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Summary

Nowadays, most mobile devices are equipped with positioning capabilities thanks
to the free and ubiquitous access to global navigation satellite systems (GNSS) such
as the global positioning system (GPS). With such mobile devices, people are able
to obtain their precise locations, which in turn leads to a wide range of location-
based services (LBS). Through an LBS, a user can acquire information customised
to his locations. However, the vulnerabilities of GNSS systems and the exposure
of information such as locations and queries in LBS requests impose a strong need
from users on security. In this thesis, we study two security requirements in LBSs:
location assurance and privacy.

Location assurance expresses users’ requirement for trustworthy locations in terms
of correctness and precision. To make use of LBSs, users rely on positioning systems
to calculate their locations. However, these systems are vulnerable to attacks which
can maliciously affect the calculation of locations. For instance, GPS suffers from
spoofing attacks which can fool GPS receivers to calculate incorrect locations by
sending false satellite signals. These attacks degrade the precision of calculated
locations or even result in incorrect ones.

Privacy addresses users’ concern about personal information leakage in LBSs. To
make use of an LBS, a user needs to expose his location and query to an LBS
provider. When such information is abused, for instance, by attackers who eaves-
drop the public channel used for sending LBS requests or malicious LBS providers,
users’ private information such as habits and occupations will be inferred. Two
types of privacy in LBSs have been identified in the literature and will be dis-
cussed in this thesis: query privacy and location privacy, which are related to
privacy leakage from what users asked and where users went, respectively.

The first part of this thesis considers the vulnerability of GNSS systems to spoof-
ing attacks and presents a trust framework to detect spoofing by evaluating the
integrity of GNSS signals. The framework combines existing spoofing detection
methods to generate an overall quantitative evaluation of the integrity of received
signals. Based on this evaluation, users can determine the extent to which they
can trust their locations. We implement a prototype based on our framework and
develop a public service called location assurance certification. In this service, a
trusted agent is introduced to certify uses’ locations according to the integrity of
their received signals.

The second part of this thesis discusses the protection of query privacy when the
adversary has access to an increasing amount of contextual information. First,
we propose a probabilistic framework. In this framework, we formally define the
attacks which enable the adversary to infer the issuers of LBS queries by exploring

i



ii

various contextual information. Second, we make use of two types of contextual in-
formation, users profiles and query dependency, to instantiate our framework. User
profiles have not been deeply studied in the literature while dependency between
queries has not been considered yet. Third, we propose a series of query privacy
metrics. These metrics not only measure query privacy from different perspectives
but also enable users to express their requirements for query privacy flexibly and
precisely. In order to meet users’ requirement on query privacy, we develop new
protection mechanisms against attacks exploring contextual information.

The third part of this thesis addresses location privacy. So as to protect users’
location privacy, many location privacy preserving methods (LPPM) have been
proposed. A user will make use of them to break the link between his identity
and his locations when requesting LBSs. We propose a new attack on location pri-
vacy based on the adversary’s observation on users’ locations protected by LPPMs.
Compared to existing attacks which target at where users went, our attack pro-
vides the adversary with sufficient information to infer what users did, i.e., their
activities. Specifically, through our attack, the adversary learns the places where
users performed activities and their beginning and ending time of each activity. To
achieve this goal, we explore the patterns of users with respect to movements and
requesting LBSs, i.e., user profiles. So as to capture users’ behaviour naturally and
ensure the accuracy of the temporal information, i.e., beginning time and ending
time of activities, we propose a new model for user profiles which models time as
continuous.
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1

Introduction

Curiosity is human nature and drives people to explore the unknown world. From
the overland Silk Road to the discovery of the ‘New World’, the history of human
being is actually a history of exploration. Thanks to the thousands of years’ efforts
from billions of brilliant people, our sphere of activities has been expanded to all
over the globe. Meanwhile, our transportation means have also evolved from horse-
driven chariots to high-speed rails and planes. The enlarged area of activities and
ease of mobility have made travelling part of our daily lives. For example, in
Beijing, a person spends 66 minutes a day on average commuting between home
and work.

In this modern era which is featured by the explosion of information, people have
become accustomed to electronic connectivity such as emails and short messages.
They expect that this connectivity can be continued even when they are out of their
offices and houses. Consequently, an effective method is in need to cover the gap
of connectivity caused by travelling. The innovations of information technologies
meet this requirement. Fast wireless networks such as 3G and 4G provide the
infrastructure that enables us to connect to the Internet ubiquitously in a large
speed. For instance, 4G networks have covered most of areas worldwide and even
promise a peak downloading speed up to 1Gbps. Smartphones and other mobile
devices provide us with tools to request and receive information anywhere and
anytime. In 2012, the number of smartphone users first surpassed one billion and
it is foreseen that in 2014 this number will grow by three quarters to 1.75 billion.
The merge of these technologies has shown its impacts on our lives. We are used
to seeing people checking emails in meetings, reading news on buses and posting
messages on Facebook during lunch.

Researchers at the University of California reported that about 30% more infor-
mation was generated worldwide every year between 1999 and 2002 [LV03]. We
believe that this rapid growth continued in the last decade, considering the increas-
ing number of Internet users. Facing the increasing amount of information, people
desire not only ubiquitous access to information, but also fast and precise access.
In other words, people need information that is catered according to their own re-
quirements, i.e., personalised information. For instance, instead of a complete list
of newly published papers in all areas, scientists prefer to get informed of the ones
relevant to their research domains. Instead of manually specifying requirements,
an enormous number of people allow information service providers to gather their
personal information from which their requirements are automatically extracted.
For example, we grant Google the right to collect our daily web usage history so
as to obtain personalised search results and video recommendation on Youtube.

The mobility of connectivity opens up an opportunity of providing better person-
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2 Chapter 1 Introduction

alised information services because the constant changing context during people’s
travelling can be added as a new source of personal information. Information ser-
vices can thus be adjusted according to users’ locations and nearby surroundings.
In this thesis, we concentrate on one of the most popular classes of services that
provide such context-aware information: Location-based services (LBS). An LBS is
a service accessed by mobile devices, which provides information or functionalities
customised according to the locations of the devices. For instance, in some cities,
people can ask the question ‘when will the next bus no. 7 arrive at this stop?’
where ‘this stop’ is determined by the GPS1 chips embedded in their smartphones.
Nowadays, we have got used to checking nearby restaurants on Google and calling
the nearest available taxies through mobile applications. Mobile health-care, elec-
tronic toll systems and mobile gaming, which only existed in scientific fiction 20
years ago, now have become reality.

1.1 Location-based Services

‘Active Badge’, developed in 1992, is recognised as the first experimental LBS [Yu08].
With an indoor positioning system tracking employees’ locations, messages are for-
warded to the target employees directly, instead of being broadcast in the entire
building. Since then, LBSs have been implemented for a number of scenarios. Cur-
rently, social networking, e.g., finding nearby friends and geo-social networks, is
the first LBS application in terms of the number of users and revenues. Following
social networking are local information search (e.g., queries about nearby restau-
rants) and navigation services. These top three LBSs have one thing in common:
a user makes use of his own locations when requesting LBSs. However, in some
LBSs, users can request information based on others’ whereabouts. Car rental
companies are known to track their fleets so as to monitor whether their clients
violate rental agreements, e.g., by driving over the speed limit [Goo09]. In this
thesis, we concentrate on the former class of LBSs where users request LBSs using
their own locations due to their large number of users.

We recognise three roles in an LBS scenario: location provider, user, LBS provider.
A location provider is a system that either provides necessary information to cal-
culate locations or directly calculates the locations for mobile devices. A user
carries a mobile device and the locations calculated by location providers actually
correspond to his movements. Whenever in need of an LBS, the user specifies the
information required as a query and sends it with his location to an LBS provider.
An LBS provider implements a software system taking location owners’ locations
as input and outputting the response catered according to LBS requesters’ queries.
In the example of requesting the arrival time of the next bus, the bus monitor-
ing centre is the LBS provider while GPS plays the role of the location provider.
People are the users and the query is the arrival time of the next bus. Figure 1.1
depicts the roles as well as steps involved to receive an LBS and the information
exchanged in such LBSs.

From Figure 1.1, we can see that the location provider is essential for LBSs. It
is where users’ locations originate and constructs the first step to obtain an LBS.

1GPS is short for the American global positioning system.
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Figure 1.1: Roles involved in location-based services.

In practice, positioning systems play the role of location providers, so whether
they can do their job as expected determines the trustworthiness of locations.
LBSs stem from the launch of global navigation satellite systems (GNSS) . Due
to the free and ubiquitous positioning services, GNSS have been widely deployed
in terms of the number of users and application scenarios. The European GNSS
Agency predicted that in 2022, seven billion devices will be equipped with the
access to GNSS [Age13]. In the next section, we briefly describe GNSS and their
vulnerabilities.

1.2 GNSS Systems and Their Vulnerabilities

GNSS systems. As the first GNSS system, the American global positioning sys-
tem (GPS) is designed to determine positions on the surface of the earth with
accuracy of meters or even centimetres. It was initially developed only for military
use. Since 1990s, the full operational service has become freely accessible to civil-
ian users but with a downgraded position accuracy . A location is calculated based
on comparing the timing of signals transmitted from the set of satellites above the
horizon. GPS is not the only operational GNSS system. Russia has launched a
comparable system, GLONASS, and the system that became most recently oper-
ational is the Chinese Beidou system. The European Galileo system will become
operational in a few years.

In spite of the high accuracy with which locations are determined, GNSS cannot
guarantee constant availability. It is estimated that in Hongkong, due to the in-
fluence of urban canyons, GPS signals are only available for 20% of the time. The
reason is that GNSS signals are transmitted in a relatively low power level and over
great distances. The received GPS signals are weak and easily further attenuated
by by walls and roofs. Since the reception of GPS signals is not reliable indoor or
in other obstructed environments, complementary positioning systems are devel-
oped, e.g., cell identification, Wifi fingerprinting and RFID. A detailed summary
of other positioning techniques can be found in [Pri13].

Attacks on GNSS systems. As we mentioned, GNSS signals for civilian pur-
poses have a weak signal strength Different from military signals, GNSS civil signals
are not encrypted or signed. Thus, there is no way to authenticate where they are
originated. Because civil signals are broadcast in the open air, they are easily in-
terfered with or even taken over by false signals. Such attacks are called jamming
and spoofing [WJ03, WHD+05, Bor07, POB+13], respectively. Jamming causes
loss of meaningful GNSS signals and prevents receivers from calculating a valid lo-
cation. Spoofing is more sophisticated. Its purpose is to fool a receiver to calculate
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another location which may be far from where it is through feeding it with faked
signals. The vulnerability of GNSS to spoofing has been proved in theory and
illustrated by real-life experiments. In June 2013, students from the University of
Texas successfully controlled a superyacht and piloted it off its planned course by
subverting GPS signals without being detected by the onboard navigation system.

1.3 Location Assurance

In conventional services, a user requests a service with a purpose and always expects
the service provider to return a service that meets this purpose. For instance,
we go to a restaurant with the expectation that the restaurant will offer us a
good meal. However, with respect to LBSs, whether a user’s goal can be satisfied
not only depends on LBS providers but also the locations sent to LBS providers.
Consider that a wrong location is sent to Google when we query the nearest gas
stations. We may drive hundreds of extra miles before getting refuelled in spite of
Google’s reliable service and the good coverage of petrol stations. In some cases,
vulnerable locations may even result in irreversible losses, e.g., people’s lives and
even homeland security. For instance, as in more than 50% of emergency calls,
the callers cannot provide a valid location, the enhanced 911 service in America
requires cell phone operators to provide callers’ precise locations. In this enhanced
emergency service, if a location is miscalculated, the loss may be a person’s life.

In LBSs, we rarely input locations manually but instead rely on other systems to
obtain locations, e.g., GNSS systems and cell phone operators. On the one hand,
manual input is cumbersome, especially during fast movement. On the other hand,
locations are usually not known by users, e.g., when users drive on highways. As
a result, the location calculation is not under users’ control. Considering the
vulnerability of GNSS systems to spoofing attacks, in order to ensure the quality
of service and even security, users need an assurance that the locations are correct
and precise. We call this requirement location assurance.

1.4 Privacy in LBSs

Privacy is a human right and should be respected whenever users interact with
electronic systems. LBSs are not exceptions. When making use of LBSs, users
expose their locations and queries. Both of them can be explored by attackers to
infer users’ private information. Such malicious inference in turn threatens users’
privacy in LBSs. First, locations can serve as a piece of subsidiary information to
peek users’ personal life. For instance, hospitals are public places and the location
of a hospital itself does not carry any sensitive information about users. However, it
will become sensitive when the functionality of hospitals and the purpose of people
in hospitals are taken into account. An appearance in a cancer centre reveals
that a person may suffer from a bad health problem. In order to avoid the abuse
of inferred personal information, users desire the protection of location privacy
in LBSs. Second, even if where users are located does not reveal any sensitive
information, their queries may still put their privacy at risk. By ‘query’, we mean
the specification of the information or functionality a user wants to acquire from
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an LBS. For example, a query for nearby casinos will reveal a user as a fan of
gambling which is usually not accepted as a healthy hobby. The potential leakage
of privacy by queries leads to users’ requirement for query privacy .

The requirements of LBS users discussed above form the focus as well as the title
of this thesis:

Location assurance & privacy in location-based services.

1.5 Research Questions

Currently GNSS systems are the most used positioning systems. As we have men-
tioned, they are vulnerable to spoofing attacks which can result in miscalculated
locations. Therefore, assurance for trustworthy locations cannot be guaranteed if
locations are calculated with GNSS systems. To eliminate spoofing, we need to
change GNSS infrastructures so that signals can be authenticated. This cannot be
achieved in a short term due to the high cost. Therefore, from users’ perspective,
they want to learn whether their locations are trustworthy. If not, to what extent
they can trust their locations. With such information, they can decide whether to
request LBSs. In such situations, even if the quality of LBSs is degraded, users
can be informed and get prepared in advance for the degradation.

To calculate a GNSS location, GNSS receivers capture the GNSS signals that
arrive at them. Then based on the information carried by these signals, they
accomplish the calculation. Thus, whether the calculated location is trustworthy
is first determined by the quality of received GNSS signals. If we can ensure that
the received GNSS signals originated from GNSS satellites and that they have
not been modified artificially, then with a well-protected receiver, we can ensure
the assurance of locations. To achieve this goal, we have to answer the following
research question:

Research question 1: Can we assess the integrity of GNSS signals?

In the last decade, privacy in LBSs has raised people’s concern and many methods
have been proposed or deployed to protect users’ privacy. The essence to protect
the privacy of a user is to hide the user’s association to the information that he
wants to keep secret. The first approach to protect users’ privacy is to encour-
age users not to reveal information when interacting with outside environments.
This does not work for personalised services such as LBSs as personal information
is a necessary input. In such cases, we can turn to the second approach which
implements legal means to protect personal information from being misused. For
instance, U.S. legislation has regulated the circumstances when cellphone opera-
tors can release users’ locations since 1999. However, legal actions can only be
taken after users’ privacy is violated. They are ineffective to impede the violation.
The third mechanism is to resort to privacy enhancing technologies (PET) which
help users reveal less private information. PETs can provide protection before any
privacy is breached so they can naturally complement the privacy protection given
by legal actions. In this thesis, we focus on PETs and study their insufficiencies
and possible improvements.

The PETs in LBSs can be divided into two classes: cryptography-based and non-
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cryptography-based. The former class explores cryptographic methods to encrypt
requests so as to hide users’ locations and queries from attackers as well as LBS
providers [KSSM11]. Non-cryptography-based techniques aim to protect user’s
privacy by modifying the information contained in LBS requests before they are
sent to LBS providers. A straightforward method of this class is to replace users’
identities with pseudonyms [BHV07, CPHL07, FMHP09], called anonymisation.
However, this method has been shown to be insufficient for both query and location
privacy since the time-stamped locations contained in LBS requests can serve as
quasi-identifiers sometimes. For instance, in some scenarios, users’ locations can be
obtained through other ways, e.g., camera surveillance. Besides, as users possess
certain daily routines, their locations at certain time points can be inferred. For
example, users normally stay in offices during working hours. Then based on the
location in an LBS request, the issuer can be identified. In such cases, obfuscating
methods can be used. Users can replace their locations in requests with larger
areas [GG03, XKP09], which is called area cloaking (also called generalisation). In
addition, they can issue dummy requests or choose to hide certain requests.

With the development of information technologies and research, new privacy risks
will emerge. With respect to query privacy, the adversary can improve the infer-
ence of query issuers when she has access to additional information about users.
Consider that a query about nearby beauty saloons is issued from an area. The
query issuer is a professional lady. She believes that she is well protected since
all users in the area have the same chance to be identified as the issuer. How-
ever, other users are all men. If the adversary explores users’ genders, the lady
will be more likely to be distinguished. This example shows that contextual infor-
mation (e.g., genders and professions) can be exploited and threaten users’ query
privacy. Although various types of contextual information have been identified
and analysed [MBFW07, SAV08, SAV11, CZBP06, RPBJ09], they are studied in-
dependently and the privacy protection methods proposed are only effective for
the identified contextual information. As a consequence, we need a unified method
which is able to analyse distinctive types of contextual information and a gen-
eral mechanism to protect users’ query privacy. This leads to our second research
question:

Research question 2: How can we protect users’ query privacy against the
adversary with various contextual information?

With respect to location privacy, many works in the literature have shown that
users can still be associated with their locations [STBH11] even if location privacy
preserving methods are used. While existing attacks on location privacy in the
literature mostly target at deriving ‘where users actually went’, recent research
requires us to revisit this objective from the view of practical attackers. Namely,
what the adversary is really curious about with respect to location privacy is
what activities users did during their movement [LOYK11]. For instance, receiving
medical treatments reveals a user’s poor health condition more precisely than just
a visit to a hospital. Therefore, users are exposed to a new threat to location
privacy which targets at their activities. Our last research question is related to
this threat:

Research question 3: How can we formally capture the threat to users’ location
privacy which targets at users’ activities?



1.6 Thesis Overview 7

1.6 Thesis Overview

This thesis is structured into three parts each of which addresses one research ques-
tion as shown in Figure 1.2. In Part I, we address Research question 1 and develop
a framework to evaluate the trust a user can put in the integrity of received GNSS
signals. In Part II, we answer Research question 2. We develop a probabilistic
framework and formally define the attack on users’ query privacy which an adver-
sary possessing various types of contextual information can make. In Part III, we
state Research question 3 and study how to attack on location privacy to derive
users’ activities.

Research question 1 Research question 2 Research question 3

Part I
Location assurance

Part II
Query privacy

Part III
Location privacy

Chapter 2 Chapter 3 Chapter 4 Chapter 5

Figure 1.2: Thesis overview.

The contributions of each chapter can be summarised as follows:

• Chapter 2: Preliminaries

We present the preliminary knowledge about GNSS signals and position-
ing algorithms. We also give a short introduction to a probabilistic logic,
subjective logic, which can be used to conduct probabilistic reasoning with
uncertainty or incomplete evidences.

• Chapter 3: A trust framework for evaluating GNSS signal integrity

We develop a novel trust framework based on subjective logic to evaluate the
integrity of received GNSS civil signals. We are the first to formalise signal
integrity and use it to classify existing spoofing detection methods. All such
methods make use of evidences gathered from received signals to derive a
conclusion on signal integrity. We identify the right reasoning that should
be used to draw such conclusions from evidences. Originally, we measure
the uncertainty that comes with the reasoning and is insufficiently studied
in the literature of evaluating signal integrity. Our framework also gives rise
to several natural ways to combine the conclusions given by various spoofing
detection methods to reach an overall evaluation of signal integrity. We
implement a prototype of our framework and show its effectiveness through
experiments on both real and simulated spoofed signals. In order to show
its potential marketing values, we implement a public service called location
assurance certification.

• Chapter 4: Protecting query privacy in location-based services

We classify contextual information related to LBS query privacy and focus
on two types of contextual information: user profiles and query dependency.
User profiles have been insufficiently studied in LBS query privacy protec-
tion, while we are the first to show the impact of query dependency on users’
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query privacy. Specifically, we present a general framework to enable the
attackers to compute a distribution on users with respect to issuing an ob-
served request. The framework can model attackers with different contextual
information. We take user profiles and query dependency as examples to il-
lustrate the implementation of the framework and their impact on users’
query privacy. With our framework, we show the insufficiency of existing
query privacy metrics, e.g., k-anonymity, and propose several new metrics.
We also develop new generalisation algorithms to compute regions satisfying
users’ privacy requirements expressed in these metrics. By extensive exper-
iments, we show that our metrics and algorithms are effective and efficient
for practical usage.

• Chapter 5: Activity-targeted location privacy attack

We propose a new attack to breach users’ activity privacy. Specifically, our
attack uncovers the places where a user performed activities and reveals the
starting and ending time of each of his activities. Compared to existing
methods to derive such information, our attack takes as input the exposed
locations, protected by location privacy preserving methods. To perform
this attack, we propose a new model to capture users’ mobility and usage of
LBSs in continuous time, which naturally expresses users’ behaviour patterns
in LBSs and ensures the precision of the calculated temporal information.
We then adopt and extend an existing framework for quantifying location
privacy and formally implement our attack. Through experiments on a real-
life dataset, we show that our new tracking attack is quite effective. In
addition, in order to show the generality of our model for user profiles, we
also implement the common attacks on location privacy and evaluate them
through experiments.

1.7 Origins of the Material

Chapter 3 summarises the achievements in a European Space Agency (ESA) project
“Developing a Prototype of Localisation Assurance Service Provider (LASP)”.
This is a collaborative project between itrust consulting s. à r. l., Luxembourg and
SnT (Interdisciplinary Centre for Security, Reliability and Trust) of the University
of Luxembourg. The theory about our trust framework is based on a joint paper
with Gabriele Lenzini, Miguel Martins, Sjouke Mauw and Jun Pang [CLM+13].
The implementation of our prototype and the demonstration of LASP is based on
the papers [HMC+12, CHL+13a, CHL+13b]. A Luxembourgish patent [CCL12]
is also approved based on our framework and prototype. Chapter 4 is based on
a series of papers [CP12, CP13, CP14] co-authored with Jun Pang. User pro-
files are studied in [CP12] while query dependency is first explored in [CP13].
The probabilistic framework is proposed and validated in the extended journal pa-
per [CP14]. Chapter 5 is based on a technical report with Andrzej Mizera and Jun
Pang [CMP14].

There are a few works that are related to the general topic of this thesis but not
included. In order to study location privacy in real application scenarios, I made
a case study with respect to electronic toll pricing (ETP) systems. With Gabriele
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Lenzini, Sjouke Mauw and Jun Pang, I proposed a new electronic toll pricing sys-
tem based on group signatures, GroupETP, which achieves a good balance between
privacy and overhead imposed upon user devices [CLMP12, CLMP13]. The design
of GroupETP enables us to identify another risk with respect to users’ location
privacy. Namely, in ETP systems where location records are even anonymously
stored, service providers are still able to trace users. This led to a joint work with
David Fonkwe and Jun Pang [CFP12]. Based on user toll payment information, we
propose a post-hoc analysis of user traceability, which aims at computing a user’s
all possible traces.

The collection of enormous location records in LBSs brings about new types of
LBSs. Inspired by the research on user mobility profiles, together with Ran Xue
and Jun Pang, I proposed a new method to construct and compare users’ mobility
profiles [CPX13]. This work can be explored to implement a recommender sys-
tem suggesting potential friends based on their movement similarity. This piece
of work was later extended with location and temporal semantics and led to a
journal paper [CPX14]. Collaborating with Ruipeng Lu and Jun Pang, I extracted
and formalised the basic principles that should hold in calculating users’ simi-
larity based on trajectory patterns [CLMP14]. This piece of work also led to a
paper [CKLP14] demonstrating a tool which provides an integrated interface to
construct and compare users’ trajectory patterns. This tool can be downloaded
from http//satoss.uni.lu/software/MinUS/.

http//satoss.uni.lu/software/MinUS/
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2

Preliminaries

To fully comprehend the following chapter, some preliminary knowledge is re-
quired. We briefly introduce it in this chapter. We first describe what composes
GNSS (Global Navigation Satellite Systems) signals and how to calculate a GNSS
position. We recall subjective logic [Jøs12] and explain the basic concepts of opin-
ions and conditional reasoning. In addition, we present the implementation of the
consensus operator on subjective logic opinions.

2.1 GNSS Signals

GNSS signals from a GNSS system are broadcast to the earth by a constellation
of satellites. The most famous GNSS system is GPS (Global Positioning System)
which we take as a representative in this thesis. Other systems, such as GLONASS
and Galileo, have similar structures.

GPS satellites are equipped with atomic clocks which are synchronised with the
universal time. GPS signals are transmitted in the open air in two frequencies fL1

and fL2 . GPS signals are composed of the following three parts [Bor07]:

• Carrier. There are two carrier waves with frequency fL1 and fL2 , respec-
tively.

• Navigation data. Navigation data carry information about the orbits of satel-
lites. Such information is uploaded to all satellites from the ground stations.
The navigation data are transmitted in a bit rate of 50 bps.

• Spreading codes. A spreading code is actually a sequence of bits with a fixed
length. Each satellite has two spreading codes: the coarse acquisition (C/A)
and the encrypted precision code (P(Y)). A C/A code is a sequence of 1023
bits transmitted in a rate of 1.023 MHz while a P(Y) code is a longer sequence
with 2.35 × 104 bits and transmitted in a rate of 10.23 MHz. This means
that the C/A code repeats itself every millisecond and that the P(Y) code
repeats itself every week. The C/A code is publicly known and encoded in
civil signals while the P(Y) code is encrypted and can only be accessed by
certified military devices.

A satellite generates its signals by modulating its spreading code and navigation
data with the carrier waves. Note that C/A codes are only modulated with the
carrier with frequency fL1 while P(Y) codes are modulated with both frequencies.
As we focus on civil applications of GPS systems, throughout the thesis we only

13
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Figure 2.1: Generation of civil signals [Bor07].

consider scenarios where civil signals are used. Thus, we simply refer to civil
signals as signals. In Figure 2.1, we show the generalisation of the civil signals of a
satellite. The C/A code (C) is first combined with the navigation data (D) based
on the logic operation of exclusive or (⊕). This combination generates a sequence
of bits C ⊕D. After modulating this sequence with the carrier wave, we have the
final signals which will be transmitted from the satellite to the earth.

A GPS receiver antenna captures signals from the satellites which are above the
horizon. From these signals, the receiver calculates a three-dimensional coordinate
as follows. The receiver simulates the bit stream of each satellite’s C/A code. At
any time point, any simulated stream outputs the same bit as the one generated
by the corresponding satellite if the clock on the receiver is perfectly synchronised
with the clock on the satellite. In other words, a receiver has the replicas of the
C/A codes of all the deployed satellites. Based on the C/A codes, the receiver
separates the signals originated from different satellites and measures their time
offsets with the replicas. Such an offset is in fact equivalent to the amount of
time which a received signal has taken to reach the receiver from the originating
satellite. By multiplying the time offsets with the speed of light, we can thus obtain
the distances between the receiver and the satellites in range. These distances are
called the pseudoranges of the satellites with respect to the receiver. Let ρ be
the pseudorange of a satellite in range whose position is (x, y, z). Consider that a
user is located at the position (xu, yu, zu). Since a pseudorange actually measures
the length of the line segment between a satellite and the receiver, we have the
following equation:

ρ =
√

(x− xu)2 + (y − yu)2 + (z − zu)2. (2.1)

As the navigation data includes the satellite’s location, i.e., (x, y, z), we have only
three variables to solve. Thus with three satellites, we can compute a three-
dimensional location in theory. However, in practice, the local clock of a receiver
cannot be perfectly synchronised with the clocks on satellites. When such time
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differences are taken into account, the above equation can be reformulated as:

ρ =
√

(x− xu)2 + (y − yu)2 + (z − zu)2 + c · δt (2.2)

where δt is the time difference between the local clock of the receiver (located at
(xu, yu, zu) and the atomic clock on the satellite (located at (x, y, z)). Due to the
correcting scheme of the GPS ground-monitoring network [KH05], the clocks on
satellites can be considered to be synchronised with the universal time. Thus, all
satellites share the same time difference with respect to a receiver which adds a
new unknown variable to the calculation of GPS locations. A fourth satellite is
thus required.

2.2 GNSS Signal Spoofing

Intuitively, the main idea of signal spoofing is to feed a GNSS receiver with false
signals that can fool it to calculate a different location from where it is. According
to the localisation mechanism of GNSS systems in Equation 2.2, the calculation
of (xu, yu, zu) depends on the parameters ρ and (x, y, z). Essentially, signal spoof-
ing interferes with the calculation of locations by changing the values of these
parameters. Two ways to implement signal spoofing have been identified in the
literature.

(i) Manipulating pseudoranges. Because C/A codes are public and no au-
thentication mechanisms exist to protect them, an attacker can construct a
signal containing a C/A code with arbitrary time offset to the one simulated
by a receiver. This forgery will lead the receiver to calculate an incorrect
pseudorange of a satellite.

(ii) Manipulating navigation data. Since the format of navigation data is
also publicly known, an attacker can generate navigation data with arbitrary
information but conforming with the format. In this way, the receiver will
learn an incorrect location of the satellite.

By either or both of these two ways, a receiver can be fooled to calculate any
location, no matter where it is actually.

The above two ways of spoofing have been validated in the literature. Using
the first approach, Humphreys et al. [HLP+08] implement a simulator which uses
a GPS receiver to decode GPS signals and then broadcasts them with arbitrary
delays. Tippenhauer et al. [TPRC11] theoretically prove that an attacker can spoof
multiple receivers at the same time by carefully deploying broadcasting antennas in
certain positions. These positions simulate the geometry of satellites. With respect
to the second approach, Nighswander et al. [NLD+12] implement a simulator which
re-broadcasts signals with arbitrary navigation messages. This method can attack
multiple receivers more efficiently in larger areas compared with the simulator of
Tippenhauer et al. [TPRC11] as satellites’ geometry is ignored.
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2.3 Subjective Logic

Subjective logic was first introduced by Audun Jøsang [Jøs12]. It is a probabilistic
algebra which combines belief and disbelief about statements and keeps track of
uncertainty during reasoning.

Subjective logic opinions. In subjective logic, an opinion expresses the belief
about one or multiple propositions from a space called the frame of discernment.
An opinion over a frame X is a composite function consisting of three components:
a belief function, an uncertainty mass and a base rate function. The belief function
assigns belief mass to each proposition in X, which can be interpreted as the
positive belief on the truth of the element. It is sub-additive, meaning that the
sum of all propositions’ belief mass is not larger than 1. Uncertainty mass is
the amount of belief that is not assigned as belief mass. It is represented by the
perceived imprecision of the probability estimates. The base rate function expresses
the a priori probability of each proposition in X being true.

Definition 2.1 (Subjective logic opinion). Let X be a frame {x1, . . . , xn}. An

opinion on X can be represented by wX = (~bX , uX ,~aX) where ~bX : X → [0, 1] is
the belief function, uX ∈ [0, 1] is the uncertainty mass and ~a : X → [0, 1] is the
base rate function. Furthermore,

∑
x∈X

~bX(x) ≤ 1; uX = 1−
∑
x∈X

~bX(x);
∑
x∈X

~aX(x) = 1.

The expectation probability of x ∈ X being true is:

~EX(x) = ~bX(x) + ~aX(x) · uX . (2.3)

Consider a binomial frame X denoted by {x, x̄} where x̄ is the negation of x.
Then the opinion about the truth of x can be denoted as wx = (b, d, u, a) where

b = ~bX(x), d = ~bX(x̄), u = uX and a = ~aX(x) indicating the belief, disbelief,
uncertainty and the a priori rate about x being true. The expectation probability
of x being true is E(wx) = b+ a · u.

Conditional belief reasoning. Conditional reasoning has been discussed in
both binary logic and probability calculus. It offers a way to calculate the truth
of a proposition y based on the evidence about another proposition x which has a
conditional relation with y.

According to the causal relation, we have deductive reasoning and abductive reason-
ing. If x is the antecedent, then the reasoning is deductive. If y is the antecedent,
then the reasoning is abductive. Compared to the probabilistic method, subjective
logic takes opinions as input in the reasoning and thus captures the underlying
uncertainty.

Deduction and abduction on binomial frames, i.e., X = {x, x̄} and Y = {y, ȳ}
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have the following notations:

wy|x : conditional opinion on y given x being true;

wy|x̄ : conditional opinion on y given x being false;

wx : opinion on the proposition x;

wy‖x : opinion on y deduced/abduced from the observation on x.

Assume we have a causal conditional between x and y, i.e., “if x then y” (denoted
by x→ y) and wy|x and wy|x are learned. If we have an observation on x which gives
the opinion wx, then the deduced opinion on y should be calculated by considering
both of the situations when x is true and false. In subjective logic, ‘}’ is used as
the operator calculating the opinion on y given wx and the two conditional opinions
wy|x and wy|x̄, i.e., wy‖x = wx}(wy|x, wy|x̄). If we have evidence on y i.e., the opinion
wy, then the opinion on x can be calculated by abductive reasoning. The idea is to
calculate wx|y and wx|ȳ based on wy|x and wy|x̄ using the Bayesian theorem, where
the a priori probability of x, i.e., ax, is required. In this way, deductive reasoning
can thus be used. In subjective logic, } is the abductive operator calculating wx
based on wy|x, wy|x̄ and ax, i.e., wx‖y = wy}(wy|x, wy|x̄, ax). We refer the readers
to [Jøs09, JPD05] for the details of the implementation of the operators.

Conditional reasoning is applicable on multinomial opinions as well. Suppose two
multinomial frames X and Y . Assume conditional opinions wY |X and wY |X are
available. Note that wY |X = {wY |x | x ∈ X} and wY |X = {wY |x̄ | x ∈ X} where
wY |x (resp., wY |x̄) represents the conditional opinion on Y given that x is true
(resp., false). The opinion on Y based on observations on X (i.e., wX) can be
calculated by deductive reasoning, i.e., wY ‖X = wX } wY |X . Likewise, the opinion
on X based on observations on Y can be calculated by abductive reasoning, i.e.,
wX‖Y = wY}(wY |X ,~aX) where ~aX is the a priori distribution on X.

Consensus operator (⊕). Given a proposition, when many sources of evidences
are available, each of them will lead to an opinion on the proposition. Therefore,
a method is required to combine such opinions so as to reach an overall conclusion
about the proposition. When evidences are independent of each other, for instance,
readings obtained of a patient’s body temperature in non-overlapping periods, we
can make use of the consensus operator (also called cumulative fusion) to combine
subjective logic opinions.

Given two subjective opinions, the consensus operator is defined as follows:

Definition 2.2 (Consensus ⊕). Let wA and wB be opinions respectively held by
agents A and B over the same frame X = {xj | j = 1, . . . , l}. Let wA�B be the
opinion such that

Case I: For uA 6= 0 ∨ uB 6= 0:

bA�B(xj) =
bA(xj)u

B + bB(xj)u
A

uA + uB − uAuB (2.4)

uA�B =
uAuB

uA + uB − uAuB (2.5)
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Case II: For uA = 0 ∧ uB = 0:

bA�B(xj) = γAbA(xj) + γBbB(xj) (2.6)

uA�B = 0 (2.7)

where

γA = lim
uA→0,uB→0

uB

uA + uB
, γB = lim

uA→0,uA→0

uB

uA + uB
.

Then wA�B is called the consensus opinion of wA and wB, representing the combi-
nation of independent opinions of A and B. By using the symbol ‘⊕’ to designate
this belief operator, we define wA�B ≡ wA ⊕ wB.

The consensus operator satisfies the algebraic properties of associativity and com-
mutativity [JDR10].
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A Trust Framework For Evaluating GNSS
Signal Integrity

In the previous chapter, we have learnt that GNSS signals can be forged and sent
back to GNSS receivers. There is no mechanism implemented on a receiver that
allows it to distinguish false signals from authentic ones. Thus, when a receiver
calculates a location, it does not know whether the location is correct or not. As
a consequence, users will be uncertain of the correctness of their locations even if
they have kept their mobile devices well protected from virus and malwares. Users
thus require a method to learn how much trust they can put in their locations.

In this chapter, we propose a trust framework to meet this requirement by evaluat-
ing the integrity of received GNSS signals. By ‘integrity’, we refer to the property
that GNSS signals do not suffer from any artificial interference. The framework
gives a formal understanding of existing spoofing detection techniques and captures
the nature of uncertainty in evaluating signal integrity. With this framework, we
propose three algorithms to combine the outputs from different spoofing detection
methods, which may conflict with each other, into an overall evaluation. From this
evaluation, users subsequently derive the assurance levels for their locations.

3.1 Introduction

It was noted by the Volpe report [Car03] in 2003 that there were no practical
mitigation methods for spoofing attacks and we believe that it is still the case
now, especially for GNSS civil signals. Navigation message authentication is con-
sidered as an effective method to prevent spoofing [Kuh04]. However, due to the
long deployment cycle and high costs, this is not a feasible approach in the near
future [TPRC11]. Instead, researchers have proposed many methods with the aim
to detect but not to prevent spoofing. The general idea is to make use of some ob-
servable features that should be present when signals are not spoofed. A spoofing
attack is detected if one or more of such features are not observed. For instance,
under normal circumstances, the strength of GPS signals is rarely above -153.5
dBW. If a received GPS signal has a higher strength, then a detection method
claims that the integrity of the signal is not preserved.

Although researchers have shown the effectiveness of their (own) detection methods
through various ways, we find that the existing spoofing detection methods still
suffer from the following problems:

1. The notion of signal integrity has not been formally defined, which leads

19
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to ambiguous interpretations. Tippenhauer et al. [TPRC11] define spoofing
from the viewpoint of localisation results, i.e., whether a receiver calculates
the real location and time. However, this is not completely correct from the
perspective of GNSS signals. In some sophisticated spoofing, the attackers
may gradually fool receivers to calculate the planned position and then allow
receivers to calculate the right location and time at the beginning of the
attack [TPRC11].

2. Spoofing detection methods have not been systematically characterised. This
leads to incorrect inference of signal integrity from the consistency of mea-
surements with the predicted values. For example, in the inertial test [PJ08]
locations cannot be correctly predicted once the past ones are calculated
based on spoofed signals. In such cases, the consistency of current calculated
locations does not indicate the integrity of signals.

3. The output of a detection method is always qualitative, i.e., whether a signal’s
integrity is preserved or not, while we believe that it should be quantitative
by its nature. On the one hand, the noise from the environment always influ-
ences the receipt of GNSS signals and causes changes on certain attributes.
The inconsistency of these attributes does not always come with spoofed
signals. On the other hand, a powerful attacker can generate signals with
certain attributes consistent with the prediction. Thus, the consistency of
such attributes should not always lead to the conclusion of the signal being
integrous. As we are not certain about the impacts of noise and the ability of
the attackers on tuning signals’ attributes, uncertainty in spoofing detection
is inherently inevitable and should be quantified.

4. The outputs from different spoofing detection methods might conflict with
each other and so far there exist no algorithms to combine the outputs of dif-
ferent methods into a coherent conclusion. Combining the results of multiple
detection methods is necessary due to the fact that more evidences usually
lead to more reliable conclusions.

We propose a novel trust framework based on subjective logic to evaluate the
integrity of GNSS signals and address the above identified research questions. The
main reasons for us to use subjective logic are that it quantifies uncertainty in logic
reasoning and provides a series of operators which correspond to logic operators
and take uncertainty into account.

3.2 A Trust Framework

In this section, we propose a trust framework to evaluate signal integrity. First,
we precisely formulate the elements of our framework: GNSS systems and GNSS
receivers, and subsequently define signal integrity and the threat model. At last we
formally characterise the essential steps of spoofing detection methods.
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3.2.1 GNSS systems

A GNSS system consists of a number of satellites which move in certain orbits.
We denote by S the set of running satellites of the GNSS system. Let L be the
set of all geographic coordinates and T be the set of time points. The formats
of locations and time points are out of our discussion since different formats can
be converted from one to another. For instance, the coordinate N25°07.450’ is
represented in degrees and minutes while it can also be of the form of only degrees,
i.e., 25.124167. We use ξ(S, t) ∈ L to denote the real location of satellite S ∈ S at
a given time t ∈ T .

Satellites broadcast radio signals to the earth. GNSS signals are generated by a
fixed procedure such that they have a common pattern. We take GPS signals as
an example. A GPS signal includes at least two components: (1) the C/A codes of
a deployed satellite (2) a navigation message with ephemeris information. Let Θ
be the set of all possible GNSS signals that conform with the pattern. Note that Θ
not only contains the signals that can be generated by real GPS satellites but also
involves the signals that will never be transmitted by any satellites (e.g., the signals
faked by attackers). In other words, as long as the signals can be correctly parsed
by any GPS receivers, they are part of Θ. We use the function sig : S×T →Θ to
return the signal transmitted by a satellite at a given time.

Natural factors, such as ionospheric scintillation and tropospheric effects, can at-
tenuate signals. Attenuation can cause effects on many attributes of a signal, e.g.,
carrier phase advance and power decrease. Its impact is determined by the routes
that signals take to arrive on the ground. As these routes are subsequently de-
termined by where they reach and when they are generated, we use η(S, `, t) to
denote the attenuation on the signal of S ∈ S which is generated at time t and
arrives at `. We denote by η(S, `, t)3sig(S, t) the signal when sig(S, t) reaches the
earth. The signal is still an element of Θ as long as the spreading codes and the
navigation data are available.

3.2.2 GNSS receivers

A GNSS receiver is a device to capture GNSS signals and calculate a location with
a localisation algorithm. Recall that all GNSS signals are transmitted in the same
open air with the same frequency (i.e., fL1). Therefore, the signals of all visible
satellite at a given location on earth can be interpreted to be combined as a single
signal. In fact, a receiver captures such a combination of the signals of all satellites
in range. Let ] be the combination operation on any two signals with the same
radio frequency which is symmetric and associate. Then we can construct the set
of all possible combined signals and denote it by G. For any s ∈ G, there exists a
set of GNSS signals Θ′ ⊆ Θ such that s = ]sig ′∈Θ′sig ′. The set G is closed under
the signal combination operation. We use s(`, t) ∈ G to denote the combined signal
received by the receiver located at ` ∈ L at time t ∈ T .

Given a received signal, the receiver separates the GNSS signals modulated in it
based on their unique features, e.g., C/A codes. This separation process can be
modelled by function sigCom : G → 2Θ mapping a received signal to the set of
combined GNSS signals. Note that if two signals with the same C/A code are
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Table 3.1: The important notations.
S set of running satellites of the target GNSS system
T set of time points

ξ(S, t) position of satellite S at time t
Θ set of possible GNSS signals

sig(S, t) GNSS signal transmitted by satellite S at time t
η(S, `, t) attenuation of the signal leaving S at t to reach `

G set of combined GNSS signals that can be captured
sigCom(s) set of GNSS signals combined in s ∈ G

ori(sig) satellite whose C/A code is modulated in sig
loc(s) location and time calculated based on the received signal s

c speed of the light
Is(`,t) proposition that s(`, t) preserves the property of integrity

Attr(s(`, t)) set of attributes of s(`, t)
mα(s(`, t)) value of attribute α ∈ Attr(s(`, t)) of s(`, t)

dom(α) domain of the attribute α
Rα(s(`, t)) reference set of attribute α of signal s(`, t)

captured, only the one with larger signal strength is used. In this way, a GNSS
receiver only takes a set of signals with unique C/A codes into further positioning
calculation.

As a receiver has access to the C/A codes of all satellites, given a GNSS signal in
Θ, it can identify the satellite whose C/A code is modulated. We call the satellite
the originator of the signal. We use function ori : Θ→ S to return the originator
of any signals. Note that by the originator of a signal we only mean that the
originator’s spreading code is modulated in the signal, implying that, whenever it
is received, the receiver would think it is from the satellite. The originator is not
always the agent that actually generates the signal as attackers can also generate
signals with the same C/A codes.

A GNSS receiver implements a localisation algorithm that takes a received signal
as input and calculates a coordinate and a time point if possible. We denote the
algorithm by function loc : G → L × T . In practice, the output of a localisation
algorithm is in the form of a triple consisting of a coordinate, an accuracy in
meters and time. The coordinate and the accuracy define a round area centred at
the coordinate with a radius of the accuracy. Since our purpose is to evaluate the
integrity of GNSS signals, we assume that localisation algorithms always calculate
locations with perfect accuracy. In other words, the accuracy output by a receiver
is zero. For the same reason, we also omit the implementation difference between
receivers. The notations mentioned are summarised in Table 3.1.

3.2.3 Signal integrity

In this section, we propose the first formal definition of the integrity of GNSS
signals. Intuitively, when a received signal is free of spoofing, we say that the
integrity of the signal is preserved, meaning that the signal has not been modified
maliciously by the attacker. In the rest of this chapter, we also say that a signal is
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integrous when it preserves signal integrity. In other words, an integrous signal is
generated by a satellite and without artificial interference, e.g., replaying, before
reaching the receiver.

For a received signal, the key point of verifying its integrity is to calculate the
corresponding reference signal which is supposed not to be spoofed. We can make
use of the following two conditions to identify the reference signal. First, the time
between the generation of the reference signal and its arrival at the receiver should
be equal to the amount of time required to travel the distance between its originator
and the receiver by the speed of light. Second, it should suffer the correct amount
of attenuation, e.g., η(S, `, t), during the transition. Let |`, `′| be the Euclidean
distance between two positions ` and `′. Based on the above discussion, signal
integrity can be formally defined as follows:

Definition 3.1 (Signal integrity). Given a received signal s(`, t), we say that s(`, t)
is integrous if and only if for each sig ′ ∈ sigCom(s(`, t)), there exists t′ ∈ T such
that

(sig ′ = η(ori(sig ′), `, t′)3sig(ori(sig ′), t′)) ∧ (c · (t− t′) = |ξ(ori(sig ′), t′), `|)

where c is the speed of light.

In the rest of this chapter, we use Is(`,t) to denote the proposition that “s(`, t)
is integrous” while ¬Is(`,t) represents the negation that “s(`, t) is not integrous”.
In practice we cannot use Definition 3.1 to verify signal integrity by computing
the reference integrous signals and comparing them with the received ones. On
one hand, the location of a receiver is under calculation and not available until
the integrous signals have been received. Without the location, it is not possible
to derive the transmission time of the received GNSS signals and thus the gen-
eration time cannot be obtained. On the other hand, the attenuation cannot be
exactly quantitatively measured because of the nature of unpredictability of the
ever-changing environment. Therefore, we cannot learn the set of GNSS signals
that should be received.

3.2.4 Adversary model

As we mentioned before, in general the aim of an attacker is to fool a receiver to
calculate a fake location. According to existing works in the literature, the attack-
ers have two ways to achieve this purpose: software attacks on receivers [NLD+12]
and GNSS signal spoofing [TPRC11].

Software attacks on receivers target at the localisation algorithms implemented on
receivers. Infected by malware, the receiver can be forced to calculate incorrect
coordinates. GNSS signal spoofing is to feed a receiver with simulated signals such
that even the correct localisation algorithm cannot compute the right location.

In this work, we focus on the risks coming from signals, as people can protect
their receivers against malware but have no control of signals. We assume that
the localisation algorithm of a receiver is always well protected and free of mis-
behaviour. Formally, given a received signal s(`, t) if it is integrous then we have
loc(s(`, t)) = (`, t).
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The attackers that we consider have similar capabilities in terms of signal trans-
mission to the attackers assumed by Tippenhauer et al. [TPRC11]. They have
full control of wireless channels by blocking, intercepting, delaying and replaying
GNSS signals. Furthermore, we assume that the attackers can manage to make all
their signals received by the targeted receivers at any preferred time.

With regard to signal generation, we assume that the attackers can generate any
GNSS signal in Θ that can be interpreted by receivers. However, the attackers
cannot generate the military signals due to the encrypted P(Y), but it can intercept
and replay them.

3.2.5 Spoofing detection methods

A spoofing detection method aims to evaluate the integrity of a given signal. It
takes the measurement of a certain attribute of the signal as input and calculates a
set of predicted values of the measurement. At last it decides whether the signal is
integrous, by comparing the measurement to its predicted values. In the following
discussion, we formally characterise spoofing detection methods and classify them.

Given a received signal s(`, t) we denote by Attr(s(`, t)) the set of attributes of
s(`, t) that can be measured and explored by a spoofing detection method. We
assume that a spoofing detection method explores only one attribute as it is de-
signed in the literature. The value of an attribute can be measured by a receiver
or calculated by other agents. For instance, the values of attributes, e.g., signal
strength and Doppler shift, are calculated by receivers while others, e.g., power
correlation of signals from two satellites, are not provided directly by receivers.
We denote by mα(s(`, t)) the value of attribute α ∈ Attr(s(`, t)) of s(`, t). The
domains of the measurements are different between attributes. To be generic, we
use dom(α) to denote the domain of α. Note that for the sake of simplicity, we
assume that a measurement has just a single value in its corresponding domain,
while in practice the measurement of an attribute might be of different forms, e.g.,
a set of values in the domain. Our approach given below can be easily extended
to capture these cases.

We observe that a spoofing detection method actually realises three sequential
steps: generating reference measurement, validating current measurements and
assessing signal integrity. In Figure 3.1, we depict these three steps as well as their
output which is the input of the following steps. We address them and the meaning
of their outputs one by one in the rest of this section.

Generate Reference
Measurement

Validate
Measurements

Assess
Signal Integrity

Rα(s(`, t)) wVα
s(`,t)

wαIs(`,t)

mα(s(`, t)) ∈ Rα(s(`, t))?

Figure 3.1: The sequential steps of a spoofing detection method.

Step 1: Generate reference measurements. Given an attribute, a spoofing
detection first calculates a set of values that should contain its measurement if the
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received signal is integrous (called reference set). Different detection methods have
distinctive ways to calculate their reference sets.

We recognise two basic methods. One is to make use of a sufficiently large collection
of integrous signals and calculate the set of all values that occur frequently. The
other approach is to use the observation that the measurements of some attributes
change over time in a fixed pattern. Based on a number of past signals the value
of the current signal can thus be predicted. Based on the distinction between
these two methods, we can divide spoofing detection methods into two categories:
stateless and stateful. Let Rα(s(`, t)) ⊆ dom(α) be the calculated reference set
of attribute α of signal s(`, t). Stateless and stateful detection can be formally
defined as the following.

Definition 3.2 (Stateless spoofing detection). Given a received signal s(`, t), we
say that a spoofing detection method on attribute α ∈ Attr(s(`, t)) is stateless if

• mα(s(`, t)) ∈ Rα(s(`, t)) if s(`, t) is integrous; and

• Rα(s(`, t)) is calculated by a function fα : G → 2dom(α), i.e.,

Rα(s(`, t)) = fα(s(`, t)). (3.1)

Definition 3.3 (Stateful spoofing detection). Given a received signal s(`, t), we
say that a spoofing detection method on attribute α ∈ Attr(s(`, t)) is stateful if

• for a given a set of past signals H = {s(`1, t1), . . . , s(`n, tn)} (∀s(`i,ti)∈H ti <
t), mα(s(`, t)) ∈ Rα(s(`, t)) if s(`, t) is integrous and s(`i, ti)) is integrous for
any s(`i, ti) ∈ H; and

• Rα(s(`, t)) is calculated by a n-ary function fα : Gn → 2dom(α), i.e.,

Rα(s(`, t)) = fα(s(`1, t1), . . . , s(`n, tn)). (3.2)

In a stateless spoofing detection method a reference set is computed based on the
received signal whose integrity is under evaluation. The reference set in a stateful
detection method relies on some past signals. The integrity of the past signals de-
termines the correctness of the reference set to be computed in a stateful detection
method. In the definitions, we rely on the casual relation that a measurement falls
in its reference set is caused by the fact that the signal is integrous. However, the
related works in the literature usually take the opposite but incorrect direction,
i.e., the integrity of a signal is concluded from the measurements of its attributes.

Step 2: Validate measurements. After calculating the reference set, a spoofing
detection method checks whether the input measurement is in the reference set.
If it is the case, we say that the measurement is valid. We use Vαs(`,t) to represent

the proposition that “mα(s(`, t)) is valid”. The notion of valid measurement is
(implicitly) used by almost all existing spoofing detection methods. We formally
define it in this work.

In practice, a reference set predicts a measurement considering an average intensity
of natural environment interference on signal during transmission. This can lead to
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incorrect validity of measurement in the cases where the interference (abnormally)
deviates from the average. This means that the measurement should be valid
once the interference is normal. If we can learn how much the deviation of the
current interference is from the average, then there will be a way to obtain the
corresponding value to the average case. However, the impact of the interference
cannot be measured. Therefore, it is undesirable to have a definite conclusion that
a measurement is invalid once it is out of the reference set. Instead, since subjective
logic opinions can allow us to capture the uncertainty caused by the environmental
interference, we express the conclusion of a detection method on the validity of
mα(s(`, t)) by an opinion. It is denoted by wVα

s(`,t)
and called the validity opinion

of s(`, t) on attribute α.

Step 3: Assess signal integrity. At last, a spoofing detection method assesses
the integrity of received signals based on the validity of the measurements.

The output of a spoofing detection method is usually qualitative in the literature,
which is not correct in reality. This is mainly because: 1) unpredicted environmen-
tal interference on signals leads to uncertainty of measurement validity; 2) there
does not exist a definite causal relationship from measurement validity to signal
integrity. For instance, some attackers can generate signals with valid measure-
ments if they have access to powerful simulators. In such situations measurements
are valid but signals are spoofed. False negative/positive ratios are thus defined
to estimate the frequency of such situations and assess the performance of the
detection in the literature.

In our approach, we use a subjective logic opinion to capture the uncertainty about
the integrity of a signal. Given s(`, t), we denote the opinion on its integrity by
wαIs(`,t) and call it an integrity opinion.

Summary. Based on the above discussion, upon the receipt of the measurement of
an attribute α, we can summarise the three steps that a spoofing detection method
sequentially performs as follows:

1. Calculate the reference set Rα(s(`, t));

2. Evaluate the validity of mα(s(`, t)) according to Rα(s(`, t), i.e., wVα
s(`,t)

;

3. Infer the opinion on the integrity of s(`, t) based on wVα
s(`,t)

, i.e., wαIs(`,t) .

In the literature, the calculation of reference sets in the first step has been exten-
sively discussed. In this chapter, we take it as given. We proceed with how to
obtain the validity of measurements in the second step (Section 3.3) and how to
derive the integrity of signals in the third step (Section 3.4).

3.3 Deriving Validity Opinions

In this section, we give a method to calculate the validity opinion of an attribute
given a received signal by taking into account the environmental interference. Es-
sentially, we develop a function mapping mα(s(`, t)) and Rα(s(`, t)) to the opinion
wVα

s(`,t)
for any signal s(`, t).
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Our main idea is to find an appropriate function degrading the belief on the validity
of a measurement in terms of its distance to the reference set. The intuition behind
this is that environmental interference with larger variation from the average is less
common. A larger variance indicates that a measurement is farther away that from
the reference set and thus it is less probable that the measurement is valid. There
are two necessary elements in the above observation, namely, the distance of a
measurement to the reference set and the degradation function.

3.3.1 Distance of measurements to reference sets

Suppose that the distance between any two elements in dom(α), e.g., x and x′, is
given as‖x−x′ ‖. The calculation and domains of the distances may vary between
attributes. We assume that the distances are normalised into real numbers, i.e.,
‖x−x′ ‖∈ R. The distance of a measurement from a reference set is assigned zero if
it is in the set. Otherwise, it is set as the minimum distance of the measurement to
the values in the reference set. Let dα(s(`, t)) be the distance between mα(s(`, t))
and Rα(s(`, t)). Then it can be defined as follows:

dα(s(`, t)) =

{
0 m ∈ R
min
v∈R
‖m− v‖m 6∈ R (3.3)

where m = mα(s(`, t)) and R = Rα(s(`, t)).

3.3.2 Degradation function

The degradation function should be smooth and be compatible with the probability
distribution of the environmental interference suffered by the given signal. Note
that the choice of the distribution influences the accuracy of the validity opinion
and should be carefully assessed with extensive analysis, e.g., using sufficiently
large number of samples. We observe that the measured values of most attributes
mentioned in the literature fit normal distributions best, e.g., signal strengths
and clock offsets. Although some attributes may fit different distributions, in the
following we take the normal distribution as an example to define the degradation
function. The main idea can be adapted to other distributions. Assume wVα

s(`,t)
=

(b, d, u, 0.5). The base rate is set to 0.5 so as to express that we have no preference.
The other three parameters can be computed as follows:

b = e
−

dα(s(`, t))2

2 · var 2 ; d = 1− b; u = 0 (3.4)

where var represents the variance required by the original normal distribution and
it determines how fast b drops along with dα(s(`, t)). The uncertainty u can be
interpreted as the confidence in the existence of the normal distribution. As we
have already assumed its existence, we assign 0 to uncertainty u.

We can determine the value of var if a distance and the corresponding belief are
given. In our method, we take the maximum distance allowed for a measurement
and assign the minimum belief to it. Let dmax be the maximum allowed distance to
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dsnr

msnr(s(`, t))
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(63.5, 1)

(a) The function of dsnr.
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s

.

Figure 3.2: Example 3.1.

the reference set and bmin be the corresponding minimum belief. We can calculate
var as follows:

var =
dmax√
−2 · ln bmin

. (3.5)

We take the attribute – signal-to-noise ratio – as an example to explain the calcu-
lation of validity opinions.

Example 3.1. Signal-to-noise ratios (snr) measure the power ration between sig-
nals and background noise. The spoofing detection method based on signal-to-noise
ratios is stateless since the reference values do not depend on any past signals.
According to our analysis on collected integrous GPS signals, we set the reference
set Rsnr(s(`, t)) = [0, 62.5] for any received signal s(`, t).

Suppose a received signal s and msnr(s) = 63.5. According to Equation 3.3, we draw
the function of dsnr(s) in Figure 3.2(a). Then we have dsnr(s) = 63.5 − 62.5 = 1.
If we set a belief of 0.1 to the distance 3.7, then we have the degradation function
of the shape shown in Figure 3.2(b). Thus, in terms of Equation 3.4, the validity
opinion is (0.73, 0.27, 0, 0.5).

3.4 Inferring Signal Integrity

In this section, we show how to derive the integrity opinion of a signal based on the
measurement validity of one of its attributes. We study the causal relationships
between measurement validity and signal integrity, based on which conditional
reasoning can be used. Since stateless and stateful methods have different causal
relationships, they require different methods to derive integrity opinions.

3.4.1 Stateless spoofing detection

In a stateless spoofing detection method, e.g., on attribute α, a reference set is
calculated in such a way that as long as a signal is integrous, its measurements
must be valid (see Definition 3.2). Therefore, given a signal s(`, t), the following



3.4 Inferring Signal Integrity 29

conditional relationship holds:

Is(`,t) → Vαs(`,t). (3.6)

The validity opinion wVα
s(`,t)

has already been calculated based on the methodology

given in Section 3.3. Thus the integrity opinion of s(`, t) can be considered as the
abduced opinion on the validity of the measurement.

In the abduction, we need two a priori conditional opinions on the measurement
validity when the signal is integrous or spoofed and the a priori probability that
the signal is integrous before its reception. Let wVα

s(`,t)
|Is(`,t) and wVα

s(`,t)
|¬Is(`,t) be

the opinions on the validity of the measurement when the signal is integrous or
spoofed, respectively. We set the base rate a(Is(`,t)) to 0.5 to indicate no a priori
knowledge about the integrity of the signal. It is a conservative choice as we want
to eliminate the interference of artificial preference as much as possible. Using the
abduction operator in subjective logic (i.e., }), we can calculate the opinion on
the truth of Is(`,t) as follows:

wαIs(`,t) = wVα
s(`,t)

}(wVα
s(`,t)

|Is(`,t) , wVαs(`,t)|¬Is(`,t) , a(Is(`,t))). (3.7)

Example 3.2. Let us continue the Example 3.1. Suppose we have the inputs as
follows:

wVsnr
s |Is = (0.94, 0.03, 0.03, 0.5); wVsnr

s |¬Is = (0.10, 0.80, 0.10, 0.5).

Then the integrity opinion of s with regard to signal-to-noise ration will be

wsnr
Is = wsnr

Vs }(wVsnr
s |Is), wVsnr

s |¬Is , a(Is)) = (0.54, 0.25, 0.21, 0.50).

3.4.2 Stateful spoofing detection

In a stateful spoofing detection method, e.g., on attribute α, a reference set is
calculated based on a set of past signals. For the sake of simplicity, we assume
that a stateful detection method only makes use of one past signal. However, our
method given below can be generalised to other cases.

For a signal s(`, t), let s(`′, t′) (t′ < t) be the past signal based on which Rα(s(`, t))
is calculated. According to Definition 3.3, we can see that a reference set is com-
puted in a specific way such that once past signals and the signal to be verified
are both integrous, the corresponding measurement is valid. This gives rise to the
following conditional relation for signal s(`, t):

Is(`′,t′) ∧ Is(`,t) → Vαs(`,t). (3.8)

We cannot derive the integrity opinion wαIs(`,t) using the method given for stateless

spoofing detection methods due to the involvement of the integrity of the past sig-
nals. In probability theory, if we can learn the joint probabilities Pr(Is(`′,t′), Is(`,t))
and Pr(¬Is(`′,t′), Is(`,t)), then the probability Pr(Is(`,t)) can be calculated by sum-
ming them up. This calculation is called marginalisation. In subjective logic if we
learn the beliefs on Is(`′,t′) ∧ Is(`,t) and ¬Is(`′,t′) ∧ Is(`,t), then the opinion on Is(`,t)
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can be computed in a similar way. Let I be the following multinomial frame made
of Is(`′,t′) and Is(`,t):

I = {Is(`′,t′) ∧ Is(`,t),¬Is(`′,t′) ∧ Is(`,t), Is(`′,t′) ∧ ¬Is(`,t),¬Is(`′,t′) ∧ ¬Is(`,t)}.

Let wI be the multinomial opinion on I. Using the above causal relationship,
we can calculate wI based on the measurement validity through the abduction
reasoning. As wI contains the beliefs on Is(`′,t′) ∧ Is(`,t) and ¬Is(`′,t′) ∧ Is(`,t), we
can compute the integrity opinion on Is(`,t). Specifically, the calculation can be
described in the following two steps:

1. Compute wI based on wVα
s(`,t)

. The computation is an abductive reasoning

from Vαs(`,t). Let wVα
s(`,t)

|I be the set of a priori conditional opinions on Vαs(`,t)
when each proposition in I is true, i.e., {wVα

s(`,t)
|x |x ∈ I}. This calculation is

as follows:
wI = wVα

s(`,t)
}(wVα

s(`,t)
|I ,~aI). (3.9)

2. Compute wαIs(`,t) based on wI . Suppose wI = (~b, u,~a) and wαIs(`,t) = (b, d, u, a),

then the opinion can be calculated as follows:

b = ~b(Is(`′,t′) ∧ Is(`,t)) +~b(¬Is(`′,t′) ∧ Is(`,t)); (3.10)

u = u; d = 1− b− u; (3.11)

a = ~a(Is(`′,t′) ∧ Is(`,t)) + ~a(¬Is(`′,t′) ∧ Is(`,t)). (3.12)

The base rate vector ~a expresses the a priori probability distribution on the four
propositions in I. Note that Is(`′,t′) and Is(`,t) are independent as the signals s(`, t)
and s(`′, t′) do not depend on each other and can be generated by two different
sources. As s(`′, t′) is a past signal, we assume that its integrity opinion has
already been calculated, i.e., wIs(`′,t′) . The expectation probability of Is(`′,t′), i.e.,

E(wIs(`′,t′)), is thus the a priori probability of Is(`′,t′) being true. Recall that we

set a(Is(`,t)) to 0.5 to express the absence of any knowledge about Is(`,t) being true.
We can calculate ~a as follows:

~a(Is(`′,t′) ∧ Is(`,t)) = E(wIs(`′,t′)) · 0.5; (3.13)

~a(Is(`′,t′) ∧ ¬Is(`,t)) = E(wIs(`′,t′)) · 0.5; (3.14)

~a(¬Is(`′,t′) ∧ Is(`,t)) = (1− E(wIs(`′,t′)) · 0.5; (3.15)

~a(¬Is(`′,t′) ∧ ¬Is(`,t)) = (1− E(wIs(`′,t′)) · 0.5. (3.16)

Some a priori conditional opinions are applied during the inference of signal in-
tegrity. They should be assessed properly in order to guarantee the correctness
of integrity opinions. We propose an approach to determine their values in the
following section.

3.4.3 Determining the conditional opinions

We can divide the conditional opinions used in Section 3.4.2 into two classes ac-
cording to whether spoofed signals are involved, which are integrous signal based
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(isb) and spoofed signal based (ssb). Specifically, the opinions of the form of
wVα

s(`,t)
|Is(`,t) and wVα

s(`,t)
|Is(`′,t′)∧Is(`,t) belong to the former class while the later class

includes those of the form of wVα
s(`,t)

|¬Is(`,t) , wVαs(`,t)|Is(`′,t′)∧¬Is(`,t) , wVαs(`,t)|¬Is(`′,t′)∧Is(`,t)
and wVα

s(`,t)
|¬Is(`′,t′)∧¬Is(`,t) .

Determining isb conditional opinions. In practice, reference sets should be
carefully chosen to ensure that the number of spoofed signals that have valid mea-
surements should be small while most integrous signals have valid measurements.
Reference sets do not contain all possible values that an integrous signal should
have and there are situations where an integrous signal has an invalid measurement.
The isb opinions express how likely these will not happen. Given the calculation
of reference sets, we can estimate isb opinions by counting the frequency of valid
measurements in a sufficiently large dataset of integrous signals.

We take wVα
s(`,t)

|Is(`,t) as an example to illustrate the calculation which can be ex-

tended straightforwardly to the opinions used in stateful spoofing detection. Let
SC be the collection of integrous signals and P ⊆ SC be the set of samples whose
measurements of α are valid. Let wVα

s(`,t)
|Is(`,t) be (b, d, u, a). The base rate a ex-

presses the a priori probability about the truth of Vαs(`,t) when the received signal
is integrous. We set it to 0.5 when we have no knowledge about Vαs(`,t). Then the
belief, disbelief and uncertainty can be computed by

b =
|P |

|SC |+2
, d =

|SC/P |
|SC |+2

, u =
2

|SC |+2
. (3.17)

Determining ssb conditional opinions. The ssb opinions are related to spoofing
scenarios. They express the opinions on the validity of measurements when some
related signals are spoofed. They also describe the power of attackers with regard to
tuning attributes when false signals are generated. The more powerful an attacker
is, the more likely that the measurements of their spoofed signals remain valid.

The method of deriving isb opinions is applicable if we have samples of spoofed
signals. However, as far as we know there is no publicly available dataset of spoofed
signals. Instead, we propose an alternative method estimating ssb opinions based
on the efforts required for the attackers to generate signals with valid measure-
ments. Intuitively, the more efforts that are required, the less likely that the
measurements of spoofed signals are valid.

There are many restrictions for the attackers to overcome in order to preserve the
validity of a measurement, e.g., signal simulators, deployment environment and the
availability of equipment. A spoofing attack demanding a simulator of 10,000 euros
is harder than the ones which need simulators of 1,000 euros. The difficulty to meet
a requirement can be divided into levels. For instance, the prices of equipment can
be assigned to levels from low to high. Meanwhile, the importance of requirements
also varies.

Let Req = {rq1, . . . , rqk} be the set of requirements and W = {w1, . . . , wk} be
the set of corresponding importance where

∑
1≤j≤k wj = 1. For rqi ∈ Req , we

assign one of the five scores {0.2, 0.4, 0.6, 0.8, 1}, i.e., score(rqi). Sometimes, we
do not have expertise for every requirement. When we have no idea about the
requirement, we set score(rqi) to 0. The sum of weighted assigned scores can be
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interpreted as the votes against a successful spoofing attack while the unassigned
scores can be seen as the neutral votes. Take wVα

s(`,t)
|¬Is(`,t) for example. Let it be

(b, d, u, a), then

b =
∑

score(rqi)6=0

score(rqi) · wi; d = 1− b− u; u =
∑

score(rqi)=0

wi. (3.18)

We set a as 0.5 to indicate the absence of any preference.

3.5 Combining Integrity Opinions

A received signal has a set of attributes that can be measured and explored by
spoofing detection methods. According to Section 3.4, given a signal a detection
method will calculate its integrity opinion. However, the integrity opinions can be
different from each other. This is because:

• The conditional opinions used in spoofing detection methods are different.
This leads to different integrity opinions even if the validity opinions are the
same.

• Unpredictable environmental interference can cause an integrous signal to
have incorrect validity opinions for certain attributes. This subsequently
causes incorrect integrity opinions.

• Some attackers are able to tune some attributes of their generated signals so
that the corresponding measurements remain valid. This fools the spoofing
detection methods to output incorrect integrity opinions.

Thus, a combined integrity opinion is needed to deal with the difference. Further-
more, with more evidences taken into account, the combined opinions will be more
reliable. The combination is very useful for location-based applications as they can
customise their services based on signal integrity and take proper actions whenever
spoofing is detected.

In this section, we propose three algorithms to combine the integrity opinions
according to different user security requirements. A combination algorithm can be
seen as a function taking a set of individual integrity opinions as input denoted by
WIs(`,t) , and outputting a combined integrity opinion denoted by wIs(`,t) . Before
presenting the algorithms, we start with how to construct the set of integrity
opinions, i.e., WIs(`,t) .
Recall that stateful spoofing detection methods make use of the integrity opinions
on past signals. Assume that integrity opinions can be combined, we have two
types of integrity opinions: combined opinions, e.g., wIs(`,t) and those given by
individual stateless methods, e.g., wαIs(`,t) . As a consequence, a stateful detection

method can output two kinds of integrity opinions: global and local. A global
integrity opinion is calculated using combined opinions on past signals, while a
local integrity opinion is based on opinions given by a single stateless method.
Given a signal, we thus have two sets of integrity opinions to combine – global
opinion set and local opinion set, denoted by Wglo

Is(`,t) and W loc
Is(`,t) , respectively. In
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this section, we useWIs(`,t) to have a generic description for our algorithms. It can

be substituted by either Wglo
Is(`,t) or W loc

Is(`,t) in implementation.

3.5.1 The Veto algorithm

In safety-critical applications, failing to detect a spoofing attack can lead to severe
consequence. In such situations, false alarms of spoofing are affordable but false
claims of integrity are not. To meet this requirement, our idea is to give a spoofing
alarm as long as one of the deployed spoofing detection methods gives an opinion
indicating spoofing. We choose the integrity opinion with the minimum belief in
the integrity of the signal as the combined opinion.

We introduce a relation to compare the belief in the integrity of a given signal
expressed by two integrity opinions, i.e., �⊆ Ω × Ω where Ω is the set of all
binomial opinions. An integrity opinion has less belief in the integrity of a signal
than another if its expectation probability is smaller or it has a larger uncertainty
when their expectation probabilities are equivalent. The relation � is formally
defined as follows:

Definition 3.4 (�). Given two binomial subjective opinions w = (b, d, u, a) and
w′ = (b′, d′, u′, a′), we say that w is not larger than w′ (denoted by w � w′) if

E(w) < E(w′) ∨ (E(w) = E(w′) ∧ u ≥ u′) ∨ w = w′.

Recall that WIs(`,t) is the set of integrity opinions output by spoofing detection
methods. The calculation of the combined integrity opinion wIs(`,t) is straight-

forward (see Algorithm 3.1. Let Veto : 2 Ω → Ω be the Veto function, then we
have

wIs(`,t) = Veto(WIs(`,t)) s.t.

(wIs(`,t) ∈ WIs(`,t)) ∧ (∀w ∈ WIs(`,t) , wIs(`,t) � w).

The combined opinion is initially set to the maximum opinion with expectation
probability as 1 and no uncertainty (line 4). Then it is compared with all the
integrity opinions in WIs(`,t) (line 6) and then set to any smaller opinion (line 7-9).

Note that past signals are mandatory for stateful spoofing detection methods to de-
rive integrity opinions. When there are no sufficient opinions available for a stateful
spoofing detection method, we set its integrity opinion in WIs(`,t) to (1, 0, 0, 0.5) to
eliminate its impact on the combined opinion.

3.5.2 The Consensus algorithm

Recall that in a subjective logic opinion, the uncertainty mass can be interpreted
as a confidence measurement on the correctness of the probability expectation.
Given an integrity opinion, the smaller the uncertainty is, the more likely that its
expectation probability of signal integrity is correct. Based on this understanding,
the integrity opinions with less uncertainty should play a more important role in
the combined opinion.
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Algorithm 3.1 The Veto Algorithm
1: Input: WIs(`,t)
2: Output: wIs(`,t)
3:

4: Init: wIs(`,t) ← (1, 0, 0, 0.5);
5:

6: for wαIs(`,t) ∈ WIs(`,t) do

7: if wαIs(`,t) � wIs(`,t) then

8: wIs(`,t) ← wαIs(`,t)
9: end if

10: end for
11: return wIs(`,t)

Intuitively, more evidences should lead to more reliable conclusions. This means
that when more integrity opinions are combined, we should have more confidence
in the correctness of the combined opinion. In other words, the combined opinion
should have less uncertainty mass.

We make use of the opinion fusion operator ⊕ [Jøs12], which is also called the
consensus operator, to combine integrity opinions. Recall that consensus is only
applicable when the evidences giving rise to the opinions are independent. Since
the measurement of an attribute do not affect that of another attribute, we can
assume that attributes are independent of each other. Moreover, the fused opinion
simply meets our expectation for the combined opinion, which can be derived
straightforwardly from its definition. First, in the fused opinion, a larger proportion
of the belief mass comes from the opinion with less uncertainty. Second, more
opinions will lead to less uncertainty mass in the fused opinion. Let Consensus :
2 Ω → Ω be the corresponding function of the Consensus algorithm. Then we have

wIs(`,t) = Consensus(WIs(`,t)) = ⊕w∈WIs(`,t)
w .

The algorithm making use of consensus can be shown in Algorithm 3.2.

Algorithm 3.2 The Consensus Algorithm
1: Input: WIs(`,t)
2: Output: wIs(`,t)
3:

4: Init: wIs(`,t) ← (0, 0, 1.0, 0.5);
5:

6: for wαIs(`,t) ∈ WIs(`,t) do

7: wIs(`,t) ← wαIs(`,t) ⊕ wIs(`,t) ;
8: end for
9: return wIs(`,t)

When there are no sufficient past integrity opinions for certain stateless spoofing
detection methods, their integrity opinions are set to the vacuous opinion with
uncertainty being 1. It is the neutral element of the consensus opinion, so it will
have no impacts on the combined opinion.
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3.5.3 The Combined algorithm

From their descriptions, it is clear that (1) the Veto algorithm is conservative in
the sense that it can lead to more false alarms of spoofing; (2) while the Consensus
algorithm can better reduce uncertainty it can lead to more false claims of integrity
due to its use of the opinion fusion operator. To achieve a balance of the two situa-
tions, we combine the features of the two algorithms and develop a new algorithm.
Different from the Veto algorithm, we do not always choose the integrity opinion
with the smallest expectation probability to conclude a spoofed signal. Instead,
we consider the opinions not only with sufficiently small expectation probabilities
and but also with sufficiently small uncertainty. We call such integrity opinions
VETO opinions.

Definition 3.5 (((σ, θ)-VETO opinions). Let w = (b, d, u, a) be an integrity opin-
ion and σ ∈ [0, 1) and θ ∈ [0, 1) be the thresholds of the expectation probability and
the uncertainty, respectively. It is said to be a VETO opinion if

E(w) ≤ σ ∧ u ≤ θ.

For each individual detection method, σ and θ can be set to different values.
Let σα and θα be the predefined thresholds for the spoofing detection method on
attribute α. When combining the opinions from a number of detection methods, if
there exist multiple VETO opinions then their consensus is calculated and output
as the combined opinion. Otherwise, if there is no VETO opinion, the Consensus
algorithm is called to calculate the combined opinion. This new algorithm is called
Combined as shown in Algorithm 3.3. The combined integrity opinion is initially

Algorithm 3.3 The Combined Algorithm
1: Input: WIs(`,t)
2: Output: wIs(`,t)
3: Init: wIs(`,t) ← (0, 0, 1, 0.5);
4: for wαIs(`,t) ∈ WIs(`,t) do

5: if isVETO(wαIs(`,t) , σα, θα) then

6: wIs(`,t) ← wIs(`,t) ⊕ wαIs(`,t) ;
7: end if
8: end for
9: if wIs(`,t) = (0, 0, 1, 0.5) then

10: wIs(`,t) ← Consensus(WIs(`,t));
11: end if

set to the vacuous opinion. The function isVETO(w, σ, θ) returns true if w is a
(σ, θ)-VETO opinion and false otherwise. We start with looking for VETO opinions
in WIs(`,t) and compute the consensus of them if there exist any (line 4-8). If there
are no VETO opinions, wIs(`,t) will remain unchanged (line 9) as the uncertainty of
a VETO opinion is always smaller than 1 (see Definition 3.5). Then we compute
the consensus of all integrity opinions (line 10).
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Figure 3.3: The components of the prototype.

3.6 Prototyping

We have developed a prototype based on the trust framework. It collects the
measurements of received GPS (Global Positioning System) signals from receivers
in real time and returns the signal integrity to users in terms of integrity levels .

Our prototype allows a user to customise the integrity evaluation process according
to the real-time environment in order to obtain more reliable results. First, a
user can disable some spoofing detection methods in certain cases when they are
likely to calculate incorrect integrity opinions. For instance, when driving in a
forest, a user wants to stop using detection methods relying on signal strength
due to the significant fluctuations caused by trees. Second, a user can choose the
algorithm to combine integrity opinions from different spoofing detection methods
according to the service he is requesting. Last, a user can notify our prototype of
the type of his receiver. This is necessary because receivers may differ in terms
of computation power and antennas. The variants lead to different measurements
of some attributes even for the same signal. In our prototype, we make a simple
classification: professional and commercial-off-the-shelf, and assign different values
to the a priori parameters used during the evaluation process.

We show in Figure 3.3 the components of our prototype. Upon receiving a signal,
the receiver calculates its location. Meanwhile the measurement collector (MC)
starts gathering the values of the attributes measured by the receiver during lo-
calisation and subsequently send them to the data manager (DM). We organise
and record the measurements in the form of XML (Extensible Markup Language)
due to its simplicity and generality. The preference of a user to customise the in-
tegrity evaluation is also added, including the spoofing detection and combination
algorithms to run. The DM prepares and distributes the input for each spoofing de-
tection method. Besides the measurements of signal attributes, other information
is also included in the inputs, such as the integrity opinions of related past sig-
nals and parameters to calculate reference sets. All such information is stored and
managed by the data keeper (DK). Integrity opinions are calculated by spoofing
detection methods and then sent to the opinion combiner (OC) which calculates
the overall integrity opinion according to the user’s requirement contained in the
XML file. In the end, the combined integrity opinion is transformed into an in-
tegrity level between 1 to 5 which is intuitive and easy for users to understand.
Specifically, a signal is labelled by integrity level i if the expectation probability of
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Table 3.2: The parameters used in stateless detection.
methods reference set dmax ssb opinion

snr [0, 62.5] 2.7 (0.1, 0.8, 0.1, 0.5)
dr [1.2829, 1.2837] 0.004 (0.2, 0.7, 0.1, 0.5)
hd [0, 3.5] 10 (0.4, 0.5, 0.1, 0.5)

the integrity opinion is between 0.2 · (i− 1) and 0.2 · i.
Note that MC should be installed on the device equipped in the receiver so as to
have access to the measurements of signals (see the dashed rectangle in Figure 3.3).
The other components can be deployed and run on remote agents. However, the
communication between them should be well designed as users’ locations are ac-
knowledged as an important piece of private information.

3.7 Validation

In this section, we test the effectiveness of our framework based on our implemented
prototype.

In our validation, we make use of four spoofing detection methods which explore
the following attributes, respectively:

• Doppler ratio (dr) between the Doppler shifts of the civil signal and the
military signal in a received signal.

• Signal-to-noise ratio (snr) between the power of the signal and the noise in
the given RF bandwidth, which is expressed in decibels (dB).

• Height difference (hd) between the height in a calculated coordinate and the
real height corresponding to the latitude and longitude in the coordinate,
which is expressed in metres.

• Clock offset (cf): the time difference between the local clock of a receiver and
the universal time, which is measured in seconds.

The first three spoofing detection methods are stateless while the last one is stateful
as it predicts the clock offset based on one past offset and the drift speed of the
local clock. In detail, suppose that the clock offset at t′ is cf and the drift speed
of the clock is vdrift . Then the predicted clock offset at time t is preCF (t) =
off + vdrift · (t− t′).
To learn the reference sets and related parameters, we use a dataset of 160,000
samples of integrous signals which are collected with a professional receiver JAVAD
ALPHA2. Each record of the dataset stores the measurements of a signal. We
choose a reference set that allows 98% of the samples to have valid measurements.
Recall dmax is the maximal allowed distance of a measurement from the reference
set. It is assigned to a value so that only 5% samples have larger distance. The
corresponding minimum belief, i.e., bmin , is uniformly set to 0.05. Table 3.2 lists
the parameters used in each stateless detection method.



38 Chapter 3 A Trust Framework For Evaluating GNSS Signal Integrity

The reference set of the clock offset at time t is composed of the values between
preCF (t) − 1 × 10−8 and preCF (t) + 1 × 10−8. The maximum distance is set as
3 × 10−8s so as to ensure 5% signals with larger distance. With respect to the
isb conditional opinions, as about 98% samples have valid measurements, they
are set to (0.98, 0.02, 0, 0.5). For the ssb conditional opinions, we assign them a
preliminary opinion based on our knowledge. In our implementation, they are set
to an identical opinion (0.1, 0.8, 0.1, 0.5).

3.7.1 The experimental setup

To validate our framework, we prepare three datasets of signal measurements. The
first one is called integrity dataset storing the measurements of 25,531 integrous
signals. These samples are collected using the same GPS receiver but independently
from the dataset used for parameter evaluation. The second is a spoofed dataset
and synthesised based on the integrity dataset to simulate spoofed signals. This
is because no spoofed signals are publicly available. The third dataset is a mixed
dataset with both integrous signals and spoofed signals.

The spoofed and the mixed datasets contain synthesised records for spoofed sig-
nals. The main idea to synthesise such records is to make use of the fact that the
attributes of spoofed records have values deviating from those of integrous signals.
Furthermore, the amount of the deviation is determined by the attackers in terms
of their capabilities to tune spoofed signals. A more powerful attacker will gener-
ate signals with less deviation. We take a simple assumption that the attackers’
capabilities follow the normal distribution during the construction of the spoofed
dataset. To compute a record of a spoofed signal, given an item in the integrity
dataset and an attribute, we first decide whether to change its value based on the
corresponding a priori ssb conditional opinion. If yes, an extra distance is calcu-
lated following a normal distribution with dmax as the mean and the same variance
used in the validity calculation. This extra distance is added to the distance of the
original measurement and the resulted distance is used to calculate the validity
opinion.

3.7.2 Experimental results

Bounds of integrity opinions. Figure 3.4 shows the change of integrity opinions
with validity opinions. Figure 3.4(a) shows how the belief and uncertainty of an
integrity opinion evolve with the belief of a validity opinion in the stateless meth-
ods. A general observation is that belief and uncertainty both increase linearly as
the beliefs of the validity opinions grow. However, different methods have different
output opinions, which are determined by their a priori conditional opinions. In
our setting, the method snr calculates an integrity opinion with the largest belief
and the smallest uncertainty than the other two spoofing detection methods.

Concerning the cf stateful method, since it requires past signals, its calculated in-
tegrity opinions should change along with two parameters: the expectation proba-
bility of the past signal’s integrity and the beliefs of validity opinions. Figure 3.4(b)
and Figure 3.4(c) show the beliefs and uncertainty of the integrity opinions when
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Figure 3.4: The integrity opinions.
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(a) hd (integrity dataset).
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(b) hd (spoofed dataset).
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(c) cf+hd (integrity dataset).
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Figure 3.5: Integrity Opinions of individual detection methods.

the two parameters have various values. The maximum belief value occurs when
they are both 1.0 while the minimum belief is obtained when the past signal is
spoofed and the current signal has a valid measurement. The maximum uncer-
tainty is computed when the past signal is spoofed and the current measurement
is valid. We use Table 3.3 to summarise the bounds of belief and uncertainty of
integrity opinions for each method.

Table 3.3: Belief & uncertainty bounds of integrity opinions.
methods min(b) max(b) min(u) max(u)

snr 0.03 0.86 0.01 0.02
dr 0.09 0.78 0.02 0.07
hd 0.02 0.58 0.03 0.24
cf 0.01 0.80 0.03 0.95

Integrity opinions of spoofed and integrous signals. We study what in-
tegrity opinions spoofing detection methods calculate when signals are spoofed
and integrous. To achieve this, we make use the spoofed and integrity datasets.

We divide integrity opinions into classes according to their beliefs and uncertainty.
Each cell in the diagrams in Figure 3.5 corresponds to a class of opinions whose
beliefs and uncertainty are bounded in certain intervals. The number labelled in
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Figure 3.6: Combined opinions of integrous signals.

each cell is the proportion of calculated integrity opinions which fall in the corre-
sponding class. The grey level of a cell also indicates the proportion. The darker
it is, the larger the proportion is. In Figure 3.5 we choose hd and cf as examples
to show the distribution of integrity opinions when all signals are spoofed or inte-
grous. Note that the cf method uses the integrity opinions of past signals given by
the hd detection. We have two major observations. First, the integrity opinions
of spoofed signals have much smaller beliefs and uncertainty compared to those
of integrous signals. In Figure 3.5(a), we can see that 98% of the opinions given
by hd on integrous signals have beliefs larger than 0.5 and uncertainty less than
0.3. However, when signals are spoofed, the beliefs of about 50% integrity opinions
drops below 0.2 and the uncertainty becomes smaller than 0.15 (see Figure 3.5(b)).
The opinions computed by the cf detection follow a similar pattern. Second, dif-
ferent methods give different opinions even for the same signals. The opinions on
both datasets given by the two methods rarely overlap.

Integrity opinion combination. We use the mixed dataset to validate the
performance of the combination algorithms. Intuitively, a combined algorithm is
effective if it can calculate large beliefs for integrous signals and small beliefs for
spoofed signals. In the mixed dataset, we have 4,748 spoofed signals out of total
25,531 samples (about 18.6%). Figure 3.6 shows the results of our three algorithms.
They all successfully distinguish spoofed signals from integrous ones (with certain
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Table 3.4: The average integrity opinions of integrous and spoofed signals.
Avg. Op. (spoofed) Avg. Op. (Integrous)

snr 0.23, 0.76, 0.01 0.88, 0.10, 0.02
dr 0.29, 0.67, 0.04 0.78, 0.15, 0.08
ht 0.30, 0.58, 0.12 0.58, 0.18, 0.24

cf+snr 0.38, 0.30, 0.32 0.78, 0.01, 0.20
cf+dr 0.41, 0.31, 0.28 0.77, 0.01, 0.22
cf+hd 0.46, 0.31, 0.23 0.75, 0.01, 0.24

Veto 0.08, 0.89, 0.03 0.58, 0.19, 0.23
Consensus 0.22, 0.77, 0.01 0.88, 0.11, 0.01
Combined 0.11, 0.87, 0.12 0.86, 0.12, 0.02

errors). The Veto algorithm assigns smaller beliefs and larger uncertainty to both
spoofed and integrous signals, as it is rather conservative when compared with the
other two methods. The Consensus algorithm assigns 77% of the signals with beliefs
larger than 0.9, and assigns 14% of the signals with beliefs less than 0.2 meaning
that about 4.6% of the spoofed signals are not detected. The Consensus algorithm
gives uncertainty less than 0.05 to almost all the signals. It is interesting to see that
the Combined algorithm gives more balanced results. When signals are integrous,
a belief of 0.9 is mostly assigned which is the same as the Consensus algorithm.
Meantime, for spoofed signals, it assigns a belief of 0.1 to most of them, which is
comparable to the Veto algorithm and much better than the Consensus algorithm.
The observations follow the design principles of the algorithms. In practice, the
choice of a combination algorithm depends on applications.

In Table 3.4, we lists the average opinions computed by the individual detection
methods and the combined opinions calculated by our combination algorithms.
Not that we only give the belief, disbelief and uncertainty values of the opinions
as the base rate is always 0.5 in our setting. We can see that the opinions given
by our combination algorithms have smaller belief values compared with the indi-
vidual methods. This means that the combined opinions are more reliable when
signals are not integrous. Furthermore, the Veto algorithm computes the opin-
ions with smallest belief for spoofed signals while the consensus algorithm gives
the largest belief. By combining the ideas of the previous two algorithms, the
Combined algorithm can enforce a balance between the two.

3.8 A Demonstrator: Location Assurance Provider

To demonstrate our trust framework for evaluating GNSS signal integrity, we
present an implementation of a public service: location assurance certification
based on our prototype in practice. Location-based services (LBS) are services cus-
tomised according to users’ locations. Delivering a service calculated with a wrong
location will lead to security concerns such as privacy leakage. Take location-based
local friend search as an example. Users send requests to LBS providers for the list
of friends who are close to them in order to have a common activity. By feeding a
user’s device with false locations, attackers can learn the locations of any friends of
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Figure 3.7: Location Assurance Provider (LAP).

the user which should not be revealed according to the user’s real location. To fight
against such attacks, only to protect users’ device from malware is not sufficient
because spoofing is still possible.

We have implemented a trusted central server called location assurance provider
(LAP) based on our prototype to evaluate signals’ integrity and issue a certificate
on their integrity levels (called location assurance certificate). The certificate is
then sent to the LBS provider who will verify and adjust its policy (e.g., stop or
continue) to deliver the service according to the integrity level. Figure 3.7 shows
the main steps for a user to request an LBS using location assurance certification.
Before sending a request to the LBS provider, the user device first collects the
measurements of received signals and contacts the LAP to evaluate their integrity
(step (1)). Upon receiving the location assurance certificate (step (2)), the user
sends an LBS request together with the certificate (step (3)) to the LBS provider.
The provider checks the validity of the certificate and returns the service catered
in terms of the integrity level attached (step (4)). To accomplish the scheme,
a public key infrastructure (PKI) is required to manage the LAP’s public key.
Besides the LAP we also implement an Android application which runs on users’
mobile devices. In fact, the application works as the measurement collector (MC
in Figure 3.3) and takes charge of communicating with the LAP. We use a 3G
telecommunication network to establish the connection with the LAP. According
to our test, the average transition time of a message is about 2 seconds.

We test the efficiency and effectiveness of the LAP in terms of computation time
and numbers of false conclusions. The LAP is run on a virtual machine with
4G RAM and an Intel Xeon E5-2640 processor. Figure 3.8(a) shows the average
computation time for a request when different number of users send requests con-
currently – it increases when the number of requests gets large. This is because for
a request, the LAP needs two operations on the database (read parameters and
store integrity opinions) which takes about 90% of the computation time. How-
ever, even with the current setting, for 500 requests, we need less than 4 seconds
which is still acceptable. More efficient database techniques can improve the paral-
lelism of the computation. Figure 3.8(b) shows the distributions of integrity levels
of four spoofing detection methods and our three integration algorithms on the
mixed dataset with about 18% of spoofed signals.
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Figure 3.8: Testing result of the LAP.

3.9 Related Work

In this section, we briefly present the state-of-the-art about spoofing countermea-
sures. In general they can be divided into two categories: detection-oriented and
defence-oriented.

We start with the first category which is also our focus in this thesis. Some low-
cost methods are proposed to detect unsophisticated spoofing [WJ03, WHD+05,
MHL09, PJ08, JJBNL12]. For instance, Papadimitratos et al. [PJ08] summarise
three spoofing detection tests: location inertial test, clock offset test and Doppler
shift test. Inertial sensors, such as speedometers and altimeters, can be used to
predict future locations based on past ones, which are usually close to the real
locations. The clock offset test measures the time offset of a receiver’s local clock
to the system time. As clocks usually drift with a fixed ratio, future clock offsets
can be computed and the real offsets should be around them. Doppler shifts are
also predictable if the relative velocities of a receiver to the satellites are available.

There are also some methods that make use of more advanced attributes of GNSS
signals. For example, Nielsen et al. [NBL10] monitor the correlation between
the strengths of two signals from different satellites because the strengths always
change independently. Psiaki et al. [POB+13] utilise the correlation between the
encrypted military signals received by different receivers as the military signals
transmitted by the same satellite should be physically the same even if they can-
not be decrypted by civil receivers.

The above detection methods are designed under the same principle. Namely, given
a signal, a method takes the measurement of a certain attribute of the signal as
input, calculates the predicted values and claims the absence of spoofing when the
measurement is sufficiently close to the prediction. To the best of our knowledge,
the existing detection methods in the literature all belong to this category.

With regard to defence-oriented methods, their main idea is to explore cryptogra-
phy. A straightforward solution in this category is to add the digital signatures of
the navigation message [PCDC10, WRH12, Hum13]. Such methods all require to
modify the current format of GNSS signals which as we mentioned will cost a lot
of efforts and take a long period to deploy.
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3.10 Conclusion

The civil signals of GNSS systems suffer from attacks such as spoofing by its design.
Due to people’s huge reliance on them, it is in great need to provide a method for
a user at least to learn whether the received signals are trustworthy or not even if
at the moment no effective defence is available. Such an evaluation should be able
to handle the influences from complexed environment in practice on GNSS signals.
Many spoofing detection methods have been proposed but they do not follow a
correct reasoning from observation to conclusion. Moreover, due to the lack of a
formal definition of signal integrity, the targets of existing detection methods are
not compatible sometimes. This prevents us from exploring existing works in an
effective way.

We proposed a trust framework to evaluate the integrity of GNSS signals. We
identified a few problems with existing spoofing detection methods in the litera-
ture and addressed them within our framework. First, we clarified the concept of
signal integrity and gave a formal definition, which is the first attempt to the best
of our knowledge. Second, we precisely characterised spoofing detection methods
and extracted the causal relations between measurement validity and signal in-
tegrity. We then proposed an approach to derive signal integrity while capturing
its uncertainty in a natural way. Our third contribution is that we presented three
ways to combine opinions from various detection methods. Last but not least,
we implemented a prototype of our framework and based on which we validated
our method through experiments. To demonstrate the potential value in practice,
we applied our prototype to implement a public service which provides users with
location assurance certificates on their received signals.
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4

Protecting Query Privacy

Privacy should be protected, which is nowadays a common sense. However, this
request for protection is hard to satisfy, as privacy is often endangered in subtle
ways. In this chapter we study how privacy leaks from queries that a user sends
out, and how an adversary who knows contextual information, a form of indirect
knowledge, threatens the privacy of users, which is supposed to be protected. We
show by a formal framework that by exploring contextual information, attackers
can derive the probability that an anonymous query belongs to a specific user.
We make use of user profiles and query dependency as examples to illustrate the
implementation of such attacks. By proposing a series of new metrics, we illustrate
that users’ query privacy can be precisely and flexibly measured. By proposing new
algorithms, we show that users’ query privacy can be protected according to users’
privacy requirement against malicious inference from contextual information.

4.1 Introduction

The basic idea to protect users’ query privacy in LBSs is to break the link be-
tween user identities and requests [BMW+09]. The straightforward protection
is to remove or replace identities with pseudonyms, e.g., mix-zones [FSH09] and
their variants [BLPW08]. However, for LBSs, this protection mechanism has been
proved insufficient in a number of cases. Locations contained in requests can still
reveal issuers’ identities, since attackers can acquire users’ locations through a
number of methods, e.g., triangulating mobile phones’ signals and localising users’
access points to the Internet. In such cases, users’ spatial and temporal information
serves as quasi-identifiers. Anonymisation techniques from other research areas
such as sensitive data release [GG03] are thus introduced, including k-anonymity
and its different extensions (e.g., `-diversity and t-closeness [LLV07, MKGV07]).
Locations or time are replaced with regions or periods so that a certain number
of users (at least k for k-anonymity) share the same quasi-identifier with the real
issuer. The calculation of the regions or periods is termed as generalisation or
cloaking. Since in practice LBS providers are usually required to offer immediate
responses, we will not consider temporal generalisation in this thesis. We call a
request generalised if the location is generalised and the user identity is removed.

In spite of the protection of various generalisation algorithms, when the adversary
has access to additional information, new privacy risks will emerge. For instance,
some existing generalisation algorithms are found to suffer a type of attacks called
“outlier” attacks when their implementation is made public [MBFW07]. Some
users can be eliminated by the adversary from the set of potential issuers of the
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generalised request. This is because the algorithms cannot output the same gener-
alised request for these users if they issued the same query at the same time as the
real issuer. Information such as the implementation of generalisation algorithms
is classified as contextual information in the literature and privacy in LBSs re-
lated to contextual information is named as context-aware privacy [RPB09]. Many
types of contextual information have been studied so far. For example, Shin et
al. [SAV08, SAV11] study user profiles and propose metrics based on k-anonymity
by restricting levels of similarity among users in terms of their profiles. Mascetti et
al. [CZBP06] propose the concept of historical k-anonymity against attacks where
the adversary learns a trace of associated requests, e.g., issued by the same user.

The research on context-aware privacy usually follows a two-step approach. It
starts with identifying a type of contextual information and demonstrating its
impact on users’ privacy and then it proceeds with developing specific privacy
protection mechanisms. There are a few problems with this line of research.

• The privacy concern related to contextual information is usually illustrated in
a possibilistic way with a focus on whether a type of contextual information
has impact on query privacy or not. It is not clear how much impact has
been exactly made by this piece of contextual information.

• Different types of contextual information are studied independently. As a
result, the privacy protection mechanisms proposed are only effective for
certain contextual information but not for others. In particular, with the
development of information and communication techniques, new contextual
information will always be identified. Such contextual information may ex-
pose users to new query privacy risks.

In this thesis, we propose a uniform framework to assess the impact of contextual
information on users’ query privacy. Moreover, this framework allows us to define
generic privacy metrics for users to express their privacy requirements. In order
to get users’ query privacy protected according to their requirements, we develop
new algorithms.

4.2 Our Framework

In this section, we present our new framework for query privacy analysis in LBSs.
This framework allows us to precisely specify relevant components and attacks on
query privacy with various contextual information.

4.2.1 Mobile users

We assume a set of users who subscribe to an LBS and use the service frequently
during their movements. Let U be the set of such users. We use L to denote the
set of all possible positions where a user can issue a request. The accuracy of any
position ` ∈ L is determined by the positioning devices used. We represent time
as a totally ordered discrete set T , whose granularity, e.g., minutes or seconds,
is decided by the LBS provider. The function whereis : U × T → L gives the
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exact position of a user at a given time. Thus, for any time t ∈ T , users’ spatial
distribution is dis t = {〈u,whereis(u, t)〉 |u ∈ U}. Suppose the set of queries (e.g.,
the nearest gas station) supported by LBS providers is represented by Q. An LBS
request is then in the form of 〈u, `, t, q〉 ∈ U ×L×T ×Q, where ` = whereris(u, t).

4.2.2 Request generalisation algorithms

The generalisation of LBS requests is usually implemented in two ways: centralised
and distributed. A centralised structure (depicted in Figure 4.1) relies on a trusted
agent, the anonymiser, to collect users’ requests and anonymise them before send-
ing them to LBS providers. However, in a distributed implementation users co-
operate with each other to construct a generalised region [GKS07, SHSH11]. The
centralised framework is easy to implement and well-studied in the literature while
the distributed framework requires more communications between collaborators
and security analysis, e.g., with respect to insiders, is not well studied. For this
reason, in this thesis, we make use of the centralised implementation to protect
users’ query privacy. In the centralised framework, normally it is assumed that the
communication channels between users and the anonymiser are secure while the
ones between the anonymiser and the LBS provider are public.

query, location, query, generalized region

Anonymiserer

 candidate resultscandidate results 

User LBS provider

requirement

Figure 4.1: A centralised framework of LBSs.

Given a request 〈u, `, t, q〉, the anonymising server (anonymiser) will remove the
issuer’s identity (i.e., u) and replace his location (i.e., `) with an area to protect
his query privacy. We only consider spatial generalisation in this chapter as in
LBSs users require instant responses. Let 2L be the power set of L. Then the set
of all possible generalised regions can be denoted by R ⊆ 2L. Given 〈u, `, t, q〉,
the anonymising server outputs a generalised request in the form of 〈r, t, q〉, where
r ∈ R is the generalised area and ` ∈ r. The generalisation algorithm of the
anonymiser can thus be represented as a function f : U ×L×T ×Q → R×T ×Q.
We use the function query to obtain the query of a (generalised) request (i.e.,
query(〈u, `, t, q〉) = q and query(〈r, t, q〉) = q).

The generalisation algorithm also takes users’ privacy requirements as part of its
input. In our framework, a privacy requirement is represented by a pair: a cho-
sen privacy metric and the corresponding value (e.g., 〈k−anonymity, 5〉). We use
req(〈u, `, t, q〉) to represent u’s privacy requirement on request 〈u, `, t, q〉.

4.2.3 The adversary

Privacy risks and countermeasures should be categorised according to the adver-
sary’s model and objectives [BMW+09]. For query privacy, the adversary’s goal is
obviously to associate issuers to their queries while the model should be defined in
terms of his knowledge and attack(s) [SAV11].
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The knowledge of an adversary can be interpreted as the contextual information
that he has access to. We denote by Ct his collection of contextual information
at time t. To model the knowledge that is commonly assumed accessible to the
adversary, some contextual information is inherently contained in Ct. Specifically,
in this chapter, we assume that the adversary has access to the following contextual
information:

i) the deployed request generalisation algorithm (i.e., f);

ii) users’ spatial distributions before the current time t, i.e., Dt = (dis t1 , . . . , dis tn)
where tn = t and ∀1≤i<nti < ti+1;

iii) the probability of a user u to issue a request at a given time t is uniformly
distributed, i.e., Pr(u|Ct) = Pr(u′|Ct) (∀u′ ∈ U).

The assumptions i) and ii) are commonly made in the literature and the assumption
iii) is made according to the principle of maximum entropy [Jay57a, Jay57b]. These
assumptions make a strong adversary which allows us to analyse query privacy in
the worst case. The availability of dist enables the adversary to obtain the set of
users located in any region r at time t, which is denoted as u`(r, t).

Given a generalised request 〈r, t, q〉 and contextual information Ct, the objective of
an attack performed by the adversary on query privacy is to learn the request’s
issuer. In most of the cases, the adversary is not sure of the issuer. Uncertainty is
thus inevitable. We use a probability distribution over users to capture his certainty
and quantify the expected correctness of his attack. Let variable U be the issuer
of 〈r, t, q〉. For any user u ∈ U , his probability to issue the request 〈r, t, q〉 from
the view of the adversary with Ct can be represented as Pr(U = u | 〈r, t, q〉, Ct).
In the following, we give one method the adversary can adopt to calculate the
distribution. Through the Bayesian theorem, we have equation:

Pr(U = u | 〈r, t, q〉, Ct) =
Pr(〈r, t, q〉 |u, Ct)
Pr(〈r, t, q〉, Ct)

=
Pr(〈r, t, q〉 |u, Ct) · Pr(u |Ct) · Pr(Ct)∑
u′ Pr(〈r, t, q〉 |u′, Ct) · Pr(u′ |Ct) · Pr(Ct)

.

(4.1)

In the above equation, there are three new distributions. The distribution Pr(Ct)
measures the probability of the adversary having learned the collection of contex-
tual information Ct. It is difficult to evaluate its value. However, since it appears
in both the numerator and the denominator, we can eliminate it from the formula.
Recall that the distribution Pr(u |Ct) represents the probability for user u to issue
a request at time t based on the contextual information Ct and it is assumed as
uniform. Thus, the target posterior distribution can be further simplified as:

Pr(U = u | 〈r, t, q〉, Ct) =
Pr(〈r, t, q〉 |u, Ct)∑

u′∈U Pr(〈r, t, q〉 |u′, Ct)
. (4.2)

The probability Pr(〈r, t, q〉 |u, Ct) indicates the likelihood that ‘if user u generates a
request at time t then the request will be generalised as 〈r, t, q〉’. This is actually a
joint probability of the following two probabilities. The first is the probability that
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Table 4.1: Notations.
U set of users
T set of time instances
L set of locations
R set of possible generalised regions

q ∈ Q a query supported by the LBS
〈u, `, t, q〉 a request issued by u at position ` at time t
〈r, t, q〉 a generalised request

whereis(u, t) position of user u at time t
f(〈u, `, t, q〉) an algorithm computing generalised queries

dis t spatial distribution of users in U at time t
u`(r, t) set of users located in region r at time t

req(〈u, `, t, q〉) user u’s privacy requirement on 〈u, `, t, q〉
query(〈r, t, q〉) the query of 〈r, t, q〉

user u issues the request 〈u,whereis(u, t), t, q〉 when he sends a request at t. It can
also be formulated as the probability that u chooses query q at time t to consult the
LBS provider. We call this probability the a priori probability of user u. The second
probability is the likelihood that the area generalisation algorithm outputs a region
r for whereis(u, t). We use Pru(q | Ct) and Pr(f(〈u,whereis(u, t), t, q〉) = 〈r, t, q〉)
to represent these two probabilities, respectively. Based on the above discussion,
formally we have

Pr(〈r, t, q〉 |u, Ct) = Pru(q |Ct) · Pr(f(〈u,whereis(u, t), t, q〉) = 〈r, t, q〉). (4.3)

We assume that the generalisation algorithms mentioned in this chapter are deter-
ministic. In other words, there is always a unique generalised request corresponding
to each LBS request, which leads to Pr(f(〈u,whereis(u, t), t, q〉) = 〈r, t, q〉) being
either 1 or 0. Furthermore, given an LBS request and a generalised request, the
value of this probability is available to the adversary as generalisation algorithms
are public. Therefore, the key of query privacy analysis is to calculate Pru(q | Ct)
for any query q ∈ Q.

The calculation of Pru(q |Ct) depends on Ct, i.e., the available contextual informa-
tion. In the following discussion, we give the instantiations of our framework when
two different types of contextual information are added into the adversary’s knowl-
edge, i.e., user profiles (see Section 4.3) and query dependency (see Section 4.4).
In this way, we not only show that our framework can handle the contextual in-
formation that has been studied (i.e., user profiles), but also demonstrate that
it is generic to cope with new context (i.e., query dependency). The important
notations are summarised in Table 4.1.

4.2.4 Classifying contextual information

From the above discussion, we can see that the adversary can learn new knowl-
edge along with time and contextual information will evolve along with time. For
instance, the contextual information about users’ spatial distributions (i.e., Dt)
records the sequence of the snapshots of mobile users’ locations up to time t and
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this knowledge keeps growing with time. However, we also notice that certain con-
textual information remains stable over time such as user mobility patterns and
user profiles.

According to this observation, we classify contextual information into two classes:
static and dynamic. Formally they can be defined as follows:

Definition 4.1 (Static & dynamic context). Let ϕt ∈ Ct be the value of a type of
contextual information at time t. We say that the contextual information is static
if and only if for any two time points t and t′ in T , ϕt = ϕt′. Otherwise, the
contextual information is dynamic.

Note that in practice the above definition can be relaxed. When a type of contex-
tual information keeps stable for a sufficiently long period, we can also consider it
as static. For instance, a user profile can be interpreted as static even though the
user may change his job as switching jobs is not frequent.

In Figure 4.2, we classify the contextual information mentioned in this chapter.
To attack query privacy, the adversary usually combines different contextual infor-
mation. For instance, when associated requests are explored [CZBP06, BMW+09,
DRRW10a], request generalisation algorithms and users’ real-time spatial distri-
bution are also part of the adversary’s knowledge.

static

user
profiles

generalisation
algorithms

mobility
patterns

query
dependency

Contextual
information

dynamic

request
history

observed
requests

associated
requests

recurrent
requests

spatial
distribution

Figure 4.2: A classification of contextual information.

4.3 Privacy Analysis based on User Profiles

In this section, we demonstrate the implementation of our framework when user
profiles are explored by the adversary. Although user profiles and their impact on
query privacy have been discussed by Shin et al. [SAV08], they do not describe
precisely how to exploit user profiles and quantify the amount of benefits gained
by the adversary. On the contrary, with our framework we can formally define
the attack and use a posterior probability distribution to describe the adversary’s
knowledge about the issuer.
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As discussed in Section 4.2, given a generalised request 〈r, t, q〉 the key of query
privacy analysis is to compute users’ a priori probabilities, e.g., Pru(q |Ct). Before
presenting the calculation, we start with formulating the adversary’ knowledge.
User profiles are associated with a set of attributes, e.g., contact attributes (zip
codes, addresses), descriptive attributes (age, nationalities, jobs) and preference
attributes (hobbies, moving patterns) [SAV08]. The values of these attributes
can be categorical (e.g., nationality) or numerical (e.g., salary, age). Let 〈a1 :
A1, . . . , am : Am〉 be the list of the attributes where ai is the name of the attribute
and Ai is its domain. The profile of user u can be represented as a tuple of values
each of which corresponds to an attribute. Let Φu = 〈α1, . . . , αm〉 ∈ A1× . . .×Am
be the tuple where αi is the value of ai and denoted by Φai

u . Thus the contextual
information learnt by the adversary at time t can be represented as the following:

Ct = {Dt, f, {Φu |u ∈ U}}. (4.4)

Our main idea to calculate Pru(q |Ct) is to compute the relevance of user u’s profile
to each query and compare the relevance to q with those to other queries. Given
an attribute ai, we can discretise its domain Ai into intervals if it is numerical or
divide the domain into sub-categories if it is discrete. For instance, the domain of
attribute address can be categorised in terms of districts while the numerical values
of salary can be discretised into three intervals, such as ‘≤ 1000’, ‘1000−5000’ and
‘≥ 5000’. Note that the intervals are mutually exclusive and their union is equal
to the original domain.

With the list of the intervals, we can transform the value of an attribute into a
vector of binary values based on which interval or category it belongs to. Suppose
Ai is divided into the list of intervals (A1

i , . . . ,Aki ) where for any 1 ≤ x, y ≤ k,

Axi ∩ Ayi and ∪1≤j≤kAji = Ai. Let ~Φai
u be the vector of Φai

u and [~Φai
u ]j be the jth

value. Thus, we have

[~Φai
u ]j =

{
1 if Φai

u ∈ Aji ;
0 if Φai

u 6∈ Aji .
(4.5)

If a user has a salary of 3000 euros, then ~Φsalary
u = [0 1 0].

Each query q ∈ Q has a set of related attributes that determines whether it is likely
for a user to issue the query q. Furthermore, for a given related attribute, its value
decides the amount of likelihood. For instance, for the query asking for expensive
hotels, the associated attributes should include salary, jobs and age while gender is
irrelevant. Among them, a salary is much more relevant than age and moreover, a
salary of more than 5000 euros is much more important than one of less than 1000
euros. Therefore, we introduce a relevance vector for each attribute to express
the relation between attributes’ values and queries. Let W ai

q = [w1 . . . wn] be the
relevance vector of query q of attribute ai. For any u ∈ U and q ∈ Q, the relevance
value of user u’s profile to query q can be calculated as follows:

vu(q) =
∑
i≤m

~Φai
u · [W ai

q ]T (4.6)

where [W ai
q ]T is the transpose of W ai

q . Suppose the relevance vector of attribute
salary to a five-star hotel is [0 0.2 0.6] then vu(q) = [0 1 0] · [0 0.2 0.6]T = 0.2.
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Finally, we can calculated u’s a priori probability Pru(q |Ct) as follows:

Pru(q |Ct) =
vu(q)∑

q′∈Q vu(q
′)
. (4.7)

As users are independent from each other to decide next queries to issue and user
profiles are the only additional information in Ct to the inherent contexts, for the
sake of simplicity we use Pru(q |Pu) to replace Pru(q |Ct) when there is no confusion
from the context.

4.4 Privacy Analysis based on Query Dependency

In this section, we identify a new type of contextual information: query dependency
and present how to incorporate it into our framework.

Since the first commercial LBSs launched in 1996, LBSs have evolved from simple
single-target finder to diverse, proactive and multi-target services [BKH08]. How-
ever, due to the lack of user privacy protection, especially at the beginning, LBS
providers accumulate a large amount of users’ historical requests. What makes
the situation worse is the shift of LBS providers from telecom operators (who were
viewed as trusted entities) to open businesses such as Google Latitude, Foursquare,
and MyTracks. This increases the risk of potential misuse of the accumulated
records due to the new sensitive information derived from them.

The dependency between queries is one type of such sensitive but personal infor-
mation. It is contained in users’ requests because of users’ preference in arranging
their daily activities [GHB08]. This preference leads to a repetitive pattern in their
requests. For instance, a user often posts a check-in of a coffee house after lunch.
The fact that users’ frequent queries are usually restricted to a small set makes the
extraction of query dependency more precise.

Users’ query dependency can be abused and becomes a potential risk to users’
query privacy. As far as we know, we are the first to explore query dependency for
query privacy protection. We illustrate this by a simple example.

Example 4.1. Bob issues a request about the nearest night clubs in a 2-anonymous
region with Alice being the other user. Suppose the adversary has also learnt that
Alice just issued a query about the nearest clinics and Bob queried about bars. As
it is not common to ask clubs after clinics compared to bars, the adversary can
infer that Bob is more probable to issue the request about night clubs. In this
example, even if Alice and Bob share a similar profile, the dependency between
queries obviously breaks 2-anonymity for all users in the region who are supposed
to be equally likely to issue the request.

In the rest of this section, we start with a formal definition of the adversary’s
knowledge and then give an approach to derive dependency between queries for
a user from his request history. Then we propose a method for the adversary to
breach users’ query privacy by exploring query dependency.
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4.4.1 Updating the adversary’s knowledge

Besides the contextual information considered in Section 4.3, there are two new
types of contextual information added: request history and observed request traces .

As we have mentioned before, LBS providers have collected users’ request history.
For each user u, we assume that the adversary has a user u’s request history for a
sufficiently long period. We use a sequence to denote the requests of user u collected
by the adversary, i.e., Hu = (〈u, `1, t1, q1〉, . . . , 〈u, `n, tn, qn〉) (∀1≤i≤n−1ti < ti+1).
The ith request in Hu is represented by Hu(i). We call this sequence user request
history, whose length is denoted as len(Hu). For the sake of simplicity, we assume
that Hu is complete, namely there do not exist any requests that are issued by u
during the period but are not included in Hu.

Another assumption is that the adversary has access to the public channel which
transmits generalised requests. This means that the adversary can obtain any gen-
eralised requests from users. We denote this contextual information by a sequence
of generalised requests in the chronologically ascending order. Up to time t, the
sequence of observed requests is Ot = (〈r1, t1, q1〉, . . . , 〈rn, tn, qn〉) (∀1≤i≤nti < ti+1

and tn < t)). For the sake of simplicity, we do not consider recurrent queries, i.e.,
those elements in Ot with the same time-stamps. Furthermore, for each request
in Ot, the adversary calculates its anonymity set, i.e., the users located in the
generalised region. Thus, for each user, the adversary can maintain a sequence of
generalised requests, whose anonymity sets contain this user. We call this sequence
an observed request trace and denote the one of user u up to t as Ou,t whose length
is len(Ou,t). Obviously with time passing, a user’s observed request trace keeps
growing. The difference between Hu and Ou,t is that the adversary knows the
issuer of each request in Hu but uncertain about the issuers of the requests in Ou,t.
To summarise, the knowledge of the adversary can be formulated as the following:

Ct = {Dt, f, {Φu |u ∈ U},Ot, {Hu |u ∈ U}}. (4.8)

4.4.2 Deriving query dependency

Query dependency can be used to predict the next query of a user based on his
past queries. However, when a user has no past queries or the past queries have
little impact on his future queries, we need to consider users’ a priori preference
on queries.

Query dependency. We model query dependency with the assumption that the
query that a user will issue next can only be affected by the last query that the
user has issued (i.e., the Markov property). For a pair of queries qi and qj, the
dependency of query qj on qi can thus be expressed by the conditional probability
Pru(qj |qi).
To find dependent queries, we need to identify the successive requests. Intuitively,
two requests are successive if there are no other requests between them in the
request history. This simply means that Hu(i+1) is the successive request of Hu(i)
for i < len(Hu). All the occurrence of query qj depending on qi can be captured
by the set of successive request pairs Si,j = {(Hu(k),Hu(k+1)) | req(Hu(k)) =
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qi ∧ req(Hu(k+ 1)) = qj, 0 < k < len(Hu)}. Given a request history Hu, the
adversary can derive for the user u his dependency between any pair of queries
based on the sets Si,j. In this chapter we make use of Lidstone’s or additive
smoothing [MS99] to ensure that there is no dependency of degree zero for qj on
qi due to no occurrence of the pair (qi, qj) in the request history. Formally, let λ
be the smoothing parameter which is usually set to 1. The dependency Pru(qj |qi)
is calculated as follows:

Pru(qj |qi) =
|Si,j |+λ∑

qk∈Q |Si,k |+ |Q| ·λ
. (4.9)

A priori preference. There are many cases that a query does not depend on
its past queries. For example, users may issue an LBS query for the first time or
accidentally for an emergent need. In such cases, the best the adversary can do is
to apply users’ a priori preference to find the possible issuer.

We model the a priori preference of a user u as a distribution over the set of
queries indicating the probability of the user to issue a query. For query qi ∈ Q,
we denote by Pru(qi) the probability that user u issues the query qi when there is
no dependence on any previous queries. It is obvious that

∑
qi∈Q Pru(qi) = 1.

There are many sources of information reflecting users’ a priori preference. Users’
personal information, i.e., user profiles, have been discussed in Section 4.3 and
shown effective in assessing users’ preference on queries [SAV08, SAV11]. Moreover,
a user’s request history also reflects his preference. Thus, we estimate a user’s a
priori preference by combining his request history (Hu) and his user profile. Recall
that we calculate a distribution for each user over the set of queries indicating the
probability that the user issues a query based on his profile, i.e., Pru(qi | Pu).
Moreover, let Pru(qi | Hu) be the likelihood for user u to issue qi based on his
request history. We can use the frequency of the occurrence of the query in the
request history to estimate Pru(qi |Hu):

Pru(qi |Hu) =
|{Hu(k) |query(Hu(k)) = qi}|

len(Hu)
. (4.10)

The two distributions evaluate a user’s a priori preference on next queries from
two different perspectives. An agreement between them is needed. This is equiv-
alent to aggregate expert probability judgements [BW93]. We use linear opinion
pool aggregation which is empirically effective and has been widely applied in prac-
tice [AAB+00]. By assigning a weight to each distribution, i.e., wP and wH with
wP + wH = 1, we can calculate Pru(qi) as follows:

Pru(qi) = wP · pu(qi |Pu) + wH · Pru(qi |Hu). (4.11)

Remark. The way we model users’ query dependency and a priori preference has
some restrictions. For instance, we do not consider the influence of factors such as
the time when LBS requests are issued: usually a user’s behaviours on weekdays
are different from weekends [CPX14]. By distinguishing the request history at
different time periods, the impact of time can be taken into account. We have also
assumed that a query is only dependent on its immediate previous query. This
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restriction can be lifted by considering, e.g., the last k historical queries. However,
such dependency might not be as efficient and accurate as the probabilities of the
form of Pru(qi | qj). An interesting factor is the time intervals between successive
requests, which may present certain patterns as well. For instance, a user may
prefer to issue a request within a specific amount of time after the previous one.
This leads to various probabilities for a user to issue a query when he chooses
different issuing time. In Section 4.4.4, we take time intervals between requests as
an example to illustrate how to extend our model of query dependency to capture
more influencing factors.

4.4.3 Query privacy analysis

Recall that the purpose of the adversary is to calculate the distribution Pr(U =
u | 〈r, t, q〉, Ct) given a generalised request 〈r, t, q〉. In the adversary’s knowledge,
the observed request list (Ot) is the only dynamic context besides the spatial
distribution (i.e., Dt) which is inherently contained. For the sake of simplicity, we
use Pr(u | 〈r, t, q〉,Ot) for short to represent Pr(U = u | 〈r, t, q〉, Ct) whenever no
confusion exists.

The key of query privacy analysis is still to calculate Pru(q |Ct) (i.e., Pru(q |Ot) for
short). Due to the independence between users with respect to issuing requests,
a user’s requests have no influence on the next query of any other user. Thus,
Pru(q |Ot) = Pru(q |Ou,t).
The size ofOu,t is an important factor determining the accuracy and the complexity
of the calculation of Pru(q | Ou,t). Recall that Ou,t consists of all the observed
requests that may be issued by user u up to time t. Intuitively, the longerOu,t is, the
more computational overhead is required to obtain Pr(u | 〈r, t, q〉,Ot). Therefore,
it is not practical to consider the complete Ou,t. Instead, we fix a history window
which consists of the latest n observed requests of user u (n ≤ len(Ou,t)). Our
problem can thus be reformulated as to compute Prn(u | 〈r, t, q〉,Ot), indicating
that the distribution is based on the last n observed requests.

In Figure 4.3, we show an example of a history window which contains n observed
requests, 〈ri1 , ti1 , qi1〉, . . . , 〈rin , tin , qin〉 with tij > tij−1

(j > 1). Let `qj(Ou,t) be
the jth latest observed request in Ou,t, whose query is query(`qj(Ou,t)) = qij . In
the following discussion, we simply write `qj if Ou,t is clear from the context. It is
obvious that `q1 is the latest observed request of user u.

〈r, t, q〉 `q1 `q2 · · · `qn `qn+1 · · ·

〈ri1 , ti1 , qi1〉〈ri2 , ti2 , qi2〉 〈rin , tin , qin〉

Figure 4.3: A history window of n observed requests.

Once Prn(u | 〈r, t, q〉,Ot) is calculated, it is added into the adversary’s knowledge.
Therefore, for a past request 〈r′, t′, q′〉 in Ou,t (t′ < t), the adversary has Pr(u |
〈r′, t′, q′〉,O′t). In the sequel, we simply denote it as Pr(u | 〈r′, t′, q′〉) in cases
without confusion.
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A user’s latest request determines the probability distribution of his next query.
Whereas, it is uncertain which is the latest in the history window. To handle this
uncertainty, we distinguish three cases which are depicted in Figure 4.4.

1. User u has issued both the last request (i.e., `q1, see Figure 4.4(a)) and the
current request (i.e., 〈r, t, q〉). Considering query dependence, the probability
of this case is

Pru(u |`q1) · pu(q |qi1). (4.12)

2. User u has issued the current request 〈r, t, q〉 and his latest request is `qm
(1 < m ≤ n) (see Figure 4.4(b)). The probability of `qm being the latest
request is the production of the probability that the last m − 1 requests
are not issued by u and the probability that u has issued `qm, i.e., Pr(u |
`qm) ·∏m−1

j=1 (1− Pr(u | `qj)). Considering query dependence, the probability
of this case is

Pru(q |qim) · Pr(u |`qm) ·
m−1∏
j=1

(1− Pr(u |`qj)). (4.13)

3. User u did not issue any request in the history window (see Figure 4.4(c)).
In this case, we suppose that the user issued the current request according to
his a priori preference, i.e., Pru(q). Based on the probability that the user’s
latest request is outside of the history window as

∏n
j=1(1 − Pr(u | `qj)), the

probability of this case is

Pru(q) ·
n∏
j=1

(1− Pr(u |`qj)). (4.14)

We sum up the above three probabilities to compute the probability for user u in
region r at time t to issue q when a history window of size n is considered:

Prnu(q |Ou,t) = Pr(u |`q1) · Pru(q |query(`q1))

+
n∑

m=2

Pr(u |`qm) · Pru(q |query(`qm)) ·
m−1∏
j=1

(1− Pr(u |`qj))

+ Pru(q) ·
n∏
j=1

(1− Pr(u |`qj)).

(4.15)

We use the following example with n = 2 to show the calculation.

Example 4.2. Suppose the last two requests are 〈r′′, t′′, q′′〉 and 〈r′, t′, q′〉 with
t′′ < t′ < t in Ou,t. Let 〈r, t, q〉 be an observed request. Then for user u, the
probability that he issues the request is computed as follows:

Pr2
u(q |Ou,t) = Pru(q |q′) · Pr(u | 〈r′, t′, q′〉)

+
(
1− Pr(u | 〈r′, t′, q′〉)

)
· Pr(u | 〈r′′, t′′, q′′〉) · Pru(q |q′′)

+
(
1− Pr(u | 〈r′, t′, q′〉)

)
·
(
1− Pr(u | 〈r′′, t′′, q′′〉)

)
· Pru(q).
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〈r, t, q〉 `q1 `q2 · · · `qn `qn+1 · · ·

〈ri, ti, qi〉

Pru(q |qi1)

(a) The latest request is `q1.

〈r, t, q〉 `q1 · · · `qm · · · `qn `qn+1 · · ·

〈ri, ti, qi〉

Pru(q |qim)

(b) The latest request is `qm (1 < m ≤ n).

〈r, t, q〉 `q1 `q2 · · · `qn `qn+1 · · ·

〈ri, ti, qi〉

pu(q)

(c) The latest request is not in the history window.

Figure 4.4: The three cases.

4.4.4 Handling the time intervals between requests

In this section, we study a factor that has impact on query dependency: time
intervals between two successive requests.

It has been noted that not only the behaviours of a user follow certain patterns
but also the amount of time between behaviours. For instance, Giannotti et
al. [GNPP06, GNPP07] study and extract the pattern of the time intervals be-
tween events in sequential pattern mining. The idea is also adopted by Chen et
al. [CPX13] for constructing and comparing user mobility profiles. Similarly, with
respect to LBS requests, users can also have their preferences on the time intervals
between two successive requests.

Example 4.3. Consider a user who is in a city centre and wants to meet his
friends at a bar. He first sends an LBS request asking for nearby friends who can
potentially meet together. Then the user contacts those friends and discuss with
them about their availability, which takes about half an hour. Afterwards, he issues
another request for nearby bars.

In the above example, the time interval between the two requests should usually
be around 30 minutes. Suppose that the user sent another query two minutes after
the first query about nearby friends. Then this query is less likely to be a query on
nearby bars, compared to the situation when a query is issued about 30 minutes
later. Therefore, query dependency should vary according to when the next query
is issued.

To capture the influence of query issuing time, given two queries qi and qj, instead



62 Chapter 4 Protecting Query Privacy

of Pru(qj |qi) we calculate the distribution Pru(qj |qi, τ), where τ is the amount of
time after user u issued the last request with query qi. This distribution can be
calculated based on other distributions deduced from the following equation:

Pru(qj |qi, τ) =
Pru(τ |qj, qi) · Pru(qj, qi)

Pru(τ |qi) · Pru(qi)

=
Pru(τ |qj, qi)

Pru(τ |qi)
· Pru(qj |qi).

(4.16)

There are two new distributions in the above equation. The first one is Pru(τ | q)
indicating the probability that a user issues a successive query with time interval
τ after issuing query q ∈ Q. The other distribution is Pru(τ | qj, qi) meaning the
likelihood that if user u issues query qj after qi, then time interval between them
is τ .

The time interval between requests can be considered as a random variable T . The
above two distributions can thus be calculated based on the probability density
functions of T in different cases, i.e., f̂(T | q) and f̂(T | qj, qi). Let ε be the
granularity of time, e.g., a second or a minute. Then given a time interval τ , we
have the following calculation:

Pru(τ |qi) =

∫ τ+ε

τ

f̂(T |qi)dT ; (4.17)

Pru(τ |qj, qi) =

∫ τ+ε

τ

f̂(T |qj, qi)dT. (4.18)

The problem of density estimation based on observed data has been extensively
studied and some classic methods have been developed in practice, e.g., the kernel
smoothing estimator [DL01]. In our case, the key to estimate the density function
of T is to extract the corresponding set of observed samples of time intervals. Take
f̂(T | qj, qi) as an example. The samples of time intervals form a multi-set which
can be obtained from users’ request history, e.g., Hu. Recall that Si,j is the set
of pairs of successive requests whose queries are qi and qj, respectively. Then the
observed set of time intervals is

{t′ − t |(〈r, t, qi〉, 〈r′, t′, qj〉) ∈ Si,j}.

The calculation of user u’s a priori probability at time t to issue query q (i.e.,
Equation 4.15) can thus be extended to handle the query dependency with respect
to time intervals. The calculation is shown in Equation 4.19:

Prnu(q |Ou,t)
= Pr(u |`q1) · Pru(q |query(`q1), t− time(`q1))

+
n∑

m=2

Pr(u |`qm) · Pru(q |query(`qm), t− time(`qm)) ·
m−1∏
j=1

(1− Pr(u |`qj))

+ Pru(q) ·
n∏
j=1

(1− Pr(u |`qj)).

(4.19)
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4.5 Measuring Query Privacy

LBS requests are generalised to protect the issuers’ query privacy. The level of
query privacy offered by the generalisation algorithms should be quantified pre-
cisely. This is due to (i) the generalisation algorithm requires the evaluation so
as to improve their performance; (ii) LBS users need the quantification to express
their privacy requirements for their requests.

Besides k-anonymity, many privacy metrics have been proposed in the literature,
such as correctness-based [STBH11], estimation error-based [RMPADF13] and
feeling-based [XC09]. These metrics quantify query privacy from different per-
spectives. For instance, the feeling-based metric makes use of entropy to evaluate
the average uncertainty of the adversary to guess the issuer in a given scenario
(e.g., shopping mall) which is subsequently used as the privacy requirement of
users. Correctness-based metrics quantify privacy as the probability of the adver-
sary choosing the right issuer when he makes a single guess. Using our framework,
we can adopt the ideas of these metrics, which leads to a diverse and comprehen-
sive series of measurements for query privacy. In this section, we present three new
metrics on query privacy and formally define them using our framework.

Inspired by anonymity degrees defined by Reiter and Rubin [RR98], we come up
with the following two new privacy metrics: k-approximate beyond suspicion and
user specified innocence. Note that user specified innocence coincides with the
idea of correctness-based metrics. Furthermore, we propose a third metric by
using entropy.

k-approximate beyond suspicion. Beyond suspicion means from the attacker’s
viewpoint, the issuer cannot be more likely than other potential users in the
anonymity set to issue the query. In the context of LBSs, we need to find a
set of users in which users are the same likely to send a given query. This set is
taken as the anonymity set whose size determines the degree of users’ privacy as in
k-anonymity. Let AS : Q′ → 2U denote the anonymity set of a generalised request.
The issuer of query 〈u,whereis(u, t), t, q〉 is beyond suspicious with respect to the
corresponding generalised request 〈r, t, q〉 if and only if ∀u′ ∈ AS (〈r, t, q〉),

Pr(u | 〈r, t, q〉, Ct) = Pr(u′ | 〈r, t, q〉, Ct). (4.20)

In practice, the number of users with the same probability to send a query is usu-
ally small, which leads to a large generalised area with a fixed k. So we relax the
requirement to compute an anonymity set consisting of users with similar proba-
bilities instead of the exact same probability. Let ‖Pr1,Pr2‖ denote the difference
between two probabilities and ε be the pre-defined parameter describing the largest
difference allowed between similar probabilities.

Definition 4.2 (k-approximate beyond suspicion). Let 〈u,whereis(u, t), t, q〉 ∈ Q
be a query and 〈r, t, q〉 ∈ Q′ the corresponding generalised request. The issuer u is
k-approximate beyond suspicious if

| {u′ ∈ AS (〈r, t, q〉) | ‖Pr(u | 〈r, t, q〉, Ct),Pr(u′ | 〈r, t, q〉, Ct)‖ < ε | ≥ k.

Different from k-anonymity, the set of users that are k-approximate beyond sus-
picious is computed based on the spatial distribution of users with similar prob-
abilities rather than the original distribution involving all users. The users in an
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anonymity set have similar probabilities and the size of the anonymity set is larger
than k. Therefore, k-approximate beyond suspicion can be seen as a generalised
version of k-anonymity. If for a specific query q ∈ Q, any two users have the
same probability to issue it, then k-approximate beyond suspicion is equivalent to
k-anonymity. For short, we use k-ABS to denote k-approximate beyond suspicion
in the following discussion.

User specified innocence. Probable innocence and possible innocence are pro-
posed by Reiter and Rubin [RR98]. An issuer is probably innocent if from the
attacker’s view the issuer appears no more likely to be the originator of the query.
In other words, the probability of each user in the anonymity set to be issuer
should be less than 50%. Meantime, possible innocence requires the attacker not
be able to identify the issuer with a non-trivial probability. We extend these two
notions into a metric with user-specified probabilities (instead of restricting to 50%
or non-trivial probability which is not clearly defined). We call the new anonymity
metric user specified innocence where α ∈ [0, 1] is the specified probability given
by the issuer. Intuitively, for a query, an issuer is α-user specified innocent, if the
anonymiser generates the same region for any user in the region with the same
specified value α. In other words, in the generalised region, the most probable user
has a probability smaller than α. Recall that u`(r, t) denotes the set of users in
region r at time t. It is clear that the anonymity set consists of all users in the
generalised area.

Definition 4.3 (User specified innocence). Let α ∈ [0, 1], 〈u,whereis(u, t), t, q〉 ∈
Q be a query and 〈r, t, q〉 ∈ Q′ the corresponding generalised request. The issuer u
is α-user specified innocent if for all u′ ∈ u`(r, t),

Pr(u′ | 〈r, t, q〉, Ct)≤ α.

We abbreviate α-user specified innocence as α-USI.

An entropy-based metric. Serjantov and Danezis [SD03] define an anonymity
metric based on entropy and Dı́az et al. [DSCP03] provide a similar metric that
is normalised by the number of users in the anonymity set. The concept entropy
of a random variable X is defined as H(X) = −∑x∈X p(x) · log p(x) where X is
the domain (all possible values) of X. In our context, entropy can also be used to
describe the attacker’s uncertainty to identify the issuer of a generalised request.
Let variable U denote the issuer of query 〈r, t, q〉. Then the uncertainty of the
attacker can be expressed as

H(U | 〈r, t, q〉, Ct) = −
∑

u′∈u`(r,t)

Pr(u′ | 〈r, t, q〉, Ct) · log Pr(u′ | 〈r, t, q〉, Ct). (4.21)

For a given generalised request 〈r, t, q〉 and a given value β, we say that the issuer
is entropy-based anonymous with respect to the value β if all users in region r
can have r as the generalised region when issuing the same query and the entropy
H(U | 〈r, t, q〉, Ct) is not smaller than β.

Definition 4.4 (Entropy-based anonymity). Let β > 0, 〈u,whereis(u, t), t, q〉 ∈ Q
be a query and 〈r, t, q〉 ∈ Q′ the corresponding generalised request. The issuer u is
β-entropy based anonymous if

H(U | 〈r, t, q〉, Ct)≥ β.
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For short, we call β-entropy based anonymity β-EBA.

Remark. When users use these metrics to express their privacy requirements, at
least three elements should be provided: a metric, the values of the parameters
required by the chosen metric (e.g., k, α), and the values of the parameters used
to calculation posterior probabilities (e.g., the size of history windows).

In practice it is difficult and cumbersome for a user to give exact values to the
elements. First, all the metric values in requirements should be determined before
requests are generalised (i.e., ex-ante) but they are defined ex-post in nature in
the metric. Furthermore, users need to understand the meaning of each parameter
and the corresponding implication on privacy protection. To avoid this situation,
in this chapter we provide a list of privacy levels, e.g., from low to very high.
Each level corresponds to a setting of privacy parameters. For example, when
query dependency is considered, a user’s privacy requirement can be represented as
〈kABS, high〉, which is then transformed into 〈kABS, (10, 0.05), (5)〉. This ensures
that whenever a request is successfully generalised, the region contains 10 users
with similar posterior probabilities to the issuer’s, after taking into account the last
5 observed requests. Furthermore, the distance between two such users’ posterior
probabilities is bounded by 0.05. In practice, the transformation can be made
automatic and embedded in the request generalisation process. Note that the
existing works can also be adapted to determine the values, e.g., the feeling-based
privacy metric [XC09].

4.6 Generalisation Algorithms

In this section, we develop area generalisation algorithms to compute regions satis-
fying users’ privacy requirements expressed in the proposed metrics in Section 4.5.
As to find a region satisfying k-ABS is similar to compute a region satisfying k-
anonymity on a given spatial distribution, we design an algorithm for k-ABS by
combining the algorithm grid [MBFW07] with a clustering algorithm. For the other
metrics, we design a uniform algorithm based on dichotomicPoints [MBFW07].

4.6.1 An algorithm for k-ABS

To find an area that satisfies k-ABS is to guarantee that at least k users in the
area have similar posterior probabilities. This task can be divided into two main
steps. The first is to obtain the spatial distribution of the users who have similar
a priori probabilities to the issuer (e.g., Pru(q | Ct)). The second step is to run a
k-anonymity generalisation algorithm to find a region with at least k users based
on the spatial distribution computed at the first step.

The first step can be transformed to the clustering problem. Given q ∈ Q, we need
to cluster the users in U such that the users with similar a priori probabilities with
respect to issuing q are grouped together.

For the second step, we use algorithm grid by Mascetti et al. [MBFW07] as it
generates regular regions with smaller area compared to others. A two-dimensional
space is partitioned into a grid with bN

k
c cells each of which contains at least k
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users, where N denotes the number of users in U . A user’s position is represented
by two dimensions x and y. The algorithm grid consists of two steps. First, users
are ordered based on dimension x, and then on y. The ordered users are divided

into b
√

N
k
c blocks of consecutive users. The block with the issuer enters the second

step. The users in this block are then ordered first based on dimension y and then

x. These users are also partitioned into b
√

N
k
c blocks. Then the block with the

issuer is returned as the anonymity set. Details of the grid algorithm can be found
in [MBFW07].

Algorithm 4.1 describes our algorithm for k-ABS. In general, it gives the generalised
region as output which satisfies the user requirement k. Function cluster returns
the cluster of users with similar probabilities to that of u with respect to query q.
Then the function grid outputs a subset of sim users with at least k users who are
located in the rectangular region. The generalised region is computed by function
region.

Algorithm 4.1 A generalisation algorithm for k-ABS.

1: FUNCTION: kABS
2: INPUT: 〈u,whereis(u, t), t, q〉, dis(t), k,M(q) = {Pru′(q |Ct) |u′ ∈ U}
3: OUTPUT: A region r that satisfies k-ABS
4:

5: sim users :=cluster(u, q,M(q));
6: AS := grid(sim users , dis(t), k);
7: r := region(AS)

Note that the clustering algorithm does not have to run each time when there is
a request coming to the anonymiser. As long as the spatial distribution remains
static or does not have big changes, for the requests received during this period,
the anonymiser just executes the clustering algorithm once and returns the cluster
containing the issuer as output of function cluster. The choice of the clustering
algorithms has an impact on the performance of the generalisation algorithm. The
complexity of Algorithm 4.1 is the sum of those of the clustering algorithm imple-
mented and the gird algorithm (O(

√
kN log

√
kN) [MBFW07]).

4.6.2 An algorithm for α-USI and β-EBA

For privacy metrics α-USI and β-EBA, we design a uniform algorithm where users
can specify which metric to use. Recall that in grid, the number of cells is pre-
determined by k and the number of users. Thus it is not suitable to perform area
generalisation for metrics without a predefined number k. Instead we use algorithm
dichotomicPoints.

The execution of dichotomicPoints involves multiple iterations in each of which
users are split into two subsets. Similar to grid, positions are represented in two
dimensions x and y, and users are also ordered based on their positions. How-
ever, different from grid the orders between axes are determined by the shape of
intermediate regions rather than fixed beforehand. Specifically, if a region has a
longer projection on dimension x, then x is used as the first order to sort the users.
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Otherwise, y is used as the first order. Users are then ordered based on the values
of their positions on the first order axis and then the second order. Subsequently,
users are partitioned into two blocks with the same or similar number of users
along the first order axis. The block containing the issuer is taken into the next
iteration. This process is repeated until any of the two blocks contains less than 2k
users. This termination criterion is to ensure security against the outlier problem
(see Section 4.8).

However, in our uniform algorithm, instead of checking the number of users, we
take the satisfaction of users’ privacy requirement as the termination criterion, e.g.,
if all users in the two blocks have a probability smaller than α.

Given a request, our uniform algorithm executes three main steps to calculate
the generalised region. The first step is to update users’ a priori probabilities
(at time t) based on the latest contextual information Ct. This is done by the
procedure updatePriori. This step can be skipped if the evolution of the contextual
information does not affect the a priori probabilities, e.g., when only user profiles
are contained. In the second step, after determining the first order axis, we call
function updateAS to find a smaller anonymity set. It takes a set of users and
partitions them into two subsets along the first order axis, both of which should
satisfy the issuer’s privacy requirement and updateAS returns the one containing
the issuer as the updated anonymity set. When it is not possible to partition users
along the first order axis, i.e., one of the two blocks generalised by any partition
fails the issuer’s requirement, the second order axis will be tried. If both tries have
failed, updateAS simply returns the original set, which means no possible partition
can be made with respect to the privacy requirement. In this situation, the whole
algorithm terminates. Otherwise, the new set of users returned by updateAS is
taken into the next iteration. Last, if the request can be generalised, then we
should update the contextual information to include the generalised request, e.g.,
the observed request lists (i.e., Ot, Ou,t). This is done by calling the function
updateContext whose implementation is determined by the exploited contextual
information.

Algorithm 4.2 describes the uniform algorithm in detail. Function check(AS , req(qu))
calculates the normalised a priori probability of each user in AS . Then the func-
tion takes the resulted normalised probabilities as the users’ posterior probabilities
and check whether they satisfy the requirement req(qu). The boolean variable cont
is used to decide whether the algorithm should continue. It is set to false when
the set of users in U does not satisfy the requirement (line 7) or when AS cannot
be partitioned furthermore (line 30). The former case means that the requirement
req(qu) is set too high to be satisfied and the algorithm should immediately ter-
minate while the latter case indicates that the generalised region is found. The
anonymity set AS is represented as a two-dimensional array. After ordering users
in AS, AS[i] consists of all users whose positions have the same value on the first
order axis. We use len(order) to denote the size of AS in the dimension denoted
by order. For instance, in Figure 4.5(a), axis x is the first order axis and AS[3]
has three users with the same x values. Moreover, len(first) is 6.

The function updateAS shown in Algorithm 4.3 is critical for our algorithm unifor-
mDP. It takes as input a set of users and outputs a subset that satisfies the issuer’s
privacy requirement req(qu). It first orders the users and then divides them into
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Algorithm 4.2 The uniform generalisation algorithm for α-USI and β-EBA.

1: FUNCTION: uniformDP
2: INPUT: qu=〈u, `, t, q〉, req(qu), Ct
3: OUTPUT: Region r that satisfies req(qu)
4:

5: AS := U ;
6: updatePriori(AS ); \∗ for each u′ ∈ AS , calculate Pru(q |Ct). ∗\
7: cont := check(AS, req(qu));
8: if cont = false then
9: return ∅;

10: end if
11: while cont do
12: minx := minu′∈AS whereis(u′).x;
13: miny := minu′∈AS whereis(u′).y;
14: maxx := maxu′∈AS whereis(u′).x;
15: maxy := maxu′∈AS whereis(u′).y;
16: if (maxx −minx) ≥ (maxy −minx) then
17: first := x;
18: second := y;
19: else
20: first := y;
21: second := x;
22: end if
23: AS ′ = updateAS(AS , req(qu), first);
24: if AS ′ = AS then
25: AS ′=updateAS(AS , req(qu), second);
26: end if
27: if AS ′ 6= AS then
28: cont := true;
29: else
30: cont := false;
31: end if
32: end while
33:

34: updateContext(Ct);
35: return region(AS );
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Algorithm 4.3 The function updateAS.

1: FUNCTION: updateAS
2: INPUT: AS, req(qu), order
3: OUTPUT: AS ′ ⊆ AS that contains u and satisfies req(qu)
4:

5: AS := reorder(AS , order);
6: i := mid(AS , order);
7: if check(left(i), req(qu)) ∧ check(right(i), req(qu)) then
8: AS := part(i, u);
9: else

10: found := false;
11: j := 0;
12: while j ≤ len(order) ∧ ¬found do
13: if check(left(j), req(qu)) ∧ check(right(j), req(qu)) then
14: found := true;
15: AS := part(j, u);
16: else
17: j := j + 1;
18: end if
19: end while
20: end if
21: return AS ;

two subsets with the same number of users along the first order axis (indicated by
the variable order). This operation is implemented by the function mid(AS , order)
which returns the middle user’s index in the first dimension of AS . If both of the
two subsets satisfy req(qu), then the one containing the issuer is returned (imple-
mented by function part(i, u)). Otherwise, an iterative process is started. In jth
iteration, the users are partitioned into two sets one of which contains the users
in AS[1], . . . , AS[j] (denoted by left(j)) and the other contains the rest (denoted
by right(j)). These two sets are checked against the privacy requirement req(qu).
If both left(j) and right(j) satisfy req(qu), the one with issuer u is returned by
part(j, u). If there are no partitions feasible after len(order) iterations, the original
set of users is returned.

An example execution of Algorithm 4.2 is shown in Figure 4.5. The issuer is
represented as a black dot. In Figure 4.5(a) the users are first partitioned into two
parts from the middle. Assume both parts satisfy req(qu), so the set b1 is returned
as the anonymity set AS for the next iteration. As b1’s projection on axis y is
longer, the first order is set to axis y (Figure 4.5(b)). If after dividing the users
from the middle, the set b2 does not satisfy req(qu). Thus, the users are partitioned
from AS[1] to AS[4] (Figure 4.5(c)). Suppose no partitions are feasible. The first
order axis is then switched to axis x. Function updateAS is called again to find a
partition along axis x (Figure 4.5(d)).

We can see Algorithm 4.2 iterates for a number of times. In each iteration, some
users are removed from the previous anonymity set. Operations such as partition
and requirement check are time-linear in the size of the anonymity set. The number
of iterations is logarithmic in the number of the users. So in the worst case, the
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Figure 4.5: An example execution of our algorithm uniformDP.

time complexity of Algorithm 4.2 is O(N logN), where N denotes the number of
all users in U . The correctness of Algorithm 4.2 is stated as Thm. 4.1.

Theorem 4.1. For any query 〈u, `, t, q〉, Algorithm 4.2 computes a generalised
region that satisfies the issuer u’s privacy requirement req(〈u,whereis(u, t), t, q〉).

Proof. By Definition 4.3 and Definition 4.4, Algorithm 4.2 computes a region r
for a query 〈u,whereis(u, t), t, q〉 that satisfies a constraint related to the issuer’s
posterior probability and the entropy about the issuer. We take α-USI as an
example to show the correctness of our algorithm and the proofs of the other two
are analogous.

By Definition 4.3, we have to prove the posterior probability of each user u′ ∈
u`(r, t) is smaller than α, i.e., Pr(u′ | 〈r, t, q〉, Ct) ≤ α. According to Equation 4.2
and Equation 4.3, we need to prove for any u′ ∈ u`(r, t) (1) f(〈u′,whereis(u′, t), t, q〉) =
〈r, t, q〉 and (2) his normalised a priori probability over those of all users in region
r should be smaller than α, i.e.,

Pr(q |u′, Ct)∑
u′′∈u`(r,t) Pr(q |u′′, Ct)

≤ α. (4.22)

Let u′ be any user in the generalised region r of Algorithm 4.2. Let AS j and AS ′j
be the values of AS in the jth iteration of Algorithm 4.2 of u and u′, respectively.
To prove (1), we show that ASj = AS ′j by induction on the number of iterations,
i.e., j.

Induction basis: Initially, we suppose that U satisfied the requirement. Then
we have AS 1 = AS ′1.
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Induction step: Assume at jth iteration AS j = AS ′j. We have to show that
the algorithm either terminates with AS j and AS ′j, or enters the next itera-
tion with AS j+1 = AS ′j+1. The equality that AS j = AS ′j is followed by that
mid(AS j, order) = mid(AS ′j, order). There are three possible executions.

Case 1: if left(i) and right(i) of AS j and AS ′j satisfy the requirements (line
7 of Algorithm 4.3), the part containing the issuer is returned. Thus AS j+1

contains u as well as all other users in u`(r, t), including u′. Thus, AS j+1 =
AS ′j+1.

Case 2: if the check at line 7 of Algorithm 4.3 fails, then the algorithm
switches to find from the beginning the first feasible partition. Suppose the
partition is made at the position x for AS j. Then x is also the right position
for AS ′j as AS j = AS ′j. Because of the similar reason in the previous possible
execution, the same subset is set to AS j+1 and AS ′j+1. Thus, AS j+1 = AS ′j+1.

Case 3: if there are no possible partitions, Algorithm 4.3 returns AS j+1 and
AS ′j+1 in both cases. Then the first order is changed and Algorithm 4.3 is
called again. If one of the first two execution is taken, with the analysis
above, we have AS j+1 = AS ′j+1. Otherwise, Algorithm 4.2 terminates with
region(AS j) and region(AS ′j) which are equal.

We proceed with (2). Recall that the function check(AS , req(qu)) returns true for
metric α-USI only if Equation 4.22 holds for each user in AS because it takes users’
normalised a priori probabilities as their posterior probabilities. At the line 5 of
Algorithm 4.2, we set AS to the original user set U and the algorithm continues only
if the function check(U , req(qu) returns true. Otherwise, it is impossible to return
a region satisfying the requirement. The set AS is only reassigned to another set
when a partition is made (line 8 or line 15 in Algorithm 4.3). For the two sets by
the partition check all returns true and the one containing the issuer is assigned to
AS . Thus, it is guaranteed that for each user u′ ∈ u`(r, t), Equation 4.22 holds.

4.7 Experimental Results

We conduct experiments to evaluate our work from two aspects. First, we test the
effectiveness of our framework in terms of the changes of issuers’ posterior probabil-
ities. In this way, we illustrate that users’ personal profiles and request histories do
cause privacy risks. Second, we implement our algorithms presented in Section 4.6
and with the experimental results we show and compare the characteristics of our
new metrics proposed in Section 4.5.

To perform the experiments, we construct two sample datasets to simulate the
spatial distributions of a collection of mobile users (mobility dataset) and their
issued requests during movements (request dataset). We generate the mobility
dataset using the moving object generator [Bri02] and it consists of the trajectories
of 38, 500 users in a period with 50 discrete time points. We compose a series of
request datasets corresponding to different numbers of active users. A user is called
active if he subscribes certain LBSs and would issue requests during the period.
Given a number of active users, we simulate a trace of requests for each of them
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according to his query dependency and his a priori preference on queries. Note
that throughout the experiments, we do not distinguish users’ a priori preferences
from the a priori probabilities computed based on user profiles. This is because
they are both static and a priori probabilities have already been considered in the
calculation of a priori preferences. We assume 6 types of queries for users to choose.
This makes users’ a priori preference around 17% on average. As we mentioned,
our purpose is to evaluate the privacy risk incurred by contextual information and
the effectiveness of the algorithms. Thus we assume that users’ query dependency
is available and generate it by a random procedure. Users’ a priori preference is
assessed in a similar way.

Our simulation is implemented with Java and run on a Linux laptop with 2.67 Ghz
Intel Core (TM) and 4GB memory.

4.7.1 Impact of contextual information

We validate the effectiveness of our framework by checking if it can increase the like-
lihood of the adversary to correctly identify issuers by obtaining more contextual
information. Given a generalised request, we can use the issuer’s posterior prob-
ability as the measurement of the correctness of the adversary’s attack on query
privacy [STBH11]. If a type of contextual information can help breach users’ query
privacy, then issuers will have larger posterior probabilities than those computed
without the information on average. The main idea of our validation is to check
whether the framework can capture this increase.

In our experiments, we construct three attack scenarios where k-anonymity spa-
tial generalisation is deployed. In the first scenario, the adversary only learns the
inherent contextual information while in the other two scenarios, users’ a priori
preferences and request histories are added sequentially to the adversary’s knowl-
edge. We denote the corresponding contextual information by Cbasict , Cpft and Cdept ,
respectively.

We define correctness increase ratio (CIR), and use it to quantify the increase
of issuers’ posterior probabilities when more contextual information is explored.
Specifically, it is computed as the ratio of the increase over the posterior probabili-
ties calculated without considering the contextual information. In this chapter, we
consider two CIRs, i.e., ∆ppf and ∆pdep. For a generalised request 〈r, t, q〉 issued
by u, they can be calculated as follows:

∆ppf =
Pr(u | 〈r, t, q〉, Cpft )− Pr(u | 〈r, t, q〉, Cbasict )

Pr(u | 〈r, t, q〉, Cbasict )
(4.23)

where

Pr(u | 〈r, t, q〉, Cbasict ) =
1

|{u ∈ U |whereis(u, t) ∈ r}|, (4.24)

and similarly,

∆pdep =
Pr(u | 〈r, t, q〉, Cdept )− Pr(u | 〈r, t, q〉, Cpft )

Pr(u | 〈r, t, q〉, Cpft )
. (4.25)

In Figure 4.6, we show how the correctness increase ratio changes with issuers’ a
priori preferences and the dependency between the last two queries. With respect
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Figure 4.6: Impact of user profiles and query dependency on ∆p.

to query dependency, we also illustrate the impact of the history window sizes
(see Figure 4.6(b)). The results are obtained by a simulation with 8, 000 requests.
We divide the requests into clusters according to the a priori preference or query
dependency of the issuers when sending the requests. Specifically, we set pq = 0.05·
cid where cid (1 ≤ cid ≤ 20) is the identifier of a cluster to be the maximum value
of issuers’ a priori preference allowed in the cluster cid . For example, if pq = 0.15,
the issuer of any request in the cluster has an a priori preference between 0.1 and
0.15 with respect to the issued query. Similarly, we define Prqi|qi−1

= 0.05 · cid to
represent the maximum query dependency allowed in cluster cid when the issuers
issue the queries. Figure 4.6 depicts the average ∆ppf and ∆pdep of the generalised
requests in each cluster satisfying k-anonymity with k = 10 and with 2.6% of the
users being active.

We observe that the curves in Figure 4.6(a) and Figure 4.6(b) follow two similar
patterns. First, the CIR increases monotonically when ρ grows. Second, the av-
erage correctness increase ratio reaches 0 when the a priori preferences and query
dependency fall into the interval between 0.15 and 0.2. This is due to the fact that
users’ average a priori preference on each type of queries (pu(qi)) is around 17%.
With regard to ∆ppf , the issuer with an a priori preference of 0.17 will eliminate
his difference from the other users in the same region as the average of their a
priori preferences is also close to 0.17. For ∆pdep, the little difference between
Pru(qi |qi−1) and Pru(qi) eliminates the influence of query dependency.

We can see that ∆pdep is also sensitive to the size of history windows in Fig-
ure 4.6(b). Larger history windows lead to bigger correctness increase ratios when
the dependency between the last two queries (i.e., Pru(qi | qi−1)) is bigger than
0.17. For instance, for the requests with query dependency between 0.3 and 0.4,
the average value of ∆pdep increases by 0.051, 0.036, 0.031 when n grows from 1 to
2, from 2 to 3, from 3 to 4, respectively. By more experiments with larger n, we
can show that bigger window sizes do not necessarily lead to more privacy leakage.
For instance, when n is set to 5, the average increase of CIR is 0.029 which is
almost the same as the case of n = 4.

From the above discussion, we can conclude that if a user issues a query with a large
preference value or high dependency on the last queries, he will have less privacy if
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Figure 4.7: ∆p vs. #active users and n.

the adversary adopts our framework. This also shows that our framework is useful
to increase the likelihood of attackers to correctly learn the real issuers although
we have negative CIRs when users issue queries independently from their profiles
or last queries. This is because in most of the cases, users’ behaviour should be
consistent with their profiles and past habits.

Beside the size of history windows, the number of active users has impact on
∆pdep as well. It decreases when there are more active users issuing LBS requests,
but the influence becomes smaller with larger history windows. Figure 4.7 shows
that the average ∆pdep decreases by 30%, 24% 19% and 18% for n = 1, 2, 3 and
4, respectively, when the percentage of active users increases from 2.5% to 7.5%.
This is because more active users lead to more observed requests added into users’
observed request traces and mixed with users’ real requests, while bigger history
windows have larger chances to include users’ real requests.

4.7.2 Effectiveness of the new privacy metrics

In this section we discuss the features of our privacy metrics in terms of (1) area
of the generalised regions and (2) issuers’ posterior probabilities. To compare the
metrics presented in Section 4.5, we define a normalised value norm: norm=k for
query-dependent k-ABS while norm=2β for β-EBA and norm = 1

α
for α-USI. In

the following experiments, we take Cdept as the knowledge of the adversary due to
its large coverage of contextual information.

Experiment setting. We set the percentage of active users to 2.6% and use the
first 1, 000 requests after 8, 000 requests have been observed. Each number shown
in the following discussion is an average of the 1, 000 samples.

Recall that in the generalisation algorithm kABS (see Algorithm 4.1) we make use
of a clustering algorithm to calculate the set of users with similar a priori prob-
abilities. Clustering has been extensively studied in the literature and a number
of clustering algorithms have been proposed to satisfy different properties, e.g.,
density-based and distribution-based [HK00]. In the case of generalising LBS re-
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quests, the chosen clustering algorithm should satisfy at least two properties. First,
the clustering algorithm should be efficient because LBS responses need to be sent
back to uses in real time. Second, we need a strict partitioning clustering algorithm
as each user should belong to exact one cluster.

In the implementation of kABS, we use the K-means clustering algorithm [Mac67].
This is mainly due to its linear time complexity with the number of users. Its
main idea is to choose K centroids, one for each cluster. In our algorithm, the K
centroids are selected randomly among the users. Then each user is associated to
the nearest centroid according the difference between their a priori probabilities,
which results in K clusters. The centroids of these K clusters are updated as the
new centroids based on which all users re-calculate their centroids to associate. The
process continues until the centroids remain unchanged between two consecutive
iterations. In our case, K is selected and fixed by the anonymiser. In fact, it
defines the ‘similarity’ in the definition of k-ABS in Section 4.5, i.e., ε. The larger
K is, the smaller ε becomes.

In order to determine a proper value of K, we run our kABS algorithm by assigning
different values to K. In Figure 4.8, we show the changes of the average distance
between any two users’ a priori probabilities in the calculated clusters and the area
of the generalised regions along with K. It can be seen that a larger K enables
users to have closer a priori probabilities but leads to larger generalised areas. In
addition, the area increases faster than the decrease of the distance. Considering
the relatively small generalised regions and the similarity between users in the
resulted clusters, we set K to 10 in the following experiments.
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Figure 4.8: The impact of K.

Impact of history window sizes. From the above discussion, we learn that
users will have less query privacy when larger history windows are used in our
framework. Figure 4.9 shows how issuers’ posterior probabilities and the area of
generalised regions change according to the normalised value norm and the history
window size n. Note that when n = 0, the generalisation algorithm only considers
users’ a priori preference.

For k-ABS, issuers’ posterior probabilities are about 1
k

as the generalised regions
have at least k users with similar posterior probabilities. However, after taking
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Figure 4.9: Impact of history window size n.

a closer look, we can find that a larger n leads to a larger distance to 1
k
. This

is because larger history windows make the issuers’ posterior probabilities more
different from the others, which in turn makes it more difficult to find users with
similar posterior probabilities. This also explains why the generalised regions be-
come larger with larger history windows as shown in Figure 4.9(b).

For α-USI, issuers’ posterior probabilities are always below 1
norm

, which satisfies
its definition (see Figure 4.9(c)). Moreover, issuers’ posterior probabilities become
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larger when more historical observed requests are explored. However, the area of
generalised regions differs little between different history window sizes (see Fig-
ure 4.9(d)). This is because the increase of the posterior probabilities is too small
to initiate the computation of a new region.

For β-EBA, issuers’ posterior probabilities can remain almost unchanged in some
segments of the curves. The projection of the middle point of such a segment on
axis norm has an logarithm of integer, such as 16 and 32 (see in Figure 4.9(e)).
Similar to k-ABS, larger history windows increase the issuers’ posterior probabili-
ties, which leads to smaller entropy. This can be seen from Figure 4.9(f) where the
generalised regions of larger n double their sizes earlier than the regions of smaller
n.

We can also observe from Figure 4.9 that for the same value of norm, although
the metric β-EBA cannot always ensure issuers’ posterior probabilities as close to
1
k

as k-ABS, the area of generalised regions is about ten times smaller than that of
k-ABS and only half of that of α-USI. Since bigger regions lead to worse quality
of service, this indicates that a balance between privacy protection and quality of
services needs to be considered in practice.

Impact of query dependency. The protection of issuers’ privacy varies with
issuers’ query dependency. Figure 4.10 plots posterior probabilities and average
area of generalised regions for issuers with different levels of query dependency. The
results are collected with the history window size n=3. Our general observation is
that issuers with larger dependencies have bigger posterior probabilities and larger
generalised regions.

Table 4.2 summarises the corresponding average increases (in percentage) for is-
suers with high (≥ 0.45) and medium (0.25− 0.45) dependencies, when compared
with those with low dependencies (≤ 0.25). The table shows that posterior prob-
abilities of the issuers, when β-EBA is used, are more sensitive to the degree of
dependency (43.1% increase for high-level dependency), while the generalised re-
gions are more sensitive to dependency (62.9% increase for high-level dependency)
when k-ABS is used.

Table 4.2: Increases of posterior probabilities and area of generalised regions.
k-ABS β-EBA α-USI

medium high medium high medium high

Posterior Prob. 2.1% 9.5% 11.1% 43.1% 11.9% 40.0%
Avg Area 21.3% 62.9% 23.3% 30.1% 10.7% 19.1%

Performance of the proposed generalisation algorithm. In Figure 4.11, we
present the performance of our generalisation algorithms to deal with users’ various
requirements. For the sake of comparison, we show in Figure 4.11 the performance
of the algorithms when contextual information is set to Cpft and Cdept , respectively.
The computation time recorded is the average time per request based on executions
with the same 100 requests.

As discussed in Section 4.6, it is necessary to update the status of each user when
dynamic contextual information is explored. For instance, observed request traces
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Figure 4.10: Impact of dependency Pr(qi |qi−1).

and the corresponding posterior probabilities have to be updated for each request
when Cdept is used. This is time-consuming, especially when the initial region is
huge and contains a large number of users. In our implementation, we reduce
the computation overhead by restricting the size of initial regions. The number of
users located in an initial region is fixed as ten times as many as what users require
for. For instance, for k-ABS, if k=10, then we first call k-anonymity generalisation
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algorithm to get an initial region with 100 users. As the generalisation algorithm
is deterministic, which means for any user in a generalised region, it always returns
the same region. Thus, our implementation does not have the “outlier” problem
[MBFW07].
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Figure 4.11: Average computational time (history window n = 3).

From Figure 4.11, we can see that the computation time increases as norm gets
bigger. This is because the algorithm has to consider larger initial regions and
more users are involved in the calculation of dependency-based posterior proba-
bilities. For β-EBA and α-USI, about 20ms are needed when norm=50, while
k-ABS requires more time (around 35ms) as the K-means clustering algorithm is
executed first to find similar users. When compared to the original algorithms, the
computation time increases by about two times for β-EBA and α-USI while it is
about four times for k-ABS when norm=50.

There are some ways to improve the efficiency of our implementation. For in-
stance, we can use better data structures to maintain users’ status. We can expect
that with a powerful anonymiser our algorithms are efficient enough to handle
concurrent requests and give real-time responses.

4.8 Related Work

In this section, we investigate the state-of-the-art about query privacy analysis on
contextual information and area generalisation algorithms.

4.8.1 Query privacy and request generalisation

Protecting users’ query privacy is essentially to prevent the adversary from learning
their issued queries. A number of techniques have been proposed in the literature
to protect query privacy and they can be classified into three main groups: dummy-
based [KYS05, YJHL08], generalisation [GG03, BLPW08, XKP09, WL09, PL11]
and cryptographic transformation [GKK+08]. The dummy-based methods forge
dummy requests with different queries such that the real queries are hidden in the
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dummy ones. The idea of generalisation is to hide the real issuer in a number of
users such that he is indistinguishable from the others from the view of the adver-
sary. The concept of k-anonymity has been extensively studied in this group. In
the methods exploring cryptographic transformation, users’ queries are encrypted
and remain secret for LBS providers so as to offer strong privacy protection. All
of these methods introduce extra processing overhead. For instance, Ghinita et
al. [GKK+08] build a protocol based on computational private information re-
trieval (cPIR) : their protocol requires one extra round of communication between
users and LBS providers and imposes additional computation overheads on both
sides due to the encryption of queries and decryption of responses.

The notion of k-anonymity was originally proposed by Samarati and Sweeney in
the field of database privacy [Sam01]. The idea of k-anonymity is to guarantee that
a database entry’s identifier is indistinguishable from other k−1 entries. However,
this method does not always work. For instance, the fact that an HIV carrier is
hidden in k carriers does not protect his infection of the virus. Further research
has been done to fix this problem [LLV07]. In the context of privacy in LBSs,
k-anonymity was first studied by Gruteser and Grunwald [GG03]. Its purpose is
to compute a region containing at least other k−1 users (i.e., area generalisation)
and replace the issuer’s location with it. Because of its simplicity, k-anonymity has
been studied and refined in many ways. For instance, Tan et al. define information
leakage to measure the amount of revealed location information in spatial cloaking,
which quantifies the balance between privacy and performance [TLM09]. Xue et
al. [XKP09] introduce the concept of location diversity to ensure generalised re-
gions to contain at least ` semantic locations (e.g., schools). Many generalisation
methods have been proposed to provide protection satisfying `-diversity [BLPW08].
However, deeper understanding of k-anonymity reveals its drawbacks in preserving
location privacy. Shokri et al. analyse the effectiveness of k-anonymity in pro-
tecting location privacy in different scenarios in terms of adversaries’ background
information [STD+10], i.e., real-time location information, statistical information
and no information. They show its flaws which the adversary can exploit to infer
users’ current locations and conclude that spatial cloaking (e.g., k-anonymity) is
only effective for protecting query privacy. As a consequence, in this work we use
area generalisation only to protect query privacy.

4.8.2 Context-aware privacy analysis

The effectiveness of area generalisation can be compromised when the adversary
has access to auxiliary contextual information. In fact, area generalisation guaran-
teeing k-anonymity is proposed to protect query privacy against the adversary who
has users’ real-time locations in their knowledge. Mascetti et al. [MBFW07] iden-
tify the ‘outlier’ attack on some generalisation algorithms if the adversary learns
their implementations. k-anonymity is violated because the algorithms cannot en-
sure that all the potential issuers have the same generalised area as the real issuer.
Shokri et al. [STBH11] use mobility patterns modelled as Markov chains of loca-
tion transition and propose a probabilistic framework to de-anonymise generalised
traces. Personal information (e.g., gender, job, salary) has been becoming more
accessible on the Internet, e.g., due to online social networks such as Facebook and
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LinkedIn, and can also serve as a type of contextual information which we call user
profiles. Shin et al. [SAV08, SAV11] identify the concern of query privacy caused
by user profiles and propose metrics based on k-anonymity by restricting similarity
levels between users in terms of their profiles.

The contextual information (e.g., user profiles and generalisation algorithms) men-
tioned above is irrelevant to users’ past LBS requests. Actually LBS requests can
also be explored by the adversary to refine his guess on the issuers. Two types
of LBS requests have been studied in the literature: associated requests [CZBP06,
BMW+09, DRRW10a] and recurrent requests [RPBJ09]. Requests are associated
once they are recognised as issued by a same (anonymous) user, which can be
achieved for example by multi-target tracking techniques [HGXA07] or proba-
bilistic reasoning [STBH11]. By calculating the intersection of all associated re-
quests’ anonymity sets the adversary can reduce the number of possible issuers.
To handle such privacy threats, Bettini et al. [CZBP06, BMW+09] introduce his-
torical k-anonymity, which is then extended for continuous LBSs by Dewri et
al. [DRRW10a]. Historical k-anonymity aims to guarantee that associated requests
share at least k fixed users in the generalised regions. Requests are recurrent when
they are issued at the same time. When multiple recurrent requests contain the
same query and region, the protection of query privacy offered by spatial cloaking
(e.g., k-anonymity) will be degraded [RPBJ09]. For instance, in the extreme case,
when all users in a region send an identical query, no user has query privacy. Riboni
et al. [RPBJ09] identify the threat and make use of t-closeness to guarantee that
the distance between the distribution over the queries from an issuer’s generalised
region and that of the whole region is below a threshold. Dewri et al. [DRRW10b]
identify a scenario in continuous LBSs which has both associated and recurrent
requests. They propose m-invariance to ensure that in addition to k fixed users
shared by the associated requests, at least m different queries are generated from
each generalised region.

4.8.3 Area generalisation algorithms

The first generalisation algorithm called IntervalCloaking is designed by Gruteser
and Grunwald [GG03]. Their idea is to partition a region into quadrants with
equal area. If the quadrant where the issuer is located contains less than k users,
then the original region is returned. Otherwise, the quadrant with the issuer is
taken as input for the next iteration. The algorithm CliqueCloak [GL08] is proposed
by Gedik and Liu in which regions are generalised based on the users who have
issued queries rather than all potential issuers. The major improvement is that this
algorithm enables users to specify their personal privacy requirements by choosing
different values for k. Mokbel et al. [MCA07, CMA09] design the algorithm Casper
which employs a quadtree to store the two-dimensional space. The root node
represents the whole area and each of other nodes represent a quadrant region
of its parent node. The generalisation algorithm starts from the leaf node which
contains the issuer and iteratively traverses backwards to the root until a region
with more than k users is found. Another algorithm nnASR [KGMP07] simply
finds the nearest k users to the issuer and returns the region containing these users
as the anonymising spatial region.
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The above algorithms suffer from a particular attack called “outlier problem” [Ber05],
where the attackers have the generalisation algorithms and users’ spatial distribu-
tion as part of their knowledge. An algorithm against this attack needs to ensure
that for any user in the anonymity set it returns the same region. Kalnis et al.
design the first algorithm called hilbASR that does not suffer from the outlier prob-
lem [KGMP07]. The algorithm exploits the Hilbert space filling curve to store
users in a total order based on their locations. The curve is then partitioned into
blocks with k users. The block with the issuer is returned as the generalised region.
Mascetti et al. propose two algorithms, dichotomicPoints and grid, which are also
secure against the outlier problem [MBFW07]. The former iteratively partitions
the region into two blocks until less than 2k users are located in the region while
the latter draws a grid over the two-dimensional space so that each cell contains
k users and returns the cell with the issuer. Because of the simplicity of imple-
mentation and the relatively smaller area of the generalised regions, we adopt and
extend these two algorithms in our algorithm design (see Section 4.6). The area of
generalised regions is usually used to measure the quality of the LBS response, as
smaller regions lead to more accurate results and less communication overhead.

4.9 Conclusion

In this chapter, we have developed a formal framework for query privacy analysis
exploring contextual information. In the framework, we systematically categorise
contextual information and propose a probabilistic way to model the adversary’s
attacks on query privacy. Specifically, we use a posterior probability distribution
to describe the knowledge learnt by the adversary about the issuers after the anal-
ysis. This interpretation allows us to define new metrics for query privacy from
different perspectives, which also facilitate users to flexibly and precisely express
their privacy requirement.

We took two types of contextual information to exemplify the application of our
framework. One application focuses on user profiles while the other one is further
extended with contextual information: query dependency, which has not been
investigated in the literature. To protect query privacy we have designed new
spatial generalisation algorithms to generalise requests which can satisfy users’
privacy requirements in various metrics.

Through experiments, we have shown that (1) our framework is effective to increase
the correctness of the adversary’s guess on real issuers; (2) the newly identified
query dependency does cause privacy leakage about users’ queries; (3) the proposed
metrics are effective to protect users’ query privacy; and (4) the generalisation
algorithms are efficient.

For experiments, we made use of simulated datasets about users’ movements and
request traces due to the lack of real-life data with respect to LBSs. This causes
some difficulties for us to test the impact of time intervals between requests. As
part of our future work, we want to check whether we can collect and use users’
logs in Geo-social networks in order to have a more comprehensive validation of
our work.



Part III

Location Privacy

83





5

Activity-targeted Location Privacy Attack

In the previous chapter, we discussed the threat to query privacy by assuming a
strong adversary who knows in real time the locations of users. With such an
adversary, we studied the worst-case breach of query privacy when users’ locations
are public. An example of a public location is the home address of a user, where
he usually returns at the end of the day. When users’ locations are not accessible,
the adversary has to learn their whereabouts before applying our methods given
in Chapter 4. Meanwhile, users’ whereabouts themselves help the adversary to
further peek users’ personal life.

This chapter is about location privacy. We study a new threat on location privacy
that reveals where a users has stayed and how much time he has spent in these
places. From such information, attackers can discover a user’s activities, for ex-
ample, visiting a doctor, doing shopping, or being at work. Compared to existing
works in the literature, our attack relies only on the locations that users sponta-
neously send out with their LBS requests. Our attack works even if LBS requests
are protected by existing privacy preserving methods.

5.1 Introduction

It has been widely recognised that the exposure of locations can threaten users’
privacy [LFK05, Kru07]. To fight against such threat, several location privacy
preserving methods (LPPM) [LOYK11, WXH+12] have been proposed in the past
few years. In general, the idea of an LPPM is to break the link between users and
their locations. For instance, An LPPM can anonymise our identities and obfuscate
our locations by replacing them with pseudonyms and regions, respectively.

Meanwhile, breaching location privacy has also achieved interesting results [MBB13,
CFP12]. These results show that in spite of the protection of existing LPPMs, it
is still possible for attackers to associate users to their locations in some cases
with relatively high confidence. For instance, Shokri et al. [STBH11] implement
a tracking attack using user mobility profiles which can calculate the most likely
locations of a user at selected time points. While existing attacks in the literature
mostly target at deriving ‘where users actually went’, recent research requires us
to revisit this objective from the view of practical attackers. Namely, what the
adversary is really curious about with respect to location privacy is what users
did during their movement, i.e., their activities [LOYK11]. For instance, receiving
medical treatments reveals a user’s poor health condition more precisely than just
a visit to a hospital. Therefore, users are exposed to a new threat which targets
at their activity privacy .

85
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Normally, we need at least three elements to describe user’s activities: where the
user performed activities, what the activities are and when the user started and
when the user finished them. To better represent these elements, two new concepts
are introduced: points of interest (PoI) and location semantics. A PoI represents
a place where a user may stay and perform activities while location semantics (e.g.,
hospital, school) correspond to PoIs and indicate the possible activities that a user
can perform [XZLX10, CPX13] in a PoI. With these notions, the activities of a
student at the University of Luxembourg in a day can be formulated as follows:

Dominican, residence, 0am-8am
bus−−→ Campus Kirchberg , school, 9am-5pm

walking−−−−→ Auchan, supermarket, 6pm-7pm
bus−−→ Dominican, residence, 8pm- -.

This trajectory says that the student left his residence located at Dominican at
8am and took a bus to Campus Kirchberg where he had courses from 9am to 5pm.
Then he walked to Auchan for shopping before going home by bus.

There are many works proposed to infer users’ activities based on their move-
ments [XDZ09, HLY10, YCP+11, PSR+13, YCP+13]. Xie et al. [XDZ09] propose
a method which derives users’ activities by jointly considering users’ visited PoIs
and their duration time at each PoI by a mapping function. Huang et al. [HLY10]
present a similar idea but differentiate the attractiveness of PoIs in terms of time
periods of a day and their functionalities. Yan et al. [YCP+13] propose a platform
to compute a user’s semantic trajectory which contains all the required elements.
A user’s raw movement records are first divided into segments (also called episodes)
according to the features of his movement, e.g., velocity. Then they enrich each
episode where he stayed with a PoI which is subsequently annotated by a list of
location semantic tags. As an episode may cover multiple PoIs, especially in urban
areas, an algorithm is proposed to directly compute the semantic tags instead.

The existing works share a common assumption that users’ raw movement records
are accessible. In other words, users are assumed to expose their precise real-time
locations with a high frequency. However, in general LBSs such as check-ins on
Twitter and Foursquare, due to privacy concern, users will use LPPMs to modify
their locations and identities before exposing them to outsiders. In addition, LBSs
are requested sparsely in time. In this way, the adversary has no direct access
to users’ detailed travel history and the existing works will not work any more.
In this thesis, we present the first piece of work that enables the adversary to
infer users’ activities from their exposed locations protected by LPPMs and thus
perform effective attacks on users’ activity privacy. From the literature, we notice
that if a user’s PoIs and his entering and exiting time of each PoI are available, the
existing methods can be explored to annotate each PoI with the correct semantic
tags [XDZ09, PSR+13, YCP+13]. Thus, we concentrate on calculating these two
most important types of information.

In this chapter, we propose a new tracking attack on users’ activity privacy.
Through our attack, the adversary can directly learn a new form of trajectories
based on her observation on users’ sporadic exposed locations protected by LPPMs:
activity trajectories. An activity trajectory contains not only the sequence of PoIs
where a user performed activities but also his entering and exiting time at each of
such PoIs.
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5.2 System Model

In this section, we describe our extension of the formal framework in [STBH11] to
model the components required to define our new tracking attack. The framework
can be denoted as a quadruple 〈U ,LPPM ,ADV ,M〉 where U is a set of users,
LPPM represents the set of deployed LPPMs, ADV is the adversary and M
denotes privacy metrics.

Users. We consider a set of users U = {u1, . . . , un} who subscribe certain LBSs and
move in an area. The area is partitioned into a finite set of regions which represent
the locations with the minimum granularity, i.e., R = {r1, . . . , rn}. The size of
cells is determined by many factors such as positioning devices (e.g., professional
receivers or smart phones) and positioning systems (e.g., GSM or GPS). As users
may request LBSs whenever needed, e.g., in Foursquare, we cannot exclude any
time point from the possible location exposing time. Thus, different from the
framework in [STBH11], we model the issuing time of an LBS request as a random
variable whose value is chosen from T , a totally ordered set with the least element
0. We use [t, t′] (t, t′ ∈ T and t ≤ t′) to represent a time period from time t to t′

(including t and t′).

A user’s trajectory records his movements in space and time. We model it as a
function mapping a time point in T to the user’s location in R at that time, i.e.,
αu : T → R. In the setting of LBSs, a user exposes his locations to request
LBSs. Such an action is called an exposure event and can be denoted by a triple
〈u, t, αu(t)〉 if user u requested LBSs at time t while being at αu(t). We call the time
ordered sequence of exposure events of user u his exposed trajectory and denote

it by e
[t,t′]
u = (〈u, t1, αu(t1)〉, . . . , 〈u, tk, αu(tk)〉) for [t, t′] where t ≤ ti < ti+1 ≤ t′

(1 ≤ i < k).

We observe that in LBSs, such as nearby search and check-in posts, a user tends to
issue requests from his PoIs, the places where he can perform an activity without
much movements. According to this observation, we assume that users request
LBSs from their PoIs and use Ψu to denote the set of user u’s PoIs. Each ψ ∈ Ψu

is in fact an area of arbitrary shape and is composed of a set of adjacent regions
in R, i.e., Ψu ⊂ 2R.

Example 5.1. Figure 5.1 depicts a user’s movement in an area during a given
time period. The red curve represents the user’s original trajectory. The user
moves through three PoIs which are identified by grey regions and labelled by ψ1,
ψ2 and ψ3. The user issues a request at time t1 at PoI ψ1 and another two request
at t2 and t3 when he was at PoI ψ3. The corresponding locations where the requests
were issued are r1, r2 and r3, respectively. As labelled on the trajectory, his exposed
trajectory can be written by

(〈u, t1, r1〉, 〈u, t2, r2〉, 〈u, t3, r3〉).

LPPMs. A user first sends his LBS requests to LPPMs where the exposure
events are modified or distorted before being exposed to outsiders. In practice,
LPPMs can be implemented locally on user devices or remotely on other trusted
agents. We adopt the assumption of Shokri et al. [STBH11] that time is not
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Figure 5.1: A user and his trajectory.

modified due to users’ requirement for real-time responses. With our focus on
popular LBSs, beside anonymisation, we consider two types of obfuscating LPPMs:
cloaking and perturbation. Hiding requests results in frequent loss of access to
LBSs and adding dummies causes extra communication overhead, which largely
deteriorate the quality of LBSs.

Anonymisation replaces user identities in exposure events with pseudonyms. Al-
though a different pseudonym can be assigned to each exposure event, as our goal
is to address location privacy issues in a practical scenario, e.g., Twitter, we adopt
the assumption in [STBH11] that each user is assigned a unique pseudonym. Let
U ′ = {u′1, . . . , u′n} be the set of pseudonyms. An anonymising LPPM can thus be
modelled as a bijective function mapping a user identity in U to a pseudonym in
U ′ = {u′1, . . . , u′n}, i.e., σ : U → U ′. This function is selected according to the
uniform distribution. Thus, the probability of σ (denoted by anony(σ)) is 1

n!
. The

obfuscating mechanism replaces the location r ∈ R in an exposure event with a
location pseudonym r′ ∈ R′ according to the probability obf (r′ |r) where R′ ⊆ 2R

is the set of location pseudonyms.

User u’s exposed trajectory e
[t,t′]
u is thus transformed by LPPMs to a sequence of

events that can be observed by outsiders, which is called his observed trajectory .

We denote it by o
[t,t′]
u′ = (〈u′, t, r′1〉, . . . , 〈u′, tn, r′k〉) where u′ = σ(u) and ∀1 ≤ i ≤

k, r′i ∈ R′. In the following discussion, we use o[t,t′] to represent the set of observed
trajectories of all users in U .

The adversary. We define the adversary in terms of their objectives, knowledge
and attacks. Intuitively, an objective of the adversary is the information she is
curious about, while an attack contains the steps to achieve an objective based
on her knowledge. In this thesis, we will discuss two objectives which allow the
adversary to reason about users’ activities more accurately. One is the linkability
of each user to his pseudonym while the other is about the places a user visited
and the amount of time spent in them.

Regarding the adversary’s knowledge, we have the following assumptions:

(i) the adversary knows the implementation of the anonymising and obfuscating
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mechanisms, i.e., anony and obf ;

(ii) the adversary has access to the requests sent to LBS providers, i.e., o[t,t′],
either by collusion with LBS providers or eavesdropping;

(iii) for each user, the adversary has access to his travel history for a sufficient
amount of time. This information can be obtained by side channel attacks,
e.g., by breaking into the servers which users trust and expose their detailed
movements to.

In the sequel, we use K to denote the adversary’s knowledge about all the users in
U and Ku to represent the knowledge about user u ∈ U ′.
The metric. We adopt the expected estimation error proposed by Shokri et
al. [STBH11] to measure the effectiveness of attacks or users’ privacy guaranteed
by LPPMs. After an attack, the adversary will learn a set of possible values X
about her objective and a probability distribution Pr(x | o) (x ∈ X ). Suppose x′

is the real value of the objective. Let ‖ x, x′ ‖ be the distance between x and x′.
Its definition depends on the type of x and x′. For pseudonyms, if the pseudonym
of user u’ is u′, then ‖ u′, u′′ ‖ is 0 when u′′ is equal to u′ and 1, otherwise. The
adversary’s estimation error is calculated as follows:

privacy(o, x) =
∑
x∈X

Pr(x |o)· ‖ x, x′ ‖ (5.1)

In Table 5.1 we summarise the important notations that have been introduced and
those which will be given in the rest of this chapter.

5.3 Profiling Users

In this section, we propose a new model for user mobility profiles and request
issuing patterns. First, our new user profiles can equip attackers with knowledge
to infer users’ activities more accurately. Second, compared to the discrete-time
models, our model can enable us to describe in a more natural manner users’ LBS
requesting time which spans over the continuous time space.

5.3.1 Mobility profiles

A user’s mobility profile captures his movement patterns. The idea of our new
model is inspired by an intuitive observation. Namely, a user always moves with
certain purposes which actually determine the places the user will visit. Further-
more, to accomplish a purpose, a user usually stays in a PoI. Therefore, a user’s
trajectory can be divided into two types of segments: stay at a PoI and tran-
sition between PoIs. Furthermore, this division allows us to make the following
assumptions.

1. A user determines his next destination based on his past locations. In other
words, the sequence of visited PoIs follows a Markov chain whose order is
decided by the user’s behaviour and may differ from other users.
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Table 5.1: The important notations.
U set of users

α
[t1,t2]
u the original trajectory of user u in time period [t1, t2]

Ψu set of PoIs of user u
U ′ set of pseudonyms
σ anonymising strategy
R′ set of obfuscated regions
K knowledge of the adversary
Ku knowledge of the adversary about user u

obf (r′ |r) probability that r is obfuscated as r′

o[t,t′] set of observed trajectories of users in U in time period [t, t′]

o
[t,t′]
u′ observed trajectory with the pseudonym u′ in time period [t, t′]
Pu mobility profile of user u

δumin(ψ, ψ′) minimum transition time from ψ to ψ′

Ωu transition matrix between PoIs of user u
Γus (ψ, s) probability density of u staying at ψ for time s

Γut (ψ, ψ
′, s) probability density of u transiting from ψ to ψ′ with s

LPPM location privacy preserving method
ADV the adversary
πu(ψ) the probability that user u is in PoI ψ

τu(ψ, t) probability density function of the time when u enters ψ

a
[t,t′]
u activity trajectory of user u in time period [t, t′]
tib entering time of the ith PoI in the given PoI sequence
tie exiting time of the ith PoI in the given PoI sequence

T i,s,Ob interval of the entering time of the ith PoI in the PoI sequence s
given observed trajectory O

T i,s,Oe interval of the exiting time of the ith PoI in the PoI sequence s
given observed trajectory O

λu(ψ) average number of requests from u in ψ in a time unit
N(s) the length of the sequence of PoIs s
ψsi ith PoI in the sequence of PoIs s

Ξs,O decomposition of observed trajectory O
with respect to the sequence of PoIs s

2. We follow the common assumption in the literature about location semantic
annotation: the activities which users perform in a PoI are decided by the
PoI itself. Thus, since stay time depends on activities, it is determined by
the current PoI.

3. The transition time between two PoIs is only determined by the source and
destination. This is reasonable because transition time is mainly determined
by the distance between two PoIs and factors affecting movement, e.g., traffic
and weather.

4. Users require a minimum time to move between two PoIs which is restricted
by the distance and available means of transport.
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Figure 5.2: An example of Pu.

Now based on the above discussion, we can proceed to define our model for user
mobility profiles as follows:

Definition 5.1 (Mobility profile). A user u’s mobility profile is represented by
a tuple Pu = 〈Ψu,Ωu,Γ

u
s ,Γ

u
t , δ

u
min〉 where

• Ψu: a finite set of points of interest;
• Ωu : Ψd

u × Ψu → [0, 1]: For any ψ1, . . . , ψd ∈ Ψu, Ωu(ψ1, . . . , ψd, ·) is the
probability of user u’s next PoI after having sequentially visited ψ1, . . . , ψd.
It holds that

∑
ψ∈Ψu

Ωu(ψ1, . . . , ψd, ψ) = 1.
• Γus : Ψu×R≥0 → R≥0: for any ψ ∈ Ψu, Γus (ψ, ·) is the probability density func-

tion of the amount of time u stays at PoI ψ. It holds that
∫
δ≥0

Γus (ψ, δ)dδ = 1.

• Γut : Ψu×Ψu×R>0 → R≥0: for any ψ, ψ′ ∈ Ψu, Γut (ψ, ψ
′, ·) is the probability

density function of the amount of time user u spends on transiting from ψ to
ψ′. It holds that

∫
δ>0

Γut (ψ, ψ
′, δ)dδ = 1.

• δumin : Ψu × Ψu → R>0: the minimum amount of time required to transit
between any two PoIs. For any ψ ∈ Ψu it holds that δumin(ψ, ψ) > 0. This
is interpreted as the minimum time required by user u to leave PoI ψ and to
return to it.

Figure 5.2 depicts part of user u’s mobility profile Pu with d = 1 in terms of
two PoIs. Intuitively, after user u enters a PoI ψ, he stays at ψ for a certain
amount of time δs according to Γus (ψ, δs). Then, user u selects his next PoI ψ′

with probability Ωu(ψ, ψ
′) and the transition time δs from ψ to ψ′ follows the

density function Γut (ψ, ψ
′, δt). Similar to [STBH11], our mobility profiles do not

consider the fact that users may behave distinctively in various time periods. For
instance, an accountant works in the shopping mall where he usually does shopping
on weekends. Obviously, he will stay much longer on weekdays than on weekends
because the tasks of the visits are different. This can be solved by constructing
individual mobility profiles for each time period.

The starting d PoIs are determined by the frequency of user u visiting the sequence.
We use πu(ψ1, . . . , ψd) to denote the probability that user u initiates a trajectory
with (ψ1, . . . , ψd). There may exist other factors affecting the starting PoIs, e.g.,
time. Due to the continuous time space, we use τu : Ψd × T → R≥0 to denote the
probability density function of the time when user u starts the given sequence of
PoIs.
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Suppose user u enters PoI ψ1 at time point t, sequentially visits PoIs ψ2, . . . , ψk
and leaves ψk at t′. Then these movements can be represented as a sequence

a[t,t′]
u = (〈ψ1, t

1
b , t

1
e〉, 〈ψ2, t

2
b , t

2
e〉, . . . , 〈ψk, tkb , tke〉),

where tib and tie are respectively the entering and exiting time points of PoI ψi
(1 ≤ i ≤ k). Notice that t1b = t and tke = t′. Moreover, a

[t,t′]
u also satisfies three

other properties:

(i) for all d ≤ i ≤ k, Ωu(ψi−d+1, . . . , ψi, ψi+1) > 0 indicating that all consecutive
transitions between PoIs are possible according to the mobility profile of user
u;

(ii) for all 1 ≤ j ≤ k, tje − tjb follows the distribution Γus (ψj, t
j
e − tjb); and

(iii) for all 1 < j ≤ k, tjb−tj−1
e ≥ δumin(ψj−1, ψj) and it is distributed in accordance

with Γut (ψj, ψj+1, t
j
b − tj−1

e ).

The sequence a
[t,t′]
u can help the adversary perform a more accurate inference on

u’s activities: (i) it contains the sequence of PoIs whose semantics indicate users’
possible activities; (ii) it involves user u’s entering and exiting time of each PoI
which provide more information to determine the real semantic a user used during

his visit to a PoI. For this reason, we refer to a
[t,t′]
u as user u’s activity trajectory.

For the sake of providing a concise presentation, we use the first-order Markov
chain to model a user’s transition between PoIs in the rest of this section as well as
in the description of our new tracking attack in Section 5.4. In our validation (Sec-
tion 5.6), we do not have this restriction and we calculate the order that best cap-
tures a user’s mobility. Given user u’s mobility profile in our new model, we can cal-

culate the probability density function of a
[t,t′]
u = (〈ψ1, t

1
b , t

1
e〉, 〈ψ2, t

2
b , t

2
e〉, . . . , 〈ψk, tkb , tke〉)

as follows:

factTraj (a
[t,t′]
u |Pu) =πu(ψ1)τu(ψ1, t

1
b)︸ ︷︷ ︸

Part I

·
( ∏

1≤i≤k

Γus (ψi, t
i
e − tib)

)
︸ ︷︷ ︸

Part II

·
( ∏

2≤i≤k

Γut (ψi−1, ψi, t
i
b − ti−1

e ) · Ωu(ψi−1, ψi)
)

︸ ︷︷ ︸
Part III

.
(5.2)

Part I of Equation 5.2 is the probability density that user u starts an activity
trajectory at ψ1 at time t1b while Part II specifies the joint probability density that
user u stays at any PoI ψi for tie− tib. Part III expresses user u’ transitions between
PoIs, i.e., the joint probability density that u sequentially travels ψ2, . . . , ψk with
the given transition time.

5.3.2 Request issuing patterns

Users have some patterns with respect to when and where they prefer to request
LBSs. For instance, the local-search services of nearby restaurants are usually
requested during lunch or dinner time from residential areas. There are three
main factors deciding whether to expose a location: the location itself, the time
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period, and the type of queries. In the extended framework of [STBH11] to
sporadic LBSs [STD+11], a binary probability distribution is assigned to each time
point and governs whether a request is issued at that time point. This model is
reasonable as the considered time space is discrete and finite. In this thesis, we
relax the assumption and allow a user to request LBSs at any time during his stay
in a PoI. We assume that the process of issuing requests is controlled by some
probability distribution. As the characteristics of the process, e.g., the number of
requests issued in a time unit, may differ between users and PoIs, distributions for
different combinations of users and PoIs should be used.

We present a possible model profiling users’ request issuing patterns in this section.
Notice that if extra knowledge on the distributions is available, it can be easily
incorporated into our user profiles. To have a concise presentation, we only consider
locations as they are the most influential factor for LBSs such as check-ins in places
of interest. With this assumption we model the number of requests issued in a time
unit (e.g., an hour) by user u in PoI ψ as a Poisson process with rate λu(ψ). As
a result, the amount of time between requests is exponentially distributed with
λu(ψ) which can be interpreted as the average number of requests from u in a time
unit during his stay in ψ.

Suppose that user u enters PoI ψ at time tb and exits it at te. Furthermore, let u′

be the pseudonym assigned to the user according to the anonymising strategy σ
selected by the deployed anonymising LPPM. Then we can calculate the probability
density function that user u, anonymised as u′, issues a sequence of observed events
obsSeq = (〈u′, t1, r′1〉, . . . , 〈u′, tk, r′k〉) within time period [tb, te] during his stay at
PoI ψ as follows:

fissue(obsSeq | [tb, te], ψ, σ(u) = u′)

=λu(ψ)e−λu(ψ)(t1−t) ·
k∏
i=2

λu(ψ)e−λu(ψ)(ti−ti−1)·︸ ︷︷ ︸
Part I

e−λu(ψ)·(t′−tk)·︸ ︷︷ ︸
Part II∏

〈u′,ti,r′i〉∈obsSeq

∑
r∈ψ

Pr(r |ψ) · obf (r, r′)

︸ ︷︷ ︸
Part III

,

(5.3)

The above equation has three parts. In Part I and Part II the requests are issued
in accordance with the probabilistic model described above, i.e., the issuing time of
subsequent requests are independently and exponentially distributed with λu(ψ).
Part I is the probability density of user u issuing k requests within the time period
[tb, te] at t1, . . . , tk. Part II gives the probability that no requests are issued in
the remaining time period [tk, te]. Parts I and II together provide the probability
density of user u issuing exactly k requests within [tb, te] at t1, . . . , tk. Part III is
the joint probability that the location pseudonyms r′i (1 ≤ i ≤ k) are output by the
deployed obfuscating LPPM. Pr(r |ψ) is the probability that user u is located at
r given that he is now in PoI ψ. If no further information is available, we assume
that a uniform distribution on all r in ψ, i.e., Pr(r | ψ) = 1

|ψ| . Note that r is a
region with the minimum granularity and ψ is a set of such regions.

Example 5.2. In our running Example 5.1, user u issued one request at r1 in PoI
ψ1 at time t1. Suppose r1 is obfuscated to r′1. Then from the view of the adversary,
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the probability density of user u issuing this observed request during the stay in ψ1

can be calculated as follows:

fissue((〈u′, t1, r′1〉) | [t1b , t1e], ψ1, σ(u) = u′)

=λu(ψ1) · e−λu(ψ1)(t1−t1b) · e−λu(ψ1)·(t1e−t1) ·
∑
r∈ψ1

Pr(r |ψ1) · obf (r′1 |r).

5.4 A New Tracking Attack

In this section, we propose a new tracking attack making use of our new model
for user profiles. Intuitively, the objective of this attack is to find the most likely
activity trajectories for all users. Our attack allows the adversary to learn not
only the PoIs where users perform activities but also directly the entering time
and exiting time of such PoIs. In the following discussion, we suppose that the
adversary has learnt the observed trajectories of all users in U in the time period
[t, t′], i.e., o[t,t′]. For the purpose to have a concise presentation, we assume that all
users enter a PoI at time t and exit a PoI at t′. This assumption captures users’
daily life that they usually start and finish work at almost the same time. Note
that our attack can be extended to cover more general cases. In the rest of this
section, we omit [t, t′] in the notations when it is clear from the context.

We split the tracking attack into two sequential steps following the same reasoning
as in [STBH11, STD+11]: first de-anonymisation and then de-obfuscation. De-
anonymisation is to find the most likely anonymising strategy mapping user iden-
tities to pseudonyms while de-obfuscation aims to find the most probable activity
trajectories given users’ pseudonyms.

5.4.1 De-anonymisation

The goal of the adversary is to find the most probable mapping function σ∗ from
U to U ′ given users’ observed trajectories o and the profiles of the users in U . This
can be formulated as the following optimisation problem:

σ∗ = arg max
σ

Pr(σ |o,K). (5.4)

Although the main idea of de-anonymisation is similar to that in [STBH11], we
need to propose a new and efficient calculation process due to our consideration
of continuous time space and new model for user profiles. We use Fobv(o |σ,K) to
represent the probability density of o given the anonymising strategy σ and the
adversary’s knowledge K. By applying the Bayesian theorem, we have that

Pr(σ |o,K) ∝ Fobv(o |σ,K) · Pr(σ), (5.5)

where the proportionality factor is independent of σ and can be considered con-
stant. Due to the assumption that the choice of the anonymising strategy follows
a uniform distribution, we have that Pr(σ) is 1

n!
. Thus, the optimisation is re-

duced to finding σ that maximises Fobv(o | σ,K). Since users are independent of
each other when travelling and exposure events are anonymised and obfuscated
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independently, Fobv(o |σ,K) can be factorised into a product of probability density
functions as follows:

Fobv(o |σ,K) =
∏
u′∈U ′

fobv(ou′ |Ku, [t, t′], σ(u) = u′). (5.6)

Note that fobv(ou′ | Ku, [t, t′], σ(u) = u′) is the probability density that user u
with pseudonym u′ issues the observed trajectory ou′ in [t, t′]. In this way, the
problem can be further reduced to calculating the mapping function σ∗ which max-
imises the above product. In fact, de-anonymisation can be formulated as assigning
pseudonyms in U ′ to users in U . If we take − log fobv(ou′ | Ku, [t, t′], σ(u) = u′) to
be the cost of assigning u′ to u, then the optimisation can be seen as a minimum
weight assignment problem and the existing solutions can be exploited. Specifically,
this is because arg maxσ Fobv(o |σ,K) is equivalent to arg minσ − logFobv(o |σ,K).

In the following, we present an efficient method to calculate users’ patterns with
respect to their observed trajectories, i.e., fobv(ou′ |Ku, [t, t′], σ(u) = u′).

Calculating observed trajectory patterns. This probability density can be
obtained by marginalising the joint probability density function of a user to is-
sue an observed trajectory ou′ and meanwhile travel an activity trajectory au, i.e.,
factTraj ,obv(au, ou′ |Ku, [t, t′], σ(u) = u′), over all activity trajectories. Thus, we pro-
ceed to derive the density function factTraj ,obv and show how it can be marginalised
to obtain fobv .

We notice that factTraj ,obv is zero for all activity trajectories that are not compatible
with ou′ , where the compatibility is understood as follows. We say that an activity
trajectory au is compatible with ou′ if and only if for the time point given by any
observed event in ou′ , user u is at a PoI and not in transition between two PoIs.
To make further computation efficient, we introduce a scheme to consider only the
activity trajectories that are compatible with ou′ .

Let Su be the set of all sequences of PoIs that user u could potentially visit in
the time period [t, t′] which are allowed by the minimum time required to move
between two consecutive PoIs. If we use N(s) to denote the length of sequence s
and ψsi be the ith PoI in s, then

Su =
{
s |∀i=1,...,N(s) ψ

s
i ∈ Ψu,

N(s)−1∑
i=1

δumin(ψsi , ψ
s
i+1) ≤ t′ − t

}
. (5.7)

Two remarks are in place. First, for each user u ∈ U and each time period [t, t′],
the set Su is finite since user u has finite PoIs and the minimum transition time
between any two PoIs is non-zero. Second, by the definition of activity trajectories,
the sequence of PoIs visited by u within any activity trajectory is contained in Su.
Assume that user u is assigned pseudonym u′. We proceed to consider how an
observed trajectoryO ≡ ou′ could be obtained given that the user visited a sequence
of PoIs s ∈ Su. The following restrictions are in place: (i) each observed event in
O is issued from some PoI in s; (ii) any two consecutive events are issued either
from the same PoI or the second event is issued from some subsequent PoI in s;
(iii) s may contain PoIs where no events are issued.
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With these restrictions, we can decomposeO intoN(s) disjoint blocks of contiguous
observed events in O. The ith block is the sequence of all observed events issued
from PoI ψsi . We use Ξs,O

i to denote the ith block and Ξs,O = (Ξs,O
1 ,Ξs,O

2 , . . . ,Ξs,O
N(s))

is a decomposition of O with respect to s. Note that for O and s, there are usually a
number of different decompositions with respect to s which is actually exponential
in the number of observed events in O.

We say that an activity trajectory au complies with PoI sequence s and Ξs,O if the
ith PoI in au is equal to ψsi and user u enters it before issuing the first request in
Ξs,O
i and exits it after having issued the last request in Ξs,O

i . Let tib and tie are the
entering and exiting time points of the ith PoI in au, then

tib ≤ min{t′′ |∃〈u′, t′′, r′〉 ∈ Ξs,O
i )}; (5.8)

tie ≥ max{t′′ |∃〈u′, t′′, r′〉 ∈ Ξs,O
i )}. (5.9)

These two conditions lead to a small interval for the entering (exiting) time of each
PoI in s. We use T i,s,Ob and T i,s,Oe (1 ≤ i ≤ N(s)) to denote such time intervals for
the entering and exiting time of PoI ψsi , respectively. Any activity trajectory that
complies with Ξs,O can be obtained by assigning each time variable (i.e., tie and tib)
a value from the corresponding time interval (i.e., T i,s,Oe and T i,s,Ob , respectively).

We denote the lower (upper) bound of a time interval T ′ as `owbnd(T ′) (upbnd(T ′)).
Let nextNEB(Ξs,O, i) (1 ≤ i < k) be the index of the first non-empty block in Ξs,O

with an index larger than i, i.e., min{j > i | Ξs,O
j 6= ∅}. If no such block exists,

i.e., Ξs,O
j = ∅ for all i < j ≤ k, then we set nextNEB(Ξs,O, i) = k. The main idea

of determining the bounds is to exploit another two principles. First, the exiting
time of a PoI is larger than the entering time; second, the definition of activity
trajectories requires that the time interval between two successive visited PoIs is
larger than the minimum allowed transition time. Based on these two principles,
we can calculate the bounds of the entering time of each PoI in s as the following:

i = 1, `owbnd(T i,s,Ob ) = upbnd(T i,s,Ob ) = t;

1 < i ≤ N(s), `owbnd(T i,s,Ob ) = ti−1
e + δumin(ψsi−1, ψ

s
i );

upbnd(T i,s,Ob ) =


min{t′′ |∃〈u′, t′′, r′〉 ∈ Ξs,O

i } Ξs,O
i 6= ∅

min{t′′ |∃〈u′, t′′, r′〉 ∈ Ξs,O
nextNEB(Ξs,O,i)

∨
t′′ = t′} −∑nextNEB(Ξs,O,i)

j=i+1 δumin(ψsj−1, ψ
s
j ) Ξs,O

i = ∅

For the exiting time of each PoI, we can perform the following calculation:

i = N(s), `owbnd(T i,s,Oe ) = upbnd(T i,s,Oe ) = t′;

1 ≤ i < N(s), `owbnd(T i,s,Oe ) =


max{t′′ |∃〈u′, t′′, r′〉 ∈ Ξs,O

i } Ξs,O
i 6= ∅

tib Ξs,O
i = ∅.

upbnd(T i,s,Oe ) = min{t′′ |∃〈u′, t′′, r′〉 ∈ Ξs,O
nextNEB(Ξs,O,i)

∨ t′′ = t′}

−
nextNEB(Ξs,O,i)∑

j=i+1

δumin(ψsj−1, ψ
s
j ).
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For any 1 ≤ i ≤ N(s), it holds that

`owbnd(T i,s,Ob ) ≤upbnd(T i,s,Ob ) ≤ `owbnd(T i,s,Oe )

∧ upbnd(T i,s,Oe ) ≤ `owbnd(T i+1,s,O
b ).

However, it is possible that for a non-empty block Ξs,O
i in Ξs,O, upbnd(T i,s,Oe ) <

`owbnd(T i,s,Oe ). In this case, there is no activity trajectory that complies with the
decomposition Ξs,O. The corresponding probability density is thus directly set to
zero during the marginalisation over all possible decompositions.

Let au = (〈ψ1, t
1
b , t

1
e〉, . . . , 〈ψk, tkb , tke〉) be an activity trajectory that complies with

Ξs,O and s = (ψ1, . . . , ψk). In Equation 5.10, we calculate the joint probability
density of user u travelling au (Part I) and generating the observed trajectory
O ≡ ou′ (Part II):

factTraj ,obv(au, O |Ku, [t, t′], σ(u) = u′)

= factTraj (au |Ku)︸ ︷︷ ︸
Part I

·
N(s)∏
i=1

fissue(Ξ
s,O
i | [tib, tie], ψsi , σ(u) = u′)︸ ︷︷ ︸

Part II

. (5.10)

With the above density function, in the following, we present a method to marginalise
over all activity trajectories and obtain our target fobv , i.e., the density function
of user u issuing an observed trajectory.

We start with constructing the activity trajectories compatible with an observed
trajectory O ≡ ou′ . We observe that the following two inference rules hold:

(i) if au and O are compatible, there exists s and Ξs,O that au complies with;

(ii) if au complies with s and Ξs,O, then au is compatible with O.

These two rules allow us to construct all activity trajectories that are compatible
with the observed trajectory by considering (i) each s ∈ Su; (ii) each possible
decomposition of the observed trajectory with respect to s; and (iii) every possi-
ble combination of the entering and exiting time points within the time intervals
determined by s and the decomposition. Therefore, we can write

fobv(O ≡ ou′ |Ku, [t, t′], σ(u) = u′)

=
∑
s∈Su

∑
Ξs,O

∫
T 1,s,O
b ×T 1,s,O

e ×...×T N(s),s,O
b ×T N(s),s,O

e

factTraj ,obv(au, ou′ |Ku, [t, t′], σ(u) = u′) dtN(s)
e dt

N(s)
b . . . dt1e dt1b ,

(5.11)

where au ≡ (〈ψs1, t1b , t1e〉, . . . , 〈ψsN(s), t
N(s)
b , t

N(s)
e 〉).

5.4.2 De-obfuscation

We present a method that the adversary may implement to find the most likely
activity trajectory given a user’s observed trajectory. Let σ∗ be the anonymis-
ing strategy obtained by applying the de-anonymisation attack. Furthermore, let
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fact(au | oσ∗(u),Ku) be the probability density function that user u travels the ac-
tivity trajectory au given his observed trajectory oσ∗(u) in the time period [t, t′].
Then, the objective of this attack can be formulated as

arg max
au

fact(au |oσ∗(u),Ku).

Subsequently, this can be rewritten as

arg max
au

fact(au |oσ∗(u),Ku) = arg max
au

factTraj ,obv(au, ou′ |Ku, [t, t′], σ∗(u) = u′)

fobv(ou′ |Ku, [t, t′], σ∗(u) = u′)
.

(5.12)

Since the denominator does not depend on au, the optimisation problem reduces
to maximising the nominator. This can be formulated as the global optimisation
problem:

arg max
s∈Su,Ξs,ou′

arg max
(t1b ,t

1
e,...,t

N(s)
b ,t

N(s)
e )

factTraj ,obv(au, ou′ |Ku, [t, t′], σ(u) = u′)
(5.13)

where au ≡ (〈ψs1, t1b , t1e〉, . . . , 〈ψsN(s), t
N(s)
b , t

N(s)
e 〉) and tib ∈ T

i,s,ou′
b and tie ∈ T

i,s,ou′
e

for all 1 ≤ i ≤ N(s). To solve this optimisation problem, first, for each s ∈ Su
we consider all of its possible decompositions. Then for each pair (s,Ξs,ou′ ), we
search for a sequence of entering and exiting time points that maximise the joint
probability density function and record the largest probability density. To find the
(approximate) optimum sequence, we can refer to a number of algorithms. We use
Simulated Annealing in our implementation. Last, we choose the pair with the
largest probability density and with the corresponding time sequence the optimum
activity trajectory is thus constructed.

5.4.3 Discussion

The complexity of our tracking attack is mainly involved in the calculation of
users’ probability density of issuing an observed trajectory, (i.e., Equation 5.11)
and solving the optimisation problem in the de-obfuscation attack (i.e., Equa-
tion 5.13). Both of them require to traverse all possible pairs of PoI sequences
and decompositions. For each pair, in Equation 5.11, we calculate a multi-level
integration while Equation 5.13 performs the algorithm of simulated annealing to
calculate the most likely sequence of entering and exiting time points. In this the-
sis, we explore the Monte Carlo method to approximately calculate the values of
the multi-level integrations. Since the time complexity of both simulated anneal-
ing and the Monte Carlo method are polynomial, the computational overhead is
mainly determined by the number of the pairs of PoI sequences and decomposi-
tions. This number actually depends on three factors: the length of the observation
period, the number of visited PoIs and observed events. The observation period
subsequently decides the maximum number of PoIs that can be visited because a
minimum transition time is needed to accomplish a transition between PoIs. Let
P be the maximum number of PoIs that can be visited in the time period [t, t′],
M be the size of Ψu, Q be the number of observed events. Then the worst-case
complexity is O((M · Q)P ), which grows exponentially in P . In our validation,
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we observe that on average a user visits four PoIs per day. For the LBSs such as
check-ins, according to Foursquare, an active user on average issues 2.3 posts per
day. Therefore, the computational overhead is still manageable due to the small
numbers of visited PoIs and observed events. In order to run our attack with more
PoIs and longer time periods, we resort to sampling methods which approximately
estimate the target result with only part of the search space. Based on users’
profiles, we can generate possible pairs of PoI sequences and decompositions, for
example, by random walking. With carefully chosen number of sampled pairs and
accuracy tolerance, we can still ensure a good approximation of the calculation.

5.5 Localisation Attack

Our mobility profile can be used not only to track users’ activities but also to
implement the general attacks addressed in the literature. In this section we take
localisation attack as an example to illustrate the generosity of our model.

In this attack, given an observed trajectory and a time point in the time interval
of the trajectory, the adversary aims to find the PoI at which the user was present
at the given time point. The result of this attack is a probability distribution over
the set of PoIs of the originator of the observed trajectory.

We assume that the anonymising strategy σ is already known to the adversary and
that σ(u) = u′. Given an observed trajectory ou′ and the time point t′′ ∈ [t, t′], the
adversary aims to calculate the probability that user u was at PoI ψ ∈ Ψu at time
t′′, i.e.,

Pr((ψ, t′′) |σ(u) = u′, ou′ ,Ku). (5.14)

This probability can be calculated as the ratio of the joint probability density that
user u generated ou′ and was located at ψ at t′′ over the probability density that
ou′ is generated by user u. Let fobv ,poi((ψ, t

′′), ou′ | Ku, σ(u) = u′) be the joint
probability density. Then we have

Pr((ψ, t′′) |σ(u) = u′, ou′ ,Ku) =
fobv,poi((ψ, t

′′), ou′ |Ku, σ(u) = u′)

fobv(ou′ |Ku, σ(u) = u′)
. (5.15)

The probability density function fobv ,poi can be obtained by marginalising the joint
probability densities of the activity and observed trajectories, i.e., factTraj ,obv over
the subset of activity trajectories where user u is at ψ at t′′. To find this subset
of activity trajectories, we consider Sψu ⊆ Su consisting of all sequences in Su that
contain ψ, i.e., Sψu = {s | s ∈ Su ∧ ψ ∈ s}. Let ot

′′

u′ be the observed trajectory
ou′ with added a dummy observed event 〈u′, t′′, ·〉 if no observed event with the
issuing time t′′ is in ou′ . Then, for each s ∈ Sψu we consider all decompositions of
ot
′′

u′ with respect to s where the observed event with issuing time t′′ corresponds to

ψ, i.e., Ξs,ot
′′
u′ such that 〈u′, t′′, ·〉 ∈ Ξ

s,ot
′′
u′

i and ψsi = ψ. Let Ξs,ot
′′
u′ ,(ψ,t

′′) denote such
a decomposition. Since the dummy event is not one of the observed events, we
should exclude it when the probability density of issuing observed trajectories. We

define Ξ
s,ot
′′
u′ ,(ψ,t

′′)

i /〈u′, t′′, ·〉 as the block with the dummy request removed. Then,
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the probability density can be calculated as the following:

fobv,poi((ψ, t
′′), O ≡ ou′ |Ku, σ(u) = u′)

=
∑
s∈Sψu

∑
Ξ
s,ot
′′
u′
,(ψ,t′′)

∫
T 1,s,O
b ×T 1,s,O

e ×...×T N(s),s,O
b ×T N(s),s,O

e

factTraj ((〈ψs1, t1b , t1e〉, . . . , 〈ψsN(s), t
N(s)
b , tN(s)

e 〉) |Ku)·
N(s)∏
i=1

fissue(Ξ
s,O,(ψ,t′′)
i /〈u′, t′′, ·〉 | [tib, tie], ψsi , σ(u) = u′) dtN(s)

e dt
N(s
b . . . dt1e dt1b ,

(5.16)
where the second summation is over all possible decompositions satisfying the
condition discussed above.

5.6 Validation

In this section, we pursue two goals: (i) constructing user mobility profiles and
identifying their main features in users’ real-life movements; (ii) evaluating the
effectiveness of the implemented attacks using our new mobility profiles.

5.6.1 Constructing mobility profiles

We present our method that the adversary may adopt to construct users’ mobility
profiles by exploring users’ travel history. Moreover, we implement this method
and discuss the main features of users’ mobility profiles with a real-life trajectory
dataset. We start with the specification of the dataset.

We explore a real-life GPS trajectory dataset to justify our work, which is collected
in the Geolife project of Microsoft Research Asia [ZWZ+08]. The dataset consists
of 17,621 trajectories from 182 users in a period of over five years (from April 2007
to August 2012). Most of these users’ movements took place in Beijing, China.
Each trajectory corresponds to a user’s movement in one day. The trajectories
cover a total length of about 1,250,000 km and a total duration of more than
48,000 hours. Moreover, the trajectories are collected in a high frequency. Over
90% of the locations are recorded less than every 5 seconds. In our experiments, we
select ten representative users based on the number of their collected trajectories.
On average, each user has over 200 daily trajectories.

A user’s mobility profile mainly consists of a set of PoIs (Ψu), a high-order Markov
chain describing the movement between PoIs (Ωu), a probability density function
of the amount of time that the user stays at a PoI (Γus ), a probability density
function of the amount of time that the user spends on transiting between PoIs
(Γut ). We show how to extract such information from a trajectory dataset.

Extracting Ψu. In the literature, two types of methods have been identified to
obtain a user’s PoIs: static or dynamic [GNPP07]. In static methods, PoIs are
obtained by referring to public information. For instance, places such as schools
and bus stops are labelled with different icons in Google Maps. However, static
methods can only identify the PoIs that attract common interest of users while
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Figure 5.3: The distribution of users’ PoIs.

those personal PoIs, e.g., meeting places with friends, are still uncovered. Dynamic
methods offer a way to discover a user’s PoIs from his travel history based on
some heuristics such as short stay time and low speed [URT11]. Attackers should
combine these two types of methods in to construct a complete PoI set.

In our validation, we adopt the method proposed by Chen et al. [CPX13] to dy-
namically compute PoIs. This method explores the heuristic that a PoI is usually
a small region where a user tends to stay for certain amount of time. The idea
is to first calculate stay points representing the regions that a user stayed during
his movements and then make use of hierarchical clustering to cluster close stay
points. The smallest region that covers all stay points in a cluster forms a PoI.

In Figure 5.3 we plot the calculated PoIs of the ten users labelled by different
colours. We use filled circles to represent PoIs with the same area as that of the
original ones. We can see that these ten users travelled in an area of 30km×30km.
The average area of these PoIs is 0.317 km2 and each user has 28 PoIs on average.
In the experiments of Shokri et al. [STBH11], they partition the San Francisco
Bay area into a grid of 40 cells which is similar to our area. However, each cell
has an area of 23 km2, which is much larger than the PoIs we have constructed.
Therefore, in our framework using PoIs we can describe users’ positions in a higher
precision, which also leads to fewer states in the Markov chains to capture users’
movements among PoIs.

Constructing Ωu. The three elements of Ωu (see Definition 5.1) need to be ex-
tracted for activity trajectories. Thus we start with computing activity trajectories
based on users’ travel history. A user u’s travel historyHor

u records his whereabouts
in a past time period and has the following form (〈t1, r1〉, . . . , 〈tm, rm〉), where ri is
the user’s position at ti (1 ≤ i ≤ m). We remove the identity u from the sequence
as it is clear from the context. Our main idea of calculating activity trajectories
is to extract the subsequences of Hor

u that are contained in some PoIs as they
capture user u’s stay in PoIs. Given a subsequence ps = (〈tx1 , rx1〉, . . . , 〈txm , rxm〉)
of Hor

u , it is called a PoI segment if it is a maximal subsequence restrained in a
PoI. Formally,

∃ψ ∈ Ψu ((∀1 ≤ i ≤ m, rxi ∈ ψ ∧ xi+1 = xi + 1) ∧ (rx1−1 6∈ ψ ∧ rxm+1 6∈ ψ)).
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Figure 5.4: The log-likelihood of orders.

We use poi(ps) to denote the PoI shared by all elements in ps and tmin(ps)
(tmax (ps)) to represent the minimum (maximum) time instances of ps , i.e., tx1
(txm). Let (ps1, . . . , psk) be the sequence of all PoI segments in Hor

u in the ascend-
ing order of time. Then we can transform Hor

u to an activity trajectory as follows:
∀1 ≤ i ≤ k,

ψi = poi(psi); T ib = tmin(ps i); T ie = tmax (ps i). (5.17)

We then explore the maximum likelihood estimation method to calculate the tran-
sition matrix Ωu. Given an order d, for each sequence of PoIs of length d, e.g.,
η ∈ Ψd, we maintain a counter Cη→ψ to record the number of occurrences of η
before ψ. Thus, according to [CKRS12], we have

Ωu(η, ψ) =
Cη→ψ∑

ψ∈Ψu
Cη→ψ

. (5.18)

For a sequence of PoIs visited by a user, we can calculate the likelihood of the user
to follow this sequence based on his transition matrix. If the transition matrix cor-
rectly captures users’ transitions between PoIs, then the calculated probability will
be larger. We use the logarithm of the probability, i.e., log-likelihood, to evaluate
the quality of calculated matrices, formally, −∑x

i=d+1 log Pr(ψyi | ψy1 , . . . , ψyi−1
).

A smaller log-likelihood indicates a larger probability of generating the sequence.
In Figure 5.4 we show the changes of the log-likelihood of the ten selected users,
when different orders are used. Each point corresponds to an average of the log-
likelihood of 10 sequences of length 20. It is obvious that larger orders increase the
prediction accuracy. However, the magnitude of improvement decreases when d is
increased. Since a larger d will increase the space to store the Markov chains and
give rise to more computation overhead, the value of d should be decided carefully
to balance accuracy and computational cost. We choose the order of users’ transi-
tion matrices based on the amount of decrease, in terms of log-likelihood, between
consecutive order values. When the decrease is smaller than a threshold δ, we
select the previous value as the order of the user’s transition matrix. In Table 5.2
we show the number of users for different orders when δ is set to two and three,
respectively.
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Table 5.2: The # of users with transition matrices of different orders.
δ = 2 δ = 3

order 1 2 3 4 1 2 3 4

#users 1 2 5 2 2 5 3 0
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Figure 5.5: The probability density function of stay time and transition time.

Estimating Γus and Γut . We explore the methods of probability density estimation
to calculate the fitted density functions for Γus and Γut . From the activity trajectory
calculated above, we can extract all the occurrences of stay time of the user at a
given PoI as well as the transition time between PoIs. In this chapter, we apply
Gaussian kernel smoothing method.

For the selected users in the Geolife dataset, we cannot collect sufficient samples for
all PoIs of the user and all transitions between PoIs because (i) users did not visit
all their PoIs frequently enough; (ii) the data collection period is not long enough.
To illustrate, we choose the user 153 in the dataset and plot the density histogram
of his stay time in a PoI and transition time spent on transition between two PoIs
in Figure 5.5. The corresponding estimated density functions are also presented.
We can observe that the shape of the estimated functions are similar to Gamma
distributions. We then fit Gamma distributions to the data and plot them with
blue dashed curves. The fitted functions pass the Chi-square test, a classic test for
the goodness-of-fit of a distribution to the sampled data, with p-values of 0.57 and
0.31, respectively. Notice that p-values range between 0 and 1 and indicates the
fitness of distribution under hypothesis with the sample data.

5.6.2 Evaluating privacy attacks

We implement our attacks as explained in Section 5.4. In this section, we validate
our new model for user mobility profiles and extended framework by showing the
effectiveness of our attacks. As mentioned above, the Geolife dataset does not
contain sufficient amount of data to allow us to extract complete mobility profiles
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for all the selected users, especially for the parameters in the probabilistic density
functions related to stay time and transition time. However, since we have learnt
the types of such density functions as discussed in the previous section, we partially
simulate users’ profiles when the required information is not extractable. This
will not impose much impacts on our validation since our target focuses on the
effectiveness of the privacy attacks under the assumption of the availability of
user mobility profiles. In the rest of this section, we start with describing the
experimental setting before showing the results.

Experimental setting. We need to set up our experiments from three perspec-
tives: user mobility profile, activity trajectories and observed trajectories. We
begin with user mobility profiles. For the ten selected users from the Geolife
dataset, we extract their transition matrices whose orders have been shown in Ta-
ble 5.2. For their stay time and transition time, we assume that the corresponding
probability density functions follow Gamma distributions when there are not suf-
ficient number of samples to extract them. By referring to the parameters of the
fitted gamma distributions of stay time and transition time, we generate values of
the shape and scale parameters for each of these unknown Gamma distributions.
Specifically, given two PoIs, we ensure that the simulated function for the tran-
sition time between them has a mean value which is consistent with the average
transition time of the owner. For the stay time in a PoI, we applied the similar
principle. With respect to users’ rates of issuing requests in PoIs, we randomly
choose their values between zero and three. This means that users on average
issue at most three requests within one hour, which is reasonable in reality. The
minimum transition time between two PoIs is determined by the distance between
the centres of the PoIs and the maximum allowed speed which is preliminarily set
to 20km/hour.

With respect to activity trajectories, for each user we choose 40 daily trajectories
from the Geolife dataset which contain less than six PoIs. The time information
of these trajectories are not consistent with user mobility profiles as part of user
profiles are simulated rather than extracted directly from the dataset. Thus, we
proceed to extract the sequences of PoIs in them and make use of the simulated
user profiles to generate the amount of time that users spend in and between the
PoIs. The time of the simulated activity trajectories spans between 2 to 12 hours
depending on the number of PoIs involved.

Last, we generate the observed trajectories of the selected users as the Geolife
dataset does not contain such users’ behaviour, i.e., exposing their locations for
LBSs. Given an activity trajectory, we proceed to generate the corresponding
exposed trajectory based on the owner’s request issuing rate. In order to analyse
the influence of the number of issued requests on location privacy, for each activity
trajectory, we generate two exposed trajectories with lengths of one and three,
respectively. For obfuscating LPPMs, we implement a simple cloaking mechanism
which reduces the precision of the coordinates of the locations in the exposed
trajectories. In our experiments, we set two precisions, namely, 0.001 and 0.01,
and examine the sensitivity of location privacy to the reduced precision. These
two precisions enlarge a position to a region with area of about 0.02 to 2.25 km2,
respectively.
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Location privacy metric. Recall that in our framework, we make use of the
estimation error of the adversary to measure location privacy provided by LPPMs.

Recall that the de-anonymising attack calculates the most likely anonymising strat-
egy. Given a set of observed trajectories, each of which corresponds to a unique
user, we store the output of the attack as a map assigning each observed trajectory
the most probable user identity. Thus, we can define the adversary’s estimation
error as the percentage of the user identities that are not assigned to the right ob-
served trajectories. Let σ be the anonymising strategy deployed. Then Formally,
the estimation error for de-anonymisation can be defined as follows:

privacyda(o[t,t′]
u , σ∗) =

|{u ∈ U |σ∗(u) 6= σ(u)}|
|U | . (5.19)

In our tracking attack, for any observed trajectory of a user, its output is the most

probable activity trajectory. Let a
[t,t′]∗

u be the calculated activity trajectory. Since

there is only one estimated trajectory, according to Equation 5.1, Pr(a
[t,t′]∗
u | o) is

set to 1.0 meaning that the adversary is certain that this activity trajectory is the
most likely from his view. Then the location privacy is determined by the distance

between a
[t,t′]∗

u and user u’s real activity trajectory a
[t,t′]
u , i.e., ‖ a[t,t′]∗

u , a
[t,t′]
u ‖. In-

tuitively, if we ignore the transitions between PoIS, or simply treat the positions
during transition as a specific PoI, i.e., ⊥, then two activity trajectories are equiv-
alent if and only if two users are in the same PoIs at any time. This leads us to
use the proportion of time when two users are not in the same PoI to define the
distance between two activity trajectories. Let PoI (au, t) returns the PoI where u
stays at time t according to au. Then the metric can be defined as follows:

privacydo(o
[t,t′]
u′ , a[t,t′]∗

u ) =
|{t′′ ∈ T |PoI (a

[t,t′]∗

u , t′′) 6= PoI (a
[t,t′]
u , t′′)}|

t′ − t . (5.20)

In our localising attack, the output is a probability distribution over the set of all
PoIs. Then the estimation error is equivalent to the sum of the probabilities of the
PoIs which are not the correct one. Suppose user u who is at PoI ψ at time t′′.
Formally, the adversary’s estimation error of user u’s position at t′′ can be defined
as the following:

privacy loc(o[t,t′]
u , 〈ψ, t′′〉) =

∑
ψ′∈Ψu/ψ

Pr((ψ′, t′′) |σ(u) = u′, o
[t,t′]
u′ ,Pu). (5.21)

Experimental results. In this section, we present the experimental results of
our attacks on location privacy from two aspects: their effectiveness and their
sensitivity to distinctive factors. In the attacks, we assume that the adversary has
access to the time periods when users travelled each of their activity trajectories,
which are called observation periods in the following discussion.

We validate the de-anonymising attack by checking whether it can find the owners
when a set of daily observed trajectories are learnt by the adversary. We call
such a set of daily observed trajectory from the selected users a daily observation.
To construct a daily observation, for each user we randomly choose one of his
observed trajectories. We run our implementation on 5,000 daily observations, each
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containing one observed trajectory for all of the users. The tracking and localising
attacks aim to infer information of given observed trajectories whose owners have
been already learnt. In our experiments, we apply our implementation of these
two attacks on each observed trajectory of the selected users. Note that for the
localising attack, for the sake of illustration and without loss of generality, we set
the time point which the adversary is interested in about users’ locations as the
last time points of the observation periods.
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(a) De-anonymisation attack.
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(b) Tracking attack.
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(c) Localising attack.

Figure 5.6: Estimation error vs. length of period.

Effectiveness. In Figure 5.6, we plot the adversary’s estimation errors for all sam-
ples according to the length of observation periods when the reduced precision is
set to 0.001, and in Table 5.3 we summarise the percentages of samples whose esti-
mation errors fall into different intervals. Generally, most of the estimation errors
range from 0.2 to 0.8. From Table 5.3, we can even see that for about 50% of the
samples in our three attacks, the adversary has at least a probability of 0.4 to get
the right target information. Therefore, from these statistics, we can conclude that
our attacks are rather effective.

Sensitivity test. So as to have a comprehensive analysis, we study four major
parameters that may have impact on users’ location privacy: the number of issued
LBS requests, the length of observation periods, the number of visited PoIs and
the reduced precision.
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Table 5.3: The distribution of estimation error.
Attacks ≤ 0.2 0.2− 0.4 0.4− 0.6 0.6− 0.8 ≥ 0.8

de-anonymising 0.01 0.16 0.46 0.32 0.04
tracking 0.11 0.18 0.26 0.31 0.14
localising 0.06 0.15 0.20 0.31 0.27

From Figure 5.6 we can observe that the adversary’s estimation errors vary when
different numbers of LBS requests are issued, i.e., more requests issued will lead
to more privacy breached. The estimation errors when only one request is issued
(annotated by red objects) are mainly located in the upper part of the sub-figures
in Figure 5.6. This observation will be more visible when we discuss Figure 5.7
and Figure 5.8.

To test the sensitivity to the length of observation periods, in Figure 5.7 we group
observed trajectories according to the length of their observation periods and depict
the mean estimation error of the trajectories in each case. Specifically, we first put
the observed trajectories with observation periods less than 3 hours in the first case
and the rest are put into the ith cluster when their observation period is between
i− 1 hours and i hours.
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(a) De-anonymising attack.
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(b) Tracking attack.
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(c) Localising attack.

Figure 5.7: Mean estimation error vs. length of period.

In general, our main observation is that the length of observation periods has
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(b) Tracking attack.
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(c) Localising attack.

Figure 5.8: Mean estimation error vs. # PoIs.

different influence on the effectiveness of our attacks. In the de-anonymising attack,
the mean estimation error decreases along with with the length of observation
periods. This can be explained by the fact that users are more likely to travel
distinctive trajectories in a longer time period. In other words, user mobility
profiles can be better expressed in longer trajectories. In the tracking attack, we
have the opposite observation. The estimation error increases significantly when
users travel a longer time. This is because in a long period, users have more
flexibility to arrange their visits to PoIs as well as the corresponding stay time
in them. Compared to Figure 5.7(a) and 5.7(b), we can observe one difference in
Figure 5.7(c) which shows the error changes in the localising attack. For users’
daily activity trajectories the amount of travel time does not influence much the
adversary’s estimation on users’ locations. This is because we make use of the
higher order of Markov chains to model users’ transition between PoIs, which
leads to better prediction for the adversary. In addition, the consideration of
users’ patterns on stay time and transition time can help the adversary to infer
the right number of visited PoIs.

In Figure 5.8 we present the changes of the mean estimation error when users visit
different numbers of PoIs. We can see that in all our three attacks, the number of
visited PoIs has a similar impact to that of the length of observation periods. This
is because of the fact that a longer period indicates more PoIs that can be visited.
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In Figure 5.7 and 5.8, we also show the results when different reduced precisions
are used. We can see that the increase of reduced precision from 0.001 to 0.01
does not have a visible improvement for users’ location privacy. This is because
the exploration of PoIs already improves the adversary’s uncertainty and elimi-
nates the impact of reduced precision, especially when the precision is not reduced
significantly enough to counter the effect of PoIs known to the adversary.

From the above analysis, we conclude that our implementation of location pri-
vacy attacks can ensure the adversary with high probabilities to learn the correct
information about users’ movement. This demonstrates that our framework is ex-
pressive and our attacks are effective. In addition, we also conclude that users
should be cautious with their location privacy when enjoying the convenience of
LBSs through a comprehensive analysis on the sensitivity of our attacks to different
factors.

5.7 Related Work

It is widely recognised that the exposure of locations can threaten users’ privacy.
We briefly present the state-of-the-art in location privacy protection and attack
mechanisms.

LPPMs. In general, the LPPMs proposed in the literature can be divided into
two types: cryptography-based and non-cryptography-based. The former type of
LPPMs encrypt time-stamped requests to hide the involved spatio-temporal in-
formation from attackers and LBS providers [KSSM11]. Non-cryptography-based
LPPMs aim to protect location privacy by modifying LBS requests before send-
ing them to LBS providers. We can further categorise them into two classes –
anonymisation and obfuscation. Anonymising LPPMs breaks the link between
users and their locations by replacing users’ identities with pseudonyms. Obfus-
cating LPPMs modifies the spatial information in LBS requests to increase the
adversary’s uncertainty. Cloaking [LOYK11, WXH+12] and perturbation [MC09]
are two of the most used obfuscating methods. The former reduces the precision of
locations while the later adds other locations as noise. Request hiding and dummy
adding [MC09] are another two obfuscating methods in which some requests are
eliminated or issued as dummies. In this chapter, we focus on non-cryptography-
based LPPMs due to its popularity in location-based applications such as geo-social
networks.

Location privacy attacks & user profiles. In spite of the protection of LPPMs,
location privacy is still at stake especially when user profiles are extracted and
explored by the adversary. Mobility profiles are the most widely discussed user
profiles. So far, many models for user mobility profiles have been proposed and
we can categorise them into three types: inertia-based [SJLL00], Markov chain-
based [STT+12, AJN+13] and trajectory pattern-based [MPTG09, CPX13]. Inertia-
based models extract users’ speed and direction to calculate future locations. One
drawback of this type of models is that they do not work well in the prediction
of long-term movements. Markov chain-based models capture the dependence of
users’ destinations on previous moves while trajectory pattern-based models ex-
tract the frequently visited sequences of PoIs. These models have one defect in
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common that they do not explicitly consider the temporal information in user mo-
bility profiles, such as stay time at a PoI, as part of the models. Users also form
certain patterns with regard to requesting LBSs. Take request issuing time as an
example. In continuous LBSs users periodically issue requests and the exposure
time is thus available a priori. They are usually modelled as a set of discrete time
points [STBH11]. In order to model sporadic LBSs, Shokri et al. [STD+11] assign
a probability to each possible exposure time point representing the likelihood that
a user requests LBSs at that particular time.

Formal frameworks. Due to the diversity of user profiles and location privacy
attacks, a unified framework is needed to evaluate LPPMs. Shokri et al. [STBH11]
make the first significant attempt to construct such a framework. Their framework
provides means to formalise location privacy attacks and quantify location privacy
by the expected estimation error of the adversary. Later this framework is extended
and explored in many ways. It is adopted in [STT+12] to optimise the values
for the parameters of LPPMs against strategic attackers who know the LPPM
implementation and user mobility profiles. Herrmann et al. [AJN+13] refine this
work by considering the bandwidth constraints when dummy requests are issued
to perturb the real requests. In this chapter, we adopt and extend this framework
to formalise our new tracking attack.

5.8 Conclusion

We proposed and implemented a new tracking attack with the aim to provide
the adversary means to breach users’ activity privacy. Other attacks on location
privacy in [STBH11] can be formalised in our framework as well [CMP14]. Namely,
the places where users visits and the entering and stay time of these places can be
obtained through our attack in a direct way. To implement this attack, we proposed
a new model for user profiles. Compared to existing works on user mobility profiles,
our model can describe users’ patterns with respect to mobility and requesting LBS
in continuous time which is rather expressive. By making use of PoIs, our attack
has a reasonable efficiency and can be extended to cover more general cases with
little loss of accuracy.
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6

Conclusion and Future Work

6.1 Conclusion

This thesis studied two security requirements in location-based services: location
assurance and privacy. Location assurance is related to the trustworthiness of
users’ locations. Privacy is about the protection of the information contained in
LBS requests, namely, locations and queries.

Location assurance is threatened by spoofing attacks on GNSS systems. In these
attacks, receivers are fooled to calculate different locations from where they are ac-
tually located. Although eliminating spoofing is impractical and infeasible in the
near future, our research shows that users can detect spoofing by evaluating the
integrity of received GNSS signals. This evaluation subsequently helps a user to de-
termine the extent to which he can trust his locations. Users’ privacy is threatened
in LBSs because queries and locations reveal their personal information. Although
many privacy preserving methods are proposed, our research showed that users’
privacy is still at risk. For query privacy, we presented a unified framework which
can analyse the impact of different types of contextual information on query pri-
vacy. For location privacy, we present an attack that derives users’ movement
information from locations protected by existing location privacy preserving meth-
ods (LPPM). Such movement information can be used to effectively infer users’
activities.

The research questions that were raised in the introduction chapter have been
answered in Chapter 3, Chapter 4 and Chapter 5, respectively.

Research question 1: How can we access the integrity of GNSS signals?

To answer question 1, we made use of existing spoofing detection methods based on
signal integrity evaluation. We identified three problems with them and proposed
a trust framework to solve these problems. First, the reasoning is incorrectly im-
plemented in spoofing detection methods to reach a conclusion on signal integrity
from evidences. We clarified that it is abductive rather than abductive. Second,
uncertainty is inevitable by nature due to the unpredicted influence from environ-
ment and the unknown ability of the adversary in tuning GNSS signals. However
it is ignored in existing methods. We explored subjective logic to explicitly capture
the uncertainty and took it into account when evaluating signal integrity. Third,
due to the different evidences used in spoofing detection methods, conflicting con-
clusions exist. We designed three algorithms to resolve the conflict and generate
an overall evaluation of the integrity of received GNSS signals.

Research question 2: How can we protect users’ query privacy confronting the
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adversary with various contextual information?

To answer this question, we proposed a general approach which can be used to
analyse the threat to query privacy caused by the increasing amount of available
contextual information. We proposed a formal framework to achieve this goal. In
this framework, we divided contextual information into static and dynamic and
implemented our framework with one type of contextual information for each of
them, i.e., user profiles and query dependency. With a probabilistic distribution as
the result of the adversary’s attack, we defined a series of metrics based on infor-
mation theory. These metrics can not only be used to measure users’ query privacy
provided by protecting methods but also allow users to express their requirements
on query privacy flexibly and precisely. Based on our framework and metrics, we
developed new area generalisation algorithms which protect query privacy accord-
ing to users’ requirements.

Research question 3: How can we formally capture the threat to users’ location
privacy which targets at users’ activities?

To answer this question, we formally define an attack which targets at a new form
of users’ movement: activity trajectories. An activity trajectory provides sufficient
information to infer a user’s activities as well as the temporal information of each
activity, i.e., beginning time and ending time. To perform this attack, we proposed
a new model for user profiles, which models two types of user behaviour: moving
and LBS requesting. Based on a real-life trajectory dataset, we validated our model
for user mobility profiles. Through experiments, we showed that our attack and
new model for user profiles ensure a large chance for the adversary to learn the
correct activity trajectories.

6.2 Future Work

There are a few related research questions that deserve exploration but have not
been addressed. We present two of them in this section.

6.2.1 Adding behaviour perturbation

In Chapter 5, we proposed a model for user profiles which captures users’ patterns
with respect to movement and requesting LBSs. The model effectively helps at-
tackers infer users’ activities based on their exposed locations in LBSs. However,
there is an implicit assumption that users do not deviate from their ‘normal’ be-
haviour. In other words, they act as their profiles suggest. We did not take into
account the cases when users deviate from their normal behaviour, i.e., behaviour
perturbation. For instance, a user can go to a new restaurant which he has never
been to because of the suggestion of a friend. It is also quite normal that users’
agendas are interrupted by sudden incidents with higher priorities. Therefore, a
future direction of research is to add users’ behaviour perturbation into our model
so that to capture users’ behaviour in a more realistic way.
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6.2.2 Adding dependency between users

In Chapter 4 and Chapter 5, we have a common assumption that users are inde-
pendent of each other when they request LBSs and travel. This assumption is too
strong for practical scenarios. Consider that Alice is a close friend of Bob and they
usually hang out together. If we learn that Bob is at a party on Thursday night,
then we can infer that Alice is also at the part with a high confidence.

There have already been a few works addressing this problem [CBC+10, SH12,
OHSH14]. Shokri et al. take into account users’ co-location information posted on
social networks (e.g., photos) and calculate users’ locations based on both users’
mobility profiles and the locations where users are co-located. These studies sug-
gest an interesting research direction which makes uses of the influence of friendship
on a user’s movement. Social networks such as Facebook, LinkedIn and Foursquare
provide us sources to learn a user’s friends and the patterns with respect to their
interactions. A promising way to advance our research is to classify a user’s friends
according to the types of activities which they usually perform with the user, e.g.,
entertainment and sports. Although mobile data have been studied as subsidiary
information to infer users’ friendship networks [EPL09], more research is needed
to study the impact of users’ friends on their mobility.
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