
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 1

ASSA-PBN: A Toolbox for
Probabilistic Boolean Networks

Andrzej Mizera, Jun Pang, Cui Su, and Qixia Yuan

Abstract—As a well-established computational framework, probabilistic Boolean networks (PBNs) are widely used for modelling,
simulation, and analysis of biological systems. To analyse the steady-state dynamics of PBNs is of crucial importance to explore the
characteristics of biological systems. However, the analysis of large PBNs, which often arise in systems biology, is prone to the
infamous state-space explosion problem. Therefore, the employment of statistical methods often remains the only feasible solution. We
present ASSA-PBN, a software toolbox for modelling, simulation, and analysis of PBNs. ASSA-PBN provides efficient statistical
methods with three parallel techniques to speed up the computation of steady-state probabilities. Moreover, particle swarm
optimisation (PSO) and differential evolution (DE) are implemented for the estimation of PBN parameters. Additionally, we implement
in-depth analyses of PBNs, including long-run influence analysis, long-run sensitivity analysis, computation of one-parameter profile
likelihoods, and the visualisation of one-parameter profile likelihoods. A PBN model of apoptosis is used as a case study to illustrate
the main functionalities of ASSA-PBN and to demonstrate the capabilities of ASSA-PBN to effectively analyse biological systems
modelled as PBNs.

Index Terms—Probabilistic Boolean networks, modelling, simulation and analysis of biological networks, discrete-time Markov chains,
steady-state analysis, parameter estimation, long-run analysis.

F

1 INTRODUCTION

S YSTEMS biology aims to model and analyse biological sys-
tems from a holistic perspective in order to provide a compre-

hensive, system-level interpretation of cellular behaviour. Com-
putational modelling of a biological system plays a key role in
realising this purpose. It provides means to build a computa-
tional/mathematical model that complies with available biological
knowledge and to identify missing biological information using
formal reasoning and tools. However, it faces significant chal-
lenges when modelling real-life biological systems due to the huge
size of their state space.

Among all the existing modelling frameworks, probabilistic
Boolean networks (PBNs) [1], [2] are widely used for modelling
large-scale biological systems. As an extension of Boolean net-
works, PBNs inherit appealing features of Boolean networks such
as being simple yet effective at modelling biological systems
such as gene regulatory networks (GRNs). In addition, PBNs
are capable of handling uncertainties both on the data and model
selection levels. The framework enables the analysis of the global
long-run network dynamics with the tools and methods of the rich
mathematical theory of discrete-time Markov chains (DTMCs).
For instance, it provides means to quantify the long-run relative in-
fluences of network elements in their interactions with each other
and to quantify long-run sensitivities of the system under study
to various perturbations. All these characteristics are expressed

• A. Mizera is with the Allergology - Immunology - Inflammation Research
Unit, Department of Infection and Immunity, Luxembourg Institute
of Health. J. Pang and Q. Yuan are with the Computer Science and
Communications Research Unit, University of Luxembourg. C. Su is
with the Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg. Postal address: 6, avenue de la Fonte, L-4364
Esch-sur-Alzette, Luxembourg.
E-mail: andrzej.mizera@lih.lu, jun.pang@uni.lu, cui.su@uni.lu,
qixia.yuan@uni.lu

Manuscript received XX; revised XX.

in terms of specific steady-state probabilities. Therefore, efficient
computation of steady-state probabilities is of crucial importance
to the analysis of PBNs.

It is well studied how to compute the steady-state distributions
of small PBNs (i.e. PBNs with less than 20 nodes) with numerical
methods [2]. However, due to their characteristics, utilisation of
these methods in the analysis of large systems is hampered by
the infamous state-space explosion problem. A few statistical
methods, such as Monte Carlo methods [3], have been proposed in
the literature to deal with large PBNs. Nevertheless, the applica-
bility of the existing methods/tools to PBNs is still limited by the
network size, e.g. to PBNs with less than circa 100 nodes [4]. To
make PBNs a generally accepted effective mathematical modelling
framework for biological systems, there is a demand for a user-
friendly tool which can handle large PBNs efficiently both in terms
of computational time and memory usage requirements.

In this paper, we present ASSA-PBN, a software toolbox
designed for modelling, simulation, and analysis of PBNs. For
modelling, ASSA-PBN supports loading and saving PBNs in
both high-level ASSA-PBN format and the BN/PBN MATLABr

toolbox [5] format. In addition, users can generate random PBNs
according to their requirements. In terms of simulation, ASSA-
PBN provides an efficient simulator, which can overcome the
network size limitation. The analyser module of ASSA-PBN pro-
vides steady-state probability computation, parameter estimation,
long-run influence analysis, long-run sensitivity analysis, compu-
tation of one-parameter profile likelihoods, and the visualisation of
one-parameter profile likelihoods to explore the characteristics of
PBNs. Computation of steady-state probabilities plays a crucial
role among all the analysis methods as it forms the basis for
all of them. In particular, ASSA-PBN implements numerical
methods for exact analysis of small PBNs and statistical methods
for approximate analysis of large PBNs. The current version
supports three different statistical methods: the perfect simulation

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 2

algorithm [6], the two-state Markov chain approach [7], [8], and
the Skart method [9]. To speed up the computations, ASSA-PBN
additionally provides three parallel techniques: structure-based
parallelisation, CPU-based parallelisation, and GPU-based paral-
lelisation. These techniques facilitate steady-state computations
that require generation of long trajectories, i.e. ones consisting of
billions of states. Experimental results show that ASSA-PBN is
capable of handling PBNs with thousands of nodes.

Compared to the previous version [8], [10], we add some new
functionalities to ASSA-PBN. Firstly, six asynchronous update
modes are implemented and the new version of ASSA-PBN sup-
ports the analysis of both synchronous and asynchronous PBNs.
Secondly, in addition to the already existing particle swarm op-
timisation (PSO) method, the differential evolution (DE) method
is implemented for parameter estimation of PBNs. Moreover, in
its new version ASSA-PBN displays a fitness heat map which is
a graphical representation of the quality of the fit of the model
to the experimental data: colours of the individual entries in the
heat map matrix reflect the relative fitness of the corresponding
observable of the model to the data. Thirdly, ASSA-PBN supports
the long-run sensitivity analysis with respect to a 1-bit function
perturbation. Users can interactively flip the value of a selected
predictor function in a single entry in the function’s truth table and
compute the long-run sensitivity with respect to this perturbation.
Last but not least, we implement the computation and visualisation
of one-parameter profile likelihoods for PBN models, which con-
stitutes a first step towards providing a functionality for parameter
identifiability analysis.

The paper is structured as follows. We present preliminaries on
DTMCs and PBNs in Section 2 and explain the tool architecture
in Section 3. The three modules of ASSA-PBN, i.e. the modeller,
the simulator, and the analyser, are introduced respectively in Sec-
tions 4, 5, and 6, with a focus on the new features and outstanding
methods. Since the analyser module contains more functionalities
and new features than the other modules, we explain this module
in more details. We then demonstrate the functionalities and the
performance of our toolbox on a large real-life biological model
in Section 7. Finally, we conclude with some directions for future
work in Section 8.

2 PRELIMINARIES

This section recalls the preliminary notions on DTMCs and PBNs
needed in the course of the paper.

2.1 Finite discrete-time Markov chains (DTMCs)
A discrete-time Markov chain (DTMC) is defined as (S,s0,P),
where S is a finite set of states, s0 ∈ S represents the initial state
and P : S×S→ [0,1] is a state transition matrix. For any two states
s,s′ ∈ S, P(s,s′) is the transition probability to transfer from state
s to state s′. P(s,s′) satisfies P(s,s′) ≥ 0 and ∑s′∈S P(s,s′) = 1.
A DTMC has an important property that the next state is indepen-
dent of the past states given the present state. Formally, P(Xt+1 =
st+1 |Xt = st ,Xt−1 = st−1, . . . ,X0 = s0) = P(Xt+1 = st+1 |Xt = st)
for all s0, . . . ,st ,st+1 ∈ S. Here, we consider time-homogenous
Markov chains, i.e. chains where P(Xt+1 = s′ |Xt = s), denoted
P(s,s′), is independent of t for any states s,s′ ∈ S. If the number
of states of a DTMC is n, πππ t = [π1

t ,π
2
t , . . . ,π

n
t] denotes the state

probability distribution of the DTMC at some time point t. All the
entries in πππ t are non-negative and sum to one. The ith component
of πππ t represents the probability that the chain is in state i at time

t. The probability distribution at time point t +1 can be computed
by multiplying πππ t by P, formally πππ t+1 = πππ tP. We call πππ t the
stationary distribution of the DTMC, if it satisfies πππ tP = πππ t .

A path of length m is a sequence s1 → s2 → ··· → sm such
that P(si,si+1) > 0 and si ∈ S for i ∈ {1,2, . . . ,m}. State s′ ∈ S is
reachable from state s ∈ S if there exists a path such that s→
·· · → s′. A strongly connected component (SCC) is a maximal
subset T of S, such that for each pair of states in T , one state is
reachable from the other. A DTMC is irreducible if all the states
form a single SCC. The period of a state s ∈ S is d(s) = gcd({n ∈
N+ : P(Xn = s | X0 = s) > 0}), and we use gcd, i.e. the greatest
common divisor of two or more integers, to denote the function for
computing the greatest common divisor of a set of integers. Thus,
starting from state s, the chain can return to s only at multiples of
the period d, and d is the largest one of such integers. If all the
states of the DTMC are of period one, then the DTMC is called
aperiodic. A finite DTMC can be viewed as ergodic if it is both
irreducible and aperiodic.

According to the famous ergodic theorem for DTMCs [11],
an ergodic chain possesses a unique stationary distribution, re-
ferred to as the steady-state distribution, and it is equal to the
limiting distribution given by limn→∞ πππ0 Pn, where πππ0 is any
initial probability distribution on S. In consequence, the limiting
distribution for an ergodic chain is independent of the choice of
πππ0. It can be estimated by starting from any initial probability
distribution on S and iteratively multiplying it by P.

For a more systematic and detailed explanation of the concepts
related to DTMCs, we refer to [11].

2.2 Probabilistic Boolean networks (PBNs)
A probabilistic Boolean network G(V,F) consists of a set of
binary nodes (commonly referred to as genes) V = {x1,x2, . . . ,xn}
and a list of sets F = (F1,F2, . . . ,Fn), where n is the number
of nodes. Each node xi ∈ V , i = 1,2, . . . ,n, has associated a set
Fi ∈F of Boolean functions, referred to as predictor functions:
Fi = { f (i)1 , f (i)2 , . . . , f (i)

`(i)}, where `(i) is the number of predictor

functions of node xi. Each f (i)j ∈ Fi is a Boolean function de-
fined with respect to a subset of V referred to as parent nodes
for f (i)j and denoted Pa(f (i)j). For each node xi ∈ V there is

a probability distribution on Fi: each predictor function f (i)j ∈ Fi

has an associated selection probability denoted c(i)j ; it holds that

∑
`(i)
j=1 c(i)j = 1. We denote by xi(t) the value of node xi at time

point t ∈ N. The state space of the PBN is S = {0,1}n and its
size is 2n. The state of the network at time point t is determined
by xxx(t) = (x1(t),x2(t), . . . ,xn(t)). We consider in this paper inde-
pendent PBNs where Boolean functions for different nodes are
chosen independently of each other. To update the state of a PBN,
there are in general two update modes: synchronous mode and
asynchronous mode, of which we give detailed descriptions as
follows.

Synchronous PBNs. In the synchronous mode, the states of
all the nodes are updated at the same time. At time point t,
the transition from xxx(t) to xxx(t + 1) is conducted by randomly
selecting a predictor function for each node xi from Fi and by
synchronously updating the node values in accordance with the
selected functions. With the assumption of independence among
the choice of Boolean functions for individual nodes, there exist
N = ∏

n
i=1 `(i) different ways in which the predictor functions

can be selected for all n nodes. These combinations are called

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 3

realisations of the PBN and are represented as n-dimensional
function vectors fff k = (f (1)k1

, f (2)k2
, . . . , f (n)kn

) ∈ F1 × F2 × . . .× Fn,
where k ∈ {1,2, . . . ,N} and ki ∈ {1,2, . . . , `(i)}. A realisation
selected at time t is referred to as FFF t . Due to independence,
P(fff k) = P(FFF t = fff k) = ∏

n
i=1 c(i)ki

. The state of the PBN at time
point t +1 is determined by: xxx(t +1) = FFF t(xxx(t)).

Asynchronous PBNs. The asynchronous mode [12] consists of
six different submodes, presented as follows:

• For the ROG (a random selection of one gene) mode, at
each time point t (t ∈ N), one gene is randomly selected
for state update and the other genes remain unchanged. In
this mode, the same gene can be updated in consecutive
time steps.

• For the RMG (a random selection of m genes with a fixed
m) mode, at each time point t (t ∈N), m distinct genes are
randomly selected for simultaneous state update and the
other genes remain unchanged. The value of m is chosen
once prior to the system run from the range 1 to n and kept
fixed for all time steps. Within one time step a particular
gene cannot be updated more than once. If m is 1, RMG is
the same as the ROG mode.

• For the RMG-RM (a random selection of m genes with
a random m) mode, at each time point t (t ∈N), m distinct
genes are randomly selected for simultaneous state update
and the other genes remain unchanged. The only difference
of this mode with respect to RMG is that the value of m is
not fixed but randomly selected from 1 to n at each time
step.

• For the RMG-RO (a random selection of m genes in
a random order with a fixed m) mode, at each time
point t (t ∈ N), m distinct genes are randomly selected
for sequential state update and the other genes remain
unchanged. The value of m is chosen once prior to the
system run from the range 1 to n and kept fixed for all
time steps. The states of the m chosen genes are updated
one-by-one in a random order without repetition. In result,
the update of the next gene may be influenced by the new
states of the previously updated genes in this time step.

• For the RMG-RO-RM (a random selection of m genes
in a random order with a random m) mode, at each time
point t (t ∈ N), m distinct genes are randomly selected
for sequential state update and the other genes remain
unchanged. The only difference of this mode with respect
to RMG-RO is that the value of m is not fixed but randomly
selected from 1 to n at each time step.

• For the AG-RO (all genes in a random order) mode, at
each time point t (t ∈N), the states of all genes are updated
sequentially in a random order without repetition. If m is
equal to n, the RMG-RO mode is equivalent with AG-RO.

PBNs with perturbations. The concept of perturbations is
introduced to PBNs as a probability parameter p, where 0 <
p < 1, and it is characterised by a random perturbation vector
γ = (γ1,γ2, . . . ,γn), where γi ∈ {0,1} and P(γi = 1) = p for all t
and i ∈ {1,2 . . .n}. Perturbations provide an alternative way to
regulate the dynamics of a PBN: the next state is determined
as xxx(t + 1) = FFF t(xxx(t)) if γγγ(t) = 0 and as xxx(t + 1) = xxx(t)⊕ γγγ(t)
otherwise, where ⊕ is the exclusive or operator for vectors.
The probability that no node is perturbed is (1− p)n, and the
probability that at least one node is perturbed is 1− (1− p)n. A

PBN with perturbations ensures that the chain simulated from this
PBN will never get stuck in any state, and thus the corresponding
DTMC is irreducible and aperiodic. Therefore, the dynamics of
a PBN with perturbations can be viewed as an ergodic DTMC [13].
This allows us to use the theory of ergodic Markov chains to
study the dynamics of a PBN with perturbations. In a PBN with
perturbations, the transition probability from state s to state s′ can
be expressed as

P(s,s′) = (1− p)n
∑

N
k=11[fff k(s)=s′]P(fff k)+

(1−1[s=s′])pη(s,s′)(1− p)n−η(s,s′),
(1)

where 1 is the indicator function and η(s,s′) is the Hamming
distance between states s,s′ ∈ S.

According to the ergodic theory, adding perturbations to any
PBNs ensures the long-run dynamics of the resulting PBN is
governed by a unique limiting distribution, convergence to which
is independent of the choice of the initial state. However, the
perturbation probability value should be chosen carefully, not to
dilute the behaviour of the original PBN. In this way, although the
‘mathematical trick’ introduces some noise to the original system,
it allows to significantly simplify the analysis of the steady-state
behaviour.

As an example, let us consider the PBN given in Figure 1. This
PBN consists of 3 nodes V = {x1,x2,x3} and F = (F1,F2,F3),
where F1 = { f (1)1 }, F2 = { f (2)1 , f (2)2 }, and F3 = { f (3)1 , f (3)2 }. The
Boolean functions and the selection probabilities are shown in
Figure 1a. The corresponding truth table is shown in Figure 1b.
Figure 1c shows the state transition graph of the PBN without
perturbation in synchronous mode.

Node influence. The concept of influence in a PBN quantifies the
impact of parent nodes on a target node [13], [14]. It is based on
the notion of the partial derivative of a Boolean predictor function
f with respect to variable x j (1≤ j ≤ n) defined as

∂ f (x)
∂x j

= f (x(j,0))⊕ f (x(j,1)), (2)

where ⊕ is addition modulo 2 (exclusive OR) and for l ∈ {0,1}
x(j,l) = (x1,x2, . . . ,x j−1, l,x j+1, . . . ,xn). (3)

Then, the influence of node x j on function f is the expected
value of the partial derivative with respect to some probability
distribution D(x):

I j(f) = ED

[
∂ f (x)
∂x j

]
= P

{
∂ f (x)
∂x j

= 1
}
= P{ f (x(j,0)) 6= f (x(j,1))}.

(4)
Let c(i)k for k = 1,2, . . . , `(i) be the corresponding selection

probability of Boolean function f (i)k and let I j(f (i)k) represent the
influence of node x j on the Boolean function f (i)k . Then, the
influence of node x j on node xi is defined as:

I j(xi) =
l(i)

∑
k=1

I j(f (i)k) · c(i)k . (5)

If the distribution D(x) is the steady-state distribution of the
PBN, the influence given by Equation (5) is the long-run influence
of node x j on node xi.

Long-run sensitivities. Long-run sensitivities quantify the extent
of changes in the long-run behaviour of a system when certain
modifications are introduced into it. We consider two standard

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 4

node name function probability
x1 f (1)1 = x1∨ x2 1
x2 f (2)1 = ¬x3∧ (x2∨ x1) 0.3
x2 f (2)2 = ¬x1∧ x2∧ x3 0.7
x3 f (3)1 = ¬x1∧ x2 0.4
x3 f (3)2 = x1∧ x2∧¬x3 0.6

(a) The Boolean functions and their selection
probabilities of the 3-node PBN.

x1x2x3 f (1)1 f (2)1 f (2)2 f (3)1 f (3)2

000 0 0 0 0 0
001 0 0 0 0 0
010 1 1 0 1 0
011 1 0 1 1 0
100 1 1 0 0 0
101 1 0 0 0 0
110 1 1 0 0 1
111 1 0 0 0 0

c(i)j 1 0.3 0.7 0.4 0.6

(b) The truth table corresponding to the Boolean
functions of the PBN.

000 100

110

101 111

010001 011

(c) The state transition graph of the PBN in
synchronous mode.

Fig. 1: The Boolean functions, the truth table, and the state
transition graph of a PBN without perturbations in synchronous

mode.

long-run sensitivities: of a predictor function and of a node
(gene) [14]. We also introduce two other variants of long-run
sensitivities by slightly modifying the original definitions in [15]:
with respect to a 1-bit function perturbation and with respect to
a selection probability perturbation.

Definition 2.1. The sensitivity of a predictor function at state x is
defined as

sx(f) =
n

∑
j=1

f (x(j,0))⊕ f (x(j,1)). (6)

Then the average sensitivity of a predictor function is defined with
respect to a probability distribution D(x) as

s(f) = ED[sx(f)] =
n

∑
j=1

ED[f (x(j,0))⊕ f (x(j,1))] =
n

∑
j=1

I j(f). (7)

Thus, the average sensitivity of a predictor function is the sum
of the influences of each node on this predictor function.

The sensitivity of a node is defined in terms of the influences
of one node on another.

Definition 2.2. The average sensitivity of a node xi is defined as

s(xi) =
n

∑
j=1

I j(xi). (8)

If the distribution D(x) is the steady-state distribution of
a PBN, then the average sensitivity of a predictor function/node
is referred to as the long-run average sensitivity of a predictor
function/node.

Definition 2.3. The long-run sensitivity with respect to a 1-bit
function perturbation is defined for any predictor function f (i)k
(i ∈ {1,2, . . . ,n}, k ∈ {1,2, . . . , `(i)}) and any state of its parent
nodes x

Pa(f (i)k)
as

s f [f
(i)
k ,x

Pa(f (i)k)
] = ‖π̃[f (i)k ,x

Pa(f (i)k)
]−π‖l , (9)

where π̃[f (i)k ,x
Pa(f (i)k)

] is the steady-state distribution of the per-
turbed PBN which has a single flipped value in the truth table of
f (i)k at x

Pa(f (i)k)
, ‖ · ‖l denotes the l-norm, and π is the steady-state

distribution of the original PBN.

Definition 2.4. The long-run sensitivity with respect to a selection
probability perturbation is defined as

sp[c
(i)
j = ρ] = ‖π̃[c(i)j = ρ]−π‖l , (10)

where ρ ∈ [0,1] is the new value we set for c(i)j . The selec-
tion probability of the jth predictor function for node xi is
replaced with c̃(i)j = ρ and all c(i)k selection probabilities for
k ∈ I− j = {1,2, . . . , j−1, j+1, . . . , `(i)} are replaced with

c̃(i)k = c(i)k +(c(i)j − p) · c(i)k

∑l∈I− j c(i)l

. (11)

The selection probabilities for other nodes remain unchanged.
‖ · ‖l denotes the l-norm, π and π̃[c(i)j = ρ] are the steady-
state distribution of the original PBN and the perturbed PBN,
respectively.

Notice that Definition 2.3 and Definition 2.4 are similar to the
definitions in [15] of the long-run sensitivity with respect to a 1-
bit function perturbation and the long-run sensitivity with respect
to any probabilistic parameter, respectively. There are however
some subtle differences. In the above definition of the long-run
sensitivity with respect to a 1-bit function perturbation, the flip
of the function value is done for a single entry in the function’s
truth table. In consequence, the change in general is done not
for a single state of a PBN as in [15], but for all states of the
network in which the parent nodes of the considered predictor
function have values that correspond to the flipped entry. The
long-run sensitivity with respect to any probabilistic parameter
of [15] is defined as an l-norm of the partial derivative of the
steady-state distribution with respect to the considered parameter.
Since explicit computation of the derivative is not feasible for large
networks, for which ASSA-PBN is designed, we define the re-
spective long-run sensitivity as the l-norm of the difference of the
perturbed and unperturbed network steady-state distributions. In
this way, our definition is not limited to infinitesimal perturbations
in the parameter value, but allows for arbitrarily large changes.

Density of PBNs. The density of a PBN is measured with the
number of its parent nodes and predictor functions. The density of
a PBN G is defined as D(G) = 1

n ∑
NF
i=1 ω(i), where n is the number

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 5

Fig. 2: Interface after loading a PBN into ASSA-PBN.

Fig. 3: The architecture of ASSA-PBN. The input files can be
one or more of the following files: PBN definition files, property
specification files, parameter specification files, and experimental

data files.

of nodes, ω(i) is the number of parent nodes for the ith predictor
function and NF is the total number of predictor functions.

3 TOOLBOX ARCHITECTURE

The usability of existing methods/tools for PBNs, such as
optPBN [4] and the BN/PBN toolbox for MATLABr developed
by Lähdesmäki and Shmulevich [5], is restricted by the network
size. For instance, as discussed in [4], optPBN can only partially
analyse a 96-node PBN due to its computational efficiency issues,
leaving some hypotheses regarding the network characteristics
unverified. The BN/PBN toolbox applies numerical methods for
computing steady-state probabilities for PBNs (see Section 7 for
a more detailed discussion), which are not scalable and are im-
practical for the analysis of large biological networks. Therefore,
we present ASSA-PBN [8], [10], a toolbox for basic and in-depth
analysis of PBNs, which in particular provides several efficient
methods for analysing large PBNs.

ASSA-PBN provides both a graphical user interface (GUI)
and a command line interface. As shown in Figure 2, the interface
is divided into three parts: the menu bar, three panels and the
status bar. The panels are used to display PBN specification and
the results of simulation and analysis.

The architecture of ASSA-PBN consists of three main mod-
ules: a modeller, a simulator, and an analyser, as shown in
Figure 3. The three modules allow users to construct, simulate
and analyse a PBN model, respectively.

The main function of the modeller is to load a PBN model
from a given input file and to create its internal representation in
memory or to save a PBN model in an output file. In addition, the
modeller facilitates the generation of a random PBN in accordance
with a user’s requirements. ASSA-PBN supports the loading and
saving of PBN models in either the ASSA-PBN format or the
BN/PBN toolbox format.

The simulator produces trajectories (also called samples) of
the loaded/generated PBN. Since this process is not based on the
transition matrix of the loaded PBN, it does not suffer from the
state-space explosion problem even for large PBNs. The produced
trajectories are presented to the modeller and/or serve as input for
further analysis.

The analyser provides several functionalities for the analysis of
PBNs and different functionalities require different input files. The
core function is the computation of the steady-state probability
for a subset of states which is specified in a property file. The
computation can be performed in either a numerical manner,
suitable for small PBNs, or in a statistical manner, appropriate
for large PBNs. The numerical methods are based on the state
transition matrix supplied by the modeller; while the statistical
methods take as input trajectories produced by the simulator. The
statistical methods operate in an iterative way and extensions of
the trajectories are requested from the simulator in each iteration
until the sample size is large enough to obtain results satisfying
the specified precision requirements.

Steady-state probabilities can be utilised by the analyser to
estimate selection probability parameters of a PBN model to make
it fit experimental steady-state measurements. Further, optimised
parameter values are returned to the modeller. Moreover, the
analyser facilitates the evaluation of long-run influences and sensi-
tivities of the PBN. The analysis results can be used to verify and
optimise the original model. For the parameter estimation and the
one-parameter profile likelihood analysis, the input files include

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 6

the PBN definition file, the parameter specification file, and the
experimental data file. The parameter specification file specifies
the indices of nodes which function selection probabilities are to
be fitted and the experimental data file provides lab measurements.
Details of the modules are described in the next three sections.

4 MODELLER

The modeller of ASSA-PBN provides two ways for model con-
struction: loading a PBN from a model definition file or generating
a random PBN (e.g. for benchmarking and testing purposes)
complying with users’ requirements [10].

Users can load a PBN from a file either in ASSA-PBN model
definition format or BN/PBN toolbox format. The ASSA-PBN
model definition file provides various information on a PBN (see
Section 2.2), including the update mode, the number of nodes,
the Boolean functions for each node, the selection probability
for each predictor function and the perturbation rate. ASSA-
PBN supports the synchronous update mode and six types of
asynchronous update modes. The details on update modes can
be found in Section 2.2. A predictor function can be specified in
two ways: either in the form of a truth table or with a high-level
PBN definition format, where the predictor function is given as
its semantic logical formula. The latter makes the node update
semantics more explicit and evident. The GUI of ASSA-PBN
also provides means to explore and inspect the information on
predictor functions, which allows users to check the details of the
model structure and semantics.

Figure 2 shows the interface after a PBN has been loaded into
ASSA-PBN. The top-left panel displays general information on
the loaded PBN, including its number of nodes, network density,
updating mode, perturbation rate, and details on its predictor
functions. The function details are shown as a tree structure in the
panel. After selecting a predictor function, its truth table is shown
in the bottom panel. The top-right panel additionally contains
information on the the PBN model loading time.

When generating a random model, users provide the node
number and they may specify some optional parameters includ-
ing the maximum (minimum) number of predictor functions for
a node, the maximum (minimum) number of parent nodes for
a predictor function. The users may modify the default value for
the perturbation rate.

Additionally, ASSA-PBN allows the user to disable per-
turbations for specified nodes. This feature is needed for the
modelling of cellular systems where environmental conditions are
kept constant, i.e. model input nodes should have fixed values, or
modelling of mutants where certain nodes are inactivated or over-
activated. This feature should however be used with care as it may
cause the PBN’s underlying DTMC to become non-ergodic.

ASSA-PBN stores the PBN model in memory with use of
dedicated data structures which facilitate efficient simulation.

5 SIMULATOR

At present, statistical approaches are practically the only viable
option for the analysis of long-run dynamics of large PBNs due
to the infamous state-space explosion problem. Such methods
however necessitate generation of long trajectories. Therefore, the
simulator module is designed to efficiently produce trajectories
with the given initial states (either provided by the user or
randomly set by ASSA-PBN).

The simulation can be performed with a number of differ-
ent update modes supported by ASSA-PBN (see Section 2.2),
including synchronous, asynchronous ROG, asynchronous RMG
and other asynchronous modes. When simulating the next state of
a PBN, the simulator first checks whether perturbation should be
applied. If yes, the simulator updates the current state according
to the perturbation. Otherwise, the simulator updates the state of
certain nodes following the update mode. For synchronous update
mode, every node in the PBN is updated: a predictor function of
each node is chosen according to its selection probability and the
state of the node is updated with the chosen predictor function.
For asynchronous update mode, depending on which submode is
chosen, the states of randomly selected nodes are updated. Notice
that the state transition matrix is not needed in the simulation
process, which makes ASSA-PBN capable of managing large
PBNs. The visualisation of the simulation result is supported
in ASSA-PBN. Time-course evolution of the values of selected
nodes can be displayed.

Figure 4 shows the simulator interface. Users can set trajectory
length and the initial state. For example, for a three-node PBN
the initial state (x2 = 0,x1 = 1,x0 = 1) is set by typing the
space-delimited sequence 0 1 1 in the ‘Initial State’ field. If the
checkboxes for update modes are left unchecked, the update mode
defined in the definition file is used. By checking the ‘Show the
simulation graph’ box, a graph view of the simulation results is
shown in a separate window once a trajectory has been generated.

As mentioned above, the analysis of the long-run dynamics of
large PBNs often requires generation of long trajectories. There-
fore, efficiency of the simulation is crucial to enable the analysis
of large biological networks in a reasonable computational time.
To achieve this goal, ASSA-PBN offers several ways to speed
up the simulation, including the alias method [16], the structure-
based parallelisation technique [17], CPU-based parallelisation
technique [18], and GPU-based parallelisation technique [19].
Note that the structure-based parallelisation and the GPU-based
parallelisation techniques work for synchronous PBNs only.

The consecutive state is obtained by applying properly selected
predictor functions to each of the nodes in a PBN. For efficiency
reasons, the selection is performed with the alias method. The
simulator of ASSA-PBN provides two modes: the global alias
mode and the local alias mode. In the global mode, a single
alias table for the joint probability distribution on the all com-
binations of predictor functions for all PBN nodes is built. In
the local mode, individual alias tables for the distributions on
predictor functions for each node are constructed. In both cases
it is implicitly assumed that the predictor functions for individual
nodes are selected independently of each other. In the global mode,
two random numbers are needed to perform predictor functions
selection for all the nodes at once, while in the local mode the
number of random numbers needed is twice the number of nodes.
Compared to the local mode, the simulation with the global mode
is faster, but more expensive in terms of memory usage for storage
of the large alias table. As a consequence, in general the local
mode is recommended for large networks.

The structure-based parallel technique [17] can simplify the
PBN model with synchronous update mode by reducing the
network size and divide nodes into groups for parallel simulation.
This is designed for multi-core CPU/multiple CPU architectures
and only suits synchronous update mode. The trajectory-level
parallel technique is realised both on the CPU and GPU [18],
[19]. In terms of the CPU-based parallel technique [18], we

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 7

Fig. 4: Interface of the simulator window in ASSA-PBN.

combine the Gelman & Rubin method with the two-state Markov
chain approach or the Skart method, respectively. The Gelman
& Rubin method is used to monitor whether all the trajectories
have approximately converged to the steady state, while the two-
state Markov chain approach and the Skart method are used to
determine the sample size required for steady-state probabilities
computation. In terms of the GPU-based parallel technique [19],
we parallelise the simulation process using multiple cores of the
GPU. In order to improve the efficiency of this technique, we also
develop a dynamical data arrangement mechanism to cope with
PBNs of different sizes and we introduce a specific way of storing
Boolean functions and states of a PBN in the GPU memory. The
details of the three parallel techniques can be found in the next
section.

Currently, these three parallel techniques are only available
for the analyser module of ASSA-PBN. Since the computation
of steady-state probabilities usually requires long trajectories, the
main purpose of the three parallel techniques is to speed up the
simulation process greatly. The simulator module is mainly used
to generate short trajectories for users to visualise the simulation
result and check the correctness of the PBN.

6 ANALYSER

The analyser of ASSA-PBN provides four main functionalities:
computation of steady-state probabilities for specified subsets
of states, computation of long-run influences and various types
of long-run sensitivities, parameter estimation, computation of
one-parameter profile likelihoods, and the visualisation of one-
parameter profile likelihoods. Computation of steady-state prob-
abilities forms the basis for the other three tasks. The computed
steady-state probabilities and the long-run influences/sensitivities
provide insight into the characteristics of a given PBN model,
which in turn helps to gain a better understanding of the biological
system under study. Parameter estimation optimises the values
of estimated parameters of the constructed PBN model to fit
steady-state experimental measurements. Finally, one-parameter
profile likelihoods provide insight into the structural and practical
identifiability of considered model parameters.

6.1 Computation of steady-state probabilities

In the following, we first describe a few methods that ASSA-PBN
implements for computing steady-state probabilities of PBNs.

B

A D

E

C

0 1

(a) Original DTMC

0 1

↵

�

1��1�↵

(b) Two-state DTMC

Fig. 5: Conceptual illustration of the idea of the two-state Markov
chain construction.

Then, we briefly present three parallel techniques that were re-
cently developed to improve the efficiency of such computations.

Implemented methods. The analyser of ASSA-PBN provides
two iterative numerical methods for exact computation of the
steady-state distributions of PBNs, up to a pre-specified con-
vergence criterion and numerical precision. In particular, these
methods are the Jacobi method and the Gauss-Seidel method.
Moreover, the analyser provides three statistical methods for
computation of steady-state probabilities: the perfect simulation
algorithm [20], the Skart method [9], and the two-state Markov
chain approach [7]. Among all the methods, the two-state Markov
chain approach is the preferred method for the computation of
steady-state probabilities of large-scale PBNs.

Starting from a random initial distribution on the state space
of a PBN, iterative numerical methods compute the steady-state
distribution by iteratively performing matrix-vector multiplication
with use of the state transition matrix. Once the required accuracy
threshold is reached, the iterative process terminates and the final
steady-state probability distribution is returned. Since iterative
numerical methods are based on the state transition matrix, they
are expensive both in term of memory and computational time
consumption, hence applicable only to small-size PBNs (often
with less than 20 nodes).

The perfect simulation algorithm [20] draws independent sam-
ples which are distributed exactly in accordance with the steady-
state distribution of a DTMC. In consequence, it avoids problems
related to the convergence to the steady-state distribution or non-
zero correlation between consecutive states in a trajectory. The
current implementation is in-line with the ‘Functional backward-
coupling simulation with aliasing’ algorithm provided in [6]. This
algorithm shortens the average coupling time significantly when
only a subset of states is of interest. Nevertheless, due to the
nature of this method, each state of the state space needs to be
considered at each step of the coupling scheme. Therefore, this
approach only suits medium-size PBNs, and large PBNs are out of
its scope. Unfortunately, since PBNs with perturbations are non-
monotone systems, the very efficient monotone version of perfect
simulation [21], in which only a small subset of the whole state
space needs to be considered, is of no use in this context.

The Skart method is a non-overlapping batch means method
that can be used to estimate the steady-state probabilities of
a DTMC from a simulated trajectory of the DTMC. The Skart
method partitions a long simulation trajectory into batches and
constructs an interval estimate with the batch means. Then the
interval estimate is used to decide whether a steady-state distribu-
tion is reached or not. If not, the simulator will be called again to
extend the trajectories. For more details on this method we refer
to the original publication [9].

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 8

The two-state Markov chain approach [7] is a method for
estimating the steady-state probability of a subset of states of
a DTMC. This approach splits the state space of an arbitrary
DTMC into two disjoint parts, referred to as two meta states. One
of the meta states consists of the states of interest, numbered 1, the
other meta states, numbered 0, is the complement of meta state 1.
In this way, an arbitrary DTMC is abstracted into a binary (0-1)
stochastic process, which can be approximated with a first-order,
two-state DTMC that is composed of two states with transition
probabilities α and β between them. Figure 5 illustrates the
transformation process of a five-state Markov chain into a two-
state Markov chain. The state space of the original discrete-time
Markov chain is split into two meta states: states A and B form
meta state 0, while states D, C, and E form meta state 1. The split
of the state space into meta states is marked with dashed ellipses.
To estimate the steady-state probability of meta state 1, simulation
of the original DTMC is performed. By applying the two-state
Markov chain approach of [7], the steady-state probability esti-
mation is obtained. The accuracy of the estimation is governed by
three precision parameters: a steady-state distribution convergence
parameter ε , estimate precision parameter r, and confidence level
parameter s. The two-state Markov chain approach starts with
generating a trajectory of initial ‘burn-in’ length M0 and initial
sample size N0. In each iteration of the algorithm, the actual ‘burn-
in’ steps (M) and the actual sample size (N) are re-calculated based
on the generated trajectory and the pre-specified values of the three
precision parameters. The iteration continues until the re-estimated
sample size (M + N) is not bigger than the current trajectory
length. For more details on this approach, we refer to [7], [8]. Note
that in [22], a potential initialisation problem was identified in the
original approach of [7] related to the possibly unfortunate choice
of the size of the initial sample and three heuristics for avoiding
such initialisations have been proposed. ASSA-PBN implements
the simple heuristics of [22].

The Skart method and the two-state Markov chain approach
both act according to the following scheme. First, the two algo-
rithms call the simulator to generate a trajectory of initial length.
Then, the algorithms check whether the trajectory is long enough
to provide an estimate of the steady-state probability that satisfies
a pre-specified precision and confidence level. If the precision and
confidence level requirements are not satisfied, the simulator will
be called to extend the trajectory. This process is repeated until
the requirements are met. For comprehensive descriptions of these
methods we refer to [7], [8], [9]. A detailed comparison of the two
methods can be found in [22].

Parallel computation. To produce trajectories of large syn-
chronous PBNs, the simulator of ASSA-PBN needs to check per-
turbations, select Boolean functions, and perform state update for
n nodes in each step. The simulation time cost can be prohibitive
in the case of large PBNs and huge trajectory (sample) size.
Therefore, three different techniques to speed up the generation
of very long trajectories were proposed in previous works and
implemented in ASSA-PBN. We briefly describe them in the
following paragraphs.

Firstly, a structure-based parallelisation technique to speed
up the simulation process of synchronous PBNs was proposed
in [17]. This technique performs network reduction by removing
unnecessary leaf nodes. Then, nodes are divided into groups and
checking perturbations, making selections, and updating nodes is
performed in parallel in each group. The key idea of this technique

is to speed up the simulation process with the use of more memory.
Secondly, parallelising the sample generation process is im-

plemented to speed up the simulation process of both synchronous
and asynchronous PBNs. An approach to parallelise steady-state
probability computation with multiple CPU cores by combining
the Gelman & Rubin method with the two statistical methods, i.e.
the two-state Markov chain approach and the Skart method was
proposed in [18]. The Gelman & Rubin method makes sure that all
the simulated chains have approximately converged to the steady-
state distribution while the two-state Markov chain approach and
the Skart method [23] are used to determine the sample size re-
quired for the steady-state probabilities computation with specified
precision. For a given precision, the lengths of trajectories used
to estimate steady-state probabilities in the parallel approach are
virtually the same as in the original statistical methods. However,
since the samples are generated with multiple cores in parallel, the
processing time is significantly reduced. Details on the trajectory-
level parallelisation can be found in [18].

Thirdly, the trajectory-level parallelisation is further adopted
to accelerate the computation of steady-state probabilities in large,
currently only synchronous, PBNs with the use of GPUs. The
architecture of a GPU is very different from that of a CPU and
the performance of a GPU-based program is highly related to how
the synchronisation between cores is realised and how memory
access is managed. The framework reduces the time-consuming
synchronisation cost by allowing each core to simulate one trajec-
tory. With regard to memory management, a PBN’s specification,
Boolean functions and states are stored in an optimised way in the
various types of GPU memory to reduce memory consumption
and to improve access speed. Moreover, the framework introduces
a dynamical data arrangement mechanism for handling different
size PBNs with a GPU to maximise the computation efficiency on
a GPU for relatively small-size PBNs. Details on the GPU-based
trajectory-level parallelisation can be found in [19].

Figure 6 shows the interface for computing steady-state proba-
bilities with the two-state Markov chain approach in ASSA-PBN.
The precision and confidence level are two required parameters
of the two-state Markov chain approach. The steady-state conver-
gence parameter ε is in the current implementation fixed to 1010. If
“Global Alias” is checked, the simulation will be performed with
the global alias mode as described in Section 5. Checking this
box could potentially increase the speed of the two-state Markov
chain approach at the cost of higher memory consumption. The
“Properties” field allows the user to provide a file with the
specification of a subset of states for which the steady-state
probability is to be computed. The four radio selections are used
to specify how the simulation should be performed: either in
a sequential way or with the use of one of the three different
parallel techniques mentioned above. If “CPU-based parallel” is
selected, the gray text field “# cores” will become available and
can be filled with the number of cores on the computer to be used.

6.2 Parameter estimation
A common task for building a model for a real-life biological
system is to optimise the parameters of the model to make it fit
experimental data. The analyser provides the parameter estima-
tion functionality to support this task for PBN models. A few
algorithms have been proposed in the literature for parameter
estimation of biological systems [24]. ASSA-PBN implements the
particle swarm optimisation (PSO) and differential evolution (DE)
algorithms to optimise the specified parameters of PBN models.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 9

Fig. 6: Interface of computing steady-state probabilities with the
two-state Markov chain approach in ASSA-PBN.

PSO [25] is an iterative method to optimise parameters of
a model. The set of parameters to be optimised is called a particle.
PSO solves the optimisation problem by moving a population of
candidate particles around in the search space and by updating
the position and speed of the particles according to the considered
fitness function. In ASSA-PBN, we use the mean square error
(MSE), i.e. MSE(θ) = 1

m·d · (∑m
k=1 ∑

d
l=1(yk,l − ŷk,l(θ))

2) as the
fitness function, where yk,l denotes m steady-state measurements
for various mutants of the model for each observable l, i.e. specific
subset of states, and ŷk,l is the l-th observable’s steady-state
probability predicted by the mutant model k with parameters θ . In
each iteration, all positions and speed of the particles are updated
and verified according to the fitness function. The particle that
has the minimum fitness function value is regarded as the optimal
particle. Particle values are updated based on the current values
and the current best optimal particle values so that each particle is
moving towards the direction of the current best optimal particle.

DE is a population-based method introduced by Storn and
Price in 1996 [26], [27]. It is developed to optimise real parameters
by maintaining a population of candidate solutions that undergo
iterations of mutation, recombination and selection. The mutations
and recombinations expand the search space by creating new
candidate solutions based on the weighted difference between two
randomly selected population members added to a third population
member. The selection process then keeps the solutions that result
in better fitnesses. In conjunction with the selection, the mutation
and recombination self-organise the sampling of the problem
space, bounding the search space to known areas of interest.

Note that both PSO and DE are commonly known as meta-
heuristics and are capable of exploring a large search space.
However, meta-heuristics such as PSO and DE do not guarantee
that an optimal solution is ever found.

The parameter estimation interface is shown in Figure 7.
The parameter estimation method drop-down list provides two
available parameter estimation methods: PSO and DE. If the
option “Start from random points” is selected, the parameter
estimation will start from randomly generated parameter values.
Otherwise, it will use the parameters specified in the first PBN
model file (usually all the mutant PBN models should have the
same parameter values for the same nodes). The option “Adaptive
update particle” is specific to the PSO method. If it is checked,
PSO will use the adaptive update method to calculate the next
position. We refer to [28] for more details on the adaptive update

Fig. 7: Interface of parameter estimation in ASSA-PBN.

method. If the option “Allow parallel evaluation” is checked,
the parameter estimation method will be run in parallel, which
means that in each iteration x particles will be evaluated in parallel,
where x is the number of cores. If the option “Plot fitted versus
measured value” is checked, the parameter estimation result
plot will be presented in a new window to the user at the end
of the estimation. Once the parameter estimation procedure is
finished, a fitness heat map is shown as illustrated in Figure 8.
The heat map is a graphical representation of the information on
the obtained model fitness: the individual values in the matrix
indicate the percentage contribution of the corresponding observ-
able of the model to the obtained overall fit score value, i.e. the
MSE described above. The columns represent PBN models under
different experimental conditions or model mutants and the rows
represent observables, namely different subsets of states for which
the steady-state probabilities are computed and compared with
experimental measurements. The vertical colour bar on the right
provides a mapping between a colour and corresponding range of
percentage values.

6.3 Long-run influence and sensitivity
In a GRN, it is often important to distinguish which parent gene
plays a major role in regulating a target gene. To explore the
long-run characteristics of the GRNs, the analyser of ASSA-PBN
facilitates the computation of long-run influences and sensitiv-
ities which have been introduced in Section 2.2. The long-run
influences include the long-run influence of a gene on a specified
predictor function and the long-run influence of a gene on another
gene. The long-run sensitivities include the average long-run
sensitivity of a node, the average long-run sensitivity of a predictor
function, the long-run sensitivity of a gene with respect to 1-bit
function perturbation, and the long-run sensitivity of a gene with
respect to selection probability perturbation.

The computations of long-run influences and sensitivities are
based on the computations of several steady-state probabilities.
Note that ASSA-PBN does not store the generated trajectory for
the sake of memory saving. Instead, ASSA-PBN verifies whether

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 10

Fig. 8: The fitness heat map presented after performing parameter estimation in ASSA-PBN.

the next sampled state of the PBN belongs to the set of states
of interest and stores this information only. Therefore, a new
trajectory is required when computing the steady-state probability
for a new set of states of interest. ASSA-PBN implements
computation of steady-state probabilities of several sets of states in
parallel with the two-state Markov chain approach [18], allowing
the reuse of a generated trajectory. The crucial idea is that each
time the next state of the PBN is generated, it is processed for
all state sets of interest simultaneously. Different sets require
trajectories of different lengths and the lengths are determined
dynamically through an iterative process. Whenever the trajectory
is long enough for obtaining the steady-state probability estimate
for a certain set of states, the estimate is computed and the set will
not be considered in subsequent iterations.

Figure 9a and Figure 9b show the interfaces of long-run influ-
ence of a gene on another gene and average long-run sensitivity of
a node/predictor function, respectively. The first two elements of
the interfaces allow the user to specify the details of the analysis
to be performed while the other three parameters, i.e. the method,
the precision, and the confidence level, govern the computation of
the required steady-state probabilities.

6.4 Towards parameter identifiability analysis
In the current version ASSA-PBN implements the first part of the
general approach of [29] to analyse arbitrary models for structural
and practical identifiability. The approach is based on the concept
of profile likelihood (PL). In this approach the fit of a model to
experimental data is measured by an objective function which is
the weighted sum of squared residuals

χ
2(θ) =

m

∑
k=1

d

∑
l=1

(yk,l− ŷk,l(θ)

σk,l

)2 (12)

where θ is a vector of model parameter values, yk,l denotes m
steady-state measurements for individual mutants of the model
for each observable l, ŷk,l(θ) is the l-th observable as predicted
by the mutant model k with parameter values θ , and σk,l are
the corresponding measurement errors. It is further assumed that
the parameters are estimated to find θ̂ = arg min[χ2(θ)]. It can
be shown that for normally distributed observational noise this
corresponds to the maximum likelihood estimate (MLE) of θ

as in this case χ2(θ) = constant− 2 · log(L(θ)), where L(θ) is
the likelihood. In [29], the finite sample confidence intervals
are considered, so called likelihood-based confidence intervals,
defined by a confidence region {θ | χ2(θ)− χ2(θ̂) < ∆α} with
∆α = χ2(α,df) whose borders represent confidence intervals [30].

(a) Long-run influence of a gene on
another gene interface

(b) Average long-run sensitivity of
a node/predictor function interface

Fig. 9: Interface of long-run analyses in ASSA-PBN.

Fig. 10: Plot of a profile likelihood computed in ASSA-PBN.

In the formula above, ∆α is the α quantile of the χ2-distribution
with df degrees of freedom and represents with df = 1 and

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 11

df = dim(θ) pointwise and simultaneous, respectively, confidence
intervals with confidence level α .

A parameter θi is said to be identifiable if the confidence
interval [σ−i ,σ+

i] of its estimate θ̂i is finite. Two types of pa-
rameter non-identifiability are commonly considered. Structural
non-identifiability arises from a redundant parametrisation mani-
fested as a functional relation between ambiguous parameters that
represents a manifold with constant χ2 value in parameter space.
A structural non-identifiability is related to model structure inde-
pendent of experimental data. For a single parameter it is indicated
by flat profile likelihood. A structurally identifiable parameter
may still be practically non-identifiable, the second type of non-
identifiability, due to the amount and quality of experimental
data. By the definition of [29], a parameter is practically non-
identifiable if the likelihood-based confidence region is infinitely
extended, i.e. the increase in χ2 stays below the threshold ∆α ,
in the increasing and/or decreasing direction of θi although the
likelihood has a unique minimum for this parameter.

The identification of potential structural or practical non-
identifiability is based on the exploration of the parameter space
in the direction of the least increase in χ2. For this purpose the
profile likelihood χ2

PL is calculated for each parameter individually
as χ2

PL(θi) = minθ j 6=i [χ
2
PL] by re-optimisation of χ2 with respect to

all other parameters, for each value of θi.
The current version of ASSA-PBN facilitates the computation

and visualisation of the profile likelihood for a specified param-
eter. However, since information on measurement errors is not
considered in the current version, all σk,l are set to 1 and the
finite likelihood-based confidence intervals are not computed. The
still missing elements are planned to be implemented in the next
releases of ASSA-PBN. An example of a profile likelihood plot
computed in ASSA-PBN is shown Figure 10.

7 A BIOLOGICAL CASE STUDY

In this section, we demonstrate how to analyse a PBN model with
the use of the functionalities of ASSA-PBN. As a case study we
consider a PBN model of an apoptosis network originally pre-
sented in [4] and shown in Figure 11. The PBN model comprises
91 nodes (state-space of size 291) and 107 Boolean functions.

Parameter estimation. To illustrate the parameter estimation
function of ASSA-PBN, we perform parameter estimation with
PSO and DE methods implemented to optimise the PBN model
of the apoptosis network. Our aim is to fit the steady-state proba-
bilities of three output nodes, i.e. apoptosis, C3ap17, and NFκB
with respect to the experiment data. The estimated parameters are
the selection probabilities of Boolean functions of the following
nodes: IKKa, I kBa, I KBe, complex2, NF kB, C8a, C3ap17,
and C3ap17 2, which connect to the three output nodes. Six PBN
files are used for the optimisation, each determined by fixing
an input node’s value according to one experimental condition.
Meanwhile, we provide the experiment data file, which specifies
the validated steady-state probabilities of apoptosis, C3ap17, and
NFκB under each experimental condition. As shown in Figure 7,
we first load the six PBN models of the apoptosis network under
different experimental conditions. Then we specify the nodes to
be fitted and assign the experimental data file. For both PSO
and DE methods, the precision and confidence level are set to
0.01 and 0.95, respectively. We use 50 particles/agents and set the
number of iterations to 100. The parameter estimation starts from
the best-fit parameter set obtained in [4]. After 100 iterations,

neither DE nor PSO method managed to find a different set of
parameter values from the one in [4] that would result in a better
fit. We notice however that the fit score value for the same set of
parameter values differed slightly from the one in [4] due to the
nature of statistical estimation (data not shown). The fitness heat
map of PSO optimisation results is shown in Figure 8. Observables
1-3 represent apoptosis, C3ap17, and NFκB, respectively. Mod-
els 1-6 represent the PBN models under different experimental
conditions. As can be seen from the graph, most of the steady-
state probabilities of the three nodes in the fitted model are very
close to the steady-state probabilities under different experimental
conditions. The value of NFκB with respect to Model 5 is still
high, therefore, further research is still needed to improve the
PBN model of the apoptosis network. The results validate the
reliability and efficiency of the parameter estimation function of
ASSA-PBN.

Long-run influence and sensitivity analysis. Due to the in-
efficient generation of long trajectories in the optPBN toolbox,
quantitative analysis of the apoptosis network was suggested but
not conducted in [4]. To continue the in-depth analysis of the
apoptosis model, we use the parameter set of the apoptosis PBN
model in [4] for long-run influence and sensitivity analysis and the
computation of steady-state probabilities.

As shown in Figure 11, RIP-deubi can activate complex2 (co2)
in two ways: 1) by a positive feedback loop from activated C8*
and P → tBid → Bax → smac → RIP-deubi → co2 → C8*-co2
→ C8*, or 2) by the positive signal from UV-B irradiation (input
nodes UV(1) or UV(2)) → Bax → smac → RIP-deubi → co2.
The activation of the first way is dependent on the stimulation of
the type 2 receptor (T2R). The second way is dependent on the
activation of complex1 (co1), which requires the stimulation of the
TNF receptor-1. As a consequence, co2 can be activated by RIP-
deubi only in the condition of co-stimulation by TNF and either
UV(1) or UV(2).

We proceed to demonstrate how to analyse with ASSA-PBN
the importance of the RIP-deubi interaction with co2 with respect
to the long-run behaviour of the system in the context of co-
stimulation of TNF and either UV(1) or UV(2). Hence, the
analysis is performed under two conditions: 1) co-stimulation of
TNF and UV(1), and 2) co-stimulation of TNF and UV(2). Node
co2 has three parent nodes: co1, FADD, and RIP-deubi. It has two
independent predictor functions: co2 = co1 ∧ FADD and co2 =
co1 ∧ FADD ∧ RIP-deubi, whose selection probabilities are rep-
resented as c(co2)

1 and c(co2)
2 , respectively. The analysis requires the

computation of various steady-state probabilities. The two-state
Markov chain approach is applied to perform the computations
for the model. The confidence level s and the precision parameter
r are set to 0.95 and 0.0001, respectively. The computation of
the whole steady-state distribution for the apoptosis PBN model
is practically intractable, since it would require the estimation of
the steady-state probabilities for 291 states. Therefore, we consider
the joint steady-state probabilities for (apoptosis, C3ap17, NFκB).
With our efficient implementation, ASSA-PBN can easily handle
trajectories of length exceeding 2×109 for this case study.

First, we compute the long-run influence on co2 from each
of its parent nodes: RIP-deubi, co1, and FADD, in accordance
with the long-run influence definition presented in Section 2.2.
The results are summarised in Table 1. The results indicate that
compared to the influence of co1 or FADD on co2, the influence
of RIP-deubi is smaller but not negligible.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 12

insulin

IR

PI3K

PIP3

PDK1

Rac

Pak1

MEK

PKC

Shc

Grb2-SOS

Ras

ERK 1/2 p38

IRS-P2

IRS

TNF

TNFR-1

TRADD

RIP

TRAF2

JNK

Raf

PKB

GSK-3

C3a_c_IAP

complex 1

complex 2

c8a-comp2

XIAP

NIK

RIP-deubi

FADD

proC8

FasL

Fas

DISCa

C8a-DISCa

C8a

C3ap20

C3ap17

T2RL

T2R

P

FLIP

smac-XIAP

C8a-FLIP

C3a_XIAP

IKK-deact

Bid

tBid

Bad

P14-3-3 Bad-14-3-3

BIR 1-2

IL-1

IKKa

A20

Bcl-xl

Bax

smac

smac-mimetics UV(1)

NF-kB

I-kBa

I-kBb

I-kBe

Apaf-1

apopto

cyt-c

C9a

ICAD

CAD

gelsolin PARP

apoptosis

c-IAP_2

c-IAP

comp1_IKKa

C3ap17_2

C3ap20_2

C8a_2

C8a-DISCa_2

DISCa_2

FLIP_2

Fas_2

FasL_2 UV(2)

XIAP_2

housekeeping

OR

AND

NOT

IRS-P

Fig. 11: The wiring of the PBN model of apoptosis originally presented in [4].

TABLE 1: Long-run influences of co1, FADD, and RIP-duebi on
co2 under the co-stimulation of both TNF and UV(1) or UV(2).

TNF and UV(1) TNF and UV(2)
Ico1 0.9980 0.9980
IFADD 0.9935 0.9937
IRIP-deubi 0.2615 0.2615

TABLE 2: Long-run sensitivities w.r.t selection probability
perturbations of the second Boolean function of co2.

c(co2)
2 TNF and UV(1) TNF and UV(2)
+5% 0.0005 0.0002
−5% 0.0005 0.0004

0 0.0010 0.0011

Then, we compute various long-run sensitivities with respect
to selection probability perturbation of the second predictor func-
tion of co2. In particular, we perturb the selection probability c(co2)

2
by±5%, in accordance with Definition 2.4. Additionally, we com-
pute the sensitivity where c(co2)

2 is set to 0. In consequence, c(co2)
1

is set to 1. ASSA-PBN computes the steady-state probabilities
with two-state Markov chain approach as in the case of long-run
influence computation. Under the conditions of co-stimulation of
TNF and UV(1) and co-stimulation of TNF and UV(2), we get
the results shown in Table 2. Since the sensitivities are very small
in all cases, the model is insensitive to small perturbations of the
value of c(co2)

2 . Moreover, the removal of the second predictor
function for co2 does not cause any drastic changes in the joint
steady-state distribution for (apoptosis, C3ap17, NF-κB).

Steady-state probabilities computation. The BN/PBN toolbox
for MATLABr [5] can only apply numerical methods to compute
the steady-state probabilities for PBNs. Because the numerical
methods depend on the state transition matrix, obtaining which
is expensive both in terms of memory usage and computational
time, they are only applicable to small-size PBNs. ASSA-PBN

provides not only three statistical methods besides the numerical
methods, but also three parallel techniques to speed up the com-
putation of steady-state probabilities. Compared to the BN/PBN
toolbox, ASSA-PBN is much more effective in analysing large-
scale PBNs. To evaluate the performance of the three parallel
techniques, we consider the sequential two-state Markov chain
approach as the benchmark and perform steady-state probability
computations for the apoptosis PBN model with all these four
methods. To make the evaluation as fair as possible, the algorithms
except GPU-based parallelisation are implemented in the same
programming language, i.e. Java. The GPU-based parallelisation
is written in a combination of both Java and C. The latter language
is used to program operations on GPUs due to the fact that
no suitable Java library is currently provided for programming
operations on NVIDIAr GPUs. The experiments with GPU-based
parallelisation are performed on a high-performance computing
(HPC) platform, of which each machine contains a CPU of Intel
Xeon E5-2680 v3@2.5 GHz and an NVIDIA Tesla K80 Graphic
Card with 2496 cores@824MHz. The other experiments are con-
ducted in a HPC node, which contains 2 Intel Xeon X5675@3.07
GHz and 12 cores. This hardware architecture allows us to run a
program with maximum of 12 cores in one board.

Since the apoptosis PBN network is too large to compute the
whole steady-state distribution, we only consider the states of co1,
FADD, and RIP-deubi. We focus on the steady-state probabilities
of seven subsets of states, in which the states of the three nodes
co1, FADD, and RIP-deubi are 011, 111, 101, 110, ∗11, ∗10,
and ∗01, respectively. The three-character strings represent steady-
state values of the three nodes in the order co1, FADD, and RIP-
deubi, where 0, 1, and ∗ represent the values inactive, active,
and any, respectively. The confidence level s and the precision
parameter r of the two-state Markov chain approach are set to
0.95 and 5×10−6, respectively.1

1. The value of the precision parameter r is chosen as 5× 10−6 for the
purpose of demonstrating the high performance of ASSA-PBN.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 13

TABLE 3: Comparison of the sequential and three parallel steady-state computations on the apoptosis network.

subset of states computed steady-state probabilities sample size (million)
sequential structure-based CPU-based GPU-based sequential structure-based CPU-based GPU-based

011 0.003237 0.003235 0.003236 0.003237 589.03 589.16 588.60 590.77
111 0.990051 0.990041 0.990048 0.990046 1809.68 1811.77 1809.90 1811.71
101 0.005588 0.005591 0.005588 0.005590 1015.19 1016.22 1014.61 1021.07
110 0.001084 0.001081 0.001081 0.001080 198.42 198.45 209.18 200.12
*11 0.993287 0.993284 0.993286 0.993288 1226.48 1224.37 1374.54 1241.06
*10 0.001085 0.001090 0.001085 0.001087 197.79 200.05 198.74 206.37
*01 0.005613 0.005622 0.005618 0.005624 1021.69 1023.99 1077.50 1039.35

TABLE 4: Speed-ups of three parallel steady-state computations on the apoptosis network.

subset of states time (s) speed-up
sequential structure-based CPU-based GPU-based structure-based CPU-based GPU-based

011 2229.46 223.65 505.08 9.28 9.97 4.41 240.95
111 6360.66 673.57 1576.96 28.08 9.45 4.03 226.75
101 3884.14 375.96 935.85 15.89 10.34 4.15 245.90
110 651.85 78.09 148.51 3.27 8.35 4.63 201.11
*11 4139.12 459.19 708.18 19.30 9.00 6.55 217.02
*10 609.19 78.40 144.57 3.36 7.86 4.23 189.24
*01 3932.02 397.57 560.24 16.17 9.91 7.40 247.35

We run the sequential two-state Markov chain approach and
the three parallel versions to compute the steady-state probabilities
of the seven subsets of states for the PBN model of apoptosis.
Table 3 shows the the computed steady-state probability and the
actual sample size (in millions) for each subset of states with
the four methods. The results show that the difference between
steady-state probabilities computed by the four methods is within
the pre-specified precision. This demonstrates the correctness of
our parallel techniques. The right part of Table 3 shows that the
required sample sizes for different methods are also very similar.

The computational time cost (in seconds) and the speed-ups of
these parallel techniques with respect to the sequential two-state
Markov chain approach are shown in Table 4. The speed-ups for
computing each subset of states are calculated with the formula
speed-up =

spa/tpa
sse/tse

, where spa and tpa are the sample size and
time cost of the parallel technique, sse and tse are the sample size
and time cost of the sequential two-state Markov chain approach,
respectively. It is obvious that the sequential two-state Markov
chain needs much longer time than the parallel techniques to com-
pute the steady-state probabilities. The density of the apoptosis
network is 1.78 and 37.5% of the nodes are leaves, which makes
this network suitable for the structure-based parallelisation tech-
nique. According to the speed-ups in Table 4, the structure-based
technique gains speed-ups in the range 7.86–10.34, compared
to the sequential two-state Markov chain approach. CPU/GPU-
based parallel techniques generate samples with multiple cores
in parallel, thus could reduce the required computational time
significantly. As shown in Table 4, the CPU-based and GPU-based
parallel techniques gain a speed-up of 4.03–7.40 and 189.24–
247.35, respectively. Overall, the structure-based, CPU-based, and
GPU-based parallel techniques reduce the total computational time
for computing all steady-state probabilities from 6.02 hours to
38.11 minutes, 76.32 minutes, and 1.59 minutes, respectively.

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented ASSA-PBN, a software toolbox
for modelling, simulation, and analysis of PBNs. The toolbox
and the user guide are available at http://satoss.uni.lu/software/
ASSA-PBN/. ASSA-PBN provides efficient statistical methods to

approximately compute steady-state probabilities of large PBNs.
In particular, ASSA-PBN provides three parallel techniques to
speed up the computation of steady-state probabilities. These ap-
proaches enable ASSA-PBN to analyse large PBNs. In addition,
ASSA-PBN also provides support for in-depth analyses of PBNs
including parameter estimation, long-run influence and sensitivity
analysis, computation of one-parameter profile likelihoods, and
the visualisation of one-parameter profile likelihoods.

In the future, we plan to extend the GPU-based parallelisation
technique for asynchronous PBNs as well. Next, we aim to
add support for providing information on measurement errors
and enable full structural and practical parameter identifiability
analysis. In addition, user-friendly improvements, such as support
for the standard Systems Biology Markup Language (SBML)
and graphical editing and visualisation of PBN models, will be
introduced in the future releases of ASSA-PBN.

ACKNOWLEDGEMENTS

Qixia Yuan was supported by the National Research Fund, Lux-
embourg (grant 7814267). Cui Su was supported by the research
project SEC-PBN funded by the University of Luxembourg. This
work was also partially supported by ANR-FNR project AlgoRe-
Cell (INTER/ANR/15/11191283). Experiments presented in this
paper were carried out using the HPC facilities of the University of
Luxembourg [31] (http://hpc.uni.lu). Andrzej Mizera contributed
to this work while holding a postdoctoral researcher position at the
Computer Science and Communications Research Unit, University
of Luxembourg.

REFERENCES

[1] I. Shmulevich, E. R. Dougherty, and W. Zhang, “From Boolean to prob-
abilistic Boolean networks as models of genetic regulatory networks,”
Proceedings of the IEEE, vol. 90, no. 11, pp. 1778–1792, 2002.

[2] P. Trairatphisan, A. Mizera, J. Pang, A.-A. Tantar, J. Schneider, and
T. Sauter, “Recent development and biomedical applications of proba-
bilistic Boolean networks,” Cell Communication and Signaling, vol. 11,
p. 46, 2013.

[3] I. Shmulevich, I. Gluhovsky, R. Hashimoto, E. Dougherty, and W. Zhang,
“Steady-state analysis of genetic regulatory networks modelled by prob-
abilistic Boolean networks,” Comparative and Functional Genomics,
vol. 4, no. 6, pp. 601–608, 2003.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, 2017 14

[4] P. Trairatphisan, A. Mizera, J. Pang, A. A. Tantar, and T. Sauter,
“optPBN: An optimisation toolbox for probabilistic Boolean networks,”
PLOS ONE, vol. 9, no. 7, p. e98001, 2014.

[5] H. Lähdesmäki and I. Shmulevich, “BN/PBN Toolbox,” http://code.
google.com/p/pbn-matlab-toolbox, 2009, accessed 2017 March 24.

[6] J.-M. Vincent and C. Marchand, “On the exact simulation of functionals
of stationary Markov chains.” Linear Algebra and its Applications., vol.
385, pp. 285–310, 2004.

[7] A. E. Raftery and S. Lewis, “How many iterations in the Gibbs sampler?”
Bayesian Statistics, vol. 4, pp. 763–773, 1992.

[8] A. Mizera, J. Pang, and Q. Yuan, “ASSA-PBN: An approximate steady-
state analyser for probabilistic Boolean networks,” in Proc. 13th In-
ternational Symposium on Automated Technology for Verification and
Analysis, ser. LNCS, vol. 9364. Springer, 2015, pp. 214–220.

[9] A. Tafazzoli, J. Wilson, E. Lada, and N. Steiger, “Skart: A skewness- and
autoregression-adjusted batch-means procedure for simulation analysis,”
in Proc. 2008 Winter Simulation Conference, 2008, pp. 387–395.

[10] A. Mizera, J. Pang, and Q. Yuan, “ASSA-PBN 2.0: A software tool for
probabilistic Boolean networks,” in Proc. 14th International Conference
on Computational Methods in Systems Biology, ser. LNCS, vol. 9859.
Springer, 2016, pp. 309–315.

[11] J. R. Norris, Markov Chains. Cambridge University Press, 1998.
[12] P. Zhu and J. Han, “Asynchronous stochastic Boolean networks as gene

network models,” Journal of Computational Biology, vol. 21, no. 10, pp.
771–783, 2014.

[13] I. Shmulevich and E. R. Dougherty, Probabilistic Boolean Networks:
The Modeling and Control of Gene Regulatory Networks. Society for
Industrial and Applied Mathematics, 2010.

[14] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang, “Probabilistic
Boolean networks: a rule-based uncertainty model for gene regulatory
networks,” Bioinformatics, vol. 18, no. 2, pp. 261–274, 2002.

[15] X. Qian and E. R. Dougherty, “On the long-run sensitivity of probabilistic
Boolean networks,” Journal of Theoretical Biology, vol. 257, no. 4, pp.
560–577, 2009.

[16] A. Walker, “An efficient method for generating discrete random vari-
ables with general distributions.” ACM Transactions on Mathematical
Software, vol. 3, no. 3, pp. 253–256, 1977.

[17] A. Mizera, J. Pang, and Q. Yuan, “Fast simulation of probabilistic
Boolean networks,” in Proc. 14th International Conference on Compu-
tational Methods in Systems Biology, ser. LNCS, vol. 9859. Springer,
2016, pp. 216–231.

[18] ——, “Parallel approximate steady-state analysis of large probabilistic
Boolean networks,” in Proc. 31st Annual ACM Symposium on Applied
Computing. ACM, 2016, pp. 1–8.

[19] ——, “GPU-accelerated steady-state computation of large probabilistic
boolean networks,” in Proc. 2nd International Symposium on Dependable
Software Engineering: Theories, Tools, and Applications, ser. LNCS, vol.
9984. Springer, 2016, pp. 50–66.

[20] J. Propp and D. Wilson, “Exact sampling with coupled Markov chains
and applications to statistical mechanics,” Random Structures & Algo-
rithms, vol. 9, no. 1, pp. 223–252, 1996.

[21] D. El Rabih and N. Pekergin, “Statistical model checking using perfect
simulation,” in Proc. 7th Symposium on Automated Technology for
Verification and Analysis, ser. LNCS, vol. 5799. Springer, 2009, pp.
120–134.

[22] A. Mizera, J. Pang, and Q. Yuan, “Reviving the two-state Markov
chain approach,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2017, to appear.

[23] A. Tafazzoli, J. R. Wilson, E. K. Lada, and N. M. Steiger, “Skart:
A skewness- and autoregression-adjusted batch-means procedure for
simulation analysis,” in Proc. 2008 Winter Simulation Conference, 2008,
pp. 387–395.

[24] C. G. Moles, P. Mendes, and J. R. Banga, “Parameter estimation in
biochemical pathways: a comparison of global optimization methods,”
Genome Research, vol. 13, no. 11, pp. 2467–2474, 2003.

[25] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE International Conference on Neural Networks, 1995, pp. 1942–
1948.

[26] R. Storn, “On the usage of differential evolution for function opti-
mization,” in Proc. Biennial Conference of the North American Fuzzy
Information Processing Society, 1996, pp. 519–523.

[27] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[28] A. Alfi and H. Modares, “System identification and control using
adaptive particle swarm optimization,” Applied Mathematical Modelling,
vol. 35, no. 3, pp. 1210–1221, 2011.

[29] A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling,
U. Klingmüller, and J. Timmer, “Structural and practical identifiability
analysis of partially observed dynamical models by exploiting the profile
likelihood,” Bioinformatics, vol. 25, no. 15, pp. 1923–1929, 2009.

[30] W. Q. Meeker and L. A. Escobar, “Teaching about approximate confi-
dence regions based on maximum likelihood estimation,” The American
Statistician, vol. 49, no. 1, pp. 48–53, 1995.

[31] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos, “Management of an
academic HPC cluster: The UL experience,” in Proc. 12th International
Conference on High Performance Computing & Simulation. IEEE CS,
2014, pp. 959–967.

Dr. Andrzej Mizera received the MSc degree in
Computer Science from the University of War-
saw, Poland in 2005. He then obtained his PhD
in Computer Science with minor in mathematics
in the area of Computational Systems Biology
from the Åbo Akademi University, Turku, Finland
in 2011. His research interests are related to
computational and mathematical modelling of bi-
ological systems. He is currently holding a re-
search associate position at the Luxembourg In-
stitute of Health.

Dr. Jun Pang received his PhD in Computer
Science from Vrije Universiteit Amsterdam, The
Netherlands in 2004. Currently, he is a senior
researcher in the Security and Trust of Soft-
ware Systems research group at the University
of Luxembourg. His research interests include
formal methods, security and privacy, big data
analytics, and computational systems biology.

Cui Su received her MSc degrees in Systems
Engineering from Yanshan University in 2016.
She is currently a PhD student at the Interdis-
ciplinary Centre for Security, Reliability and Trust
at the University of Luxembourg, working on the
research project SEC-PBN. Her research inter-
ests lie in computational systems biology.

Qixia Yuan received his MSc degrees in Com-
puter Science from both the University of Lux-
embourg and Shandong University in 2012. He
is currently a PhD student at the Computer Sci-
ence and Communications Research Unit at the
University of Luxembourg. His research interests
focus on development and application of formal
methods in systems biology.

