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All you need to know about open bisimilarity
late bisimilarity
(Milner et al. CONCUR’91)

distinct names

late congruence
(Milner et al. INF.COMP.92)
universally quantified

T~

open bisimilarity
(Sangiorgi CONCUR’93)
no law of excluded middle

> No distinct name assumption (names are variables).

v

Closed by substitutions at every step (variables may be unified later).
> |s automatically a congruence (preserved under input prefixes).
> Still a bisimulation: so robust under unanticipated change of context during runtime.

> Permits a lazy call-by-need instantiation of inputs, which is efficient to automate.



Why no law of excluded middle?

Classically, ¢ v ¢ is a tautology and [n]qﬁ = ﬁ<n>ﬁ¢.
Hence for all classical modal logics:

ab |l e(x) = (r)t v 7|

Intuitionistically, “Reachable worlds” are processes accessible by substitutions. E.g.

ab || c(x) < (@b Il c(x)){3e} and ab || a(x) =+ 0

Closing modalities under all reachable worlds (intuitionistic heredity):
ab || c(x) = <‘r>tt v HE
ab |l c(x) = <T>tt, — no t-transition in world where a and c are not equal.

ab |l c(x) = [‘r]ff, — some t-transition in world where a = c.



For congruences, quantify over all names

For congruences (open bisimilarity and late congruence):

x=ylr *

Distinguishing strategy, in world where x = y:

(x =yln)% =0 but

Distinguishing formula biased to the left:

x=ylrE=[x=y|(r)t and

Distinguishing formula biased to the right:

[x=ylr = lTJff and

0%} L

0= 7|



No duality between left and right formulae

All bisimulations agree:

x=ylr * T

Distinguishing formula biased to the right:

[x=ylr = <T>tt and TE <T>‘tt

Dual formula is not distinguishing.
[x =yl = —|<‘r>tt and T —|<T>11

[read as “there is no reachable world in which we can do a 7-transition”]

What is a distinguishing formula biased to the left?



No duality between left and right formulae

All bisimulations agree:

[x=ylr + T

What is a distinguishing formula biased to the left?

Distinguishing strategy (right process leads):
[x=ylr T

Since right leads, for formula biased to the left, write box:



No duality between left and right formulae

All bisimulations agree:

[x=ylr + T

What is a distinguishing formula biased to the left?

Distinguishing strategy (right process leads):

[x=ylr T
only in worlds where x =y 0

Since right leads and left only follows in worlds where x = y, write x = y as post-condition:

(el = y)e



No duality between left and right formulae

All bisimulations agree:

[x=ylr *

Distinguishing strategy (right process leads):
[x =yl

l,
only in worlds where x =y

Distinguishing formula biased to the left:

[x=ylr k= [t](x = y)u and

0= H<x = y>tt



Generating distinguishing formulae algorithmically

Not open bisimilar:

THrTHTx =yt

Distinguishing strategy (left process leads first):
T+rr4T[x =y|r

x=ylr

We just saw:
[x=ylr+0 and

T+ 77T

x=ylr»7t



Generating distinguishing formulae algorithmically

Distinguishing strategy (left process leads first):

THrT+nx =yl T+TT
[x=ylr 0 / \ T
We just saw:
[x =yl [x = y|(r)e 0k [7&
[x =ylr k= |7|(x = y)u T (t)

Since left process leads: diamond on left, box on right.



Generating distinguishing formulae algorithmically

Distinguishing strategy (left process leads first):

THrT+nx =yl T+TT
[x=ylr 0 / \ T
We just saw:
[x =yl [x = y|(r)e 0k [7&
[x =ylr k= |7|(x = y)u T (t)

Since left process leads: conjunction on left, disjunction on right.

(M lx = [y A el = v)e) (= v (7))



Generating distinguishing formulae algorithmically

Not open bisimilar:

THrT+T[x=Yy]r + TH+TT

Distinguishing formula biased to left.

et el = yte b ) [x = (e (e = v)e)

Distinguishing formula biased to right.

t+rrie[7([7]E Vv ())

Only distinguishing if we drop law of excluded middle for name equality. I.e.
X=yorx#y iff THrrHTx=ylrE [T]([T]ff Y% <T>tt).

[Mechanically proven in intuitionistic proof assistant]



Results for modal logic OM

Theorem (soundness)
If P ~ Q then, for all formulae ¢, P = ¢ iff Q = ¢.

Proof.
By induction on structure of ¢. [mechanised]

Theorem (completeness)
Whenever, for all formulae ¢, P = ¢ iff Q = ¢, we have that P ~ Q.

Proof.
If P+ Q, by induction on depth of a distinguishing strategy, construct ¢, and ¢ such that:

> PE¢Land Q¥ ¢
> Pl ¢rand Q = ¢R.

Proof is constructive, so yields algorithm for generating distinguishing formulae.
[implemented] m]



Subtleties of OM: respectful substitutions

Distinguishing strategy (left always leading):

vx.ax.a(y).r 2 vx.ax.a(y).[x =ylr
a(x) a(x)
a(y).r 2% a(y).[x = ylr
a(x) a(x)
T walxoy! [x=ylr
T T
0 23Xy in world where x = y respecting a’ - x° - y/

Distinguishing formulae (base case):

. ':ai‘xo-yi <T>tt and [x=y]r ':ai,xﬂ»y' [TKX = y>‘lI



Subtleties of OM: respectful substitutions

Distinguishing strategy (left always leading):

i

vx.ax.a(y).r +2
a(x)

a(y).r il
a(x)
T Laxy
T
0 palxoy!

Distinguishing formulae (inductive case):

a(y).r 2 (a(y)><r>tt and

vx.ax.a(y).[x =ylr

a(x)
a(y).[x =yl
a(x)

[x =yl

in world where x = y respecting a’ - x° - y

a(y).x = ylr =7 [a(n)[7](x

y)t

i



Subtleties of OM: respectful substitutions

Distinguishing strategy (left always leading):

i

vx.ax.a(y).r +4 vx.ax.a(y).[x =ylr
a(x) a(x)
a(y)-t % a(y)[x =yl
a(x) a(x)
T paxoy! x=y]r
T T
0 23X in world where x = y respecting a’ - x° - y/

Distinguishing formulae:

vx.ax.a(y).r = <5(x)><a(y)><‘r>tt and vx.ax.a(y).[x =yl = [é(x)”a(y)”‘r](x = y>tt



Subtleties of OM: input modalities

Late modality for diamond:

Pk (a(2)) iff 30.P2%, Qandvz. Q= ¢.

Basic modality for box:

PE [a(2)]s iff v Q. P22, qimplies Vz. Q |= ¢.

Modalities have independent interpretations!
In contrast, classical Late modality for box, is de Morgan dual to diamond:

PEat)] ¢ iff v Q. P 2%, qimplies 3x. Q = ¢



Subtleties of OM: input modalities

Neither open bisimilar nor late bisimilar:

a(x).r+ a(x) + a(x).[x = a]r + a(x).t + a(x)

Distinguishing formulae biased to the right:

a(x)r+a(x) = [a(x)]((r)tt v [T]ff)

However, fails to be distinguishing, both:
> classically, with law of excluded middle;
> intuitionistically, with late box modality.

Intuitionistic with basic box modalities and late diamond modalities.



Conclusion

> OM s the first modal logic proven to characterise open bisimilarity.

> OM is fundamentally an intuitionistic modal logic!
> Intuitionistic hereditary, given by respectful substitutions.

> No law of excluded middle (in modal logic and meta-framework).
> Modalities have independent interpretations ... no de Morgan dualities.
> Satisfaction and generation of distinguishing formulae are implemented.
> Techniques general and known to extend to other calculi and bisimulations.
> Perspectives: open bisimilarity permits efficient symbolic decision procedures.

> especially good for infinite inputs in cryptographic calculi.

> What about intuitionistic symbolic model checking (invariant under open bisimilarity)?



A more challenging example!

These processes are late congruent to 7 + 7.7.

r(rt+rr+r[x =ylw = z]7)

r(r+rrt+rx=yl)+r(r+rr+r[x =y]w = z]7)

They are not open bisimilar!

What are the distinguishing strategies?

What are the distinguishing formulae?



Results work for early transition systems

early bisimilarity
(CONCUR91)
distinct names

barbed congruence

late bisimilarity
' Classical early congruence
(CONCUR'91) CONCURO1)

distinct names

universally quantified

7

late congruence
(INF.COMP’91)
universally quantified

open barbed bisimilarity
quasi-open bisimilarity

(CONCUR'01)

intuitionistic
open bisimilarity L
(CONCUR'93) Intuitionistic
intuitionistic
Additional criterion for intuitionistic modal logics:
If law of excluded middle is forced we obtain a meaningful classical modal logic
(open barbed bisimilarity becomes barbed congruence).



