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This paper is the first thorough investigation into the coarsest notion of bisimilarity for the applied π -calculus
that is a congruence relation: open barbed bisimilarity. An open variant of labelled bisimilarity (quasi-open
bisimilarity), better suited to constructing bisimulations, is proven to coincide with open barbed bisimilarity.

These bisimilary congruences are shown to be characterised by an intuitionistic modal logic that can be

used, for example, to describe an attack on privacy whenever a privacy property is violated. Open barbed

bisimilarity provides a compositional approach to verifying cryptographic protocols, since properties proven

can be reused in any context, including under input prefix. Furthermore, open barbed bisimilarity is sufficiently

coarse for reasoning about security and privacy properties of cryptographic protocols; in constrast to the finer

bisimilarity congruence, open bisimilarity, which cannot verify certain privacy properties.
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1 INTRODUCTION
There has been much debate surrounding bisimilarity in the context of the applied π -calculus, since
the calculus was first introduced [Abadi and Fournet 2001] as a generalisation and extension of the

π -calculus [Milner et al. 1992] for verifying cryptographic protocols. A central concern revolves

around the treatment of mobility of channels in the original presentation of bisimilarity.

According to the original definition, the following two processes are mistakenly bisimilar.

P ≜ νz.x ⟨z,y⟩.z(w) v.s. Q ≜ νz.x ⟨z,y⟩

However, these two processes should be distinguished since another process can: receive the pair

⟨z,y⟩, take the first projection to obtain private channel z, and then use that private channel to

send a message. Thus there is a distinguishing context
1 C{ · } ≜ x(u).fst(u)⟨y⟩ ∥ { · }, such that

C{P} can perform two communications to reach a state with no actions, which cannot be matched

by C{Q}. We argue that mobility, implemented by passing private channels as messages, is central

to the π -calculus paradigm; hence this limitation of the notion of bisimilarity originally proposed

for the applied π -calculus is significant.
The time now is right to move on from the above issue with mobility. The above limitation of

the original conference version of bisimilarity [Abadi and Fournet 2001] has been addressed in a

journal version [Abadi et al. 2018]. The trick is simple: allow channels to be messages. This way,

a “recipe” to produce the channel name can used to indirectly refer to channels, such as fst(u)
in the example context above, as permitted in ProVerif [Blanchet et al. 2008]. Other notions of

bisimilarity for the applied π -calculus [Delaune et al. 2010; Liu and Lin 2012], each following the

old conference style for channels, can also be repaired by allowing messages as channels. Note

theψ -calculus [Bengtson et al. 2011] was introduced as an alternative response to this problem;

however the aforementioned journal paper [Abadi et al. 2018] instead makes minimal changes

necessary to repair the applied π -calculus (permitting channels to be messages).

1
Here, action fst(u)⟨y⟩ can be read as “send message y on the channel obtained by taking the first projection of u .”
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Bisimilarity congruences for the applied π -calculus. This paper takes work on bisimilarity for the

applied π -calculus a step further. We explore notions of bisimilarity closed under any context, not

just under any parallel context. That is, we seek equivalences that are simultaneously a bisimilarity

and a congruence. We identify three advantages of employing bisimilarity congruences:

• Improved algebraic reasoning: since full compositionality is guaranteed, a process can

replace an equivalent process anywhere inside a larger process term.

• Improved robustness: once two processes are proven to be equivalent, even if an attacker

has the power to change the context of the process during runtime, an attack distinguishing

the processes cannot be performed.

• Improved state-space exploration: bisimilarity congruences can instantiate inputs lazily,

hence less resources are required to prove larger processes are equivalent.

There is a precedent for this investigation. A bisimilarity congruence called open bisimilarity
has been studied for the π -calculus [Sangiorgi 1996], and for a more restricted predecessor to the

applied π -calculus called the spi-calculus [Briais and Nestmann 2007; Tiu 2007]. The lazy approach

to instantiating inputs made open bisimilarity the favoured bisimilarity for the mobility work-

bench [Victor and Moller 1994] — the first toolkit to implement the π -calculus. Open bisimilarity

has also been used in decision procedures for the spi-calculus [Tiu and Dawson 2010], by exploiting

most general unifiers as finite representation of infinitely many inputs.

This work explores a notion of bisimilarity for the applied π -calculus, called open barbed bisim-
ilarity [Sangiorgi and Walker 2001]. Open barbed bisimilarity is a canonical choice, being the

coarsest bisimilarity congruence for the applied π -calculus, i.e., a bisimilarity congruence with

respect to which all bisimilarity congruences are sound. The definition of open barbed bisimilarity

is language independent, hence can be used to address unresolved design decisions. We address

two issues in particular.

• Firstly, how can we define a bisimilarity congruence that can be used to reason about

arbitrary message theories, not limited to xor [Ayala-Rincón et al. 2017] and blind signa-

tures [Bursuc et al. 2014]? Existing work on open bisimilarity for the spi-calculus is hard

wired to handle Dolev-Yao [Dolev and Yao 1983] symmetric encryption only.

• Secondly, how do we define a bisimilarity congruence sufficiently coarse to verify privacy

properties? Many privacy protocols involve if-then-else branching to provide dummy

information to avoid privacy attacks via control flow analysis.

The latter problem is surprisingly subtle. Until recently, there was no definition of a bisimilarity

that is a congruence and can handle if-then-else branching in the π -calculus, even without

cryptographic primitives. Recent work [Horne et al. 2018], explains an approach to if-then-else
in the π -calculus; but with a warning: additional care must be taken to ensure the bisimilarity

congruence can verify privacy properties. Without care, an excessively lazy bisimilarity congruence,

will claim to discover attacks that do not exist.

Subtle privacy properties. We illustrate a recurrent problem for verifying privacy protocols. The

following example is a drastically cut down version of a classic private server example [Abadi and

Fournet 2004; Cheval et al. 2017], sufficient to explain the essence of the problem.

Server A: νk .νr .a⟨pk(k)⟩.a(x).a⟨r ⟩
Server B: νk .νr .a⟨pk(k)⟩.a(x).ifx = pk(k) thena⟨aenc(⟨m, r ⟩ , pk(k))⟩ elsea⟨r ⟩

Both processes above first transmit a public key, then receive a message. Server A then transmits a

random fresh name (a nonce) regardless of message received. In contrast, Server B makes a decision

based on the input. If the input is the public key previously transmitted, then Server B responds
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with a message-nonce pair encrypted with the public key. Otherwise, Server B sends a dummy

random message, behaving as Server A.

Server A and Server B are indistinguishable to an external observer — the attacker. An attacker

cannot learn that Server B responds in a special way to input pk(k) (the public key corresponding

to private key k). The idea is an attacker without private key k cannot learn that Server B serves

some datam to the owner of k . Thus the privacy of the intended recipient of the data is preserved.

We can verify this privacy property by showing Server A and Server B are bisimilar. The warning

is: we must take care about which bisimilarity congruence we employ. If, instead of open barbed

bisimilarity, we employ the more famous open bisimilarity [Sangiorgi 1996], the processes are not

equivalent. The law of excluded middle is invalidated for open bisimilarity [Ahn et al. 2017]; hence

Server B can reach a state where it is not yet decided whether x = pk(k) or x , pk(k) at which
point the if-then-else branching cannot yet be resolved; but Server A cannot reach an equivalent

state. This distinguishing strategy, does not correspond to a real attack on the privacy of Server B;

hence open bisimulation is not sufficiently coarse to verify this privacy property.

Fortunately, open barbed bisimilarity address the above limitation of open bisimilarity. Open

barbed bisimilarity is also intuitionistic, but private information, such as pk(k), is treated classically.
Thereby, after receiving the input either x = pk(k) or x , pk(k) holds; from which we can establish

Server A and Server B are open barbed bisimilar.

Describing attacks. When there is a genuine attack it can be described using a modal logic

formula. The modal logic we propose is “intuitionistic FM”, which is proven in this work to

logically characterise open barbed bisimilarity. Thus whenever two processes are not open barbed

bisimilar, we can construct a formula in intuitionistic FM that holds for one process only.

As an example of a distinguishing formula, consider a slight modification of Server B, without

nonce r in the encrypted message (from a cryptographic perspective this means a deterministic

asymmetric encryption scheme is employed to encryptm).

Server C: νk .νr .a⟨pk(k)⟩.a(x).ifx = pk(k) thena⟨aenc(m, pk(k))⟩ elsea⟨r ⟩

Now, Server C is not open barbed bisimilar to Server A. The attack on the privacy of the protocol

can be described by the following modal logic formula.

Server C |=
〈
a(v)

〉〈
av

〉〈
a(w)

〉
(aenc(m,v) = w)

The formula above is satisfied by Server C, but not by Server A (nor, by equivalence, Server B).

The attack described by the formula above is as follows: the attacker takes an output, named v ,
and feeds it back in as an input, then receives another output w . At this point the attacker can

reconstruct messagew using messages v andm (wherem is an open term representing a known or

guessable plaintext). Thus the attacker can determine that the server responds differently when the

input received is v , i.e., message pk(k); hence the privacy of Server C is compromised.

All examples above, elaborated on in the body of the paper, are selected to be a minimal explana-

tion to subtleties of if-then-else branching addressed by open barbed bisimilarity.

Summary. The body of the paper develops the theory of open barbed bisimilarity, as a robust

foundation for verifying cryptographic protocols. Section 2 introduces (strong) open barbed bisim-

ilarity. Section 3 introduces a variant of labelled bisimilarity called quasi-open bisimilarity and

proves that it coincides with open barbed bisimilarity. Section 4 defines an intuitionistic modal

logic characterising quasi-open bisimilarity; hence also open barbed bisimilarity. Section 5 provides

more substantial examples of security and privacy properties. Section 6 compares open barbed

bisimilarity to other bisimilarities, including established notions of labelled bisimilarity.
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2 THE COARSEST BISIMILARITY CONGRUENCE FOR THE APPLIED π -CALCULUS
This section concerns the coarsest (strong) bisimilarity congruence, open barbed bisimilarity. Open

barbed bisimilarity has not previously been explored for any cryptographic calculus. However, it is

a natural choice of bisimilarity, being, by definition, the greatest bisimilarity congruence. Since

open barbed bisimilarity has an objective language-independent definition, there are no design

decisions — there is only one reasonable definition as explored in this section.

2.1 An example message term language and equational theory.
In the applied π -calculus messages can be defined with respect to any message language subject

to any equational theory (=E ). The example we provide in Fig. 1 is for the purpose of meaningful

examples. Further theories can also be devised not limited to: sub-term convergent theories [Abadi

and Cortier 2006]; blind signatures and homomorphic encryption [Bursuc et al. 2014]; and locally

stable theories with inverses [Ayala-Rincón et al. 2017].

M,N ,K F x variable

| pk(M) public key

| h(M) hash

| ⟨M,N ⟩ tuple

| aenc(M,N ) encryption

| adec(M,N ) decryption

| fst(M) left

| snd(M) right

adec(aenc(M, pk(K)) ,K) =E M

aenc(adec(M,K) , pk(K)) =E M

fst(⟨M,N ⟩) =E M

snd(⟨M,N ⟩) =E N

Fig. 1. The applied π -calculus can be instantiated with any message language and equational theory for

messages. This example message theory is provided only for the purpose of providing meaningful examples.

The example theory provided in Fig. 1 covers asymmetric encryption. A message encrypted with

public key pk(k) can only be decrypted using private key k . The theory includes a collision-resistant
hash function, with no equations. This theory assumes we have the power to detect whether a

message is a pair, but cannot distinguish a failed decryption from a random number.

2.2 Active substitutions and open early transitions.
We define the syntax of the applied π -calculus. The syntax is similar to the π -calculus, except
messages and channels can be any term rather than just variables. There is no separate syntactic

class of terms for names — names are variables bound by new name binders. In addition to processes,

extended processes are defined, which allow active substitutions to float alongside processes and in

the scope of new name binders, defined as follows.

P ,Q F 0 deadlock

| M ⟨N ⟩.P send

| M(y).P receive

| [M = N ]P match

| [M , N ]P mismatch

| νx .P new

| P ∥ Q parallel

| P +Q choice

| !P replication

Extended processes in normal form:

A,B F σ ∥ P process with active substitution

| νx .A new

actions on labels:

π F τ progress

| M(z) bound output

| M N free input
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Extended processes in normal form ν ®x .(σ ∥ P) are subject to the restriction that the variables in

dom(σ ) are fresh for ®x , fv(P) and fv(yσ ), for all variables y (i.e., σ is idempotent, and substitutions

are fully applied to P ). We follow the convention that operational rules are defined directly on

extended processes in normal forms. This avoids numerous complications caused by the structural

congruence in the original definition of bisimulation for the applied π -calculus. We require the

following definitions for composing extended processes in parallel and with substitutions, defined

whenever z < fv(B) ∪ fv(ρ) and dom(σ ) ∩ dom(θ ) = ∅.

νz.A ∥ B ≜ νz.(A ∥ B) B ∥ νz.A ≜ νz.(B ∥ A) (σ ∥ P) ∥ (θ ∥ Q) ≜ σ · θ ∥ (P ∥ Q)

ρ ∥ νz.A ≜ νz.(ρ ∥ A) σ ∥ θ ∥ Q ≜ σ · θ ∥ Q

Intuitionistic mismatch. Mismatch requires special attention. Mismatch models the else branch

of an if-then-else statement with an equality guard. We define ifM = N then P elseQ as an

abbreviation for [M = N ]P + [M , N ]Q .
As uncovered in related work [Horne et al. 2018], the trick for handling mismatch such that

we obtain a congruence is to treat mismatch intuitionistically. Intuitionistic negation enjoys the

property that it is preserved under substitutions; a property that fails for classical negation in

general. E.g., there are substitutions under which [x , h(y)]a(z) can perform an input transition

and others where it cannot, hence neither x = h(y) nor x , h(y) holds in the intuitionistic setting,

until more information is provided about the environment. In order to define intuitionistic negation,

we require the notion of a fresh substitution; which is also critical for the logical characterisation

introduced later in Section 4.

Definition 2.1 (fresh). Given a set of variables ®n and substitution σ , we say σ is fresh for ®n
whenever dom(σ )∩ ®n = ∅, and, for ally < ®n, we have fv(yσ )∩ ®n = ∅. We say entailment ®n |= M , N
holds whenever there is no σ fresh for ®n such thatMσ =E Nσ .

Consider the following examples that hold or fail to hold for different reasons. Entailment

∅ |= x , h(x) holds, since there exists no unifier, witnessed by a simple occurs check. In contrast,

∅ |= x , h(y) does not hold, since there exists substitution
{
h(y)/x

}
unifying messages x and h(y),

so it is still possible the messages could be equal; thus, there is insufficient information to decided

whether the messages are equal or not. By extending the environment such that y is a private

name, entailment y |= x , h(y) holds, since most general unifier

{
h(y)/x

}
is not fresh for {y} — an

observer who can influence x , cannot make x equal to h(y) without access to y.
To define open barbed bisimulation, we require an open early labelled transition system for the

applied π -calculus in Fig. 2. There are three types of label: τ representing some internal progress

due to communication; bound output M(x) representing that something bound to x is sent on

channelM ; and free inputM N representing message N is received on channelM .

The Mismatch and Res rules. The Mismatch rule is defined in terms of the entailment

relation in Def. 2.1. The Res rule can also influence mismatches by introducing fresh private names.

For example, the following derivation shows an input transition is enabled.

Inp

y : z(w)
z w▶ 0 y |= x , h(y)

Mismatch

y : [x , h(y)]z(w)
z w▶ 0

Res

∅ : νy.[x , h(y)]z(w)
z w▶ νy.0

Notice, the bound variable y is added to the set of private names, enabling entailment y |= x , h(y).
The Alias rule. A special alias rule is used in this normal-form presentation of the applied

π -calculus; serving the purpose of applying active substitutions, while avoiding problems caused
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Inp

®n : M(x).P M N▶ P
{N/x } x < fv(M) ∪ fv(N ) ∪ fv(P) ∪ ®n

Out

®n : M ⟨N ⟩.P
M (x )▶

{N/x } ∥ P

®n : P π ▶ A
Sum-l

®n : P +Q π ▶ A

®n : P π ▶ A
Mat

®n : [M = M]P π ▶ A

®n : P π ▶ A ®n |= M , N
Mismatch

®n : [M , N ]P π ▶ A

®n,x : A π ▶ B x < n(π ) ∪ ®n
Res

®n : νx .A π ▶ νx .B

®n : P π ▶ A bn(π ) ∩ fv(Q) = ∅
Par-l

®n : P ∥ Q π ▶ A ∥ Q

®n : P πσ▶ A σ fresh for bn(π )
Alias

®n : σ ∥ P π ▶ σ ∥ A

®n : P π ▶ A
Rep-act

®n : !P π ▶ A ∥ !P

®n : P
M (x )▶ ν ®z.

({N/x } ∥ P ′
)

®n : Q M N▶ Q ′ ({x} ∪ ®z) ∩ fv(Q) = ∅
Close-l

®n : P ∥ Q τ ▶ ν ®z.(P ′ ∥ Q ′)

®n : P
M (x )▶ ν ®z.

({N/x } ∥ Q
)

®n : P M N▶ R ®z ∩ fv(P) = ∅
Rep-close

®n : !P τ ▶ ν ®z.(Q ∥ R ∥ !P)

Fig. 2. An open early labelled transition system, plus symmetric rules for parallel composition and choice.

The equational theory over message terms can be applied to equate the occurrences ofM in the rules, Inp,

Out, Mat, Close-l, and Rep-close. The set of free variables and α-conversion are as standard, where νx .P
and M(x).P bind x in P . Define the bound names such that bn(π ) = {x} only if π = M(x) and bn(π ) = ∅

otherwise. Define the names such that n(M N ) = fv(M) ∪ fv(N ), n(M(x)) = fv(M) ∪ {x} and n(τ ) = ∅.

by the structural congruence. For a non-trivial example of the Alias rule, Res rule and equational

theory working together observe the following transition is derivable.

Inp

m : m(x)
fst(⟨m,n ⟩) x▶ 0

Alias

m :

{
⟨m,n ⟩/w

}
∥ m(x)

fst(w ) x▶
{
⟨m,n ⟩/w

}
∥ 0

Res

∅ : νm.
({

⟨m,n ⟩/w

}
∥ m(x)

)
fst(w ) x▶ νm.

({
⟨m,n ⟩/w

}
∥ 0

)
The conditions on the Res rule ensure bound namem cannot appear in the terms on the label.

Fortunately, the Alias rule allows a m to be expressed in terms of extruded variable w . Since

m =E fst(⟨m,n⟩) and the equational theory can be applied in rule Inp, the above input action on

channel fst(w) is enabled, indirectly representing that channelm is used for the input action.

Note a device with the same effect as the Alias rule is used in the proof of the recently corrected

definition of labelled bisimilarity [Abadi et al. 2018]. Note in particular the normal form presentations

of labelled transitions in the definition between B.9 and B.10 in the extended Arxiv version of the

same paper [Abadi et al. 2017]. A normal form presentation is also used in ProVerif; hence there

should be no controversy employing normal forms and the Alias rule.

The Out rule. A rule differing significantly from standard presentations of the core π -calculus
is the Out rule. Instead of recording the message sent on the label, the message is recorded in an

active substitution. The domain of the active substitution is chosen to be a fresh variable appearing

as the bound variable in the output action on the label.
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In the following example a message is sent using the Out rule, then the Res rule is applied such

that the private name n in the active substitution appears bound before and after the transition.

n,k : a⟨aenc(n, pk(k))⟩.n(x)
a(w )▶

{
aenc(n,pk(k ))/w

}
∥ n(x)

k : νn.a⟨aenc(n, pk(k))⟩.n(x)
a(w )▶ νn.

({
aenc(n,pk(k ))/w

}
∥ n(x)

)
Observe, by rule Inp, the following input action is enabled.

k : a(w).adec(w,k)⟨a⟩
a aenc(n,pk(k ))▶ adec(aenc(n, pk(k)) ,k)⟨a⟩

Hence by Close-l the following interaction is enabled, using adec(aenc(n, pk(k)) ,k) =E n.

k : νn.a⟨aenc(n, pk(k))⟩.n(x) ∥ a(w).adec(w,k)⟨a⟩ τ ▶ νn.(n(x) ∥ n⟨a⟩)

Note this labelled approach to interaction follows closely how interaction traditionally works in the

π -calculus. An advantage of our labelled transition approach is strong and weak variants of bisimi-

larities can be studied. In contrast, the original system proposed for the applied π -calculus [Abadi
and Fournet 2001] used a hybrid labelled/reduction system that can only be used to formalise weak
bisimilarities.

Definition 2.2. As a convention, write A π ▶ B whenever ∅ : A π ▶ B.

2.3 An objective bisimilarity congruence: open barbed bisimilarity.
A barb represents the ability to observe an input or output action on a channel. Barbs are typically

used to define barbed equivalence, or observational equivalence [Milner and Sangiorgi 1992]. However,

barbed equivalence is a congruence but not a bisimilarity; while observational equivalence is a

bisimilarity but not a congruence. For this reason, we prefer open barbed bisimilarity [Sangiorgi

and Walker 2001], which is, by definition, both a bisimilarity and a congruence.

Definition 2.3 (open barbed bisimilarity). A process P has barbM , written P ↓M , whenever, for

some A, P
M (z)▶ A, or P M N▶ A. An open barbed bisimulation R is a symmetric relation over

processes such that whenever P R Q holds the following hold:

• For all contexts C{ · }, C{P} R C{Q}.

• If P ↓M then Q ↓M .

• If P τ ▶ P ′
, there exists Q ′

such that Q τ ▶ Q ′
and P ′ R Q ′

holds.

Open barbed bisimilarity ≃ is the greatest open barbed bisimulation.

The power of open barbed bisimilarity comes from closing by all contexts at every step, not only

at the beginning of execution. Closing by all contexts at every step ensures the robustness of open

barbed bisimilarity even if the environment changes at runtime; i.e., we stay within a congruence

relation at every step of the bisimulation game.

Recall a congruence is an equivalence relation closed under all contexts. Symmetry and context

closure are immediate from definition of open barbed bisimilarity. Reflexivity is trivial since the

identity relation over extended processes is an open barbed bisimulation. Transitivity is slightly

more involved, proven by showing that the transitive closure of two open barbed bisimulations is

an open barbed bisimulation.

Open barbed bisimilarity is concise — the definition requires only the open labelled transition

system in Fig. 2 and the three clauses in Definition 2.3. Furthermore, objectively, open barbed

bisimilarity is the coarsest bisimilarity congruence, in the sense that it is by definition a congruence,

and defined independently of the content of the messages sent and received. Notice, due to the
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independence of the information on the labels, open barbed bisimilarity applies to any language;

indeed open barbed bisimilarity is a generalisation of dynamic observational equivalence [Montanari

and Sassone 1992], that, historically, was used to objectively identify the greatest bisimulation

congruence for CCS.

For the above reasons, open barbed bisimilarity is an ideal reference definition. However, as with

all barbed congruences it is unwieldy due to the closure under all contexts. This leads us to the

notion of quasi-open bisimilarity in the next section which is easier to use.

3 QUASI-OPEN BISIMILARITY FOR THE APPLIED π -CALCULUS
As highlighted in the previous section, open barbed bisimilarity is concise to define but difficult to

check, due to the quantification over all contexts. An open variant of labelled bisimilarity, called

quasi-open bisimilarity, avoids quantifying over all contexts; and furthermore, coincides with open

barbed bisimilarity. In this section, we lift quasi-open bisimilarity to the setting of the applied

π -calculus, generalising established results for the π -calculus [Sangiorgi and Walker 2001] and the

π -calculus with mismatch [Horne et al. 2018].

3.1 Recalling the standard definition of static equivalence.
To extend quasi-open bisimulation to the applied π -calculus the notion of static equivalence is

required. Static equivalence is defined over the static information in an extended process — the

active substitutions and name restrictions.

Definition 3.1 (static equivalence). Two normal form extended processesν ®x .(σ ∥ P) andν ®y.(θ ∥ Q)
are statically equivalent whenever for all messagesM andN such that (fv(M) ∪ fv(N ))∩(®x ∪ ®y) = ∅,

Mσ =E Nσ if and only ifMθ =E Nθ .

In the above definition, messagesM andN represent to different “recipes” for producingmessages.

Two extended processes are distinguished by static equivalence only when the two recipes produce

equivalent messages under one substitution, but distinct messages under the other substitution.

Static equivalence examples. The concept of static equivalence is no different from original work

on the applied π -calculus [Abadi et al. 2018]. However, for a self-contained presentation we provide

examples. The following extended processes are not statically equivalent.

νm,n.
({m,n/v,w

}
∥ 0

)
v.s. νm.

({
m,h(m)/v,w

}
∥ 0

)
They are distinguished by messages h(v) and w . To see why, h(v)

{
m,h(m)/v,w

}
and w

{
m,h(m)/v,w

}
are both equal to h(m); but h(v)

{
m,n/v,w

}
is distinct fromw

{
m,n/v,w

}
.

For a less obvious example, consider the following extended processes.

νm,k,n.
({

aenc(m,pk(k )),n/x1,x2

}
∥ 0

)
v.s. νm,k .

({
aenc(m,pk(k )),k/x1,x2

}
∥ 0

)
Perhaps surprisingly, the above extended processes are statically equivalent. This relies on the fact

that the example message theory, in Fig. 1, does not allow successful decryption to be detected. This

assumption about asymmetric encryption avoids common problems, including Bleichenbacher’s

vulnerability on SSL [Bleichenbacher 1998]. Thus, for example, recipe adec(x1,x2) produces what
looks like a random number for both processes.

If a protocol requires successful decryption to be detected, entropy should be introduced when a

nonce is encrypted. For example, consider the following extended processes, where the noncem is

tagged with t before being encrypted.

νm,k,n.
({

aenc(⟨t,m ⟩,pk(k )),n/x3,x4

}
∥ 0

)
v.s. νm,k .

({
aenc(⟨t,m ⟩,pk(k )),k/x3,x4

}
∥ 0

)
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A Bisimilarity Congruence for the Applied π -Calculus 1:9

In contrast to the previous example, the above are not statically equivalent. The above processes can

be distinguished by recipes fst(adec(x3,x4)) and t , which only produce equal messages according

to the extended process above right, in contrast to the extended process above on the left.

3.2 Introducing the new definition of quasi-open bisimilarity.
For an elegant definition of quasi-open bisimilarity, we employ the following reachability relation.

Definition 3.2 (reachability). Given extended processesA and B, we sayA can reach B by substitu-

tion σ and environment extension ®z.ρ, written A ≤σ ,ν ®z .ρ B, whenever: A is of the form ν ®x .(θ ∥ P),
σ and ρ are idempotent and fresh for dom(θ ), ®z ∩ (dom(ρ) ∪ dom(θ )) = ∅ and B = ν ®z.(ρ ∥ Aσρ).

The first substitution in the definition above allows free variables to be instantiated. For exam-

ple
2
, [z = h(x)]τ ≤{h(x )/z} [h(x) = h(x)]τ indicates variable z in process [z = h(x)]τ , can take on

value h(x), thereby reaching a process where the match guard is enabled. In contrast, since, as

standard we assume substitution is capture avoiding, when we apply the same substitution to

νx .
({

h(x )/u
}
∥ [z = h(x)]τ

)
, the bound name x is renamed to x ′

to avoid a clash with variable x in

the range of the substitution: νx .
({

h(x )/u
}
∥ [z = h(x)]τ

)
≤{h(x )/z} νx

′.
({

h(x ′)/u
}
∥ [h(x) = h(x ′)]τ

)
.

In this example, no substitution can enable the match guard.

Environment extensions are used to distinguish pairs of messages in a mismatch, in scenar-

ios where neither message is ground. For example, the following process [x , z]a(y).[x = y]τ
cannot yet act — there is no evidence x and z are distinct. However, by extending the environ-

ment with a fresh name, we have νx .({x/u } ∥ [x , z]a(y).[x = y]τ ) a u▶ νx .({x/u } ∥ [x = x]τ ).
Notice alternative environment extensions also enable an input transition, such as the follow-

ing: νz.({z/v } ∥ [x , z]a(y).[x = y]τ ) a x▶ νz.({z/v } ∥ [x = x]τ ). Hence there is no unique most

general substitution and set of names permanently distinguishing x from z.
In order to define quasi-open bisimilarity, we require the notion of an open relation between

extended processes. An open relation is preserved under reachability, defined above.

Definition 3.3 (open). A relation over extended processes R is open, whenever if A R B and

A ≤σ ,ν ®z .ρ A′
and B ≤σ ,ν ®z .ρ B′

, then A′ R B′
.

Given the definition of an open relation, static equivalence, and the labelled transition system, we

can provide the following concise definition of quasi-open bisimilarity for the applied π -calculus.

Definition 3.4 (quasi-open bisimilarity). An open symmetric relation between extended processes

R is a quasi-open bisimulation whenever, if A R B then the following hold:

• A and B are statically equivalent.

• If A π ▶ A′
there exists B′

such that B π ▶ B′
and A′ R B′

.

Quasi-open bisimilarity ∼ is the greatest quasi-open bisimulation.

The keyword in the definition above is “open” in the sense of Def. 3.3.Without ensuring properties

are preserved under reachability, the above definition would simply be the strong version of labelled
bisimilarity for the applied π -calculus [Abadi et al. 2018]. We illustrate the impact of insisting on

an open relation and allowing messages as channels in the following examples.

We remark that the definition of quasi-open bisimilarity above is arguably simpler than in the

original setting of the π -calculus [Sangiorgi and Walker 2001]. In contrast to the original definition,

since private names are recorded in extended processes, all types of action are handled by one

clause and there is no need to index a bisimulation with extruded private names.

2
The environment extension can be omitted when it is the identity extension: ν ∅.id .
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1:10 Horne

Mobility example. Recall processes νz.x ⟨z,y⟩.z(w) and νz.x ⟨z,y⟩ from the introduction. Recall

these processes are mistakenly bisimilar according to the original definition of bisimilarity for

the applied π -calculus [Abadi and Fournet 2001]. These processes should not be equivalent, indeed

they are valid polyadic π -calculus processes (the π -calculus with tuples) [Milner 1993], and the

applied π -calculus should be conservative with respect the polyadic π -calculus.
Fortunately, these processes are correctly distinguished by quasi-open bisimilarity. To see why,

firstly, consider the following two transitions with matching actions.

νz.x ⟨z,y⟩.z(w)
x (v)▶ νz.

({
⟨z,y ⟩/v

}
∥ z(w)

)
and νz.x ⟨z,y⟩

x (v)▶ νz.
({

⟨z,y ⟩/v

}
∥ 0

)
The trick now is to use the Alias rule to enable the following labelled transition for the process on

the left: νz.
({

⟨z,y ⟩/v
}
∥ z(w)

)
fst(v) x▶ νz.

({
⟨z,y ⟩/v

}
∥ 0

)
. The other process νz.

({
⟨z,y ⟩/v

}
∥ 0

)
is

deadlocked, so cannot match this transition. Notice the use of message fst(v) as a channel.

Example showing impact of an open relation on static equivalence. By insisting that a quasi-open

bisimulation is an open relation (Def. 3.3), static equivalence must also be preserved by all fresh

substitutions. This has an impact on examples such as the following.

Consider for example the processes νx .a⟨aenc(x , z)⟩ and νx .a⟨aenc(⟨x ,y⟩ , z)⟩ that are labelled
bisimilar but not quasi-open bisimilar. To see why, firstly, observe both process can perform a a(v)-

transition to the respective extended processes νx .
({

aenc(x,z)/v
}
∥ 0

)
and νx .

({
aenc(⟨x,y ⟩,z)/v

}
∥ 0

)
.

Note that these extended process are statically equivalent. However, since a quasi-open bisimu-

lation must be preserved under fresh substitutions and

{
pk(w )/z

}
is fresh for {v}, we should also

check νx .
({

aenc(x,z)/v
}
∥ 0

) {
pk(w )/z

}
and νx .

({
aenc(⟨x,y ⟩,z)/v

}
∥ 0

) {
pk(w )/z

}
. After applying the sub-

stitution, the extended processes are no longer statically equivalent, witnessed by distinguishing

recipes snd(adec(v,w)) and y. Thus the processes are not quasi-open bisimilar.

Example of privacy property. We now have the mechanisms to verify the minimal privacy example

from the introduction. We prove the following by constructing a quasi-open bisimulation.

νk .νr .a⟨pk(k)⟩.a(x).a⟨r ⟩ ∼ νk .νr .a⟨pk(k)⟩.a(x).ifx = pk(k) thena⟨aenc(⟨m, r ⟩ , pk(k))⟩ elsea⟨r ⟩

Define quasi-open bisimulation S to be the least open symmetric relation such that: for allM and N
fresh for {k, r } and u fresh for {a,k, r } ∪ fv(M) ∪ fv(N ) and v fresh for {a,k, r ,u} ∪ fv(M) ∪ fv(N ).

νk .νr .a ⟨pk(k)⟩.a(x ).a ⟨r ⟩ S νk .νr .a ⟨pk(k )⟩.a(x ).if x = pk(k ) thena ⟨aenc(⟨M, r ⟩ , pk(k ))⟩ elsea ⟨r ⟩
νk .νr .

({
pk(k )/u

}
∥ a(x ).a ⟨r ⟩

)
S νk .νr .

({
pk(k )/u

}
∥ a(x ).if x = pk(k) thena ⟨aenc(⟨M, r ⟩ , pk(k ))⟩ elsea ⟨r ⟩

)
νk .νr .

({
pk(k )/u

}
∥ a ⟨r ⟩

)
S νk .νr .

({
pk(k )/u

}
∥ ifN

{
pk(k )/u

}
= pk(k) thena ⟨aenc(⟨M, r ⟩ , pk(k ))⟩ elsea ⟨r ⟩

)
νk .νr .

({
pk(k ),r/u,v

}
∥ 0

)
S νk .νr .

({
pk(k ),aenc(⟨M,r ⟩,pk(k ))/u,v

}
∥ 0

)
νk .νr .

({
pk(k ),r/u,v

}
∥ 0

)
S νk .νr .

({
pk(k ),r/u,v

}
∥ 0

)
Critically, message N ranges over all permitted inputs. For N =E u, we have the following pair in

relation S. Observe the branch sending an encrypted message is enabled.

νk .νr .
({

pk(k )/u

}
∥ a⟨r ⟩

)
S νk .νr .

({
pk(k )/u

}
∥ if pk(k) = pk(k) thena⟨aenc(⟨M, r ⟩ , pk(k))⟩ elsea⟨r ⟩

)
If N is any term not equivalent to u then we have k, r |= N

{
pk(k )/u

}
, pk(k) since if N were a

message term fresh for {k, r } such that N
{
pk(k)/u

}
= pk(k), then N must be equivalent to u. Thus

in all other cases the else branch is enabled.

Also, remark νk .νr .
({

pk(k),r/u,v
}
∥ 0

)
and νk .νr .

({
pk(k ),aenc(⟨M,r ⟩,pk(k ))/u,v

}
∥ 0

)
(reachable when

N =E u) are statically equivalent. An attacker neither has the key k to decrypt aenc(⟨M, r ⟩ , pk(k)),
nor can an attacker reconstruct the message ⟨M, r ⟩, without knowing r .
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3.3 Guaranteed fully compositional reasoning, including under input prefixes.
We illustrate how quasi-open bisimilarity improves compositionality guarantees. Consider the

following two processes, which are sub-terms of Server A and Server C from the introduction.

A′ ≜ a⟨r ⟩ v.s. C ′ ≜ ifx = pk(k) thena⟨aenc(m, pk(k))⟩ elsea⟨r ⟩

Now ask the question: should the above processes be equivalent or distinguished? With respect

to the original labelled bisimilarity proposed for the applied π -calculus [Abadi et al. 2018], the
above processes are labelled bisimilar. Reasoning classically, x and pk(k) cannot be equal, since
x and k are treated as ground terms rather than variables. By this reasoning, the else branch in

processC ′
is enabled. The else branch in processC ′

behaves as processA′
, on the left above; hence,

classically, the above processes are equivalent according labelled bisimilarity.

Naïvely, it may be tempting at this point to attempt to reason compositionally, with respect to

common context C{ · } ≜ νk .νr .a⟨pk(k)⟩.a(x).{ · }. However, for this example, C{A′} (Server A)

is not bisimilar to C{C ′} (Server C), according to labelled bisimilarity (nor quasi-open bisimilarity).

Hence such reasoning with respect to labelled bisimilarity and context C{ · } is unsound.

Such failures of compositionality for labelled bisimilarity with respect to contexts are addressed

by quasi-open bisimilarity. As we verify in the next section, whenever two processes are proven to

be quasi-open bisimilar, they are quasi-open bisimilar in any context. For the above example, this

means that, because C{A′} is not quasi-open bisimilar to C{C ′}, we should also have that A′
is not

quasi-open bisimilar to C ′
. Indeed this property is satisfied by quasi-open bisimilarity.

Processes A′
and C ′

are not quasi-open bisimilar. Recall that a quasi-open bisimulation is pre-

served under fresh substitutions and

{
pk(k )/x

}
is fresh. Thus we have the following.

A′
{
pk(k )/x

}
a(u)▶ {r/u } ∥ 0 and C ′

{
pk(k )/x

}
a(u)▶

{
a ⟨aenc(m,pk(k))⟩/u

}
∥ 0

The resulting processes are clearly not statically equivalent (consider r = u under each substitutions

above). There is also a more subtle distinguishing strategy, we will return to in Section 4.

When processes are proven to be equivalent using quasi-open bisimilarity, compositional reason-

ing can be applied in confidence. For example, standard rules expected in a structural congruence
hold according to quasi-open bisimilarity; hence can be safely applied anywhere in any process.

The following properties are useful in later in this work.

Lemma 3.5. For all P ,Q , R and S , such that x < fv(S), we have 0 ∥ P ∼ P and, νx .P ∥ S ∼ νx .(P ∥ S)
only if , νx .νy.P ∼ νy.νx .P and νx .0 ∼ 0, (P ∥ Q) ∥ R ∼ P ∥ (Q ∥ R), and P ∥ Q ∼ Q ∥ P .

Proof. Take the least open relation containing the bisimulation sets typically employed. 2

Compositional reasoning can also be useful for reusability. Some properties may be verified on a

sub-protocol, and, by compositionality, we can deduce they hold on a larger protocol.

3.4 Quasi-open bisimilarity and open barbed bisimilarity coincide.
As illustrated in the previous sub-section, a core guarantee offered by quasi-open bisimilarity is

that it is a congruence relation. In this section, we prove quasi-open bisimilarity is preserved by

all contexts, notably under input prefixes; and, furthermore, coincides exactly with open barbed

bisimilarity, which is the coarsest (strong) bisimilarity congruence.

We deliberately provide all important step of proofs in this section, to avoid uncertainty about

this non-trivial result. The novel cases for the following theorem are those showing quasi-open

bisimilarity is preserved under mismatch, par and replication.

Theorem 3.6 (contexts). If P ∼ Q then for all contexts C{ · }, we have C{P} ∼ C{Q}.
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Proof. The proof can be broken into several lemmas, showing quasi-open bisimilarity is preserved

under each process construct. The most involved case, closure under parallel composition, is

provided in Lemma 3.7. Closure under replication is also quite involved hence provided in Lemma 3.8.

More immediate cases are presented below. In each of the following assume P ∼ Q , and hence there

exists quasi-open bisimulation such that P R Q .
Closure under input prefix is almost immediate. Let S be the least open relation (Def. 3.3)

extending R such thatM(x).P S M(x).Q . NowM(x).P M N▶ P
{
N/x

}
andM(x).Q M N▶ Q

{
N/x

}
.

Furthermore, P
{
N/x

}
S Q

{
N/x

}
, since, by definition, R is an open relation.

3

Closure under restriction is immediate, since, R is open, hence νx .P R νx .Q .
Closure under output, is also immediate. Since R is an open relation,

{
N/u

}
∥ P R

{
N/u

}
∥ Q , for

fresh u. AlsoM ⟨N ⟩.P
M (u)▶

{
N/u

}
∥ P andM ⟨N ⟩.Q

M (u)▶
{
N/u

}
∥ Q . Hence relation O, defined

as the least open relation extending R such thatM ⟨N ⟩.P O M ⟨N ⟩.Q is a quasi-open bisimulation.

Closure under equality prefixes follows since P π ▶ A iff ([M = N ]P)σ πσ▶ Aσ for all σ fresh

for bn(π ) such thatMσ = Nσ . Since P R Q , there exists B such that Q π ▶ B and A R B. Hence
([M = N ]Q)σ πσ▶ Bσ and, R is open (Def. 3.3), σ is fresh for bn(π ), and bn(π ) is the domain of

active substitutions in A and B, we have Aσ R Q ′σ . Hence the least open relation M extending R

such that [M = N ]P M [M = N ]Q is a quasi-open bisimulation.

Closure under mismatch is less obvious. Now, assume P π ▶ A, in which case, there ex-

ists B such that Q π ▶ B and A R B. Also, observe, by the Mismatch rule, P π ▶ A iff

®n : ([M , N ]P)σ πσ▶ Aσ and for all σ fresh for bn(π ) for all ®n such that ®n |= Mσ , Nσ ,
which holds iff ν ®n.(σ ∥ ([M , N ]P)σ ) π ▶ ν ®n.(σ ∥ Aσ ). Similarly, we have Q π ▶ B iff we

have ®n : ([M , N ]Q)σ πσ▶ ν ®n.(σ ∥ Bσ ), for all σ and ®n such that ®n |= Mσ , Nσ . Now con-

sider the least open relation D extending R such that [M , N ]P D [M , N ]Q . Now, since D is

open, ν ®n.(σ ∥ ([M , N ]P)σ ) D ν ®n.(σ ∥ ([M , N ]Q)σ ).4 Also, R is open, and σ is fresh for bn(π )
hence the domain of both A and B, we have ν ®n.(σ ∥ Aσ ) D ν ®n.(σ ∥ Bσ ). Hence D is a quasi-open

bisimulation, as required.

Closure under choice is standard. Take the least open relation C extending both R and the

identity relation such that P + R C Q + R and consider when P + R π ▶ A. Now, if P π ▶ A, there
exists B such that Q π ▶ B and A R B; hence Q + R π ▶ Q ′

and A C B. Otherwise R π ▶ A;
hence Q + R π ▶ A and A C A, as required. 2

Lemma 3.7. If P ∼ Q , then P ∥ R ∼ Q ∥ R.

Proof. Assume P ∼ Q . Hence there exists quasi-open bisimulation R such that P R Q . Now
construct S to be the least open relation (Def. 3.3) such that if ν ®x .(σ ∥ A) R ν ®y.(θ ∥ B) and process
R is such that fv(R)∩(®x ∪ ®y) = ∅ then ν ®x .(A ∥ Rσ ) S ν ®y.(B ∥ Rθ ). We aim to showS is a quasi-open

bisimulation. Assume fv(R) ∩ (®x ∪ ®y) = ∅ and ν ®x .(σ ∥ A) R ν ®y.(θ ∥ B) in the following.

• Consider when R
M (u)▶ ν ®z.

({N/u } ∥ S
)
. Since fv(R) ∩ (®x ∪ ®y) = ∅ it also holds that

(fv(M) ∪ fv(S)) ∩ (®x ∪ ®y) = ∅; and ®x : Rσ
Mσ (u)▶ ν ®z.

({Nσ/u
}
∥ Sσ

)
, assuming without loss

of generality thatσ is fresh foru and ®x . Now, assuming ®z∩(fv(P) ∪ fv(Q) ∪ ®x ∪ ®y) = ∅, by the

Alias, Res and Par-r rules, we have transition ®x : σ ∥ P ∥ Rσ
M (u)▶ ν ®z.

({N/u } ∥ σ ∥ P ∥ S
)
.

Thereby, since fv(R) ∩ ®x = ∅, we have ν ®x .(σ ∥ A ∥ Rσ )
M (u)▶ ν ®x , ®z.

({N/u } ∥ σ ∥ A ∥ S
)
.

3
Note closure under inputs does not hold for labelled bisimilarity, since in contrast to quasi-open bisimilarity, a labelled

bisimulation is not necessarily preserved under substitutions. This is a key advantage of quasi-open bisimilarity.

4
This is the raison d’être for extending environments in the definition reachability (Def. 3.2): to range over all extensions of

environments and active substitutions enabling a mismatch.
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Now, since ν ®x .(σ ∥ A) R ν ®y.(θ ∥ B), and fv(S) ∩ (®x ∪ ®y) = ∅, by definition of S, we have

ν ®x .(σ ∥ A ∥ Sσ ) S ν ®y.(θ ∥ B ∥ Sθ ); and, since S is open (Def. 3.3), we have the following.

ν ®x , ®z.
({Nσ/x

}
∥ σ ∥ A ∥ Sσ

)
S ν ®y, ®z.

({
Nθ/u

}
∥ θ ∥ B ∥ Sθ

)
Furthermore, by monotonicity, ®x : Rθ

Mθ (u)▶ ν ®z.
({Nθ/u

}
∥ Sθ

)
and hence, by Par-r, Alias,

and Res rules, ν ®y.(θ ∥ B ∥ R)
M (u)▶ ν ®y, ®z.

({Nθ/u
}
∥ θ ∥ B ∥ Sθ

)
, as required.

• Consider the case where ®x : A Mσ Nσ▶ A′
and R

M (u)▶ ν ®z.
({N/u } ∥ S

)
and without

loss of generality ®z ∩ (fv(A) ∩ fv(B)) = ∅. We have (fv(M) ∪ fv(N ) ∪ fv(S)) ∩ (®x ∪ ®y) = ∅,

since fv(R) ∩ (®x ∪ ®y) = ∅. By monotonicity, we have ®x : Rσ
Mσ (u)▶ ν ®z.

({Nσ/u
}
∥ Sσ

)
.

By rule Close-r, ®x : A ∥ Rσ τ ▶ ν ®z.(A′ ∥ Sσ ), since ®z ∩ (fv(A) ∩ fv(B)) = ∅. Thereby,

by Alias and Res, we have ν ®x .(σ ∥ A ∥ Rσ ) τ ▶ ν ®x , ®z.(σ ∥ A′ ∥ Sσ ). Now, since we as-
sumed ν ®x .(σ ∥ A) R ν ®y.(θ ∥ B), and (fv(M) ∪ fv(N )) ∩ ®y = ∅ there exists B′

such that

ν ®y.(θ ∥ B) M N▶ ν ®y.(θ ∥ B′) and ν ®x .(σ ∥ A′) R ν ®y.(θ ∥ B′). Hence it must be the case

that ®y : B Mθ Nθ▶ B′
. By monotonicity we have ®y : Rθ

Mθ (u)▶ ν ®z.
({Nθ/u

}
∥ S

)
; hence, by

rule Close-l we have ®y : B ∥ Rθ τ ▶ ν ®z.(B′ ∥ Sθ ), so by rules Alias and Res, we have

ν ®y.(θ ∥ B ∥ Rθ ) τ ▶ ν ®y, ®z.(θ ∥ B′ ∥ Sθ ). Since fv(S) ∩ (®x ∪ ®y) = ∅, by definition of S we

have ν ®x , ®z.(σ ∥ A′ ∥ Sσ ) S ν ®y, ®z.(θ ∥ B′ ∥ Sθ ), as required.

• Consider the case where ®x : A
Mσ (u)▶ ν ®v .

({K/u } ∥ A′
)
and R M u▶ S , for fresh u. Since

(®x ∪ ®y) ∩ fv(R) = ∅, we have (®x ∪ ®y) ∩ (fv(M) ∪ fv(S)) = ∅. By monotonicity and freshness

of u, we have ®x : Rσ Mσ K▶ Sσ
{
K/u

}
; hence ®x : A ∥ Rσ τ ▶ ν ®v .

(
A′ ∥ Sσ

{
K/u

})
, by rule

Close-l; and, furthermore, ν ®x .(σ ∥ A ∥ Rσ ) τ ▶ ν ®x , ®v .
(
σ ∥ A′ ∥ Sσ

{
K/u

})
, by rules Res

and Alias. Now, since ®x ∩ fv(M) = ∅, we have ν ®x .(σ ∥ A)
M (u)▶ ν ®x , ®v .

(
σ ∥

{
K/u

}
∥ A′

)
,

by rules Res and Alias. Thereby, ν ®x .(σ ∥ A) R ν ®y.(θ ∥ B) and R is a quasi-open bisim-

ulation, there exists B′
, ®w and L such that ν ®y.(θ ∥ B)

M (u)▶ ν ®y, ®w .
(
σ ∥

{
L/u

}
∥ B′

)
and

ν ®x , ®v .
(
σ ∥

{
K/u

}
∥ A′

)
R ν ®y, ®w .

(
σ ∥

{
L/u

}
∥ B′

)
. Now make two observations. Firstly, by

unfolding rules we have ®y : B
Mθ (u)▶ ν ®w .

({L/u } ∥ B′
)
; and, by monotonicity and fresh-

ness of u, we have ®y : Rθ Mθ L▶ Sθ
{
L/u

}
. Hence, by rule Close-l, we have that ®y : B ∥

Rθ τ ▶ ν ®w .
(
B′ ∥ Sθ

{
L/u

})
; and so ν ®y.(θ ∥ B ∥ Rθ ) τ ▶ ν ®y, ®w .

(
θ ∥ B′ ∥ Sθ

{
L/u

})
, by

rules Res and Alias. Secondly, since fv(S) ∩ (®x ∪ ®y) = ∅, by definition of S, we have

ν ®x , ®v .
(
σ ∥ A′ ∥ Sσ

{
K/u

})
S ν ®y, ®w .

(
θ ∥ B′ ∥ Sθ

{
L/u

})
, as required.

• Remaining cases, where A or R act independently, are similar to the first case above.

Thereby S is a quasi-open bisimulation such that P ∥ R S Q ∥ R; hence P ∥ R ∼ Q ∥ R. 2

Lemma 3.8. If P ∼ Q , then !P ∼ !Q .

Proof. Assume P ∼ Q , hence there exists a quasi-open bisimulation R such that P R Q . Now
define S0 to be the singleton relation such that !P S0 !Q . Inductively, define Sn+1 to be the

least relation such that if ν ®x .(σ ∥ A) R ν ®y.(θ ∥ B) and ν ®v .(ς ∥ C) Sn ν ®w .(ϑ ∥ D) then we have

ν ®x , ®v .(Aς ∥ Cσ ) Sn+1 ν ®y, ®w .(Bϑ ∥ Dθ ). Define S to be the least open relation containing

⋃
n∈ω Sn .

Now, assume ν ®x .(σ ∥ P1 ∥ . . . Pn ∥ !P) Sn ν ®y.(θ ∥ Q1 ∥ . . .Qn ∥ !Q) and consider the following.

• Assume P
M (u)▶ ν ®v .

({N/u } ∥ P ′
)
and P M u▶ R, for fresh u and fv(P) ∩ ®v = ∅. By

monotonicity, P M N▶ R
{
N/u

}
. By Rep-close, !P τ ▶ ν ®v .

(
P ′ ∥ R

{
N/u

}
∥ !P

)
. Now since

Publication date: December 2018.



1:14 Horne

P R Q , there exists ®w , L and Q ′
such that Q

M (u)▶ ν ®w .
({L/u } ∥ Q ′

)
and also we have

ν ®v .
({N/u } ∥ P ′

)
R ν ®w .

({L/u } ∥ Q ′
)
. Furthermore, there exists S such that Q M u▶ S and

R R S ; hence, by monotonicity, Q M L▶ S
{
L/u

}
. Without loss of generality we can as-

sume ®w ∩ fv(Q) = ∅; thus, by Rep-close, !Q τ ▶ ν ®w .
(
Q ′ ∥ S

{
L/u

}
∥ !Q

)
. Furthermore,

by definition of S2, we have ν ®v .
(
P ′ ∥ R

{
N/u

}
∥ !P

)
S2 ν ®w .

(
Q ′ ∥ S

{
L/u

}
∥ !Q

)
. Extending

inductively, over the definition of Sn , we have the following, as required.

ν ®x , ®v .
(
σ ∥ P1 ∥ . . . Pn ∥ P ′ ∥ R

{N/u } ∥ !P
)
Sn+2 ν ®y, ®w .

(
θ ∥ Q1 ∥ . . .Qn ∥ Q ′ ∥ S

{L/u } ∥ !Q
)

• There are several more cases to consider, where in each case an action on the left of Sn can

be matched by an action on the right, such that the resulting processes stay within S.

– Some Pi
π ▶ P ′

i acts independently, staying within Sn .

– For i , j, Pi
M (u)▶ Ai and Pj

M N▶ P ′
j , resulting a τ transition, staying within Sn .

– P π ▶ P ′
acts independently, applying rule Rep-act, progressing to Sn+1.

– Pi
M (u)▶ Ai and P

M N▶ P ′
, resulting in a τ transition progressing to Sn+1.

– P
M (u)▶ A and Pj

M N▶ P ′
j , resulting in a τ transition progressing to Sn+1.

The proofs for these cases do not differ significantly from what is already presented for

parallel composition and Rep-close, hence are ommitted.

Thereby S is a quasi-open bisimulation such that !P S !Q ; hence !P ∼ !Q . 2

Given Theorem 3.6, the soundness of quasi-open bisimilarity with respect to open barbed

bisimilarity is standard. For a self-contained presentation, we recall the proof.

Corollary 3.9 (soundness). If P ∼ Q then P ≃ Q .

Proof. Assume P ∼ Q . Symmetry follows immediately from the definition. By Theorem 3.6,

C{P} ∼ C{Q}. By closure under transitions, if P τ ▶ P ′
then there exists Q ′

such that Q τ ▶ Q ′

and P ′ ∼ Q ′
. If P ↓M then there exists A such that P

M (x )▶ A or P M N▶ A. In the former case,

there exists B such that Q
M (x )▶ B, similarly, in the latter case, there exists B such that Q M N▶ B.

Hence in either case Q ↓M . Hence ∼ is an open barbed bisimulation; thus P ≃ Q , as required. 2

For completeness, we require that open barbed bisimilarity is preserved under any substitution.

Lemma 3.10. If P ≃ Q , then, for any substitution σ , Pσ ≃ Qσ .

Proof. Assume P ≃ Q and consider substitution σ defined such that

{
K1, ...,Kn/z1, ...,zn

}
. Since open

barbed bisimilarity is preserved under all contexts, for fresh names c , we have the following.

c ⟨K1⟩.c ⟨K2⟩. . . c ⟨Kn⟩ ∥ c(z1).c(z2) . . . c(zn).P ≃ c ⟨K1⟩.c ⟨K2⟩. . . c ⟨Kn⟩ ∥ c(z1).c(z2) . . . c(zn).Q

Each of these processes can perform the same number of τ -transitions to reach the states 0 ∥ Pσ
and 0 ∥ Qσ Since open barbed bisimilarity is closed under τ -transitions, we have 0 ∥ Pσ ≃ 0 ∥ Qσ .
By Lemma 3.5, 0 ∥ R ∼ R holds, and, by Corollary 3.9, 0 ∥ R ≃ R; hence Pσ ≃ Qσ as required. 2

The following result supports our claim that our definition of quasi-open bisimilarity for the ap-

plied π -calculus, Definition 3.4, is correct, and a canonical choice of (strong interleaving) bisimilarity.

Recall open barbed bisimilarity has an objective language-independent definition.

Theorem 3.11 (completeness). Quasi-open bisimilarity coincides with open barbed bisimilarity.

Proof. Define relation R such that ν ®y.(σ ∥ P) R ν ®z.(ρ ∥ Q), where σ =
{
M1, ...Mn/x1, ...xn

}
and

ρ =
{
N1, ...Nn/x1, ...xn

}
, whenever for some fresh names ®a = {a1,a2, . . . ,an} and I = {1, . . .n} we

have P1 ≃ Q1, such that P1 ≜ ν ®y.(
∏

i ∈I !ai ⟨Mi ⟩ ∥ P) and Q1 ≜ ν ®z.(
∏

i ∈I !ai ⟨Ni ⟩ ∥ Q).
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Note

∏
i ∈I Si is an abbreviation for S1 ∥ . . . ∥ Sn .

The symmetry of R is immediate from the symmetry of ≃. The rest of the proof shows R is a

quasi-open bisimulation. In each clause assume ν ®y.(σ ∥ P) R ν ®z.(ρ ∥ Q). Hence, by definition, we

have P1 ≃ Q1, as define above.

Static equivalence. Consider the following context, where s is a fresh name.

C{ · } ≜ a1(x1).a2(x2). . . . an(xn).[M = N ]s ⟨s⟩ ∥ { · }

Also assume (®y ∪ ®z) ∩ (fv(M) ∪ fv(N )) = ∅. Since open barbed bisimilarity is closed under all

contexts, C{P1} ≃ C{Q1}. By closure under τ -transitions the following are open barbed bisimilar.

ν ®y.

(
[Mσ = Nσ ]s ⟨s⟩ ∥

∏
i ∈I

!ai ⟨Mi ⟩ ∥ P

)
≃ ν ®z.

(
[Mρ = Nρ]s ⟨s⟩ ∥

∏
i ∈I

!ai ⟨Ni ⟩ ∥ Q

)
By definition of open barbed bisimilarity if either of the above processes exhibits barb s then so

must the other. By unfolding the rules for labelled transitions, it must be the case thatMσ = Nσ if

and only ifMρ = Nρ. Thus for any choice ofM and N such that (®y ∪ ®z) ∩ (fv(M) ∪ fv(N )) = ∅, we

haveMσ = Nσ if and only ifMρ = Nρ. Thus ν ®y.(σ ∥ P) and ν ®z.(ρ ∥ Q) are statically equivalent.

Closure under input transitions. Assume ν ®y.(σ ∥ P) K L▶ A, such that, without loss of

generality, (fv(K) ∪ fv(L)) ∩ (®y ∪ ®z) = ∅. Consider the following context, where s is a fresh name.

C{ · } ≜ a1(x1).a2(x2). . . . an(xn).
(
s ⟨s⟩ + K ⟨L⟩

)
∥ { · }

Since open barbed bisimilarity is closed under all contexts, C{P1} ≃ C{Q1} holds. Both processes

have only one way to perform n transitions to reach a pair of states exhibiting barb s . Thus we
have the following, by closure of an open barbed bisimulation under τ -transitions.

ν ®y.

((
s ⟨s⟩ + Kσ ⟨Lσ ⟩

)
∥
∏
i ∈I

!ai ⟨Mi ⟩ ∥ P

)
≃ ν ®z.

((
s ⟨s⟩ + Kρ⟨Lρ⟩

)
∥
∏
i ∈I

!ai ⟨Ni ⟩ ∥ Q

)
Now, since ν ®y.(σ ∥ P) K L▶ A, it must the the case that A = ν ®y.(σ ∥ P ′) for some P ′

. Hence, by

unfolding the definition of labelled transitions, we have ®y : P Kσ Lσ▶ P ′
. Now by the Out and

Sum-r rules, ®y : s ⟨s⟩ + Kσ ⟨Lσ ⟩
Kσ (w )▶

{
Lσ/w

}
∥ 0 for freshw . Hence, by rules Par-l, Close-l and

Res, we can construct the following transition.

ν ®y.

((
s ⟨s⟩ + Kσ ⟨Lσ ⟩

)
∥
∏
i ∈I

!ai ⟨Mi ⟩ ∥ P

)
τ ▶ ν ®y.

(
0 ∥

∏
i ∈I

!ai ⟨Mi ⟩ ∥ P
′

)
Notice the above transition reaches a state where there is no barb s . By the definition of an open

barbed bisimulation, there exists a transition of the following form, where R↓s does not hold.

ν ®z.

((
s ⟨s⟩ + Kρ⟨Lρ⟩

)
∥
∏
i ∈I

!ai ⟨Ni ⟩ ∥ Q

)
τ ▶ R

Furthermore it must be the case that ν ®y.(0 ∥
∏

i ∈I !ai ⟨Mi ⟩ ∥ P
′) ≃ R. Since R does not have barb s ,

and s was chosen fresh, hence there is no input on channel s , the following output must have been

performed: ®z : s ⟨s⟩ + Kρ⟨Lρ⟩
Kρ(w )

▶
{
Lρ/w

}
∥ 0 . Thus there exists Q ′

such that ®z : Q
Kρ Lρ

▶ Q ′

and hence R = ν ®z.(0 ∥
∏

i ∈I !ai ⟨Ni ⟩ ∥ Q
′).

From the above observations, and since (fv(K) ∪ fv(L)) ∩ ®z = ∅, we can construct transition

ν ®z.(ρ ∥ Q) K L▶ ν ®z.(ρ ∥ Q ′). By Lemma 3.5, 0 ∥ S ∼ S , hence, by Corollary 3.9, 0 ∥ S ≃ S , for all
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processes. Thereby we have ν ®y.(
∏

i ∈I !ai ⟨Mi ⟩ ∥ P
′) ≃ ν ®z.(

∏
i ∈I !ai ⟨Ni ⟩ ∥ Q

′). So, by definition of

R, we have ν ®y.(σ ∥ P ′) R ν ®z.(ρ ∥ Q ′), as required.

Closure under output transitions. Assume ν ®y.(σ ∥ P)
K (u)▶ ν ®y, ®w .

({L/u } ∥ σ ∥ P ′
)
, where,

without loss of generality, fv(K) ∩ (®x ∪ ®y) = ∅. Consider the following context for fresh s and b.

C{ · } ≜ a1(x1).a2(x2). . . . an(xn).
(
s ⟨s⟩ + K(û).!b⟨û⟩

)
∥ { · }

Since open barbed bisimilarity is closed under all contexts, C{P1} ≃ C{Q1} holds. Both processes

can perform τ -transitionsm times, to reach the following pair of states exhibiting barb s .

ν ®y.

((
s ⟨s⟩ + Kσ (û).!b⟨û⟩

)
∥
∏
i ∈I

!ai ⟨Mi ⟩ ∥ P

)
≃ ν ®z.

((
s ⟨s⟩ + Kρ(û).!b⟨û⟩

)
∥
∏
i ∈I

!ai ⟨Ni ⟩ ∥ Q

)
The above are open barbed bisimilar, since open barbed bisimilarity is preserved under τ -transitions.

Now, by unfolding the definition of labelled transitions, we have ®y : P
Kσ (u)▶ ν ®v .

({L/u } ∥ P ′
)

and ®v ∩ fv(K) = ∅. Also, by rules Inp and Sum-r, we have ®y :
(
s ⟨s⟩ + Kσ (û).!b⟨û⟩

)
Kσ Lσ▶ !b⟨Lσ ⟩.

Hence, by rules Par-l, Close-r and Res we have the following interaction.

ν ®y.

((
s ⟨s⟩ + Kσ (û).!b⟨û⟩

)
∥
∏
i ∈I

!ai ⟨Mi ⟩ ∥ P

)
τ ▶ ν ®y, ®v .

(
!b⟨Lσ ⟩ ∥

∏
i ∈I

!ai ⟨Mi ⟩ ∥ P
′

)
Notice the above transition reaches a state with barb b. By the definition of an open barbed

bisimulation, there exists a transition of the following form.

ν ®z.

((
s ⟨s⟩ + Kρ(û).!b⟨û⟩

)
∥
∏
i ∈I

!ai ⟨Ni ⟩ ∥ Q

)
τ ▶ R

Furthermore, it must be the case that ν ®x .(0 ∥
∏

i ∈I !ai ⟨Mi ⟩ ∥ P
′) ≃ R where R↓b holds. Since R↓b

and b was chosen fresh, input transition ®z : s ⟨s⟩ +Kρ(û).!b⟨û⟩
Kρ L′

▶ !b⟨L′⟩ must be triggered, for

some L′ (not necessarily equivalent to L). Thus wemust have that ®z : Q
Kρ(u)

▶ ν ®w .
({L′/u } ∥ Q ′

)
and

®w ∩ fv(K) = ∅; and hence, by rules Par-l, Close-r and Res, R = ν ®z, ®w .
(
!b⟨L′⟩ ∥

∏
i ∈I !ai ⟨Ni ⟩ ∥ Q

′
)
.

From the above, we can construct transition ν ®z.(ρ ∥ Q)
K (u)▶ ν ®z, ®w .

({L′/u } ∥ ρ ∥ Q ′
)
. Since

ν ®y, ®v .
(
!b⟨Lσ ⟩ ∥

∏
i ∈I !ai ⟨Mi ⟩ ∥ P

′
)
≃ ν ®z, ®w .

(
!b⟨L′⟩ ∥

∏
i ∈I !ai ⟨Ni ⟩ ∥ Q

′
)
, by definition of R, we

have ν ®y, ®v .
(
σ ∥

{
L/u

}
∥ P ′

)
R ν ®z, ®w .

(
ρ ′ ∥

{
L′/u

}
∥ Q ′

)
, as required.

Closure under τ transitions. Assume ν ®y.(σ ∥ P) τ ▶ ν ®y.(σ ∥ P ′). Unfolding rules labelled

transitions, ®y : P τ ▶ P ′
; hence ν ®y.(

∏
i ∈I !ai ⟨Miσ ⟩∥ P)

τ ▶ ν ®y.(
∏

i ∈I !ai ⟨Miσ ⟩∥ P
′). Hence, since

open barbed bisimulations are closed under τ -transitions, for some R, we have Q1

τ ▶ R such that

ν ®y.(
∏

i ∈I !ai ⟨Miσ ⟩∥ P
′) ≃ R. Since ai are fresh they cannot be involved in τ -transitions, so by unfold-

ing the rules of the labelled transition system, for someQ ′
, we have R = ν ®z.(

∏
i ∈I !ai ⟨Ni ⟩ ∥ Q

′) and

Q τ ▶ Q ′
. From the above we can construct τ -transition ν ®z.(ρ ∥ Q) τ ▶ ν ®z.(ρ ∥ Q ′). Furthermore,

by definition of R, we have ν ®y.(σ ∥ P ′) R ν ®z.(ρ ∥ Q ′), as required.

Closure under reachability. Assume idempotent substitutions θ and ϑ are fresh for ®x . To
avoid clashes between names ®a and θ and ϑ , select fresh names {bi }i ∈{1, ...,n } . Let substitution
θ ′, with domain ®a be such that aiθ

′ = bi . So, by Lemma 3.10, P1θ
′ ≃ Q1θ

′
, hence, since ai are

fresh for Mi and P , we have ν ®y.
(∏

i ∈I !bi ⟨Mi ⟩ ∥ P
)
≃ ν ®z.

(∏
i ∈I !bi ⟨Ni ⟩ ∥ Q

)
. Without loss of

generality, applying α-conversion, assume θ and ϑ are fresh for ®y ∪ ®z; hence, by Lemma 3.10,

Publication date: December 2018.



A Bisimilarity Congruence for the Applied π -Calculus 1:17

ν ®y.
(∏

i ∈I !bi ⟨Miθϑ ⟩ ∥ Pθϑ
)
≃ ν ®z.

(∏
i ∈I !bi ⟨Niθϑ ⟩ ∥ Qθϑ

)
. Now defineσ ′ =

{
M1θϑ , ...Mnθϑ/x1, ...xn

}
and ρ ′ =

{
N1θϑ , ...Nnθϑ/x1, ...xn

}
. Since σ and ρ are idempotent and θ and ϑ are fresh for ®x ; σ ′

and

ρ ′ are idempotent. Finally, consider context ν ®w .
(∏

j ∈J !ci ⟨Ki ⟩ ∥ { · }
)
, for ϑ =

{
K1, ...,Km/v1, ...,vm

}
,

J = {1, . . . ,m} and fresh {c1, . . . , cm}. Note, by Lemma 3.5, R ∥ νx .S ∼ νx .(R ∥ S), for x < fv(R),
hence, by Corollary 3.9, R ∥ νx .S ≃ ®x . (R ∥ S). Observe that, by closure of open barbed bisimilarity

under contexts, and the aforementioned scope extrusion property we have the following.

ν ®w, ®y.

(∏
j ∈J

!ci ⟨Ki ⟩ ∥
∏
i ∈I

!bi ⟨Miθϑ ⟩ ∥ Pθϑ

)
≃ ν ®w, ®z.

(∏
j ∈J

!ci ⟨Ki ⟩ ∥
∏
i ∈I

!bi ⟨Niθϑ ⟩ ∥ Qθϑ

)
Hence, by definition of R, we have ν ®w, ®y.(ϑ ′ ∥ σ ′ ∥ Pθϑ ) R ν ®w, ®z.(ϑ ′ ∥ ρ ′ ∥ Qθϑ ), as required.
Thus the relation R is a quasi-open barbed bisimulation. Furthermore if P ≃ Q then P R Q .

Thereby P ≃ Q implies P ∼ Q (the converse to Corollary 3.9). 2

It is interesting to compare the above proof to the corresponding proof for the π -calculus [San-
giorgi and Walker 2001]. In the corresponding proof for the π -calculus checks are built into bound

output transitions to ensure extruded private names are fresh. In the above proof no such checks

are required for output transitions; such checks are subsumed by checking static equivalence.

4 CHARACTERISING OPEN BARBED BISIMILARITY FOR THE APPLIED
π -CALCULUS USING AN INTUITIONISTIC MODAL LOGIC

A modal logic characterises a bisimilarity whenever bisimilar processes satisfy the same formu-

lae [Hennessy and Milner 1985]. Recent insight [Ahn et al. 2017], has shown that intuitionistic

modal logics can be used to characterise bisimilarity congruences. In this section, we consider how

the modal logic called intuitionistic FM [Horne et al. 2018], characterising open barbed bisimilarity

lifts to the setting of the applied π -calculus.
A syntax for FM is presented below.

ϕ F tt top

| ff bottom

| M = N equality

| ϕ ∧ ϕ conjunction

| ϕ ∨ ϕ disjunction

| ϕ ⊃ ϕ implication


intuitionistic logic

|
〈
π
〉
ϕ diamond

|
[
π
]
ϕ box

}
modalities

common abbreviations:

¬ϕ ≜ ϕ ⊃ ff

M , N ≜ ¬(M = N )

In the syntax above, observe connectives cover the standard conjunction, disjunction, implication,

top and bottom of intuitionistic logic with equalities. The two modalities box and diamond range

over all observable actions. Observable actions π , as defined in Sec. 2, range over τ , bound outputs

and free inputs. Intuitionistic negation is defined as a standard abbreviation.

There are two differences between intuitionistic FM for the applied π -calculus, presented in

Fig. 3, and previous work on intuitionistic FM for the π -calculus with mismatch. Firstly, any

messages, not just variables, can appear in equalities and on labels. Secondly, the definition is

surprisingly more concise: there is no free output modality; and extruded private names are recorded

in the extended processes so need not be accounted for in the satisfaction relation.

Soundness of quasi-open bisimilarity with respect to intuitionistic FM is established by a

straightforward induction of the structure of formulae.

Theorem 4.1 (soundness). If P ∼ Q , then for all ϕ, P |= ϕ if and only if Q |= ϕ.
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A |= tt always holds.

ν ®x .(σ ∥ P) |= M = N iff Mσ =E Nσ and ®x ∩ (fv(M) ∪ fv(N )) = ∅

A |= ϕ1 ∧ ϕ2 iff A |= ϕ1 and A |= ϕ2.
A |= ϕ1 ∨ ϕ1 iff A |= ϕ1 or A |= ϕ2.
A |= ϕ1 ⊃ ϕ2 iff whenever A ≤σ , ®x .ρ A′, we have A′ |= ϕ1σ implies A′ |= ϕ2σ .

A |=
〈
π
〉
ϕ iff there exists B such that A π ▶ B and B |= ϕ .

A |=
[
π
]
ϕ iff whenever A ≤σ , ®x .ρ A′, and A′ πσ▶ B, we have B |= ϕσ .

Fig. 3. The semantics of intuitionistic modal logic FM, adapted for the applied π -calculus.

For what follows we restrict to finitary message theories.

Definition 4.2. An equational theory is finitary whenever, for all messagesM and N , there is a

finite set of substitutions {σi }i ∈I such that, for all i ∈ I , we have Mσi =E Nσi and, for all θ such

thatMθ =E Nθ , there exists j ∈ I such that σj ≤ θ (i.e., for some ς , we have σj · ς = θ ).

For example Dolev-Yao, and our example theory in Fig. 1 are finitary. Message theories with an

associative operator, such a string concatenation, are not finitary in general. However, theories

with an associative-commutative operator [Ayala-Rincón et al. 2017] are finitary.

The following contrapositive to completeness holds under certain assumptions sufficient to

ensure a finite formula can be constructed.

Theorem 4.3 (distinguishing formulae). For fragments of the applied π -calculus that are
decidable with a finitary equational theory, if P ≁ Q , there exists ϕL such that P |= ϕL and Q ̸ |= ϕL ,
and also there exists ϕR such that Q |= ϕR and P ̸ |= ϕR .

The proof is similar to the proof for the π -calculus with mismatch except that there is an

additional reason processes may be distinguished in the non-bisimulation strategy — namely the

processes are not statically equivalent.

Note Theorem 4.3 may hold under weaker conditions, lifting the restriction that we consider

only fragments where quasi-open bisimilarity is decidable. However, the above result is still useful,

adequate for a large class of useful theories and processes. The proof yields an algorithm for

generating distinguishing formulae from distinguishing strategies obtained from where the search

for a bisimulation fails.

4.1 Examples of distinguishing formulae expressed using intuitionistic FM.
We present examples illustrating subtleties of the logic and also provide distinguishing formulae

for examples discussed previously.

Subtle formulae requiring absence of law of excluded middle. In Section 3.3, we presented a

distinguishing strategy for the following processes.

A′ ≜ a⟨r ⟩ v.s. C ′ ≜ ifx = pk(k) thena⟨aenc(m, pk(k))⟩ elsea⟨r ⟩

A more subtle distinguishing strategy than that presented in Section 3.3 also exists. The more subtle

strategy exploits the absence of the law of excluded middle as follows. Observe A′ a(u)▶ {r/u } ∥ 0,

cannot be matched by any transition of C ′
without additional assumptions about x and k . Thus for

a distinguishing formula biased to the left we have the following.

A′ |=
〈
a(u)

〉
tt and C ′ ̸ |=

〈
a(u)

〉
tt
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Now observe that C ′
can only perform an output transition either: under substitutions σ such

that xσ =E pk(k)σ ; or, under substitutions ρ and environments ®n such that ®n |= xρ , pk(k)ρ. For
a distinguishing formula biased to the right we write a box modality followed by the strongest

post-condition after an output is performed, i.e., either x = pk(k) or x , pk(k), as follows.

A′ ̸ |=
[
a(u)

]
(x = pk(k) ∨ x , pk(k)) and C ′ |=

[
a(u)

]
(x = pk(k) ∨ x , pk(k))

Observe that in a classical setting neither of the above formulae would be distinguishing. In

a classical modal logic we have

[
a(u)

]
(x = pk(k) ∨ x , pk(k)) is a tautology, due to the law of

excluded middle. Thus the absence of the law of excluded middle for intuitionistic FM provides

additional distinguishing power.

Is absence of law of excluded middle necessary? For the above example there are distinguishing

formulae where the absence of the law of excluded middle is not necessary for the formula to

be distinguishing. For example, we have the following distinguishing formula biased to the right,

which would also be distinguishing in a classical variant of FM.

A′ ̸ |= x = pk(k) ⊃
〈
a(u)

〉
(u = aenc(m, pk(k))) C ′ |= x = pk(k) ⊃

〈
a(u)

〉
(u = aenc(m, pk(k)))

There are however examples for which the intuitionistic nature of FM is necessary for a distin-

guishing formula to exist. In the classical setting of labelled bisimilarity the following are equivalent.

let D ′ ≜ a⟨aenc(⟨m, r ⟩ , pk(k))⟩ in R ≜ a(x).C ′ + a(x).A′ + a(x).D ′
v.s. S ≜ a(x).A′ + a(x).D ′

Intuitively, both processes R and S above model servers that either behave as A′
or D ′

regardless

of the input. In addition, process R above also has the option of receiving an input then making a

decision based on the input whether to behave as A′
or as D ′

. Classically, R and S are equivalent,

since upon receiving an input corresponding to the prefix of a(x).C ′
we have decided immediately

that either x = pk(k) or x , pk(k) holds; hence the appropriate branch in the first process is taken.

However, in the intuitionistic setting, as required for quasi-open bisimilarity, the above processes

are distinguished. The distinguishing strategy is as follows: a(x).C ′ + a(x).A′ + a(x).D ′ a x▶ C ′

can only be matched by either a(x).A′ + a(x).D ′ a x▶ A′
or a(x).A′ + a(x).D ′ a x▶ D ′

, and

neither C ′ ∼ A′
nor C ′ ∼ D ′

hold. This strategy leads to the following distinguishing formulae in

intuitionistic FM biased to process R and S respectively.

R |=
〈
a x

〉 [
a(u)

]
(x = pk(k) ∨ x , pk(k)) and S |=

[
a x

] 〈
a(u)

〉
tt

The a posteriori reason for not assuming the law of excluded middle everywhere is that this

assumption is necessary to characterise a bisimilarity congruence. An a priori justification for

examples such as the above is less obvious. We attempt an explanation as follows. In the above

example, variable x on the input label is not a ground term hence has not been fully read. Thus

the program can proceed without fully reading x , lazily reading any sub-term only when required

(in this case, to determine whether or not x = pk(k)). By analogy, when you download this paper

you do not read every character before proceeding with your next task, but in the future you may

study a detail of Theorem 3.11 (efficient rather than lazy would be a better term).

In contrast, if we ground the names as follows the following are bisimilar, even in the intuitionistic

setting of quasi-open bisimilarity.

νk .a⟨pk(k)⟩.(a(x).C ′ + a(x).A′ + a(x).D ′) ∼ νk .a⟨pk(k)⟩.(a(x).A′ + a(x).D ′)

Static equivalence examples. The processes νm,n.a⟨m⟩.a⟨n⟩ ̸∼ νn.a⟨n⟩.a⟨h(n)⟩ are not open

bisimilar. A distinguishing strategy is that both processes can perform output transitions a(u) and

a(v) reaching the pair of processes νm,n.
({m,n/u,v

}
∥ 0

)
̸∼ νn.

({
n,h(n)/u,v

}
∥ 0

)
. As discussed in
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Section 2.1, these processes are not statically equivalent; with distinguishing messages v and h(u).
Thereby we can construct the following distinguishing formulae biased to each respective process.

νm,n.a⟨m⟩.a⟨n⟩|=
〈
a(u)

〉〈
a(v)

〉
(v , h(u)) νn.a⟨n⟩.a⟨h(n)⟩|=

[
a(u)

] [
a(v)

]
(v = h(u))

Recall from Section 2, we have νx .a⟨aenc(x , z)⟩ ̸∼ νx .a⟨aenc(⟨x ,y⟩ , z)⟩. The distinguishing strat-
egy, described previously, involved substitution

{
pk(w )/z

}
, and distinguishing recipes snd(adec(u,w))

and y, each of which are recorded in the following distinguishing formula biased to the right.

νx .a⟨aenc(⟨x ,y⟩ , z)⟩|=
〈
a(u)

〉
(z = pk(w) ⊃ snd(adec(u,w)) = y)

From the same strategy, we can construct the following distinguishing formula biased to the left.

νx .a⟨aenc(x , z)⟩|=
[
a(u)

]
(snd(adec(u,w)) , y)

Sub-formula z = pk(w) ⊃ adec(u,k) = x ⊃ x = y requires explanation. After applying substitution{
aenc(y,z)/u

}
·
{
pk(k )/z

}
to adec(u,k) =E x , resulting messages adec(aenc(y, pk(k)) ,k) and x are not

related by the equational theory. However, there is a strongest postcondition x = y enabling

this equation since adec(aenc(y, pk(k)) ,k) =E y. We write the strongest postcondition after the

distinguishing recipe adec(u,k) = x .

Mobility example with messages as channels. For the mobility example, νm.a⟨⟨m,n⟩⟩.m(x) ̸∼

νm.a⟨⟨m,n⟩⟩ from Section 2, the distinguishing strategy presented previously yields the following

formula biased to the respective processes.

νm.a⟨⟨m,n⟩⟩.m(x) |=
〈
a(u)

〉〈
fst(u)x

〉
tt νm.a⟨⟨m,n⟩⟩|=

[
a(u)

] [
fst(u)x

]
ff

Notice that message fst(u) is used as a channel name for the second output action.

5 EXAMPLES OF THE THEORY APPLIED TO SECURITY AND PRIVACY PROPERTIES
We illustrate here the power of the theory developed on two more substantial examples. The first is

an established privacy example, demanding mismatch. The second is an example involving a larger

message theory (blind signatures). Neither scenario could previously be verified using a bisimilarity

congruence in the literature, such as open bisimilarity for the spi-calculus without mismatch.

5.1 Privacy property for which mismatch is necessary.
We provide a more elaborate version of the running example of a private server, adapted from the

literature [Abadi and Fournet 2004; Cheval et al. 2017]. In this protocol, there are two servers: the

first responds in a way only the owner of private key a can detect; while the second only responds

to the owner of private key b. The aim of the protocol is to ensure that an external observer cannot

determine the intended recipient of data. The scenario can be modelled by the following processes.

P ≜ [snd(adec(y, c)) = pk(a)]νn.x ⟨aenc(⟨fst(adec(y, c)), ⟨n, pk(c)⟩⟩ , pk(a))⟩

C{ · } ≜ νa,b, c .x ⟨pk(a)⟩.x ⟨pk(b)⟩.x ⟨pk(c)⟩.{ · }

Broken_Server ≜ C{x(y).P} and Broken_Server ′ ≜ C
{
x(y).P

{
b/a

}}
Notice Broken_Server and Broken_Server ′ differ only by the name a or b respectively in sub-

process P . The former, after the input action, will only respond to a message containing public key

pk(a) with a message readable by the owner of secret key a; while the latter only responds to a

message containing pk(b), producing a message readable by the owner of secret key b.
Broken_Server and Broken_Server ′ are not quasi-open bisimilar, as witnessed by the following

distinguishing formula biased to Broken_Server .

Broken_Server |=
〈
x(u)

〉〈
x(v)

〉〈
x(w)

〉〈
x aenc(⟨z,u⟩ ,w)

〉〈
x(s)

〉
tt
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Broken_Server ′ ̸ |=
〈
x(u)

〉〈
x(v)

〉〈
x(w)

〉〈
x aenc(⟨z,u⟩ ,w)

〉〈
x(s)

〉
tt

This indicates that the protocol does not preserve the privacy of the client to whom the server

uniquely responds. By following the distinguishing strategy given by the formula, an attacker can

distinguish the server responding to pk(a) from the server responding to pk(b).
The privacy of the above protocol can be fixed by inserting dummy messages, so the attacker

cannot distinguish between a response intended for the owner of secret key a and a response

intended for the owner ofb. To prove this privacy property, we establish the following two processes
are quasi-open bisimilar, where P is as defined above.

Fixed_Server ≜ C{x(y).(P + [snd(adec(y, c)) , pk(a)]νm.x ⟨m⟩)}

Fixed_Server ′ ≜ C

{
x(y).

(
P
{
b/a

}
+ [snd(adec(y, c)) , pk(b)]νm.x ⟨m⟩

)}
After three sends, x(u), x(v), and x(w), we reach the following extended processes.

A ≜ νa,b, c .
({

pk(a),pk(b),pk(c)/u,v,w

}
∥ x(y).(P + [snd(adec(y, c)) , pk(a)]νm.x ⟨m⟩)

)
B ≜ νa,b, c .

({
pk(a),pk(b),pk(c)/u,v,w

}
∥ x(y).

(
P
{
b/a

}
+ [snd(adec(y, c)) , pk(b)]νm.x ⟨m⟩

))
There are three cases to consider at this point triggering different behaviours.

• Message aenc(⟨z,u⟩ ,w) is input on channel x . Since u is an alias for pk(a) this represents
trying to trigger the server to respond to the owner of secret key a (as defined inside P ).

• Message aenc(⟨z,v⟩ ,w) is input on channel x . Since v is an alias for pk(b) this represents
trying to trigger the server to respond to the owner of secret key b (as in P

{
b/a

}
).

• Any other message is input on channel x .

In the first case above, after input aenc(⟨z,u⟩ ,w) the match guard in sub-process P is triggered.

This is because after the input the match guard is snd(adec(aenc(⟨z,u⟩ ,w) , c)) = pk(a) under
substitution

{
pk(a),pk(b),pk(c)/u,v,w

}
, amounting to snd(adec(aenc(⟨z, pk(a)⟩ , pk(c)) , c)) =E pk(a),

which holds. For B, the mismatch guard is triggered, since a,b, c |= pk(a) , pk(b) holds. Thereby,
both A and B can perform an output x(t) to reach the following extended processes.

A
x aenc(⟨z,u ⟩,w )▶ x (t )▶ νa,b, c,n.

({
pk(a),pk(b),pk(c),aenc(⟨z, ⟨n,pk(c)⟩⟩,pk(a))/u,v,w,t

}
∥ 0

)
B

x aenc(⟨z,u ⟩,w )▶ x (t )▶ νa,b, c,m.
({

pk(a),pk(b),pk(c),m/u,v,w,t

}
∥ 0

)
The above extended processes are statically equivalent, even under all substitutions fresh for

{u,v,w,a,b, c}, as required for an open relation. The private key a and nonce n are never revealed;

hence aenc(⟨z, ⟨n, pk(c)⟩⟩ , pk(a)) cannot be decrypted or reconstructed by an attacker, and thereby

cannot be distinguished from a random cyphertext represented bym.

The second case is symmetric to the first case. Simply swap a and b in the argument above.

In the third case any other input, say M , triggers the mismatch in both branches, since, for

any messages M other that those equivalent to pk(a) or pk(b), we have a,b, c |= M , pk(a) and
u,v,w |= M , pk(b). Thereby there is a quasi-open bisimulation R such that A R B, from which

Fixed_Server ∼ Fixed_Server ′ follows.
Future work will explain larger privacy examples involving mismatch, that can be analysed

using quasi-open bisimilarity. For example, the established attack on unlinkability of the French

e-passport [Arapinis et al. 2010] can be discovered. Note, contrary to claims in that paper, there

is an attack on the UK e-passport that is discovered quickly using quasi-open bisimilarity, and is

confirmed by equivalence checking tools based on trace equivalence [Cheval et al. 2018].
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5.2 Example using an extended message theory, featuring blind signatures.
Now extend the message theory. Extend messages with signatures sign(M,N ). Firstly, observe the

following are quasi-open bisimilar.

R ≜ νn.a⟨n⟩.a(x).νk .a⟨sign(x ,k)⟩.a(y).[y = sign(n,k)]τ

S ≜ νn.a⟨n⟩.a(x).νk .a⟨sign(x ,k)⟩.a(y).[y = sign(n,k)][x = n]τ

Exploiting the compositionality of quasi-open bisimilarity, it is sufficient to check the following

sub-processes are quasi-open bisimilar.

νk .a⟨sign(x ,k)⟩.a(y).[y = sign(n,k)]τ

νk .a⟨sign(x ,k)⟩.a(y).[y = sign(n,k)][x = n]τ

Since quasi-open bisimilarity is closed under context νn.a⟨n⟩.a(x).{ · }, it follows that R ∼ S .
Now, extend further the example message language to model blind signatures [Chaum 1983].

We have blinding blind(M,N ), unblinding unblind(M,N ) and the following additional equation.

unblind(sign(blind(M,N ) ,K) ,N ) = sign(M,K)

Under this extended theory with blind signatures the above processes R and S are no longer quasi-

open bisimilar. A distinguishing strategy is explained by the following distinguishing formula

biased to process R.

R |=
〈
a(u)

〉〈
a blind(u, z)

〉〈
a(v)

〉〈
a unblind(v, z)

〉〈
τ
〉
tt

The above formula describes strategies by which the above processes can be distinguished under a

blind signature theory. To see why, observe after four transitions we reach the following extended

process, which is expected to satisfy formula

〈
τ
〉
tt.

νk,n.
({

n,sign(blind(u,z),k)/u,v

}
∥ [unblind(sign(blind(n, z) ,k) , z) = sign(n,k)]τ

)
The guard is satisfied by using the equation for blind signatures, thus the τ -transition is enabled, as

required. The above example, illustrates a signature forgery attack, where two distinct signatures,

valid for distinct messages are produced from a single signature.

An approach to avoiding signature forgery is to enforce a hash-and-sign approach to signatures.

This is illustrated by the following example where a hash function is inserted. The following

processes are quasi-open bisimilar, hence the first process cannot pass the test of providing two

distinct messages signed with key k .

νk .a(x).a⟨sign(x ,k)⟩.a(y).a(z).[y = sign(h(m) ,k)][z = sign(h(n) ,k)][m , n]τ
∼ νk .a(x).a⟨sign(x ,k)⟩.a(y).a(z)

The key observation for verifying the above equivalence is, after four actions a x , a(u), ay, a z we
reach the following extended process.

νk .
({

sign(x,k)/u

}
∥ [y = sign(h(m) ,k)][z = sign(h(n) ,k)][m , n]τ

)
v.s. νk .

({
sign(x,k )/u

}
∥ 0

)
Regardless of what values for x , y and z there is no permitted choice such that all match and

mismatch guards can be satisfied. Any solution for passing the match guards forcesm = n to hold;

hence the τ transition cannot be enabled. Note this can be verified by solving a system of what

are known as deducibility constraints5 generated from the order messages are communicated, as

explained in related work [Bursuc et al. 2014].

5
Deducibility constraints ⊢ x and sign(x, k ) ⊢ sign(h(m) , k ) and sign(x, k ) ⊢ sign(h(n) , k ), where k is a private name.
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6 COMPARISON TO RELATEDWORK ON LABELLED BISIMILARITY
The bisimilarities presented so far are strong; in contrast to weak semantics that allows internal

τ -transitions to be ignored. All previous work on bisimilarity for the applied π -calculus concerns
weak semantics, mainly due to the hybrid reduction/label transition style used in the original paper,

that does not permit a strong semantics to be expressed.

To define a weak semantics modify the labelled transitions in Fig. 2 such that rules for choice,

match and mismatch are replaced by the following direct definition of if-then-else.

M =E N

®n : ifM = N then P elseQ τ ▶ P

®n |= M , N

®n : ifM = N then P elseQ τ ▶ Q

For the weak variant of open barbed bisimilarity, each τ -transition can be matched by zero or more

τ -transitions; as represented by Q ▶ Q ′
in the following definition.

Definition 6.1 (weak open barbed bisimilarity). Define R⇓M whenever there exists R′
such that

R ▶ R′
and R′↓M . A weak open barbed bisimulation R is a symmetric relation over processes

such that whenever P R Q holds the following hold:

• For all contexts C{ · }, C{P} R C{Q}.

• If P ↓M then Q ⇓M .

• If P τ ▶ P ′
, there exists Q ′

such that Q ▶ Q ′
and P ′ R Q ′

holds.

Weak open barbed bisimilarity ≊ is the greatest weak open barbed bisimulation.

Weak quasi-open bisimilarity differs from quasi-open bisimilarity with respect to the rules for

if-then-else, and in the use of weak transitions. In the following B
π
▶ B′

permits zero or more

τ -transitions before and after action π , and in the case π = τ , B
π
▶ B′

is B ▶ B′
, defined above,

thereby permitting one τ -transition to be matched by zero transitions.

Definition 6.2 (labelled bisimilarity). A symmetric relation between extended processes R is a

labelled bisimulation whenever, if A R B then the following hold:

• A and B are statically equivalent.

• If A π ▶ A′
there exists B′

such that B
π
▶ B′

and A′ R B′
.

Weak quasi-open bisimilarity ≈ is the greatest open labelled bisimulation (Def. 3.3). Labelled

bisimilarity ∼ℓ is the greatest labelled bisimulation, where the inequality between messages in the

else branch is evaluated classically rather than intuitionistically.

Theorem 3.11 extends to the weak case: weak open barbed bisimilarity coincides with weak
quasi-open bisimilarity. Changes to the proof to handle a weak semantics are minimal (a few extra

observables are required in the proof of completeness). Note the above rules for if-then-else
avoid well known compositionality problems with respect to choice in the weak setting. Since

0 ≊ τ .0, and weak open barbed bisimilarity is a congruence, we have ifM = N then P else 0 ≊
ifM = N then P elseτ .0. However, this congruence property would fail for the weak variant of

quasi-open bisimilarity, if, instead of the rules for if-then-else above, “reactive” choice in Fig. 2

was employed. Consequently, the above rules are essential for the soundness of weak quasi-open

bisimilarity with respect to weak open barbed bisimilarity.

Weak quasi-open bisimilarity is clearly sound with respect to labelled bisimilarity. The only
difference between labelled bisimilarity and weak quasi-open bisimilarity is the keyword open
from the definition above, and the use of classical negation when interpreting guards. Thereby

labelled bisimilarity equates strictly more processes than weak quasi-open bisimilarity. Indeed, in

the classical setting of labelled bisimilarity, all free variables in processes are treated as ground
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trace equivalence [Cheval et al. 2017]

labelled bisimilarity [Abadi et al. 2018]

observational equivalence

OO

strong labelled bisimilarity

i.e., early bisimilarity

77

weak open barbed bisimilarity, Def. 6.1

weak quasi-open bisimilarity, Def. 6.2

ii

cong
ruen

ces

open barbed bisimilarity, Def. 2.3

quasi-open bisimilarity, Def. 3.4

intuitionistic FM, Fig. 3

ff 66

open bisimilarity (Sec. 7)

OO

Fig. 4. Part of the spectrum of bisimilarities surrounding open barbed bisimilarity.

terms; which makes redundant the set of names in the environment of the labelled transition system.

Thus the only difference compared to weak quasi-open bisimulation is that labelled bisimilarity is

not preserved under reachability (Def. 3.2).

Labelled bisimilarity has been proven to coincide with observational equivalence [Abadi et al.
2018]. Observational equivalence is a constrained version of Definition 6.1 where contexts are

restricted to “evaluation contexts”, essentially of the form { · } ∥ P . Hence, by definition, weak

open barbed bisimilarity is contained in observational equivalence. Thereby, as an immediate

consequence of the coincidence of labelled bisimilarity and observational equivalence, we have

that weak open barbed bisimilarity is (strictly) finer than labelled bisimilarity.

Corollary 6.3 (soundness w.r.t. labelled bisimilarity). If P ≊ Q , then P ∼ℓ Q .

Of course, by the weak variant of Theorem 3.11, this means any property proven using weak

quasi-open bisimilarity is also valid for labelled bisimilarity. Most notions of bisimilarity previ-

ously introduced for cryptographic calculi coincide with observational equivalence [Abadi et al.

2018; Abadi and Fournet 2001; Abadi and Gordon 1998; Bengtson et al. 2011; Boreale et al. 2001;

Borgström 2009; Borgström and Nestmann 2005; Johansson et al. 2010, 2012; Liu and Lin 2012].

Intermediate results on symbolic bisimulations [Borgström et al. 2004; Delaune et al. 2010] also

closely approximate observational equivalence. Thus this work, respects the aims of all such papers,

without loss of power for capturing security and privacy properties; while, in addition, providing

the benefits of a bisimilarity congruence.

The relations described in this subsection are summarised in Fig. 4. Observe the weak and strong

variants of open barbed bisimilarity, below the double line are congruences; in contrast to labelled

bisimilarity. Note strong labelled bisimilarity is obtained from Def. 3.4 by removing keyword open.
Related work [Hüttel and Pedersen 2007] logically characterises observational equivalence using

a classical modal logic. The classical modal logic provided in that work is quite different from

the classical variant of FM, obtained by removing the requirement that implication and box
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are preserved under reachability. Other work [Parrow et al. 2017], introduces a more abstract

classical modal logic characterising weak bisimilarities, that may be instantiated for the applied

π -calculus [Parrow et al. 2015]. The intuitionistic modal logic FM, in Sec. 4, complements those

papers by characterising open barbed bisimilarity for the applied π -calculus.
Since concepts such as static equivalence are standard, many aspects of existing implemen-

tations of equivalence checkers can be reused. Future work includes adapting existing decision

procedures [Cortier et al. 2017; Tiu and Dawson 2010] to open barbed bisimilarity for the ap-

plied π -calculus. We believe open barbed bisimilarity can be used to tame the problem with trace

equivalence, where unnecessarily many constraints are generated [Cheval et al. 2017]. In related

process models [Paige and Tarjan 1987; Pistore and Sangiorgi 2001] bisimilarity is demonstrably

more efficient than trace equivalence. Open barbed bisimilarity complements existing work on

partial-order reduction [Baelde et al. 2015] in this direction.

7 OPEN BISIMILARITY: LAZIER APPROACH; TOO FINE FOR PRIVACY PROPERTIES
Open bisimilarity for the applied π -calculus is referred to in the introduction and conclusion. Open

bisimilarity for applied π -calculus has not been defined in the literature, so we provide a short

explanation. This appendix clarifies why open bisimilarity is not the main subject of the text, and

instead we focus on open barbed bisimilarity.
By shifting to a late labelled transition system, we know how to define open bisimilarity for

the applied π -calculus. Previous definitions of open bisimilarity for a cryptographic calculus, the

spi-calculus, have complex definitions [Briais and Nestmann 2007; Tiu 2007]. The approach of the

current paper requires less machinery since the applied π -calculus is more abstract than the spi-

calculus; hence abstracts away from details regarded as implementation concerns. Open bisimilarity

is defined in terms of a late labelled transition system, differing for the rules presented in Fig. 5.

Inp

M(x).P
M (x )▶ P

P
M (x )▶ ν ®z.

({N/x } ∥ P ′
)

Q
M (x )▶ Q ′ ®z ∩ fv(Q) = ∅

Close-l

P ∥ Q τ ▶ ν ®z.
(
P ′ ∥ Q ′

{N/x })
P

M (x )▶ ν ®z.
({N/x } ∥ Q

)
P

M (x )▶ R ®z ∩ fv(P) = ∅
Rep-close

!P τ ▶ ν ®z.
(
Q ∥ R

{N/x } ∥ !P
)

Fig. 5. Rules of an open late labelled transition system, plus symmetric rules for parallel composition. Note,

for the fragment without mismatch, transition rules do not carry an environment.

Instead of sets of private names, we employ histories representing the order in which messages

are sent and received. Respectful substitutions, defined over histories, are key to the lazy approach

of open bisimilarity.

Definition 7.1 (histories). A history is defined by grammar h F ϵ | h · xo | h ·M i
. Substitution

σ respects history h, whenever for all histories h′
and h′′

such that h = h′ · xo · h′′
, xσ = x , and

y ∈ fv(h′) implies x < yσ .

For clarity, we restrict to the fragment without mismatch. Hence the late labelled transitions in

Fig. 5 do not need to carry around environment information to resolve mismatches. This fragment

is adequate for this discussion on related work, since open bisimilarity for the spi-calculus as only

previously defined without mismatch.
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Definition 7.2 (open bisimilarity). A symmetric relation indexed by a history R is an open

bisimulation whenever: if A Rh B the following hold, for x fresh for A, B, h:

• A and B are statically equivalent.

• Whenever σ respects h, we have Aσ Rhσ Bσ .
• If A τ ▶ A′

there exists B′
such that B τ ▶ B′

and A′ Rh B′
.

• If A
M (x )▶ A′

, for some B′
, we have B

M (x )▶ B′
and A′ Rh ·xo B′

.

• If A
M (x )▶ A′

, for some B′
, we have B

M (x )▶ B′
and A′ Rh ·x i B′

.

Open bisimilarity ∼o is defined such that P ∼o Q holds whenever there exists open bisimulation R

such that P Rx i
1
·...x in Q holds, where fv(P) ∪ fv(Q) ⊆ {x1, . . . xn}.

Open bisimilarity is a congruence relation. The proof follows the same pattern as Theorem 3.6.

Theorem 7.3 (congruence). If P ∼o Q , then for all contexts C{ · }, we have C{P} ∼o C{Q}.

The fact that open bisimilarity is preserved in all contexts is sufficient to show open bisimilarity

is sound with respect to the greatest bisimilarity congruence, open barbed bisimilarity. The proof is

absolutely identical to Corollary 3.9.

Corollary 7.4 (soundness). If P ∼o Q (open bisimilarity) then P ≃ Q (open barbed bisimilarity).

Wemake two observations. Firstly, open bisimilarity is not adequate for certain privacy properties,

such as the running example from the introduction. Open bisimilarity can be extended to handle

mismatch, by indexing open bisimulations and labelled transitions by both a history and a finite set

of inequalities. However, any conservative extension of open bisimilarity does not induce the law of

excluded middle for guards involving messages that behave like private names; and hence can detect

attacks that do not exist. Secondly, the definition of quasi-open bisimilarity is undeniably simpler

than Def. 7.2 requiring only the keyword “open”, compared to labelled bisimilarity. Philosophically

speaking, by Occam’s razor, the simpler model is more likely the better choice.

7.1 Open bisimilarity is conservative with respect to the spi-calculus.
To strongly situate the current work with respect to notions of bisimilarity for cryptographic calculi

in literature, we compare the applied π -calculus to the spi-calculus [Abadi and Gordon 1999]. The

spi-calculus is a more concrete predecessor of the applied π -calculus which is hard-wired with a

fixed Dolev-Yao model for messages.

In the fixed message theory of the spi-calculus we assume we have pairs ⟨M,N ⟩ and symmetric

encryption {M}N . Furthermore, to capture the expressive power of the spi-calculus using static

equivalence in the applied π -calculus, we also require the corresponding deconstructors dec(M,N ),

fst(M) and snd(M) and equational theoryD such that fst(⟨M,N ⟩) =D M , snd(⟨M,N ⟩) =D N , and

dec({M}K ,K) =D M . In addition, in order for static equivalence to have the standard distinguishing

power of the spi-calculus, which is type aware, we require terms is_enc(N ) and true along with

equation is_enc({M}K ) =D true.
Spi-calculus processes, as with applied π -calculus processes, feature deadlock, input, output,

parallel compositions, new name restriction, match and replication. Message terms however are

only formed from variables and constructors ⟨M,N ⟩ and {M}N . Instead of deconstructors, explicit

processes terms case and let are provided for decrypting messages and decomposing pairs. The
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syntax of spi-calculus processes is defined as follows.

x ,y variables

M,N F x
| {M}N
| ⟨M,N ⟩

P F 0

| M(x).P

| M ⟨N ⟩.P
| P ∥ P
| νx .P
| [M = N ]P
| !P
| caseM of {x}N in P
| let ⟨x ,y⟩ = M in P

Spi-calculus processes are embedded directly as applied π -calculus processes by using the following
mapping from case and let statements to applied π -calculus processes with deconstructors.

⟦caseM of {x}K in P⟧ = [{dec(M,K)}K = M]
�
P
{
dec(M,K )/x

}�
⟦let ⟨x ,y⟩ = M in P⟧ = [⟨fst(M), snd(M)⟩ = M]

�
P
{
fst(M ),snd(M )/x,y

}�
Notice that the hard-wired theory for the spi-calculus permits successful decryption to be detected,

using the guard {dec(M,K)}K = M . Similarly, we can detect whether a message is a pair by using

guard ⟨fst(M), snd(M)⟩ = M . Thus the guards above only permit progress when decryption or

projection, respectively, is successful.

By restricting to the above fragment of the applied π -calculus, we obtain the following result.

Open bisimilarity for the “spi-calculus fragment” of the applied π -calculus coincides with open

bisimilarity for the spi-calculus.

Proposition 7.5. If P and Q are spi-calculus processes then P is open bisimilar to Q , as defined
in related work [Briais and Nestmann 2007; Tiu 2007], if and only if ⟦P⟧ is open bisimilar to ⟦Q⟧
according to Def. 7.2.

The proof of the above proposition involves translating between the styles of the spi-calculus

and applied π -calculus. Open bisimilarity [Briais and Nestmann 2007; Tiu 2007] for the spi-calculus

is defined using “hedges” [Borgström and Nestmann 2005] — a data structure representing indistin-

guishable pairs of messages exposed to the environment. For extended processes ν ®y.(σ ∥ P) and
ν ®z.(θ ∥ Q), the hedge is a list of pairs [(x1σ ,x1θ ), . . . (xnσ ,xnθ )], where {x1, . . . ,xn} = dom(θ ).

7.2 Note on the implementation of open bisimilarity and quasi-open bisimilarity.
The main purpose of the observation in this section is to situate the current work with respect

to existing work on bisimilarity congruences for cryptographic calculi. In addition, this obser-

vation emphasises that established decision procedures for open bisimilarity developed for the

spi-calculus [Tiu and Dawson 2010; Tiu et al. 2016] lift to the setting of the applied π -calculus. An
ongoing challenge for future work is to adapt decision procedures to further message theories. This

is already an established research direction in cryptographic protocol analysis, since the problem

can be reduced to deciding whether static equivalence holds, under all respectful substitutions.

Although open bisimilarity cannot verify the privacy of Server B from the introduction; it can be

used to discover the attack on Server C, or even unlinkability attacks on e-passports. Since open

bisimilarity is less expensive than quasi-open bisimilarity, we propose the following methodology.

Firstly, search for an open bisimulation. If the search fails, construct an attack in intuitionistic FM.

If the construction fails, we have not found a real attack; hence continue to search for a quasi-open

bisimulation. In this way, the more expensive quasi-open bisimilarity is only employed lazily, when

necessary. Future work will evaluate the effectiveness of this implementation strategy.
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8 CONCLUSION
This is the first thorough investigation into bisimilarities for the applied π -calculus that are con-
gruences. In cryptographic calculi in general, a bisimilarity congruence, open bisimilarity, has
previously been introduced for the spi-calculus [Briais and Nestmann 2007; Tiu 2007]. However,

work on the spi-calculus did not handle mismatch, and is less abstract, being hard-wired with a

fixed message theory. By moving to the coarser setting of open barbed bisimilarity and lifting to

the applied π -calculus, we are able to handle mismatch and any message theory, in such a way

that privacy-type properties can be verified. Privacy properties addressed, elaborated on in Sec. 5,

involve if-then-else with a guard depending on private information. Equivalences significantly finer,

such as diff-equivalence [Blanchet et al. 2008; Cheval and Blanchet 2013], are incomplete and hence

may suggest attacks that do not exist. Equivalences coarser than quasi-open bisimilarity are either

not congruences or are not bisimilarities, by Theorem 3.11.

Although nothing in cryptography is simple, definitions we introduce are concise and general.

In order to define open barbed bisimilarity (Def. 2.3), we require only the following ingredients:

• A notion of fresh substitution (Def. 2.1).

• An open early labelled transition system (Fig. 2).

Open barbed bisimilarity is then defined using three succinct clauses. Quasi-open bisimilarity

(Def 3.4), the labelled alternative to open barbed bisimilarity, is also concise. For quasi-open bisimi-

larity the additional device required is the standard definition of static equivalence (Def. 3.1). Open

barbed bisimilarity provides an objective reference point — any (strong) bisimilarity congruence

must be sound with respect to open barbed bisimilarity. The main result of this paper, Theorem 3.11,

verifies quasi-open bisimilarity coincides with the more objective language-independent open

barbed bisimilarity. Such an objective reference allows design decisions to be resolved, such as how

to handle expressive message theories and if-then-else.
In terms of definitions, the gap between open barbed bisimilarity and the “classical” observa-

tional equivalence is small — ensure the relation is preserved in all contexts, not just contexts

that introduce a new process in parallel. The gap between quasi-open bisimilarity and “classical”

labelled bisimilarity is smaller still — ensure the relation is preserved under reachability (Def. 3.3).

However, the gap is significant, since in this work we obtain a congruence relation. Furthermore, a

recent breakthrough [Ahn et al. 2017] provided us with the insight to logically characterise open

barbed bisimilarity. The insight is that, closing a suitable modal logic under reachability, we obtain

a characteristic intuitionistic modal logic (Theorems 4.1 and 4.3). This we believe is the first logical

characterisation of any bisimilarity congruence for any cryptographic calculus. Characteristic

formulae can be used, for example, to describe privacy attacks whenever two processes are distin-

guished. Note, the intuitionistic modal logic FM is likely to have applications beyond describing

attacks on privacy.

For the “classical” labelled bisimilarity [Abadi et al. 2018], there will always be the following

hanging question.

Can I reason compositionally, proving sub-protocols are correct, with the reassur-

ance that correctness will still hold in a larger context?

For labelled bisimilarity, the answer to the above question is not immediate — it depends on the

processes and the context. An example of such a potential pitfall is explained in Section 3.3. In

contrast, open barbed bisimilarity removes the need to ask the above question. Any property

verified using open barbed bisimilarity can be reused anywhere in another proof.
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