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Abstract—Various modern protocols tailored to emerging wire-
less networks, such as body area networks, rely on the proximity
and honesty of devices within the network to achieve their
security goals. However, there does not exist a security framework
that supports the formal analysis of such protocols, leaving the
door open to unexpected flaws. In this article we introduce such
a security framework, show how it can be implemented in the
protocol verification tool TAMARIN, and use it to find previously
unknown vulnerabilities on two recent key exchange protocols.

Index Terms—security protocols, formal verification, key ex-
change, distance bounding, distant attacker

I. INTRODUCTION

In the past few years, we have seen the emergence of
a new class of security protocols that have as a common
feature that their security goals are only guaranteed under the
assumption that the adversary is not in the proximity of the
proper communication partners. Examples of such protocols
are key exchange protocols for Body Area Networks [1],
pairing protocols of smart devices [2]–[4], or protocols for
memory erasure and memory attestation [5], [6].

Assuming that attackers are far or distant, called the distant-
attacker assumption, can be motivated in various ways. A local
attacker can, for instance, be excluded due to physical protec-
tion or human observation of the environment. Alternatively,
attacks by local agents may be considered infeasible due to the
use of out-of-band channels that open to nearby devices only,
such as short-range or low-powered communication. A trace-
ability attack, which occurs when a user can be traced based
on the transcripts of the communication protocol, that requires
the attacker to be close to the victim is arguably ineffective,
as the victim is already being physically monitored. Lastly,
memory erasure and attestation protocols have proven unable
to resist a standard man-in-the-middle attacker [7], such as the
Dolev-Yao attacker. The state-of-the-practice for this type of
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protocols is to isolate the prover and verifier by radio jamming
or hardware manipulation.

Most of the protocols that depend on the distant-attacker
assumption have not been formally verified yet and may thus
suffer from unexpected vulnerabilities. This lack of verification
effort can mainly be explained by the use of informal, physical
or out-of-band techniques that are hard to formalize in a
symbolic security model. Hence there is a need for a security
model that makes explicit what a distant-attacker can and
cannot do, and that is amenable to formal verification.

Because the distant-attacker assumption states that the dis-
tance between the adversary and the proper communication
partners is (much) larger than the mutual distance between the
communication partners, this notion appears to have a strong
link to the notion of distance-bounding protocols. However,
while the goal of distance-bounding protocols is to ensure
that the communication partners are close, protocols from the
above mentioned class aim to ensure some classical security
property, like secrecy or authentication, under the assumption
of proximity of the communication partners. Such focus on
distance bounding is reflected on the verification frameworks
[8]–[13] developed for the verification of distance-bounding
protocols using round-trip time, which ignore classical security
properties.

The pairing protocol depicted in Figure 1, inspired by
the design of Move2Auth [3], is an example of the type of
protocols we are referring to: it aims at secure key exchange,
relies on the distant-attacker assumption, and uses the physical
properties of the communication channel to check proximity.
The goal is for an agent V to create a shared key kvp with
another agent P . V does not have any previous cryptographic
secret shared with P , but it is confident that all agents in its
vicinity are honest. The prover first generates a public/private
key pair, denoted pk(k) and k, respectively. The public key,
together with the signature of the prover’s identity P with k, is
sent to V . Upon reception, V generates a fresh symmetric key
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kvp, executes a round-trip-time (RTT) measurement with P ,
and sends kvp encrypted with pk(k). The RTT measurement,
illustrated by dashed arrows, is based on the messages nv and
nv⊕np. Once P decrypts {kvp}pk(k), it confirms reception of
the key by encrypting the nonce np and its own identity P with
kvp. If the RTT is lower than a time threshold ∆, and ⟨np, P ⟩
is correctly encrypted with kvp, then V concludes that P is
nearby and, therefore, honest (based on the distant-attacker
assumption). This allows V to claim that kvp is secret, i.e.
unknown to attackers.

P V

nonce k, np nonce nv, kvp
⟨pk(k), sign(P, k)⟩

nv

max ∆nv ⊕ np

{kvp}pk(k)

{⟨np, P ⟩}kvp

kvp is secret

Fig. 1: An insecure pairing protocol Pex: a running example

Based on our study of the literature, the most common
security argument used to analyse this type of protocol is to
assume that some messages are unavailable to the attackers,
because they are far. Case in point: if the messages used
to measure RTT can only be received by honest and nearby
agents, then the last message {⟨np, P, ⟩}kvp

should have been
generated by an honest agent, supposedly P . By using this
security argument one may conclude that the protocol in
Figure 1 is secure. Yet it is not. The protocol suffers from
an attack known as distance fraud in the distance-bounding
literature [14], because it relies on the ability of an attacker
to inject messages from far away.

The attack works as follows. The attacker E executes the
protocol with V by sending their own public key. E does not
wait for the second message. Instead, E sends a random value
m soon enough to be received by V right after V sends nv .
The same antenna that E uses to inject messages is used to
eventually receive the verifier’s challenge nv . This allows E
to compute np = nv ⊕ m and correctly finish the protocol
with V . There is another attack on this protocol, that does not
require the attacker to interfere with the RTT measurement.
It consist in hijacking a session between an honest prover P
and V in a similar fashion to distance-hijacking attacks on
distance-bounding protocols [15]. Without providing further
details on the second attack, we argue that the intuitive use
of a secure or protected channel between nearby devices
to formally model the physical assumptions underlying the
protocol, risks missing attacks. Hence, such a modelling could
lead to the conclusion that the protocol is safe, while it is not.
Consequently, there is a need for a verification methodology
that augments standard symbolic security protocol verification

with a distant-attacker model and incorporates techniques used
for the verification of protocols with physical properties, such
as distance bounding protocols [9]. This article introduces such
a methodology.

Our methodology starts from a time-based security model
which allows for the analysis of standard security properties
(Section III). Next, we add the distant-attacker assumption
and round-trip-time restrictions (Section IV). In order to
prepare for efficient verification with an analysis tool like
Tamarin [16], this time-based model is then reduced to a
causality-based model (Section V). The input to our method-
ology consists of the formalized description of a security pro-
tocol, in which we modelled the distant-attacker assumption as
a time-bound challenge-response loop in the protocol. Using
this approach, we formally verified seven protocols for which
we found a number of novel attacks (Section VI).

II. RELATED WORK

There exist various symbolic models to analyse security
protocols that depend on time and location, most of them
specifically targeting distance-bounding protocols. The first
one [17] was proposed in 2007. That model allowed for
the analysis of distance-bounding protocols while faithfully
representing time and location, but it lacked support for
computer-aided verification. Basin et al. [8] later addressed
that limitation, introducing a security model for distance-
bounding protocols with tool support. They made explicit that
the arrival time of a message depends on the locations of
sender and receiver, and the maximum propagation speed of
the communication channel. This allows their model to for-
mulate distance-bounding security as a statement on whether
a round-trip-time measurement is lower than or equal to twice
the distance to the communicating partner divided by the
propagation speed. Our model is inspired by these modelling
choices. To assist formal verification, Basin et al. encoded their
model in the theorem proving assistant Isabelle/HOL. Their
approach is not fully automated, though, requiring end-users
to define several protocol-dependent lemmas.

The problem of realising a fully automated verification
framework for distance-bounding protocols was solved inde-
pendently in 2018 by Mauw et al. [9], Chothia et al. [10],
and Debant et al. [11], [12]. In [18] a procedure to analyse
these protocols is presented and integrated in Akiss1. Our work
intersects with all those seminal works in different ways. Like
in [9], we frame time-based protocol requirements as causal
relations of protocol events, and show they can be automati-
cally verified in TAMARIN. To prove equivalence between a
time-based model and a causality-based model, we use proving
techniques similar to the one used in [10]–[12] to analyse
distance-hijacking resistance. We generalise these approaches
under the assumption of a distant attacker by supporting other
security properties, such as secrecy, agreement and memory
erasure.

1http://people.irisa.fr/Alexandre.Debant/akiss-db.html
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Improvements and extensions of the above verification
frameworks have followed. For example, Boureanu et al. [13]
introduce a model that supports moving agents and use it to
analyse complex payment protocols. Alturki et al. [19] propose
a timed multiset rewriting model with memory bounding and
timeouts features. Their analyses are of theoretical interest, but
their model lacks tool support.

Outside the domain of distance-bounding protocols, there
exist time-aware security models [20]–[22] that support the
verification of standard authentication properties, as we do
in this article. Their specification language is richer than
ours, allowing for statements on timeouts and the ordering of
protocol events based on timestamps. Their network model,
however, neither captures the location of agents nor the
propagation time of a message via the network in terms of
the distance between sender and receiver. Instead, they model
the network communication delay as a range within a discrete
space, making these models unsuitable to formalise the notion
of distant attackers.

Lastly, the notion of distant attacker was introduced in [7],
from which we borrow the terminology, within the context of
memory-erasure protocols. Their security model, however, is
neither amenable for computer-aided verification nor extend-
able to other security properties.

Up to our knowledge, no symbolic model with tool support
has been proposed to analyse protocols in which standard
properties such as secrecy and authentication can be analysed
under the distant-attacker assumption. We introduce the first
such model and use it to verify key exchange and memory-
erasure protocols.

III. A SECURITY MODEL FOR TIMED SECURITY
PROPERTIES

This section introduces a security model for protocols with
round-trip-time restrictions. Like previous models for distance-
bounding protocols [8], [18], our model uses a timed com-
munication channel where protocol participants are provided
with a spatial location, and the arrival time of messages is
consistent with the propagation speed of the communication
channel and the distance between sender and receiver. Our
model, however, is used to analyse general properties of
security protocols. Hence we provide the model with a simple
protocol specification language (à la Cremers and Mauw [23])
and operational semantics that allows us to prove general
properties of protocols with round-trip-time measurements in
relation to their security goals. We note that although security
models including a notion of time do exist, they are either
too expressive (e.g. [8]), making it a laborious task to prove
general properties of protocols, or too specific (e.g. [9]) and
constrained to the analysis of distance-bounding protocols.

A. Messages

A security protocol defines the way various protocol par-
ticipants, called agents, exchange cryptographic messages.
To model them, we use an order-sorted term algebra (S,≤
, TΣ(V, C)) where Σ is a signature, V a set of variables, C

a set of constants, and (S,≤) a poset of sorts [24]. We will
often use TΣ(V, C) to refer to our sorted term algebra when the
sorts are clear from context. All terms have a sort. In particular,
the sorts agent and nonce are reserved for agent names and
nonces. We also define the sort msg (short for message) to
be the supersort or the greatest element of the poset S, i.e.
s ≤ msg for all s ∈ S. We use t : s to denote that term t is of
sort s.

Let Agent = {a ∈ C|a : agent} be the set of agent names
and Nonce = {n ∈ C|n : nonce} be the set of nonces. Given an
agent a, we use Noncea to denote the set of nonces that agent
a can produce. We restrict agents to produce unique nonces,
hence we require ∀a, b ∈ Agent : a ̸= b =⇒ Noncea ∩
Nonceb = ∅. The set Agent is partitioned into Honest (honest
agents) and Dishonest (dishonest agents). Finally, we assume
that the signature Σ contains the following function symbols:

• pair(m,m′) denoting the pairing of two terms m and
m′. We will often use ⟨m,m′⟩ as shorthand notation,
and write ⟨m1, . . . ,mn⟩ instead of ⟨m1, ⟨m2, . . . ,mn⟩⟩.
The functions fst and snd allow us to recover the first
and second element of a pair, respectively.

• xor(m,m′), often written as m ⊕ m′, denoting the ex-
clusive or of the terms m and m′. The constant zero
represents the null element with respect to xor.

• k(a, b) denoting the long-term symmetric key shared by
agents a and b.

• sk(a) denoting the long-term secret key of an agent a.
• pk(m) denoting the public key associated to a term m.

If it does not lead to confusion, we shall write pk(a) to
denote pk(sk(a)) when a ∈ Agent.

• aenc(m1,pk(k)) and adec(m2, k) denoting, respec-
tively, the asymmetric encryption of m1 with the public
key pk(k), and the asymmetric decryption of m2 with
the secret key k.

• senc(m1, k1) and sdec(m2, k2) denoting, respectively,
the symmetric encryption of m1 with the key k1, and the
symmetric decryption of m2 with the key k2.

• sign(m, k′) denoting the signature of m with the secret
key k′. The function verify and the constant true are used
to verify whether a signature is correct.

• h(m) denoting the hash of the term m.
• x · y and xy denote, respectively, the multiplication and

exponentiation of x and y, in a Diffie-Hellman group. The
function inv and the constant 1 denote, respectively, the
inverse function w.r.t. multiplication and the unit element.

We often write {X}Y to denote (a)symmetric encryption of
X with (public) key Y . Further, we assume that the sort of
all composed terms is the super sort msg.

The semantics of the function symbols above is formalised
by an equational theory E that models perfect cryptography,
such as the one supported by TAMARIN and ProVerif. We use
the symbol =E to denote equality of two terms modulo E.

Terms with variables will be used in our model to
specify the behaviour of protocol participants (roles), in
such a way that their behaviour can be instantiated mul-
tiple times by means of variable substitution. Formally, let



vars : TΣ(V, C) → P(V), where P(.) denotes the power set,
be an auxiliary function that, given a term t, gives all variables
occurring in t. A term t ∈ TΣ(V, C) is called ground iff
vars(t) = ∅. We use TΣ(C) to denote the set of ground
terms over the term algebra. A substitution is a function
σ : V → TΣ(V, C) from variables to terms such that σ(v) ̸= v
for finitely many variables. An instantiation of a term t via a
substitution σ, denoted tσ, is inductively defined by

tσ =





t if t ∈ C
σ(t) if t ∈ V
f(σ(t1), . . . , σ(tn)) if t = f(t1, . . . , tn)

We say that a substitution σ is type-preserving if for every
variable v ∈ V it holds that v : s ∧ σ(v) : s′ =⇒ s′ ≤ s.
This means, for example, that a variable of type msg can be
substituted by a term of type nonce, but not the other way
around. In our model, we consider type-preserving substitution
only, and we use Γ to denote the universe of such substitutions.

B. Protocol specification

We partition a protocol into roles. A role is composed of
events it uses to communicate with other roles, security claims,
time measurements, etc. An event is a term of the form Ea(t),
where E is a symbol from an unsorted signature E , and t and
a are terms in TΣ(V, C) with a : agent. The application of a
substitution σ to an event Ea(t), denoted Ea(t)σ, results in the
event Eaσ(tσ). The set of all events is denoted Ev and the set
Evg ⊆ Ev denotes the set of ground events, which are events
with only ground terms as arguments. The function actor(·),
defined by actor(Ea(t)) = a, provides the actor executing an
event.

We reserve the event symbols send, recv, claim, clock,
and equal. The events senda(m) and recva(m) denote the
sending and reception, respectively, of a message m. For the
remaining reserved events we impose the following syntactical
restrictions: clock events have the form clocka(i, j), where i
and j are integers representing the start and end of a timer. This
timer starts with the execution of the ith event of the role, and
stops at the execution of its jth event. Claim events have the
form claima(ψ, t), where ψ is a constant denoting a security
property name and t is an argument of the property, such as
an agent’s name or a nonce; equality events have the form
equala(⟨m1,m2⟩) denoting the expectation that m1 =E m2.
The impact of these event types in the behaviour of a protocol
will be made precise soon.

As in [23], we consider a role specification R to be a
sequence of events r1 · · · rn establishing a total order on
the execution of the role events. We require every role
specification with sequence of events r1 · · · rn to satisfy that
actor(r1) = . . . = actor(rn), i.e. events within a role
specification are executed by the same agent. We also require
ri = clocka(x, y) =⇒ x ≤ y < i for every i ∈ {1, . . . , n};
i.e. a time measurement is built upon preceding events only,
and the event at which the clock stops does not precede the
event at which the clock starts.

A role is a mapping from role names, such as server and
client, to role specifications. We use R = r1 · · · rn to denote
the role with name R and specification r1 · · · rn, and we use
R to denote the universe of roles.

Definition 1 (Protocol specification). A protocol P consists of
a set of roles, such that no two roles share the same role name,
built over an order-sorted term algebra (S,≤, TΣ(V, C)).

At the semantical level, we will treat all variables within
a role as local variables. This ensures that agents can only
communicate by messaging each other. Given a role R =
r1 · · · rn, we use rolevars(R) to obtain all role variables in
R, which is defined as follows.

rolevars(R) = {v ∈ V|∃i ∈ {1, . . . , n} : ri = senda(m) ∧
v ∈vars(m) ∧ ∀j ∈ {1, . . . , i− 1} : v ̸∈ vars(rj)}

As naming convention for variables, we will use upper case
letters when a variable is intended to be instantiated within a
receive event, such as K and Np in the example below, lower
case letters otherwise, such as nv and kvp.

Example 1. To illustrate our security model, we formalise the
running example depicted in Figure 1. The specification within
our security model of the prover and verifier roles, denoted P
and V , respectively, is given below. It assumes that nv , np,
kvp, and k are variables of type nonce, while the variables V
and P are of type agent. All the other variables, namely Nv ,
Np, Kvp, S, PK, are of type msg.

Pex = {
V = recvv(⟨PK,S⟩) · sendv(nv) · recvv(nv ⊕Np)·
clockv(2, 3) · sendv({kvp}PK) · recvv({⟨Np, P ⟩}kvp

)·
equalv(⟨verify(S, P, PK), true⟩) · claimv(sec, ⟨P, kvp⟩)

P = sendp(⟨pk(k), sign(P, k)⟩) · recvp(Nv), sendp(Nv ⊕ np)·
recvp({Kvp}pk(k)) · sendp({⟨np, P ⟩}Kvp

)}
The ∆ symbol labelling a dashed arrow that connects the

2nd and 3rd protocol message in Figure 1 represents the
round-trip-time measurement of the verifier, and is translated
into the event clockv(2, 3) in the role specification.

C. Role instantiation.

Protocols are executed by instantiating their roles. Syntacti-
cally, the instantiation of a role results in a sequence of ground
events that respect the order of the events established by the
role specification. Given a role R = r1 · · · rn, we define all
its instantiations, denoted insts(R), as follows.

insts(R) ={e1 · · · ei ∈ Evg
∗|i ≤ n ∧

∃σ ∈ Γ: e1 = r1σ, . . . , ei = riσ}
Note that the empty sequence of events ϵ is a valid instan-

tiation of all role specifications.
In the operational semantics provided further below, we

restrict role variables of type nonce to be assigned a fresh
value, i.e. a term that has not been used in other role instanti-
ations during the protocol execution. Therefore, we introduce



a ⊢s m m =E m′

a ⊢s m′ I0
m ∈ Agent ∪ Noncea

a ⊢s m
I1

b ∈ Agent

a ⊢s ⟨k(a, b), k(b, a), sk(a),pk(sk(b))⟩ I2

a ⊢s m1 . . . a ⊢s mn f ∈ Σ \ {sk, k}
a ⊢s f(m1, . . . ,mn)

I3

(t, recva(m)) ∈ s

a ⊢s m
I4

Fig. 2: Inference rules

an auxiliary function to extract the set of nonces used in an
instantiation, for every e1 · · · ei ∈ insts(R),

nonces(e1 · · · ei, R) = {t ∈ Nonce |∃v ∈ rolevars(R), σ ∈ Γ:

σ(v) = t ∧ v : nonce ∧ e1 = r1σ, . . . , ei = riσ}

D. Inference

Before establishing how agents exchange messages, we
need to define how agents obtain and create knowledge. We
model this by means of an inference relation ⊢ ⊆ Agent ×
P(Ev)×Msg. we use the shorthand notation a ⊢s m to denote
(a, s,m) ∈⊢, indicating that agent a can infer message m
from a set of events s. The relation ⊢ is defined as the least
set that is closed under the inference rules in Figure 2. These
rules express the following: (I0) If an agent a can infer a term
m, then a can infer all terms within the equivalence class of m
defined by =E . (I1) an agent a can infer agent names and its
own set of nonces; (I2) agents can infer their shared secret
keys with other agents, long term public keys of any agent
and its own long term secret key; (I3) all function symbols
in Σ, except the reserved symbols for secret keys k and sk,
can be used to infer arbitrary terms constructed over already
inferable terms; (I4) a receive event recva(m) allows agent
a to infer m.

E. Protocol semantics

We model the execution of a protocol P as a Labelled
Transition System (LTS) l = (Q,Λ,→, s0), where Q is a set
of states, Λ is a set of labels used to annotate the transition
of the system from one state to another, → : Q × Λ × Q is
a transition relation, and s0 ∈ Q is the initial state. We will
often use s ℓ−→ s′ as a shorthand notation for (s, ℓ, s′) ∈→.
States. A state in the system is composed of a set of runs,
where a run is an instantiation of a role by an agent. A
run contains a possibly partial execution of a role and a
run identifier. The latter allows agents to play multiple roles
in parallel. A run also includes the time-stamps at which
the events are executed. This allows us to reason about
time properties, such as consistency between the time-of-
flight of a transmitted message with respect to the speed of

the communication channel and the location of sender and
receiver.

Definition 2 (Run). Let Id be a countably infinite set of run
identifiers. A run is any tuple (id, (t1, e1) · · · (tn, en), R, a) ∈
Id × (R+ × Evg)

∗ × R × Agent satisfying that e1 · · · en ∈
insts(R) is an instantiation of the role R, a is the actor
executing the events e1, . . . , en, i.e. a = actor(e1) = · · · =
actor(en), and t1 ≤ t2 ≤ · · · ≤ tn.

A run is an execution of a role by an actor, containing
instantiations of events in the order imposed by the role
specification, and timestamps indicating the time at which
each event was instantiated. The order of the timestamps ≤ is
consistent with the order of the events in the instantiated role.
An empty run contains no events.

A state in our LTS is a set of runs. The initial state s0
is the empty set. Given a state s, the functions labels(s)
and nonces(s) return, respectively, all timed events and fresh
values occurring in s.

labels(s) ={(t, e)|∃(id, (t1, e1) · · · (tn, en), R, a) ∈ s :

(t, e) = (ti, ei) for some i ∈ {1, . . . , n}}

nonces(s) =
⋃

(id,(t1,e1)···(tn,en),R,a)∈s

nonces(e1 · · · en, R)

Given a state s, a role R, and a substitution σ mapping
the role R to its instantiation e1 · · · en, we use e1 · · · en ∈s

insts(R) to denote that the instantiation e1 · · · en of R sat-
isfies: (1) nonces(e1 · · · ei, R) ∩ nonces(s) = ∅ and (2) for
every x, y ∈ rolevars(R) of type nonce, x ̸= y implies
σ(x) ̸= σ(y). That is, no instantiation in s exists sharing
fresh values with the instantiation e1 · · · en of R, and the role
variables are instantiated with pairwise distinct nonces.
Labels and execution traces. A transition in our LTS will either
add a new empty run to the current state or add a timed event
to an existing run. Each transition is labelled with a timestamp,
a description of the state update and the id of the run modified
in that transition (this will become clear later). We denote the
creation of a new run by createa(R), where a ∈ Agent is an
agent and R ∈ R is a role. The addition of a protocol event will
be labelled by using the events themselves as labels. Therefore,
an execution of the protocol is an interleaved sequence of states

and labels of the type s0
(t1,l1)

id1

−−−−−−→ s1 · · · sn−1
(tn,ln)

idn

−−−−−−→
sn, where s0, . . . , sn are states, t1, . . . , tn timestamps, and li
is either a protocol event or a label of the type createa(R),
for i ∈ {1, . . . , n}. A trace is the resulting sequence of LTS
labels τ = (t1, ℓ1)

id1 · · · (tn, ℓn)idn . In this case, we say that
τ has cardinality n, denoted |τ |, and we use τi to denote the
ith element of τ , i.e. τi = (ti, ℓi)

idi . When n = 0, we use
ϵ to denote the empty trace, while the initial state s0 alone
represents the empty execution. Lastly, we will omit the run
ids from traces when they are not necessary.

We write a ⊢τ m to denote a ⊢s m where s is the set of
events occurring in τ.
Transition relation. The transition relation of the protocol LTS
is defined by a set of derivation rules, similar to the inference



rules above. The premise of a rule is a formula with no free

variables. Its conclusion is a transition of the form s
(t,ℓ)id−−−−→ s′.

Unless otherwise specified, variables in our derivation rules are
universally quantified. For run identifiers, we use id ∈s Id to
denote that id is chosen from the set Id in such a way that id
has not been used in the state s. The function max time: Q→
R+ gives the maximum timestamp used by an event in a given
state. If labels(s) = ∅, then max time(s) = 0, otherwise
max time(s) = max{t|(t, e) ∈ labels(s)}.

Our first rule is one that adds an empty run to a state by
instantiating either a protocol role or an adversarial role.

s ∈ Q, t ≥ max time(s), R ∈ R, a ∈ Agent,
id ∈s Id, a ∈ Honest =⇒ R ∈ roles(P)

s
(t,createa(P(R)))id−−−−−−−−−−−−→ s ∪ {(id, ϵ, R, a)}

CreateP

Here P denotes the protocol specification whose behaviour is
being modelled. This rule ensures that honest agents instantiate
a protocol role, i.e. that honest agents do not deviate from the
protocol specification. Dishonest agents, on the other hand,
can influence the protocol execution by instantiating arbitrary
role specifications, which we refer to as an adversarial role.

The remaining transition rules express how a run of the
system state can make progress by executing a single event.
There are three of these rules, which can all be defined as an
extension of the following rule template:

s ∈ Q, t ≥ max time(s), (id, τ, R, a) ∈ s,
τ = (t1, e1) · · · (ti, ei),

e1 · · · eiei+1 ∈s\(id,τ,R,a) insts(R),
[ ]

s
(t,ei+1)

id

−−−−−−→ (s \ {(id, τ, R, a)}) ∪ {(id, τ · (t, ei+1), R, a)}
,

where the bracketed part [ ] is a placeholder to add premises.
This rule template triggers the execution of an event ei+1 at
time t if i) t is greater than or equal to the largest timestamp
in s, and ii) there exists a run (id, (t1, e1) · · · (ti, ei), R, a)
in the state satisfying that e1 · · · ei+1 is an instantiation of R.
The condition e1 · · · eiei+1 ∈s\(id,τ,R,a) insts(R) ensures that
nonces assigned to role variables in other runs, i.e. in s minus
(id, τ, R, a), are not used in the current run.

We use → [p1, . . . , pn] to denote the rule obtained from the
above rule template by replacing the placeholder [ ] by the set
of premises {p1, . . . , pn}. Using this notation, we define the
remaining rules for our LTS in the following.

The Send rule:

→
[
ei+1 = senda(m), a ⊢{e1,...,ei} m

]
Send

allows agents to send messages to the network. The Send rule
restricts both honest and dishonest agents to send messages
whose content is inferable from their initial knowledge, con-
stants, and the sequence of events already executed in the run.
This is expressed by the premise a ⊢{e1,...,ei} m, and means
that our model does not consider an omnipresent adversary
overseeing all events sent to the network. Instead, our model
forces dishonest agents to collaborate by messaging each other.

The Recvd rule:

→
[
ei+1 = recva(m), (t′, sendb(m

′)) ∈ labels(s),
d(a, b) ≤ c(t− t′),m =E m′

]
Recvd

models how agents receive messages from other agents, en-
forcing that the time of flight of a message exchange is
consistent with the distance between sender and receiver. The
rule is parameterised on a distance metric d: Agent×Agent →
R+, and assumes a constant propagation speed c of the
communication channel.

The rule Recvd triggers the execution of a receive event
recva(m) at time t if ei+1 = recva(m) and there exists a
timed send event (t′, sendb(m′)), where m =E m′, in some
run in the state such that the distance between the sender and
receiver is smaller than or equal to c(t− t′).

It is worth pointing out that the Recvd rule does not consider
that messages may fade away as they travel, implying that
secrets revealed to nearby agents leak to the entire network.
This is a deliberate choice made with the goal of making no
assumptions about signal strength, nor about the distance at
which a message can be eavesdropped. For example, RFID
eavesdropping on messages at a range of 20m or more has
proven feasible, depending on the power of the devices [25].

The Equal rule

→
[
ei+1 = equala(⟨m1,m2⟩),m1 =E m2,
a ⊢{e1,...,ei} m1, a ⊢{e1,...,ei} m2

]
Equal

states that an event equala(⟨m1,m2⟩) only executes when m1

and m2 are equal modulo the equational theory E. This type
of event is used, e.g., to model the verification of signatures.

The Signal rule

→ [ei+1 ∈ SignalEvent] Signal

models the execution of signal events. Signal events are
useful for instrumenting security properties, which often rely
on expectations announced by agents by means of signal
events, such as claim events. Formally, the set of signal
events is defined by SignalEvent = {e ∈ Evg|∄a,m : e ∈
{senda(m), recva(m), equala(m)}}.

Definition 3 (Protocol semantics). The semantics of a protocol
P w.r.t. a distance function d is the LTS (Q,Λ,→, s0) where,

• Q = P(Id× (R+ × Evg)
∗ × R× Agent)

• Λ = R+ × (Evg ∪ {createa(R)|a ∈ Agent, R ∈ R})× Id

• →= CreateP ∪ Send ∪ Recvd ∪ Equal ∪ Signal.
• s0 = ∅
We use [[P]]d to denote the set of traces obtained from P’s

semantics with respect to the distance function d.

Example 2. Let E an adversarial role specification with all
role variables of type nonce:

E = sende(⟨pk(ke), sign(P, ke)⟩) · recve(Nv))·
sende(Nv ⊕ ne) · recve({Kvp}pk(ke)

) · sende({⟨ne, P ⟩}Kvp
)



Assuming that the pairwise distance between the agents a, b
and c is 100c, and that s = sign(b, k′), an execution trace of
our running example protocol Pex is the following:

s0
(0,createa(id1,Pex(V ))−−−−−−−−−−−−−−→ s1

(0,createb(id2,Pex(P ))−−−−−−−−−−−−−−→ s2

(0,createe(id3,E))−−−−−−−−−−−→ s3
(0,sende(⟨pk(k′),s⟩))
−−−−−−−−−−−−−→ s4

(100,recva(⟨pk(k′),s⟩))
−−−−−−−−−−−−−−→ s5

(100,senda(n
′))−−−−−−−−−−→ s6

(200,recve(n
′))−−−−−−−−−→ s7

(200,sende(n
′⊕ n))−−−−−−−−−−−−→ s8

(300,recva(n
′⊕ n))−−−−−−−−−−−−→ s9

(300,clocka(2,3))−−−−−−−−−−−→ s10

(300,senda({k′′}pk(k′)
))

−−−−−−−−−−−−−−−→ s11
(400,recve({k′′}pk(k′)

))

−−−−−−−−−−−−−−−→ s12
(400,sende({⟨n,b⟩}k′′ ))−−−−−−−−−−−−−−−→ s13

(500,recva({⟨n,b⟩}k′′ ))−−−−−−−−−−−−−−−→ s14

(500,equala(⟨verify(s,b,pk(k′)),true⟩))
−−−−−−−−−−−−−−−−−−−−−−−→ s15

(500,claima(sec,⟨b,k′′⟩))−−−−−−−−−−−−−−−→ s16

F. Security properties, claims, and protocol correctness

We define a security property ψ as a predicate on traces
and integers such that ψ(τ, i) means that ψ is satisfied at step
i of the trace τ . For illustration purposes, we define next the
secrecy property used in our running example, whereby an
agent expects the adversary to not know a given term.

sec((t1, e1), . . . , (tn, en)), i) ⇐⇒
ei = claima(sec, ⟨b,m⟩) ∧ b ∈ Honest =⇒
∄c ∈ Dishonest : c ⊢{e1,...,en} m

As in this example, we consider properties instrumented by
claim events. A security claim denotes a belief about the pro-
tocol execution that led to the claim, e.g. claima(sec, ⟨b,m⟩)
denotes a’s belief that as long as its communicating partner
is honest, no adversary knows the secret term m. Note the
slight abuse of notation in the definition of secrecy: sec is
used as a claim identifier and a predicate symbol. We shall
keep this convention from now on to make the connection
between claims and their intended meaning explicit. That is,
for every claim event claima(ψ,m), we consider ψ to be the
predicate giving ψ its meaning. Hence the following definition
of protocol correctness with respect to a security claim follows.

Definition 4 (Claim correctness). A claim event claima(ψ,m)
is said to be correct in a protocol P , denoted P ▷ ψ, if for
every distance function d, trace τ ∈ [[P]]d, and index i ∈
{1, . . . , |τ |}, ψ(τ, i) holds.

The next section is dedicated to extending the definition of
claim correctness with time restrictions and assumptions about
the honesty of agents in relation to their distance to another
agent, making it possible for Pex, and several other modern
protocols, to formalise their security goals.

IV. MODELLING SECURITY REQUIREMENTS BASED ON
THE DISTANT-ATTACKER ASSUMPTION

The formal model introduced in the previous section can
be used to specify the structure and behaviour of a security
protocol with time measurements. This section introduces a
new class of security requirements that captures the intended
security goals of a relatively recent wave of protocols based

on proximity [1], [3], [4], [6], [7], [26], [27]. Such pro-
tocols aim at classical security properties, such as secrecy
and authentication, but rely on a particular trust assumption
that has not been captured within a formal security model.
We are referring to trust assumptions that are based on the
(dis)honesty of agents in the neighbourhood of another agent,
usually a verifier. We call this assumption the distant-attacker
assumption, as it considers the neighbourhood of a verifier to
be free of attackers.

The goal of this section is to formalise the distant-attacker
assumption and instrument it within classical security proper-
ties. The result is a class of security requirements expressed
as a premise-conclusion formula, where the premise is a
proximity check in conjunction with a distant-attacker claim,
and the conclusion is a standard trace-based property. In the
subsequent sections, we show such a class of security require-
ments to be sufficient for the verification of a large number
of security protocols based on proximity which currently lack
formal correctness proofs.

A. The distant-attacker assumption

The security goals of many modern protocols are contingent
upon the assumption that no attacker is in the vicinity of the
verifier. When formalising this assumption, we shall allow the
verifier’s communicating partner (the prover) to be both mali-
cious and close, as it allows us to model memory attestation
and erasure properties [7] for free. Hence, our task next is to
formalise the following statement - agents making a security
claim are aware of what attackers (if any) are in their vicinity.

We define the vicinity of an agent as the locus of a circle
with radius δ centred in the agent’s location. We also use
the auxiliary function dishonest agents(claima(ψ,m)) which
gives the set of dishonest agents that a allows to be close when
claiming the property ψ. For the case of secrecy, for example,
it follows that dishonest agents(claima(sec, ⟨b,m⟩)) = ∅ for
every b and m. This is, indeed, the case for authentication
properties, as the verifier does not expect to authenticate a
corrupt prover. In remote memory erasure and attestation pro-
tocols, however, the prover is considered dishonest, implying
that the function dishonest agents(·) should return the prover
agent for erasure and attestation claims. This leads to the
following formalisation of the distant-attacker assumption as
a predicate with domain T × Z+, where T is the universe of
traces. For every τ = (t1, e1) · · · (tn, en), distance threshold δ
and index i,

dist attackerδ(τ, i) ⇐⇒ ei = claima(ψ,m) ∧
∀c ∈ (actors(τ) ∩ Dishonest) : d(a, c) > δ ∨
c ∈ dishonest agents(ei)

The distant-attacker assumption holds for a claim ei =
claima(ψ,m) in a trace τ = (t1, e1) · · · (tn, en), if all dishon-
est agents in the trace are either far from a, i.e. at a distance
larger than δ, or are part of a list of expected dishonest agents
dishonest agents(ei).



B. Round-trip-time restrictions

Intuitively, for a protocol to use the distant-attacker as-
sumption effectively, it needs to provide agents with the
ability to measure distance to other agents. Our security model
allows protocols to accomplish this by means of clock events,
syntactically establishing the calculation of the time difference
between two events. Semantically, time measurements are
local to protocol runs. That is, any two events involved in
the calculation of a time measurement should be part of the
same protocol session or run. We thus need a mechanism
to extract runs from traces, which we obtain by exploiting
the run identifiers present in protocol traces. Given a trace
τ = (t1, e1)

id1 · · · (tn, en)idn and run identifier id, we use
run(τ, id) to denote the subtrace (ti1 , ei1)

id · · · (tik , eik)id of
maximum cardinality, i.e. run(τ, id) denotes the full run in τ
with run identifier id.

Here we formalise an interpretation of time measurements
in relation to a security claim and the distant-attacker as-
sumption, leading to a definition of correctness that we show
is applicable to a large class of protocols. Clock events are
used to measure the round-trip-time of a message exchange
with a communicating partner, with the expectation that the
communicating partner is within a δ radius, for some distance
parameter δ. If a time measurement is below 2δ/c where
c is the speed of the communication medium, then we say
that such measurement is correct with respect to the distance
bound δ. If all clock events in a given protocol run are
correct, then we say that such a run has correct time measure-
ments. Formally, the correctness of the time measurements
of the run run(τ, idi) = (ti1 , ei1) · · · (tik , eik) in the trace
τ = (t1, e1)

id1 · · · (tn, en)idn , where ei is a claim event by
agent a is defined by:

correct timeδ(τ, i) ⇐⇒ ∀j ∈ {i1, . . . , ik} :
(ej = clocka(x, y) ∧ j < i) =⇒ tiy − tix < 2 · δ/c

Note that in the definition of correct timeδ(τ, i) we only
consider clock events that precede the event ei. The predicate
ensures that for every possible run of the protocol resulting
in the trace τ , the time measurements performed by the agent
that produced the event ei are all below the threshold 2 · δ/c.

Now we are ready to define a class of security requirements
that extend classical security properties by making them con-
ditional to round-trip-time restrictions and the distant-attacker
assumption.

Definition 5 (Claim correctness under the distant-attacker
assumption). Let P be a protocol and δ a distance value.
A claim event claima(ψ,m) is said to be correct in P
under the distant-attacker assumption, denoted P ▷δ ψ, if
for every distance function d, trace τ ∈ [[P]]d, and index
i ∈ {1, . . . , |τ |},

correct timeδ(τ, i) ∧ dist attackerδ(τ, i) =⇒ ψ(τ, i)

As a security requirement, correctness with respect to ▷δ is
weaker than correctness with respect to ▷ (see Definition 4),
i.e. for every protocol P , every claim claima(ψ,m), and every

δ > 0, it follows that P ▷ψ =⇒ P ▷δ ψ. That said, we argue
that the relation ▷δ better captures the intended goal of many
other modern protocols, including the running example used
in this article. Therefore, we dedicate the remainder of this
article to introducing a verification framework for (dis)proving
the correctness of protocols with respect to ▷δ .

V. A CAUSALITY-BASED INTERPRETATION OF LOCALITY

A security model that explicitly carries the notion of time
and location, as introduced in the previous section, is useful to
reach consensus on the formal definition of the distant-attacker
assumption and how to instrument it as a security requirement.
However, it defies computer-aided reasoning since modern
protocol verification tools, such as Tamarin and ProVerif, do
not cope well with temporal and spatial information.

Our goal in this section is to provide a timeless protocol
semantics, denoted [[·]]π , and a correctness relation of protocols
with respect to a security property ψ, denoted [[P]]π▷∼ψ where
∼ is an equivalence relation on the set of agents that encodes
proximity, such that ∀ d: [[P]]d ▷δ ψ ⇐⇒ ∀ ∼ : [[P]]π ▷∼ ψ
is valid. This will allow us to analyse the property ψ on the
timeless semantics by considering ▷∼ to be the security goal,
rather than ▷δ .

Due to space restrictions, we have moved most proofs to
the Appendix B.

A. Properties of the timed semantics

We start by proving properties of the time-based semantics
introduced in Section III.

The relation defined in the following definition is essential
for determining when a trace can be generated by our timed
semantics, as it represents a precedence relation between
events in the trace.

Definition 6. Given a trace τ = (t1, e1) · · · (tn, en) ∈ [[P]]d,
let ⇝τ be the relation defined as follows:
(ti, ei)⇝τ (tj , ej) iff i < j and either:
• actor(ei) = actor(ej) or
• ei = senda(mi) ∧ ej = recvb(mj) ∧ a ̸= b ∧ mi =E

mj ∧ d(a, b) ≤ (tj − ti) · c ∧
¬(∃k ∈ {1, . . . , n},∃mk : k < i ∧ ek = sendc(mk) ∧
mi =E mk ∧ d(c, b) ≤ (tj − tk) · c).

We denote the transitive closure of ⇝τ by ⇝∗
τ .

When timed events are related by ⇝∗
τ , there are constraints

on the times at which they can occur, as shown by the next
two lemmas.

Lemma 1. Let τ ∈ [[P]]d be a trace. Then for each pair of
timed events such that (ti, ei)⇝∗

τ (tj , ej) we have:

tj − ti ≥
d(actor(ei), actor(ej))

c

Lemma 2. Let τ = (t1, e1) · · · (tn, en) ∈ [[P]]d be a trace,
i, j ∈ {1, . . . , n} such that actor(ei) = actor(ej) = a,
and δ ∈ R+ a constant. If tj − ti ≤ 2δ

c , then for all
k ∈ {i, . . . , j} such that (ti, ei) ⇝∗

τ (tk, ek) ⇝∗
τ (tj , ej) we

have d(a, actor(ek)) ≤ δ.



The following definition states the minimal necessary con-
dition that needs to be satisfied by a sequence of timed events
in order for it to be a valid trace of some protocol: for each
recv event there is a corresponding send event.

Definition 7. A sequence of timed events (t1, e1) · · · (tn, en)
is time valid if t1 ≤ . . . ≤ tn and:

∀i ∈ {1, . . . n},∀m : ei = recva(m)

=⇒ ∃j ∈ {1, . . . n},∃m′ : (tj , ej)⇝τ (ti, ei)∧
ej = sendb(m

′) ∧m =E m′.

The following definition introduces a notation for the local
view of a trace by an agent.

Definition 8. Given a trace τ = (t1, e1) · · · (tn, en) ∈ [[P]]d,
and an agent a ∈ Agent, we define τa to be the sequence of
timed events in τ executed by a. The timeless projection of τ ,
denoted by π(τ) is the list e1 · · · en.

At this point, we state a general result that relates two traces
given by the semantics of a protocol.

Lemma 3. Let τ = (t1, e1) · · · (tn, en) and τ ′ =
(t′1, e

′
1) · · · (t′n, e′n) be two time valid sequences of events,

and P a protocol. If ∀a ∈ Agent : π(τa) = π(τ ′a) then
τ ∈ [[P]]d ⇐⇒ τ ′ ∈ [[P]]d.

The next lemma proves the existence of a trace in a protocol
which will be useful for the main result in this section. Given
a trace, for each pair of events by the same actor, it is possible
to construct another trace for which all the events in between
the pair are executed by close agents. In the new trace some
events are postponed and others are anticipated with respect
to the pair. This result relies heavily on Lemmas 2 and 3.

Lemma 4. Let P be a protocol and a ∈ Agent. Let τ =
(t1, e1) · · · (tn, en) ∈ [[P]]d be a trace such that there exist
two timed events (tu, eu), (tv, ev) ∈ τ with u < v, tv − tu ≤
2·δ
c and actor(eu) = actor(ev) = a. Then there exists a

trace τ ′ = (t′1, e
′
1) · · · (t′n, e′n) ∈ [[P]]d and a bijection f from

{1, . . . , n} to {1, . . . , n} such that:

• ∀i ∈ {1, . . . , n} : e′f(i) = ei; the events of τ ′ are a
permutation of the events in τ

• ∀a ∈ Agent : π(τa) = π(τ ′a); the permutation preserves
the local order of events for each agent

• t′f(v)− t′f(u) ≤ 2·δ
c and f(u) < f(v); the time restriction

in τ translates to a corresponding time restriction in τ ′

• ∀k ∈ {f(u), . . . , f(v)} : d(a, actor(e′k)) ≤ δ; agents
executing events between f(u) and f(v) have a bounded
distance to a

The following example shows how the transformation of the
previous lemma works for a simple trace.

Example 3. Let τ be the following execution of Pex:

s0
(0,createa(id1,Pex(V ))−−−−−−−−−−−−−−−→ s1

(0,createb(id2,Pex(P ))−−−−−−−−−−−−−−→ s2
(0,createe(id3,E))−−−−−−−−−−−→ s3

(0,sendb(⟨pk(k),sign(n,k)⟩))−−−−−−−−−−−−−−−−−→ s4

(100,recva(⟨pk(k),sign(n,k)⟩))−−−−−−−−−−−−−−−−−−→ s5
(100,senda(n

′))−−−−−−−−−−→ s6
(200,recvb(n

′))−−−−−−−−−→ s7

(200,sendb(n
′⊕ n))−−−−−−−−−−−−→ s8

(250,recve(n
′))−−−−−−−−−→ s9

(250,sende(n
′⊕m′))−−−−−−−−−−−−−→ s10

(300,recva(n
′⊕ n))−−−−−−−−−−−−→ s11

(300,clocka(2,3))−−−−−−−−−−−→ s12
(300,senda({k′}pk(k)

))

−−−−−−−−−−−−−−→ s13

(400,recvb({k′}pk(k)
))

−−−−−−−−−−−−−−→ s14
(400,sendb({⟨n,b⟩}k′ ))−−−−−−−−−−−−−−→ s15

(500,recva({⟨n,b⟩}k′ ))−−−−−−−−−−−−−−→ s16
(500,equala(⟨verify(sign(n,k),b,pk(k)),true⟩))−−−−−−−−−−−−−−−−−−−−−−−−−−→ s17

(500,claima(sec,⟨b,k′⟩))−−−−−−−−−−−−−−−→ s18

Then according to Lemma 4 with δ = c·200
2

, d(a, b) = 0, d(a, e) >
δ, u = 6, v = 11, one possible τ ′ is:

s0
(0,createa(id1,Pex(V ))−−−−−−−−−−−−−−−→ s1

(0,createb(id2,Pex(P ))−−−−−−−−−−−−−−→ s2
(0,createe(id3,E))−−−−−−−−−−−→ s3

(0,sendb(⟨pk(k),sign(n,k)⟩))−−−−−−−−−−−−−−−−−→ s4

(100,recva(⟨pk(k),sign(n,k)⟩))−−−−−−−−−−−−−−−−−−→ s5
(100,senda(n

′))−−−−−−−−−−→ s6
(200,recvb(n

′))−−−−−−−−−→ s7

(200,sendb(n
′⊕ n))−−−−−−−−−−−−→ s8

(300,recva(n
′⊕ n))−−−−−−−−−−−−→ s9

(300,clocka(2,3))−−−−−−−−−−−→ s10

(300,senda({k′}pk(k)
))

−−−−−−−−−−−−−−→ s11
(301,recve(n

′))−−−−−−−−−→ s12
(301,sende(n

′⊕m))−−−−−−−−−−−−→ s13

(400,recvb({k′}pk(k)
))

−−−−−−−−−−−−−−→ s14
(400,sendb({⟨n,b⟩}k′ ))−−−−−−−−−−−−−−→ s15

(500,recva({⟨n,b⟩}k′ ))−−−−−−−−−−−−−−→ s16
(500,equala(⟨verify(sign(n,k),b,pk(k)),true⟩))−−−−−−−−−−−−−−−−−−−−−−−−−−→ s17

(500,claima(sec,⟨b,k′⟩))−−−−−−−−−−−−−−−→ s18

B. Security properties

The following corollary applies Lemma 4 to a protocol trace
and to the events defined inside a clock event of interest.

Corollary 5. Let τ ∈ [[P]]d be an execution trace. If ei =
claima(ψ,m) is a claim in τ and correct timeδ(τ, i) is true,
then there exists a trace τ ′ ∈ [[P]]d such that the following
conditions hold:

1) ∀c ∈ Agent : π(τc) = π(τ ′c).
2) e′i = ei
3) {e1, e2, . . . , ei} = {e′1, e′2, . . . , e′i}
4) If run(τ ′, idi) = (t′i1 , e

′
i1
)idi · · · (t′ik , e′ik)idi then:

∀j ∈ {i1, . . . , ik} : e′j = clocka(x, y) =⇒
(∀z : (ix < z < iy =⇒ d(actor(e′z), a) ≤ δ))

Before introducing the main result in this section, we need
to restrict the security properties in our model, specified in the
next definition, so that the previous lemma is applicable.

Definition 9. Let P a protocol and ψ a security property. We
say ψ is a robust security property iff for all τ, τ ′ ∈ [[P]]d
such that ei = claima(ψ,m), and the first three conditions in
Corollary 5 hold, we also have

dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒ ψ(τ, i)

⇐⇒
dist attackerδ(τ

′, i) ∧ correct timeδ(τ
′, i) =⇒ ψ(τ ′, i)



The next lemma enables the use of any robust security
property in our main equivalence result.

Lemma 6. Let ψ be a robust security property. Then for all
τ ∈ [[P]]d, such that ei = claima(ψ,m), τ ′ as defined in
Corollary 5 with respect to τ , then:

dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒ ψ(τ, i)

⇐⇒
dist attackerδ(τ

′, i) ∧ correct timeδ(τ
′, i) =⇒ ψ(τ ′, i)

Next, we define formally the main security properties our
model supports, which we employ in the case studies later.

Definition 10 (Secrecy).

∀τ ∈ [[P]]d, τi = (ti, claima(sec, ⟨b, k⟩)) :
dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒
(∄c ∈ Dishonest : c ⊢τ k) ∨ b ∈ Dishonest

For some protocols the communication partner is not
known. The next definition covers this case, which we call
anonymous secrecy.

Definition 11 (Anonymous Secrecy).

∀τ ∈ [[P]]d, τi = (ti, claima(a sec, k)) :

dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒
(∄c ∈ Dishonest : c ⊢τ k)

In our case studies we use the non-injective agreement
property [28], its anonymous variant and the secure remote
erasure [7], as defined in appendix C. We prove all these
properties are robust in Proposition 9.

C. A timeless protocol semantics

Now we simplify the security model by eliminating the no-
tion of time from the original model, and provide a causality-
based characterisation of the dist attacker predicate. We do
so by removing all occurrences of the time variables in the
rules CreateP , Send, Recvd, Equal and Signal, producing
their timeless equivalent CreatePπ , Sendπ , Recvπ , Equalπ
and Signalπ . For reference, the modified rules can be found
in Appendix A. The timeless protocol semantics associated
with these rules produces a sequence of events, rather than a
sequence of timed events.

Definition 12 (Timeless protocol semantics). The timeless
semantics of a protocol P is the LTS (Q,Λ,→, s0) where,

• Q = P(Id× Evg
∗ × R× Agent)

• Λ = Evg × Id ∪ {createa(id,R)id|a ∈ Agent, id ∈
Id, R ∈ R}

• →= CreatePπ ∪ Sendπ ∪ Recvπ ∪ Equalπ ∪ Signalπ .
• s0 = ∅

We use [[P]]π to denote the set of traces obtained from P’s
timeless semantics.

D. A causality-based interpretation of the distant-attacker
assumption

In the previous section, we introduced the notion of a distant
attacker. This notion depended on a distance parameter δ that
defines the vicinity of the actor in question. Here we provide
a similar definition adapted to the timeless case. Let ∼ be an
equivalence relation on the set of actors with two equivalence
classes. Intuitively, actors in the same class (a ∼ b) are
near, and those in different classes are far. The dist attackerπ
predicate is defined by:

dist attackerπ(τ, i) ⇐⇒ ∀c ∈ (actors(τ) ∩ Dishonest) :

¬(a ∼ c) ∨ c ∈ dishonest agents(ei)

Our definition of correct time for the timeless case is
inspired by the causal characterisation of distance bounding
given in [9]. Our main result later shows how this definition
exactly fits our objective. For every trace τ = eid1

1 · · · eidn
n

and every index i such that ei is a claim event by agent a and
run(τ, idi) = ei1 · · · eik we have:

correct timeπ(τ, i) ⇐⇒ ∀j ∈ {i1, . . . , ik} ∀b ∈ Agent :

(ej = clocka(x, y) ∧ j < i ∧ ¬(a ∼ b))

=⇒ ∄k : (ix ≤ k ≤ iy ∧ actor(ek) = b)

A protocol P satisfies ψ conditional to the trust assump-
tion dist attackerπ and the proximity check correct timeπ
within the timeless semantics if, for every trace τ ∈ [[P]]π
and every i ∈ {1, . . . , |τ |}, where ei is a claim event
with security property ψ, it holds that dist attackerπ(τ, i) ∧
correct timeπ(τ, i) =⇒ ψ(τ, i). We denote this property by
[[P]]π ▷∼ ψ.

E. Equivalence between the timed and the timeless semantics

Finally we prove that, for every robust security property ψ
defined as a first-order statement on sequence of events, ψ is
correct in the timeless protocol semantics if and only if it is
secure in the timed protocol semantics.

Lemma 7. Let τ ∈ [[P]]d and π(τ) be the timeless projection
of τ . Then π(τ) ∈ [[P]]π .

Proof sketch. Notice that if τ is generated according to the
rules in the timed semantics of P , then π(τ) can also be
generated by the corresponding rules in the timeless semantics,
as the latter is less restrictive than the former.

Now we are ready to formulate the main result.

Theorem 8. Given a protocol P and a robust security property
ψ. Then ∀ d: [[P]]d ▷δ ψ ⇐⇒ ∀ ∼ : [[P]]π ▷∼ ψ.

VI. AUTOMATED VERIFICATION: CASE STUDIES

This section demonstrates how the theoretical development
of previous sections can be used to analyse the (in)security
of protocols that rely on the distant-attacker assumption. The
section starts by introducing a verification methodology, which
we showcase using three recent protocols. Then we report
on the security analysis of a number of protocols which, to



the best of our knowledge, were lacking a formal analysis.
This analysis was aided by the Tamarin prover. The coding
of each protocol in Tamarin, together with their security
lemmas, can be accessed online at https://gitlab.uni.lu/regil/
distant-attacker-tamarin.

A. Methodology

Our methodology consists of six steps, whose implementa-
tion are showcased by carrying on the analysis of three recent
protocols: Move2Auth [3], Amigo [4] and SPEED [6].

1) Description of the original protocol, security requirements
and assumptions.

2) Abstraction of the original protocol into a symbolic
model.

3) Definition of the security property to be verified as a
member of the property class given in Definition 5, i.e.
as a timeless security property conditional to the distant-
attacker assumption.

4) Prove that the underlying timeless property satisfies Def-
inition 9.

5) Replacement of proximity checks, such as signal strength
and visual inspection, by distance bounding based on
round-trip-time measurements. This is a workaround
intended to fit into our framework proximity-checking
protocols that are not based on round-trip-time.

6) Use of a protocol verification tool, such as Tamarin, to
implement and verify the resulting protocol within the
symbolic model introduced in Section V.

7) If attacks are found, map them back to the original setting
of the protocol to ensure they are not a result of the
abstraction step.

Steps 2 and 5 above may impose a risk of losing accuracy
with respect to the original protocol. The former is standard
in symbolic verification, the latter a choice made to analyse
several similar protocols within our framework. We acknowl-
edge Step 5 to be a workaround and not a proper solution to
the problem of analysing protocols based on signal-strength.
The workaround is useful, though, since some attacks found
in a protocol modelled with round-trip-time are explainable
in a context where signal strength is used (see attacks on
Amigo [4] and Move2Auth [3] below). Because radio waves
travel very close to the speed of light, it is harder for an
attacker to manipulate their distance to honest participants
by increasing the propagation speed of the communication
channel, compared to manipulating signal strength (which
can be amplified). The last step of the methodology is used
to tackle the risk of over-abstracting or miss-representing a
protocol, by ensuring that attacks found in the abstracted
model apply to the original protocol.

B. Analysing Move2Auth

The protocol Move2Auth [3] aims to provide a secure com-
munication channel between an IoT device and a smartphone.
This protocol uses variations in the Received Signal Strength
(RSS) perceived by a single antenna to detect proximity. The
protocol starts when the smartphone connects to the WiFi

P (IoT) V (Smartphone)

nonce k nonce nv, kvp
〈P, pk(k)〉

nv

max ∆sign(nv, k)

{kvp}pk(k)
{nv}kvp

kvp is secretkvp is secret

V is communicating with P

Fig. 3: A symbolic specification of Move2Auth-RTT

network of the device, identified by its SSID. Then the IoT
device sends a public key to the smartphone. Immediately after
that, the IoT device uses the corresponding private key to en-
crypt information about its MAC address and its identity. This
encrypted data is sent several times to the smartphone, which
uses variations on the signal strength of the received packets to
determine proximity to the IoT device. The smartphone also
verifies that the received packets are correct with respect to
the public key received at the start of the protocol. If both
signatures and signal strength measurements are correct, the
smartphone sends the freshly generated key kvp encrypted with
the public key, and concludes that it has correctly exchanged
the secret key kvp with the IoT device.

To analyse Move2Auth, we substitute RSS measurements by
round-trip-time measurements using a technique established in
the literature [14]. This technique consists of a verifier sending
a nonce to a prover, expecting to receive as a response a
message containing the nonce and a secret key identifying
the prover. We added an extra message at the end to let the
prover use the exchanged key, as it would in a real scenario.
The resulting protocol is displayed in Figure 3.

In our abstraction of Move2Auth (Move2Auth-RTT), the
device (P ) sends its identity (which could represent the SSID
of the Wi-Fi network) and a fresh public key pk(k). Then the
smartphone (V ) sends a nonce nv to be used during the fast
phase, and expects a message consisting of the signature of
nv with key k, which could only be constructed by the device.
Then V generates a fresh key kvp and sends it encrypted to
P . Finally, P replies with the nonce nv encrypted by kvp,
showing V that it received the shared key.

We modelled the authentication property from the smart-
phone’s point of view as non-injective agreement on the key
kvp. We found this property to be false. The attack consists
of an attacker that modifies the identity in the first message.
We modelled the secrecy claim by the device as (anonymous)
secrecy and found this property to be false, as expected, given
that the P does not execute a proximity check on the verifier.
The secrecy claim made by the smartphone, on the other hand,

https://gitlab.uni.lu/regil/distant-attacker-tamarin
https://gitlab.uni.lu/regil/distant-attacker-tamarin


is proven correct by Tamarin.
Attacks: The attack on secrecy by P is realized in a trace in

which a distant attacker impersonates an honest agent in the
verifier role. In the original setting the same attacks applies,
as the last message can be sent by the attacker itself. This
vulnerability can be potentially exploited because it allows
the attacker to control the IoT device by sending encrypted
commands, which the IoT device will accept as correct.
Regarding the authentication claim by V , the vulnerability
derives from the fact that the identity in the first message is
not tied to the rest of the messages of the protocol, and it is not
protected cryptographically, so the attacker can easily modify
it. In the original protocol, this attack would correspond to a
situation in which the attacker sets up a fake Wi-Fi network.

C. Analysing Amigo

Amigo [4] is another protocol for mobile device authentica-
tion that depends on proximity. Similar to Move2Auth, each
device computes a signature based on the radio environment,
and uses it to detect if the other device is near. This is
coupled with a key exchange based on Diffie-Hellman. As in
Move2Auth-RTT, we modified the protocol to rely on round
trip time rather than signal strength.

A B

nonce a, na, ka nonce b, nb, kb
〈A, ga〉
〈
B, gb

〉

k = (gb)a k = (ga)b

na

max ∆ na ⊕ {h(B, k)}kb

nb

max ∆nb ⊕ {h(A, k)}ka

ka

kb

k is secretk is secret

B is communicating with AA is communicating with B

Fig. 4: A representation of the Amigo-RTT protocol

The modified protocol Amigo-RTT starts by a traditional
Diffie-Hellman exchange, after which a fast phase is executed
by each agent. The rapid phase uses a commitment scheme by
encrypting the hash of the agent’s identity (A or B) and the
common key (k). The encryption key (ka or kb) is revealed at
the end of the protocol. The abstracted protocol is shown in
Figure 4.

Attacks: We modelled non-injective agreement and secrecy
claims with respect to key k for each role. All claims are
invalid. The attack on secrecy for role A works as follows.

Two nearby honest agents A and B execute the protocol. The
attacker E captures the first two messages, and modifies them
so that the new messages are ⟨A, 1⟩ and ⟨A, 1⟩ where 1 is the
unit value in the multiplication group. The protocol continues
without any intervention from E, resulting in an exchanged
key equal to 1, which is known to E. We note that this attack
can be prevented by following a Diffie-Hellman public key
validation2. Such validation is optional in the specification,
but our analysis shows it to be necessary in Amigo-RTT. We
found this attack by using the TAMARIN extension developed
in [29].

The attack on the role A’s authentication claim is as follows.
Two nearby honest agents X , Y execute the protocol. The
attacker E manipulates the messages so that X finishes the
execution in role A with Y , while Y was also executing the
role A rather than B. Both X and Y send messages ⟨X, gx⟩
and ⟨Y, gy⟩, which the attacker delays such that both are
received by the other agent as the second message. When Y
starts the proximity check by sending ny , the attacker responds
with a random message m. Notice Y cannot check whether
this message is correct until later, so it continues executing
the protocol. Then X starts the proximity check by sending
nx, and Y sends the correct response nx ⊕{h(Y, k)}ky

, even
though for Y this is the second proximity check, while for X
it is still the first. Y continues the protocol by sending ky . At
this point, E has enough information to complete the protocol
with X , by executing the final proximity check in role B.

We finish the analysis of Amigo-RTT by noting that attacks
on the claims made by role B are similar to those shown above
for role A.

D. Analysing SPEED

SPEED [6] aims to guarantee that an IoT device has erased
its memory. By using a combination of software memory
isolation techniques and distance bounding based on round
trip time measurements, the protocol enables a device acting
as verifier to erase the memory of another device, of low
computational power, acting as prover, only when the verifier
is nearby the prover. The protocol starts with a distance-
bounding phase based on [30], which allows the prover to
check the verifier is nearby. The information exchange in this
phase is then used by the prover to compute a fresh key k
and a MAC on its memory. The abstraction of the protocol
is shown in Figure 5. For our security analysis we used the
memory erasure property from [7]. This property is formally
stated and proved robust in Appendix B. The analysis revealed
that the security claim made by the verifier is invalid. This
is not a surprise given that the verifier does not check its
proximity to the prover. Given that prover and verifier do not
share cryptographic information before the protocol execution,
a trivial impersonation attack can be executed by a distant
attacker.

22.1.5. Public Key Validation https://tools.ietf.org/html/rfc2631

https://tools.ietf.org/html/rfc2631


V (Verifier) P (Prover)

nonce anonce m h(m)

a

max ∆a⊕m

k = h(a⊕m)k = h(a⊕m)

H = MAC(MeM, k)

〈H,MAC(H, k)〉

claimV (erasure, P )

Fig. 5: A representation of the SPEED protocol

E. Summary of analysis results

We extended the analysis methodology described above to
four more protocols [2], [4], [6], [27] (see Table I). The
analysed protocols include (anonymous) secrecy, (anonymous)
authentication and memory erasure properties. All of these
properties can be defined without the notion of time, and, as
proved in the previous section, they are compatible with our
equivalence results. All of them have the common character-
istic of using proximity checks to (hopefully) assure that the
communication partner is in the vicinity.

Most protocols that consider the distant-attacker assumption
are key-exchange protocols. Two close agents without any
previously shared data nor public key infrastructure need to
communicate in a secure way using a network that may be
controlled by distant attackers. These protocols necessarily
use some kind of asymmetric cryptography, given that the
adversary will receive (with some delay) all the transmitted
messages, and from that it should be impossible to deduce the
secret shared keys.

Protocol Secrecy Auth. MemE
P V P V

DB-Based-Diffie-Hellman [2] ✓ ✓ ✓ ✓ -
MedicalDB [1] ✓ ✓ ✓ ✓ -
BluetoothJW-RTT [27] ✓ ✓ ✓ ✓ -
Move2Auth-RTT [3] ✗ ✓ - ✗ -
Amigo-RTT [4] ✗ ✗ ✗ ✗ -
SPEED [6] - - - - ✗
DB-Based-Erasure-Protocol [7] - - - - ✓

TABLE I: Analysis results

Table I shows that three out of five of the key exchange pro-
tocols analysed are correct. The other two, namely Move2Auth
and Amigo, fail to ensure secrecy of the key exchanged.
Our analysis results on memory erasure protocols coincide
with those provided in [7], including the proof of correctness
for the memory erasure protocol introduced there. We note,

however, that [7] provides manual proofs, while our proofs
are computer-generated.

F. Comments on the Tamarin encoding

Our Tamarin code needs to mark adversary actions in the
trace, as they are part of our security properties. We do so
by creating rules representing a channel that can be used
by honest agents and adversaries alike. When modelling all
the network interactions using this channel, we faced non-
termination issues. For this reason, we decided to restrict this
channel usage to the messages directly related to the time
measurement. This resulted in an over-approximation, in the
sense that with this encoding some false attacks could appear,
given that not all actions by adversaries are marked. That said,
we manually checked this was not the case for any of the
protocols analysed.

VII. CONCLUSION

In this article we identified and formalised the distant-
attacker assumption, which has so far been used informally to
establish the security requirements of various communication
protocols for, e.g., IoT devices. We did so by introducing
a time-based security model where round-trip-time measure-
ments and the location of agents is used to determine whether
the neighbourhood of an agent is free of attackers. To enable
computer-aided verification of protocols written in our speci-
fication language, we provided a reduction of the time-based
model by eliminating the notions of time and location, and
defining proximity checks and the distant-attacker assumption
as causal relations on the protocol events. We also introduced
a class of security requirements that we proved hold in both
the time-based and the causality-based model. Because the
causality-based model is translatable to TAMARIN, we were
able to formally verify, for the first time, the (in)security of five
key exchange protocols and two memory erasure protocols,
finding unreported vulnerabilities on three of them.

The results presented in this article can be extended in
various ways. For example, the protocol specification language
we use does not allow for conditionals and non-determinism,
and only supports basic round-trip-time calculations. Hence
extending our results to richer specification languages would
contribute to capturing a larger class of protocols. It is also
worth generalising our proofs to a causality-based specification
model that is a subset of the model supported by a state-of-
the-art protocol verification tool, such as TAMARIN, since it
would reduce the gap between theory and practice. Lastly,
like previous verification frameworks for distance-bounding
protocols, our methodology assumes that agents do not move.
Dropping that assumption is of interest for both classes of
protocols.
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APPENDIX

A. Timeless Semantics

The timeless semantics is obtained by removing the times-
tamps from the rules used in the time-based model. This means
that traces obtained from this semantics are just a sequence of
events. The resulting rules are as follows.

s ∈ Q,R ∈ R, a ∈ Agent, id ∈s Id,
a ∈ Honest =⇒ R ∈ roles(P)

s
(createa(R))id−−−−−−−−−→ s ∪ {(id, ϵ, R, a)}

CreatePπ ,

Template rule for the timeless semantics:

s ∈ Q, (id, τ, R, a) ∈ s, τ = e1 · · · ei,
e1 · · · eiei+1 ∈s\(id,τ,R,a) insts(R),

[ ]

s
(ei+1)

id

−−−−−→ (s \ {(id, τ, R, a)}) ∪ {(id, τ · ei+1, R, a)}
,

→
[
ei+1 = senda(m), a ⊢{e1,...,ei} m

]
Sendπ

→
[
ei+1 = recva(m), sendb(m

′) ∈ labels(s),
m =E m′

]
Recvπ

→ [ei+1 = equala(⟨m1,m2⟩),m1 =E m2] Equalπ

→ [ei+1 ∈ SignalEvent] Signalπ

B. Proofs

Proof of Lemma 1. From the definition of⇝τ we deduce that
if (tx, ex)⇝τ (ty, ey) we have:

ty − tx ≥ d(actor(ex), actor(ey))

c



Lets assume (ti, ei) = (ti1 , ei1) ⇝τ . . . ⇝τ (tik , eik) =
(tj , ej). The property above and the triangle inequality lead
to the required result:

tj − ti = tik − ti1 =

k−1∑

j=1

tij+1
− tij

≥
k−1∑

j=1

d(actor(eij ), actor(eij+1
))

c

≥ d(actor(ei1), actor(eik))

c
=

d(actor(ei), actor(ej))

c

Proof of Lemma 2. By the previous lemma, we have that:

2δ

c
≥ tj − ti = (tj − tk) + (tk − ti) ≥

d(a, actor(ek)) + d(actor(ek), a)

c
=

2 · d(a, actor(ek))
c

=⇒ d(a, actor(ek)) ≤ δ

Proof of Lemma 3. By symmetry, it is only necessary to prove
that τ ∈ [[P]]d =⇒ τ ′ ∈ [[P]]d.

Notice that as τ ∈ [[P]]d, then τ can be generated inductively
by applying the rules defined in the semantics in [[P]]d.
Furthermore, in this semantics, all time constraints in τ are
generated by the application of the Recvd rule.

We prove that each prefix of τ ′ can be generated by applying
the rules in the semantics. The proof follows by induction in
the size of the prefixes. The base case is the empty trace, which
by definition is a valid trace of any protocol. For the induction
step, assume for some i that (t′1, e

′
1) · · · (t′i, e′i) ∈ [[P]]d and

that a = actor(e′i+1). We prove that (t′1, e
′
1) · · · (t′i+1, e

′
i+1) ∈

[[P]]d by case analysis:
• e′i+1 is a receive event: as τ ′ is a time valid sequence of

timed events, it can be generated by applying the Recvd
rule at time t′i+1.

• e′i+1 is not a receive event: notice that

π(τa) = π(τ ′a) =⇒ ∃j ∈ {1, . . . , n} :
π(((t′1, e

′
1) · · · (t′i+1, e

′
i+1))a) = π(((t1, e1) · · · (tj , ej))a)

∧ e′i+1 = ej

The same rule that was used to generate (tj , ej) can also
be used to generate (t′i+1, e

′
i+1), given that this rule only

depends on the sequence of previous events by agent a.
We conclude all events in τ ′ can be generated inductively

by the rules, as was needed.

Proof of Lemma 4. For any trace τ∗ = (t∗1, e
∗
1) · · · (t∗n, e∗n),

let Kτ∗ ⊆ {1, . . . , n} : k ∈ Kτ∗ ⇐⇒ d(a, actor(e∗k)) >
δ ∧ u < k < v. The set Kτ∗ thus contains the indices of all
timed events between u and v that are executed by an agent
outside the vicinity of a.

Let τ0 = (t01, e
0
1) · · · (t0n, e0n) = τ and r = |Kτ |. If r =

0 then all the necessary conditions are fulfilled for τ ′ = τ
and f the identity. Otherwise, there exist τ1, . . . , τ r, where
∀i ∈ {1, . . . , r} : τ i = (ti1, e

i
1) · · · (tin, ein), and a sequence of

bijections f1, . . . , fr such that:

• ∀i ∈ {1, . . . , r} : fi is a bijection between {1, . . . , n} and
{1, . . . , n} such that ∀j ∈ {1, . . . , n} : ei−1

j = eifi(j)
• ∀i ∈ {1, . . . , r},∀a ∈ Agent : π(τ ia) = π(τ i−1

a )
• ∀i ∈ {1, . . . , r},∃k ∈ Kτ i−1 : Kτ i = Kτ i−1 \ {k}
• t1f1(u) = t0u = tu ∧ t1f1(v) = t0v = tv

• ∀i ∈ {2, . . . , r} : tif1◦...◦fi(u) = ti−1
f1◦...◦fi−1(u)

∧
tif1◦...◦fi(v) = ti−1

f1◦...◦fi−1(v)

• ∀i ∈ {1, . . . , r} : τ i is a time valid sequence.
Notice τ ′ = τ r and f = f1 ◦ . . . ◦ fr fulfill the required

conditions in the lemma:
• ∀a ∈ Agent : π(τa) = π(τ ′a) and ∀i ∈
{1, . . . , n} : e′f(i) = ei are true by definition of f ,
given it is the composition of functions that possess the
same properties.

• Kτ ′ = ∅ =⇒ ∀k ∈
{f(u), . . . , f(v)} : d(a, actor(e′k)) ≤ δ

• t′f(u) = tu ∧ t′f(v) = tv , as t′f(u) = trf1◦...◦fr(u) =

tr−1
f1◦...◦fr−1(u)

= . . . = t1f1(u) = t0u = tu and the same
can be deduced for v. Then t′f(v)− t′f(u) = tv − tu ≤ 2·δ

c

τ ′ ∈ [[P]]d follows from Lemma 3, as we have τ ′ =
τ r is a time valid sequence by definition, and that ∀a ∈
Agent : π(τa) = π(τ ′a) as mentioned above. We complete
the proof by showing how to construct the trace τ i and the
bijection fi from τ i−1, for any index i.

To simplify notation, in what follows we will refer to traces
τ , τ ′ (instead of τ i, τ i+1), bijection f (instead of fi), integers
x and y (instead of f1 ◦ . . . ◦ fi−1(u) and f1 ◦ . . . ◦ fi−1(v)).

Let k ∈ Kτ , then by Lemma 2 (tx, ex) ⇝∗
τ (tk, ek) ∧

(tk, ek)⇝∗
τ (ty, ey) is false. We analyse two cases:

• (tk, ek)⇝∗
τ (ty, ey) is false

• (tx, ex)⇝∗
τ (tk, ek) is false

We will focus on the first case, the other one can be analysed in
an analogous way. Let ω be a constant greater than ty−tk and
τ ′′ = (t′′1 , e

′′
1) · · · (t′′n, e′′n) a sequence of timed events defined

as follows:
1) for each timed event (ti, ei) ∈ τ such that i > y, let

(t′′i , e
′′
i ) = (ti + ω, ei)

2) for each timed event (ti, ei) ∈ τ such that i < y and
(tk, ek) ⇝∗

τ (ti, ei), let (t′′i , e
′′
i ) = (ti + ω, ei). In this

case clearly i ≥ k
3) for every other timed event (ti, ei) ∈ τ , let (t′′i , e

′′
i ) =

(ti, ei)

Next, we define a bijection f from {1, . . . , n} to {1, . . . , n}
according to the following property:

• ∀i, j ∈ {1, . . . , n} : (t′′i < t′′j ) ∨ (t′′i = t′′j ∧ i < j) ⇐⇒
f(i) < f(j)

Notice that f exists and it is unique as it defines a stable order
for the values of t′′1 , . . . , t

′′
n.

At this point we are ready to define the trace τ ′ =
(t′1, e

′
1) · · · (t′n, e′n). For all i ∈ {1, . . . , n} let (t′i, e

′
i) =

(t′′f−1(i), e
′′
f−1(i)). Then we deduce ∀i ∈ {1, . . . , n} : e′f(i) =

ei ∧ (t′f(i) = ti ∨ t′f(i) = ti + ω)

Notice this f and τ ′ fulfill the required conditions:



• By construction ∀i ∈ {1, . . . , n} : ei = e′f(i)
• Assume i, j ∈ {1, . . . , n} such that i < j ∧ actor(ei) =
actor(ej). Then (ti, ei) ⇝∗

τ (tj , ej) is true, and t′f(j) =
tj + ω =⇒ t′f(i) = ti + ω. We conclude that ∀a ∈
Agent : π(τa) = π(τ ′a)

• By construction t′f(x) = tx ∧ t′f(y) = ty
• t′f(k) = tk + ω > ty = t′f(y) =⇒ f(k) > f(y) =⇒
¬(f(x) < f(k) < f(y))

• τ ′ is a time valid sequence given that by construction:

∀i, j ∈ {1, . . . , n} : (ti, ei)⇝∗
τ (tj , ej) ⇐⇒

(t′f(i), e
′
f(i))⇝

∗
τ (t′f(j), e

′
f(j))

Proof sketch of Corollary 5. This is a direct application of the
Lemma 4 to the events mentioned in the clock events in the
same run as the claim.

Notice that as the predicate correct time is true, for all
clock events clocka(x, y) in the run corresponding to ei, we
get that tiy − tix ≤ 2·δ

c . As such, we can apply Lemma 4
and obtain a new trace in which all actors executing an event
between ix and iy are near a. Doing this procedure for each
clock event, we get the desired trace. This is possible given
that the segments events referenced in clock events do not
intersect.

C. Consistency proofs for standard security properties with
our equivalence results

Definition 13 (Non injective agreement).

∀τ ∈ [[P]]dτi = (ti, claima(non in agree, ⟨b,m⟩)) :
dist attackerδ(τ, i) ∧ correct timeδ(τ, i)

=⇒ (∃j < i : ej = runningb(⟨roleB, a,m⟩))
∨ b ∈ Dishonest

Definition 14 (Anonymous non injective agreement).

∀τ ∈ [[P]]d, τi = (ti, claima(a non in agree,m)) :

dist attackerδ(τ, i) ∧ correct timeδ(τ, i)

=⇒ (∃b ∈ Agent, j < i : ej = runningb(⟨roleB,m⟩))
Definition 15 (Remote Memory Erasure).

∀τ ∈ [[P]]d, τi = (ti, claima(erasure, ⟨b,m⟩)), :
dist attackerδ(τ, i) ∧ correct timeδ(τ, i) =⇒
∃j < i : (tj , sendb(m)) ∈ τ ∨ (tj , recvb(m)) ∈ τ

Proposition 9. The security properties sec, a sec,
non in agree, a non in agree, and erasure are robust
security properties.

Proof. Let τ, τ ′ ∈ [[P]]d such that the first three conditions in
Corollary 5 hold. Then the condition ∀c ∈ Agent : π(τc) =
π(τ ′c) implies that in both traces the knowledge deduced by
dishonest agents is the same, so sec and a sec are robust.

The properties non in agree, a non in agree and
erasure are robust given that both depend on the existence
of events before ei, and by definition {e1, e2, . . . , ei} =
{e′1, e′2, . . . , e′i}.

Proof of Theorem 8. We prove the left right implication first:

∀ d: [[P]]d ▷δ ψ =⇒ ∀ ∼ : [[P]]π ▷∼ ψ

We will formally prove the contrapositive.
Assuming ∀ ∼ : [[P]]π ▷∼ ψ is false, we deduce

∃ ∼, a ∈ Agent, p ∈ {1, . . . , n}, τ ∈ [[P]]π :

ep = claima(ψ,m) ∧ dist attackerπ(τ, p)∧
correct timeπ(τ, p) ∧ ¬ψ(τ, p)

We will construct a trace τ ′ = (t′1, e
′
1) · · · (t′n, e′n) ∈ [[P]]d,

for some distance function d, such that τ = π(τ ′). To achieve
this, we will assign locations to actors such that the feasible
values of t′i exist.

For simplicity we assume the run corresponding to
ep contains only one clock event. Let run(τ, idp) =
(ep1

)idp · · · (epk
)idp , epi

= clocka(x, y), u = px and v = py .
We assign locations to actors such that b ∼ c =⇒ d(b, c) = 0
and ¬(b ∼ c) =⇒ d(b, c) > δ. As correct timeπ(τ, p) is
true, we have ∀k ∈ {u, . . . , v} : d(actor(ek), a) = 0. We also
deduce that dist attackerπ(τ, p) =⇒ dist attackerδ(τ

′, p).
Let γ > 0 be an arbitrarily large constant. Then we are

ready to define the values of t′i:
• t′1 = 0
• 1 < i ≤ u =⇒ t′i = (i− 1) · γ
• u < i < v =⇒ t′i = (i− u) · 2·ϵ

c + t′u
• t′v = t′u + 2·δ

c
• v < i ≤ n =⇒ t′i = (i− v) · γ + t′v
Notice for sufficiently large γ and sufficiently small ϵ, all

necessary conditions are fulfilled (the time stamps are ordered,
no message travels faster than the speed of light, and t′v −
t′u ≤ 2·δ

c which implies correct timeδ(τ
′, p) is true). Then, we

deduce τ ′ can be generated inductively with the rules defined
within [[P]]d. On the other hand, as ψ(τ, p) doesn’t depend on
time, then τ ′ also represents an attack in [[P]]d, as needed.

In what follows we prove the other implication also using
the contrapositive:

∀ ∼ : [[P]]π ▷∼ ψ =⇒ ∀ d: [[P]]d ▷δ ψ

Let τ = (t1, e1) · · · (tn, en) ∈ [[P]]d, p ∈ {1, . . . , n} such
that τ is an attack trace:

ep = claima(ψ,m) ∧ dist attackerδ(τ, p)∧
correct timeδ(τ, p) ∧ ¬ψ(τ, p)

By Corollary 5, a trace τ ′ = (t′1, e
′
1)

id′
1 · · · (t′n, e′n)id

′
n ∈

[[P]]d exists such that:
• ∀c ∈ Agent : π(τc) = π(τ ′c).
• e′p = ep and {e1, e2, . . . , ep} = {e′1, e′2, . . . , e′p}
• run(τ ′, id′p) = (t′p1

, e′p1
)id

′
p · · · (t′pk

, e′pk
)id

′
p ∧

∀j ∈ {p1, . . . , pk} : e′j = clocka(x, y) ∧ ∀z : px < z < py

=⇒ d(actor(e′z), a) ≤ δ
Let ∼ be an equivalence relation such that d(c, a) ≤

δ ⇐⇒ c ∼ a. We deduce that dist attackerπ(π(τ
′), p) ∧

correct timeπ(π(τ
′), p) is true by definition, and that

¬ψ(π(τ ′), p) is also true given that ψ is robust. So π(τ ′) ∈
[[P]]π is an attack trace, as was needed.
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