of rec-
ommender systems are Cobot [SR11], YouTube [DLL+10] or GroupLens [RIS+94].
The concept of matching similar tastes to determine relevance of recommendations
is known as collaborative filtering ([BHK98, SKKR01]).

There are several techniques that can be applied to do collaborative filtering. The
Pearson product-moment correlation coefficient [Pea96] can be used to measure
the distance between two users (as in [SKKR01]). This distance can be used to
determine the weight of a recommendation of one user to the other. Interestingly,
weights can have negative value. Alternatively, the k-nearest neighbours algorithm
[CH67], can be applied (as in [SKKR01]). There, the k people with most similar
tastes are selected to provide recommendations, others are typically ignored.

Another interesting method, is the application of Kalman filtering [Kal60] (as in
[WLS12]). Kalman filtering is designed for robustness in noisy channels. In this
case, noisy channels would be formed by malicious users, that fake some of their
recommendations. Rather than having a single method for filtering for relevant
recommendations and against malicious, one can add an extra filtering method.
A possible way to do this, is to filter outlying or strange recommendations us-
ing intrusion detection [FZAB11]. Another possible way to do this, is to adapt
methodology used for objective recommendations.
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2.3.2 Objective Recommendations

The goal of reputation systems is similar to that of recommender systems, namely
to assist in (or automate) trust-decision making. The difference is the domain of
the recommendations; in reputation systems, recommendations are regarding fact
rather (or more so) than taste. In particular, that means that if a recommendation
is honest, then it is immediately applicable.

Rather than filtering for relevance, we merely need to filter for honesty. In the
literature (e.g. [TPJL06, JIB07]), two general types of filtering are discussed: en-
dogenous filtering and exogenous filtering . Endogenous filtering compares a rec-
ommendation to other recommendations or to the subject’s own experience, and
filters out those who are too far away and/or weighs closer recommendations more
heavily. Exogenous filtering looks at the recommender, rather than the recommen-
dation, and assigns a weight according to the reliability of the recommender.

Endogenous filtering is applied in [BLB04]. However, we prove that, in the context
of the Beta paradigm, endogenous filtering is superfluous at best, and exogenous
filtering suffices. We formally prove this in Theorem 8.9 in Section 8.3 and infor-
mally and intuitively explain this phenomenon in Section 10.1.4.

Exogenous filtering is applied in [Jøs97, TPJL06]. There, exogenous filtering is
defined as a computation. In our probabilistic approach, we are capable of deriving
the formulas involved from the semantics of trust chaining from the principles of
the Beta paradigm.

2.4 The Beta Paradigm

The Beta paradigm is based on the beta distribution, which in turn is deeply
connected with Bayesian probability. As established before, we typically use the
Bayesian interpretation of probability. Therefore, this section uses Bayesian meth-
ods until Section 2.4.4, where we discuss an alternative to the Bayesian methodol-
ogy.

The Beta paradigm was introduced in Section 1.1.1 (Scope). Essentially, the Beta
paradigm is the collection of assumptions, trust systems and examples where the
Beta model applies to. Hence, we discuss the Beta model in this section. Fur-
thermore, a core fraction of Subjective Logic falls under the Beta paradigm. For
this reason, and the fact that we are using Subjective Logic extensively in Part I,
we discuss a fraction of Subjective Logic in this section. Finally, we discuss other
models that have a foundation in the Beta paradigm, but do not completely fall
under the Beta paradigm. These models are, however, sufficiently close to the Beta
paradigm, that our results (found under the Beta paradigm) can be inserted into
their models without necessitating new insights.

The beta distribution is central to the Beta paradigm. The beta distribution is
formally defined in Definition 6.7. For now it suffices to note that the beta dis-

tribution, based on s successes and f failures, denoted ϑs,f (x) = xs·(1−x)f∫ 1
0 y

s·(1−y)f dy
∝

xs · (1− x)f . The ∝ symbol means “proportional to”. If two functions are propor-
tional to each other, they represent the same distribution.
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2.4.1 The Beta Model

The Beta model is central to the Beta paradigm. Since the Beta paradigm is, in
turn, central to our results, the Beta model is formally introduced in Chapter 6. In
this section we informally introduce ideas and techniques of the Beta model that
help the reader put abstract notions into the right perspective.

By definition, a target with high integrity is more likely to succeed than a target
with low integrity, which by Bayesian logic means that after observing a success,
the likelihood of the former has increased relative to the latter. In order to make
this line of reasoning rigourous, and to be able to formulate it more precisely, we
need to define the exact assumptions. We formulate the assumptions of the Beta
paradigm more precisely, but refer the reader to Section 1.1.1 for motivation or
explanation, and the preceding sections in this chapter for alternatives. Recall the
three main restrictions in the paradigm, trust is interaction-oriented, interactions
can objectively be labelled successes or failures , and subjects cannot deduce the
internal states or motives of the target. We base the more precise and concrete
assumptions on these three restrictions from Section 1.1.1

Every target has some behaviour or strategy, even though this strategy may be
unknown to all other users, and perhaps even to the target himself. These strategies
may range from completely deterministic (e.g. only fail every 3rd interaction) to
completely probabilistic (e.g. always fail with probability 1/3), and everything in
between. However, subjects cannot distinguish between these strategies. For both
strategies, the only information available is that 1/3 of the interactions fail. The
expected fraction of successes is called the integrity , which happens to be 1/3 for
both strategies.

The restriction to interaction-oriented trust contained the assumption that inter-
actions were similar. In other words, the integrity of a target is the probability of
success for past interactions and for present and future interactions. Consider an
algebraic analysis of the integrity parameter, given a certain number of observa-
tions. The first step is an application of Bayes’ theorem, the second step assumes
that all interactions happened independently. Let R be a random variable whose

outcomes are integrity parameters, i.e. values in [0, 1]. Let
−→
O = O1, . . . , On be ran-

dom variables denoting observations. Let fE be the probability density function
of E. If there are n observations:

fR(x|−→O ) ∝ P (
−→
O |x) · fR(x) = fR(x) ·

∏
1≤i≤n

P (Oi|x)

Now, by definition, P (Oi = s|R = x) = x (and P (Oi = f|R = x) = 1−x), since the
integrity parameter is the probability of success. So if s of the n interactions were
successes, and the remaining f = n−s are failures, we get (modulo a multiplicative
factor):

xs · (1− x)f · fR(x)

Which means that (except for the factor fR(x)) the beta distribution expresses the
probability distribution over the integrity of the target. This is formally proven in
Theorem 6.5. Hence, the beta distribution is suitable for representing trust opin-
ions, as discovered by Mui and Mohtashemi [MM02] and Jøsang and Ismail [JI02].
They assume fR(x) = 1, which means they assume the prior distribution to be



2.4 The Beta Paradigm 21

uniform, which is a good choice for two reasons. First, it is the prior distribution
with maximal entropy (that makes it the best choice according to the principle of
maximum entropy [Jay57]). Second, it allows for the simplest definition of trust
aggregation: multiplication.

With a uniformly distributed prior, fR(x), it is almost immediate that trust ag-
gregation is multiplication. The semantics of trust aggregation, is that the trust
aggregation of two opinions yields an opinion that reflects the observations of the
two original opinions. In other words, we define the trust aggregation of two trust
opinions fR(x|O) and fR(x|O′) simply as fR(x|O,O′). We can derive that:

fR(x|O,O′) ∝P (O,O′|x) · fR(x) · 1
=P (O|x) · P (O′|x) · fR(x) · fR(x) ∝fR(x|O) · fR(x|O′)

The interesting thing to note is that we have not defined trust aggregation by defin-
ing how to compute it, but by providing a semantics and deriving its computation.
The result is also derived formally, in Lemma 6.6.

The idea of representing trust opinions as beta distributions provides us with the
simplest notion of a correctness trust model; the Beta model. The Beta model uses
beta distributions to represent trust opinions, and trust aggregation is defined as
multiplication. The authors of [JI02] named the Beta model the Beta reputation
system, however, we see the Beta model as a model (which can indeed be applied to
reputation systems), see Figure 1.2. We follow the authors of [ESN10] in referring
to the model as the Beta model.

It is possible to select alternative representations for trust opinions, that are iso-
morphic with respect to trust aggregation. Rather than taking the actual beta
distribution, one can take the corresponding successes and failures. More inter-
esting is to have one parameter for the fraction of successes (success rate), and
one parameter for the total number of interactions (weight). Alternatively, trust
opinions can be represented with three parameters that have two degrees of free-
dom. The last representation is adopted by Subjective Logic, which is introduced
in Section 2.4.2 and discussed in detail in Section 3.2.1. Their three parameters
are belief, disbelief and uncertainty, where the ratio between belief and disbelief
translates roughly to success rate and uncertainty to the inverse of weight.

In this thesis, we extend the Beta model by adding the remaining operators; trust
chaining and the logical trust operations. The assumptions remain in the spirit
of the Beta paradigm, notably that results of interactions are independent of each
other, independent of the subject and independent of context. As with trust aggre-
gation, we define these operators by their semantics, and derive their computation.
This is in contrast to other trust models discussed in Section 2.4.3.

2.4.2 Subjective Logic

Subjective Logic [Jøs97] is a trust model with a wide range of operators. Amongst
those operators are consensus , discounting , multiplication, comultiplication and
complement ; which correspond to trust aggregation, trust chaining, trust conjunc-
tion, trust disjunction and trust negation, respectively. Trust opinions in Sub-
jective Logic are known as opinions or belief triples , and represented as a triple
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(b, d, u), where b+ d+ u = 1. The three components represent belief, disbelief and
uncertainty.

As Subjective Logic has grown more powerful over time, expressiveness and gen-
erality have increased to more complex notions. Currently, opinions need not be
triples, but tuples, depending on the number of outcomes of interactions. Further,
opinions now include a base rate, which allow for different priors than the uniform
prior. Throughout the thesis, we study a fraction of Subjective Logic without
these features, unless stated differently. However, every general conclusion regard-
ing Subjective Logic regards the entire calculus, unless stated differently.

Subjective Logic’s definition of consensus is based on beta distributions [Jøs02]. In
fact, consensus over opinions is isomorphic to multiplication over beta distributions
(i.e. trust aggregation). This property makes at least a fraction of Subjective Logic
fall under the Beta paradigm.

The other operators are formalised differently, using something akin to Kleene
logic [Kle50]. If we reinterpret an opinion (b, d, u) as “with probability b, P is true,
with probability d, P is false, and with probability u, P is unknown”, then we
have mapped every triple to a probability distribution. Multiplication, comulti-
plication and complement map (as defined in [Jøs01]1) to conjunction, disjunction
and negation in Kleene logic. Discounting maps to an operator equivalent to
(P ⇒ Q ∧ ¬P ⇒ unknown) [JP05]. The intuition for discounting is that, if the
recommender tells the truth (i.e. P holds), then Q accurately describes the target,
and if the recommender lies (i.e. ¬P holds), then the target is unknown.

However, we axiomatically show in Chapter 5, that these two different views (beta
distributions and three-valued logics) are not compatible. And we show probabilis-
tically in Chapter 7, that the view as Kleene logic is incompatible with the Beta
paradigm. There, we provide alternatives to the operators that are compatible
with the Beta paradigm.

2.4.3 Other Models in the Beta Paradigm

In this section, we discuss models based on the Beta model, which are an extension
or generalisation thereof. By extensions, we understand that extra functionality
or information is added. For example, additional operations, or more data in trust
opinions. By generalisations, we understand models that require fewer assumptions
or that apply to more scenarios.

The Beta model was developed independently in [MM02, JI02]. The latter also
provided an immediate generalisation, wherein recent interactions are taken as
more relevant than less recent ones, using a so-called decay-factor.

A common generalisation of the Beta model, is to drop the notion that the prior
distribution must be the uniform distribution. In Subjective Logic, a prior distri-
bution can be selected based on a parameter called the base rate [JOO10]. Cer-

1 Later, multiplication and comultiplication were defined differently in [JM05], and the notions
from [Jøs01] were renamed as simple multiplication and simple comultiplication. The general
ideas in this thesis are independent of the choice of either operator. Since the simple versions are
closer to the theory they originate from, we opt to use these. The modern version tends to be
more suitable for analysis of trust systems, but this falls outside of our scope.
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tainTrust [Rie07] and CertainLogic [RHMV11] also have a single parameter, called
base trust, to select a prior.

Another generalisation is achieved by dropping the restriction that we cannot derive
internal states. ElSalamouny et al. propose Hidden Markov Models (HMM’s) –
defined in [BP66] – to represent internal states of targets [ESN10]. HMM’s are
Markov models with unknown parameters. That means that a target is assumed
to be in a particular state with unknown integrity, but can switch to another state
with another unknown integrity. If behaviour is observed to be bursty, e.g. periods
of many successful interactions are interleaved with periods of many failures, this
translates to a HMM with two states, one with a high integrity the other with a
low integrity. The HMM approach uses Bayesian techniques similar to those in the
Beta model, and the other restrictions from the Beta paradigm.

In [Sta10], trust aggregation uses beta distributions as in the Beta model. In the
trust system they are interested in, the subject can determine the number of ob-
served interactions, by sending fake requests. However, sending fake requests is
costly. Hence, they use the probability distribution, not to optimise the amount of
information received, but to minimise the amount of fake requests whilst maintain-
ing sufficiently informative. This work falls out of the scope of the Beta paradigm,
due to the differences in applications and goals.

Many models have an operator for trust chaining. Examples of models with trust
aggregation based on the Beta model, and an operator for trust chaining are Sub-
jective Logic [Jøs97], TRAVOS [TPJL06], CertainTrust [Rie07] and the trust model
by Buchegger and Le Boudec [BLB04]. Subjective Logic, TRAVOS and Certain-
Trust apply exogenous filtering of recommendations, whereas Buchegger and Le
Boudec apply endogenous filtering. As stated before, we prove that exogenous fil-
tering should be applied (alone), in Theorem 8.9. Subjective Logic, TRAVOS and
CertainTrust all have a definition where the resulting trust opinion is (isomorphic
to) a beta distribution. In Subjective Logic and CertainTrust, the definition is
provided as a computation with a justification (in probability theory), rather than
from the principles of the Beta paradigm. In TRAVOS, the mechanism is based
on a derivation of probabilistic relations. We show in Theorem 8.11, that none of
these definitions are compatible with the Beta paradigm.

The logical trust opinions are also often represented with an operator. Examples of
models with logical trust operations based on the Beta model, and logical trust op-
erations are Subjective Logic [Jøs97] and CertainLogic [RHMV11]. As mentioned
before, Subjective Logic has two sets of definitions, an older one (later renamed as
simple) and a more recent one (named normal). The latter requires reasoning over
the base rate. The definitions from CertainLogic are identical to the operations
from Subjective Logic involving the base rate. In both formalisms, the definitions
are provided as a computation with a justification, rather than derived from the
principles of the Beta paradigm.
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2.4.4 Dempster-Shafer Theory

The Beta model’s objective is trust aggregation based on observation data. The
correctness of the Beta model follows from the Bayesian interpretation of proba-
bility, via Bayes’ theorem. However, there are two problems: To apply Bayesian
inference, we need a prior (a distribution fR(x)), which we typically do not have.
And a more philosophical issue is that Bayesian methods are not necessarily ac-
cepted by frequentists (see e.g. [Fie06]). Frequentists may, for example, reject
our strategy of treating the unknown integrity parameter as a probabilistic entity,
on philosophical grounds. More generally, frequentists differ from Bayesianists by
not allowing unknowns to be assigned probability (unless the outcomes can be
measured repeatedly).

Formally reasoning about such unknowns poses a problem for frequentists. To
illustrate, say you have an unfair coin. Due to the laws of physics, even the most
unbalanced coin cannot land on one side more than 70% of the time. That means
that the probability of heads (H) is 0.3 < P (H) < 0.7. A Bayesianist would let
U be a random variable that stands for the unfairness of the coin, such that if
the coin has U = 0.6, P (H) = 0.6. A frequentist rejects this methodology. To
formulate and reason about such a scenario poses a problem to him.

Frequentists may deal with this problem by generalising probability theory, to
include not just probability, but also uncertainty. A famous way of doing this, is
Dempster-Shafer theory [Dem67, Sha76]. In Dempster-Shafer theory, rather than
having probability ofX, i.e. P (X), there is mass ofX, belief inX and plausibility of
X, denoted m(X), Bel(X) and Pl(X). Belief, Bel(X) is the minimum probability
that an element of X holds. For example, Bel({H}) = 0.3, as an unfair coin
may give heads as little as 30% of the time. But also Bel({H,T}) = 1, as a
coin must always give heads or tails. Plausibility is the dual, both in the sense
that Pl(X) = 1− Bel( X) and in the sense that its the maximal probability; e.g.
P (H) = 0.7. For atomic events, mass and belief are the same, e.g. Bel({H}) =
m({H}) = 0.3, and Bel({T}) = m({T}) = 0.3. However, for non-atomic events,
mass is the difference between the belief and the sum of the constituent beliefs;
in our example and m({H,T}) is the remainder, 0.4. The quantity 0.4 can be
seen as uncertainty regarding the fairness of the coin. Therefore, Dempster-Shafer
theory has an effective method of denoting uncertainty. Each of mass, belief and
plausibility is sufficient to derive the two others, so typically we only need a mass
function m : PX → [0, 1]. Observe, for example, that m({H}) = 0.3, m({T}) =
0.3, m({H,T}) is sufficient to describe the unfair coin flip, and the associated
belief and plausibility. There is an operation in Dempster-Shafer theory which
performs essentially the same operation as trust aggregation, namely Dempster’s
rule of combination. According to Dempster’s rule of combination, the combined
mass m of m1 and m2 is defined, for any event A 6= ∅:

m(A) =
1∑

B∩C 6=∅m1(B) ·m2(C)
·
∑

B∩C=A

m1(B) ·m2(C).

Dempster’s rule of combination collapses to probability theory, when only atomic
events have non-zero probability. In that case, Dempster’s rule of combination
collapses to m(A) = 1∑

Bm1(B)·m2(B)
·m1(A) ·m2(A), which is remarkably similar to
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our definition of trust aggregation (as exemplified in Section 2.4.1 and defined in
Definition 6.9).

Dempster-Shafer theory is, at least superficially, similar to Subjective Logic, in the
sense that a trust opinion (b, d, u) in Subjective Logic can be interpreted as a belief
in Dempster-Shafer theory, as shown by Haenni [Hae06]. For all operations that
we consider, except trust aggregation, Haenni provides a translation from trust
opinions in Subjective Logics to beliefs in Dempster-Shafer theory. In the trans-
lation, Haenni translates (b, d, u) to a belief with masses m({s}) = b, m({f}) = d
and m({s, f}) = u. Interestingly, Dempster’s rule of combination is similar to, but
distinct from, consensus in Subjective Logic. We believe the similarity is caused by
the fact that Dempster-Shafer theory and Subjective Logic share similar intuitions,
and the difference is caused by the fact that Subjective Logic is designed to adhere
to Bayesian probability in case of consensus.

Dempster-Shafer theory is an important alternative to Bayesian methods for our
application. There are formalisms with subtly different rules of combination [SF02].
However, Dempster-Shafer theory, its variations, and other generalisations of prob-
ability theory, do not have the rigourous formal foundation that probability theory
itself has. Nevertheless, notions and intuitions formulated in Dempster-Shafer the-
ory (and other rules of combination) can provide insights or explanations for our
probabilistic notions, especially seeing that both are dealing with uncertainty and
unknowns in probability theory.
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3

Models and Axiomatisations

In Part I, we study the various trust operations: trust aggregation, trust chaining ,
and the logical trust operations . The trust operations can be applied in various
combinations. A (nested) application of trust operations can be compared with
another (nested) application of trust operations. To compare two expressions, it is
possible to apply the definition of the operations, and reduce both sides to a single
trust opinion which can be compared. Alternatively, it is possible to define a set
of rules to transform one into the other. To illustrate the difference between these
two alternatives, take an example in arithmetics, such as the question whether
3 · 2 + 3 is equal to 3 · 3. The first method is to compute that 3 · 2 + 3 = 9 and
3 · 3 = 9, thus they are equal. But it is not necessary to compute the answer, as
the rule x = x · 1 can be applied to get 3 · 2 + 3 = 3 · 2 + 3 · 1, and distributivity
(x · y+x · z = x · (y+ z)) can be applied to get 3 · 2 + 3 · 1 = 3 · 3. The first method
uses a model, and the second method uses an axiomatisation. Models provide
a computation for an expression. An axiomatisation provides a set of equalities
called axioms . A formal definition of the concepts surrounding axiomatisations is
found in Section 3.2.3.

Axiomatisations have several advantages. An important advantage is that axioms
can be studied in isolation from specific scenarios. If an operation is associative
and commutative, then you know that order is not important for the operation,
without needing further knowledge on the operation. Another advantage is that
upon finding a counterintuitive or undesirable property, it is easier to identify and
drop (or alter) the responsible axioms than to update the computation in the model
correctly. To reap the benefits of the axiomatic approach, when provided with a
model, it is possible to axiomatise the model. A complete axiomatisation is par-
ticularly useful, as all properties of the model are captured by the axiomatisation.

In Part I, we introduce many models and axiomatisations, we created a general
overview in Figure 3.1. Figure 3.1 contains an overview of all the signatures1 (rect-
angles), models (ellipses) and axiomatisations (hexagons) used in this thesis. Note
the typographical differences between the names of models and axiomatisations,
which is consistent with the typographic in the entire Part I, to assist in identifying
their class. The fat hexagons are axioma schemes, and those with regular thickness
represent finite axiomatisations. The relationships are provided as arrows. Signa-
tures may have regular arrows to strictly more restricted signatures, accompanied
by a description of the restriction. Models and axiomatisations may have solid
arrows to weaker models or axiomatisations. If an axiomatisation is sound with
respect to a model, there is an open arrow from the axiomatisation to the model. If

1Signatures determine the set of expressions we reason with. In particular a signature defines
the set of constants and functions.
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Figure 3.1: Overview of all signatures, models and axiomatisations in Part I.

that axiomatisation is furthermore complete, the open arrow will be bidirectional.
Dashed rectangles or ellipses represent families of signatures or models. Arrows
point towards the family, if they apply to all members. Figure 3.1 is furthermore
partitioned, by the dotted lines, into 5 parts, each corresponding to a section in
this thesis. The figure can be used as a quick reference for signatures, models and
theories; either for an understanding of their relation to others or for finding their
location in the thesis.

3.1 Representation of Operations

In this section, we introduce three different notations to express nested trust op-
erations. The graphical representation only serves as a visual assistance, based on
Figure 1.1. The other two representations are used for the axiomatisations and for
the models.

Trust aggregation, trust chaining, trust conjunction, trust disjunction and trust
negation can be seen as abstract operations over trust opinions. In order to ax-
iomatise these operations, we introduce a symbolic representation of the operations.
These symbols can form expressions, and the axioms are equations on these ex-
pressions. For example, fusion, denoted + , is the symbolic representation of
trust aggregation. The notion that order is irrelevant for trust aggregation can be
expressed symbolically with the axiom x+ y = y + x.
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Figure 3.2: A simple trust network.

The symbol for arbitrary trust opinions is a variable (e.g. x), whereas specific trust
opinions can be represented by constants (e.g. 1, as from Definition 3.1). The
symbol for trust aggregation is fusion, denoted + , and the symbol for trust
chaining is dilution, denoted · . An example of a trust expression is ((1 · p) + (q ·
υ)) · r · s.
A complicated expression may be easier to understand graphically, hence we pro-
vide a graphical notation in Series Parallel Graphs (SPG’s) [Duf65]. To define
SPG’s, we need to define the graph K1 and the parallel and serial compositions of
graphs that have a source and a sink. The graph K1 consists of two vertices, called
the source and the sink, and one directed edge from source to sink. The parallel
composition G of two graphs G1 and G2 unifies the sources of G1 and G2 into the
source of G, and unifies the sinks of G1 and G2 into the sink of G. The serial
composition G of two graphs G1 and G2 unifies the sink of G1 with the source of
G2. The source and sink of G are the source of G1 and the sink of G2. A SPG
is a graph that can be recursively constructed from K1 using serial composition
and parallel composition. An example of a series parallel graph can be found in
Figure 3.2.

The link between SPG’s and expressions is simple: The variables and constants
(i.e. trust opinions) are represented by K1. Fusion (i.e. trust aggregation) is rep-
resented by parallel composition. Dilution (i.e. trust chaining) is represented by
serial composition. The source of the network is the subject , and the target of the
network is the sink. Hence, the expression ((1 · p) + (q · υ)) · r · s represents the
same trust network as Figure 3.2.

We can view a trust model as the semantics of such a network. That means that we
provide a meaning to the network. The particular model we look at is Subjective
Logic. There, direct trust opinions are represented as belief triples (or opinions),
denoted (b, d, u). The trust operations take a pair of belief triples as argument,
and return another belief triple. The implementation of trust aggregation is called
consensus , denoted ⊕ . The implementation of trust chaining is called discounting ,
denoted ⊗ . The semantics (in Subjective Logic) of the network depicted in
Figure 3.2 is (((1/2, 0, 1/2) ⊗ (bp, dp, up)) ⊕ ((bq, dq, uq) ⊗ (0, 0, 1))) ⊗ (br, dr, ur) ⊗
(bs, ds, us). If two networks yield the same triple, they are semantically equivalent.
A sound and complete axiomatisation of this fraction of Subjective Logic, therefore,
equates two networks if and only if the two networks are semantically equivalent.

We have not yet defined the symbolic representation for the logical trust operations.
The symbol for trust conjunction is AND , denoted ∧ , the symbol for trust
disjunction is OR, denoted ∨ and the symbol for trust negation is inverse,
denoted x. An example of a trust expression is p ∧ (q · (r + s)).

The logical trust operations are naturally represented as binary trees. The leafs
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Figure 3.3: A trust network with logical trust operations.

of the binary trees contain users . A node can be the conjunction or disjunction of
two subtrees, or a node can be the negation of a single subtree. The root of the
tree contains the entire propositional formula. Notice that this is shown for the
proposition ¬C ∧D in Figure 3.3, where the dotted arrows form the binary tree.
The subject has a trust opinion of all the constituent users of the target, meaning
that there are graphs with the subject as source and each leaf as sink. For ¬C∧D,
this means that the subject has a trust opinion about C and a trust opinion about
D, as also depicted in Figure 3.3, using solid lines. Hence, the entire graph has
the subject as a source, and the target as sink, as depicted in Figure 3.3, where
A is the source and ¬C ∧ D is the target. Figure 3.3 depicts the trust network
p ∧ (q · (r + s)). Note that the opinion of A about C is p, and the opinion of A
about D is q · (r+ s), therefore, the opinion of A about ¬C ∧D is p∧ (q · (r+ s)).

Of course, Subjective Logic has an implementation of the logical trust operations.
Trust conjunction is implemented by multiplication, denoted ? . Trust disjunction
is implemented by comultiplication, denoted > . Trust negation is implemented
by complement , denoted �( ).

3.2 Preliminaries

The goal of Part I of this thesis is to axiomatise trust via trust aggregation, trust
chaining and the logical trust operations. Before we do so, we introduce Subjec-
tive Logic, a tool to reason with and visualise Subjective Logic and the notion of
axioms in this section. First we introduce Subjective Logic and its notion of a
trust opinion, belief triples, and we discuss its relation to trust. We will formally
define the operations in Subjective Logic corresponding to trust aggregation, trust
chaining and the logical trust operations, and discuss their properties. There are
several subtly different fractions of Subjective Logic that we consider; these are
different models. We furthermore formally introduce concepts such as axiomatisa-
tions, derivations and theories. We informally discuss the relation between models
and axiomatisations.

3.2.1 Subjective Logic

Subjective Logic is a formalism to denote trust opinions, and to do calculus with
opinions [Jøs97]. We call the objects representing trust opinions belief triples , al-
though the name opinion is preferred, to distinguish them from the more general
notion of trust opinions that we discuss throughout the thesis. Furthermore, we
may refer to a trust opinion represented by a belief triple as a belief. Belief triples
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Figure 3.4: The Subjective Logic triangle.

represent only trust and distrust, and do so with particular uncertainty. In Subjec-
tive Logic, trust, distrust and uncertainty form a triple (b, d, u), with b+d+u = 1.
Each such triple can be represented as a point in a triangle with corners β, δ and
υ (see Figure 3.4). Coordinate b of a point p = (b, d, u) determines the (perpendic-
ular) distance between p and side δυ. Likewise, d determines the distance between
p and side βυ, and u the distance between p and βδ. Some examples: point β
has coordinates (1, 0, 0) and represents full belief (or full trust), the middle point
between β and δ is (1/2, 1/2, 0) and represents the fully certain belief that there is as
much belief (trust) as disbelief (distrust) in the trustee. In this thesis we will re-
strict ourselves to the fragment of Subjective Logic in which the coordinates consist
of rational numbers. This simplifying assumption enables axiomatic reasoning.

Jøsang proposed two operators in [Jøs97], called consensus and discounting, which
are intended to model aggregation and trust chaining, respectively. When a sub-
jects hold two independent beliefs about a target simultaneously, then consensus
allows these two belief triples to be merged into a new belief triple, which has less
uncertainty. Consensus is particulary useful for aggregating beliefs:

Example 3.1. Assume that subject A had some interactions with user B at some
point, and formed belief (b, d, u) on the basis of these interactions. Later A had
more interactions with B, which lead him to the belief (b′, d′, u′). He can then apply
consensus on (b, d, u) and (b′, d′, u′), to get (b, d, u) ⊕ (b′, d′, u′), which represents
A’s belief about B on the basis of all interactions.

The definition of consensus in Subjective Logic is:

(b, d, u)⊕ (b′, d′, u′) = (
bu′ + b′u

u+ u′ − uu′ ,
du′ + d′u

u+ u′ − uu′ ,
uu′

u+ u′ − uu′ ) (3.1)

The idea behind this definition is that the belief component of the aggregated
belief triple corresponds to the sum of the belief components of the individual belief
triples, weighted by the uncertainty of the other belief triple: bu′+b′u. Similarly, we
obtain for the disbelief component du′+d′u. The reduced uncertainty becomes the
multiple of the individual uncertainties uu′. Finally, these values are normalised as
to retain the invariant b+d+u = 1. This gives denominator bu′+b′u+du′+d′u+uu′,
which equals u+ u′ − uu′.
The calculus in Subjective Logic is meaningful only when the definitions of the
operators are. There are several ways to analyse the validity and relevance of the
operators, and studying their defining axioms is a common way to do so.
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The next Subjective Logic operation is discounting. Discounting is the operation
intended to model trust chaining.

Example 3.2. Assume that user B said that his belief about C is (b′, d′, u′).
Further assume that A’s belief about B’s capabilities to refer to other users is
(b, d, u). Then A’s derived belief about C is (b, d, u) ⊗ (b′, d′, u′). If A strongly
trusts user B, he will form an belief triple similar to (b′, d′, u′) about C. If A
strongly distrusts user B, he will almost completely disregard B’s claimed belief
triple, leaving us with a belief with a lot of uncertainty about C. Naturally,
consensus can be applied on beliefs resulting from recommendations , so A can
combine several different users’ beliefs about C, possibly with some prior personal
belief. In other words, A can have belief z ⊕ (x ⊗ y), taking the consensus of a
discounted belief (x⊗ y) and his own belief (z).

The definition of discounting in Subjective Logic is:

(b, d, u)⊗ (b′, d′, u′) = (bb′, bd′, bu′ + d+ u) (3.2)

The idea behind this operator is that the belief b in the referring user determines the
chained belief bb′ and the chained disbelief bd′. The chained uncertainty bu′+d+u
follows from the invariant b+ d+ u = 1.

The third Subjective Logic operator is multiplication. Multiplication is designed
to model trust conjunction.

Example 3.3. Let A be a customer, B be a seller and C be a delivery service. The
subject, A, has belief (b, d, u) about B, and belief (b, d, u) about C. The packet
will only arrive intact and on time, if both B succeeds (i.e. sends the packet intact
and on time) and C succeeds (i.e. does not break the package or delay delivery).
Of course, A is interested in the delivery itself, and thus neither B alone or C alone
is the target, rather their conjunction is. The belief of A about the conjunction of
B and C is (b, d, u) ? (b′, d′, u′). The resulting beliefs should be less trusted than
either of the original beliefs, since if either B or C fails, the whole interaction fails.

The definition of multiplication is:

(b, d, u) ? (b′, d′, u′) = (bb′, d+ d′ − dd′, bu′ + b′u+ uu′) (3.3)

Comultiplication is designed to model trust disjunction and has a similar rationale:

(b, d, u) > (b′, d′, u′) = (b+ b′ − bb′, dd′, du′ + d′u+ uu′) (3.4)

The last Subjective Logic operator that we will use in our study is the complement
operator. The complement operator models trust negation. This operator swaps
belief and disbelief:

� ((b, d, u)) = (d, b, u) (3.5)

If the belief triples relate to the trust opinions of users, and consensus and dis-
counting correctly model aggregation and trust chaining, then Subjective Logic is
exactly what is needed to model trust networks. In other words, if Subjective Logic



3.2 Preliminaries 35

has the rigour of correctness trust models, then Subjective Logic is the answer to
our research question.

In trust networks, users are able to chain trust, and aggregate information, as
modelled by discounting and consensus, respectively. The purposes of the ax-
iomatisations are therefore twofold: If consensus and discounting correctly model
aggregation and trust chaining, then its axioms are the axioms of trust. Otherwise,
there should be axioms that are not self-evident, or even false, when applied to
aggregation and chaining. As will turn out, Subjective Logic seems too strong, as
there are truths that seem not self-evident, but not contradictory to self-evident
truths. It is, however, not impossible that more self-evident truths are found that
contradict Subjective Logic. An analysis of this can be found in Section 5.2.

The reason that we suspect that consensus is a good candidate for aggregation, is
that there is a strong link between belief triples over consensus and beta distribu-
tions [AS64], as also shown in [JJ98]. Beta distributions form the core of the beta
paradigm, in which we operate.

We have two collections of experiments about a single user. The first collection has
s successes, and f failures, and the second collection has s′ and f ′, respectively.
We may aggregate these collections to s + s′ successes and f + f ′ failures. This
allows us to map belief triples to beta distributions. Let us map (b, d, u) to (s, f)
as follows:

π((b, d, u)) = (
b

u
,
d

u
)

then

π−1((s, f)) = (
s

s+ f + 1
,

f

s+ f + 1
,

1

s+ f + 1
)

Consequently, π is an isomorphism between beta distributions under pairwise ad-
dition, and belief triples with consensus:

π(π−1((s, f)) + π−1((s′, f ′)))

=π((
s

s+ f + 1
,

f

s+ f + 1
,

1

s+ f + 1
) + (

s′

s′ + f ′ + 1
,

f ′

s′ + f ′ + 1
,

1

s′ + f ′ + 1
))

=π(
s+ s′

s+ s′ + f + f ′ + 1
,

f + f ′

s+ s′ + f + f ′ + 1
,

1

s+ s′ + f + f ′ + 1
)

=(s+ s′, f + f ′)

The isomorphic mapping π has previously been formulated in [Jøs97]. Recall that
the expected value of a beta distribution based on s successes and f failures (i.e.
α = s+ 1 and β = f + 1) has an expected value of s+1

s+f+1
. This means that we can

tie an expected value to a belief triple (b, d, u), via π, namely b+u
1+u

.

As consensus (of belief triples) is isomorphic to pairwise addition (of beta dis-
tributions), it has the same algebraic structure as pairwise addition. There are,
however, more isomorphic mappings. We present a class of mappings πc, for c ∈ R+

as follows:

πc((b, d, u)) = (c
b

u
, c
d

u
)

π−1c ((s, f)) = (
s

s+ f + c
,

f

s+ f + c
,

c

s+ f + c
)
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There is no reason why one value of c should be inherently better than another.
Jøsang concentrated on the mapping π1 in [JJ98]. Since 1 is the identity element
of multiplication, and thus requires fewer symbols, we have no good reason to
stray from that choice. An interesting fact about the mappings is that, due to
transitivity of isomorphisms, τc = π−1c ◦ π is also an isomorphism over consensus.
In other words,

τc((b, d, u)) = (
b

b+ d+ cu
,

d

b+ d+ cu
,

cu

b+ d+ cu
)

is an automorphism on belief triples under consensus. The underlying intuition
is that, with regard to consensus, relative certainty is important, not absolute
certainty. That τc is an automorphism over complement is immediate.

There is no such automorphism over discounting. We can immediately verify that.
We have that (b, d, u)⊗ (b′, d′, u′) = (bb′, bd′, bu′ + d+ u), but:

τ−1c (τc((b, d, u))⊗ τc((b′, d′, u′)))

=τ−1c ((
b

nf
,
d

nf
,
cu

nf
)⊗ (

b′

nf ′
,
d′

nf ′
,
cu′

nf ′
))

where nf = b+ d+ cu, and nf ′ = b′ + d′ + cu′

=τ−1c ((
b

nf

b′

nf ′
,
b

nf

d′

nf ′
,
b

nf

cu′

nf ′
+

d

nf
+
cu

nf
))

where nf = b+ d+ cu, and nf ′ = b′ + d′ + cu′

=(
bb′

p
,
bd′

p
,

bu′ + db′

c
+ dd′

c
+ du′ + ub′ + ud′ + ucu′

bb′ + db′ + bu′ + db′

c
+ dd′

c
+ du′ + du′ + ub′ + ud′ + ucu′

)

where p = bb′ + bd′ + bu′ +
d(b′ + d′ + cu′)

c
+
u(b′ + d′ + cu′)

c
6=(bb′, bd′, bu′ + d+ u), for c 6= 1

Hence, τc is not an automorphism of belief triples over discounting. Similar equa-
tions show that τc is not an automorphism over multiplication and comultiplication.
Therefore, different choices of πc yield different models. In other words, we can
map experiments to belief triples in several ways, yielding different results.

As mentioned before, we will pick c = 1, thus mapping a single success , s = 1 and
f = 0, to (1/2, 0, 1/2) and a single failure, s = 0 and f = 1, to (0, 1/2, 1/2).

Definition 3.1 (Experiment). A beta distribution with one success and no failures,
that is α = 2 and β = 1, is referred to as the successful experiment , denoted 1.
A beta distribution with no successes and one failure, that is α = 1 and β = 2,
is referred to as the failed experiment, denoted 0. If we map beta distributions to
belief triples with π, then 1 denotes (1/2, 0, 1/2) and 0 denotes (0, 1/2, 1/2).

By changing c in the mapping, one changes the interpretations of 0 and 1 in
Subjective Logic. Hence picking c or picking 0 and 1 is essentially the same. In
this section, we will not yet be able to reason axiomatically about the effects of
picking 0 and 1, but we will do so in section 4.2. There we will see that the
axiomatic insight in the experiments is clearer than the above technical modelling
approach, since the latter tends to get cluttered with nested divisions.
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Figure 3.5: A screen capture of a trust network.

3.2.2 SLVisualiser

Subjective Logic is an intuitive model for computing a belief triple that reflects a
trust network. In this thesis, we are not primarily interested in computing trust
networks, but in understanding trust networks and their relations. For example,
given an expression, how does the result change if we change one belief triple in
the network. We study the theoretical implications of trust networks in Subjective
Logic in Chapter 4. However, to get a more practical view on trust networks in
Subjective Logic, it may also be helpful to study these trust networks graphically.
The SLVisualiser tool2 allows a user to construct and alter trust networks, and
study resulting belief triples in different graphical representations.

The SLVisualiser is a tool with a graphical user interface. Its defining strength is
that formulae can be created, altered, computed and viewed via a graphical user
interface, as depicted in Figure 3.5. Users can create arbitrary formulae, potentially
with duplicated belief triples (e.g. (x⊕ y)⊗ x). Each element has a graphical and
numerical representation, and users can input values via both representations.
The advantage of numerical input is that belief triples can be input with high
precision. The advantage of graphical input is that users can continuously modify
belief triples, and immediately see the result of the trust network with that belief
triple. The user interface not only shows the beliefs, but furthermore provides the
symbolical notation of the trust network (see top left corner of each belief triple in
Figure 3.5, e.g. x+ (y ∧ y)).

The SLVisualiser not only allows representation of belief triples as Subjective Logic
triangles, but allows three alternative representations. The first alternative repre-
sents belief triples as pair of rating and doubt, where doubt corresponds to uncer-
tainty and rating to the ratio between belief and disbelief. The second alternative
representation also depends on rating, but rather than doubt, it uses weight. A
weight of 0 corresponds to a doubt (or uncertainty) of 1, and in the limit weight∞
corresponds to doubt of 0. In general 1

1+weight
= doubt. Since weight has no upper

bound, we represent weight in a hyperbolic projection. In the third alternative
representation, a belief triple can be represented as a beta distribution. We have

2The tool is available at http://satoss.uni.lu/members/tim/SLVisualizer.php.
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seen the relation between belief triples and beta distributions in Section 3.2.1. All
four representations are present in Figure 3.5, in order, from left to right.

In order to reason about equality of formula, we allow belief triples to be reused.
Not only can belief triples be reused within one trust network, but also across trust
networks. That means that it is possible to construct a trust network x⊕ y and a
trust network y⊕x, and to visualise the fact that a change in x has the same effect
in either trust network. It is even possible to nest such equations. Put differently,
the tool allows the user to obtain intermediate results of computations.

3.2.3 Axiomatisation

Before we define models and axioms formally, we need terms over which the models
and axioms range. The terms are defined by a signature, usually denoted by Σ. A
signature Σ is a set of constant and function symbols, with their arities. We assume
the signature(s) are given, and define models and theories on top of signatures. A
model defines the semantics of the terms:

Definition 3.2 (Model). A model M consists of a set of elements X, and a set of
constants in X and functions on X. If the constants and functions of the model
yield a signature ΣX , we call ΣX the signature M. We refer to X as the carrier
set of M. If we apply all the functions in a term y in the specified order, then it
yields an element in X. If two terms y and z in a model yield the same element in
X, we write M |= y = z.

Note that every finite term in a model yields exactly one element (called the so-
lution) in X, as it consists only of constants and function applications. Possible
models of Subjective Logic are defined by the sets of belief triples, together with
consensus and discounting. As we will see later, there are different relevant carrier
sets of belief triples possible.

An axiomatisation of a model is a set of equations that should be true in the model.
An axiom of a model must, therefore, either be proven as true in the model, or be
used to alter or reject a model.

Definition 3.3 (Axiomatisation). An axiomatisation T (alternatively, a set of ax-
ioms or an axiom scheme) is a set of (conditional) equations over a given signature
Σ.

It is possible to use the axioms to prove equalities that are not axioms themselves.
This is captured by the notion of a theory :

Definition 3.4 (Theory). Let T be an axiomatisation over a signature Σ. Let
s, t and u be (possibly open) terms in Σ. We denote that an equation s = t is
derivable from axiomatisation T , as T ` s = t.

ax If s = t is an equation in T , then T ` s = t.

cond If
∧
i ϕi ⇒ s = t is a conditional equation in T and for all i, T ` ϕi, then

T ` s = t.
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sub If T ` s = t then, for any valid substitution σ, T ` s[σ] = t[σ].

ref T ` t = t.

sym If T ` s = t then T ` t = s.

trans If T ` s = t and T ` t = u then T ` s = u.

func Let f be an n-ary function, if T ` s = ti, then
T ` f(t1, . . . , ti−1, s, ti+1, . . . , tn) = f(t1, . . . , tn).

We formulate axioms over the operations fusion and dilution. The axioms of fusion
and dilution should match our intuition of trust aggregation and trust chaining.
Like consensus and discounting form a model of aggregation and chaining, fusion
and dilution are the theory of aggregation and chaining.

In this thesis, two approaches are used to reason about trust aggregation and
trust chaining. The first approach is to take a model, formulate its axioms, and
study the axioms. Obviously, if the model correctly implements aggregation and
chaining, the axioms are automatically the theory of aggregation and chaining.
Seeing whether the model is correct is difficult, and the axioms are a great tool to
study the properties of the model. We can study the axioms, and check whether
they are self-evident, true, false, counterintuitive, too weak, too strong, etc. This
approach can be found in Chapter 4. Another approach is to formulate properties of
trust aggregation and trust chaining by immediately formulating axioms of fusion
and dilution. We follow this approach in Chapter 5.





4

Axiomatisation of Subjective Logic

Subjective Logic can be seen as a semantics for trust networks, examples of which
are graphically depicted in Figures 3.2 and 3.3. Another way of saying that, is
to say that Subjective Logic is a trust model. In this part of the thesis, we are
interested in axiomatisations (or theories), rather than models. The goal of this
chapter is to provide a complete axiomatisation of Subjective Logic. That means
that the axiomatisation equates exactly those trust networks that have the same
semantics (i.e. that result in the same trust opinion).

The operations that we analyse first, are trust aggregation, trust chaining and
trust negation. The symbols or operators that we denote these operations with
are fusion, dilution and inverse. The first axiomatisation of these three operators
is provided in Section 4.1. That axiomatisation is based on dogmatic opinions ,
opinions without uncertainty. There, we identify issues arising from the choice of
basing the axioms on the dogmatic opinions. Then, in Section 4.2, we alter the
axioms from Section 4.1 to reason about non-dogmatic opinions. There, we discuss
problems that arise when trying to formulate a complete axiomatisation of Subjec-
tive Logic with non-dogmatic beliefs , using only fusion, dilution and inversion. To
circumvent these problems, we introduce a new operation – opinion mean – and a
new operator – opinion average – in Section 4.3. We also introduce a generalisation
of these concepts: tuple mean and tuple average, respectively. The tuple average
(and opinion average) completely axiomatises the tuple mean (and opinion mean).
In Section 4.4 we link the fusion, dilution and inversion to tuple averaging. Using
that link, we can provide a complete axiomatisation of the three operators; fusion
dilution and inversion. In that section, we also study properties of the axioma-
tisation. Finally, in Section 4.5, we link AND and OR – the operators for trust
conjunction and trust disjunction. to tuple averaging. That allows us to provide
a complete axiomatisation of these two operators.

4.1 Dilution and Fusion of Boundary Opinions

In this section we give a finite axiomatisation of fusion, dilution and inversion,
based on the three extremal trust values β = (1, 0, 0), δ = (0, 1, 0) and υ = (0, 0, 1).
These three constants correspond to the three corners of the trust triangle in
Figure 3.4 and denote full trust, full distrust and full uncertainty, respectively.

Definition 4.1 (Signature ΣBDU). We define the signature ΣBDU as:

ϕ ::= β | δ | υ | ϕ+ ϕ | ϕ · ϕ | ϕ

41
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Dogmatic opinions.

A complicating factor when performing calculations in Subjective Logic is that
the fusion of two dogmatic beliefs is troublesome, since (b, d, 0) ⊕ (b′, d′, 0) gives
(0
0
, 0
0
, 0
0
). In order to deal with consensus of dogmatic opinion in Subjective Logic,

we consider two amendments of the consensus operation. The first concerns the
extension with a limit construction and the second concerns the introduction of
inconsistencies. The limit construction is due to Jøsang et al. [JMP06, JDV03].
They provide the following definition for the fusion of dogmatic belief triples:

(b, d, 0)⊕ (b′, d′, 0) =

(
γb+ b′

γ + 1
,
γd+ d′

γ + 1
, 0

)
.

According to Jøsang et al., γ is defined by γ = lim
u,u′→0

(
u′

u

)
. It expresses the relative

dogmatism between the expressions (b, d, 0) and (b′, d′, 0) or, rather, between the
users expressing these dogmatic beliefs. The higher the value of γ, the higher
the relative weight of belief triple (b, d, 0) in a fusion with (b′, d′, 0). The “default
value” of γ is 1, meaning that in general dogmatic values are averaged. We shall
denote this extension of Subjective Logic by BDUγ.
The second interpretation of the fusion of dogmatic beliefs is based on incon-
sistencies, as introduced by Alcalde and Mauw [AM09]. We extend Subjective
Logic with the special element i, which stands for inconsistency. This element
is the result of fusing two contradictory dogmatic beliefs, such as β + δ. We set
(b, d, 0)⊕ (b′, d′, 0) = i and assume that inconsistencies proliferate through Subjec-
tive Logic expressions, i.e., x+ i = i+ x = x · i = i · x = i, for every expression x.
Consequently, we have β + β = i. Further, we set i = i. We denote this extension
by BDU i.

Axiomatisation.

The basic axioms for fusion and dilution are given in Figure 4.1, ranging over terms
in ΣBDU . Axioms (B1) and (B2) express that the fusion operator is commutative
and associative. This means that the fusion of opinions does not depend on the
order in which the trust opinion are aggregated. Axioms (B3) and (B4) capture
associativity and left-commutativity of the dilution operator. They express that
in a trust chain the order in which the referral trust opinions (graphically: edges
not ending in the source) are combined is irrelevant. Further, the last element in
a trust chain, which expresses functional trust, cannot be mixed with the referral
trust opinions. Axioms (B5) and (B6) define that full uncertainty behaves like a
zero element. Adding a fully uncertain opinion to an opinion x does not give any
extra information. The symmetric version of axiom (B6), x · υ = υ, is also valid
(Proposition 4.1). The next two axioms define the properties of full trust. Axiom
(B7) states that full trust fused with itself remains full trust because this is the
element with maximal trust. Axiom (B8) expresses that full trust is a left-unit for
dilution. This follows from the assumption that if we fully trust another user, we
adopt his opinion without any hesitation. The definition of full distrust follows a
similar reasoning. Full distrust fused with itself remains full distrust (axiom (B9)).
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(B1) x+ y = y + x (B5) x+ υ = x (B7) β + β = β
(B2) x+ (y + z) = (x+ y) + z (B6) υ · x = υ (B8) β · x = x
(B3) x · (y · z) = (x · y) · z (B9) δ + δ = δ
(B4) x · (y · z) = y · (x · z) (B10) δ · x = υ

(I1) x = x (I3) υ = υ (I5) x · y = x · y
(I2) x+ y = x+ y (I4) δ = β

Figure 4.1: Basic axioms of Fusion and Dilution and basic axioms of the Inverse
operator (BDU)

Finally, if we consider the opinion of someone whom we distrust, it will give us no
information at all (axiom (B10)).

There are several properties that we will not consider because they are not valid
in Subjective Logic. An example is that dilution is not fully commutative. This
can be seen intuitively by a simple example. Assume that user A fully trusts user
B’s opinion on user C and assume that B fully distrusts C. Then A should also
fully distrust C. However, if we swap the values, i.e., A has full distrust in B, who
fully trusts C, then A should not necessarily (dis)trust C, so β · δ 6= δ · β.

From the above example we can also derive that β is not a right-unit. Further, the
symmetric version of axiom (B10), x · δ = υ, does not hold either, since β · δ = δ.

In order to capture more properties of the dilution and fusion operators we give
an axiomatisation of inversion in Figure 4.1. Axiom (I1) expresses that double
inversion is the identity. Axiom (I2) states that inversion distributes over fusion.
This means that trust and distrust are treated similarly when fusing trust opinions.
Axiom (I3) states that if one has full uncertainty (thus neither trust nor distrust),
inversion has no effect. This also stresses that υ is a zero element. Axiom (I4)
expresses the duality of trust and distrust. Finally, we see that negation satisfies a
particular semi-distributivity property over dilution (I5). This property expresses
that the ratio between the trust and distrust component of a dilution only depends
on the ratio of trust and distrust in the final element of the chain, which corresponds
to functional trust. The set of axioms from Figure 4.1 is denoted by BDU.

The statement x · υ = υ denotes that if anyone proclaims to have complete un-
certainty, the resulting opinion is also complete uncertainty. Either that person
truthfully stated to have complete uncertainty, or that person was lying and he has
an unknown opinion, in either case no information is gained. However, x · υ = υ
need not be added to the axioms, as it is a proposition.

Proposition 4.1. BDU ` x · υ = υ

Proof. BDU ` x · υ = x · (δ · δ) = δ · (x · δ) = υ

Soundness.

Next, we study which axioms are sound in the completed variants of Subjective
Logic. First, we observe that Subjective Logic with limit construction does not
satisfy associativity of the fusion operator (B2). If we take γ = 1, we can use asso-
ciativity to derive (1/2, 1/2, 0) = (1, 0, 0)⊕ (0, 1, 0) = (1, 0, 0)⊕ ((0, 1, 0)⊕ (0, 1, 0)) =
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((1, 0, 0)⊕ (0, 1, 0))⊕ (0, 1, 0) = (1/2, 1/2, 0)⊕ (0, 1, 0) = (1/4, 3/4, 0). The remaining
axioms are satisfied by this model.

Theorem 4.2. Subjective Logic with limit construction BDUγ is a model of BDU
minus (B2).

Proof. Axiom (B1) follows by observing the symmetry in the definition of the
fusion operator (e.g. bu′+b′u

u+u′−uu′ = b′u+bu′

u′+u−u′u). Axioms (B3) and (B4) are proven by
calculating that ((b, d, u)⊗(b′, d′, u′))⊗(b′′, d′′, u′′), (b, d, u)⊗((b′, d′, u′)⊗(b′′, d′′, u′))
and (b′, d′, u′) ⊗ ((b, d, u) ⊗ (b′′, d′′, u′)) are all equal to (bb′b′′, bb′d′′, 1 − bb′b′′ −
bb′d′′). The remaining axioms trivially follow from the definitions of the constants
and operators involved. For instance, (I5) follows from (b, d, u)⊗ (b′, d′, u′) =
(bb′, bd′, d+ u+ bu′) = (bd′, bb′, d + u + bu′) = (b, d, u) ⊗ (d′, b′, u′) = (b, d, u) ⊗
(b′, d′, u′).

Next, we look at the validity of the axioms for Subjective Logic extended with the
constant i, which corresponds to inconsistency. Contrary to the previous model,
this model satisfies commutativity of the fusion operator. However, it does not
satisfy axioms (B6), (B7), (B9) and (B10). One can derive, for instance, that
β + β = (1, 0, 0) + (1, 0, 0) = i 6= β.

Theorem 4.3. Subjective Logic with inconsistency BDU i is a model of BDU
minus (B6), (B7), (B9) and (B10).

Proof. Axiom (B1) follows from the symmetry in the definition of the fusion op-
erator. Axiom (B2) follows from a simple case distinction. If at least one of
the summands equals i or at least two of the summands are dogmatic opinions,
then it follows from the persistence of inconsistencies and the fact that dogmatic
opinions prevail in a fusion context. In the other case it follows from a sim-
ple calculation. For instance, it is easy to calculate that the first components of
((b, d, u) + (b′, d′, u′)) + (b′′, d′′, u′′) and (b, d, u) + ((b′, d′, u′) + (b′′, d′′, u′)) are both
equal to bu′u′′+b′uu′′+b′′uu′

uu′+uu′′+u′u′′−2uu′u′′ . Likewise for the other components. The proofs of
the other axioms follow from straightforward calculations and the propagation of
inconsistencies.

The axiomatisation provided above is a revision of the axiomatisation from [AM09].
In particular we have omitted the ordering axioms and added the axioms (B4) and
(I5). That paper also considers a number of possible models of Subjective Logic,
especially models where inconsistencies do not fully propagate.

Completeness

Even though the presented axioms capture many of the properties of Subjective
Logic, they do not form a complete axiomatisation. Calculations with non-extremal
values are not derivable, e.g., (1/2, 0, 1/2) · (0, 1/2, 1/2) = (0, 1/4, 3/4). It is clear that,
in order to complete this axiomatisation, non-extremal values have to be added.
In the following sections we will develop an axiomatisation based on the constants
(0, 1/2, 1/2) and (1/2, 0, 1/2). We will show that these two values, plus an averaging
operator will suffice for a complete axiomatisation.
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4.2 Dilution and Fusion of Opinions from Experiments

As established in the previous section, the fusion operator is difficult to axiomatise
due to the existence of dogmatic opinions . Two dogmatic belief triples , say (b, d, 0)
and (b′, d′, 0), are fused to (0

0
, 0
0
, 0
0
). In other words, there is a divide by zero, when

applying consensus to dogmatic beliefs. Two solutions were offered. We can denote
the result of a division by zero by a special inconsistency symbol, in which case
BDU ` β + β = β, but BDU i 6|= (1, 0, 0) ⊕ (1, 0, 0) = (1, 0, 0). On the other
hand, the limit model is not associative, as BDU ` (x + x) + y = x + (x + y)
but BDUγ 6|= ((b, d, u) ⊕ (b, d, u)) ⊕ (b′, d′, u′) = (b, d, u) ⊕ ((b, d, u) ⊕ (b′, d′, u′)).
If we restrict consensus to non-dogmatic beliefs, it turns out that very elegant
axiomatisations exists. As proven in [Dan03], the non-dogmatic opinions under
consensus form an ordered commutative monoid, with identity element (0, 0, 1)
being the only idempotent element. The basic elements will be the experiments 1
and 0, rather than the dogmatic β and δ. The reason that fusion in Subjective
Logic can be characterised elegantly, is its link to beta distributions, and thus
pairwise addition.

We formally defined belief triples in BDU i and BDUγ as a triple of rational numbers
(b, d, u), where b + d + u = 1. We concluded that the cases where u = 0 are
problematic, so in this section we restrict ourselves to cases where u > 0. We
replace β and δ with atoms correspond to triples with u > 0, and provide an
axiomatisation of the resulting calculus.

Definition 4.2 (Model EXP). The model EXP consists of the fragment of Sub-
jective Logic that contains only non-dogmatic beliefs, and consensus, discounting
and complement. Non-dogmatic beliefs are triples (b, d, u), where b + d + u = 1,
0 ≤ b, 0 ≤ d and 0 < u.

Recall, from Definition 3.1, that 0 is (0, 1/2, 1/2), and 1 is (1/2, 0, 1/2) in the model,
with the default mapping π.

We use fusion, dilution and inversion to model consensus, discounting and com-
plement. Furthermore, variables stand for non-dogmatic opinions which model
non-dogmatic beliefs.

We define the signature ΣEXP as:

Definition 4.3 (Signature ΣEXP ).

ϕ ::= υ | 0 | 1 | ϕ+ ϕ | ϕ · ϕ | ϕ

Belief triples in EXP are exactly the closed terms over ΣEXP .

Lemma 4.4. Every non-dogmatic Subjective Logic belief triple (belief triple in
EXP) corresponds to a term in ΣEXP .

Proof. Every triple of non-negative rational numbers (that includes every belief
triple) can be represented as a triple of non-negative integers, divided by a nor-
malisation factor, which is a positive integer: ( bn

nf
, dn
nf
, 1 − bn

nf
− dn

nf
). We consider
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(B10,1) x+ y = y + x (B50,1) x+ υ = x

(B20,1) x+ (y + z) = (x+ y) + z (B60,1) υ · x = υ

(B30,1) x · (y · z) = (x · y) · z
(B40,1) x · (y · z) = y · (x · z) (B100,1) 0 · x = υ

(I10,1) x = x (I30,1) υ = υ (I50,1) x · y = x · y
(I20,1) x+ y = x+ y (I40,1) 0 = 1

Figure 4.2: Axioms of Fusion, Dilution and Inversion (EXP)

only non-dogmatic belief triples, hence 1− bn
nf
− dn

nf
> 0, and as bn, dn,nf are non-

negative integers, nf ≥ bn + dn + 1. Hence, it suffices to provide at least one term
for every ( bn

nf
, dn
nf
, 1− bn

nf
− dn

nf
):{∑

bn
1 +

∑
dn

0 if nf = bn + dn + 1

(
∑

bn+dn+1 1 +
∑

nf−bn−dn−2 0) · (∑bn
1 +

∑
dn

0) if nf ≥ bn + dn + 2

It can readily be observed that for n ≥ 0,m ≥ 0:∑
n

1 +
∑
m

0 = (
n

n+m+ 1
,

m

n+m+ 1
,

1

n+m+ 1
)

and hence, in the case that nf = bm + dn + 1 we trivially get ( bn
nf
, dn
nf
, 1− bn

nf
− dn

nf
).

In the case that nf ≥ bm + dn + 2, consider the following equation:

(
∑

bn+dn+1

1 +
∑

nf−bn−dn−2

0) · (
∑
bn

1 +
∑
dn

0)

=(
bn + dn + 1

nf
,
nf− bn − dn − 2

nf
,

1

nf
) · ( bn

bn + dn + 1
,

dn
bn + dn + 1

,
1

bn + dn + 1
)

=(
bn + dn + 1

nf

bn
bn + dn + 1

,
bn + dn + 1

nf

dn
bn + dn + 1

,
1

nf
+

nf− bn − dn − 2

nf
+

1

nf
)

=(
bn
nf
,
dn
nf
, 1− bn

nf
− dn

nf
)

In EXP, x · υ = υ holds, similar to Proposition 4.1.

Proposition 4.5. EXP ` x · υ = υ

Proof. EXP ` x · υ = x · (0 · 0) = 0 · (x · 0) = υ

Soundness

We refer to the axioms of EXP as EXP, which can be found in Figure 4.2. All
axioms in EXP are axioms from BDU, or minor variations thereof. Therefore,
the soundness of these axioms nearly follows from the soundness of BDU.

Lemma 4.6. If EXP ` x = y then EXP |= x = y.

Proof. Soundness of axiom (B100,1) follows from (0, 1/2, 1/2) ⊗ (b, d, u) = (0, 0, 1)

and of axiom (I40,1) from (0, 1/2, 1/2) = (1/2, 0, 1/2). The proof of the other axioms
is similar to the proof of Theorem 4.2.
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Completeness

As mentioned in Section 3.2, there are several choices for 0 and 1, that yield
different models parameterised by c. We parameterise EXP for different choices of
c > 0, and get EXP(c). The axioms in EXP are sound with respect to all EXP(c),
which can be seen by a simple adaptation of Lemma 4.6. The only axioms that
deal with the basic experiments 0 and 1 are (B100,1) and (I40,1). In all models
EXP(c), the trust component of 0 is 0, thus 0 · x always equals υ. The choice of
c also does not influence 0 = 1, as the trust component of 1 has the same factor
as the distrust component of 0. Hence, the soundness of EXP with respect to
EXP(c) does not depend on c.

Since we have showed that EXP(c) and EXP(d) are not isomorphisms for c 6= d,
there must be true statements in EXP , that are not true in EXP(c) for c 6= 1.
Furthermore, EXP contains no truths that are falsified by picking different c.
Hence, there is a class of truths in EXP that cannot be derived in EXP. As will
be illustrated by Examples 4.1 and 4.2, distributive statements are an important
example of truths that cannot be proven in EXP.

Additional axioms

As EXP is not complete, we can look for additional (temporary) axioms. These
axioms range from natural to (at least seemingly) artificial.

Example 4.1. One can easily verify that EXP |= (0 + 0) · x = 0 · x, while this
is not derivable from EXP. One might be inclined to simply add this equality as
an axiom (T1a0,1) (0 + 0) · x = 0 · x. However, there will still be valid equalities
that are not derivable, such as EXP |= (0 + 0 + 0) · x = 0 · x. Therefore, one may
want to formulate a more general axiom scheme:

(T10,1): (
∑
n

0) · x = υ

Note that (T10,1) is closely related to (B100,1) (0 · x = υ) in two ways. First,
(B100,1) is an instance of (T10,1). Second, if we accept (B100,1), then we should
accept (T10,1) as well, because a greater number of failed experiments (without
more successes) should not make us less skeptic to recommendations . If we have
one failure and no successes, we already are completely skeptic, as expressed by
(B100,1). Additionally, since the identity element of fusion in EXP is υ, we can
argue that the empty summation equals υ, and then υ · x = υ (B60,1) is also an
instance of T10,1.

Axiom scheme (T10,1) from Example 4.1 is valid for all choices of c, hence the
extension of EXP with this axiom scheme cannot be complete yet. Besides (T10,1),
we will explore some candidate axioms that do depend on the choice of c in the
following example.

Example 4.2. Whereas one expects (T10,1) to hold before making any calcula-
tions in the model, this example will show possible axioms and axiom schemes
that are not immediate. We will not prove the validity of the proposed ax-
ioms in the models, as they can straightforwardly be verified. Moreover they



48 Chapter 4 Axiomatisation of Subjective Logic

are not the central topic of the example. Consider the following truth (T2a0,1):
EXP |= (1 + (1 + 0)) · x = 1 · x. This, contrary to (T10,1), is only true for c = 1.
Recall (Definition 3.1) that if c = 1 then 1 = (1/2, 0, 1/2) and 0 is its inverse. This
property can be generalised to the following scheme:

(T20,1): (
∑

(n+1)·k

1 +
∑
n

0) · x =
∑
k

1 · x

Contrary to most (if not all) aforementioned axioms, we lack straightforward in-
tuition for this axiom scheme, and postulate it only because it is sound with re-
spect to EXP . Without any formal analysis, we can already see that even this
scheme, although quite expressive, is not yet powerful enough to prove all equal-
ities, as the right-hand side of the dilution remains invariant under all axioms of
EXP with one dilution operator, and (T10,1). We can, however, easily verify that
(1 + 1) · 1 = 1 · (1 + 1) (T3a0,1) holds, which is an equality where the right-hand
sides of the dilutions differ. This gives rise to yet another axiom scheme to prove
this equality:

(T30,1): (
∑
n

1 ·
∑
m

1) = (
∑
m

1 ·
∑
n

1)

which is a generalisation of T3a0,1. We cannot expect T30,1 to complete the
axiomatisation, as it can only be applied to subformulas containing only sums of
positive experiments.

The naive approach to complete the axiomatisation of EXP - finding unprovable
statements that are true in the model, and adding a class of similar true statements
- does not seem to work. In order to elegantly and completely axiomatise EXP , it
suffices to introduce one auxiliary operator.

4.3 Averaging of Tuples

In the previous section, we presented EXP, an incomplete axiomatisation of EXP .
We showed that distributive laws are lacking in EXP, and gave examples of axiom
schemes, (T10,1), (T20,1) and (T30,1), that could be added to EXP. As we will
see later, they are instances of a more general rule; a rule that contains an auxiliary
operator, namely the opinion mean, denoted by ⊕. In this section we will study
this operator as the basis for a complete axiomatisation.

Remark 4.1. To reduce notational complexity we introduce a short hand notation
for a comma separated list of identical objects. We shorthand x, . . . , x︸ ︷︷ ︸

n

to
(
x
)
n
.

Definition 4.4 (Opinion mean). The opinion mean is an unranked function on
EXP-beliefs, defined as:

⊕((b1, d1, u1), . . . , (bn, dn, un)) = (

∑
1≤i≤n bi

n
,

∑
1≤i≤n di

n
,

∑
1≤i≤n ui

n
)

We extend the signature ΣEXP to ΣEXP+AVs3 , and for 1 ≤ n its syntax is defined
by the following scheme:

ϕ ::= υ | 0 | 1 | ϕ+ ϕ | ϕ · ϕ | ±(ϕ, . . . , ϕ) | ϕ
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Tuple mean

We generalise the opinion mean to tuple mean as to study its properties indepen-
dently of the context of Subjective Logic. We formulate the theory of the opinion
mean (AV3) and tuple means (AVκ), using opinion averaging and tuple averaging,
respectively. The complete axiomatisation of tuple averaging is an independent
result, due to its close ties to quasi-arithmetic means. We develop a complete ax-
iomatisation of tuple averaging, and set it up in such a way that the results stand
independently. Next, in Section 4.4, we use opinion averaging to completely ax-
iomatise EXP+AVs3. Both sections provide two axiomatisations: first a complete
axiom scheme, followed by a finite complete axiomatisation. The axioms in the
axiom scheme provide a better intuitive handle than the finite counterpart, and
for that reason are likely relevant to the reader.

Tuple averaging assumes a set Aκ of κ ≥ 0 elements, say a1, . . . , aκ, where ai =
(
(
0
)
i−1, 1,

(
0
)
κ−i). We refer to such ai as the atoms in Aκ. Further, we consider

κ-tuples of rational numbers (χ1, . . . , χκ), with the restriction that 0 ≤ χi ≤ 1 and∑
1≤i≤κ χ

i = 1. One can consider Aκ as a basis of unit vectors spanning up the set
of κ-tuples of rational numbers through the application of the tuple mean.

Definition 4.5 (Tuple mean). The tuple mean is an unranked function on κ-tuples
of rational numbers defined by:

⊕((χ1
1, . . . , χ

κ
1), . . . , (χ1

n, . . . , χ
κ
n)) = (

∑
1≤i≤n χ

1
i

n
, . . . ,

∑
1≤i≤n χ

κ
i

n
)

We define the model AVκ as the set of κ-tuples of rational numbers under the
tuple mean. Let a ∈ Aκ, then we define the signature ΣAVsκ terms as:

ϕ ::= a| ± (ϕ, . . . , ϕ)

Note that we use variables from the roman alphabet to reason over tuples, e.g.
xi = (χ1

i , . . . , χ
κ
i ), and Greek variables to reason within tuples.

Proposition 4.7. Every κ-tuple of rational numbers, is expressible as a tuple mean
of atoms in Aκ.

Proof. Let x = (χ1, . . . , χκ) be such a tuple. Rewrite the elements of the tuple to

a form where they have equal denominators, so every χi in the tuple equals µi

ν
.

Then, we construct a tuple mean where each ai ∈ Aκ will appear µi times. Recall
that

∑
i χ

i = 1, therefore
∑

i µ
i = ν. By Definition 4.5, the i-th component equals∑

1≤k≤µi 1

ν
= µi

ν
= χi.

There exists a unique normal form for terms in ΣAVsκ :

Corollary 4.8. There exists a unique normal form for terms in ΣAVsκ, evaluated
in AVκ. For atoms a1, . . . , an ∈ Aκ and gcd k1, . . . , kn = 1, ±(

(
a1
)
k1
, . . . ,

(
an
)
kn

)
is a unique normal form.

Proof. Every tuple ( n1

m1
, . . . , nκ

mκ
) has a unique representation, namely one where

every mi = m, and the greatest common divider of all ni is 1. If we apply the
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(A1∞) ±(x1, . . . , xn) = ±(xπ(1), . . . , xπ(n)) for any permutation π

(A5∞) ±(x1, . . . , xn) = ±(
(
x1
)
k
, . . . ,

(
xn
)
k
)

(A6∞) ±(
(
± (x1, . . . , xn)

)
n
, y1, . . . , ym) = ±(x1, . . . , xn, y1, . . . , ym)

(A7∞) ±(x) = x for any x ∈ A

Figure 4.3: Axiom scheme for tuple average (AVsκ)

construction in the proof of Proposition 4.7 to this unique representation of the
tuple, we obtain a tuple mean which forms the required unique normal up to
symmetry.

We refer to these expressions as being in the unique normal form.

Definition 4.6 (The unique normal form). For atoms a1, . . . , an ∈ Aκ, we call

±(
(
a1
)
k1
, . . . ,

(
an
)
kn

)

(where gcd
−→
k = 1) the unique normal form.

Our notion of tuple means is closely related to that of quasi-arithmetic means
[Kol30]. Quasi-arithmetic means can be characterised as an infinite collection of
continuous, strictly increasing, symmetric real functions:

M1(x1),M2(x1, x2), . . . ,Mn(x1, . . . , xn), . . . ,

such that
(reflexivity) Mn(x, . . . , x) = x

and

(compositionality) if Mk(x1, . . . , xk) = x then

Mn(x1, . . . , xk, xk+1, . . . , xn) = Mn(
(
x
)
k
, xk+1, . . . , xn).

The arithmetic mean is the simplest example of a quasi-arithmetic mean. Other
examples are the geometric mean, the harmonic mean and the power mean. Con-
trary to quasi-arithmetic means, the tuple means operator does not range over
real values, but the symmetry, reflexivity and compositionality properties of quasi-
arithmetic means are also properties of tuple means. Due to Proposition 4.7, we
can completely, finitely axiomatise tuple means, as tuple averages. Most notions
of means do not have a complete finite axiomatisation.

Complete axiom scheme

We present an axiom scheme (AVsκ) for tuple averaging (AVκ) in Figure 4.3. The
axiomatisation assumes the signature ΣAVsκ .

We see that A1∞ describes symmetry, that A5∞ together with A7∞ is sufficient
to prove reflexivity, and that A6∞ is a reformulation of compositionality. To de-
termine whether AVκ is (strictly) increasing is non-trivial. We can define a total
order (the lexicographical order of the tuple), that is strictly increasing. Instead
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of one ordering, we can define κ orderings, one for each element in the tuples. It
can easily been seen that each ordering is monotonic with respect to tuple averag-
ing. As a consequence, for each element, the mean lies between the maximum and
the minimum. More formally, let (χ1, . . . , χκ) = ⊕((χ1

1, . . . , χ
κ
1), . . . , (χ1

n, . . . , χ
κ
n)),

then for all i, minj(χ
i
j) ≤ χi ≤ maxj(χ

i
j). Furthermore, slightly changing one vari-

able in the mean will only slightly change the mean. Which is the intuition behind
continuous functions. The problem, however, with formally defining continuity is
that some elements in the mean go up, while others go down. We can interpret
the definition of continuity in such a way that tuple means are continuous. In
that case, the only difference is that AVκ ranges over tuples of rational numbers,
and not over single real numbers. It seems that AVκ, therefore adheres to some
generalised characterisation of quasi-arithmetic means. The axiom scheme AVsκ

is, however, stronger than symmetry, reflexivity and compositionality, as it implies
all three, but A5∞ (with A7∞) is strictly stronger than reflexivity.

We need to prove that AVsκ is a complete axiomatisation of AVκ. First, we prove
soundness:

Lemma 4.9. If AVsκ ` x = y then AVκ |= x = y.

Proof. It is easy to see that the four axioms are true in the model.

Then we prove completeness:

Lemma 4.10. If AVκ |= x = y then AVsκ ` x = y.

Proof. Equality is transitive, therefore, if AVκ |= x = y, then x and y have equal
unique normal forms (Corollary 4.8). Without loss of generality, we can therefore
assume y to be the unique normal form of x. Now we shall prove, by contradiction,
that for all x, such that y is its unique normal form, AVsκ ` x = y.

Assume there exists x such that we cannot derive equality with its unique normal
form y, then (for a suitable notion of size) there is a smallest x with AVsκ 6` x = y.
We define the size of a term x = ±(x1, . . . , xs) based on its nesting depth, and the
amount of subterms with maximal nesting depth: Let d be the maximum nesting
depth of averaging operators of a term. Let u be the number of (syntactically)
unique xi with depth d− 1 in a term. We say that (d, u) is the size of x. We say
that x > x′, when x and x′ have size (d, u) and (d′, u′), respectively, and either
d > d′ or d = d′ ∧ u > u′. We shall use x ≡ y for syntactic equivalence.

Let us distinguish possible smallest terms x, such that AVsκ 6` x = y:

• If x ∈ Aκ, then AVsκ ` ±(x) = x, and ±(x) is the unique normal form
(Definition 4.6).

• If x ≡ ±(
(
a1
)
k1
, . . . ,

(
an
)
kn

), gcd
−→
k = 1, then x is the unique normal form.

• If x ≡ ±(
(
a1
)
k1
, . . . ,

(
an
)
kn

), gcd
−→
k > g, then we can apply A5∞ with

parameter g, to get AVsκ ` x = ±(
(
a1
)
k1
g

, . . . ,
(
an
)
kn
g

), which is the unique

normal form.
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• If x ≡ ±(x1, . . . , xm) where all xi ∈ Aκ, then, using A1∞, it is reduced to
one of the above two cases.

• If x ≡ ±(x1, . . . , xn) where at least one xi 6∈ Aκ, then there is an xi with
depth d − 1. The subterm xi ≡ (z1, . . . , zm) can appear several times,
say k times. Then, by A1∞, there are y1, . . . , yn−k, such that
AVsκ ` x = ±(

(
(z1, . . . , zm)

)
k
, y1, . . . , yn−k). By A5∞, AVsκ ` x =

±(
(
(z1, . . . , zm)

)
k·m,

(
y1
)
m
, . . . ,

(
yn−k

)
m

), and by A6∞, AVsκ ` x =

±(
(
z1
)
k
, . . .

(
zm
)
k
,
(
y1
)
m
, . . . ,

(
yn−k

)
m

) ≡ x′.

We distinguish two cases: Either, xi is the only subterm of x with depth
d− 1 (i.e. u = 1) or there is a nonempty set X (of size u) of subterms with
depth d−1. In the first case, all yj have depth at most d−2. Since all zj are
subterms of xi, all zj also have depth at most d−2. Therefore, x′ has a depth
of at most d−1. In the latter case, since all zj have depth at most d−2, and
x′ contains the set X \{xi} of subterms with depth d− 1. Hence, x′ contains
u− 1 unique subterms with depth d− 1. In both cases x′ is smaller than x,
hence x is not the smallest counterexample.

We conclude that there is no smallest term x, such that AVκ |= x = y, but
AVsκ 6` x = y.

Complete finite axiomatisation

The structure of the axiom scheme is quite simple. It is, therefore, no surprise that
a finite set of axioms is sufficient to completely axiomatiseAVκ. A problem we need
to solve first, is the fact that there is an infinite number of tuple averaging functions,
one for each arity. We therefore define an average with only one parameter, and
allow this parameter to contain a collection of tuples, in Figure 4.4

Definition 4.7 (Signature ΣAV κ). We define a signature ΣAV κ , for a ∈ Aκ:

ϕ ::= a| ± (ψ)

ψ ::= ψ, ψ|ϕ

Modulo associativity, a trivial bijection exists between ΣAVsκ and ΣAV κ terms. If we
ignore the parentheses of pairing, as is common, then a string in ΣAVsκ is mapped
to the same string in ΣAV κ . For simplicity, we make no distinction between the
two signatures.

We define another operation, similar to counting, denoted by #(x). All terms that
are not pairs have the same count (1). For any n, all nested pairings x1, . . . , xn
also have the same count (n). To formulate axioms using averages, with pairing
and counting, we need a new signature. All terms in ΣAV κ are also terms in the
new signature:

Definition 4.8 (Signature Σ#
AV κ). We define the signature Σ#

AV κ , for a ∈ Aκ:

ϕ ::= a|ϕ, ϕ| ± (ϕ)|#(ϕ)
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(A1a) x, y = y, x (A1b) (x, y), z = x, (y, z)
(A2) #(±(x)) = #(±(y)) (A3) #(x, y) = #(x),#(y)
(A4) ±(±(x)) = ±(x) (A5) ±(x) = ±(y)⇒ ±(x, y) = ±(x)
(A6) #(x) = #(y) ∧ ±(x) = ±(y)⇒ x = y (A7) ±(x) = x for any x ∈ A

Figure 4.4: Axioms for tuple average (AVκ)

Using pairing and counting, we define the axioms AVκ.

The theory AVκ is set up in such a way that terms in ΣAVsκ can only equal other
terms in ΣAVsκ :

Proposition 4.11. If AVκ ` x = y, then x is a term in ΣAVsκ if, and only if, y
is a term in ΣAVsκ.

Proof. Assume AVκ ` x = y, x in ΣAVsκ , but y not in ΣAVsκ . By pigeonhole
principle, there are x′ in ΣAVsκ and y′ not in ΣAVsκ , such that x′ = y′ follows from
an axiom. It is immediate that that axiom is not A1a, A1b, A2, A3, A4, or A7.
Axioms A5 and A6∞ have preconditions, the preconditions must have some terms
x′′ in ΣAVsκ , y′′ not in ΣAVsκ , such that AVκ ` x′′ = y′′.

The counting operator, #, is intended to count the number of elements in a nested
pair:

Proposition 4.12. Let x′i and y′j be ΣAVsκ terms for all 1 ≤ i ≤ n, 1 ≤ j ≤ m. If
AVκ ` #(x′1, . . . , x

′
n) = #(y′1, . . . , y

′
m) then n = m.

Proof. The converse is easy to prove, if n = m, then AVκ ` #(x′1, . . . , x
′
n) =

#(y′1, . . . , y
′
m). This helps us, as it proves that any nested pair of size n of

ΣAVsκ terms has the same count as any other nested pair of size n of ΣAVsκ

terms. Thus the count of nested pairs of ΣAVsκ terms is invariant under all ax-
ioms except A2 and A3. We need only prove that there are no x′1, . . . , x

′
n and

y′1, . . . , y
′
m, with n 6= m, such that they are provably equal, using only A2 and

A3. We can do structural induction over the counting operator, with respect
to the two axioms. So if n = 1, then we must apply A2, thus m = 1. If
#((s1, . . . , si), (s

′
1, . . . , s

′
i′)) = #((t1, . . . , tj), (t

′
1, . . . t

′
j′)), then #(s1, . . . , si) must

equal #(t1, . . . , tj), and #(s′1, . . . , s
′
i′) must equal #(t′1, . . . t

′
j′), and by hypothesis,

i = j and i′ = j′, thus i+ i′ = j + j′.

Using Propositions 4.11 and 4.12, we can prove that AVκ is a conservative exten-
sion of AVsκ:

Lemma 4.13. For all terms x, y in ΣAVsκ, AVsκ ` x = y iff AVκ ` x = y.

Proof. We first prove the right implication; if AVsκ ` x = y then AVκ ` x = y.

It suffices to prove, for every axiom scheme in AVsκ, that they can be derived in
AVκ.

Next, we prove the left implication; if AVκ ` x = y then AVsκ ` x = y.
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Take the derivation tree of AVκ ` x = y. The conclusion must be a term in ΣAVsκ .
We distinguish the possible derivation trees by the last derivation rule, and prove
that there is a tree AVsκ ` x = y with the same conclusion.

By Proposition 4.11, it can be readily verified that substitution, reflexivity, sym-
metry and transitivity can be applied with the same premisses and conclusion in
both theories. That leaves axiom, conditional axiom and context rule (see Defini-
tion 3.4), which we address below. The crucial part of the proof is in the context
rule, as it is the only part where the conclusion is a term in ΣAVsκ , without its
premisses necessarily being in ΣAVsκ .

ax The only two axioms that can be used to deduce AVκ ` x = y are A4 and
A7.
Whenever A7 applies, so does A7∞.
Whenever we apply A4 to x = ±(x1, . . . xn), we can apply A6∞, with m = 0.

cond The only two conditional axioms that can be used to deduce AVκ ` x = y
are A5 and A6.
To match A5 in AVsκ, we need to prove that if±(x1, . . . , xn) = ±(y1, . . . , ym),
then ±(x1, . . . , xn, y1, . . . , ym) = ±(x1, . . . , xn):

±(x1, . . . , xn, y1, . . . , ym) = {A6∞}
±(x1, . . . , xn,

(
± (y1, . . . , ym)

)
m

) = {Apply condition}
±(x1, . . . , xn,

(
± (x1, . . . , xn)

)
m

) = {A6∞}
±(
(
± (x1, . . . , xn)

)
n+m

) = {A5∞}
±(x1, . . . , xn)

Since x and y are terms in ΣAVsκ , whenever axiom A6 is applied to derive
x = y, AVsκ ` x = ±(x) = ±(y) = y (either using A7∞ or A6∞ with n = 1
and m = 0).

cont The only function in ΣAVsκ is averaging, ±, so the context rule must apply
to an application of averaging. Therefore, for some z1, . . . zk, x =
±(z1, . . ., zi−1, x

′, . . ., x′n, zi, . . ., zk) and y=±(z1, . . ., zi−1, y
′, . . ., y′m, zi, . . . , zk),

where AVsκ ` x′ = y′. If x′ and y′ are terms in ΣAVsκ , the context rule can
readily be applied in AVsκ, and by Proposition 4.11, we need only consider
the case where neither x′ and y′ are terms in ΣAVsκ .

By Definition 4.8, we know that the only terms in Σ#
AV κ not in ΣAVsκ have

counting (#) or pairing as a main operator. However, neither x′ nor y′

contain a counting operator, since x and y do not contain one. Therefore,
we conclude that x′ ≡ x′1, . . . , x

′
n and y′ ≡ y′1, . . . , y

′
m, where all x′i and y′i

are terms in ΣAVsκ . There are only three axioms where the conclusion may
be a pair. Two axioms (A1a and A1b) deal with the fact that pairing is
commutative and associative, which is covered by A1∞ in this context. The
remaining axiom, A6∞, can only be applied under two conditions. First, that
AVκ ` #(x′1, . . . , x

′
n) = #(y′1, . . . , y

′
m) which, by Proposition A.1, implies

that n = m. Second, that AVκ ` ±(x′1, . . . , x
′
n) = ±(y′1, . . . , y

′
m). Under



4.4 Dilution, Fusion and Averaging of Opinions from Experiments 55

these two conditions, we can derive in AVsκ:

±(z1, . . . , zi−1, x
′
1, . . . , x

′
n, zi, . . . , zk) = {A6∞}

±(z1, . . . , zi−1,
(
± (x′1, . . . , x

′
n)
)
n
, zi, . . . , zk) = {Applyconditions}

±(z1, . . . , zi−1,
(
± (y′1, . . . , y

′
m)
)
m
, zi, . . . , zk) = {A6∞}

±(z1, . . . , zi−1, y
′
1, . . . , y

′
m, zi, . . . , zk)

Therefore, we conclude that for any derivation tree in AVκ, a tree with matching
conclusions exists in AVsκ.

As an immediate consequence of Lemma 4.13, we see that AVκ sound and complete
with respect to AVκ. If we take κ = 3, then AVκ is the model of opinion averaging:

Corollary 4.14. AV3 is a sound and complete axiomatisation of opinion averag-
ing.

Proof. Opinion means (Definition 4.4) are an instance of tuple means (Defini-
tion 4.5), hence Lemma 4.13 also applies to opinion means.

4.4 Dilution, Fusion and Averaging of Opinions from Ex-
periments

In this section, we use the two axiomatisations of opinion averaging (AVs3 and
AV3) to construct a complete axiomatisation of EXP+AVs3; the model consisting
of EXP and AV3. In particular, we provide an axiomatic relationship between the
operators in EXP+AVs3 and opinion averaging. Similar to Section 4.3, we provide
these axioms in two flavours. First, we provide an axiom scheme, that formalises
the relationship in a natural way. Second, we provide a finite axiomatisation, based
on the former. Finally, we analyse the axiomatisations, their variations and their
models. Moreover, we study the implications of the axioms regarding dilution, and
propose alternative axioms, that capture more reasonable models.

Furthermore, we define our constants 0 and 1, as averages of belief triples in A3.
Let {β, δ, υ} = A3, then we present a complete axiom scheme (FDNs + AVs3) of
EXP+AVs3 in Figure 4.5.

The axiom scheme FDNs + AVs3 is sound with respect to EXP+AVs3:
Lemma 4.15. If FDNs + AVs3 ` x = y then EXP+AVs3 |= x = y.

Proof. Verifying that the five axioms are true in the model is straightforward.

And we prove completeness:

Lemma 4.16. If EXP+AVs3 |= x = y then FDNs + AVs3 ` x = y.

Proof. We apply structural induction over the shape of x in ΣEXP+AVs3 , to show
that FDNs + AVs3 ` x = ±(β, . . . , β, δ, . . . , δ, υ, . . . , υ). If:
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(D1∞) 0 = ±(δ, υ)
(D2∞) 1 = ±(β, υ)
(D7∞) ±(

(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
) +±(

(
β
)
l′
,
(
δ
)
m′
,
(
υ
)
n′

) =

±(
(
β
)
l·n′+l′·n,

(
δ
)
m·n′+m′·n,

(
υ
)
n·n′)

(D11∞) ±(
(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
) · ±(

(
β
)
l′
,
(
δ
)
m′
,
(
υ
)
n′

) =

±(
(
β
)
l·l′ ,

(
δ
)
l·m′ ,

(
υ
)
l·n′+(m+n)·(l′+m′+n′))

(D17∞) ±(
(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
) = ±(

(
β
)
m
,
(
δ
)
l
,
(
υ
)
n
)

Figure 4.5: Axiom scheme of Fusion, Dilution and Negation in terms of Averaging.
Forms FDNs + AVs3 together with AVs3

[x = υ] then, by A7, FDNs + AVs3 ` υ = ±(υ).

[x = 0] then, by D1∞, FDNs + AVs3 ` 0 = ±(δ, υ).

[x = 1] then, by D2∞, FDNs + AVs3 ` 1 = ±(β, υ).

[x = ±(x1, . . . , xn)] then, by the induction hypothesis, all xi are equal to
ΣAVsκ terms. Therefore x is a ΣAVsκ term. By Proposition 4.7, there ex-
ists some z ≡ ±(β, . . . , β, δ, . . . , δ, υ, . . . , υ) with AVκ |= x = z, and by
Lemma 4.13, AVsκ ` x = z and FDNs + AVs3 ` x = z.

[x = x′ + x′′] then, by the induction hypothesis, x′ ≡ ±(
(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
)

and x′′ ≡ ±(
(
β
)
l′
,
(
δ
)
m′
,
(
υ
)
n′

). Apply D7∞.

[x = x′ ·x′′] then, by the induction hypothesis, x′ ≡ ±(
(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
) and

x′′ ≡ ±(
(
β
)
l′
,
(
δ
)
m′
,
(
υ
)
n′

). Apply D11∞.

[x = x′] then, by the induction hypothesis, x′ ≡ ±(
(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
). Apply

D17∞.

Hence, every term can be reduced to its unique normal form (Definition 4.6).

Complete finite axiomatisation

The complete axiom scheme FDNs + AVs3 can be formulated as a finite set of
axioms. In order to obtain a complete finite set of axioms for EXP+AVs3, we need
to rewrite the schemes D7∞, D11∞ and D17∞ as a finite set of axioms, because
we proved that AV3 is a complete finite axiomatisation of opinion averaging.

In order to construct such a finite axiomatisation, we introduce some more auxiliary
operators. In particular, we introduce pairing sensitive fusion (�), pairing sensitive
dilution (�) and the pairing sensitive inversion (∼).

Definition 4.9 (Signature Σ�EXP+AVs3). We define the signature Σ�EXP+AVs3 as:

ϕ ::= υ | 0 | 1 | ϕ+ ϕ | ϕ · ϕ | ϕ± (ψ)

ψ ::= ϕ | ψ, ψ | ψ � ψ | ψ � ψ |∼(ψ)
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(D1) 0 = ±(δ, υ) (D12) ±(x) · ±(y) = ±(x� y)
(D2) 1 = ±(β, υ) (D13) (x, x′) � y = (x� y), (x′ � y)
(D3) D(β) (D14) x� (y, y′) = (x� y), (x� y′)
(D4) D(δ) (D15) β �±(y) = ±(y)
(D5) D(±(x))⇒ D(β, x) (D16) δ �±(y) = u
(D6) D(±(x))⇒ D(δ, x) (D17) υ �±(y) = u

(D7) ±(x) +±(y) = ±(x� y) (D18) ±(x) = ±(∼(x))
(D8) (u, x)� y = y, (x� y) (D19) ∼(x, y) =∼(x),∼(y)
(D9) x� (u, y) = x, (x� y) (D20) ∼(β) = δ
(D10) D(x) ∧D(y)⇒ (u, x)� y = y (D21) ∼(δ) = β
(D11) D(x) ∧D(y)⇒ x� (u, y) = x (D22) ∼(υ) = υ

Figure 4.6: Finite axiomatisation of Fusion, Dilution and Negation in terms of
Averaging. Forms FDN + AV3 together with AV3.

As the name suggests, the pairing sensitive operators behave like their original
operator, except that they range over pairs, instead of opinions. The pairing
sensitive variants implement the calculations under the brace in the axiom scheme
FDNs + AVs3, so they must treat the pairs correctly. Note that Lemma 4.13
proves that they do so. We furthermore introduce a unary operator (D( )) that
tests whether an opinion is dogmatic, and an identity element of pairing. Both are
used to provide a basis for an inductive definition of pairing sensitive fusion.

The following lemma states the relation between the two axiom systems.

Lemma 4.17. For all terms x, y in ΣEXP+AVs3, FDNs + AVs3 ` x = y iff
FDN + AV3 ` x = y

Proof. We first prove the right implication; if FDNs + AVs3 ` x = y, then
FDN + AV3 ` x = y.

It suffices to show that D7∞, D11∞ and D17∞ are derivable in FDN + AV3.

Next, we prove the right implication; if FDN + AV3 ` x = y, then
FDNs + AVs3 ` x = y.

It suffices to prove for x, y in ΣAVsκ that, whenever AVκ ` x = y also AVsκ ` x = y.
We cannot reuse the same approach as above, since there are equalities in AVκ,
which are not equalities in AVsκ. Luckily, these equalities do not concern terms in
ΣEXP+AVs3 . Due to transitivity of equality, we assume, without loss of generality,
that y is in the unique normal form. We can do structural induction over the term
x. Hence it is either atomic, x′+x′′, x′ ·x′′, x′ or ±(x1, . . . , xn), for x′, x′′, x1, . . . , xn
in unique normal form. If the main operator x is atomic, then FDNs + AVs3 ` x =
±(x) ≡ y is trivially true. If x is an average, we apply Lemma 4.13. If x = x′+x′′,
x = x′ · x′′, or x = x′ then we apply Lemmas A.6, A.7 or A.8 from Appendix A,
respectively.

As mentioned before, having a complete axiomatisation of a fraction of Subjective
Logic, in this case EXP+AVs3, may help us to analyse Subjective Logic. We
present an analysis of dogmatic beliefs in Subjective Logic, an analysis of choosing
different mappings π−1c and an analysis of the relation between dilution and trust
chaining.
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Dogmatic Opinions

There are, as stated before, no dogmatic belief triples in EXP+AVs3. There are
dogmatic beliefs in BDU i and BDUγ, which posed problems in their axiomatisation.
For that reason, we studied EXP and EXP+AVs3 instead. The axiomatisations
FDNs + AVs3 and FDN + AV3 are meant to completely axiomatise EXP+AVs3,
and successfully do so. An advantage of axiomatisations in general, is that they
can easily be adopted to a different set of terms. We may analyse how the axioms
of FDNs + AVs3 (or FDN + AV3) apply to dogmatic beliefs.

Definition 4.10 (Signature ΣBDU+AVs3). Let the signature ΣBDU+AVs3 denote:

ϕ ::= β | δ | υ | 0 | 1 | ±(ϕ, . . . , ϕ) | ϕ+ ϕ | ϕ · ϕ | ϕ

We can also apply FDNs + AVs3 and FDN + AV3 to ΣBDU+AVs3 . Contrary to
ΣEXP+AVs3 , ΣBDU+AVs3 contains averages with zero parameters. Let FDNs + AVs3

be the axiomatisation of ΣBDU+AVs3 , since all axioms are positive, there is at least
a model that adheres to FDNs + AVs3.

The fusion of a dogmatic trust opinion and a non-dogmatic opinion, is the dog-
matic opinion, via D7∞ and A5∞: FDNs + AVs3 ` ±(

(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
) +

±(
(
β
)
l′
,
(
δ
)
m′
,
(
υ
)
0
) = ±(

(
β
)
l·0+l′·n,

(
δ
)
m·0+m′·n,

(
υ
)
n·0) = ±(

(
β
)
l′
,
(
δ
)
m′
,
(
υ
)
0
).

When we look at the fusion of two arbitrary dogmatic opinions, the results are
surprising: FDNs + AVs3 ` ±(

(
β
)
l
,
(
δ
)
m
,
(
υ
)
0
) + ±(

(
β
)
l′
,
(
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)
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,
(
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)
0
) =

±(
(
β
)
l·0+l′·0,

(
δ
)
m·0+m′·0,

(
υ
)
0·0) = ±(), an empty average. We can view the

empty average like a special element, similar to inconsistency (i) in BDU i, defined
in Section 4.1. The surprising part is that even the fusion of complete (dis)trust
with complete (dis)trust yields a contradiction, as FDNs + AVs3 ` β + β = ±().
That is similar to (1, 0, 0) ⊕ (1, 0, 0) = i in BDU i, and in Section 4.1 we argue
why this is surprising. As one expects, if we fuse anything with contradiction,
we get a contradiction, due to multiplication by zero. Dilution of one or two
dogmatic opinions is not essentially different from non-dogmatic opinions. The
dilution of contradictions are a more interesting case. If we have a contradiction
on the right-hand side, we get: FDNs + AVs3 ` ±(

(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
) · ±() =

±(
(
β
)
l·0,
(
δ
)
l·0,
(
υ
)
l·0+(m+n)·(0+0+0)

) ≡ ±(). This is not in line with B6, as it dic-

tates that υ · ±() = υ nor B10 as it dictates that δ · ±() = υ. If we have a contra-
diction on the left-hand side, we get: FDNs + AVs3 ` ±() ·±(

(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
) =

±(
(
β
)
0·l,

(
δ
)
0·m,

(
υ
)
0·n+(0+0)·(l+m+n)

) ≡ ±(), again contradiction. Regardless of

the left-hand side, the dilution will yield a contradiction, contrary to Proposi-
tion 4.1. So even if the recommending user A is a known liar (i.e. our opinion of
him is δ), and we should reject whatever he says, as dictated by B10, when A
claims a contradiction, our resulting opinion becomes a contradiction..

The axioms of FDNs + AVs3 applied to ΣBDU+AVs3 do not yield the same equalities
as the axioms of BDU. Furthermore, FDNs + AVs3 is neither sound with BDU i
nor BDUγ. As FDNs + AVs3 is an axiom scheme, we could trivially tweak cases
where we have an empty average, or an average containing no uncertainty, to make
it in line with BDU i. Similarly, we can add an axiom scheme for the fusion of
two dogmatic opinions, taking the average of the two dogmatic opinions. In that
case the axioms correspond to BDUγ. However, in itself this is not an interesting
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exercise, as we can already see that neither axiomatisations will be so self-evident
that it helps us decide which model corresponds to our interpretation of aggregation
of dogmatic opinions.

Superficially, we might expect that FDN + AV3 is no different from FDNs + AVs3

over ΣBDU+AVs3 . We, however, only proved the correspondence of FDNs + AVs3

and FDN + AV3 for ΣAVsκ terms. In FDN + AV3, we have incidentally intro-
duced dogmatic opinions, to help us with our axiomatisation. The fusion of a
dogmatic opinion with any non-dogmatic opinion will yield the dogmatic opinion.
Let x be a non-dogmatic opinion with n υ’s in its unique normal form (Defini-
tion 4.6), and let y be a dogmatic opinion. By applying D7 once, D13 n times,
D10 once, and A5∞ n times, we get that FDN + AV3 ` x+y = y. If x and y are
both dogmatic, we cannot apply any of D13, D14, D10, or D11. Therefore, the
fusion of dogmatic x and y cannot be simplified into its unique normal form. In
FDNs + AVs3, the fusion of any dogmatic x and y was equal to±(), so for dogmatic
x, x′, y, y′, FDNs + AVs3 ` x+y = x′+y′, but FDN + AV3 6` x+y = x′+y′. Just
as in FDNs + AVs3, dilution of dogmatic opinions in no problem in FDN + AV3.
The dilution of a fusion of dogmatic terms can also not be simplified. By apply-
ing dilution and fusion recursively, we get more and more convoluted terms not
in ΣEXP+AVs3 . In a way, all these convoluted terms correspond to an intuition of
inconsistency. It is possible to add axioms that equate these convoluted terms,
without any influence on equality of ΣEXP+AVs3 terms. In effect, these axioms
equate all the convoluted terms to inconsistency. It is also possible to add axioms
from BDU about the dogmatic terms, without introducing contradictions. For
example, we can add D(x)⇒ x+ x = x, or even D(x) ∧D(y)⇒ x+ y = ±(x, y).
In conclusion, the axiomatisations FDNs + AVs3 and FDNs + AVs3 can readily
be modified to capture different models, such as BDU i and BDUγ.

Experiments

One positive experiment is represented in the model as (1/2, 0, 1/2). As we mentioned
in Section 3.2, as far as fusion is concerned, we might have picked (1/3, 0, 2/3), or
any value bigger than zero. We have also showed that it does matter for dilution.
Picking the experiments differently effectively changes the model. We analyse the
changes caused by alternative choices for the experiments.

For example, 1 ·x, represents a dilution, where a user A makes a claim x about B,
and we had one positive experience with A. As 1 had a believe component of 1/2,
our belief about B is diluted by exactly half. The trust and the distrust we have
in B is half of the (dis)trust A claims to have. One can successfully argue that
half is too much, but also that half is not enough. one can change it either way by
picking a different correspondence π−1c between experiments and Subjective Logic.
Recall that: π−1c (s, f) = ( s

s+f+c
, f
s+f+c

, c
s+f+c

). If we map the positive experiment

with parameter c, the ratio between u and b in 1 is c. Similarly, for the negative
experiment u : b = c. By Proposition 4.7, if c is a rational number larger than
zero, then there exists a representation as an average of β and υ for 1, and δ and
υ for 0. Not surprisingly, the ratio between β’s and υ’s in such an average is c. If
we want to change FDNs + AVs3 (or FDN + AV3) to represent EXP+AVs3(c),
we simply replace D1∞ and D2∞ (or D1 and D2) by ±(

(
β
)
cd
, . . . ,

(
υ
)
cn

), where
c = cn

cd
.
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Now, we see that axiomatically τc is an isomorphism over fusion, as the ratios υ : β
and υ : δ remain constant:

±(
(
β
)
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δ
)
m·cn

,
(
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)
n·cd

) +±(
(
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)
l′·cn
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,
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υ
)
n·cd·n′·cd

) = {A5∞}
±(
(
β
)
(l·n′+l′·n)·cn

,
(
δ
)
(m·n′+m′·n)·cn

,
(
υ
)
n·n′·cd

)

Above we proved that τc is an isomorphism on the model of Subjective Logic with
fusion. Whereas here we proved that τc is isomorphic over the axioms of fusion
and averaging. In the axiomatic variant above, the reason as to why τc is an
isomorphism is clearer: As we proved in Proposition 4.7, every opinion can be
represented as an average of β, δ, υ, changing the mapping results in a different
but fixed ratio between β, δ and υ.

Given this intuition of the isomorphism, we can immediately see where dilution
fails to be congruent. Given x ·y = z, we can see that the expression can be broken
down to applications of D15, D16 and D17. The ratio between β, δ and υ will
not be respected. Let the fraction of υ increase, then the number of applications
of D17 goes up (making the fraction of υ in z increase) and the amount of υ in
z provided by D15 increases. The fact that it is no congruence therefore depends
(at least partially) on the uncertainty-favouring nature of the dilution operator in
Subjective Logic. In the next paragraph, we analyse the dilution operator and the
fact that it favours uncertainty.

Dilution

Axioms D15, D16 and D17 provide a basis to derive equalities of dilution. If we
have a dilution x · y, then some information from y is retained but diluted by υ.
The axiom D15 allows the influence of y on the result, whereas D16 and D17
dilute with υ. Recalling Proposition 4.7, we can see that the ratio of the dilution
is bx : dx + ux.

Axiom D17 is not self-evident, even if a trust chaining is a dilution, there is no
apparent reason why the dilution ratio should be b : d + u. An immediate conse-
quence of D17 is that υ · x = υ, also known as Propositions 4.1 and 4.5 in BDU
and EXP, respectively. It states, in other words, that we completely disregard the
claims of a stranger. Obviously, this is not a general truth, as we can easily imag-
ine a situation where we (partially) believe a stranger. Moreover, dilution dictates
that (0.2, 0.75, 0.05) yields more information than (0.19, 0, 0.81), when applied left
of a dilution. Someone with whom you have many bad experiences and few good
experiences is preferable (in Subjective Logic) to someone with whom you have
slightly less good experiences, but no bad experiences at all. In Subjective Logic,
the trustor is very paranoid about uncertainty. This observation is one of the cen-
tral tenets of Section 5.2, where the argument set out in more detail. For now, we
merely consider some alternatives for the axioms of dilution.

The first alternative is by ignoring the uncertainty component completely, when the
opinion is left of a dilution. Axiomatically, we replace D17 in FDN + AV3 by a
temporary axiom (T6): (υ, x)�±(y) = x�±(y). In the equation FDN + AV3[T6]
` x · y = z, the uncertainty of x is ignored, and only the trust and distrust
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components of x are relevant. In other words, the ratio of trust versus distrust in
x determines how likely we think y is to be correct, more precisely, the dilution
ratio is bx : dx. However, when there are neither trust nor distrust components
in x, there is no well-defined ratio between them. An opinion x without trust
or distrust equals υ. As we can see, υ · x cannot be simplified into the unique
normal form. Hence, a stranger making a claim leads to an expression that cannot
be equated to an opinion. This is, of course, undesirable. However, it is not
hard to see why the claim of a stranger leads to such problems. Consider the
interpretation of beta distributions. The ratio s : f equals the ratio β : δ. In a
beta distribution, the mode of the distribution is at s

s+f
. We could have called

the dilution axiomatised by FDN + AV3[T6] mode-based dilution, as the mode
of x determines the dilution ratio. In that light, it is not surprising that the
mode-based dilution with a distribution without a mode (υ) is not consistent.
Mode-based dilution solves the paranoid trustor problem.

The second alternative is to care about the mean instead of the mode. In that case
we replace D17 by a temporary axiom (T7): υ � ±(x) = υ,±(x). The dilution
ratio of x · y is then βx + υx : δx + υx, or alternatively βx

υx
: δx
υx

. We can apply

π−1((βx, δx, υx)) = (βx
υx
, δx
υx

, to get that the dilution ratio is sx + 1 : fx + 1, or
αx : βx. The mean of a beta distribution α, β is α

α+β
. The dilution ratio, therefore,

corresponds exactly to the mean. By increasing u (relative to T6), both sides
of the dilution ratio are increased, making the ratio less sensitive for differences
between b and d. Formulated geometrically, by increasing u, the beta distribution
becomes more flattened, making it less sensitive for differences between b and d.
The mean-based solution uses the expected ratio of successes and failures of the
recommender to determine the validity of the recommendation.

4.5 AND and OR of Opinions from Experiments

The structure of this section is similar to that of Sections 4.3 and 4.4. First we
provide an intuitive complete axiom scheme, then we construct a finite complete
axiomatisation based thereupon.

In Section 4.4, we showed that we have a complete finite axiomatisation
(FDN + AV3) of consensus, discounting and complement of belief triples, using
fusion, dilution and inversion of opinions (proven in Lemma 4.17). In this section,
we extend the axiomatisation to encompass operators for multiplication and co-
multiplication. We refer to the resulting model as SL. The operators we add to
the signature are called AND and OR, denoted ∧ and ∨ , respectively. We
define the signature ΣSLs as:

Definition 4.11 (Signature ΣSLs).

ϕ ::= υ | 0 | 1 | ±(ϕ, . . . , ϕ) | ϕ+ ϕ | ϕ · ϕ | ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

Before we provide the complete axiom scheme SLs of SL, we look at three possible
axioms. The first is commutativity of AND, (N1): x ∧ y = y ∧ x. The second
is associativity of AND, (N2): (x ∧ y) ∧ z = x ∧ (y ∧ z). Both statements are
true, but we do not use them as axioms, as they are derivable from the axiom
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(
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)
m·(l′+m′+n′)+m′·(m+n)

,
(
υ
)
l·n′+n·l′+n·n′)

(D24∞) x ∨ y = x ∧ y

Figure 4.7: Axiom scheme of AND and OR in terms of Averaging. Forms SLs
together with FDNs + AVs3.

scheme we provide in SLs. However, we introduce them as temporary axioms here,
since they are evidently true, and, together with the De Morgan rule below, they
suffice to prove an interesting duality property. We furthermore introduce one of
the De Morgan rules, (D24∞): x ∨ y = x ∧ y. By adopting this De Morgan rule,
we merely need to define AND in terms of opinion averaging, as OR is stated in
terms of negation and AND. Before we define AND in terms of opinion averaging,
we note that the dual of these three statements can be derived from just axioms
N1, N2 and D24∞:

Proposition 4.18. In any axiom scheme where I1, N1, N2, D24∞ are derivable,
the statements x ∨ y = y ∨ x, (x ∨ y) ∨ z = x ∨ (y ∨ z) and x ∧ y = x ∨ y are also
derivable.

Proof.

x ∨ y = x ∧ y = y ∧ x = y ∨ x
(x ∨ y) ∨ z = (x ∨ y) ∧ z = x ∧ y ∧ z = x ∧ (y ∨ z) = x ∨ (y ∨ z)

x ∧ y = x ∧ y = x ∨ y

Let {β, δ, υ} = A3, then we present a complete axiom scheme (SLs) of SLs in
Figure 4.7.

The axioms N1 and N2 are subsumed by axiom D23∞ in SLs:

Proposition 4.19. In SLs, x ∧ y = y ∧ x and (x ∧ y) ∧ z = x ∧ (y ∧ z) are true.

Proof. Assume x= ± (
(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
), y= ± (

(
β
)
l′
,
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δ
)
m′
,
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υ
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n′

) and z= ±
(
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β
)
l′′
,
(
δ
)
m′′
,
(
υ
)
n′′

) are the unique normal forms of x, y and z. For commuta-
tivity, it suffices to verify that swapping l for l′, m for m′ and n for n′ changes
nothing. For associativity, it suffices to verify that there are l · l′ · l′′ instances of β,
m · (l′+m′+n′) · (l′′+m′′+n′′) +m′ · (l+n) · (l′′+m′′+n′′) +m′′ · (l+n) · (l′+n′)
instances of δ and l · l′ ·n′′+ l ·n′ · l′′+n · l′ · l′′+n ·n′ · l′′+n · l′ ·n′′+ l ·n′ ·n′′+n ·n′ ·n′′
instances of υ in both averages.

The axiom scheme SLs is sound with respect to SLs:

Lemma 4.20. If SLs ` x = y then SLs |= x = y.

Proof. Verifying that both axioms are true in the model is straightforward.

And we prove completeness:
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(D23) ±(x ∧ y) = ±(x) �∧ ± (y) (D24) x ∨ y = x ∧ y
(D25) (β, x) �∧ y = y, (x �∧ y) (D30) Pδ(β, x) = δ, Pδ(x) (D36) Pυ(β, x) = υ, Pυ(x)
(D26) (δ, x) �∧ y = Pδ(y), (x �∧ y) (D31) Pδ(δ, x) = δ, Pδ(x) (D37) Pυ(δ, x) = δ, Pυ(x)
(D27) (υ, x) �∧ y = Pυ(y), (x �∧ y) (D38) Pδ(υ, x) = δ, Pδ(x) (D38) Pυ(υ, x) = υ, Pυ(x)
(D28) β �∧ y = y (D33) Pδ(β) = δ (D39) Pυ(β) = υ
(D29) δ �∧ y = Pδ(y) (D34) Pδ(δ) = δ (D40) Pυ(δ) = δ
(D30) υ �∧ y = Pυ(y) (D41) Pδ(υ) = δ (D41) Pυ(υ) = υ

Figure 4.8: Finite axiomatisation of AND and OR in terms of Averaging. Forms
SL together with FDN + AV3.

Lemma 4.21. If SLs |= x = y then SLs ` x = y.

Proof. We append two cases to the structural induction found in the proof of
Lemma 4.17, one for AND and one for OR.

[x = x′ ∧ x′′] then, by induction hypothesis, x′ ≡ ±(
(
β
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l
,
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δ
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m
,
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υ
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n
) and

x′′ ≡ ±(
(
β
)
l′
,
(
δ
)
m′
,
(
υ
)
n′

). Apply D23∞ to x′ ∧ x′′.

[x = x′ ∨ x′′] then apply D24∞ and the cases for inversion and AND.

Complete finite axiomatisation

In order to construct a finite axiomatisation, we introduce some more auxiliary
operators. In particular, we introduce pairing sensitive AND ( �∧ ), similar to the
other pairing sensitive operations (e.g. pair sensitive fusion, � ).

Definition 4.12 (Signature Σ�SLs). We define the signature Σ�SLs as:

ϕ ::= υ | 0 | 1 | ϕ+ ϕ | ϕ · ϕ | ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ±(ψ)

ψ ::= ϕ | ψ, ψ | ψ � ψ | ψ � ψ |∼(ψ) | D(ψ) | ψ �∧ψ

The finite axiomatisation SL is an extension of FDN + AV3, and adds the axioms
displayed in Figure 4.8.

The following lemma states the relation between the two axiom systems.

Lemma 4.22. For all terms x, y in ΣSLs, SLs ` x = y iff SL ` x = y

Proof. Rules D24∞ and D24 are identical, we can ignore the cases for OR.

Hence, to prove the right implication – if SLs ` x = y, then SL ` x = y – it
suffices to prove that D23∞ is derivable from SL.

To prove the left implication – if SL ` x = y, then SLs ` x = y – we reuse the
proof of Lemma 4.17, and allow AND as an alternative in the structural induction.

In other words, it suffices to prove that if SL ` x = y and x ≡ x′ ∧ x′′, for y, x′, x′′

in the unique normal form, then SLs ` x = y. Lemma A.9 – found in Appendix A
– proves exactly that.
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Axiomatisation of Trust Operations

In the previous chapter, we used Subjective Logic as the semantics of trust net-
works. That means that we took consensus, discounting, multiplication, comul-
tiplication and complement as correct implementations of trust aggregation, trust
chaining , trust conjunction, trust disjunction and trust negation. In this chapter,
we depart from Subjective Logic. First, in Section 5.1, we identify some issues
with the axiomatisation, and thus with the model. Then, in Section 5.2, we drop
(or weaken) the axioms that caused problems. The resulting axiomatisation is
consistent with Subjective Logic, but does not contain the objectionable axioms
identified in Section 5.1. Finally, in Section 5.3, we do without the relationship to
Subjective Logic, and directly identify axioms.

5.1 Identifying Issues

In Section 3.2, we showed that π1 is not the only isomorphism between beta distri-
butions and belief triples with regards to trust aggregation (and consensus). When
we restrict our view to trust aggregation, all choices for c are, therefore, equal1.
The choice of c does, however, influence the other operators. There is no self-
evident reason to prefer a certain value over another. The only reason we selected
1 was because it was notationally convenient. Without a form of justification, we
cannot accept axioms that encode a specific choice of c.

As we saw in Section 3.2, we can view opinions as beta distributions. We can
look at how the actual beta distributions transform over the axiomatised trust
operations. In particular, we are going to sketch a scenario in Example 5.1 where
we look at two statements equal in SL, that we do not expect to be equal when
we look at them as distributions.

Example 5.1. Consider a machine B that is very unreliable and fails between
99.9 and 100% of the time (i.e. 0 ≤ p ≤ 0.001 for reliability p of B). Further,
consider a user A, with whom we had some dealings previously. Our experience
with A is mildly negative, say one positive and two negative (1 + 0 + 0). In this
particular case, A is lying when he gives us his opinion on B. He claims that B is
quite reliable, by stating that in his interactions with B he observed four successes
and one failure (1 + 1 + 1 + 1 + 0). Applying dilution, we would get opinion
(1+0+0)·(1+1+1+1+0) = ±(β, δ, δ, υ)·±(β, β, β, β, δ, υ) = ±(

(
β
)
4
,
(
δ
)
1
,
(
υ
)
19

)
If we want to study the probability we assign to B having a reliability between 0 and
0.1%, we should calculate the beta distribution. Since (s, f) = π((1/6, 1/24, 19/24)) =
(4/19, 1/19), we have a beta distribution given by α = s+1 = 23/19, β = f +1 = 20/19.

1 Note that in later versions of Subjective Logic, where the base rate is introduced (such as
[JOO10]), this statement is no longer valid.

65
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Figure 5.1: Figures a and b are given probability functions. Figure c is the SL style
dilution of a and b. Figure d is the expected shape of the chain of a and b.

We take the definite integral of the probability density function between 0 and
0.01, which is: ∫ 0.001

0
(t4/19(1− t)1/19dt)∫ 1

0
(t4/19(1− t)1/19dt)

≈ 0.00000517

We assigned a near zero probability, around 5 · 10−6, to the p-value of B being
0 ≤ p ≤ 0.001. However, directly looking at the trust network (without applying
dilution or discounting), one may conclude that the actual probability of that p-
value is over 100 times larger. The user A is either lying, or telling the truth.
We can calculate the expected reliability of A. The expected p-value of A, can be
computed using π to be 2/5. Machine A is expected to succeed 40% of the time,
and thus expected to lie 60% of the time. If A lies, his claim is vacuous. We fall
back on the basic assumption that all p-values are equally likely. We expect that
60% of the time, there is a 0.1% chance of 0 ≤ p ≤ 0.001. In other words, we
expect a probability of at least 0.0006 of B having a p-value in the first per mil.

The example shows that in Subjective Logic, it is possible for a recommender
deemed unreliable (i.e. user A) to still significantly alter our expectations. The
reader is invited to repeat the example for the alternative mappings πc(), and
mode-based and mean-based dilution as proposed in Section 4.4. We need not
explicitly calculate the outcomes, as the underlying reason of the near-zero values
at the extremes, is the fact that all Subjective Logic opinions have a particular
shape, as can be seen in Figure 5.1. The problem in Example 5.1 is an immediate
consequence of the fact that all beta distributions except the uniform distribution
have at least one low tail. Probability distributions with heavy tails cannot be
expressed as beta distributions, but we expect trust chaining via an unreliable
source to have exactly such a distribution. Figure 5.1 shows the two distributions
(c and d) of opinions that are the result of a dilution (of a and b). Graph c shows
the result for dilution as it is in Subjective Logic, graph d shows a distribution
with a more accurate shape. If we look at the range 0.9 ≤ p ≤ 1, graph c has
significant differences for 0.9 and 1, graph d does not. In graph b values at 0.9 and
1 are both near zero, and thus similar. If the user claiming b was truthful, then
there is little difference between the density at 0.9 and 1, if the user was lying,
then the distribution is uniform, each value has equal density. The resulting graph
of dilution of b should therefore have little difference between masses at 0.9 and 1.

The axioms B6 and B60,1 should also not be accepted as axioms. The dilution υ ·x
expresses that a user that you have no information of, stated a particular opinion.
It is no more than normal to be very skeptical about the truth of the opinion, but
there clearly is a non-zero probability that x is the true opinion of the stranger.
Scenarios where it is better to use a stranger’s recommendation are commonplace,
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therefore always ignoring it should not be an axiom. The same argument holds for
B100,1 (and its temporary generalisation T10,1), even though a user only behaved
badly (once), we cannot exclude the possibility that he is behaving correctly now.
It is, in other words, not self-evident that the recommendation of an unknown or
unreliable user must be completely discarded.

We furthermore reevaluate associativity of dilution (B3, B30,1) with an example:

Example 5.2. Consider users A, B and C. You want to form an opinion on C.
Consider the following two scenarios, in both scenario’s you have bad experiences
with A, leading you to an extremely skeptical opinion x:

• You go to A end ask him his opinion about C. His response is: “I don’t have
any personal opinion, but I’ve had some interactions with B that lead me to
have opinion y about him, and B said he had opinion z about C,” which is
simply y · z. Your opinion about C is therefore x · (y · z). Since we are very
skeptical about A speaking the truth, we are not at all sure what B really
said, nor how reliable B is. As a consequence, the information we have about
C is almost nothing. More precisely, the more skeptical we are about A, the
closer our opinion gets to υ.

• You’ve had no personal interactions with B, who claimed to have opinion z
about C. Your opinion about A is x, and A said he had opinion y about
B, leading you to have opinion x · y about B. Your opinion about C is
now (x · y) · z. User A claimed that his opinion about B is y. However,
our opinion is that A almost never speaks the truth. We have almost no
information about the behaviour of B, B is almost a stranger. Contrary to
Subjective Logic, in this context we generally do not reject the opinions of
strangers, so our opinion is close to υ · z. The more skeptical we are about
A, the closer our opinion gets to υ · z.

In the first scenario, when A is lying we have no information about C, as we do
not know what B said. In the second scenario, when A is lying, we still know what
a stranger thinks of C. If B6 and B60,1 are rejected, then the results of the first
and second scenario are not (generally) equal.

Finally, we look at trust conjunction (and via De Morgan at trust disjunction). Be-
fore doing so, recall that the expected value of a belief triple is b+u

1+u
. If we provide an

opinion mean ±(
(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
), it immediately follows that its expected value

is l+n
l+m+2n

. So, the expected value of ±(
(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
)∧±(

(
β
)
l′
,
(
δ
)
m′
,
(
υ
)
n′

) =

±(
(
β
)
l·l′ ,

(
δ
)
m+m′−m·m′ ,

(
υ
)
l·n′+l′·n+n·n′) is (l+n)·(l′+n′)

(l+m+n)·(l′+m′+n′)+l·n′+l′·n+n·n′ . However,
the expected value of B succeeding and C succeeding, should be the product of
B succeeding and C succeeding. In other words, the expected value should be
l+n

l+m+2n
· l′+n′

l′+m′+2n′
= (l+n)·(l′+n′)

(l+m+2n)·(l′+m′+2n′)
. The expected value that AND predicts

differs from the evident expected value2.

2 This issue has been identified and addressed, as multiplication and comultiplication have
been updated in Subjective Logic in [JM05] to ensure that expected value of (co)multiplication is
the correct expected value. The new definition of (co)multiplication yields the correct expected
value, but still not the right probability distribution (Theorem 7.10). As neither definition yields
the right probability distribution, we chose to remain close to a simpler and more intuitive
definition of (co)multiplication.
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5.2 Axiomatisation of Trust Opinions

In Section 5.1, we identified a collection of reasons why SL and FDN + AV3 are

not valid axiomatisations. In fact, we saw that even the axiomatisation EXP

contains some problematic axioms: B30,1, B60,1 and B100,1.

Before we start the selection and analysis of axioms, we make an assumption about

trust chaining. Without such an assumption, providing axioms of dilution would be

difficult, and the axioms would be weaker. We assume that failed recommendations

are distributed the same way as successful recommendations a priori, but carry no

correlation with reality. In particular, we assert that receiving a known lie carries

no information (which is expressed by total uncertainty, υ). We note that this

assumption underlies all three axioms regarding dilution in this section. In Part

II, we have sufficient formal machinery to look at alternatives of this assumption,

for now it suffices to note that the assumption does not lead to inconsistencies

(Proposition 8.4).

The axiomatisation should have fusion, dilution, AND , OR and inverse. We do not

include opinion averaging, since the operator was only introduced as an auxiliary

operator. The remaining signature is ΣATC :

Definition 5.1 (Signature ΣATC).

ϕ ::= υ | 0 | 1 | ϕ+ ϕ | ϕ · ϕ | ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ

By rejecting B30,1, B60,1 and B100,1, Proposition 4.5 becomes invalid. However,

the conclusion of that proposition appears self-evident. The recommender in the

trust chain either speaks the truth, in which case υ describes the target, or the

recommender is lying, in which case we have no information about the target,

represented by υ. In either case, we end up with the trust opinion υ. Hence, we

propose the weaker axiom x · υ = υ to replace the three axioms.

The De Morgan rule from Section 4.5 (D24∞) appears self-evident. The axiom

D24∞ causes the issues with AND and OR identified in Section 5.1, and is rejected.

The rejection of D23∞ invalidates Proposition 4.19. However, the conclusion of

that Proposition, commutativity and associativity of AND, appears self evident.

We therefore accept N1 and N2. These three axioms, together with double nega-

tion, are sufficient to derive their duals (Proposition 4.18).

We gather the self-evident axioms into one axiomatisation, ATC, in Figure 5.2.

The signature of the ATC is again ΣEXP as in Section 4.2. Recall that ΣEXP has

three constants, υ, 0, 1, and two binary operations, + and · . The constants

are intended to keep their meaning, just as the fusion operator, but x · y should

denote dilution in our axioms.

All axioms are axioms of EXP, but not vice versa. Let’s go through the axioms

of ATC, while keeping EXP (and BDU) in mind.
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(C1) x+ υ = x (C8) x = x
(C2) x+ y = y + x (C9) υ = υ

(C3) (x+ y) + z = x+ (y + z) (C10) 1 = 0
(C4) x · υ = υ (C11) x+ y = x+ y
(C5) x · (y · z) = y · (x · z) (C12) x · y = x · y
(C6) x ∧ y = y ∧ x (C13) x ∧ y = x ∨ y
(C7) (x ∧ y) ∧ z = x ∧ (y ∧ z)

Figure 5.2: Axiomatisation of Fusion, Dilution and Negation (ATC)

As with axiom B5, there is an identity element of fusion (C1), which intuitively
represents the opinion derived from zero information. Fusion should represent the
operation of combining two opinions into a new opinion, order should therefore not
matter, as expressed by C2 and C3.

If there is a user A claiming he has opinion υ about B, then it does not even matter
whether A is lying. If A is lying, you have no information, if A is speaking the
truth, you have no information. Therefore, υ is the right-zero element of dilution,
as expressed by C4, similar to Propositions 4.1 and 4.5.

Although it seems initially surprising that associativity is rejected, while left com-
mutativity (C5) is retained, it becomes clear after giving it some more thought.
Consider users A, B and C in a trust chain. If A is lying, then we have opinion
υ (no information) about C. If A is telling the truth, but B is lying, then we
still have opinion υ about C. If both are telling the truth, then we have opinion
z about C. The order of the two recommenders is therefore irrelevant, leading to
the axiom of left commutativity.

The intuition behind commutativity (C6) and associativity (C7) of AND is im-
mediate. Any operator that is not commutative and associative is not trust con-
junction.

The intuition behind the inverse is swapping trust and distrust, or swapping p for
1− p. Double negation (C8) holds, as 1− (1− p) = p. Our assumption was that
all p are equally likely parameters for the Bernoulli distribution of a machine that
we do not have any information about. For such a machine, there is no difference
between p and 1 − p, and swapping them is an identity operation. Hence υ = υ,
axiom C9. Axiom C10 expresses the idea that the basic experiments, 0 and 1,
are each other’s duals. Axiom C11 expresses the idea that fusion does not favour
trust or distrust. When you swap trust and distrust in two opinions, fuse them,
and swap trust and distrust again, the result should equal the fusion of the two
original opinions.

The asymmetric distribution rule of trust chaining C12 states that x · y = x · y.
The rule follows from the notion that if the recommender lies, the subject has
no information, i.e. υ, and υ = υ. Observe that x · y is y if the recommender is
truthful, and υ otherwise. Further, x · y is also y if the recommender is truthful,
and υ otherwise.

Finally, the De Morgan rule (C13) is justified with the notion that if both B and
C succeed, then it is not the case that B failed or that C failed, and vice versa.
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(K1) E(υ) = 1/2 (K7) W(υ) = 0
(K2) E(0) = 1/3 (K8) W(0) = 1
(K3) E(1) = 2/3 (K9) W(1) = 1
(K4) E(x · y) = E(x)×××E(y) +++ E(x)×××E(υ) (K10) W(x+ y) = W(x) +++ W(y)
(K5) E(x ∧ y) = E(x)×××E(y) (K11) W(x) = W(x)
(K6) E(x) = 1−−−E(x)

(K12) W(x · y) <W(y)
(K13) E(x) > E(y) ⇒ W(x · z) >W(y · z)
(K14) W(y) >W(z) ⇒ W(x · y) >W(x · z)
(K15) W(y) >W(z) ⇒ W(x ∧ y) >W(x ∧ z)
(K16) E(x) = E(y) ⇒ x · z = y · z

Figure 5.3: Axiomatisation of Expected Value and Weight of Trust Opinions in
ATC(EVW)

5.3 Axiomatisation of Expected Value and Weight

The axiomatisation ATC provided in the previous section cannot prove several
true statements regarding (degree of) belief and uncertainty. In this section, we
introduce two new concepts: Expected value and weight. The expected value and
weight are set for beta distributions. For a beta distribution based on s successes
and f failures, the expected value is s+1

s+f+2
and the weight is s+ f .

Subjective Logic’s belief triples can be mapped to beta distributions, which can be
mapped to a pair of expected value and weight. However, unlike subjective logic
(where two opinions are equal if their belief, disbelief and uncertainty are equal),
we do not assume that if the expected value and weight are equal, then the opinions
are equal. Situations as in Figure 5.1 are among the reasons we cannot assume
that. Part d of Figure 5.1 must have an expected value and a weight. However,
there exists a beta distribution with that expected value and weight. Since it is
not a beta distribution, there are at least two distributions with the same expected
value and weight.

The expected value has a very precise meaning, but (at least for now) weight only
has a specific meaning for particular opinions. Namely for opinions represented
by beta distributions, where it is s + f . Although we do not yet have a general,
semantics, we do know some properties of the weight, which we can axiomatise.

We present the axiomatisation in Figure 5.3, and discuss the axioms below.

The axioms K1, K2 and K3 encode the relation between trust opinions based on
direct interactions and beta distributions. Recall that the expected value of a beta
distribution is s+1

s+f+2
.

Axiom K4 relies on the assumption (mentioned in Section 5.2) that failed recom-
mendations carry no information. The axiom expresses that the expected value of
a dilution is the weighted average of the stated opinion and υ, where the weight is
determined by the probability that the recommendation is successful.

Axiom K5 expresses the basic notion of conjunction, namely that the probability of
A and B is the product of their probabilities (assuming A and B are independent).
We need not formulate a similar axiom for disjunction due to De Morgan.
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Inversion of an opinion leads to negation of the expected value, as expressed in
K6.

The axioms K7, K8 and K9 define the weight of the basic components, together
with K10. Together, they ensure the weight of an opinion corresponds to the
number of interaction they represent, when they consist only of direct interactions
(and possible inverses, via K11).

When a term contains dilution, we can observe three things. First, K12, receiv-
ing a trust opinion y from a recommender always carries less weight (carries more
uncertainty) than having trust opinion y by direct interactions, since there is a
positive probability that the recommendation is a lie. Second, K13, a trust opin-
ion from a more reliable recommender carries more weight than one from a less
reliable one. Third, K14 a trust opinion resulting from a recommendation with
more weight, itself carries more weight than a trust opinion resulting from a recom-
mendation with less weight. The last observation also derives from the assumption
that failed recommendations are distributed the same way as real recommenda-
tions, since this prevents recommenders from consistently assigning higher weights
to fake recommendations. This means that a recommendation with high weight
has the same probability of being true as one with a low weight, but it carries more
weight.

Axiom K15 covers the notion that more information regarding a subtarget leads to
more information about the target. For example, assume I depend on a seller and
delivery service for an interaction, then learning about the seller is also learning
about ‘the seller and delivery service’. Note that together with C6, the symmetrical
case holds, and together with C13 and C8 the dual case (OR) holds.

Finally, axiom K16 encodes the notion that if two equal recommendations are
expected to be true with equal probability, the resulting trust opinion must be
equal.
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The Beta Model

Trust is closely related to probability. With all factors considered equal, a target
with a higher probability of success is (or should be) more trusted than a target
with a lower probability of success. In the case of correctness trust models , this is
an important principle. In this part of the thesis, we formulate some probabilistic
principles and derive definitions of the operators (trust aggregation, trust chaining
and the logical trust operations) from these principles.

There is a sharp contrast between this part and Part I. In Part I, we formulated
axioms regarding the operators, and studied the models that satisfy these axioms.
Here, we provide the semantics of the operators in terms of probabilistic statements,
and derive their models from the basic principles regarding the random variables in
the probabilistic statements. This chapter serves multiple purposes, one of which
is to provide a concrete example of such a technique, namely the Beta model.
Chapters 7 and 8 use the same general technique, but introduce new random
variables and their relation to other random variables.

The Beta model is not new. The idea of applying the beta distribution to trust
was introduced in [MM02] and [JI02]. The philosophic view on the Beta model
in those papers is, however, different from ours. There, the view is that people
have trust opinions, people aggregate trust opinions, and a trust model must have
a computational way of mimicking such aggregation. They identify that the beta
distribution is an appropriate and effective basis for such computations. Such
an approach leans towards cognitive trust models. Our philosophy is inspired by
ElSalamouny et al. [ESN10, ElS11] (who have coined the term Beta model), where,
rather than using probability theory as a tool to model trust, trust is defined in
terms of probability theory. Trust opinions have a clear probabilistic meaning.
That philosophy has the benefit that computations can be proven correct, and the
benefit that the effects of changing the assumptions is immediate.

We are more explicit in defining trust in probability theory than ElSalamouny et
al. In fact, we are the first to formulate the Beta model with such an explicit dis-
tinction between the probabilistic principles and the probabilistic statements that
we are interested in. That distinction allows us to readily interpret the probabilis-
tic statements as trust opinions in a trust model. In other words, we can keep the
distance between probability theory and trust models small (formally, probabilistic
statements and trust opinions are isomorphic).

Since we can keep the distance between probability theory and trust models small,
we can achieve the following: First, we can analyse (existing) trust models to verify
whether they adhere to the basic probabilistic principles of the Beta paradigm.
Second, we can readily create a trust model based on computations derived from
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the probabilistic principles of the Beta paradigm. In this chapter, the trust model
extracted from the Beta paradigm is the Beta model. The Beta model is the only
model (up to isomorphism) in the Beta paradigm, when we restrict ourselves to
trust aggregation.

In Section 6.1, we introduce the notions of probability theory that are necessary to
construct the Beta model, and its extensions with trust chaining and logical trust
operations . Then, we provide the Beta model in Section 6.2.

6.1 Preliminaries

In the Beta paradigm, trust (Chapters 7 and 8) is probabilistic. We require the
following concepts from probability theory (see e.g. [Bil95, Gut07]). Theorems and
propositions are lifted from such textbooks without proof in this section. Read-
ers with an understanding of probability theory may only find Theorem 6.3 and
Definition 6.7, at the end of this section, of interest.

Definition 6.1 (σ-algebra, measure, probability measure). Let Ω be a set of
events. A set F of subsets of Ω is called a σ-algebra if the following three properties
hold.

1. ∅ ∈ F .

2. If A ∈ F it follows that Ω \ A ∈ F .

3. If A1, A2, . . . ⊂ F it follows that
⋃
nAn ∈ F .

Let P be a map from F → R ∪ {∞}. Then, this map is called a measure if

1. P (∅) = 0.

2. P (A) ≥ 0 for all A ∈ F .

3. If A1, A2, . . . ⊂ F such that Ak ∩ Al = ∅ for all k 6= l, it follows that
P (
⋃
nAn) =

∑
n P (An).

If P maps to [0, 1] and P (Ω) = 1, it is called a probability measure.

The tuple (Ω,F) from Definition 6.1 is called a measurable space. The triple
(Ω,F , P ) is called a measure space. If P is additionally a probability measure, the
triple is called a probability space.

Definition 6.2 (Random variable). Let (Ω,F , P ) be a probability space and (E, E)
a measurable space. A mapping X : Ω→ E is a random variable, if

{ω ∈ Ω|X(ω) ∈ B} ∈ F for all B ∈ E .

When Ω and E are countable, the σ-algebras F and E can be assumed to be the
power sets over Ω and E, respectively.
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In probability theory, the expression {ω ∈ Ω|X(ω) ∈ B} is often abbreviated to
{X ∈ B}.
Definition 6.3 (Probability space of a random variable). Let (Ω,F , P ) be a prob-
ability space, (E, E) a measurable space and X : Ω→ E a random variable. Then
PX(B) := P ({X ∈ B}), B ∈ E defines a probability measure PX on (E, E).

The expression P ({X ∈ B}) is usually shorthanded to P (X ∈ B).

Definition 6.4 (Distribution of a random variable). The probability measure PX
is called the distribution of the random variable X.

The probability space (E, E , PX) is called discrete, if E is countable.

Definition 6.5 (Independence of random variables). Let (Ω,F , P ) be a probabil-
ity space and let X1, . . . , Xn be n random variables (over Ω) with values in the
measurable spaces (Ei, Ei), i ∈ {1, . . . , n}. The random variables X1, . . . , Xn are
independent when

P (X1 ∈ B1, . . . , Xn ∈ Bn) =
n∏
i=1

PXi(Bi) for Bi ∈ Ei.

As shorthand notation we write X ⊥⊥ Y when X and Y are independent.

Definition 6.6 (Conditional independence of variables). Let (Ω,F , P ) be a prob-
ability space and let X, Y, Z be random variables (over Ω) with values in the
measurable spaces (Ei, Ei), i ∈ {X, Y, Z}. Two random variables X and Y are
conditionally independent given the variable Z if

P (X ∈ A, Y ∈ B|Z ∈ C) = P (X ∈ A|Z ∈ C)P (Y ∈ B|Z ∈ C).

for each A ∈ EX , B ∈ EY and C ∈ EZ .

As shorthand we write P (X, Y |Z)=P (X|Z) · P (Y |Z), (X ⊥⊥ Y )|Z or X ⊥⊥ Y |Z.
Note that the definition is equivalent to P (X|Y, Z) = P (X|Z).

Theorem 6.1 (Law of total probability). Let (Ω,F , P ) be a probability space, A
and C events and let B1, . . . , Bn be a partition in that probability space. Then

P (A|C) =
n∑
i=1

P (A|Bi, C)P (Bi|C).

The law of total probability also holds for continuous random variables X, and Y
with positive density functions fX and fY , respectively.

fY (y) =

∫ ∞
−∞

fY (y|X = x) · fX(x) dx.

Theorem 6.2 (Bayes’ law for conditional probabilities). Let (Ω,F , P ) be a proba-
bility space and B and C events and let A1, . . . , An be a partition in that probability
space. Then

P (Aj|B,C) =
P (B|Aj, C)P (Aj|C)

P (B|C)
=

P (B|Aj, C)P (Aj|C)∑n
i=1 P (B|Ai, C)P (Ai|C)

.
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Note that in this form Bayes’ theorem also holds for variables (instead of events).
This is true for discrete random variables, continuous random variables as well as
a mixture of discrete and continuous random variables. If continuous variables are
involved, they need to have a positive density function.

Theorem 6.3 (Product distribution). Let X and Y be two independent continuous
random variables, with positive probability density functions f(x) and g(x). Then
the random variable U , with U = X · Y , is a continuous random variable with
probability density function h, with

h(u) =

∫ ∞
−∞

1

|y| · f(
u

y
) · g(y) dy.

We call the distribution of U a product distribution.

An important distribution we refer to in the next sections is the beta distribution.
More information about the distribution can be found in [JKB95].

Definition 6.7 (Beta distribution). A beta distribution is a family of continuous
probability distributions in the interval [0, 1], parameterised by two positive pa-
rameters, α, β ≥ 1. The probability density function of a beta distribution with
parameters α and β is

fB(x;α, β) =
xα−1(1− x)β−1∫ 1

0
yα−1(1− y)β−1 dy

∝ xα−1(1− x)β−1.

The expression under the fractions is known as the beta function on α and β, and
for positive integers α and β, the beta function fulfills B(α, β) = (α−1)!(β−1)!

(α+β−1)! .

The expected value of a beta distribution is well-known and simple:

Proposition 6.4. The expected value of a beta distribution fB(x;α, β) is given
E(fB(x;α, β)) = α

α+β
.

Note that this implies that E(ϑs,f (x)) = E(xs · (1 − x)f · NF) = s+1
s+f+2

, since
s = α − 1 and f = β − 1. Since we usually refer to beta distributions by the
number of successes and failures, the latter format is used more often.

6.2 Formalisation

In this section, we formalise the assumptions that we have for trust in a system
based on asymmetric interactions (like transactions in e-commerce systems), where
expectations are clearly defined. First, we informally introduce our assumptions
with motivations, illustrate it with an example, and then formally state the as-
sumptions as relations between random variables. Finally, we look at the formal
properties of the Beta model.

To reiterate some assertions of the Beta paradigm (see Section 2.4): Interactions are
the building blocks in our trust analysis. Interactions are between a subject and a
target . A subject forms a trust opinion about a target, before the subject interacts
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with the target. The observed behaviour of the active party is objectively classified
as successful (a success) or failed (a failure). Furthermore, the probability that
the active party behaves well is determined by its integrity parameter p. A user
will most likely exhibit non-probabilistic behaviour, and will therefore behave well
in some situations and badly in others. However, we do not know the correlation
between situations and behaviours, nor do we necessarily know the situation. In
the light of this, we can view the integrity p as the chance that a user is in a
situation where his behaviour is successful (or even where behaving well is in his
best interest in some iterative game1, as in [MRS03]). Lastly, we assume that p
neither changes over time nor with respect to the environment. This assumption
allows us to treat previous interactions in a mathematically coherent way, since all
interactions are equally relevant for the current situation. In the model, a user will
never know the integrity of another user, but will have an estimate based on these
previous interactions.

Throughout Part II, we use a running example, introduced below, to illustrate
the techniques we use. Recall that direct applicability to existing trust systems
in practice is not one of the goals of this thesis. Hence, the running example is
selected on the basis of effectively communicating underlaying intuitions, not on
the basis of direct applicability to practice.

Running Example. An economy teacher wants to teach her students about e-
commerce with the help of a turn-based game. To set up the game, the teacher
secretly distributes a random value pi ∈ [0, 1] to each student ci for 1 ≤ i ≤ 30.
The value pi represents the integrity of each student, and, similar to the integrity
of users on an e-commerce website, it is unknown to the other players. On an e-
commerce system this parameter models how likely the outcome of an interaction
is to be successful. Each turn of the game follows the following pattern. First, in
the turn of student ci (the subject), the teacher assigns another student cj (the
target) to ci. Then, ci has the choice between trusting or not trusting cj. In case ci
chooses to trust cj, ci gains two points with probability pj, i.e. with the probabil-
ity corresponding to the other student’s integrity parameter. With the remaining
probability of 1−pj, ci loses one point. If ci chooses not to trust cj, then he neither
gains nor loses points. On an e-commerce platform winning points corresponds to
a successful interaction (a success), losing points to a failed interaction (a fail-
ure). After every turn, the teacher updates the students’ points, only revealing
the outcome to ci. Like in e-commerce, trusting someone with high integrity has a
high probability to result in a successful interaction; trusting someone with a low
integrity has a high probability to result in an unsuccessful interaction.

To formulate the assumptions of the Beta paradigm in a formal manner, we need
to define interactions of users, integrity parameters of users, sets of interactions
that users made in the past, and composite targets. The outcomes of interactions
can be a success, denoted s, or a failure, denoted f. We are often interested in the
previous interactions between a subject and a target, which we call an interaction
history of the subject about the target. Furthermore, we take an interaction history
to be a pair of natural numbers: the first number as representing the number of
successes, the second number as representing the number of failures.

1Users expect to interact multiple times with other users, and even if betrayal is profitable on
the short run, it may be more profitable to conform on the long run.
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We first define a series of random variables. Let A denote a set of users. For A,C ∈
A and a set of events Ω, we then define:

• EC : Ω → {s, f} is a discrete random variable modelling the outcome of the
corresponding interaction with target C.

• RC : Ω → [0, 1] is a continuous random variable modelling the (hidden) in-
tegrity parameter of target C which defines the probability of success.

• OA
C : Ω→ N×N is a discrete random variable modelling the interaction his-

tory of subject A about target C, representing the past interactions (number
of successes and failures) between A as passive party and C as active party.

Running Example. In the classroom game, EC models the outcome of an inter-
action with student C. The variable RC describes the secret parameter initially
assigned by the teacher to C and OA

C expresses how many times student A inter-
acted successfully with student C, and how many times it was a failure.

A trust opinion is a distribution over the integrity parameter of a target, based
on the interaction history about the involved active parties. Hence, if a subject A
establishes a trust opinion about a target C, the probability density function is of
the form fRC (x|OA

C , ϕ), where ϕ may express additional conditions.

Next, we provide the assumptions of the Beta model, in the shape of dependencies
and independencies of random variables, as we have formulated in [MS13a]. For
a more concise formulation of the (in)dependencies, we introduce sets of random
variables, again for A ∈ A:

E := {EC : C ∈ A},
R := {RC : C ∈ A},
O := {OA

C : A,C ∈ A},
W := E ∪ R ∪O.

The size of the interaction histories is unknown. We therefore model it with a
distribution λ, called the entanglement . Hence, λ(4) is the probability that a
particular subject has 4 interactions with a particular target. Let c ∈ [0, 1], xs, xf ∈
N and λ : N → [0, 1] be a probability distribution. For all users A,C ∈ A we set
up the following dependency and independency relations as our assumptions:

D1 RC is uniformly distributed on [0, 1].
If we know nothing about the integrity of C, we assert all values equally
likely according to the principle of maximal entropy [Jay57]. The choice of
the distribution of RC is fairly inconsequential, as discussed in Remark 6.1,
below.

D2 P (EC=s|RC=c) = c.
We assume that the probability of good behaviour of C is determined by an
integrity parameter c.

D3 P (OA
C=(xs, xf )|RC=c) =

(
xs+xf
xs

)
cxs(1− c)xfλ(xs + xf ).

We assume that the probability of A having xs successes and xf failures with
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C is equal to the probability of A having xs+xf past interactions with C, and
that the fraction xs of successes is binomially distributed with rate c. That it
is binomial implies that each past interaction was determined to be a success
of failure with fixed probability c, independently of other interactions.

I1 For W ∈W\{OA
C}, it holds that OA

C ⊥⊥ W |RC .
The interaction history is completely determined by its size, and the proba-
bility of a success in a single interaction (by Dependency D3).

I2 For W ∈W\{RC} and {C,D0, . . . Dn} = A, RC ⊥⊥ W |EC , OD0
C , . . . , ODn

C .
The only indicators of the integrity parameter of C, are interactions with it.
That is, the collection of all interaction histories of arbitrary users with C,
and most recent interaction EC .

I3 For W ∈W\{EC}, it holds that EC ⊥⊥ W |RC .
The behaviour of C is completely determined by its integrity parameter (by
Dependency D2).

Note that Independency I1 is necessary to be able to work with Dependency D3,
when provided a term such as P (OA

C |RC , O
B
D). To derive P (OA

C |RC , O
B
D) =

(
xs+xf
xs

)
·

cxs ·(1−c)xf ·λ(xs+xf ), Dependency D3 is not sufficient by itself. Similar reasoning
applies to the necessity of Independency I3, in the presence of Dependency D2.

We explicitly do not define the Beta model using the notion of beta distribu-
tions. The foundation of the Beta model is formed by Dependencies D1-D3 and
Independencies I1-I3. The link to beta distributions is formally derived later, in
Theorem 6.5 and Lemma 6.6.

Definition 6.8 (Beta model). A trust model is said to be the Beta model , when
it satisfies Dependencies D1-D3 and Independencies I1-I3.

Remark 6.1. The choice of the prior distribution in Dependency D1 can be al-
tered without needing to overhaul the models and the conclusions drawn about
them. Let f(x) be a trust opinion about C in the Beta model, the trust opinion
about C with an alternative prior distribution g(x) (with support on (0, 1)) is pro-
portional to f(x) · g(x). Hence, given an alternative prior g(x), our model remains
correct modulo a multiplicative factor g(x). In practice, survey data can be used
to establish a reasonable prior.

A trust opinion of A about C can now be seen as the probability density function
given by fRC (c|ϕ), where ϕ represents all knowledge of A about C, modulo the
relations of the random variables. In the Beta model, ϕ is equal to OA

C , for subject
A and target C. In this case, we call fRC (c|ϕ) a simple trust opinion, to be able
to distinguish it from trust opinions involving recommendations (chained trust
opinions) and trust opinions involving logical trust operations (composite trust
opinions). Recall that for arbitrary A, C, we may shorthand the simple trust
opinion fRC (c|OA

C=(s, f)) to ϑs,f (c).

The Beta model is based on beta distributions [MS13a].

Theorem 6.5. The simple trust opinion obtained from an interaction history
with xs successes and xf failures, ϑxs,xf (c) = fRC (c|OA

C=(xs, xf )), is the beta dis-
tribution fB(c;xs + 1, xf + 1).
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Proof.

fRB(x|OA
B=(m,n))

=
P (OA

B=(m,n)|RB=x) · fRB(x)∫ 1

0
P (OA

B=(m,n)|RB=x′) · fRB(x′) dx′

=

(
m+n
m

)
xm(1− x)nλ(m+ n) · fRB(x)∫ 1

0

(
m+n
m

)
(x′)m(1− x′)nλ(m+ n) · fRB(x′) dx′

=
xm(1− x)n∫ 1

0
(x′)m(1− x′)n dx′

=fB(x;m+ 1, n+ 1).

Suppose there are two concurrently held trust opinions based on two different inter-
actions with a single user. It is desirable to combine these two trust opinions into a
single trust opinion based on both interactions. We introduce a trust aggregation
operator to accomplish that:

Definition 6.9 (Aggregation of trust opinions). The aggregation of trust opin-

ion f(c) and g(c) is f(c)·g(c)∫ 1
0 f(x)·g(x) dx

∝ f(c) · g(c).

The trust aggregation operator correctly combines simple trust opinions:

Lemma 6.6. Given trust opinions f = ϑxs,xf and g = ϑys,yf , the aggregate trust

opinion f(c)·g(c)∫ 1
0 f(x)·g(x) dx

is equal to ϑxs+ys,xf+yf .

Proof. Observe the following proportionalities:
f(c)·g(c)∫ 1

0 f(x)·g(x) dx
∝ fB(c;xs+1, xf+1) · fB(c; ys+1, yf+1) ∝ fB(c;xs+ys+1, xf+yf+1)

Since the left hand side and the right hand side are distributions, they are equal.

Our assumptions regarding simple trust opinions are in line with the Beta model.
They are in fact sufficient to derive it (Theorem 6.5). Hence, those assumptions
can be seen as valid for the numerous models that use the Beta model as a foun-
dation [Jøs97, TPJL06, Rie07].

6.3 Conclusion

The Beta model exists in many forms and formalisations. The view that trust
opinions can be treated as formal entities with a specific probabilistic notion (rather
than cognitive entities with a probabilistic approximation) is relatively new. The
formalisation we provide in this chapter is unique in the sense that the separation
between the semantics of trust opinions and trust aggregation and the assumptions
on the domain is formulated so explicitly. In particular, the assertions on the
domain (in the form of relations between random variables) are set up in such a
way that the computations for simple trust opinions and trust aggregation follow
as theorems (Theorem 6.5 and Lemma 6.6). Due to the clear separation between
assumptions and computations, any disagreement on a particular computed trust
opinion should be traced back to a disagreement on an assumption.
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The main advantage of this set-up is that the other operations we are interested
in (trust chaining, trust conjunction, trust disjunction and trust negation) can
be derived in a similar fashion. In particular, models with these operations are
conservative extensions of the Beta model with regards to the relations between
the random variables, meaning that all dependencies and independencies remain
valid. In the next two chapters, we will do exactly that. We introduce new random
variables in order to define the other operations.





7

The Beta Model with Logical Trust
Operations

In the previous chapter, we defined the Beta model. The Beta model reasons about
simple trust opinions – trust opinions based on direct experience with the target.
It is possible for a subject to make an assessment about the future behaviour of
several targets, then such an assessment is called a composite trust opinion. In
this chapter we extend the Beta model with composite trust opinions. We call
that model the Beta model with logical trust operations .

In an interaction in the setting of the Beta model with logical trust operations ,
there are several parties that have an agreement. There is at least one target and
there is one subject. Each target determines his own outcome to be a success or
failure. Since the subject may be harmed if one of the targets fails, the subject
forms a trust opinion about each of the targets before (potentially) interacting.
To express composite trust opinions we denote the target in propositional logic,
where atomic propositions represent successes or failures of individual targets. A
target A∧B succeeds iff both A and B succeed, similarly a target A∨B succeeds
iff at least A or B succeeds. To illustrate the use of composite trust, consider the
following example.

Example 7.1. Take an imaginary web service, CLOUD, that offers computational
power to users , by CPU-scavenging in a similar fashion to BOINC [And04], i.e.
CLOUD is a grid. A user that delegates a computation is a client, and a user
that offers CPU cycles is a provider. Unlike BOINC, the CLOUD system is a
commercial system, where clients pay for computations, and providers get paid for
offering computational power.

The identity of the machines in CLOUD is public, and users can delegate compu-
tations to specific (groups of) machines. The infrastructure of CLOUD is open,
which means that malicious users can easily join as a provider. Malicious users
may sometimes take shortcuts in the computation, providing wrong results. Fur-
thermore, non-malicious users may prematurely terminate a computation before a
result is provided, for example, when the computer shuts down, restarts or drops
the network. It may occur that a single computation is delegated to a group of
computers working concurrently to reduce latency, each computer solving a part.
It may also occur that a single computation is delegated to more than one (group
of) provider(s), to still receive an answer when one of the (groups of) providers
fails.

Now, suppose that a client, A, on CLOUD has an instance of an NP-complete
problem, and sends the problem to a provider, D, and a copy of the problem to a
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D

C

B

A

Figure 7.1: The two outgoing arrows from A are delegations for a computation.
One for D, the other is split and runs concurrently on B and C.

pair of concurrent providers, B and C. See Figure 7.1 for a visual representation
of the interaction.

In our terminology, clients are subjects, and providers are potential targets. A
provider is successful if he delivers a correct result within a specified time frame.
A provider fails if he returns a wrong result, returns it too late, or not at all.
Since a client can quickly verify a (positive) solution to an NP-complete problem,
correct and incorrect solutions can easily be distinguished. Hence, it suffices for
the subject A to receive at least one correct result within the specified time frame
from a target. If either the single provider D or both other providers B and C
provide the correct result in time, the whole target’s behaviour is considered good.
We can denote this composite trust opinion as D ∨ (B ∧ C).

The subject not only wants to know the probability that the target succeeds, but
also the uncertainty. If the probabilities b, c and d of B, C and D succeeding are
independent, then one may anticipate that the expected probability of the target
succeeding to be d + b · c − d · b · c. We formally show the foresight on this trust
opinion to be correct in Section 7.2.

Cloud computing is not the only practical trust systems where logical trust op-
erations are relevant. In particular, trust conjunction is often relevant, as many
e-commerce and e-service transactions involve several parties in such a way that
the total transaction fails if any of the involved parties fail. We treat the logical
trust operations as abstract entities, defined in probability theory, rather than the
concrete relations in trust systems. To achieve this, we add new random variables
to the Beta model, and add additional assumptions on these random variables, in
Section 7.1

7.1 Formalisation

The formalisation of the Beta model with logical trust operations is similar to the
formalisation of the Beta model in Section 6.2. The important differences are that
targets are not necessarily users, but can be more complicated. This requires us to
define extra random variables, on top of the random variables in the Beta model,
namely RT and ET for such targets T (e.g. T = B ∨ C) that are not users. The
reason is that although a target T is not a user, we are still interested in forming
a trust opinion on T , which requires RT , and thus ET . We add dependencies
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specifically for the new random variables, and update the independencies from the
Beta model to reflect the new random variables.

Before we introduce the formalisation, we extend the running example of the class-
room game:

Running Example. After a number of turns, the students realise that the Beta
model can be applied to construct a correct trust opinion about other students.
Hence, the students make optimal choices. To keep the game interesting, the
teacher introduces composition of targets in the following way: In the beginning
of every turn, the teacher still assigns a subject ci ∈ S, but assigns one or more
targets C ⊆ S \ {ci}. The teacher defines a propositional formula on top of these
targets, say cj∧¬ck. In that case, student ci only gains the two points if cj succeeds
and ck fails, and loses the point if either cj fails or ck succeeds. For the subject ci
to create the correct trust opinion, he needs to incorporate his opinion of all the
targets in C; in the example {cj, ck}.

First we define the random variables. The set of users is again A. The targets T
are defined by ϕ ::= A |ϕ ∧ ϕ |ϕ ∨ ϕ | ¬ϕ, for A ∈ A. For A,B ∈ A, T ∈ T and a
set of events Ω, we define the following random variables.

• ET : Ω → {s, f} is a discrete random variable modelling the outcome of the
corresponding interaction with target T .

• RT : Ω → [0, 1] is a continuous random variable modelling the (hidden) in-
tegrity parameter of target T , defining the probability of success.

• OA
B : Ω → N × N is a discrete random variable modelling the interaction

history of A about B, representing the past interactions between A as passive
party and B as active party.

It may be useful to be able to reason about the users that comprise the target.
We introduce act( ), such that act(T ) is the set of users in T . For example, if
T = D ∨ (B ∧ C), then act(T ) = {B,C,D}.
For a more concise formulation of these (in)dependencies, we introduce sets of
random variables.

E+ := {ET : T ∈ T},
R+ := {RT : T ∈ T},
O := {OA

B : A,B ∈ A},
W+ := E+ ∪ R+ ∪O.

Note that A ⊂ T, so E ⊂ E+, R+ ⊂ R and W+ ⊂W.

Let x ∈ [0, 1], n, k ∈ N and λ : N → [0, 1] be a probability distribution. For
all A,B ∈ A and S, T ∈ T we set up the following dependency relations as our
assumptions. Note that Dependencies D1` and D3` are the same as Dependen-
cies D1 and D3 in Section 6.2:

D1` RC is uniformly distributed on [0, 1].

D2` P (ET=s|RT=p) = p.
Similar to Dependency D2 from Section 6.2, extended to integrity and

outcome of targets from T, rather than targets from A.
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D3` P (OA
C=(xs, xf )|RC=c) =

(
xs+xf
xs

)
cxs(1− c)xfλ(xs + xf ).

D4` ES∧T = s iff ES = s and ET = s, for act(S) ∩ act(T ) = ∅.
We define conjunction of independent targets in such a way that the con-
junction succeeds if both targets succeed.

D5` ES∨T = s iff ES = s or ET = s, for act(S) ∩ act(T ) = ∅.
We define disjunction of independent targets in such a way that the disjunc-
tion succeeds if at least one target succeeds.

D6` E¬T = s iff ET = f.
We define negation of a target in such a way that the negation of the target
succeeds if the original target fails.

D7` There exist functions f, g, h, with RS∧T = f(RS, RT ) and RS∨T = g(RS, RT )
when act(S) ∩ act(T ) = ∅, and R¬T = h(RT ).
We assert that the integrity of a composite target is determined by the in-
tegrity of its constituent users.

I1` For W ∈W+\{OA
B}, it holds that OA

B ⊥⊥ W |RB.

I2` For W ∈W+\{RS : B ∈ act(S), RS ∈ R+} and {C,D0, . . . Dn} = A, it holds
that RC ⊥⊥ W |EC , OD0

C , . . . , ODn
C .

Similar to Independency I2, however, the integrity of a user B is not inde-
pendent of the integrity of a target S containing that user. For example, if
RB = 0.2, then EB∧C < 0.2. If the user B is not a constituent of the target
S, then their integrities are independent.

I3` For W ∈W+\{ES : A ∈ act(S), ES ∈ E+}, it holds that EA⊥⊥ W |RA.
Similar to Independency I3, however, the outcome of an interaction with the
user A is not independent of the outcome of an interaction with a target S
containing that user. For example, if EA∧B = s, then EA = s. If the user A
is not a constituent of the target S, then the outcomes are independent.

Independency I3` can be generalised for composite targets.

Proposition 7.1. For all W ∈W+\{ES : act(T )∩ act(S) 6= ∅, RS ∈ E+}, it holds
that ET ⊥⊥ W |RT .

Proof. Apply structural induction. The base case precisely matches Indepen-
dency I3`. For the induction step use that, by definition of act( ), it holds that
act(T ) ∪ act(T ′) = act(T ∧ T ′) = act(T ∨ T ′).

The Beta model with logical trust operations satisfies Dependencies D1-D7` and
Independencies I1`-I3`.

Definition 7.1 (Beta model with logical trust operations). A trust model is said to
be the Beta model with logical trust operations , when it satisfies Dependencies D1-
D7` and Independencies I1`-I3`.
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A trust opinion of A about T can now be seen as the probability density function
given by fRT (x|ϕ), where ϕ is a condition that represents all knowledge of A
about all the constituents of T . In other words, the trust opinion of A about T is
fRT (x|OA

B, O
A
C , . . . ) for B,C, · · · ∈ act(T ).

Our assumptions regarding simple trust opinions are in line with the beta model.
Hence, those assumptions can be seen as valid for the numerous models based on
the beta model [Jøs97, TPJL06, Rie07]. We extend the assumptions beyond simple
trust opinions, by adding assumptions about composite trust opinions (Dependen-
cies D4`, D5` and D7`). The additional dependencies are taken to be self-evident
within the setting of the Beta paradigm. We see the four dependencies as a def-
inition of trust conjunction, trust disjunction and trust negation. Under these
assumptions, we show in Theorem 7.10 that composite trust opinions cannot gen-
erally be represented as beta distributions.

7.2 Composite Trust

In Example 7.1, we introduced the CLOUD grid. An example of a composite
target was D ∨ (B ∧ C), where B, C and D are providers. The subject, A, has
a (potentially empty) interaction history about B, C and D. In Example 7.2, we
formally derive the trust opinion of A.

Example 7.2. The subject wants to form a trust opinion about D∨(B∧C), using
only the interaction history of A about users B, C and D. The random variables
OA
B, OA

C and OA
D represent the interaction history of A about B, C and D. The

random variable RD∨(B∧C) represents the (unknown) integrity parameter of the
target D ∨ (B ∧ C), and the random variable ED∨(B∧C) represents the (unknown)
outcomes of the next interaction with the target D∨(B∧C). We are interested not
just in the probability that the next outcome of the target is a success (ED∨(B∧C)),
but also in additional information, i.e. the random variable RD∨(B∧C). Figure 7.2
depicts the relation between the users and the involved random variables. As stated
in Section 7.1, given failures and successes of past interactions (bs, bf, cs, cf, ds, df),
the query for the trust opinion is of the shape fRD∨(B∧C)

(x|OA
B = (bs, bf), O

A
C =

(cs, cf), O
A
D = (ds, df)). In other words, the trust opinion represents the probability

distribution of a random variable that predicts the probability that the target
succeeds.

Whenever a subject wants to compute a composite trust opinion about a target,
he chooses the correct conditions and the correct random variable to form a distri-
bution over, as illustrated in Example 7.2. Therefore, we can assume, without loss
of generality, that we are given the term representing the probability distribution,
and we want to compute an explicit probability density function.

We are interested in a random variable RT , where T is not a single user (unless
the subject wants a simple trust opinion). However, we have not provided direct
relations between RT and observation histories OA

B or integrity parameters of single
users RA. The only random variable that we can immediately relate RT to is ET .

For more concise notation, we note the following lemma, based on the product
distribution:
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D

C

B

A

OA
C = (cs, cf )

OA
D = (ds, df )

OA
B = (bs, bf )

RB∧C

RD∨(B∧C)

Figure 7.2: Solid arrows represent interaction histories. Dashed arrows represent
composite trust opinions. Arrows are labelled with the relevant random variables.

Lemma 7.2. If S and T do not share any users, then RS∧T = RS ·RT .

Proof. The product RS ·RT of two random variables is defined as (RS ·RT )(ω) :=
RS(ω) ·RT (ω).

By Dependency D2, for all x, it holds that

P (ES∧T = s|RS∧T = x) = x.

And, using Proposition 7.1 as well as Dependencies D2 and D4` we obtain

P (ES∧T |RS = y,RT = z)

=P (ES = s, ET = s|RS = y,RT = z)

=P (ES = s|ET = s, RS = y,RT = z) · P (ET = s|RS = y,RT = z)

=P (ES = s|RS = y) · P (ET = s|RT = z)

=y · z.
Assume, without loss of generality, that RS(ω) = y and RT (ω) = z. By De-
pendency D7`, there is a function f such that x = P (ES∧T = s|RS∧T = x) =
P (ES∧T = s|f(RS, RT ) = x). That implies that x = f(y, z), and thus P (ES∧T =
s|f(RS, RT ) = f(y, z)) = f(y, z). Now, since RS(ω) = y and RT (ω) = z, we have

f(y, z)

=P (ES∧T = s|f(RS, RT ) = f(y, z)) = f(y, z)

=P (ES∧T )

=P (ES∧T |RS = y,RT = z)

=y · z.
Thus RS ·RT = f(RS, RT ) = RS∧T .

A similar proof exists for RS∨T = RS + RT − RS · RT , using independency over
union rather than intersection, and R¬T = 1−RT .

It is no coincidence that, say RS∨T is shaped RS + RT − RS · RT , where P (ES ∪
ET |RS, RT ) = P (ES|RS) + P (ET |RT ) − P (ES|RS) · P (ET |RT ); the same compu-
tation as for the associated random variable of the integrity parameter. Of course,
this generalises over more logical operations than just conjunction, disjunction and
negation:
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Remark 7.1. We have only allowed composition via conjunction, disjunction and
negation. There is, however, no formal reason not to introduce arbitrary logical
operators, such as the binary xor, or the ternary if-then-else or “majority in three”.
Although our technical results are limited to conjunction, disjunction and negation,
our methodology is certainly not.

To have an additional logical operator, we merely need to add dependencies, that
define when EX(S0,S1,S2) holds, and that RX(S0,S1,S2) is functionally dependent on
RS0 , RS1 and RS2 . We can assign a probability x to each row in the truth table of
X, e.g. x(S0 = s, S1 = s, S2 = f) = RS0 ·RS1 · (1−RS2). Now, RX(S0,S1,S2) is equal
to the sum of all x(S0 = s0, S1 = s1, S2 = s2), such that X(s0, s1, s2) holds. Note
that we can apply algebra of random variables to transform the expression[Spr79].

To work out some examples, in the truth table of “or”, X(s, f), X(f, s) and X(s, s)
all hold, so RS∨T = RS · (1−RT ) + (1−RS) ·RT +RS ·RT , which, via algebra of
random variables, equals RS + (1− RS) · RT = RS + RT − RS · RT . Similarly, for
if-then-else, denoted S1CS0BS2, becomes RS1CS0BS2 = RS0 ·RS1 + (1−RS0) ·RS2 .
Finally, for “majority in three”, denoted M3, becomes RM3(S0,S1,S2) = RS0 · RS1 ·
(1−RS2) +RS0 · (1−RS1) ·RS2 + (1−RS0) ·RS1 ·RS2 +RS0 ·RS1 ·RS2 .

The De Morgan rules hold for the logical trust operations.

Proposition 7.3. The random variables RS∨T and R¬(¬S∧¬T ) are equal and the
random variables RS∧T and R¬(¬S∨¬T ) are equal.

Proof. It suffices to perform some basic algebra on the random variables (see e.g.
[Spr79]) as:

RS∨T = RS +RT −RS ·RT = 1− (1−RS) · (1−RT ) = R¬(¬S∧¬T )

We can derive the probability density function of RS∧T , for independent S and T ,
under any condition ϕ.

Theorem 7.4. If S and T do not share any users, then

fRS∧T (x|ϕ) =

∫ 1

x

1

y
· fRS(

x

y
|ϕ) · fRT (y|ϕ) dy.

Proof. Apply Theorem 6.3 and Lemma 7.2. It suffices to verify the integral bounds.
fRS(x

y
|ϕ) = 0 for 0 > x

y
and 1 < x

y
, so we can ignore cases where y < x and

y > 1.

The probability density function of R¬T can also be derived under any condition ϕ:

Proposition 7.5. For any target T ,

fR¬T (x|ϕ) = fRT (1− x|ϕ)

Proof. Since R¬T = 1−RT , if R¬T = x then RT = 1− x.
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The probability density function of RS∨T , for independent S and T , under any
condition ϕ, can be derived via the De Morgan rules (Proposition 7.3), the compu-
tation for trust conjunction (Theorem 7.4) and the computation for trust negation
(Proposition 7.5).

Corollary 7.6. If S and T do not share any users, then

fRS∨T (x|ϕ) =

∫ 1

1−x

1

y
· fRS(1− 1− x

y
|ϕ) · fRT (1− y|ϕ) dy.

Theorem 7.4, Corollary 7.6 and Proposition 7.5 are sufficient to derive trust opin-
ions about arbitrary targets (where no active parties appear more than once), given
arbitrary interactions with the active parties.

Corollary 7.7. For every (finite) target where no users appear more than once,
an explicit function for the trust opinion can be computed by the subject.

Proof. Apply structural induction over the shape of the target. The base case
(simple trust opinions) is proven in Theorem 6.5. To prove the induction step,
take Theorem 7.4, Corollary 7.6 or Proposition 7.5 as rewrite rules from left to
right.

In Example 7.3, we derive an explicit formula for the trust opinion of B ∧ C, and
look at some of its properties.

Example 7.3. Assume that the subject, A, wants to establish a trust opinion
about the target, B ∧ C. In the past, A has interacted as a passive party with
B several times; five times B behaved well, and once badly. Furthermore, A
has interacted with C, too; four times C behaved well, and twice badly. The trust
opinion of A about B∧C is fRB∧C (x|OA

B = (5, 1), OA
C = (4, 2)). Using Theorem 7.4,

the trust opinion can be computed as∫ 1

x

1

y
· fRB(

x

y
|OA

B = (5, 1), OA
C = (4, 2)) · fRC (y|OA

B = (5, 1), OA
C = (4, 2)) dy.

By Independency I2`, we obtain∫ 1

x

1

y
· fRB(

x

y
|OA

B = (5, 1)) · fRC (y|OA
C = (4, 2)) dy.

Which by Definition 6.7 and Theorem 6.5 is equal to∫ 1

x

1
y
· (x

y
)6 · (1− x

y
)2 · y5 · (1− y)3

B(5, 1) · B(4, 2)
dy.

The formula can be formulated without an integral (using e.g. Mathematica), and
instead using some combinatorial functions, so that it reduces to

x2 · (1− x)4 · Γ(2) · Γ(3) · 2F1(2, 3; 5; x−1
x

)

Γ(5) · B(5, 1) · B(4, 2)
.
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Figure 7.3: From left to right: trust opinion about B, about C and about B ∧ C.

where Γ is the gamma function, B the beta function (not to be confused with the
beta distribution) and 2F1 a hypergeometric distribution. This, in turn, simplifies
to

2205x4(1 + 4x− 5x2 + 2x(2 + x) log(x)).

The conjunction operation is depicted graphically in Figure 7.3. The rightmost
distribution is the conjunction of the other two distributions. Recall that the
abscissa depicts the integrity parameter of the targets in question. Thus, the more
mass is on the right-hand side of the graph, the bigger the probability that the
target has a high integrity. As we can see, both active parties (B and C) have a
relatively high integrity, but their conjunction (B ∧ C) does not.

The expected value of the trust opinion about a target is equal to the probability
that the target succeeds. Computation of the expected value of fRB∧C yields 15/32.
The expected value for the single user B to succeed, fRB , is 3/4 and for C to succeed,
fRC is 5/8. Not coincidentally, the expected value for fRB∧C is the product of that
of fRB and fRC , namely 15/32 = 3/4 · 5/8.

As we suspected in the beginning of this chapter, and seen for a specific case
in Example 7.3, the expected behaviour of a conjunction of targets, is equal to
product of the expected behaviour of both targets.

Corollary 7.8. If S and T do not share any active parties, then

E(RS∧T ) = E(RS) · E(RT ).

Proof. Immediate consequence of Lemma 7.2.

Similarly E(R¬T ) = 1−E(RT ) and E(RS∨T ) = E(RS) + E(RT )−E(RS) ·E(RT ).

Although the derivation in Example 7.3 seems asymmetrical with respect to S and
T , commutativity and associativity hold.

Corollary 7.9. Conjunctions and disjunctions of independent trust opinions are
commutative and associative. Thus RS∧T = RT∧S, RS∨T = RT∨S, R(S∧T )∧U =
RS∧(T∧U) and R(S∨T )∨U = RS∨(T∨U).

Proof. Immediate consequence of Lemma 7.2.

In Example 7.3, we have shown a specific composite trust opinion to be

fRB∧C (x|OA
B = (5, 1), OA

C = (4, 2)) = 2205x4(1 + 4x− 5x2 + 2x(2 + x) log(x)).
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Now, one can wonder whether there exists a beta distribution with a probability
density function of that shape. It is important to realise that if (composite) trust
opinions are closed under the logical trust operations, then there must be such a
beta distribution. We prove that, in general, such a beta distribution does not
exist:

Theorem 7.10. A composite trust opinion need not be representable by a beta
distribution.

Proof. The expression 2205x4(1 + 4x − 5x2 + 2x(2 + x) log(x)), is a composite
trust opinion, but not a polynomial. The probability density function of a beta
distribution is always a polynomial (see Definition 6.7). Hence, that composite
trust opinion is not based on a beta distribution.

From Theorem 7.10, we can conclude that every trust model in which the trust
opinions are (isomorphic to) beta models violates at least one of the assump-
tions. A famous example is Subjective Logic [Jøs97] (the binomial version without
base rate), other examples include CertainLogic [RHMV11]. As the methodology
of this paper is inspired by Subjective Logic, Dependencies D1, D2 and D3 are
in line with the assumptions in Subjective Logic. Furthermore, the Independen-
cies I1`, I2`, and I3` are also based on (non-formal formulations in) Subjective
Logic. By the pigeon hole principle, Dependency D4` for conjunctions (or Depen-
dency D5` for disjunctions or Dependency D6` for negation) or Dependency D7`
must be violated. Dependency D4` states that ES∧T = s iff ES = s and ET = s
(for independent S and T ), and Dependency D7` asserts that the integrity of a
composite target is determined by the integrity of the active parties. In other
words, Dependencies D4`-D7` are a formalisation of the natural semantics of the
logical trust operations.

Thus, Subjective Logic and CertainTrust either contradict their own fundamental
assumptions (the assumptions of the Beta model), or have an unreasonable defi-
nition of the logical trust operations (one where either “ES∧T iff ES and ET” or
“a targets behaviour is determined by its constituents” does not hold). We will
observe in the next chapter, that trust chaining is also not closed over beta distri-
butions, whereas existing models assume they are. Therefore, we postpone a more
detailed analysis to Section 8.4.

7.3 Conclusion

We have applied techniques from the Beta model to composite trust opinions; trust
opinions based on trust conjunction, trust disjunctions or trust negation. Thus, we
have derived an explicit definition of a trust opinion of the shape “Can I trust that
both A and B will behave according to agreement?” Of course, more general state-
ments exist, where for “A and B” any propositional formula can be substituted and
our result also generalises to encompass these as well. By deriving a computation
for the logical trust operations from the assumptions of the Beta model together
with the natural semantics of the logical trust operations, we effectively obtain a
correctness trust model in the Beta paradigm that has trust aggregation and the
logical trust operations.
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We have furthermore proven some properties about composite trust opinions. First,
the trust opinion about a target S ∧ T has the expected value s · t, where s and t
are the expected values of the trust opinion about S and T . (Similarly, for S ∨ T ,
it is s + t − s · t.) Second, that the expected algebraic properties – commutativ-
ity, associativity, De Morgan and double negation – of the logical operators hold
when interpreted as logical trust operations. Third, a composite trust opinion
is in general not a beta distribution. Hence, no trust model with elements iso-
morphic to beta distributions can satisfy all our assumptions, which implies they
either contradict their own foundation or the natural semantics of the logical trust
operations.





8

Beta Models with Trust Chaining

In interactions over the Internet, the information which a subject has about past
behaviour of a target is limited. Hence it might be beneficial to ask for the help
of third parties. Third party statements about the target are called recommenda-
tions (see also Section 2.3), hence we call these third parties recommenders . Trust
opinions constructed with the help of recommendations are called chained trust
opinions . In this paper, we formally study the implications of such recommenda-
tions.

To allow trust opinions to incorporate third parties, some modern trust models
use the Beta model as a foundation, and increase the model’s expressivity and
its (practical) applicability by including recommendations. We say that a model
which uses the Beta model as a foundation is in the Beta paradigm. Many models
in the Beta paradigm that support trust chaining are ad-hoc. By ad-hoc models,
we understand models designed according to intuition or statistical effectiveness in
practice, rather than formal correctness (like formal correctness of trust aggregation
in the Beta model). The notion that current models with trust chaining are ad-
hoc, is supported by the fact that the research community has not yet settled on
one trust model [KNS08], not even under the assumption that the trust model is
in the Beta paradigm [JMP06].

Rather then proposing a new model in the Beta paradigm, we rigorously prove
properties of trust chains valid in all models in the Beta paradigm. We refer to
the collection of all correctness trust models in the Beta paradigm that support
trust chaining as the Beta family with trust chaining . We show the following
properties for the Beta family with trust chains. Chained trust opinions are mod-
ular (Proposition 8.8 and Theorem 8.9), meaning that complex trust opinions can
be constructed from simpler ones. Every trust model makes implicit or explicit
assumptions about how a recommender lies or about the number of interactions
between users (Corollary 8.10). Chained trust opinions resulting have a different
shape from the trust opinions in the Beta model (Theorem 8.11). Furthermore,
Subjective Logic, an expressive ad-hoc extension of the Beta model, is not in the
Beta family with trust chains (Corollary 8.13). The same conclusion can be derived
for models similar to Subjective Logic, such as TRAVOS [TPJL06] and Certain-
Trust [Rie07] (Corollary 8.12).

In Section 8.1, we formalise the notion of recommendations and add it to the
Beta model, effectively formalising all models in the Beta family with trust chains.
Then, in Section 8.2, we study the most basic trust chains in the Beta family with
trust chains. In Section 8.3, we prove that all models in the Beta family with trust
chains have the property that trust opinions can be constructed modularly from
the most basic trust chains. Finally, in Section 8.4, we characterise trust models

97
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in the Beta family with trust chains, and show that existing models based on the
Beta model are not in the Beta family with trust chains.

8.1 Formalisation

According to the Beta model, a subject A constructs his trust opinion using only
his own information, when planning to interact with a target C. Depending on
the constructed trust opinion, A chooses to interact or not. Suppose that A wants
to make a more informed decision. Then, the subject A may ask a third party, a
recommender B, for advice. A recommender could provide an honest recommen-
dation, or lie. Chained trust opinions are based on the notion that a trust opinion
on the recommender B is a valid measure for the likelihood that B provides an
honest recommendation about C. More formally:

Definition 8.1 (Chained trust opinions). Every recommender (like every target)
has an integrity parameter that determines the probability of a successful interac-
tion. In case of a successful interaction, their recommendation is their trust opinion
about the target. Chained trust opinions are trust opinions based on recommen-
dations from recommenders.

We add recommendations to the classroom game:

Running Example. After students figured out the logical trust operations , the
teacher decided to modify the game differently. To keep the game interesting, as
well as make it a more realistic emulation of e-commerce, the teacher adds rec-
ommendations in the following way: In the beginning of every turn, the teacher
not only assigns a subject ci ∈ S and a target cj ∈ S, but also a set of rec-
ommenders R ⊆ S \ {ci, cj} if ci has never interacted with cj. Every recom-
mender ck ∈ R has to honestly provide their past interactions with cj with proba-
bility pk, or construct and provide a fake past history with cj with probability 1−pk.
Again, students with a high integrity pk are more likely to provide the past inter-
actions rather than fake interactions. For a subject to construct the most accurate
trust opinion, he needs to incorporate his opinion of ck and the recommendation
by ck, for all ck ∈ R.

To formally model recommendations in the Beta model, we introduce an additional
random variable to the random variables EC , RC and RAC from the Beta model.

• SBC : Ω → N × N is a discrete random variable modelling recommendations
of the recommender B about the target C, representing the alleged past
interactions between B as passive party and C as active party.

We also introduce additional sets of random variables:

S := {SBC : B,C ∈ A},
WS := W ∪ S.

Before introducing the relations between random variables, we introduce a collec-
tion of functions χB : [0, 1]×N×N→ (N×N→ [0, 1]), for B ∈ A. A function χB
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is called a lying strategy . For b ∈ [0, 1] and ws, wf ∈ N, χB(b, ws, wf ) is a proba-
bility distribution representing the probability that recommender B states (ys, yf ).
Game-theoretically, χB should be seen as the strategy of B, and χB(b, ws, wf )
should be seen as the mixed move of B.

The dependencies and independencies are based on those in the Beta model. In
fact, Dependencies D1-D3 are lifted directly from the Beta model, to become De-
pendencies D1S-D3S. Independencies I1-I3 are identical when restricted to random
variables from the Beta model, i.e. in W. Independencies I1-I3 are extended to In-
dependencies I1S-I3S to deal with recommendations.

Let a, b, x ∈ [0, 1], n, k ∈ N and λ : N→ [0, 1] as well as χB : [0, 1]×N×N→ (N×
N → [0, 1]), where B ∈ A be probability distributions. For all users A,B,C ∈ A
we set up the following additional dependency and independency relations as our
assumptions.

D1S RC is uniformly distributed on [0, 1].

D2S P (EC=s|RC=c) = c.

D3S P (OA
C=(xs, xf )|RC=c) =

(
xs+xf
xs

)
cxs(1− c)xfλ(xs + xf ).

D4S P (SBC=(ws, wf )|EB=s, OB
C=(ws, wn)) = 1.

Assumes that good behaviour of B implies that the recommendation of B
corresponds to his interaction history with C.

D5S P (SBC=(ys, yf )|EB=f, RB=b, OB
C=(ws, wf )) =χB(b, ws, wf )(ys, yf ).

Asserts that the lying strategy determines the fake recommendations of rec-
ommender B.

I1S For W ∈WS\{OA
C , S

A
C}, it holds that OA

C ⊥⊥ W |RC .
Similar to Independency I1, except recommendations (other than from A
about C) are also independent from the interaction history between A and
C, under a fixed integrity parameter of C.

I2S For W ∈W\{RC} and {C,D0, . . . Dn} = A, RC ⊥⊥ W |EC , OD0
C , . . . , ODn

C .
Similar to Independency I2, except all recommendations are also independent
from the integrity parameter of C, under the outcome of C and the interaction
histories with C.

I3S For W ∈WS\({EB} ∪ {SBD : D ∈ A}) , it holds that EB ⊥⊥ W |RB.
Similar to Independency I3, except recommendations (other than those
from B) are also independent from the outcome of the interaction with B,
under the integrity parameter of B.

I4S For W ∈WS\{SBC }, it holds that SBC ⊥⊥ W |EB=f ∩RB ∩OB
C .

The choice of B for making fake recommendations about C is completely
determined by χB(b, n,m) in Dependence D5S.
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We define that models in the Beta family with trust chains adhere to Dependen-
cies D1S–D5S and Independencies I1S–I4S, and support this definition below:

Definition 8.2 (Beta family with trust chains). A model is said to be in the Beta
family with trust chaining , when it satisfies Dependencies D1S–D5S and Indepen-
dencies I1S–I4S.

There are models that are inspired by the Beta model, and that include an opera-
tor ⊗ dealing with recommendations, but that are not models in the Beta family
with trust chains. We argue that such models either are not Beta models or that ⊗
is not a trust chaining operator. If a model violates any of the Dependencies D1S–
D3S or Independencies I1–I3, it is not a Beta model. We distinguish the possible
violations of an assumption for each remaining assumption separately. If a model
violates

D4S, then the model does not support trust chaining.

D5S, then another assumption must also be violated. This is since under De-
pendencies D1S–D4S and Independencies I1S–I4S there exists a χB such
that χB(b, ws, wf )(ys, yf ) = P (SBC=(ys, yf )|OB

C=(ws, wy), RB = b, EB = f).

I1S, then the model either violates Independency I1, or it assumes that some SCD
are dependent with OA

C given RC . This is not in the spirit of the Beta
paradigm, where we assert that such types of dependencies cannot be iden-
tified. Hence, the outcomes of the interactions between A and C should
depend only on C.

I2S, then the model either violates Independency I2, or it assumes that some RC

are dependent with SDE given all observations of C. This is not in the spirit
of the Beta paradigm. The collection of all interactions with C should be an
optimal estimator for RC .

I3S, then the model either violates Independency I3, or it assumes that some EC
are dependent with SDE (for D 6= C) under all observations of C, which is not
in the spirit of the Beta paradigm. The probability of success of an interaction
(given the integrity) should not be influenced by recommendations of others.

I4S, then in this model recommenders differentiate their strategy either on infor-
mation they cannot know (e.g. interactions that the recommender did not
participate in) or on information that is irrelevant for the recommendation
(e.g. his opinion on yet another user).

Not every model in the Beta family with trust chains is formalised our way. A
model is already in the Beta family with trust chains when the assumptions can
be reformulated to fit the assumptions up to isomorphisms.
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A C

B
OA

B = (xs, xf ) SB
C = (ys, yf )

C

B
OB

C = (ws, wf )

Basic chained
trust opinion

Figure 8.1: Left: The view of subject A about target C, including the recommen-
dation SBC from B about C. Right: The view of recommender B about target C.

8.2 Basic Trust Chains

The most basic scenario that involves trust chains, involves exactly one recom-
mendation. This recommendation is given about a target with which the subject
has no prior interactions. In other words, the recommendation is the only source
of information that a subject has. This scenario is called basic trust chaining. It
is studied in this section. In Section 8.3, we then prove that more complicated
scenarios can be reduced to scenarios with basic trust chains.

We define the basic trust chain as the simplest case of trust chaining, namely a
trust chain involving only one recommender. The basic trust chain is also depicted
in Figure 8.1.

Definition 8.3 (Basic trust chain). A basic trust chain consists of three users:
the subject A, the recommender B, and the target C. The subject has an inter-
action history x = (xs, xf ) with the recommender. The recommender provides a
recommendation y = (ys, yf ) about the target and, in reality, has an interaction
history w = (ws, wf ) with the target. The trust opinion of subject A about tar-
get C with recommendations by recommender B is the chained trust opinion. It
is depicted in Figure 8.1.

Running Example. In the classroom game, basic trust chains appear when the
teacher assigns only one recommender. Then, the subject is ci ∈ S, the target
is cj ∈ S \ {ci} and the set of recommenders is {ck} ⊂ S \ {ci, cj}.

We may now formulate the basic chained trust opinion of A about C with rec-
ommendations given by B as fRC (c|OA

B=(xs, xf ), S
B
C=(ys, yf )). In other words, to

formulate a trust opinion about the target, the subject uses its interaction his-
tory about the recommender as well as the (possibly fake) recommendation given
by the recommender. If A has never directly interacted with B, the pair (xs, xf )
equals (0, 0).

Theorem 8.1. Dependencies D1S–D5S and Independencies I1S–I4S are sufficient
to derive the basic chained trust opinion of A about C with recommendations by B
as: fRC (c|OA

B=(xs, xf ), S
B
C=(ys, yf )) =

eq1
ys,yf

(c) · eq2 +
∑
w∈OBC

(eq1
ws,wf

(c) · eq3 ·(1− eq2)), (8.1)
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where,

eq1
ϕs,ϕf

(c) = fB(c;ϕs + 1, ϕf + 1),

eq2 =
eq4 ·(xs + 1)

eq4 ·(xs + 1) +
∑

w′∈OBC
eq5

w′ · (xf + 1)
,

eq3 =
eq5

ws,wf∑
w′∈OBC

eq5
w′s,w

′
f

,

eq4 = λ(ys + yf ) ·
(
ys + yf
ys

)
· ys!yf !

(ys + yf + 1)!

eq5
ϕs,ϕf

=

∫ 1

0

χB(b, ϕs, ϕf )(ys, yf ) · fB(b;xs + 1, xf + 2) db

· λ(ϕs + ϕf ) ·
(
ϕs + ϕf
ϕs

)
· ϕs!ϕf !

(ϕs + ϕf + 1)!

Proof. We short-hand (ψs, ψf ) to ψ, for arbitrary ψ. The equations eq1–eq5 rep-
resent the following probabilities:

eq1
ϕ(c) = P (RC=c|OA

B=x, SBC=y, EB=u,OB
C=w),

eq2 = P (EB=s|OA
B=x, SBC=y),

eq3 = P (OB
C=w|OA

B=x, SBC=y, EB=f),

eq4 = P (SBC=y|OA
B=x,EB=s),

eq5
ϕ = P (SBC=y,OB

C=ϕ|OA
B=x,EB=f).

The proof that eq1–eq5 actually represent these probabilities can be found in
Section B.1 in Appendix B. The correctness of Formula (8.1) follows from the
fact that eq1–eq5 compute the above probabilities, given that, for all W ∈ WS:
SBC ⊥⊥ W |EB=s ∩OB

C follows from Dependency D4S.

Although Formula (8.1) may seem complicated, it can abstractly be viewed as a
(infinite) weighted sum of beta distributions:

Proposition 8.2. For every entanglement and lying strategy, a basic chained trust
opinion is a weighted sum of beta distributions.

Proof. If we collect factors that do not contain the variable c (i.e. eq2-eq5) in the
scalars k and kws,wf , Formula (8.1) simplifies to

k · cys(1− c)yf +
∑

ws,wf∈N×N

kws,wf c
ws(1− c)wf . (8.2)

Furthermore, for some specific models in the Beta family with trust chains, the
formula significantly simplifies. Particularly, for a lying strategy that consists of
constructing truthful recommendations (see dash-dotted graph in Figure 8.2), the
trust opinion is a beta distribution:

Proposition 8.3. Let χB(b, ws, wf )(ys, yf ) = 1 iff (ws, wf ) = (ys, yf ), then the
trust opinion from Formula (8.1) simplifies to ϑys,yf (c).
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Figure 8.2: The same trust chain, x = (6, 5) and y = (8, 4), with different lying
strategies. Solid: lies opposite of his true opinion. Dashed: lies independent of the
his true opinion. Dash-dotted: lies similar to his true opinion. Dotted: lies with a
positive bias.

Proof. Fill the choice of χB in, in Formula (8.1).

Taking an arbitrary entanglement λ and a lying strategy that consists of construct-
ing completely informationless recommendations (see dashed graph in Figure 8.2),
the trust opinion is a weighted sum of a beta distribution and the uniform distri-
bution:

Proposition 8.4. Let χB(b, ws, wf )(ys, yf ) = 1
ys+yf+1

iff ws + wf = ys + yf , then

the trust opinion from Formula (8.1) simplifies to xs+1
xs+xf+2

ϑys,yf (c) +
xf+1

xs+xf+2
.

Proof. Fill the choice of χB in, in Formula (8.1).

An immediate consequence of Theorem 8.1 and Proposition 8.2 is that a model that
supports basic chained trust opinions, makes assumptions about the entanglement
and lying strategies.

Corollary 8.5. It is not possible to compute basic chained trust opinions without
knowledge of the entanglement λ and the lying strategy χB.

Proof. Propositions 8.3 and 8.4 assume different lying strategies. The resulting
simplifications of Formula (8.1) are different. Hence the choice of χB matters.

Running Example. In terms of the classroom game, the corollary states that
it is relevant how many turns have been played and how students lie. If a rec-
ommendation states “8 successes and 2 failures”, but each student has played 9
turns, the recommendation is clearly fake. Suppose, a student ck provides a rec-
ommendation to ci that is likely to be fake. If ck and ci are good friends outside
of the game, ck might have a lying strategy of creating fake recommendations that
strongly resemble the truth. Otherwise, ck provides recommendations unrelated to
the truth. Then, it is wise for ci to rely on the recommendation of his friend, but
not on recommendations of other arbitrary classmates.
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Corollary 8.5 implies that without assumptions on λ and χB, no model can provide
trust opinions. Therefore, any trust model in the Beta family with trust chains
either implicitly or explicitly makes assumptions about numbers of interactions
and about the lying strategy of recommenders. We believe that making implicit
assumptions about lying strategies is inappropriate, as it obfuscates the analysis of
a model or hides undesirable consequences of a model. Hence, we suggest that new
proposals for models in the Beta family with trust chains explicitly (and formally)
provide the lying strategy of the recommenders.

Corollary 8.6. For every entanglement λ and lying strategy χB, the subject can
calculate the basic chained trust opinion.

Proof. Apply Formula (8.1), with the relevant instantiations of λ and χB.

Thus, when the number of turns in the classroom game is known, and it is known
what kind of lying strategy each student has, the subject can correctly compute
the trust opinion, whenever the teacher assigns only one recommender.

A positive consequence of Corollary 8.6 is that defining the entanglement and the
lying strategy is sufficient to explicitly define a model in the Beta family with
trust chains. Not only is it mathematically possible, but we have developed a tool
named Canephora1 that can compute basic chained trust opinions, when χB and λ
are provided. The tool is a proof of concept, that creating a model in the Beta
family with trust chains is merely a matter of defining an entanglement and lying
strategies. It is a prototype that allows the numerical comparison between different
models (i.e. different choices of entanglements and lying strategies). We explain
the tool in further detail in Section 8.2.1.

In Section 8.3, we see that defining the entanglements and the lying strategies is
sufficient to explicitly define models in the Beta family with trust chains (not just
models restricted to basic trust chains).

Determining the entanglement λ is usually simpler than finding the lying strategy.
In many e-commerce systems, the number of interactions between users is known
to the system. For example, eBay knows if a product is sold, even if it does not
know whether the transaction was a success for the subject. Or in the classroom
game, the teacher announces the number of turns, explicitly providing λ. Even if
the entanglement is unknown, by restricting the choices of χB, the entanglement λ
can be eliminated from Formula (8.1).

Lemma 8.7. There exist lying strategies, where the entanglement has no impact
on the basic chained trust opinion.

Proof. Consider the basic chained trust opinion given by Formula (8.1). For all b ∈
R, and ws, wf , ys, yf ∈ N such that ws+wf 6= ys+yf , take χB(b, ws, wf )(ys, yf )= 0.
Then, λ(ϕs+ϕf ) cancels out of eq5 unless ϕs+ϕf = ys+yf . In the reduced term,
we can substitute λ(ϕs+ϕf ) for λ(ys+yf ). Then λ(ys+yf ) is a scalar that appears
in every summand in the numerators and denominators of eq2 and eq3. Thus λ
cancels out of Formula (8.1).

1http://satoss.uni.lu/software/canephora

http://satoss.uni.lu/software/canephora
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Running Example. If a recommender makes a recommendation of which the
size was impossible (or very unlikely), a student can identify the recommendation
as a fake (or likely a fake). If all students take care never to fall into the pitfall
of sizing fake recommendations according to a different distribution than the real
interactions, sizing becomes irrelevant. Hence, the entanglement cancels out.

8.2.1 Canephora

The Canephora tool is both a prototype for a trust system with trust chaining and a
tool for analysis of lying strategies. The high level functionality of the Canephora
tool is that it takes a lying strategy, an entanglement and a set of parameters
including the trust opinion regarding the recommender and the recommendation,
and provides the chained trust opinion. The tool computes Formula (8.1), for given
lying strategy and entanglement, via approximation.

Canephora uses several windows. The main window, depicted in Figure 8.3, allows
the user to specify the calculation. The second window, depicted in Figure 8.4
shows all the results in a single window, allowing easier comparison between results.
Each time a graph is computed, it opens a new window with an overview of data
relevant to the computation, as depicted in Figure 8.5.

In the main window (Figure 8.3), we identify the following fields from top to bot-
tom: The first field is a slider labelled speed, which trades off speed and accuracy, in
a way explained later. The next two fields select the entanglement. Most entangle-
ments come in families (such as the poisson distribution) with a single parameter.
Hence, the user can select the family of the distributions, and the parameter. The
next field is a number that defines the number of samples taken in the integrals.
The number is a trade off between speed and precision. The next three fields con-
tain each contain two numeric inputs: The first pair of numeric inputs represents
the interaction history between the subject and the recommender. The second
pair of numeric inputs represents the recommendation made by the recommender
about the target. The third pair of numeric inputs represents the interaction his-
tory between the subject and the target. By setting this pair to (0, 0), the basic
chained trust opinion is obtained. The last field selects the lying strategy.

The second window (Figure 8.4) shows all graphs that have been calculated (and
are not closed). Each graph in the window is controlled by a specific window for
an individual graph. From the windows of the individual graphs, the colour and
stroke can be selected. Closing the window of the graph removes the graph from
this window.

The window for the individual graphs (Figure 8.5) is opened when the calculate
button is hit on the main window. When the calculation is finished (the calculation
happens in an individual thread, so the program does not block), this window
shows the graph, and relevant information. The relevant information contains
the expected value, the mode, the variance, different notions of entropy, a beta
distribution approximating the graph, the calculation time, and the information
used to calculate this graph.

We assert that the tool is an effective prototype for trust systems with basic trust
chaining partially because of the data being calculated and displayed. Another rea-
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Figure 8.3: The main window of Canephora.

son is that, not only, are several useful entanglements and lying strategies included
in the tool, but the tool has an interface for defining arbitrary entanglements and
lying strategies. The combination of these two factors imply that the theoretical
proof that a Beta model with trust chains can be defined by selecting an entan-
glement and lying strategies, also holds in practice. The tool does not yet support
more involved trust chains, but Section 8.3 implies that involved trust chains can
be constructed from basic trust chains.

The tool must approximate the results, since computing the results exactly is (in
general) intractable. Formula (8.1) contains definite integrals and infinite summa-
tions, that contain the entanglement and the lying strategy, hence, these integrals
and infinite summations cannot be reduced in a general way. Definite integrals can
be approximated using the midpoint rule, where the quality of the approximation
improves as the number of midpoints increases. The number of midpoints can be
selected by the user. The infinite summations sum probabilities to probabilities,
meaning that each term is non-negative, and that the sum converges to a value
equal to at most 1. That means that there are less than k summands exceeding
1/k. We can approximate the summation by ignoring sufficiently small summands.
Rather than ignoring small summands, we can also do a Monte-Carlo simulation.
Depending on the precision setting, more or less summands are ignored, and the
Monte-Carlo simulation plays a big role only in rough simulations.
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Figure 8.4: Overview of all relevant graphs.

Figure 8.5: A window with a graph and relevant information.
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8.3 Modular Construction of Trust Opinions

In Section 8.1, the assumptions of the Beta model were formally extended to include
trust chaining. We have formally derived a parameterised trust opinion in the case
of basic trust chains. However, it is possible that a subject receives more than one
recommendation, or that the subject also has a simple trust opinion of the target.
Recall trust aggregation from Definition 6.9. We first prove that a basic chained
trust opinion can be aggregated with a simple trust opinion. Later, we prove that
more complicated trust opinions can also be aggregated with basic trust opinions.
The notion that aggregation of these trust opinions is possible, is called modularity.

Running Example. Imagine that the subject ci constructs a trust opinion about
the target cj based on his past interactions (zs, zf ) with cj. However, the teacher
also provides a recommender ck, with which the subject has an interaction history
of (xs, xf ). The student ck himself, gives the recommendation (ys, yf ) about cj.
From the Beta model, the subject can construct his (simple) trust opinion based
on (zs, zf ). From Section 8.2, the subject can construct his (basic chained) trust
opinion based on (xs, xf ) and (ys, yf ). The subject wants to construct a trust
opinion based on (xs, xf ), (ys, yf ) and (zs, zf ). We prove the subject merely needs
to aggregate both trust opinions – to multiply the corresponding distributions.

Many trust models in the Beta family with trust chains (such as Subjective Logic)
assert modularity. A priori, it is not obvious that the assertion of modularity
is justified. In fact, the notion of endogenous filtering (Section 2.3) is based on
the notion that modularity does not hold. The idea of endogenous filtering is to
compare the contents of a recommendation about a target to what the subject
already knows about the target. That means that the recommendation(s) must
be evaluated in the context of the trust opinion of the subject. Modularity states
the exact opposite of that. Namely that trust chains can be evaluated modularly,
without context, and aggregated directly.

We distinguish two types of modularity. First modularity between a simple trust
opinion and a basic chained trust opinion. Second, modularity between arbitrary
(chained) trust opinions. The first notion is essentially the dual of the notion in en-
dogenous filtering that recommendation should be compared to direct experience;
the second is the dual of the notion that recommendations should be compared to
each other. Since we prove both types of modularity, neither type of endogenous
filtering should be applied to Beta family with trust chains.

In Chapter 10, we introduce a concrete model with trust chains (called the Default
Model), rather than discuss a family of models with trust chains. Using a concrete
model, we can provide an insight into why endogenous filtering should not be
applied, and do so in Example 10.1 in Section 10.1.4. Due to the lack of a concrete
model at this stage, we cannot provide a concrete intuition. However, we do
have formal proofs for the entire family of models, namely Proposition 8.8 and
Theorem 8.9.

We start by proving modularity between a simple trust opinion and a basic chained
trust opinion:
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Proposition 8.8. For all models in the Beta family with trust chains, the chained
trust opinion fRC (c|OA

B=(xs, xf ), S
B
C=(ys, yf ), O

A
C=(zs, zf )) is the aggregate of the

simple trust opinion fRC (c|OA
C=(zs, zf )) and the basic chained trust opinion

fRC (c|OA
B=(xs, xf ), S

B
C=(ys, yf )).

Proof. We require Independency I1S and Dependence D1S.

fRC (c|OA
B=(xs, xf ), S

B
C=(ys, yf ), O

A
C=(zs, zf ))

=
P (OA

B=(xs, xf ), S
B
C=(ys, yf ), O

A
C=(zs, zf )|RC=c) · fRC (c)

P (OA
B=(xs, xf ), SBC=(ys, yf ), OA

C=(zs, zf ))

I1S=
P (OA

B=(xs, xf ), S
B
C=(ys, yf )|RC=c) · P (OA

C=(zs, zf )|RC=c) · fRC (c)

P (OA
B=(xs, xf ), SBC=(ys, yf ), OA

C=(zs, zf ))

D1S∝ P (OA
B=(xs, xf ), S

B
C=(ys, yf )|RC=c)·fRC (c)·P (OA

C=(zs, zf )|RC=c)·fRC (c)

P (OA
B=(xs, xf ), SBC=(ys, yf )) · P (OA

C=(zs, zf ))

=fRC (c|OA
C=(zs, zf )) · fRC (c|SBC=(ys, yf ), O

A
B=(xs, xf ))

Similar to Proposition 8.8, we can even prove that modularity holds for all trust
opinions. Let ϕ be a collection of basic trust chains and potentially the interaction
history between the target and the subject. In other words, for some n, let ϕ be
given by:

[OA
C=(zs, zf ), ]O

A
B1

=(x1s, x
1
f ), S

B1
C =(y1s , y

1
f ), . . . , O

A
Bn=(xns , x

n
f ), SBnC =(yns , y

n
f ).

Theorem 8.9. For all models in the Beta family with trust chains, the trust
opinion fRC (c|OA

B=(xs, xf ), S
B
C=(ys, yf ), ϕ) is the aggregate of the trust opinion

fRC (c|ϕ) and the basic chained trust opinionfRC (c|OA
B=(xs, xf ), S

B
C=(ys, yf )).

Proof. The only step of the proof in Proposition 8.8 that cannot be replicated
(with ϕ substituted for OA

C=(zs, zf )) is the application of Independency I1S. Thus:

P (OA
B=(xs, xf ), S

B
C=(ys, yf ), ϕ|RC=c)

?
=P (OA

B=(xs, xf ), S
B
C=(ys, yf )|RC=c) · P (ϕ|RC=c)

The proof obligation can be reduced (with Independencies I1S and I4S)
to P (ϕ|RC=c, EC=u,OB

C=(ws, wf ), RB=b) = P (ϕ|RC=c), which follows from In-
dependencies I2S and I3S. See Section B.2 from Appendix B for details.

From Theorem 8.9, we can conclude that the subjects can compute a trust opinion
based on their own history with the target, as well as on recommendations of an ar-
bitrary number of other users, provided that the subject can compute basic chained
trust opinions for all recommendations. More generally, Theorem 8.9 allows us
to generate the following structures S(λ, θ) = (P,O, g : P → O, cλ,θ : P × P →
O, a : O×O → O), where P is the set of interaction histories, O is the set of opin-
ions, g is the function that maps interaction histories to simple trust opinions, cλ,θ
is the function that generates basic chained trust opinions (for entanglement λ and
assignment of lying strategies to users θ) , and a represents aggregation of trust
opinions. Depending on the choice of the entanglement and the assignment of lying
strategies, the structures S(λ, θ) (generally) differ.
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8.4 Analysis of the Models

The results from the last sections allow us to study the conditions that all trust
opinions in all models in the Beta family with trust chains must adhere to. If an
existing trust model violates these conditions, it is therefore not in the Beta family
with trust chains. Which, in turn, means that these trust models either break an
assumption of the Beta model (i.e. are not in the Beta paradigm), or its operator
dealing with recommendations does not actually model trust chains according to
Definition 8.2.

First, we point out that the work in Sections 8.2 and 8.3 captures all models in
the Beta family with trust chains up to isomorphism:

Corollary 8.10. Every model in the Beta family with trust chains is isomorphic to
a structure S(λ, θ) for an entanglement λ and an assignment of lying strategies θ.

Proof. The corollary is a direct consequence of Corollary 8.6 and Theorem 8.9.

A consequence of the corollary is that if a model is in the Beta family with trust
chains, there is a formulation of the model where the entanglement and the assign-
ment of lying strategies are explicitly provided. This entails that if a formulation
of a model does not explicitly mention the assignment of lying strategies, it is not
an appropriate formulation as it obfuscates the lying strategies.

Furthermore, we prove a restriction on the shape of chained trust opinions. Before
we do so, we define an exception to the restriction.

Definition 8.4 (Trivial lying strategy). A lying strategy χB is trivial, when
χB(b, ws, wf )(ys, yf ) = 1 iff (ws, wf ) = (ys, yf ).

The trivial lying strategy is for the recommender to state the truth when lying.
No serious trust model asserts that even unreliable recommenders always state the
truth.

Theorem 8.11. A basic chained trust opinion in any model in the Beta family
with trust chains is in general not a beta distribution, except in the trivial case.

Proof. Expression (8.2) from Proposition 8.2 can only represent a beta distribution
fB(c;S + 1, F + 1), if it can be simplified to h · cS(1 − c)F for some S, F ∈ N
and h ∈ R+. Rearranging the coefficients specifying how the constants depend on
eq2 (henceforth let p = eq2), we therefore have to prove the following:

p
∑
`

a`c
` + (1− p)

∑
m

bmc
m = cS(1− c)F .

For n < S or n > S + F , there is no summand cn. Hence, we obtain that
pan + (1− p)bn has to equal 0 for n < S and n > S + F . This linear equation can
only hold for a specific value of p, unless aS = bS = 0. As we prove the general
case, we may not restrict p to a specific value, seeing that eq2 depends on x and
y. Thus, aS = bS = 0. Hence the sum reduces to

p
S+F∑
`=S

a`c
` + (1− p)

S+F∑
m=S

bmc
m = cS(1− c)F .
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The sum
∑S+F

`=S a`c
` is proportional to a beta distribution, specifically eq1

y(c). The
only beta distribution with maximal exponent S + F , and minimal exponent S is
fB(c;S+1, F+1). Thus, eq1

y(c) = fB(c;S+1, F+1), and S = ys and F = yf . That
means that the recommendation, fB(c;S + 1, F + 1), equals the resulting opinion,
meaning that the equation can only hold if we are in the exceptional case.

Therefore, any model that represents all its chained trust opinions as beta distribu-
tions, is not in the Beta family with trust chains. The sole exception is the model
where trust chaining returns the recommendation without modification, S⊗T = T .
Such a model (implicitly) asserts that all recommendations are always completely
accurate. This model is neither theoretically interesting, as it can be formulated
without trust chaining altogether, nor suitable in practice, as recommendations are
not always completely accurate.

Corollary 8.12. CertainTrust [Rie07] and TRAVOS [TPJL06] are not in the Beta
family with trust chains.

Proof. In CertainTrust and TRAVOS the result of a trust chain is always (isomor-
phic to) a beta distribution.

TRAVOS is an interesting case, as the authors set out to do essentially the same as
is done in this paper. Similar to this paper, they treat the Beta model formally (us-
ing random variables for the integrity, for the outcomes and the recommendations)
and study the relation between honest recommendations and fake recommenda-
tions. However, TRAVOS asserts that the result of a trust chain (in their case
called reputation) is a beta distribution. A similar argument holds for Subjective
Logic:

Corollary 8.13. Subjective Logic [Jøs97] is not in the Beta family with trust
chains.

Proof. In Subjective Logic the result of a trust chain is always (isomorphic to) a
beta distribution.

Hence, Subjective Logic breaks an assumption of the Beta model (on which it is
based), or its operator dealing with recommendations (called discounting) does
not actually model trust chaining. Both can be argued, since in Subjective Logic
discounting is based on fuzzy logic, rather than distributions over integrity param-
eters, yet trust opinions and trust aggregation (called fusion) are based on the Beta
model (i.e. based on distributions).

It is possible to alter Subjective Logic to incorporate a trust chaining operator such
that it is isomorphic to a structure S(θ, χ). However, the property of Subjective
Logic that a trust opinion equates to a belief triple will no longer hold. Rather, a
trust opinion will equate a weighted sum of belief triples, e.g.

∑
i ki(bi, di, ui). The

fusion (trust aggregation) of two trust opinions
∑

i ki(bi, di, ui) and
∑

j k
′
j(b
′
j, d
′
j, u
′
j)

will then be
∑

i,j ki ·kj((bi, di, ui)⊕(b′j, d
′
j, u
′
j)), where ⊕ denotes unaltered fusion of

belief triples from Subjective Logic. There are several valid variations for transitive
trust operators (trust chains), and Proposition 8.4 shows that the operator need
not be complicated. In Chapter 10, we formally introduce such a model.
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8.5 Conclusion

We study a family of models based on the Beta distributions: the Beta family with
trust chains. The models in that family are very similar to the Beta model, but
more expressive. In particular, they can express trust chaining.

An important property, proven for all models in the Beta family with trust chains,
is that trust chaining operations are modular (Proposition 8.8 and Theorem 8.9).
So complicated trust opinions can be constructed by aggregating simpler trust
opinions. Many existing trust models have asserted this property, which we now
proved.

Another commonly asserted property in models inspired by the Beta model, is
that all trust opinions can be represented as beta distributions. This property is
disproved for models in the Beta family with trust chains (Theorem 8.11). This
result implies in particular that Subjective Logic, TRAVOS and CertainTrust are
not in the Beta family with trust chains (Corollaries 8.13 and 8.12).

We have proven that, up to isomorphism, every trust model in the Beta family
with trust chains implicitly or explicitly makes assumptions about lying strategies
and (except in special cases) about the entanglement (Corollary 8.10). Conversely,
we have shown that, up to isomorphism, all trust models in the Beta family with
trust chains can be constructed by selecting lying strategies and an entanglement
(Corollary 8.10). Moreover, we have created a tool (Canephora) that calculates
chained trust opinions , when instantiations of an entanglement and lying strategies
are provided.



9

Quantifying Information from
Recommendations

A challenge, when chaining trust opinions, is to know how recommenders act when
they give fake recommendations , i.e., to know their lying strategy. We discuss this
issue in detail in Section 9.2.

Part of the challenge of analysis of lying strategies, is to deduce which information
is being leaked by which strategy. To reason about information leakage, we use
techniques similar to those applied in differential privacy (e.g. in [Dwo06]). First,
we illustrate the influence of lying strategies on a simplified example inspired by
differential privacy:

Example 9.1. Assume a recommender witnesses a coin flip and the subject does
not. If the subject wants to determine the result of the coin flip, he asks the
recommender. Given the recommender’s integrity parameter p, we know that with
probability p he tells the truth about the outcome of the coin flip. However, with
probability 1−p, the recommender is not bound to the truth. In fact, then his goals
is to provide us with as little overall information about the coin flip as possible. We
have depicted the scenario in Figure 9.1. In the figure, c represents the bias of the
coin, p the integrity parameter of the recommender and a and b the probability that
he reports the correct result of the coin flip, provided he may lie. More specifically,
if the recommender may lie and he sees heads (F=h), then he says heads (S=h)
with probability a and tails (S=t) with probability 1−a. If the recommender may
lie and he sees tails (F=t), then he says tails (S=t) with probability b and heads
(S=h) with probability 1− b.
The resulting probabilities are summarised in Figure 9.2. The rows in the table
correspond to the actual value of the coin flip, the columns to the statement of the
recommender. The probability that the coin flip is heads (F=h), given that the
recommender stated heads (S=h), is shown in the top left entry of the table. It is
computed by adding the probability that the recommender is truthful (p) to the
probability that the recommender is allowed to lie, but still chooses to state heads
((1− p)a). The remaining entries of the table are deduced similarly.

Coin

c

1− c

p

p

1− p

1− p

a

b

1− b
1− a

F=h

F=t

S=h

S=t

Figure 9.1: A coin flip and the choices of a recommender.
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Actual � Stated S=h S=t
F=h p+ (1− p)a (1− p)(1− a)
F=t (1− p)(1− b) p+ (1− p)b

Figure 9.2: Probabilities of a recommender’s statements after a coin flip.

If the values of the row representing F=h are equal to the values of the row repre-
senting F=t, the probability of a statement of the recommender is not correlated
with the actual value of the flip. In this case the statements of the recommender do
not leak any information. The two rows are equal if and only if a+ b = 2p−1

p−1 . Since

a, b and p represent probabilities, their values are in [0, 1], and thus the expression
2p−1
p−1 has to be non-negative, for the equation to hold. This in turn limits the

probability of the integrity parameter p to be in [0, 1/2]. If p takes values in (1/2, 1],
the two rows are not equal (i.e. P (S=h|F=h) 6= P (S=h|F=t)). Since it is not
the case that P (S=h|F=h) = P (S=h), there must be some correlation between
statements (S) and actual values (F ) and information leakage is unavoidable.

The intuition behind the example is straightforward. As long as we are allowed to
lie at least half the time, we can lie exactly half the time. Then, since there are
only two options (state the actual value, or state the opposite), we avoid giving
away information. What our strategy should be in case information leakage is
unavoidable has not yet been defined. In fact, what information and information
leakage is, has not been formally defined. We define a measure of information
(entropy) and information leakage in Section 9.3.

In Section 9.2, we revisit the game from Example 9.1 with a formal notion of
entropy. More importantly, we propose a series of generalisations of that game.
The final game presented in Section 9.2 reflects the game that the worst-case
recommender plays in trust chains.

The utility function of the games in Section 9.2 is based on entropy, however, we
have not defined which random variable we want entropy of. We show that there
are different random variables to study information leakage of, and which are more
interesting than others.

9.1 Entropy

We have identified that in Example 9.1, an optimal solution may not always exist.
To quantify concepts such as information and information leakage, we introduce
the notion of entropy, as in [McE01]:

Definition 9.1 (Entropy). The entropy H of a discrete random variable X with
possible values x1, ..., xn for n ∈ N is given by H(X) = E(I(X)), where E is the
expected value and I(X) is the random variable denoting the information content
of X. Let p denote the probability mass function of X, then the entropy is:1

H(X) =
n∑
i=1

p(xi) I(xi) =
n∑
i=1

p(xi) log
1

p(xi)
.

1In our considerations the base of the logarithm is not important.
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If p(xi) is equal to 0 for some i ∈ {1, . . . , n} and n ∈ N, then p(xi) log( 1
p(xi)

) is
taken to be 0.

Entropy can be extended to differential entropy, for continuous random variables
X ranging from a to b, with probability density function fX

h(X) =

∫ b

a

fX(x) log(
1

fX(x)
) dx.

We extend the notion of entropy to a notion of conditional entropy as in [McE01].

Definition 9.2 (Conditional entropy). The entropy H of a discrete random vari-
able X given Y with possible outcomes x1, . . . , xn and y1, . . . , ym for n,m ∈ N is
given by H(X|Y ) = E(H(X|Y = y)), where E is the expected value for Y and
H(X|Y = y) is the random variable denoting the information content of X under
the condition Y = y. Let p and q denote the probability mass function of H(X|Y )
and Y , respectively, then the conditional entropy is:

H(X|Y ) =
m∑
j=1

q(yj)H(X|Y = yj) =
m∑
j=1

q(yj)
n∑
i=1

p(xi|yj) log
1

p(xi|yj)
.

Conditional entropy can be extended for continuous random variables X and Y ,
by replacing the occurrences of entropy with differential entropy, i.e. h(X|Y ) =
E(h(X|Y = y)), and by replacing sums with integrals.

Definition 9.3 (Information leakage). Information leakage of a random variable
Y about X is defined as H(X)−H(X|Y ) (or h(X)− h(X|Y ) for continuous X).
If the base of the logarithm is 2, information leakage is given in bits.

Note that tables such as Figures 9.2, 9.3 and 9.4 only exist to provide an intuitive
insight in information leakage. These tables have the property that the information
leakage is 0 if and only if all rows are equal. Since information leakage not only
covers the case that information leakage is 0, there is no formal reason to introduce
these tables.

Finally, we define relative entropy, or Kullback-Leibler divergence:

Definition 9.4 (Relative Entropy). Let X and Y be discrete random variables
with the same set of outcomes {k1, . . . kn} for n ∈ N. Let p and q be the probability
mass function of X and Y , then the relative entropy between X and Y is:

DKL(X||Y ) =
n∑
i=1

p(ki) log(
p(ki)

q(ki)
).

The relative entropy is used to measure the information lost when Y is used to
approximate X.

We use the notion of information leakage to define information games played be-
tween the subject and the recommender in Section 9.2 Exactly what this entropy
represents, and which random variables we want to measure entropy of is discussed
in Section 9.3
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9.2 Information Games

For a concrete model of trust chaining, the lying strategy is required (see Corol-
lary 8.5). Rather than assuming such a lying strategy (or using statistical data),
in this section, we propose to apply game theory to find rational lying strategies.
A comprehensive introduction into game theory can be found in [OR94]. We do
not introduce game theory in its full generality. The games in this section (and
their analysis) can be understood without prior understanding of game theory.

We first introduce a general game between the recommender and the subject. We
then provide a series of increasingly complex instances of the game. The most
complex instance will cover the basic trust chaining described in Definition 8.3
and explain how fake recommendations might, in fact, provide information.

The family of games has the property that they are zero-sum games, which means
that the loss of one party (e.g. the recommender) is equal to the gain of the other
party (e.g. the subject).

Definition 9.5 (The zero-sum recommendation game). The zero-sum recommen-
dation game is a family of games, parameterised with p, between the recommender
and the subject where each player has exactly one move. First, the recommender
makes a recommendation regarding a value. With a probability p, the recom-
mender has no choice but to state the real value. With a probability 1 − p, the
recommender picks and states a value of choice. Then the subject must guess
the value. In these games, the recommender tries to minimise information leakage
whereas the subject chooses a strategy to obtain a maximal amount of information.

A mixed strategy allows a user to perform actions with a chosen probability. If the
set of possible values in the zero-sum recommendation game is X, then a mixed
strategy is a probability distribution over X, such that each element has a certain
probability (density) of being recommended. In each game, it is evident what the
pure options for the recommender are, and how this relates to the mixed strategy
of the recommender.

In the zero-sum recommendation game, the recommender tries to minimise infor-
mation leakage. This choice of strategy reflects a worst-case recommender. This
assumption is debatable, since the recommender might actually attempt to skew
the subject’s opinion about the target positively (advertise the target) or negatively
(smear the target). However, our choice provides an absolute minimum.

In Example 9.1 the optimal strategy was not to provide no information (set a +
b = 1;2) when the recommender can lie, but to offset the number of times the
recommender must tell the truth (set a + b = 2p−1

p−1 ). In the following, we model
the introductory example in the context of information games.

Game 9.1. (Coin flipping) In the coin flip game an recommender picks a proba-
bility distribution over recommendations, by picking two parameters a and b. This
is his mixed move. Upon receiving the recommendation S = s, the subject as-
signs his estimated probability values to F=h and F=t. Since the best estimate

2If a+ b = 1 and the recommendation is fake, then the subject has no information. However
there is a probability that the recommendation is not fake. Thus information is leaked, when the
probability is non-zero.
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of the value of the flip under recommendation s is P (F |S = s), the entropy of the
estimate is H(F |S = s). The subject tries to minimise this entropy whereas the
recommender wants to maximise it.

Recall that the goal of the recommender is to leak as little information as possible.
Hence, if possible, the recommender chooses a and b in such a way that the two
rows in Figure 9.2 are equal, thus setting a+ b = 2p−1

p−1 . For p > 1/2, no solution ex-
ist, and we propose the use of information leakage, from Definition 9.2, to evaluate
the choice of a and b. A good lying strategy (choice of a and b) minimises the infor-
mation leakage of the statement S about the coin flip F . As the recommender does
not control F , he can only minimise the information leakage, H(F )−H(F |S), by
choosing S. Effectively, the recommender must maximise H(F |S), the conditional
entropy of F under S.

As a formula, the expected conditional entropy is:

H(F |S) = P (F=h,S=h)log2

(
P (S=h)

P (F=h,S=h)

)
+P (F=h,S=t)log2

(
P (S=t)

P (F=h,S=t)

)
+P (F=t,S=h)log2

(
P (S=h)

P (F=t,S=h)

)
+P (F=t,S=t)log2

(
P (S=t)

P (F=t,S=t)

)
.

We can instantiate the formula with values from Figure 9.2. Each cell gives the
conditional probability P (S|F ), so we need to multiply the cells with P (F ), since
P (F, S) = P (S|F ) · P (F ). The probability P (F=h) = c and P (F=t) = 1− c. So
we can instantiate P (F=h, S=h) = c(p+(1−p)a), P (F=h, S=t) = c(1−p)(1−a),
P (F=t, S=h) = (1−c)(1−p)(1−b), and P (F=t, S=t) = (1−c)(p+(1−p)b), keeping
in mind that P (S=h) = P (F=h, S=h) + P (F=t, S=h). The recommender sets a
and b (knowing c and p), maximising H(F |S). The term reduces to c log2(

1
c
) +

(1 − c) log2(
1

1−c), when we set a + b = 2p−1
p−1 , which is the a priori entropy of a

coin flip H(F ). That means that the difference H(F |S)−H(F ) = 0, and there is
no information leakage, as expected in the analysis above without using entropy.
Now, we not only have a formal way of expressing lack of information leakage, but
also a quantification if information leakage does occur. If p > 1/2, the maximal
expected conditional entropy occurs when the recommender picks a = 0, b = 0.

A real recommender in a trust chain has more than two options. Therefore, we
now look at a simple zero-sum recommendation game where the recommender has
k options:

Game 9.2. (The k-sided die) The setup of the game is similar to the one of
Game 9.1. The only difference is that the move of the recommender is a distri-
bution over k recommendations and the subject picks an estimate by assigning
a probability to k different outcomes. In the game, the subject (recommender)
tries to minimise (maximise) the entropy of his estimate, corresponding to the
conditional entropy H(X|S).

Rather than a coin flip, we can imagine a k-sided die. Instead of F , ranging over
{h, t}, we have a random variable X ranging over {x1, . . . , xk}. The fairness of
the die is captured in c1, . . . , ck, with c1 + . . .+ ck = 1, where ci is the probability
of X = xi. The lying strategy is captured in ai,j, 1 ≤ i, j ≤ k, representing the
probability of stating xj (S=xj), when xi occurred (X=xi). For k = 2, this game
is not essentially different from Game 9.1. Simply let heads and tails correspond
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Is � Stated S=x1 S=x2 S=x3
X=x1 p+ (1− p)a1,1 (1− p)(1− a1,2) (1− p)(1− a1,3)
X=x2 (1− p)a2,1 p+ (1− p)(1− a2,2) (1− p)(1− a2,3)
X=x3 (1− p)a3,1 (1− p)(1− a3,2) p+ (1− p)(1− a3,3)

Figure 9.3: Probabilities of recommender’s statements after die throw.

to x1 and x2, use X rather than F , and let a = a1,1, b = a2,2 and c = c1. Let k = 3,
and we obtain Figure 9.3.

Again, the recommender tries to set the a values, such that all rows are equal:

a3,1 = a2,1 = a1,1 +
p

1− p,

a3,2 = a1,2 = a2,2 +
p

1− p,

a3,3 = 1− a3,2 − a3,1 = 1− a1,1 − a2,2 − 2
p

1− p.

Like before, we have that any optimal solution must satisfy a restraint on the
diagonal, a1,1 + a2,2 + a3,3 = 1 − 2 p

1−p . Simple induction shows that the sum can

be generalised for any k, to a1,1 + . . . + ak,k = 1− (k − 1) p
1−p .The right-hand side

of the equation, 1− (k − 1) p
1−p , is positive only when p ≤ 1/k. A solution without

information leakage, therefore, exists only if p ≤ 1/k.

If p > 1/k, the recommender wants to minimise information leakage, thus maximise
the conditional entropy. The conditional entropy H(X|S) is:

∑
i,j

ci((1− p)ai,j [+ p]if i=j) log2

(
cjp+

∑
1≤h≤k ch(1− p)ah,j

ci((1− p)ai,j [+ p]if i=j)

)
.

In the case k = 2, p > 1/2, Game 9.1 is actually an instance of this game. We know
that a1,1 + a2,2 = 0 is the optimal strategy for the recommender. The obvious
generalisation to cases k ≥ 3 does not hold. For specific choices of p and ci, a
numerical analysis can show optimal solutions.

In trust chains that we study, targets are not k-sided dice. Rather, targets have
an integrity parameter which determines the outcome of interactions. The recom-
mendation, in the trust chain, regards this integrity parameter. So rather than a
die with k sides, a target is a user with one of k possible integrity parameters:

Game 9.3. (The k-limited target.) Assume there is a target whose integrity
parameter is an element of a set of values X (of cardinality k). A target with
integrity x performs an action, which is a success, s, with probability x, and a
failure, f, with probability 1 − x. We use a random variable X to model the
integrity parameter, E to model the action of the target.

Here, two games are possible. If we are interested only in the integrity parameter,
the game is identical to Game 9.2. Alternatively, if the subject tries to estimate
the outcome of the next interaction E with the target, rather than the integrity
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Is � Stated S=x1 S=x2 S=x3
E=s px1 + p(x1a1,1 + x2a2,1 + . . .) px2 + p(x1a1,2 + x2a2,2 + . . .) . . .
E=f px1 + p(x1a1,1 + x2a2,1 + . . .) px2 + p(x1a1,2 + x2a2,2 + . . .) . . .

Figure 9.4: Probabilities of recommender’s statements about a target.

parameter X, then the move of the subject is to pick s or f (and the move of the
recommender remains unchanged). The alternative is essentially saying that the
integrity of the target is irrelevant by itself, but only relevant because it determines
the probability of success, which is deemed inherently interesting. In the variant
where we are inherently interested in the integrity, the utility function is still
H(X|S), in the version where we are inherently interested in the outcome of the
next interaction, it is H(E|S).

Using ϕ for 1 − ϕ, we obtain Figure 9.4. If the recommender picks ai,j as before;
ai,j = ai,i+

p
1−p and a1,1+ . . .+ak,k = 1−(k−1) p

1−p , then it is easy to see that both
rows are equal. In other words, if the subject gains no information about X, he
gains no information about E. If p ≤ 1/k, no information need be leaked about X,
and thus nor about E. The converse does not necessarily hold, as even if p > 1/k.

The conditional entropy of E under S, H(E|S) is:

∑
i

P (S=xi,E=s)log2

(
P (S=xi)

P (S=xi,E=s)

)
+
∑
i

P (S=xi,E=f)log2

(
P (S=xi)

P (S=xi,E=f)

)
.

where P (S=xi, E=s) =
∑

j xjcjaj,i and P (S=xi, E=f) =
∑

j(1 − xj)cjaj,i. Al-
though H(X)−H(X|S) = 0 implies H(E)−H(E|S) = 0, H(X|S) 6= H(E|S).

We have two variants of the k-limited target game, differing in their utility function,
H(X|S) versus H(E|S). Which utility function is more suitable depends on the
interest of the subject. Note, however, that H(X|S) is a more discriminatory
measure, as H(X)−H(X|S) = 0 implies H(E)−H(E|S) = 0. That means that if
the values of p and all ai,j are set in such a way that all rows are equal in Figure 9.3
then both rows in Figure 9.4 are equal. However, the converse does not hold. For
example, if, for every xi there exists xj such that xi = 1−xj, then a trivial optimal
solution exists for values of p up to 1/2. By restricting the options to saying xi or
xj, the solution is the same as in Game 9.1, ai,i + aj,j = 2p−1

p−1 , with ai,j = 1 − ai,i
and aj,i = 1− aj,j. This strategy leaks a lot of information about X, as it restricts
it to two values, but no information about E.

The choice of random variable to measure information over both influences the
optimal strategy, and the measuring of suboptimal strategies. Contrary to the def-
inition of Game 9.3, the recommender does not know the integrity parameter, but
rather has a certain trust opinion on the target. The shape of the recommendation
is, therefore, not an claim of an integrity parameter, but a claim of a trust opinion.

Game 9.4. (Basic trust chaining game) A game similar to Game 9.3 can be defined
for basic trust chaining, defined in Definition 8.3. The set of values is a subset
of N × N, since not every pair (s, f) is necessarily a valid recommendation. In
particular, if λ(s + f) = 0 (i.e. the probability of s + f interactions is zero), then
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(s, f) is not a valid recommendation. The set of possible recommendations is
therefore {(s, f)|s, f ∈ N, λ(s+ f) > 0}.
If the size of the set of possible recommendations is k, then there is an obvious
optimal lying strategy for p < 1/k, for reasons detailed in Game 9.2. If the subject
is interested in finding out the real interaction history , O, of the recommender the
optimal strategy works only in these cases. However, the subject is not interested
in O, but in information about the target (e.g. X or E from Game 9.3). Since
X and E are less discriminative than O, similar to how E was less discriminative
than X in Game 9.3, there may exist optimal strategies for X and E which are not
optimal for O. We can immediately observe that if the recommender only leaks
information about the size of his real opinion, he leaks no information about the
target. That means that for X and E, we merely require two rows to be equal,
when the size of the recommendations are equal (e.g. we can distinguish (1, 0) from
(1, 1) but not from (0, 1)). Hence, we can identify a class of optimal lying strategies
for p < 1

k+1
, where k is the maximal value for λk > 0.

Depending on the exact choice of information of interest (e.g. for E), the class of
optimal lying strategies may be even larger.

We can find the optimal strategy for both players in all instances of Game 9.1, find
the optimal strategy of the recommender in Games 9.2, 9.3 and 9.4 under some
circumstances, and deduce the optimal strategy of the subject in Games 9.1–9.4
given the strategy of the recommender.

The zero-sum information game is chosen in such a way that the optimal strategy
for the recommender is the worst-case scenario for the subject. Formally, we can
state that the Nash equilibrium of Game 9.4 is interesting to find, since it provides
the optimal strategy of the subject in the worst-case scenario. If, in reality, the rec-
ommender has another goal than to minimise information leakage, then the subject
is guaranteed to gain information. This follows from the fact that if the opponent
unilaterally deviates from the strategy in the Nash equilibrium, the opponent loses
utility, which means you gain utility in a zero sum game.

In the section, we saw that the notion of information leakage was to general to be
used in the definition of the zero-sum recommender games. We needed to reason
about the information leakage of a particular random variable.

9.3 Utility

We saw that the choice of representation of information has a real impact on the
strategies of the recommender. The choice is, in a sense, subjective. We look
at four different choices. The first choice being the most straightforward: the
number of experiments directly represents the amount of information. The second
and third have been mentioned in Section 9.2, namely the entropy of the integrity
parameter and the outcomes of interactions. Finally, we introduce an information
measure that combines the positive aspects of these measures.
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9.3.1 Interactions

The most straightforward measure of information is the number of interactions
required for the probability distribution. In the case that the trust opinion is a
beta distribution, the number of interactions required is obvious. It is less obvious if
the trust opinion is a sum of different beta distributions, as is common for chained
trust opinions (Theorem 8.11).

We need a measure that provides the right answers for beta distributions, that
provides a unique answer for a distribution, and that provides intuitive answers
for values between two beta distributions. The uniqueness requirement is obvious,
but not trivial. Considering that β(1, 1) = 0.5 · β(2, 1) + 0.5 · β(1, 2), the measure
must be equal for both sides.

We can construct a measure based on the notion that for every s, f , there are a, b
such that β(s+1, f+1) = a·β(s+2, f+1)+b·β(s+1, f+2). Using that notion, it is
possible to convert every weighted sum of beta distributions

∑
iwi ·β(si+1, fi+1),

with si + fi ≤ n, into a sum
∑

j vj ·β(s′j + 1, f ′j + 1) with s′j + f ′j = n. For example,
0.5·β(1, 1)+0.5·β(2, 1) = 0.75·β(2, 1)+0.25·β(1, 2). We can use the total difference∑

j | 1
n+1
− vj| as a basis for the measure, as it has the property that it is invariant

over increases of n. More precisely, we need to multiply that with n+1
2

, to normalise
it to number of experiments, making n+1

2
·∑j | 1

n+1
− vj|. Although this measure

adheres to the three properties we required, it does have some counterintuitive
properties. Furthermore, it can only be applied to finite weighted sums of beta
distributions.

There is a better measure that is congruent to measuring the number of experi-
ments, based on entropy measures, which we explore in the next section.

9.3.2 Entropy

A standard way of representing information content is entropy. Contrary to the
method based on interactions mentioned above, it generalises neatly to other dis-
tributions. Furthermore, the games from Section 9.2 are designed to operate using
entropy measures. If we want to use the notion of entropy to represent the infor-
mation content of a trust opinion, then we need to select a random variable. We
have seen that selecting the relevant random variable is neither obvious nor incon-
sequential. There are two obvious candidates, the (continuous) random variable
representing the integrity of the target (i.e. the random variable that is distributed),
or the (discrete) random variable representing the next outcome of the target. We
evaluate both candidates below and then study a combined measure.

Entropy of Integrity If we are interested in information regarding the reliability
of target C, the natural choice is to look at the entropy of the random variable
representing that; RC . However, we may not actually be interested in the exact
value of RC . Whether RC is equal to 0.501 or 0.502 may not be important in
reality, yet information-wise these two values are treated as completely different
values. Intuitively, using RC is too discriminative.

An interesting scenario arises, if we pick RC to be the measure of information. If a
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Figure 9.5: A beta distribution β(6, 9) multiplied with 0.5. The line f(a) has the
property that max(f(a), β(6, 9)) has a surface area of 1 in [0, 1].

recommender is forced to tell the truth, T , with a certain probability, p, and can lie,
L, otherwise, the information content of his recommendation can be characterised
as p · T + (1 − p) · L. In Figure 9.5, we can see an example, where p = 0.5 and
the truth T is β(6, 9), and the lying strategy L is chosen to maximise the total
entropy of the graph. If we can algebraically compute this graph, we can find the
optimal lying strategy in a generalised case of Game 9.4. For us, an open question
is whether we can generally find exact values for a and b, which is required for
finding L.

Intuitively, the entropy of RC is high for “flatter” graphs (e.g. the uniform dis-
tribution has maximal entropy). Graphs that are strongly concentrated around a
certain value have low entropy, thus more information than flatter graphs. This
correlates with what we expect from a measure of information. Hence, the entropy
of integrity is a suitable measure of entropy, although not perfect as it may be
considered too discriminative.

Entropy of Outcome of Interaction Naively, we may argue that we are not in-
terested in the (exact) value of RC . Rather that we are ultimately interested in
EC , the probability of success in an interaction, since the point of creating a trust
opinion is for the subject to decide whether or not to enter the next interaction,
which is determined by the likelihood of success. If we are interested in informa-
tion regarding the next outcome of C, we should study the entropy of the random
variable representing the next outcome; EC . Recall that P (EC = s|RC=0.5) = 0.5,
meaning that the outcome is equivalent to a fair coin flip, which has 1 bit entropy.
However, RC is not a fixed number, but has a distribution, hence we should take
the expectation of the entropy of EC :

∫ 1

0
fRC (x) · H(EC |RC = x) dx. If RC hap-

pens to be somewhere around 0.5, then increasing the number of interactions is
increasing the entropy too (decreasing the information). This measure of entropy
on the distribution based on (0, 0) gives 0.721348 bits of entropy, but (100, 100)
gives 0.996402 bits of entropy. We lose 0.996402− 0.721348 = 0.275054 bits of in-
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formation (about the next outcome), when we have more interactions. According
to [ZMLM11] (as well as intuition), the utility (i.e. information measure) should
increase when more data is available, however we lost bits when we accrued 200
data points.

Despite the intuition that EC is more relevant for our interests than RC , the
measure performs unsatisfactory. Distributions based on many interactions can
perform much worse than the uniform distribution. The measure should reflect
that gaining one success and one failure increases information, which this measure
does not.

Combined Measure of Entropy Now we combine the intuitive notion that EC is
more important than RC , with a suitable information measure (as RC provides),
with the notion from Section 9.3.1.

The problem with studying the expected entropy of EC (i.e. E(h(EC))), is that
it is strongly biased around 0.5. Let Bx and By be Bernoulli distributed random
variables with parameters x and y, respectively. In other words, Bx is EC given
RC = x and By is RC given RC = y. Then we can study the expected relative

entropy between Bx and By, given x, y as outcomes of RC ,
∫ 1

0

∫ 1

0
fRC (x) · fRC (y) ·

DKL(Bx||By) dx dy. Essentially, this measures the entropy of the outcome of the
interaction with a randomly (according to the distribution fRC ) selected reliability
x, relative to the outcome of an interaction with the true machine with unknown
reliability y (distributed with fRC ). A concrete interpretation would be to say that
there is a true integrity x, and an approximated integrity y, and we want to know
the relative entropy of between these two values. The probability density that the
true integrity is x with probability density fRC (x), and the approximation is y with
probability density fRC (x).

This entropy measure does not have the same problem as the entropy measure
based on RC , that it is too discriminative (e.g. seeing 0.501 as completely different
from 0.502). And it also does not have the same problem as the entropy measure
directly based on EC , that it does not correlate with the number of interactions.
In fact, an important characteristic of this approach is that correlates perfectly
with the number of experiments. The beta distributions based on (5, 5) and on
(10, 0) have the same information content in this measure. Moreover, the entropy
of the beta distribution based on s successes and f failures equals 1

s+f+2
. Recall

that entropy is the converse of information, so if s + f increases, we expect the
entropy to decrease towards 0. The entropy of an arbitrary probability distribution
can now trivially be transformed to an equivalence in interactions by taking the
multiplicative inverse and subtracting two. Hence, this entropy measure combines
the best of both worlds. It does, however, have the peculiar side effect that the
uniform distribution does not provide the minimal entropy (but fB(0, 0) does).

Whether the expected relative entropy between two different interactions dis-
tributed via the relevant distribution is superior to simply taking the entropy of
the distribution is debatable. Both measures have the right formal properties to
function as an measure for information leakage, making the choice subjective.
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9.4 Conclusion

On the basis of the fact that lying strategies are the big unknown in trust chains,
we studied these lying strategies in this chapter.

In Section 9.2, we introduced four games with increasing complexity. Each of these
games was a zero-sum recommender game. The first game is a simple game where
the recommender tries to hide the result of a coin-flip, despite the fact that he must
tell the truth a fraction of the time. The fourth game is sophisticated enough to
encompass a recommender that tries to hide information on the target, despite the
fact that he must provide his trust opinion a fraction of the time. We noticed that
there is a generic class of optimal solutions for any notion of information about the
target. We also noticed that for cases outside of that class, the optimal solution
depends on the measure of information.

Therefore we studied several measures of information in Section 9.3. The first
measure had no basis in entropy and did not generalise to all trust opinions, and
therefore was not a suitable for the games, despite its intuitive merits. The second
measure was the entropy of the integrity parameter. This measure provided intu-
itively satisfying results for trust opinions, but was deemed too discriminative. The
third measure was the entropy of the outcome of the next interaction. The subject
is interested mostly in the next interaction, however, the measure is not sufficiently
discriminative and provided unsatisfactory measurements for trust opinions. The
last measure combines the positive aspects of the three different methods.

Future work We have not found the general optimal strategy for the recommender
in Games 9.2-9.4. It is interesting to find the optimal solutions for both the mea-
sure based on entropy of integrity and the combined measure, as described in
Section 9.3. Given the optimal strategy for the recommender, the subject can
assign χB to equal that optimal strategy. The subject is guaranteed not to lose
information when the recommender changes strategy. Formulated differently, the
subjects choice maximises the worst-case information gain.

Another interesting direction is to study different types of games. If we assert
a specific goal for the recommender (e.g. to advertise specific targets), the game
becomes asymmetrical. There could be scenarios with implicit cooperation, where
the recommender provides a overly positive recommendation close to his real opin-
ion when lying, and the subject accepts the recommendation with high confidence,
since it is at least close to the truth when false.

Finally, we can model attacks on systems with recommendations on recommenders.
We can assume a system where recommenders are recommended themselves (like
the WoT). There can be a cluster of malicious recommenders that all recommend
each other positively. Their goal is to make themselves credible. Such a goal can
be encoded as a utility function, to define games over lying strategies with.
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A Generic Extension of the Beta Model

In Chapter 6, we presented the Beta model. The Beta model is a trust model that
only supports the trust aggregation operation. We have added the logical trust
operations , in Chapter 7, which immediately yields a new model, namely the Beta
model with logical trust operations. In Chapter 8, we added trust chaining to the
Beta model. Such an extension yielded more than one possible model. We provided
the entire family of Beta models with trust chains, and a straightforward way of
selecting such a model, namely setting the entanglement and lying strategies. In
this chapter, we select a particular model of trust chaining and extend the Beta
model with both the logical trust operations and trust chaining.

The formulae for the logical trust operations (e.g. in Theorem 7.4) hold under
arbitrary circumstances. The shape of the composite trust opinions, therefore,
does not alter when we allow trust chaining. Together with the modularity results
(e.g. in Theorem 8.9), this seems to imply that the two models (the Beta model
with logical trust operations and a member of the Beta family with trust chaining)
can be merged seamlessly. One of the goals of this chapter, is to show the relative
ease of merging the two extensions of the Beta model into one model, called the
Default Model. The construction of the Default Model is formal, meaning that we
show how to formally derive a model with non-trivial expressivity. Additionally, it
carries the implication that formal trust models can be applied to practice, rather
than just exist as theoretical entities of which we proved their existence.

Besides showing the bearing of our theory on practice, a goal of this chapter is to
combine the methodology of Part I, i.e. the axiomatic method, with the methodol-
ogy of Part II, i.e. the probabilistic method. In particular, in Chapter 5, the axioms
for dilution – the operator for trust chaining – encoded the assumption that lies
contain no information. It is immediate that for arbitrary lying strategies, lies do
contain information – in fact, they do, whenever lies correlate (positively or nega-
tively) with the truth. However, for some specific lying strategies, characterised in
Section 10.1.3, the assumption that lies contain no information is warranted. The
axioms for dilution also encoded the assumption that every statement is equally
likely a lie. Again, this is not the case for arbitrary lying strategies, but is the case
for some lying strategies. The model that we study, the Default Model, selects a
lying strategy with both properties.

The Default Model is chosen for its mathematical properties. One property, as just
mentioned, is that lies carry no information. Moreover, every statement is equally
likely to be a lie. Another property is that the entanglement has no bearing on
the model. In other words, the model correctly models situations with arbitrary
entanglements. Yet another property is that the representation of trust opinions
is relatively simple. Most generally, a basic trust chain of finite summations of
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beta distributions may yield an infinite summation of beta distributions. In our
case, however, these summations remain relatively simple to express, because they
are finite.

We divide this chapter in three sections. First, in Section 10.1 we define the
model, and study its properties using techniques from Chapter 9. Then, we look
at alternative representations in Section 10.2. Finally, in Section 10.3, we look at
the application of the axioms from Chapter 5.

10.1 The Default Model

The model that we select is called the Default Model. The Default Model is
chosen for its mathematical properties, as mentioned before. In order to rigourously
discuss the mathematical properties, we need to formally define the Default Model.
In this section, we refine the techniques introduced for other models, and use it to
define the Default Model.

This section is subdivided in four parts. First, we discuss the syntax of the ex-
pressions in the Default Model, and the corresponding trust networks that may
appear in the model as a consequence. Second, we reuse techniques from Chap-
ters 6, 7 and 8 to provide the tools to define the semantics. Third, we provide
the semantics of the expressions in the Default Model, based on the informal re-
quirements on the model. Fourth, we analyse the model using techniques from
Chapter 9.

10.1.1 Syntax

In Part I, we dealt with an axiomatic approach to trust. In that part, signatures
were one of the central parts of the analysis. A signature defines the set of rele-
vant expressions, and therefore defines which trust networks we reason over. The
set of expressions that we allow in the model, closely matches those described
in Section 10.2. The main difference is that trust chaining must be a postfixing
operation, for reasons detailed later.

It is important that, in this analysis, we do not unnecessarily exclude certain
expressions (i.e. certain trust networks). Assert that there is a trust network for
which we can compute its trust opinion using techniques from Part II, but the
expression that represents the trust network is not included. Then there exists a
more general model based on the same techniques. Ideally, we want to have the
most general model based on the techniques outlined in Part II.

On the other hand, we do not want to unnecessarily include certain expressions. In
particular, expressions that represent a trust network where users appear multiple
times1 are undesirable, as e.g. the requirement of independence in Section 7.1.
Further, expressions that represent a trust network with a recommendation should
not allow this recommendation to be anything other than a simple trust opinion as

1 If we have a network x ∧ y, but the opinion is about A ∧ A (rather than A ∧ B), then
our opinion about A is not necessarily well-defined (it could be x or y). Similarly, if we have
(x · y) · z, and the first intermediate is B, the second intermediate is C, and the target is B, then
our opinion about B is not necessarily well-defined (it could be x or (x · y) · z.
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we assert that recommendations are shaped like interaction histories in Section 8.1.
Finally, an aggregation of composite trust opinions cannot be analysed, as x ∧ y
is an opinion about a conjunct target, and x′ ∨ y′ is an opinion about a disjunct
target, and the aggregate x∧ y+ x′ ∨ y′ must suppose both opinions are regarding
the same target.

Taking the syntax and interpretation as formulated in Section 10.2, we naturally
exclude trust networks where users appear more than once. Let B be the set of
simple trust opinions. Recall the syntax, for simple trust opinions x ∈ B:

ϕ ::= x|ϕ+ ϕ|ϕ · ϕ|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ,

and the graphical and informal interpretations of the expressions. In the interpre-
tations of the expressions, users are anonymous in the sense that the subject and
the target are assigned arbitrary letters, and all intermediate users are assigned
fresh letters. Therefore, none of the expressions can represent a network where a
user appears at more than one place. (Note that opinions can appear in more than
one place, such as x∧x, where both instances of x represent the same opinion about
different users.) Hence, a model based on this syntax should allow us to apply the
techniques from Chapter 7. However, expressions such as x · (y · z), x · (y ∧ z)
and (x ∧ y) + z are allowed in this syntax. The first two expressions contain a
recommendation which is not of the shape assumed in Chapter 8 – namely that
recommendations are simple trust opinions, which y · z and y ∧ z are not – thus
not allowing us to apply the techniques from that chapter. The third expression
aggregates different targets, which we cannot express using our random variables.
We need to restrict the syntax.

The right-hand side of a trust chain ϕ ·ψ represents the recommendation – ψ. The
assumption in Chapter 8 is that recommendations are pairs of natural numbers
which represent alleged interaction histories. Recall that simple trust opinions
map one-to-one to pairs of natural numbers (s, f), via ϑs,f (recall that ϑs,f (x) =
fB(x; s+ 1, f + 1) = NF · xs · (1− x)f ). The implication is that we need to enforce
that ψ can only be a simple trust opinion. Hence, we can formulate trust chaining
as a postfix operator. For simple trust opinions x ∈ B, we define:

ϕ ::= x|ϕ+ ϕ|ϕ · x|ϕ ∧ ϕ|ϕ ∨ ϕ|ϕ.

However, this syntax still allows fusion of trust opinions regarding different users
(e.g. (x ∧ y) + z).

To obtain the largest set of expressions, such that we can straightforwardly apply
the techniques from Chapters 7 and 8, we need to reason about the anonymous
users that form the targets. The expression x+y is meaningful, only if x and y are
trust opinions about the same target. If their targets are composite targets, say S
and T , this is problematic. If S = T , then users appear more than once in a trust
network. Therefore, we can assume without loss of generality that S 6= T . In the
case S 6= T , x and y are trivially trust opinions about different targets (namely
S and T ), making x + y is meaningless. In either case, trust aggregation over
composite targets is meaningless. Therefore, we can distinguish trust opinions for
which aggregation make sense, from those for which it does not. That leads us to
the definition of the syntax of the Default Model:
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Definition 10.1 (Syntax of the Default Model). The set B is the set of simple
trust opinions. For x ∈ B, we define the language:

ϕ := x|ϕ+ ϕ|ψ · x
ψ := ϕ|ψ ∧ ψ|ψ ∨ ψ|ψ

The set P of trust opinions about simple targets contains exactly those expressions
defined by ϕ. The set D of trust opinions contains exactly those expressions defined
by ψ.

The set D contains all expressions in the syntax of the Default Model.

It is immediate that B ⊂ P ⊂ D. Note that P includes a trust chain of a composite
target and a simple target. Say a composite recommender makes a recommenda-
tion, that recommendation must still be a simple trust opinion. Therefore, the
target of the chained trust opinion is a simple target. Thus we can place x · y (for
x ∈ D, y ∈ B) in P , and seeing we are looking for the most largest set on which
our techniques apply, we must place x · y in P .

10.1.2 Techniques

The semantics of an expression are intuitively straightforward. However, some
technicalities need to be straightened out first. In particular, the random variables
for interaction histories represent the entire interaction history , making it difficult
to express trust aggregation of two simple trust opinions. Another technical issue,
is the fact that the assumptions of the Beta model with composite trust and the
Beta family with trust chains are different. We must integrate the assumptions
in such a way that none of the theorems are invalidated. The last technicality, is
the fact that in Theorem 8.1, the opinion on the recommender is assumed to be a
simple trust opinion, whereas we syntactically allow arbitrary trust opinions.

The reason that a random variable for an interaction history, say OA
C , represents

the entire interaction between A and C is for convenience in reasoning about
trust chaining. Having a single, complete interaction history as a random variable
simplifies the notion of what constitutes a truthful recommendation and what
constitutes a lie. The simplification of reasoning about trust chaining comes at the
expense of the simplicity of trust aggregation. The problem is, therefore, that we do
not have the right random variables to denote the trust aggregation of two simple
trust opinions. We do not have two different random variables that both capture
a fraction of the interaction history between A and C, we only have OA

C . Although
we could introduce new random variables to allow a direct formulation of trust
aggregation of simple trust opinions, the deeper insight is that trust aggregation
of simple trust opinions is not strictly necessary. The trust aggregation of all
fractions of the interaction history between A and C is exactly the interaction
history between A and C. Therefore, we can substitute any trust aggregation of
simple trust opinions by a single simple trust opinion. Moreover, we can assume
without loss of generality that expressions do not contain aggregation of simple
trust opinions.

To allow the other operations, trust chaining and the logical trust operations, we
need both the assumptions set out in Chapter 7 and those in Chapter 8. To
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integrate these sets of assumptions, we must take care that all Dependencies D1`–
D6`, Dependencies D1S–D5S, Independencies I1`–I3` and Independencies I1S–I4S
follow from the assumptions we formulate below. We must also take care that we
have the right random variables to deal with certain expressions. In particular, we
must allow statements from composite users (e.g. SA∧BC ), and therefore observation
histories of composite users (e.g. OA∧B

C ). Hence, in addition to ES and RS, we also
have OS

C and SSC , for C ∈ A and S ∈ T.2

It is convenient to define the collection of all random variables, given that we have
E+ and R+, we furthermore define:

O+ := {OS
C : S ∈ T, C ∈ A},

S+ := {SSC : S ∈ T, C ∈ A},
WD := E+ ∪ R+ ∪O+ ∪ S+.

Note that W+ ⊂WD and WS ⊂WD follow immediately.

We can therefore formulate the dependencies and independencies:

D1D RC is uniformly distributed on [0, 1].

D2D P (ET=s|RT=p) = p.

D3D P (OA
C=(xs, xf )|RC=c) =

(
xs+xf
xs

)
cxs(1− c)xfλ(xs + xf ).

D4D ES∧T = s iff ES = s and ET = s, for act(S) ∩ act(T ) = ∅.

D5D ES∨T = s iff ES = s or ET = s, for act(S) ∩ act(T ) = ∅.

D6D E¬T = s iff ET = f.

D7D There exist functions f, g, h, with RS∧T = f(RS, RT ) and RS∨T = g(RS, RT )
when act(S) ∩ act(T ) = ∅, and R¬T = h(RT ).

D8D P (SBC=(ws, wf )|EB=s, OB
C=(ws, wn)) = 1.

D9D P (SBC=(ys, yf )|EB=f, RB=b, OB
C=(ws, wf )) =χB(b, ws, wf )(ys, yf ).

I1D For W ∈WD\{OT
C , S

T
C : T ∈ T, act(S) ∩ act(T ) 6= ∅}, OS

C ⊥⊥ W |RC holds.

I2D For W ∈W+\{RS : B ∈ act(S), RS ∈ R+} and {C,D0, . . . Dn} = A, it holds
that RC ⊥⊥ W |EC , OD0

C , . . . , ODn
C .

I3D For W ∈WS\{ES, SSD : D ∈ A, S ∈ T, B ∈ act(S)} , EB ⊥⊥ W |RB holds.

I4D For W ∈WD\{SSC}, it holds that SSC ⊥⊥ W |ES=f ∩RS ∩OS
C .

That the aforementioned assumptions imply the assumptions of the Beta model,
the Beta model with logical trust operations and the Beta family with trust chain-
ing is immediate. Moreover, if we restrict WD to W+ or WS, these assumptions
are identical to the assumptions of the Beta model with logical trust operations

2Recall that T is the closure of A over ∧, ∨ and ¬.
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and the Beta family with trust chains, respectively. Note that that statement is
strictly stronger than the statement preceding it. The Default model is strictly
stronger than the Beta model with logical trust operations and any element in the
Beta family with trust chains:

Proposition 10.1. The assumptions Dependencies D1D-D9D and Independen-
cies I1D-I4D imply Dependencies D1`-D6` and Independencies I1`-I3`, and the
assumptions Dependencies D1D-D9D and Independencies I1D-I4D imply Depen-
dencies D1S-D5S and Independencies I1S-I4S.

Proof. Each of Dependencies D1`-D6`, Dependencies D1`-D3`, Independencies I1`-
I3` and Independencies I1S-I4S is trivially implied by the dependency or indepen-
dency with the same index. Dependencies D4S and D5S are trivially implied by
Dependencies D8D and D9D.

As a consequence of Proposition 10.1, all Theorems proven in Chapters 6, 7 and 8
remain valid in the Default Model.

To solve the last technicality before formulating the model, we must generalise
Theorem 8.1. That theorem must hold for an arbitrary trust opinion of the subject,
A, about the intermediate, B, and not just simple trust opinions. In particular, in
eq2, the terms (xs+1) and (xf +1) represent the expected value of the simple trust
opinion ϑxs,xf (b) = fB(b;xs+1, xf+1), and should be altered to reflect the expected
value of an arbitrary trust opinion. Similarly, in eq5, the term fB(b;xs + 1, xf + 2)
must be updated. Hence, we can formulate the generalisation of Theorem 8.1 as
follows:

Theorem 10.2. Dependencies D1D–D9D and Independencies I1D–I4D are suffi-
cient to derive the basic chained trust opinion of A about C with recommendation
by B. Given that A’s opinion about B is fRB(b|ψ) = g(b): fRC (c|ψ, SBC=(ys, yf )) =

eq1
ys,yf

(c) · eq2 +
∑
w∈OBC

(eq1
ws,wf

(c) · eq3 ·(1− eq2)), (10.1)

where,

eq1
ϕs,ϕf

(c) = fB(c;ϕs + 1, ϕf + 1),

eq2 =
eq4 ·

∫ 1

0
b · g(b) db

eq4 ·
∫ 1

0
b · g(b) db+

∑
w′∈OBC

eq5
w′ · (1−

∫ 1

0
b · g(b) db)

,

eq3 =
eq5

ws,wf∑
w′∈OBC

eq5
w′s,w

′
f

,

eq4 = λ(ys + yf ) ·
(
ys + yf
ys

)
· ys!yf !

(ys + yf + 1)!

eq5
ϕs,ϕf

=

∫ 1

0

χB(b, ϕs, ϕf )(ys, yf ) ·
g(b) · (1− b)

1− E(g)
db

· λ(ϕs + ϕf ) ·
(
ϕs + ϕf
ϕs

)
· ϕs!ϕf !

(ϕs + ϕf + 1)!

Proof. See Section B.3 of Appendix B.
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10.1.3 Semantics

If we were to only assert Dependencies D1D-D9D and Independencies I1D-I4D,
then we would have a family of Beta models with logical trust operations and
trust chaining parameterised in the lying strategies χ and the entanglement λ.
However, in this chapter, we are looking for a specific model. Hence we need to
select the parameters. Recall that we want to have a model in which lies represent
no information, in which every recommendation is equally likely successful, and
which is independent of the entanglement.

The latter requirement can be fulfilled by fulfilling Lemma 8.7. Lemma 8.7 states
that a lying strategy exists, with the property that the entanglement does not
affect the computation of a trust chain. The lemma is proven by providing a
class of lying strategies with that property. All members χ of the class have
χ(b, ws, wf )(ys, yf ) = 0 for ws+wf 6= ys+yf . In other words, fake recommendations
must have the same size as the recommenders’ interaction history. To ensure that
our model is independent of the entanglement, it suffices to select any lying strategy
with χ(b, ws, wf )(ys, yf ) = 0 for ws + wf 6= ys + yf .

The restriction on the lying strategies does not interfere with our former require-
ments – that lies represent no information or that recommendations are successes
with fixed probability. We have not yet formally defined what we mean by ’no
information’, however, a similar discussion is found in Game 9.4 in Section 9.2.
The subject is not interested in the interaction history between the recommender
and the target in general, but about its implications regarding the integrity of the
target. Under the restriction that fake recommendations have the same size as true
interaction histories, the subject can trivially derive the true size of the interaction
history. This, however, does not entail that the subject can derive anything about
the integrity of the target. To ensure that no information is leaked in a lie (see e.g.
Section 9.3), it suffices to ensure that there is no correlation between lies and the
truth. Formally, that χ(b, ws, wf ) = χ(b, w′s, w

′
f ) whenever ws + wf = w′s + w′f .

There are still several possible lying strategies that adhere to the two aforemen-
tioned requirements. The last requirement is that each recommendation is equally
likely successful. That means that the probability that each recommendation by B
is true with a probability equal to his integrity parameter b, since if it is not,
P (EB=s|RB=b) 6= b. Formally stated, P (EB=s|RB=b, SBC = y) = P (EB=s|RB=b).
This holds when P (SBC = y|RB=b, EB=s) = P (SBC = y|RB=b, EB=f), which in
turn holds if P (SBC=(ys, yf )) = P (OB

C=(ws, wf )). Since that relation trivially holds
when EB=s, we merely need to select χ correctly for EB=f. Earlier requirements
on χ dictate that ys + yf = ws +wf , and that χ(b, ws, wf ) = χ(b, w′s, w

′
f ), meaning

that χ(b, ws, wf ) ∼ OBC
λ(ys,yf )

. Running ahead on the results of Proposition 10.3, we

see that this means χ(b, ws, wf )(ys, yf ) = 1
ws+wf+1

, when ws +wf = ys + yf (and 0

otherwise).

Proposition 10.3. The probability of finding an interaction history ys, yf
is P (OB

C = (ys, yf )) =
λ(ys+yf )

ys+yf+1
.

Proof. Apply the law of total probability, to get
∫ 1

0
P (OB

C = (n,m)|RC = c) ·
fRC (c) dc. Apply Dependencies D1D and D3D, to get

(
ys+yf
ys

)
·λ(ys+yf ) ·

∫ 1

0
cys(1−
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c)yf dc, which simplifies to λ(ys + yf ) · (ys+yf )!ys!·yf !
· ys!·yf !
(ys+yf+1)!

=
λ(ys+yf )

ys+yf+1
.

Now, thanks to Theorem 8.9, we know that we can study the trust chain in iso-
lation. Thus, fRC (c|OA

B = x, SBC = y, ϕ) ∝ fRC (c|OA
B = x, SBC = y) · fRC (c|ϕ),

meaning that we can assume without loss of generality, that the subjects opinion
on the recommender and the recommendation are the only relevant terms. That
means that we do not need to redo our above analysis when adding, say, a condition
OA
C = (zs, zf ).

Now, we have sufficient formal machinery to define the semantics of the expressions
in the Default Model.

Definition 10.2 (Default Model). The Default Model is defined by Dependen-
cies D1D–D9D and Independencies I1D–I4D, as well as arbitrary λ, and χ(b, ws, wf ) =

1
ws+wf+1

for arbitrary b ∈ [0, 1] and (ws, wf ) ∈ N× N.

Interestingly, the Default Model is not just an arbitrary model that adheres to our
three requirements, it is the only model to do so.

Theorem 10.4. The Default Model is the only model that is independent of the en-
tanglement, where lies leak no information and where all possible recommendations
by a recommender are equally likely to be true.

Proof. Assume that there exists a (ws, wf ) and (ys, yf ), such that
χ(b, ws, wf )(ys, yf ) > 0, for ws + wf 6= ys + yf . Now, since the theorem must hold
for all entanglements λ, it must hold for the point distribution λ(ws + wf ) = 1.
By assumption, there exists ys + yf 6= ws + wf , such that χ(b, ws, wf )(ys, yf ) > 0,
meaning that P (SBC=(ys, yf )|EB=f) > 0, but P (SBC=(ys, yf )|EB=s) = 0. There-
fore, not all possible recommendations by a recommender are equally likely to be
true.

Unless λ is the point distribution λ(0) = 1 (i.e. it is impossible that recommenders
interacted with the target), there exist at least two different possible interaction
histories, since, with non-zero probability, λ(k) > 0 for k > 0, and there are at least
k + 1 recommendations of size k. Assume now, that χ(b, ws, wf ) 6= χ(b, w′s, w

′
f ),

for ws + wf = w′s + w′f . Then, by assumption, there exists (ys, wf ), such that
χ(b, ws, wf )(ys, yf ) 6= χ(b, w′s, w

′
f )(ys, yf ), therefore, when the recommendation

(ys, yf ) is given, this must leak information regarding the true opinion.

Finally, assume that χ(b, ws, wf )(ys, yf ) 6= 1
ws+wf+1

(for all (ws, wf ) with ws +

wf = ys + yf ). Then P (SBC=(ys, yf )|EB=s) = P (OB
C=(ys, yf )| =)

λ(ys+yf )

ys+yf+1
(via

Proposition 10.3). However, P (SBC=(ys, yf )|EB=f) =
∫ 1

0

∑
0≤k≤ys+yf χ(b, k, ys +

yf − k)(ys, yf ) · fRB(b) · P (OB
C=(k, ys + yf − k)) db =

∑
0≤k≤ys+yf χ(b, k, ys + yf −

k)(ys, yf ) · λ(ys+yf )ys+yf+1
, since all χ(b, ws, wf ), we can reformulate χ, and k no longer

appears: χ(b, k, ys + yf − k)(ys, yf ) · λ(ys + yf ) 6= λ(ys+yf )

ys+yf+1
by assumption. Hence,

not all possible recommendations by a recommender are equally likely to be true.

The only remaining choice for χ is χ(b, ws, wf )(ys, yf ) = 1
ws+wf+1

for all (ws, wf )

with ws + wf = ys + yf , which is the choice of the Default Model.
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10.1.4 Analysis

The purpose of this section is twofold, the first is to provide insight into the De-
fault Model, and by proxy, the other models, and the second is to illustrate the
techniques from Chapter 9 In this section, we make three short analyses. First, we
define an example of a trust chain where, intuitively, endogenous filtering seems
required. This example provides an intuition behind Theorem 8.9. Second, we
provide an alternative definition of the Default Model, using game theory. Finally,
we analyse the information leakage of recommendations in the Default Model.

Example Illustrating Modularity In Section 8.3, we discuss the modularity of trust
chaining. Modularity of trust chaining precludes the correctness of endogenous fil-
tering. The intuition behind endogenous filtering, is that if a recommendation is
unlikely given your own opinion, it should be weighted less in aggregation. If the
subject’s opinion about a target is diametrically opposed to a received recommen-
dation regarding that target, the subject suspects the recommendation less likely
to be true. Yet, the subject can compute the trust chain without his own opinion
(i.e. modularly), and then aggregate the result with his own opinion without cor-
rection. We provide an example that should provide an intuitive insight into this
result.

Example 10.1. The user A is fairly positive about user C, seeing that A observed
5 successes and only 1 failure, thus the simple trust opinion of A about C is ϑ5,1.
User B claims to have observed only 0 success and 6 failures. Although it is not
impossible for B to actually have observed this, (while A has opinion ϑ5,1), it
is unlikely. The opinion of A about B has an expected value of 1/3 (the actual
opinion is irrelevant, perhaps it equals ϑ2,7). User A constructs a trust chain in
the Default Model. The resulting chained trust opinion is f(x) = 1/3 · ϑ0,6(x) + 2/3
(Theorem 10.2). The trust aggregation of these two opinions reflects the trust
opinion of A about C using all available information. Due to Lemma 6.6, the
aggregation g(x) is proportional to f(x) ·ϑ5,1(x), thus g(x) = f(x) ·ϑ5,1(x) ·NF1

3 =
(1/3 · ϑ0,6(x) · ϑ5,1(x) + 2/3 · ϑ5,1(x)) ·NF1. Now, for x where ϑ0,6(x) is large, ϑ5,1(x)
is near zero, and vice versa (see Figure 10.1). This effect is a direct consequence
of the fact that ϑ0,6 states something radically different from ϑ5,1. Since either
ϑ0,6(x) or ϑ5,1(x) is very small, for all values of x, h(x) = ϑ0,6(x) · ϑ5,1 is small
for all x (see Figure 10.1). Therefore 2/3 · ϑ5,1(x) � 1/3 · ϑ0,6 · ϑ5,1(x) and g(x) =
(1/3 · ϑ0,6(x) · ϑ5,1(x) + 2/3 · ϑ5,1(x)) · NF1 ≈ 2/3 · ϑ5,1(x) · NF2 = g(x).

The example is depicted graphically in Figure 10.1.

In the example g ≈ ϑ5,1, meaning that the trust opinion of A about C based on
A’s interaction history and B’s recommendation is similar to the trust opinion of
A about C based only on A’s interaction history. The reason for this approximate
equality, is the fact that ϑ5,1(x) · ϑ0,6(x) ≈ 0. This, in turn, occurred due to the
high level of disagreement between ϑ5,1 and ϑ0,6. Our intuition that the recom-
mendation should have less impact when the content of the recommendation (ϑ0,6)
conflicts with the subjects knowledge (ϑ5,1) is naturally satisfied, without requiring
endogenous filtering.

3The normalisation factor is a unique scalar that turns a function into a distribution. Hence,
we need not specify the normalisation factor explicity.
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Figure 10.1: The graphs of the functions mentioned in Example 10.1.

Game Theoretic Definition of the Default Model In this section, we have infor-
mally specified the Default Model, and used the specification to formally define
the Default Model by setting χ. In Section 9.2, we asserted that game theory may
be used in defining trust models. To illustrate this assertion, we define a game for
which (under Dependencies D1D-D9D and Independencies I1D-I4D) the Default
Model defines the optimal strategy for the recommender.

Game 10.1. For a recommender B, with integrity RB = b, there is a probability
b that B wants to leak no information about the target. Perhaps because B is
colluding with a fraction b of the targets. Therefore, B does not want the subject,
A, to gain information about which targets B is lying about, since that would
allow A to gain information of whom B is colluding with.

We can define the information about the target in different ways, most definitions
would work. Here, we simply take the information entropy of RC , where C is the
target. Hence, we might use h(RC |SBC ) as our measure (see Definition 9.2), which
we want to maximise. However, that measure does not include the information
about whether a statement is true. We can define the information gain about
whether B is lying provided his statement as H(EB|SBC ). We need to combine
the two terms, h(RC |SBC ) and H(EB|SBC ) into a single measure. Whatever the
combined measure f is, we require it to be strictly monotonically increasing in
both h(RC |SBC ) and H(EB|SBC ). The most obvious choice for f is a sum (or a
weighted sum), but many other choices are possible, such as f(x, y) > f(x′, y′) iff
x > x′ or both x = x′ and y > y′. Different choices for f define the value of one
type of information, relative to the other type of information. However, since we
already know there is an optimal strategy that leaks no information about either,
we know that the exact choice of f is irrelevant.

Under Dependencies D1D-D9D and Independencies I1D-I4D, the Default Model is
defined as the model in which all recommenders are rational users that do not
know the entanglement λ, who try to maximise some utility function f , that is
strictly monotonically increasing in both h(RC |SBC ) and H(EB|SBC ). The proof of
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this statement is a minor modification of Theorem 10.4, in which we merely need
to add the notion that the minimal information leakage is 0, i.e. that h(RC |SBC )
and H(EB|SBC ) are maximal when equal to h(RC) and H(EB), respectively.

Analysis of Information Leakage In the Default Model, information leakage is
minimised in the cases where the recommender is lying. However, seeing that the
recommender may not be lying, we should not expect the total information leakage
to be minimised. First, we compute the information leakage of a recommendation,
then we show, by example, that lying strategies with a lower total information
leakage exist.

The information leakage of a recommendation is defined h(RC |SBC ) − h(RC), via
Definition 9.3 Applying Definitions 9.1 and 9.2, that equates to

∑
ys,yf∈N P (SBC =

(ys, yf )) ·
∫ 1

0
fRC (c|SBC=(ys, yf )) · log( 1

fRC (c|SBC=(ys,yf ))
) dc−

∫ 1

0
fRC (c) · log( 1

fRC (c)
) dc.

We can simplify the term, and distinguish true and false recommendations:∑
ys,yf∈N

λ(ys+yf )

ys+yf+1
·
∫ 1

0
(fRC (c, EB=s|SBC=(ys, yf )) + fRC (c, EB=f|SBC=(ys, yf ))) ·

log( 1
fRC (c,EB=s|SBC=(ys,yf ))+fRC (c,EB=f|SBC=(ys,yf ))

) dc − 0. And since every statement

is equally likely true: fRC (c, EB=u|SBC=(ys, yf )) = fRC (c|SBC=(ys, yf ), EB=u) ·
P (EB=u|SBC=(ys, yf )) = fRC (c|SBC=(ys, yf ), EB=u) · P (EB=u). The term
fRC (c|SBC=(ys, yf ), EB=s) = fRC (c|OB

C=(ys, yf )) = ϑys,yf (c). In case of failure
fRC (c|SBC=(ys, yf ), EB=f) = 1, the uniform distribution. Letting p = P (EB=u)

and f(c; ys, yf ) = fRC (c|OB
C=(ys, yf )), the information leakage is

∑
ys,yf∈N

λ(ys+yf )

ys+yf+1
·∫ 1

0
(p · f(c; ys, yf ) + (1− p)) · log( 1

p·f(c;ys,yf )+(1−p)) dc.

It is interesting to note that it immediately follows that the Default Model is not
optimal in the zero-sum recommendation game. Take any lying strategy which is
identical to the lying strategy of the Default Model, with only the probability of
χ(b, ws, wf )(ws, wf ) lowered with δ (and therefore χ(b, ws, wf )(ys, yf ) raised with
δ

ys+yf
for (ws, wf ) 6= (ys, yf )), for any 0 < δ ≤ b. Without formally analysing the

exact difference, observe that we simply offset a fraction of the times we are forced
to tell the truth, by reducing the probability of stating the truth when we may
lie. Furthermore, note that picking the largest such δ provides an optimal strategy
when b ≤ 1

ws+wf+1
, coinciding with the results of Game 9.4.

10.2 Representation of the Default Model

Each trust opinion in the Default Model is represented by a probability density
function ranging over [0, 1]. However, a trust opinion may have different repre-
sentations, and as a result two identical elements may not be recognised as being
identical. Theorem 7.4 and Corollary 7.6 result in a complicated computation,
and Theorems 8.1 and 10.2 are even more complicated. One can imagine that two
different nestings of operations may result in the same probability density func-
tion, but in different formulations thereof. It is undesirable to have identical trust
opinions without a quick way of realising that they are identical.
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Furthermore, some formulations of trust opinions may be more insightful than
others. For example,

∫ x
0

12y2 dy happens to be equal to 4x3. Under most cir-
cumstances, the latter formulation is far more informative, as it tells us immedi-
ately that we are dealing with a trust opinion with 3 successes and 0 failures, i.e.
NF · x3 · (1− x)0.

The first representation we discuss deals with representing the trust opinion (the
probability density function) in a standardised and clear manner, that allows us to
recognise important properties and a general shape quickly. The representation is
based on the notion that every trust opinion can be represented as the summation
of a particular simpler class of formulae. We refer to this representation as the
summation representation. We also present a second representation with a wholly
different footing. For the second representation, we trade precision for efficiency
and clarity, by intermediately approximating all integrations using the midpoint
approximation. In other words, every opinion is stored as a collection of n points.
Hence, this representation is called the midpoint representation.

10.2.1 The Summation Representation

In this section, we aim to represent trust opinions as a computation which is
equivalent to the original trust opinion. The computation should consist of a
summation of subexpressions of similar shapes. Summations have the desirable
property that their properties (such as expected value or variance) are easy to
compute, given the properties of its constituents. Complex summations can be
analysed or approximated using algebraic techniques, in particular using the notion
that summands with near-zero values hardly have any impact.

The exact shape of the summands is defined later. Informally, each summand
represents (nested) conjunctions and disjunctions of simple trust opinions. That
means that summands do not contain aggregation, chaining or negation. We show
how to eliminate these operations constructively.

To simplify notation, we introduce two functions
∏

and
∐

, which we refer to as
product and coproduct, since the former mimics the product random variable RS∧T
and the latter mimics its converse RS∨T .

Definition 10.3 (Product and coproduct). Let
∏

and
∐

be typed ([0, 1] →
R)× ([0, 1]→ R)→ [0, 1]→ R. Then, for distributions f, g : [0, 1]→ R, we define:∏

(f, g)(x) =

∫ 1

x

1

y
· f(

x

y
) · g(y) dy,

and ∐
(f, g)(x) =

∫ 1

1−x

1

y
· f(1− 1− x

y
) · g(1− y) dy.

Note that the product and coproduct are chosen such that if g(x) = fRS(x|ϕ)
and h(x) = fRT (x|ϕ), then

∏
(g, h)(x) = fRS∧T (x|ϕ) (see Theorem 7.4) and∐

(g, h)(x) = fRS∨T (x|ϕ) (see Corollary 7.6). The inverse of f(x) is f(1 − x),
which we denote ←↩ (f)(x) = f(1 − x).4 From Proposition 7.3, De Morgan, it

4The symbol ←↩ was selected to reflect a graphical intuition about negation. The graph of
←↩ (f) is the mirror image over the axis x = 0.5; as if reading the graph right-to-left.
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follows that←↩ (
∏

(f, g)) =
∐

(←↩ (f),←↩ (g)) and vice versa (since x ∧ y = x∨ y).

We can use this notation to define the format of the summation representation.
That any trust opinion fits the format will be proven afterwards.

Definition 10.4 (Summation representation). Let B be the set of simple trust
opinions B. Let P be the smallest superset of B closed over

∏
and

∐
. We refer to

the elements of P as summands. A trust opinion f : [0, 1]→ R is in the summation
representation, when it is shaped f(x) =

∑
i ai · pi(x), for ai ∈ Q+ and pi ∈ P . We

may refer to ai as the weight of the summand pi. If all summands of f are elements
of B, then we say f is in simple summation representation, i.e. f(x) =

∑
i ab ·bi(x),

for ai ∈ Q+ and bi ∈ B.

The set B contains exactly all simple trust opinions, and the set P contains exactly
all (nested) applications of product and coproducts of the simple trust opinions.
Every summand – element of P – represents a composite trust opinion.

Before we prove that all trust opinions fit in the summation representation, we
prove that the expected value of a trust opinion in the summation representation
can be computed efficiently.

Proposition 10.5. Given a trust opinion f in the summation representation (with
n summands), we can compute the expected value E(f) using only addition, sub-
traction, multiplication and division, in O(n) time.

Proof. The expected value of a simple trust opinion ϑs,f is s+1
s+f+2

, via Propo-

sition 6.4. The expected value of
∏

(f, g) is E(f) · E(g), and E(
∐

(f, g)) =
E(f) + E(g)−E(f) ·E(g), via Corollary 7.8. Expected values are linear, meaning
that E(a · f) = a · E(f), for scalar a, and E(f + g) = E(f) + E(g). Hence, we
can use the first notion to obtain the expected value of all simple trust opinions,
the second notion to obtain the expected value of the summands, and the latter
notions to obtain the expected value of f .

In special cases the variance of a trust opinion in the summation representation can
be computed as efficiently as the expected value. These special cases arise when the
covariance between every pair of summands is zero. The trust aggregation of trust
chains, however, typically yields summands that have a non-zero covariance. The
variance of a trust opinion can also be computed incrementally, like the expected
value, but for each pair of summands that correlate, the covariance needs to be
computed. Therefore, computing the variance has a worst-case performance of
O(n2) steps, where n is the number of summands.

To prove that every term in the Default Model can be represented in the summa-
tion representation, we provide a theorem with a constructive proof. This implies
that our proof not only proves that there exists a computation in the summation
representation for each expression in the Default model, but moreover provides a
method of constructing the computation.

Theorem 10.6. For any expression ϕ in the Default Model, the trust opinion
f that is the semantics of ϕ can be formulated in the summation representation.
Moreover, if the main operator of ϕ is not a logical trust operation, f can be
formulated in the simple summation representation.
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Proof. We can prove this by structural induction over ϕ. If ϕ is a simple trust
opinion ϑ, then f(x) = 1 · ϑ(x). The induction hypothesis is straightforward,
namely that the theorem holds for expressions ϕ and ψ:

ϕ+ ψ Then f(x) = g(x) · h(x) · α, with α = 1∫ 1
0 g(y)·h(y) dy

. By induction hy-

pothesis, g and h are in simple summation representation. That means
that f(x) = α ·∑0≤i≤n aibi(x) ·∑0≤j≤m a

′
jb
′
j(x), by distributivity f(x) =∑

0≤i≤n
∑

0≤j≤m αaiajbi(x)b′j(x). By Lemma 6.6, there exists a simple trust
opinion ci,j(x) ∝ bi(x)b′j(x). Hence f fits in the simple summation repre-

sentation, if both α and all
ci,j(x)

bi(x)b′j(x)
are rational. The latter holds, since

via Definition 6.7, they equal B(s+1,f+1)·B(s′+1,f ′+1)
B(s+s′+1,f+f ′+1)

, for natural s, f, s′, f ′ such

that bi(x) ∝ xs · (1−x)f and bj(x) ∝ xs
′ · (1−x)f

′
, and B(n,m) is integer for

integer n and m. That α is rational follows by pigeon hole principle, since α
times a sum of products of rational numbers must equal one.

ϕ+ ψ Then f(x) = E(g) · h(x) + (1− E(g)), where h(x) is a simple trust opinion.
Due to Proposition 10.5, we can compute a = E(g) and a′ = 1−a. Therefore,
f(x) = a · h(x) + a′ · 1. Since both h(x) and 1 are simple trust opinions, f
fits in the simple summation representation.

ϕ Then f(x) = g(1−x), where, by induction hypothesis, g is in the summation
representation, i.e. g(x) =

∑
i aipi(x). Informally, we push the negation

to smaller subexpressions, until the simple trust opinions whose negation is
another simple trust opinion. Observe, g(1 − x) =

∑
i aipi(1 − x), where

pi(1 − x) =←↩ (pi)(x). We apply structural induction to show that ←↩ (pi)
can be expressed as a summand. If pi is a simple trust opinion, then ←↩ (pi)
is also a simple trust opinion, since (λx.xS(1 − x)F )(1 − x) = (1 − x)SxF .
If pi =

∏
(h, h′), then ←↩ (pi) =

∐
(←↩ (h),←↩ (h′)). If pi =

∐
(h, h′), then

←↩ (pi) =
∏

(←↩ (h),←↩ (h′)).

ϕ ∧ ψ Then f(x) =
∫ 1

x
1
y
·g(x

y
)·h(y) dy, for g and h in the summation representation.

Therefore, f(x) =
∫ 1

x
1
y
·(∑i aipi(x/y))·(∑j a

′
jp
′
j(y)) dy, and by distributivity

f(x) =
∑

i

∑
j ai · aj ·

∫ 1

x
1
y
· pi(x/y) · p′i(y) dy. By definition of the product,

f(x) =
∑

i

∑
j ai · aj ·

∏
(pi, pj), thus f is in the summation representation.

ϕ ∨ ψ For identical reasons as the previous case, f(x) =
∑

i

∑
j ai · aj ·

∐
(pi, pj).

The summation representation has the advantage that a trust opinion can be un-
derstood reasonably well. Since each summand is a probability distribution, each
summand has equal surface area. That implies that the impact of a summand is
determined by its weight; the associated scalar. When approximating or estimating
properties of the graph, knowledge of which summands are relevant can increase
the quality of the approximation or estimate. Furthermore, any linear operation
can be applied to large formula in the summation representation relatively easily.
Another advantage is that trust opinions in this representation can be transformed
into trust opinions in the midpoint representation, which, in turn, can be used to
plot these trust opinions.



10.2 Representation of the Default Model 139

10.2.2 The Midpoint Representation

Where the summation representation of a trust opinion is equal to the trust opinion
itself, the midpoint representation is merely an approximation. The midpoint
representation is the foundation of the Canephora tool (Section 8.2.1). The main
advantages of the midpoint representation are practical, rather than theoretical.

The foundation of the midpoint representation is a standard technique in numerical
analysis. A way to approximate a definite integral, is via the midpoint rule (also
called rectangle method). The midpoint rule states that, in the interval [0, 1],∫ 1

0
f(x) dx ≈ 1

N

∑
0≤i≤N−1 f(2i+1

2N
), for sufficiently large N . Take, for example,

N = 100, then the graph f(x) is cut into 100 rectangles, each with width 1/100, the
first with height f(0.005), the second f(0.015), until finally f(0.995).

The midpoint representation is ideal for graphing purposes, as it is trivially sam-
pled. If you want a graph based on 1000 samples, simply use the midpoint represen-
tation with N = 1000. Other types of analysis, like expected values or variances,
can be computed rapidly, and more importantly in constant time (relative to the
complexity of the trust network).

As noted earlier, a trust opinion can be symbolically computed using the sum-
mation representation, and then converted to the midpoint representation to be
graphed. However, when only useful in that sense, the midpoint representation
would not be a proper representation, as we would not perform trust operations
over trust opinions in the midpoint representation. The midpoint representation
does have a valid reason of being preferred over the summation representation
under some circumstances. The number of summands in a trust opinion in the
summation representation is unbounded. That means that there is no fixed, finite
representation of trust opinions. In the midpoint representation, the size of the
representation of a trust opinion is fixed, namely N values.

The trust aggregation, trust chaining and trust negation operators can trivially
be defined over trust opinions in the midpoint representation. They are pairwise
multiplication, weighted pairwise summation, and reversing the order of the values,
respectively. These three operations have the desirable property that they do not
introduce additional error. The other two operations – trust conjunction and trust
disjunction – are less straightforward. Note that since trust negation introduces
no errors, it suffices to treat only one of the two operators, via De Morgan.

We define trust conjunction of f and g in the midpoint representation, in the most
straightforward fashion:

h(x) =
∑

x·N≤i≤N

N

i− 0.5
· f(

N · x
i− 0.5

) · g(
i− 0.5

N
).

Note that this computation introduces an additional error, since we may poll,
for example f(0.4902), then f(0.4998), then f(0.5101), overrepresenting the value
f(0.4995) and not representing the value f(0.5005).

In the Default Model, it is completely feasible to let N exceed 10, 000, since trust
aggregation, trust chaining and trust negation are linear in N and trust conjunction
(and thus trust disjunction) is quadratic in N . The midpoint representation can,
therefore, be used for practical applications with bounded resources.
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10.2.3 Illustrative Algorithms

In this section, we introduce a toy trust system to illustrate how a trust model
like the Default Model can assist in defining a trust system. As mentioned in
Chapter 1 (e.g. Figure 1.2), trust systems our not our object of focus. Therefore,
we introduce a simple trust system, which is sufficiently expressive to incorporate
a collection of algorithms and data structures based on the Default Model and its
representations.

A possible practical scenario that would exploit the full capabilities of the trust
model, is cloud computing. In cloud computing, the result of a computation may
depend on several users, in several combinations, as discussed in Section 7.1. A
client uses the cloud to solve NP-hard problems, of which answers are easy to
verify. In a sufficiently large cloud, people may cooperate not only in executing
each other’s tasks, but also in establishing trust in new users. Formulated in our
terminology, recommendations may play a large role in clouds, especially if typical
tasks are sensitive, since we would not trust a stranger with a sensitive task. We
are, therefore, interested in a user operating in his role as a subject in the cloud.

We assert that the trust system comes in the shape of a software package that users
can install on their computer. A subject, such as Alice, can enter the outcomes
of interactions and the recommendations into the trust system. In many settings,
this step can be automated. If Alice wants to know whether she can trust Charlie,
she can query the system. The system can provide an expected value, variance, a
graph and more data about the integrity of Charlie, based on the trust opinion it
has stored. The system can also be queried to trust composite targets, such as the
trust that either Charlie or Debbie performs the computations correctly.

The trust system keeps track of all trust opinions about simple targets (i.e. trust
opinions in P). To that end, we introduce a data structure based directly on the
simple summation representation (Definition 10.4), which can represent all trust
opinions about simple targets, is

∑
i aibi(x), for simple trust opinions b ∈ B and

ai ∈ Q. Simple trust opinions ϑs,f ∈ B can be represented by a pair of natural
numbers (s, f). Therefore, each simple summand can be represented as struct S
consisting of three properties: weight : Q, success : N, failure : N. Now, we can
represent a trust opinion about simple targets as an array of such structs, which
yields the type T = N 7→ S. Having defined the type T , of which the inhabitants
represent trust opinions about simple targets, we can define how the system stores
all the trust opinions.

To store all trust opinions about simple targets (with ID : N), it suffices to have a
collection C : N 7→ T , which maps a user identification (as a natural number) to a
trust opinion denoted in type T . The collection C is global, since it represents the
persistent memory of the trust system. That means that C can be updated with
new data. Let’s go through a possible run of the system:

Example 10.2. Alice is considering providing a task to Charlie. The trust system
checks whether it has a trust opinion about Charlie, and if not creates the uniform
distribution as opinion. The trust system can quickly compute the expected value
(Algorithm 1) and variance (quadratic time) of the opinion. The trust system can
also sample 1000 points (Algorithm 2), and draw a graph through these points
quickly. Alice receives these data points from the system. She can also perform
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global : The collection C : N 7→ T of trust opinions.
input : A user ID : N.
output: The expected value of the trust opinion represented by C[ID].
function GetEVSimple(ID)

EV := 0
foreach S in C[ID] do

EV := EV + S.weight · (S.success+ 1)/(S.success+ S.failure+ 2)
end
return EV

Algorithm 1: Retrieve expected value of a simple trust opinion.

arbitrary queries on the trust opinion on Charlie, such as request the probability
that the integrity of Charlie is at least 0.6.

If Alice is not convinced that she trusts Charlie, she may ask Bob for a recom-
mendation. Upon receiving Bob’s recommendation, the trust system computes
the trust opinion f based solely on the recommendation (Algorithm 3). Then the
trust system can update Alice’s trust opinion about Charlie with f (Algorithm 4).
Similarly, if Alice is convinced that she trusts Charlie, she interacts with Charlie.
After the interaction, she knows whether it is a success or not. In either case,
the trust system can update Alice’s trust opinion about Charlie with the result
(Algorithm 4).

In the example, we have used four algorithms. Algorithm 1 is a direct imple-
mentation of Proposition 6.4, combined with the notion that expected values are
linear. Algorithm 2 exploits the definition of the beta distribution (Definition 6.7)
and the definition of the simple summation representation (Definition 10.4). Algo-
rithm 3 is an implementation of the second inductive step described in the proof
of Theorem 10.6, thus exploiting the properties of the summation representation.
Similarly, Algorithm 4 implements the first inductive step described in the proof
of Theorem 10.6. In short, the first four algorithms are direct implementations of
techniques we have already specified.

Note that Algorithm 3 actually requires an object typed as a propositional tree. A
propositional tree is of recursive type T introduced to effectively describe composite
targets. A simple target is a leaf. Leafs are structs containing kind : E , ID : N,
where E = {leaf, negation, and, or}. For a leaf l, l.kind = leaf . Composite targets
are nodes. Nodes are structs containing kind : E , left : T , right : T . If the target
is a negation, then its node n has n.kind = negation and n.left = l, where l is
the node representing its subtarget (n.right need not be defined). If the target is
a conjunction (disjunction), then its node n has n.kind = and (n.kind = or), and
n.left = l and n.right = r, where l and r are nodes representing its subtargets.

Example 10.3. The system cannot just query trust opinions, and update trust
opinions, it can also compute composite trust opinions. Alice has a task t which can
be split in two parts, t1 and t2, which she wants to run on three users, Bob, Charlie
and Debbie, such that the expected value of success exceeds a threshold p. Alice
can send the task t to Bob, Charlie and Debbie and efficiently verify the results.
Alice will have the answer iff Bob, Charlie or Debbie succeeds; B∨C∨D. Of course,
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global : The collection C : N 7→ T of trust opinions.
input : A user ID : N, an integrity parameter p : Q.
output: The expected value of the trust opinion represented by C[ID].
function GetValue(ID,p)

r := 0
foreach S in C[ID] do

r := r + S.weight · pS.success · (1− p)S.failure · (s+f)!
s!·f !

end
return r

Algorithm 2: Retrieve probability that a user has a certain integrity.

input : A propositional tree P , a recommendation (s, f) : (N× N).
output: The trust opinion represented by the recommendation (s, f) made by

the (composite) target represented by T .
function GetChainedOpinion(P ,s,f)

R is a new array of size 2
R[0].weight := GetEVComposite(P)

R[0].success, R[0].failure := s, f
R[1].weight := 1−R[0].weight
R[1].success, R[0].failure := 0, 0
return r

Algorithm 3: Retrieve the chained trust opinion based on a recommendation.

global : The collection C : N 7→ T of trust opinions.
input : A user ID : N, a trust opinion L : T .
output: The element in C[ID] became the aggregate of the original C[ID] and L.
function UpdateOpinion(ID, L)

R is a new array of size size(C[ID]) · size(L)
cf := 0
foreach 0 ≤ i < size(C[ID]) do

foreach 0 ≤ j < size(L) do
w, s, f := C[ID][i].weight, C[ID][i].success, C[ID][i].failure
w′, s′, f ′ := L[j].weight, L[j].success, L[j].failure

R[i · size(L) + j].weight := w · w′ · s!·f !·s′!·f ′!·(s+s′+f+f ′+1)!
(s+f)!·(s′+f ′)!·(s+s′)!·(f+f ′)!

R[i · size(L) + j].success := s+ s′

R[i · size(L) + j].failure := f + f ′

cf := cf + w · w′
end

end
foreach S in R do S.weight := S.weight/cf
C[ID] := R

Algorithm 4: Update a trust opinion about a simple target by aggregating it with
an opinion based on new data.
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input : A propositional tree P : P representing a composite target.
output: The expected value of the trust opinion about P .
function GetEVComposite(P)

if P.kind = leaf then return GetEVSimple(P.ID)
if P.kind = negation then return 1− GetEVComposite(P.left)
if P.kind = and then

leftEV, rightEV := GetEVComposite(P.left) + GetEVComposite(P.right)
return leftEV · rightEV

end
if P.kind = or then

leftEV, rightEV := GetEVComposite(P.left) + GetEVComposite(P.right)
return leftEV + rightEV − leftEV · rightEV

end

Algorithm 5: Retrieve expected value of a composite trust opinion.

B ∨ C ∨ D gives the greatest expected value of success, but it wastes resources.
Alternatively we could send t to Bob, and a copy of t1 to Charlie, and a copy of t2 to
Debbie. Alice will have the answer iff Bob succeeds or Charlie and Debbie succeed;
B∨(C∧D). Perhaps it suffices to send t1 to Bob, and let t2 be run on both Charlie
and Debbie. Alice will have the answer iff Bob succeeds and Charlie or Debbie
succeeds; B ∧ (C ∨D). The system can efficiently (O(n), for n users) compute the
expected value of each of the different composite trust opinions (Algorithm 5). This
allows Alice to distribute her task with a sufficiently high probability of success,
while minimising latency or minimising redundant executions. If Alice wants to
query the trust system for additional properties about her trust opinion, using the
midpoint rule, her trust opinion can be approximated effectively.

The additional algorithm used in this example, is Algorithm 5. The algorithm
exploits Corollary 7.8 and Algorithm 1 to recursively compute the expected value
of a (composite) trust opinion.

We have created a toy trust system for cloud computing to showcase a collection
algorithms based on our theory. The collection is by no means complete. For
example, there is no algorithm constructing a trust opinion in the midpoint repre-
sentation, even tough such an algorithm would follow immediately from the theory.
(For N midpoints, simply call "GetValue"N times.) Nor do we specify a the full
functionality of a trust system. We have not specified recommendation gathering,
assisted (or automated) decision making, etc. The specification of a full trust sys-
tem based on the Default Model would be an interesting problem, but falls outside
of the scope of this thesis as specified in Chapter 1.



144 Chapter 10 A Generic Extension of the Beta Model

10.3 Axioms and the Default Model

Recall that fusion, dilution, AND , OR and inverse were introduced as a symbolic
notation to express the operations trust aggregation, trust chaining, trust conjunc-
tion, trust disjunction and trust negation. In this section, we verify the soundness
of the symbolic operations with respect to the probabilistic operations, using the
natural mapping.

The axiomatisations in Chapter 5 use a different signature than that outlined in
Section 10.1.1. First, we need to restrict the signature, and thus the theories.
Then, we can look at the soundness and completeness of the axiomatisation.

As mentioned in Section 5.3, we did not expect even the strong axiomatisation to be
complete. We did expect both axiomatisations to be sound, and we will prove that
they are both sound with respect to the Default Model. For both axiomatisations,
we will provide a reason and a motive why they are not complete.

By restricting the signature to

ϕ := x|ϕ+ ϕ|ψ · x

ψ := ϕ|ψ ∧ ψ|ψ ∨ ψ|ψ,
for x ∈ B, axioms C5, C11 and C12 fall outside of the language. Soundness for
the other axioms of ATC can be proven straightforwardly.

10.3.1 Soundness

As we have discussed the rationale behind the axioms of ATC in Section 5.2, we
immediately provide the proof of soundness:

Theorem 10.7. The axiomatisation ATC is sound with respect to the Default
Model. For all terms x, y ∈ D: ATC ` x = y ⇒ DM |= x = y.

Proof. Soundness of each axiom from ATC, except C5, follows straightforwardly.
Note that υ corresponds to fυ(c) = 1, 1 to f1(c) = 2c and 0 to f0(c) = 2(1 − c).
In the proof, we denote the trust opinion corresponding to a variable x as fx.

Axioms C1, C2 and C3 follow from the identity of multiplication (fυ(c) = 1),
commutativity and associativity of multiplication. Axiom C4 states that E(fx) ·
1+(1−E(fx))·1 = 1, which trivially holds. Axiom C6, and C7 follow immediately
from Proposition 4.19. Axiom C8 states that ←↩ (←↩ (fx)) = fx, which follows
from fx(1 − (1 − c)) = fx(c). Similarly, C9 follows from fυ(1 − c) = 1 = fυ(c),
and C10 from ←↩ (f1) = (1− c) = f0. Axioms C11 and C12 correspond to terms
outside the syntax of the Default Model, however, their statements are sound. For
C11, observe that ←↩ (fx · fy) =←↩ (fx)· ←↩ (fy), via (λd.fx(d) · fy(d))(1 − c) =
fx(1− c) · fy(1− c). Similarly, for C12, ←↩ (E(fx) · fy + (1−E(fx))) = E(fx)· ←↩
(fy) + (1− E(fx)). And axiom C13 follows immediately from Proposition 7.3.

Finally, we need to prove that C5 is sound within the language of the Default
Model. We will prove this by showing that if ATC ` x = y applies C5, but
x, y ∈ D, then another derivation without C5 exists, which is sound as per above.
Observe that the only derivations in which C5 can be applied are those of shape
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x·(y ·z). The only two axioms that can interfere with this shape are axioms C4 and
C12. We can exclude the latter trivially. Thus C4 remains. However, it can only
be applied to create an opinion of shape x · (y · z), if the original opinion is shaped
x · υ. In that case the entire expression equals υ, thus making the application of
C5 superfluous, since x · (y · υ) = υ = y · (x · υ) via C4.

We need to provide a model for the additional operators E( ) and W( ). For
E( ) the obvious choice is the expected value E( ). Whether a suitable choice for
W( ) exists is an open question for now. Without such a choice, we cannot prove
soundness of axioms containing this operator. Therefore, we weaken EVW to
EVW−, by excluding all axioms that contain the W( ) operator.

As we have discussed the rationale behind the axioms of EVW in Section 5.3, we
immediately provide the proof of soundness of the axiomatisation EVW−:

Theorem 10.8. The axiomatisation EVW− is sound with respect to the Default
Model. For all terms x, y ∈ D: EVW− ` x = y ⇒ DM |= x = y.

Proof. Axioms K1, K2 and K3 correspond trivially to
∫ 1

0
c · f dc, for f(c) = 1,

f(c) = c and f(c) = 1− c, respectively. Axiom K4 corresponds to E(E(fx) · fy +

(1−E(fx)) ·1) =
∫ 1

0
c ·E(fx) ·fy(c)+c ·(1−E(fx)) dc = E(fx) ·

∫ 1

0
c ·fy(c) dc+(1−

E(fx))·
∫ 1

0
c dc = E(fx)·E(fy)+E(1−fx)·E(υ), assuming soundness of axiom K6.

Axiom K5 follows immediately from Corollary 7.8. Axiom K6 corresponds to E(←↩
(fx)) = 1−E(fx), which follows from

∫ 1

0
c · fx(1− c) dc =

∫ 1

0
fx(c)− c · fx(c) dc =

1−
∫ 1

0
c ·fx(c) dc, via integration by substitution. Finally, axiom K16 holds, since

if E(fx) = E(fy), then E(fx) · fz + (1− E(fx)) = E(fy) · fz + (1− E(fx))

10.3.2 Incompleteness

The axiomatisation ATC is obviously lacking in axioms regarding trust chaining.
For example, for every trust chain x · z, there exists an equal trust chain y · z, such
that x 6= y. We prove this statement in Proposition 10.10. However, none of the
axioms in ATC can possibly help us prove any instance of x · z = y · z, unless
DM |= x = y.

The above argument depends heavily on the following proposition:

Proposition 10.9. In the Default Model, for each chained trust opinion there
exists another identical chained trust opinion, based on the same recommendation
but different opinions on the recommender.

Proof. Recall that if E(fx) = E(fy), then E(fx) · fz + (1 − E(fx)) = E(fy) · fz +
(1− E(fx)).

The proof of Proposition 10.10 relies on the assumptions on the lying strategy. We
cannot generalise Proposition 10.10 to all lying strategies.

The axiomatisation EVW mostly deals with axioms regarding expected value
and weight. There is, however, one axiom (K16) that deals with trust opinions
themselves. That axiom deals exactly with the scenario described above. Recall
that K16 states E(x) = E(y)⇒ x · z = y · z.
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Hence, in order to show that EVW is not complete, we need a more involved
counterexample. Notice that neither ATC nor EVW deal with distributivity, with
the exception of negation and the de Morgan law. Therefore, it is not surprising
that our counterexample is based on nestings of different operators:

Proposition 10.10. In the Default Model, there exist two equal trust opinions x
and y, such that EVW 6` x = y.

Proof. Let x = x′ · 1 + x′ · 0 and y = y′ · (1 + 0), for x′, y′ such that E(x′) ·E(x′) =
E(y′). Let f and g be the trust opinions corresponding to x′ and y′.

Observe that (E(f) ·2c+(1−E(f))) ·(E(f) ·2(1−c)+(1−E(f))) = E(f) ·E(f) ·2c ·
2(1−c)+E(f)·(1−E(f))·2c+E(f)·(1−E(f))·2(1−c)+(1−E(f))·(1−E(f)). Now,
since 2c+2(1−c) = 2, this equals E(f) ·E(f) ·2c ·2(1−c)+1−(E(f) ·E(f)). Now,
since E(f)·E(f) = E(g), we can conclude that it equals E(g)·2c·2(1−c)+1−E(g).
Now, it suffices to note that 4 · c · (1 − c) = 2c · 2(1 − c). Hence we prove that
DM |= x = y.

Seeing that there are no distributivity laws between fusion and dilution, EVW 6`
x = y.

10.4 Conclusion

The results in this chapter imply that a formal correctness trust model that cap-
tures all relevant operations (trust aggregation, trust chaining and the logical trust
operations) exists both in theory and in practice.

The results from Section 10.1 imply that a formal correctness trust model for all
relevant operations exists in theory. We merge the assumptions of the simpler
models, and generalise the results where necessary. We studied the restrictions
and the powers of the resulting model.

In Section 10.2, we show that the theoretical model translates to a practical model.
We tame the equations from Section 10.1, by forcing a uniform representation upon
them. The representation is based on a summation of product distributions of beta
distributions. One advantage is that many properties (notably the expected value)
behave nicely over summations and product distributions. Another advantage is
that is becomes relatively easy to compare two trust opinions in the summation
representation. We provide an alternative representation, which trades precision
for efficiency and clarity. Even the intermediate trust opinions are immediately
understandable, and relations in trust networks can be visualised and understood
readily.

Finally, we connect Part I and Part II, in Section 10.3. Effectively, the deep
connection between the axiomatic method and probabilistic method shows that
our probabilistic understanding of the building blocks matches our big-picture
understanding of the operations that we study. We prove, in particular, that our
axiomatisation is sound, however it is lacking in detail. This result is not surprising,
as it shows that our big-picture understanding of the operators is correct but not
complete. An interesting exercise for the future would be to formulate a complete
axiomatisation of the Default Model.
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Conclusion and Future Work

11.1 Conclusion

Recall the informal formulation of our research question: How can we correctly
combine trust opinions of users on a system where users interact sparsely and with
an explicit goal?. In the course of the thesis we have formalised our assumptions
about “a system where users interact sparsely and with an explicit goal”, in the
form of the Beta paradigm. We have also looked at several ways of combining such
trust opinions in the Beta paradigm, namely trust aggregation, trust chaining,
trust conjunction, trust disjunction and trust negation. We applied two differ-
ent approaches – the axiomatic and the probabilistic approach – that share some
characteristics. Both approaches were formal, top-down and general.

A common pitfall in abstract and general views, is that an analysis or model may
be too generic, vague or tautological, or that arguments descend in sophistry. To
avoid this pitfall, we base our assumptions on a trust model used in practice,
Subjective Logic – although we only look at a fraction of the model. The same
foundation is also used by other trust models, such as TRAVOS and CertainLogic,
further solidifying the notion that the Beta paradigm is useful in practice. In each
section, therefore, we mention the relationship between the results in the thesis
and Subjective Logic, and TRAVOS and CertainLogic, if applicable.

We made a general distinction between cognitive models and correctness models,
where in the former, trust opinions relate to perceived integrity, and in the latter,
trust opinions relate to actual integrity. We looked at correctness trust models,
since they are more suitable for a formal approach. There exist several formal
approaches, in the thesis, we applied an axiomatic approach and a probabilistic
approach.

11.1.1 Axiomatic Approach

In the axiomatic approach, we asserted that trust opinions have a measure of
trustworthiness and a measure of uncertainty. We formulated axioms (self-evident
truths) about trust opinions formed using the trust operations. An example of
such a self-evident truth, is associativity, the notion that the order in which opin-
ions are aggregated is irrelevant. The advantage of the axiomatic approach is that
properties of trust can be studied without restricting to a single model, and con-
versely, that properties of a particular model can be studied outside of the context
of the model. The disadvantage is that there may be statements that are true,
but are neither self-evident (i.e. axioms) nor follow from self-evident truths (i.e.
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theorems). In particular, this may be the case if our notion of trust opinions is too
coarse. We applied the axiomatic approach in Part I, in two different ways.

In Chapter 4, we applied the axiomatic approach to derive a complete finite ax-
iomatisation of a fraction of Subjective Logic. We provided increasingly more
sophisticated axiomatisations of Subjective Logic. We analysed the issues and
benefits of each axiomatisation. Furthermore, we looked at potential variations
for debatable axioms. In order to formulate the finite, complete axiomatisation
of the fraction of Subjective Logic (SL), we generalised the axiomatisation of the
arithmetic mean to deal with tuples, rather than numbers in AVκ.

We loosened the ties between the axiomatisation and Subjective Logic in Chap-
ter 5. There, we discarded the axioms from the axiomatisation of Subjective Logic
that are not self-evident, or that lead to problematic conclusions. The axioma-
tisation ATC admits Subjective Logic as a model, but rejects some aspects of
Subjective Logic as self-evident, allowing variations. Finally, we added stronger
axioms, directly regarding the degree of trust and the degree of uncertainty, to
obtain EVW. Subjective Logic is not a model of EVW. The axioms from ATC
and EVW can be seen as criteria for trust models.

11.1.2 Probabilistic Approach

The other method is the probabilistic approach, applied in Part II. In the prob-
abilistic approach we encode the assumptions of the Beta paradigm in relations
between random variables and we assign a probabilistic semantics to the trust
operations.

Based on the principles of the Beta model, we studied the logical trust operations
in Chapter 7. We added new random variables for expressing the operations, and
introduced appropriate relations over these random variables. These relations are
added to the Beta model’s principles, to get the principles of the Beta model
with logical trust operations. Together, these principles allowed us to provide a
computational definition of the logical trust operations.Furthermore, we provided
general properties of the operations in the context of the Beta paradigm, such as
the fact that associativity, commutativity and De Morgan hold for conjunction
and disjunction and that double negation holds for negation. Another property
we show is that the result of a trust conjunction (a composite trust opinion) is
generally not a beta distribution. The implication is that in any correctness trust
model in the Beta paradigm, the representation of a composite must differ from
the representation of a simple trust opinion.

In Chapter 8, we provided a collection of conservative extensions of the Beta model,
namely the Beta family with trust chaining. The semantics of trust chaining are
translated into additional random variables and relationships thereupon, which are
added to the principles of the Beta model. There are two parameters that remain
in the computation for trust chaining, the entanglement of the system and the
lying strategy of the recommender. Given these two parameters, the chained trust
opinions can immediately be computed (even in practice, via the Canephora tool).
Any model, therefore, must make assumptions about the lying strategy, which
we propagate developers of new trust models with chaining to do. We prove that
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there are instances of lying strategies where the entanglement cancels out. Another
property of models in the Beta family with trust chaining is modularity. Modularity
is the notion that trust chains can be computed and aggregated separately from
the subject’s own opinion or other recommendations. The notion of modularity
is the opposite of the notion of endogenous filtering. Trust chaining, like the
logical trust operations, also does not generally yield beta distributions. Again,
the implication is that correctness trust models in the Beta paradigm cannot use
the same representation for simple trust opinions as for chained trust opinions.

We have analysed the lying strategies using game theory and information theory.
In Chapter 9, we define a series of increasingly complex games. In the first game,
options are limited and recommendations have a simple representation. We pro-
vide the Nash equilibrium of that game. The fourth game represents the relation
between the subject and the worst-case recommender. In that game, we can only
provide a small class of optimal strategies for the recommender. We saw that, in
these games, the measure of information matters. We applied information theory
to study the notion of information. Although the question which information is
relevant to the subject is subjective, some measures exhibit better properties than
others.

All the results from Part II can be combined into a single model. We have chosen
a model in the Beta family with trust chaining, and combined it with the Beta
model with the logical trust operations, in Chapter 10. We provided a possible
representation scheme, which by necessity has the set of beta distributions as a
strict subset. This model is related to the final axiomatisation, EVW, found in
Part I.

The formal analyses throughout the thesis allow us to draw general conclusions
regarding trust models. We formally verified some aspects of Subjective Logic,
TRAVOS and CertainLogic, such as the treatment of trust aggregation, the as-
sumption of modularity of trust chaining and adherence to axioms found in ATC.
On the other hand, we show that these models have operations closed over beta
distributions, that are designed to implement trust chaining, trust conjunction and
trust disjunction, whereas we show that such operations cannot be closed over beta
distributions. Hence, Subjective Logic, TRAVOS and CertainTrust are not valid
correctness models in the Beta paradigm, despite the fact that they derive their
validity of trust aggregation from the Beta paradigm.

11.2 Future Work

There remain several research directions to explore. One direction is to broaden the
results, by looking at additional trust operations. Another direction is to generalise
some of the assumptions of the Beta paradigm. The last direction is to explore
trust chaining in more detail.

There are several operations that we have not considered. Additional operations
can be taken from the more expressive Subjective Logic. Examples of interesting
operations to add are deduction and abduction, which deal with interdependent
trust opinions. Another type of additional operation is to include composite trust
opinions based on arbitrary truth tables, e.g. an interaction that succeeds, if and
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only if two out of three users succeeds. The SLVisualiser can also be extended with
some, or all new operations.

The assumptions of the Beta paradigm can be generalised, and in fact, many formal
generalisations of the Beta model are proposed in the literature. The assumption
that the prior distribution is uniform can be lifted, after the base-rate in Subjective
Logic. The assumption that interactions have only two outcomes can be lifted, after
multinomial distributions in Subjective Logic, or other models based on Dirichlet
distributions. We can generalise the assumption that targets are static, after the
original Beta reputation system. Alternatively, we can generalise the assumption
that targets are stateless, after the HMM-based model. Each of the generalisations
of the assumptions only formally work for trust aggregation (i.e. in the Beta model,
not its extensions). It is interesting to see the impact of the generalisations on the
other operations. Our probabilistic approach provides a way of doing so formally.

We believe that exploring the details and implications of trust chaining in de-
tail may prove to be the most interesting direction. The implication of Corollar-
ies 8.5 and 8.6 – that setting the lying strategy (and entanglement) is both nec-
essary and sufficient to select a Beta model with trust chaining – is that research
on trust chaining should focus on the lying strategy. In practice, this means that
research can focus explicitly on the behaviour of recommenders, and researchers
no longer need to find a way to encode this in a computation for trust chaining. To
give some concrete examples of research that is now more accessible: Worst-case
recommenders, recommenders that want to advertise or smear, and recommenders
attacking a system.

The information games we study in Chapter 9 study the worst-case recommender.
Future research could find a Nash equilibrium for these games. Doing so would
imply that instantiating the lying strategy with the optimal strategy results in
a definition of trust chaining in which the subject cannot effectively be deceived.
The reason for this is obvious, the Nash equilibrium guarantees the subject to have
a non-negative information gain, and any deviation from the optimal strategy by
the recommender, leads to more information for the subject.

In reality, recommenders have goals. In particular, these goals include advertising
certain targets, and smearing other targets. The concept of implicit collusion may
apply here, since the goals of the recommender (e.g. to advertise) is not completely
opposite of that of the subject (to gain information). The subject and recommender
can implicitly agree that the recommender only mildly skews the recommendation,
and in exchange the subject accepts the recommendation as not far from the truth.
It may be possible to derive the perfect advertisement strategy, and by virtue, the
optimal way for the subject to deal with advertisements.

Finally, recommenders can be more sophisticated attackers that cooperate, rather
than operate individually. A prominent example would be a setting where recom-
menders are being recommended (for example in the Web of Trust). In such a
setting, attackers recommenders may skew their opinions favourably towards each
other, and unfavourably towards people that have bad opinions on them. The fixed
computation based on the lying strategy may prove to be helpful in analysing and
categorising such cooperative strategies.

Rather than focussing on the lying strategy by itself, we can focus on the integration
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of the lying strategy into practical computations. The Canephora tool calculates
trust chains by themselves, but could be integrated with the SLVisualiser tool,
to support arbitrarily nested formulae. Furthermore, the Canephora tool has not
been optimised fully, for certain classes of entanglements and lying strategies, there
may be significant speed-ups. Ultimately, Canephora may be able to function as a
trust system, actually computing trust opinions in an online system, based on the
extended Beta models.





A

Omitted Proofs of Part I

A.1 Omitted Properties and Proofs

Some completeness proofs in Part I relied on some technical Lemmas and Proper-
ties. In this appendix, we introduce and prove the Lemmas that we relied upon in
Part I.

Proposition A.1. If FDN + AV3 ` x = y, then x is a term in Σ�EXP+AVs3 if, and
only if, y is a term in Σ�EXP+AVs3.

Proof. We can do structural induction with a strengthened induction hypothesis.
If FDNs + AVs3 ` κx = y, then x in Σ�EXP+AVs3 iff y in Σ�EXP+AVs3 , and if D(x) (or
D(y)) then x in Σ�EXP+AVs3 (or y in Σ�EXP+AVs3 , respectively). We look at all the
axioms in FDN + AV3. We may ignore the axioms in AV, recalling the proof of
Proposition 4.11. Axioms D3, D4, D5 and D6 do not break the strengthening of
the hypothesis. In fact, the proof for all axioms except D10 and D11 is immediate.
In the case of these axioms, we can use the strengthening of the hypothesis, and
conclude that both sides of the equality are in Σ�EXP+AVs3 .

Proposition A.2. If SL ` x = y, then x is a term in Σ�SLs if, and only if, y is a
term in Σ�SLs.

Proof. Analogous to Proposition A.1.

Corollary A.3. If D(x) then x in Σ�EXP+AVs3.

Proof. Immediate from the proof of Proposition A.1.

Proposition A.4. If x is a term in ΣEXP+AVs3 and y = ±(y0, . . . , yn) is the unique
normal form (Definition 4.6) of x, then there exists a yi = υ.

Proof. It is an invariant over the axioms of FDNs + AVs3.

Corollary A.5. Terms in ΣEXP+AVs3 are non-dogmatic.

Lemma A.6. If ±(x), ±(y), ±(z) are unique normal forms, and at least ±(x)
or ±(y) is non-dogmatic, and FDN + AV3 ` ±(x) + ±(y) = ±(z), then
FDNs + AVs3 ` ±(x) +±(y) = ±(z).

Proof. As ±(x) and ±(y) are in the unique normal form, take x = x1, . . . , xn and
y = y1, . . . , ym. If we apply D7, on ±(x) + ±(y), the result is in Σ�EXP+AVs3 ,
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but not in ΣEXP+AVs3 , let alone in the unique normal form. Recall Proposi-
tion A.1, disallowing destructive interference of counting or dogmatic operators
to Σ�EXP+AVs3 terms. Hence, we need to apply D9 and D8 zero or more times to
the result, then apply D10 or D11. We can apply induction to the number of υ’s
in x (or y symmetrically). We assumed that there is at least one υ in x (or y).
The base case of our induction is therefore that FDNs + AVs3 ` ±(x) + ±(y) =
±(y), for dogmatic y, and x = u, x′ for dogmatic x′, which holds. The induction
step is that FDNs + AVs3 ` ±(
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β
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l
,
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δ
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m
,
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υ
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n+1

) + ±(
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l′
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n·n′+n′), which holds.

Lemma A.7. If ±(x), ±(y), ±(z) are unique normal forms, and FDN + AV3 `
±(x) · ±(y) = ±(z), then FDNs + AVs3 ` ±(x) · ±(y) = ±(z).

Proof. As ±(x) and ±(y) are in the unique normal form, take x = x1, . . . , xn and
y = y1, . . . , ym. If we apply D12, on ±(x) · ±(y), the result is in Σ�EXP+AVs3 , but
not in ΣEXP+AVs3 , let alone in the unique normal form. Recall Proposition A.1,
disallowing destructive interference of counting or dogmatic operators to Σ�EXP+AVs3
terms. We need to apply D13 and D14 zero or more times to the result, then
apply D15, D16 or D17. We can apply induction to the number of atoms in x
and y. The base case is that x and y are atoms, of which there are nine cases, all
are immediate instances of D11∞. The inductive case splits x or y, reducing the
number of atoms in each case.

We need to prove the case of splitting x and the case of splitting y. If we split
x, then FDNs + AVs3 ` ±(
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which by basic calculus is the required result. If we split y, then
FDNs + AVs3 ` ±(

(
β
)
l
,
(
δ
)
m
,
(
υ
)
n
) · ±(

(
β
)
l′+l′′

,
(
δ
)
m′+m′′

,
(
υ
)
n′+n′′

) =

±(
(
β
)
l·l′+l·l′′ ,

(
δ
)
l·m′+l·m′′ ,

(
υ
)
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again by basic calculus is the required result.

Lemma A.8. If ±(x) and ±(y) are unique normal forms, and FDN + AV3 `
±(x) = ±(y), then FDNs + AVs3 ` ±(x) = ±(y).

Proof. As ±(x) and ±(y) are in the unique normal form, take x = x1, . . . , xn
and y = y1, . . . , ym. If we apply D18, on ±(x), the result is in Σ�EXP+AVs3 , but
not in ΣEXP+AVs3 , let alone in the unique normal form. Recall Proposition A.1,
disallowing destructive interference of counting or dogmatic operators to Σ�EXP+AVs3
terms. We need to apply D19 zero or more times to the result, then apply D20,
D21 or D22. We can apply induction to the number of atoms in x. The base case is
that x is an atom, in which case D17∞ can immediately be applied. The inductive
case splits x, reducing the number of atoms in each case. If we split x, then

FDNs + AVs3 ` ±(
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satisfying the requirement.

Lemma A.9. If ±(x), ±(y), ±(z) are unique normal forms, and FDN + AV3 `
±(x) ∧ ±(y) = ±(z), then FDNs + AVs3 ` ±(x) ∧ ±(y) = ±(z).

Proof. As ±(x) and ±(y) are in the unique normal form, take x = x1, . . . , xn
and y = y1, . . . , ym. If we apply D23on ±(x) · ±(y), the result is in Σ�EXP+AVs3 ,
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but not in ΣEXP+AVs3 , let alone in the unique normal form. Recall Proposi-
tion A.2, disallowing destructive interference of counting or dogmatic operators to
Σ�EXP+AVs3 terms. Using induction, it is immediate that (
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is the only term without the �∧ operator. By induction,
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Combining the two equalities to get the only equal statement without �∧ , Pδ( )
and Pυ( ) we get (
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Omitted Proofs of Part II

B.1 Omitted Proof of Trust Chaining Formula

In this section of the appendix, we derive several auxiliary equations which we then
use to detail the steps omitted in the proof of Theorem 8.1. For a more concise
formulation, we denote an interaction history (ϕs, ϕf ) simply as ϕ.

Proposition B.1. In the Beta model it holds that

fRB(b|OA
B=(xs, xf ), EB=f) = fB(b;xs + 1, xf + 2.

Proof. Apply Bayes’ theorem to the left hand side to get:

P (OA
B=(xs, xf ), EB=f|RB=b) · P (RB=b)

P (OA
B=(xs, xf ), EB=f)

.

Which, using P (RB=b) = 1 and Independency I1S or Independency I3S is propor-
tional to:

P (OA
B=(xs, xf )|RB=b) · P (EB=f|RB=b).

Therefore, we have a term proportional to bxs · (1 − b)xf · (1 − b) = bxs · (1 −
b)xf+1, which, due to Theorem 6.5 is proportional to fB(b;xs + 1, xf + 2). If two
functions are proportional, they represent the same distribution, and since both
are distributions, they must be equal.

Proposition B.2. For discrete random variables A, B and C, if P (A=a|B=b) = 1
and P (A=a|C=c) 6= 0 then A=a⊥⊥ C=c|B=b.

Proof. Observe P (A=a, C=c|B=b) = P (A=a|B=b, C=c) · P (C=c|B=b) = 1 ·
P (C=c|B=b) = P (A=a|B=b) · P (C=c|B=b).

Corollary B.3. For all W ∈WS it holds that:

SBC ⊥⊥ W |EB=s ∩OB
C .

Proof. This follows immediately from the dependencies and Proposition B.2
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Proposition B.4. Provided positive probabilities for X, Y , Z and W . If
X ⊥⊥ Y |Z,W and X ⊥⊥ Z|Y,W then X ⊥⊥ Y, Z|W .

Proof. Implication is known as intersection, e.g. in [Bou92].

Lemma B.5. Let ϕ be a collection of events, not containing any of OA
C , SAC (for any

B), EC and RC. Let
−→
O = OB0

C , . . . OBn
C , for {C,B0, . . . Bn} = A.Let ψ = ψ0, ψ1 be

such that ψ = EC ,
−→
O Then, for any C ∈ A, fRC (c|ϕ, ψ0) = fRC (c|ψ0).

Proof. Note that ϕ⊥⊥ ψ|RC (Independencies I1D and I3D) and ϕ⊥⊥ RC |ψ (Inde-
pendency I2D), and thus, via Proposition B.4, ϕ⊥⊥ ψ,RC . Apply the law of total
probability on ψ1 to the left hand side.∑

ψ1

fRC (c, ψ1|ϕ, ψ0).

Due to ϕ⊥⊥ ψ0, ψ1, RC , this simplifies to:∑
ψ1

fRC (c, ψ1|ψ0).

Reverse the law of total probability to obtain the right hand side.

Before we perform the main equation, we introduce a collection of simpler equa-
tions, that we can apply to simplify the main analysis. These equations are num-
bered A1 through A7.

Auxiliary equation A1

f(y) =
∑
w

(
f(w) ·

{
1 if w=y

0 if w 6= y

)
.
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Auxiliary equation A2

P (OB
C=w|OA

B=x, SBC=y, EB=s)

{Bayes’ theorem.}

=

P (SBC=y|OA
B=x,OB

C=w,EB=s)

·P (OB
C=w|OA

B=x,EB=s)∑
w′∈OCB

(
P (SBC=y|OA

B=x,OB
C=w′, EB=s)

·P (OB
C=w′|OA

B=x,EB=s)
)

{Corollary B.3.}

=
P (SBC=y|OB

C=w,EB=s) · P (OB
C=w|OA

B=x,EB=s)∑
w′∈OCB

P (SBC=y|OB
C=w′, EB=s) · P (OB

C=w′|OA
B=x,EB=s)

{Apply Dependency D4S to the first factor in denominator, evaluating

to 1 iff w′ = y and A1 setting w′ = y.}

=P (SBC=y|OB
C=w,EB=s) · P (OB

C=w|OA
B=x,EB=s)

P (OB
C=y|OA

B=x,EB=s)

{If w = y then both terms equal one,

otherwise, the fist term equals zero, via Dependency D4S.}

=

{
1 if w=y

0 if w 6= y
.

Auxiliary equation A4(ϕ)

P (OB
C=ϕ|OA

B=x,EB=u)

{Law of total probability on RC .}

=

∫ 1

0

P (OB
C=ϕ|OA

B=x,EB=u,RC=c)

· fRC (c|OA
B=x,EB=u) dc

{Independency I1S on OA
B=x and EB=u and Lemma B.5}

on OA
B = x and EB = u.}

=

∫ 1

0

P (OB
C=ϕ|RC=c) · fRC (c) dc

{Apply Dependency D3S and Dependency D1S.}

=

∫ 1

0

(
ϕs + ϕf
ϕs

)
cϕs(1− c)ϕf · λ(ϕs + ϕf ) · 1 dc

{Calculus.}

=λ(ϕs + ϕf ) ·
(
ϕs + ϕf
ϕs

)
· ϕs!ϕf !

(ϕs + ϕf + 1)!
.
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Auxiliary equation A5

P (EB = s|OA
B = x)

{Law of total probability over RB.}

=

∫ 1

0

P (EB = s|OA
B = x,RB = b) · fRB(b|OA

B = x) db

{Independency I3S on OA
B.}

=

∫ 1

0

P (EB = s|RB = b) · fRB(b|OA
B = x) db

{Apply Dependency D2S and Theorem 6.5.}

=

∫ 1

0

b · fB(b;xs + 1, xf + 1) db

{Expected value of a beta distribution, Proposition 6.4.}

=
xs + 1

xs + xf + 2
.

Auxiliary equation A6

P (SBC=y|OA
B=x,EB=s)

{Law of total probability over OB
C .}

=
∑
w′∈OBC

(
P (SBC=y|OA

B=x,EB=s, OB
C=w′)

· P (OB
C=w′|OA

B=x,EB=s)
)

{Apply Corollary B.3.}
=
∑
w′∈OBC

(
P (SBC=y|EB=s, OB

C=w′) · P (OB
C=w′|OA

B=x,EB=s)
)

{Apply Dependency D4S, and A1.}
=P (OB

C=y|OA
B=x,EB=s)

{Apply A4(y).}

=λ(ys + yf ) ·
(
ys + yf
ys

)
· ys!yf !

(ys + yf + 1)!
.
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Auxiliary equation A7

P (SBC=y|OA
B=x,OB

C=ϕ,EB=f)

{Law of total probability on RB.}

=

∫ 1

0

P (SBC=y|OA
B=x,OB

C=ϕ,EB=f, RB=b)

· fRB(b|OA
B=x,OB

C=ϕ,EB=f) db

{Independency I4S on OA
B = x and Lemma B.5, to cancel OB

C=ϕ.}

=

∫ 1

0

P (SBC=y|OB
C=ϕ,EB=f, RB=b) · fRB(b|OA

B=x,EB=f) db

{Apply Dependency D5S and Lemma B.1.}

=

∫ 1

0

χB(b, ϕs, ϕf )(ys, yf ) · fB(b;xs + 1, xf + 2) db.

The semantics of equations eq1–eq5

With help of the auxiliary equations we can now prove Theorem 8.1.

eq1
ϕ(c) = P (RC=c|OA

B=x, SBC=y, EB=u,OB
C=w),

eq2 = P (EB=s|OA
B=x, SBC=y),

eq3 = P (OB
C=w|OA

B=x, SBC=y, EB=f),

eq4 = P (SBC=y|OA
B=x,EB=s),

eq5
ϕ = P (SBC=y,OB

C=ϕ|OA
B=x,EB=f).
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Main equation

Using eq1, eq2, and eq3, we can formulate Formula (8.1):

P (RC=c|OA
B=x, SBC=y)

{Law of total probability on EB.}
=P (RC=c|OA

B=x, SBC=y, EB=s) · P (EB=s|OA
B=x, SBC=y)

+ P (RC=c|OA
B=x, SBC=y, EB=f) · P (EB=f|OA

B=x, SBC=y)

{Law of total probability on OB
C .}

=
∑
w∈OBC

(
P (RC=c|OA

B=x, SBC=y, EB=s, OB
C=w)

· P (OB
C=w|OA

B=x, SBC=y, EB=s)
)

· P (EB=s|OA
B=x, SBC=y)

+
∑
w∈OBC

(
P (RC=c|OA

B=x, SBC=y, EB=f, OB
C=w)

· P (OB
C=w|OA

B=x, SBC=y, EB=f)
)

· P (EB=f|OA
B=x, SBC=y)

{Apply A2 and A1.}
=P (RC=c|OA

B=x, SBC=y, EB=s, OB
C=y)

· P (EB=s|OA
B=x, SBC=y)

+
∑
w∈OBC

(
P (RC=c|OA

B=x, SBC=y, EB=f, OB
C=w)

· P (OB
C=w|OA

B=x, SBC=y, EB=f)
)

· P (EB=f|OA
B=x, SBC=y)

{Apply eq1, eq2 and eq3.}
=eq1

ys,yf
(c) · eq2 +

∑
w∈OBC

(eq1
ws,wf

(c) · eq3 ·(1− eq2)).

Equation for eq1
ϕ(c)

Now we derive the correctness of eq1:

P (RC=c|OA
B=x, SBC=y, EB=u,OB

C=ϕ)

{Lemma B.5 on OA
B=x, SBC=y, EB=u.}

= P (RC=c|OB
C=ϕ)

{Let ϕ = (ϕs, ϕf ) and apply Theorem 6.5.}
= fB(c;ϕs + 1, ϕf + 1).
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Equation for eq2

Now we derive the correctness of eq2 using A5b, eq4 and eq5:

P (EB=s|OA
B=x, SBC=y)

{Bayes’ theorem.}

=
P (SBC=y|OA

B=x,EB=s) · P (EB=s|OA
B=x)

P (SBC=y|OA
B=x,EB=s) · P (EB=s|OA

B=x)
+ P (SBC=y|OA

B=x,EB=f) · P (EB=f|OA
B=x)

{Apply A5 and cancel denominators.}

=
P (SBC=y|OA

B=x,EB=s) · (xs + 1)

P (SBC=y|OA
B=x,EB=s) · (xs + 1) + P (SBC=y|OA

B=x,EB=f) · (xf + 1)

{Law of total probability over OB
C .}

=
P (SBC=y|OA

B=x,EB=s) · (xs + 1)

P (SBC=y|OA
B=x,EB=s) · (xs + 1)

+
∑

w′∈OBC
P (SBC=y,OB

C=w′|OA
B=x,EB=f) · (xf + 1)

=
eq4 ·(xs + 1)

eq4 ·(xs + 1) +
∑

w′∈OBC
eq5

w′ · (xf + 1)
.

Equation for eq3

Now we derive the correctness of eq3 using eq5:

P (OB
C=w|OA

B=x, SBC=y, EB=f)

{Bayes’ theorem.}

=
P (SBC=y,OB

C=w|OA
B=x,EB=f)

P (SBC=y|OA
B=x,EB=f)

{Law of total probability over OB
C .}

=
P (SBC=y,OB

C=w|OA
B=x,EB=f)∑

w′∈OBC
P (SBC=y,OB

C=w′|OA
B=x,EB=f)

{Apply equation eq5.}

=
eq5

w∑
w′∈OBC

eq5
w′
.
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Equation for eq4

Now we derive the correctness of eq4 using A6:

P (SBC=y|OA
B=x,EB=s)

{Apply A6.}

=λ(ys + yf ) ·
(
ys + yf
ys

)
· ys!yf !

(ys + yf + 1)!
.

Equation for eq5
ϕ

Now we derive the correctness of eq5 using A4 and A7:

P (SBC=y,OB
C=ϕ|OA

B=x,EB=f)

{Conjunction.}
=P (SBC=y|OA

B=x,OB
C=ϕ,EB=f) · P (OB

C=ϕ|OA
B=x,EB=f)

{Apply A4 and A7.}

=

∫ 1

0

χB(b, ϕs, ϕf )(ys, yf ) · fB(b;xs + 1, xf + 2) db·

λ(ϕs + ϕf ) ·
(
ϕs + ϕf
ϕs

)
· ϕs!ϕf !

(ϕs + ϕf + 1)!
.
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B.2 Omitted Proof for Modularity

In this appendix, we derive several auxiliary equations which we then use to de-
tail the steps omitted in the proof of Theorem 8.9. The main equation proving
Theorem 8.9 can be found at the end.

Corollary B.6. For all W ∈WS it holds that:

SBC ⊥⊥ W |RB=b ∩ EB=u ∩OB
C .

Proof. This follows immediately from Corollary B.3 and Independency I4S,

Auxiliary equation B1

fRD(d|RC=c, RB=b, EB=u,OB
C=w,ψ,

⋂
D

OEi
D = ei, ED = u)

{Independency I2.}
=fRD(d|RC=c, ψ,

⋂
D

OEi
D = ei, ED = u)

Auxiliary equation B2

P (ED = u|RC=c, RB=b, EB=u,OB
C=w,ψ,

⋂
D

OEi
D = ei, RD=d)

{Independency I3S.}
=P (ED = u|RC=c, ψ,

⋂
D

OEi
D = ei, RD=d)

Auxiliary equation B3

P (ED = u|RC=c, RB=b, EB=u,OB
C=w,ψ,

⋂
D

OEi
D = ei, RD=d)

{Independency I1S.}
=P (ED = u|RC=c, ψ,

⋂
D

OEi
D = ei, RD=d)
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Auxiliary equation B4

fRD(d|RC=c, RB=b, EB=u,OB
C=w,ψ)

{Law of total probability.}
=
∑

fRD(d,
⋂
D

OEi
D = ei, ED = u|RC=c, RB=b, EB=u,OB

C=w,ψ)

{Intersection of B1, B2, and B3.}
=
∑

fRD(d,
⋂
D

OEi
D = ei, ED = u|RC=c, ψ)

{Law of total probability.}
=fRD(d|RC=c, ψ)

Auxiliary equation B5

P (OA
D=x′|RC=c, RB=b, EB=u,OB

C=w,ψ)

{Law of total probability.}

=

∫ 1

0

P (OA
D=x′|RC=c, RB=b, EB=u,OB

C=w,ψ,RD=d)

· fRD(d|RC=c, RB=b, EB=u,OB
C=w,ψ)

{Independency I1S.}

=

∫ 1

0

P (OA
D=x′|RC=c, ψ,RD=d) · fRD(d|RC=c, RB=b, EB=u,OB

C=w,ψ)

{Apply B4.}

=

∫ 1

0

P (OA
D=x′|RC=c, ψ,RD=d) · fRD(d|RC=c, ψ)

{Law of total probability.}
=P (OA

D=x′|RC=c, ψ)

Auxiliary equation B6

fRD(d,ED=u′|RC=c, RB=b, EB=u,OB
C=w,ψ)

{Law of total probability.}
=
∑

fRD(d,
⋂
D

OEi
D = ei, ED = u|RC=c, RB=b, EB=u,OB

C=w,ψ)

{Intersection of B1, B2, and B3.}
=
∑

fRD(d,
⋂
D

OEi
D = ei, ED = u|RC=c, ψ)

{Law of total probability.}
=fRD(d,ED=u′|RC=c, ψ)
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Auxiliary equation B7

fRD(d,ED=u′, OD
C=w′|RC=c, RB=b, EB=u,OB

C=w,ψ)

{Apply Independency I1S.}
=fRD(d,ED=u′|RC=c, RB=b, EB=u,OB

C=w,ψ) · P (OD
C=w′|RC=c, ψ)

{Apply B6.}
=fRD(d,ED=u′|RC=c, ψ) · P (OD

C=w′|RC=c, ψ)

{Apply Independency I1S.}
=fRD(d,ED=u′, OD

C=w′|RC=c, ψ)

Auxiliary equation B8

P (SDC =x′|RC=c, RB=b, EB=u,OB
C=w,ψ)

{Law of total probability.}

=
∑

u′∈{s,f}

∑
w′∈N·N

∫ 1

0

P (SDC =x′|RC=c, RB=b, EB=u,OB
C=w,ψ,RD=d,ED=u′, OD

C=w′)

· fRD(d,ED=u′, OD
C=w′|RC=c, RB=b, EB=u,OB

C=w,ψ)

{Apply Corollary B.6.}

=
∑

u′∈{s,f}

∑
w′∈N·N

∫ 1

0

P (SDC =x′|RC=c, ψ,RD=d,ED=u′, OD
C=w′)

· fRD(d,ED=u′, OD
C=w′|RC=c, RB=b, EB=u,OB

C=w,ψ)

{Apply B7.}

=
∑

u′∈{s,f}

∑
w′∈N·N

∫ 1

0

P (SDC =x′|RC=c, ψ,RD=d,ED=u′, OD
C=w′)

· fRD(d,ED=u′, OD
C=w′|RC=c, ψ)

{Law of total probability.}
=P (SDC =x′|RC=c, ψ)

Auxiliary equation B9

P (ϕ|RC=c, RB=b, EB=u,OB
C=w)

{Repeated application of Proposition B.4, using B5 and B8, for all D.}
= P (ϕ|RC=c).
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Auxiliary equation B10

P (SBC = y, ϕ|RC=c, RB=b)

{Law of total probability.}
=

∑
u∈{s,f}

∑
w∈N·N

P (SBC = y, ϕ|RC=c, RB=b, EB=u,OB
C=w)

· P (EB=u,OB
C=w|RC=c, RB=b)

{Apply Corollary B.6.}
=

∑
u∈{s,f}

∑
w∈N·N

P (SBC = y|RC=c, RB=b, EB=u,OB
C=w)

· P (ϕ|RC=c, RB=b, EB=u,OB
C=w) · P (EB=u,OB

C=w|RC=c, RB=b)

{Auxiliary equation B9.}
=

∑
u∈{s,f}

∑
w∈N·N

P (SBC = y|RC=c, RB=b, EB=u,OB
C=w) · P (ϕ|RC=c)

· P (EB=u,OB
C=w|RC=c, RB=b)

{Law of total probability.}
= P (SBC = y|RC=c, RB=b) · P (ϕ|RC=c)

Auxiliary equation B11

P (OA
B=x, SBC=y, ϕ|RC=c)

{Law of total probability.}

=

∫ 1

0

P (OA
B=x, SBC=y, ϕ|RC=c, RB=b) · fRB(b|RC=c)

{Similar to Proposition 8.8.}

=

∫ 1

0

P (OA
B=x|RC=c, RB=b) · P (SBC=y, ϕ|RC=c, RB=b) · fRB(b|RC=c)

{Auxiliary equation B10.}

=

∫ 1

0

P (OA
B=x|RC=c, RB=b) · P (SBC=y|RC=c, RB=b) · P (ϕ|RC=c) · fRB(b|RC=c)

{Similar to Proposition 8.8.}

=

∫ 1

0

P (OA
B=x, SBC=y|RC=c, RB=b) · P (ϕ|RC=c) · fRB(b|RC=c)

{Law of total probability.}
=P (OA

B=x, SBC=y|RC=c) · P (ϕ|RC=c)
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Main equation

fRC (c|OA
B=(xs, xf ), S

B
C=(ys, yf ), ϕ)

{Bayes theorem.}

=
P (OA

B=(xs, xf ), S
B
C=(ys, yf ), ϕ|RC=c) · fRC (c)

P (OA
B=(xs, xf ), SBC=(ys, yf ), ϕ)

{Auxiliary equation B11.}

=
P (OA

B=(xs, xf ), S
B
C=(ys, yf )|RC=c) · P (ϕ|RC=c) · fRC (c)

P (OA
B=(xs, xf ), SBC=(ys, yf ), ϕ)

{Change constant factor.}

∝P (OA
B=(xs, xf ), S

B
C=(ys, yf )|RC=c) · P (ϕ|RC=c) · fRC (c)

P (OA
B=(xs, xf ), SBC=(ys, yf )) · P (ϕ)

{Apply Dependency D1.}

=
P (OA

B=(xs, xf ), S
B
C=(ys, yf )|RC=c) · fRC (c) · P (ϕ|RC=c) · fRC (c)

P (OA
B=(xs, xf ), SBC=(ys, yf )) · P (ϕ)

{Bayes theorem (2x).}
=fRC (c|ϕ) · fRC (c|SBC=(ys, yf ), O

A
B=(xs, xf ))
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B.3 Omitted Proof Generalised Trust Chaining

First we generalise Lemma B.1.

Proposition B.7. Let g(b) = fRB(b|ψ). In the Beta model it holds that

fRB(b|ψ,EB=f) = g(x) · 1− x
1− E(g)

.

Proof. Apply Bayes’ theorem to the left hand side to get:

P (ψ,EB=f|RB=b) · P (RB=b)

P (ψ,EB=f)

Which, using P (RB=b) = 1 and Independency I3S is proportional to:

P (ψ|RB=b) · P (EB=f|RB=b)

Therefore, we have a term proportional to g(b) · (1 − b). The distribution that it

represents is g(b)·(1−b)∫ 1
0 g(y)·(1−y) dy

= g(b)·(1−b)
1−

∫ 1
0 g(y)·y dy

= g(b)·(1−b)
1−E(g)

.

Observe that in A4, we can substitute OA
B=x for an arbitrary term ψ, provided ψ

does not contain OA
C or SAC .

Similarly, in A6, we can substitute OA
B=x for an arbitrary term ψ.

Finally, we need to modify the remaining auxiliary equations that contain OA
B,

namely A5, A7. As a consequence, we need to update the equations dependent
on these, namely eq2 and eq5.

Auxiliary equation A5b

P (EB = s|ψ)

{Law of total probability over RB.}

=

∫ 1

0

P (EB = s|ψ,RB = b) · fRB(b|ψ) db

{Independency I3S on OA
B.}

=

∫ 1

0

P (EB = s|RB = b) · fRB(b|ψ) db

{Apply Dependency D2S and the assumption g(b) = fRB(b|ψ).}

=

∫ 1

0

b · g(b) db

{Definition expected value of g.}
=E(g).
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Auxiliary equation A7b

P (SBC=y|ψ,OB
C=ϕ,EB=f)

{Law of total probability on RB.}

=

∫ 1

0

P (SBC=y|ψ,OB
C=ϕ,EB=f, RB=b)

· fRB(b|ψ,OB
C=ϕ,EB=f) db

{Independency I4S on ψ and Lemma B.5 on OB
C = ϕ.}

=

∫ 1

0

P (SBC=y|OB
C=ϕ,EB=f, RB=b) · fRB(b|ψ,EB=f) db

{Apply Dependency D5S and Lemma B.7.}

=

∫ 1

0

χB(b, ϕs, ϕf )(ys, yf ) · g(x) · 1− x
1− E(g)

db.

Equation for eq2b

Now we derive the correctness of eq2b using A5b, eq4 and eq5b:

P (EB=s|ψ, SBC=y)

{Bayes’ theorem.}

=
P (SBC=y|ψ,EB=s) · P (EB=s|ψ)

P (SBC=y|ψ,EB=s) · P (EB=s|ψ) + P (SBC=y|ψ,EB=f) · P (EB=f|ψ)

{Apply A5b.}

=
P (SBC=y|ψ,EB=s) · E(g)

P (SBC=y|ψ,EB=s) · E(g) + P (SBC=y|ψ,EB=f) · (1− E(g))

{Law of total probability over OB
C .}

=
P (SBC=y|ψ,EB=s) · (xs + 1)

P (SBC=y|ψ,EB=s) · (xs + 1) +
∑

w′∈OBC
P (SBC=y,OB

C=w′|ψ,EB=f) · (xf + 1)

=
eq4 ·(xs + 1)

eq4 ·(xs + 1) +
∑

w′∈OBC
eq5b

w′ · (xf + 1)
.

Equation for eq5b
ϕ

Now we derive the correctness of eq5b using A4 and A7b:

P (SBC=y,OB
C=ϕ|ψ,EB=f)

{Conjunction.}
=P (SBC=y|ψ,OB

C=ϕ,EB=f) · P (OB
C=ϕ|ψ,EB=f)

{Apply A4 and A7b.}

=

∫ 1

0

χB(b, ϕs, ϕf )(ys, yf ) · g(x) · 1− x
1− E(g)

db·

λ(ϕs + ϕf ) ·
(
ϕs + ϕf
ϕs

)
· ϕs!ϕf !

(ϕs + ϕf + 1)!
.
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Glossary

AND (x ∧ y) See Section 10.2. 31, 41, 61, 68, 144
An abstract operator used in the axiomatic approach. The operator is an
abstraction of trust conjunction and multiplication.

asymmetric interaction See page 1. 1
An interaction where one party (the target) determines whether the out-
come of the interaction is beneficial (a success) or costly (a failure) to the
other party (the subject). The subject decides whether or not to have this
interaction. Usually simply referred to as “interaction”.

axiom See Definition 3.3. 3, 8, 29
A self-evident truth.

axiomatic approach See Part I. 3, 8, 29
An approach in which correctness trust models are studied by providing and
analysing axioms. Refers to the methodology applied in Part I.

Bayes’ theorem See Theorem 6.2. 3, 78
An mathematical theorem in probability theory. The theorem links the prob-
ability of a set of outcomes under a hypothesis to the probability of a hypoth-
esis given a set of outcomes. Bayes’ theorem is relevant, if we see a target
having a certain integrity as a hypothesis.

belief triple ((b, d, u)) See page 31. 21, 31, 32, 45, 55
A trust opinion in Subjective Logic.

Bernoulli distribution See e.g. [Bil95, Gut07]. 69, 123
A probability distribution with one parameter p and two possible outcomes,
one outcome happens with probability p, the other with probability 1− p.

beta distribution (fB(x; s, f)) See Definition 6.7. 7, 15, 19, 75, 78, 94, 102,
110, 121, 126
A probability distribution with two parameters, which represent the number
of failures and successes. Such beta distributions range over the integrity of
the target.

Beta family with trust chaining See Definition 8.2. 97, 100, 125
A family of correctness trust models that allow trust aggregation and trust
chaining.

Beta model See Definition 6.8. 5, 19, 81, 128
A correctness trust model that allows trust aggregation.
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Beta model with logical trust operations See Definition 7.1. 85, 88, 125
A correctness trust model that allows trust aggregation and the logical trust
operations.

Beta paradigm See page 7. 2, 7, 13, 97
The paradigm in which this thesis is set. The main principles are that we
are interested in formally correct trust opinions, that trust is (asymmetric)
interaction oriented, that outcomes are objectively good or bad, and that
information is limited to observing outcomes and recommendations.

Canephora See Section 8.2.1. 104, 105, 139
A tool that computes trust chains given predefined or user-defined entangle-
ments and lying strategies.

carrier set See Definition 3.2. 16, 38
Given some (binary) operations �, whenever a�b = c and a, b are in the carrier
set, c is also in the carrier set. For example, integers and real numbers are a
carrier set for addition and subtraction, but natural numbers are not.

chained trust opinion See Definition 8.3. 101
A trust opinion constructed using only a trust chain that incorporates exactly
one recommender.

chained trust opinion See page 97. 81, 97, 112, 128
A trust opinion constructed using trust chaining.

cognitive trust model See page 3. 3, 14
A trust model that attempts to accurately capture the trust opinions people
hold.

complement (�(x)) See Section 2.4.2. 21, 32
A computationally defined operation from Subjective Logic, designed to im-
plement trust negation.

composite trust opinion See page 85. 81, 85, 127, 137
A trust opinion constructed using logical trust operations.

comultiplication (x> y) See Section 2.4.2. 21, 32
A computationally defined operation from Subjective Logic, designed to im-
plement trust disjunction.

consensus (x⊕ y) See Section 2.4.2. 7, 21, 31
A computationally defined operation from Subjective Logic, designed to im-
plement trust aggregation.

correctness trust model See page 3. 3, 14, 75
A trust model where trust opinions are mathematical descriptions of proba-
bilities regarding trustworthiness of users (targets).

dilution (x · y) See Section 10.2. 7, 31, 41, 68, 144
An abstract operator used in the axiomatic approach. The operator is an
abstraction of trust chaining and discounting.
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discounting (x⊗ y) See Section 2.4.2. 7, 21, 31
A computationally defined operation from Subjective Logic, designed to im-
plement trust chaining.

dogmatic belief See Section 4.1. 41, 42, 58
A dogmatic opinion in Subjective Logic.

dogmatic opinion See Section 4.1. 10, 41, 45
A trust opinion in which there is no uncertainty. Dogmatic opinions can only
be constructed from non-dogmatic opinions in limit cases.

endogenous filtering See page 19. 11, 19, 108, 133
Weighing or selecting recommendations (about a target) based on the content
of the recommendation, comparing it to data the subject already has on
the target. If a recommendation differs significantly from the data that the
subject has, the subject rejects or assigns little weight to a recommendation.
Contrast with exogenous filtering.

entanglement (λ) See page 80. 11, 80, 102, 125
A distribution over natural numbers, that determines the probability that a
subject and target share n interactions.

exogenous filtering See page 19. 11, 19
Weighing or selecting recommendations (about a target) based on the rec-
ommender. If a recommender is not sufficiently trusted, the subject rejects
or assigns little weight to a recommendation. Contrast with endogenous
filtering.

experiment See Definition 3.1. 35, 36, 45
The symbolic representation of an interaction.

failure (f) See page 1. 1, 20, 36, 79
The outcome of an asymmetric interaction can be objectively determined to
be a success or a failure. It is a failure if the outcome is costly to the subject.

fusion (x+ y) See Section 10.2. 7, 30, 41, 68, 144
An abstract operator used in the axiomatic approach. The operator is an
abstraction of trust aggregation and consensus.

game-theoretical trust model See page 14. 14
A correctness trust model which applies game-theory, emphasises interper-
sonal dynamics, and typically assumes rationality.

integrity (RC) See page 80. 6, 20, 79, 113, 131
The integrity of a user is the probability that the succeeds in an arbitrary
interaction. The integrity is unknown to other users, who can only estimate
its value.

interaction history (OA
C) See page 79. 79, 89, 101, 120, 128

A pair of natural numbers that represent the number of successes and the
number of failures between the subject and the target.
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inverse (x) See Section 10.2. 31, 41, 68, 144
An abstract operator used in the axiomatic approach. The operator is an
abstraction of trust negation and complement.

isomorphic See page 8. 8, 21, 35, 60, 75, 94, 110
Two mathematical structures are isomorphic if there is a mapping between
them that respects the operations. Thus, two trust models are isomorphic,
if they are indistinguishable with regard to trust aggregation, trust chaining
and the logical trust operations.

logical trust operations See Chapter 7. 2, 7, 15, 29, 76, 85, 98, 125
The three logical trust operations are trust conjunction, trust disjunction
and trust negation.

lying strategy (χB) See page 99. 11, 99, 102, 104, 116, 125
A distribution of recommendations from which a recommender selects rec-
ommendations when he lies. The lying strategy may depend on the recom-
mender’s integrity and the recommender’s actual opinion of target.

multiplication (x? y) See Section 2.4.2. 21, 32
A computationally defined operation from Subjective Logic, designed to im-
plement trust conjunction.

OR (x ∨ y) See Section 10.2. 31, 41, 61, 68, 144
An abstract operator used in the axiomatic approach. The operator is an
abstraction of trust disjunction and comultiplication.

probabilistic approach See Part I. 3, 9
An approach in which correctness trust models are studied by providing a
probabilistic semantics to trust related concepts. Refers to the methodology
applied in Part II.

recommendation (SBC ) See Section 2.3. 1, 18, 34, 47, 66, 81, 97, 113, 126
A claim towards the subject, by a recommender, concerning a target. An
honest recommendation reflects the trust opinion of the recommender about
the target.

recommender See page 97. 6, 18, 61, 97, 110, 113, 128
A user that provides a recommendation.

recommender system See page 17. 6, 18
A trust system where recommendations are determined by taste, and out-
comes of interactions are subjective.

reputation system See page 17. 6, 18
A trust system where recommendations are determined by fact, and outcomes
of interactions are objective.

simple trust opinion (ϑs,f ) See page 81. 81, 85, 108, 126, 137
A trust opinion constructed using only direct interactions and trust aggrega-
tion.
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SLVisualiser See Section 3.2.2. 37
A tool that visualises trust computations in Subjective Logic in real-time.

subject See page 1. 1, 13, 31, 78, 127
The subject is a user that forms a trust opinion about another user (the
target), to determine whether to have an asymmetric interaction with that
target.

Subjective Logic See Section 3.2.1. 8, 19, 21, 31, 41, 65
An expressive trust model with foundations in the Beta model. It con-
tains consensus, discounting, multiplication, comultiplication and comple-
ment, which are designed to capture trust aggregation, chaining, conjunction,
disjunction and negation, respectively.

success (s) See page 1. 1, 20, 36, 79
The outcome of an asymmetric interaction can be objectively determined to
be a success or a failure. It is a success if the outcome is beneficial to the
subject.

target (S ∈ T) See page 1. 1, 13, 31, 78, 127
The target determines the outcome of an asymmetric interaction. The target
is assumed to succeed with a certain probability, called his integrity.

trust aggregation See Definition 6.9. 2, 7, 21, 24, 29, 41, 65, 76, 97, 125, 139
Trust aggregation is a binary operation over trust opinions. Two (indepen-
dent) trust opinions regarding a single target are transformed into a single
trust opinion regarding that target.

trust chaining See Definition 8.1. 2, 7, 19, 29, 41, 65, 76, 97, 139
Trust chaining is a binary operation from a trust opinion and a recommen-
dation to a recommendation. A trust opinion regarding a recommender and
his recommendation regarding a target are transformed into a single trust
opinion regarding that target.

trust conjunction See Chapter 7. 2, 31, 89, 139
Trust conjunction is a binary operation over trust opinions. Two (indepen-
dent) trust opinions regarding a two targets are transformed into a single
trust opinion regarding an imaginary target that succeeds if and only if both
original targets succeed.

trust disjunction See Chapter 7. 2, 31, 89, 139
Trust disjunction is a binary operation over trust opinions. Two (indepen-
dent) trust opinions regarding a two targets are transformed into a single
trust opinion regarding an imaginary target that succeeds if and only if ei-
ther original targets succeed.

trust model See page 3. 3, 31, 125
Trust models are used to verify or analyse trust systems. Trust models often
either model the trust people have under given circumstances (cognitive mod-
els), or the trust people should have under given circumstances (correctness
models).
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trust negation See Chapter 7. 2, 31, 89, 139
Trust negation is a unary operation over trust opinions. A trust opinion
regarding a target is transformed into a trust opinion regarding an imaginary
target that succeeds if and only if the original targets fails.

trust opinion See Section 2.2. 1, 7, 14, 16, 29, 58, 68, 80, 126, 135
An estimate of the likelihood that an interaction will be a success and reflects
confidence of that estimate. The trust operations range over trust opinions.

trust system See page 3. 3, 140
Trust systems are (online) systems that assist in decision making where trust
is involved. In particular recommendation systems and reputation systems
are trust systems.

user (A ∈ A) See page 1. 1, 18, 32, 42, 65, 79, 85, 97, 116, 126
Users are entities that may be subjects, targets or recommenders.
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