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Abstract. E-voting literature has long recognised the threat of denial-
of-service attacks: as attacks that (partially) disrupt the services needed
to run the voting system. Such attacks violate availability. Thankfully,
they are typically easily detected. We identify and investigate a denial-
of-service attack on a voter’s spam filters, which is not so easily detected:
reverse Bayesian poisoning, an attack that lets the attacker silently sup-
press mails from the voting system. Reverse Bayesian poisoning can dis-
enfranchise voters in voting systems which rely on emails for essential
communication (such as voter invitation or credential distribution). The
attacker stealthily trains the voter’s spam filter by sending spam mails
crafted to include keywords from genuine mails from the voting system.
To test the potential effect of reverse Bayesian poisoning, we took key-
words from the Helios voting system’s email templates and poisoned the
Bogofilter spam filter using these keywords. Then we tested how genuine
Helios mails are classified. Our experiments show that reverse Bayesian
poisoning can easily suppress genuine emails from the Helios voting sys-
tem.

1 Introduction

System security is typically divided into Confidentiality, Integrity and Avail-
ability. Voting systems present an interesting research challenge where confi-
dentiality of the vote (privacy) and verification of integrity of the vote (verifia-
bility) must be combined in one system. As these two requirements cannot be
fully satisfied simultaneously [CFST06], their interplay thus poses an interest-
ing topic for research. Much research attention has been invested in address-
ing the interplay of confidentiality and integrity in voting. This has led to the
development of various notions of verifiability, e.g. [Cha04,JCJ05,CRS05], and
privacy [Cha81,BT94,JCJ05]. The efforts towards formalising verifiability cul-
minated in the concept of end-to-end verifiability. The name derives from the
fact that the voter can verify every step from the input of her choice up to and
including the counting of her ballot. As such, end-to-end verifiability ensures
verifiability for a voter who casts a vote.
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Availability requirements have also been considered: for more than a decade,
denial-of-service (DoS) attacks have been considered a serious threat to e-voting
systems. Various authors have argued including this class of attacks in the secu-
rity analysis of e-voting systems [GNRT02,Rub02,JRSW04,Agg16]. Until now,
however, DoS attacks have mainly been considered from a generic point of view:
a DoS attack is seen as disrupting (some of ) the services that are necessary for an
e-voting system to operate. The occurrence of such attacks can relatively easily
be detected by one or more of the involved parties. It can be expected that the
goal of such a DoS attacker is mainly to disrupt the election process and not to
directly influence its outcome. Hence, literature views DoS attacks as attacking
availability of the system and not integrity of the election.

In this view on availability, either an attack on availability is noted (and
action is taken to rectify this), or every voter who wants to vote, is not impeded
by the system from doing so. In the latter case, end-to-end verifiability ensures
that the result of the election process matches the collective intent of the voters.

In this paper, we will explore one DoS-related vulnerability that will influence
the result without disrupting general availability of the system: using spam filters
to suppress voter invitation, thereby impeding voters to vote.

Though various sources have different estimates for the current global amount
of spam email, they agree that it is above 50%. As such, spam filters have become
a necessity — most incoming emails will be filtered for spam. We investigate the
extent to which an attacker can exploit this. We find a novel attack on voting
systems: the attacker trains a voter’s spam filter to ensure that legitimate emails
from the voting system are marked as spam and thus likely remain unseen by
the voter. This borrows from the notion of Bayesian poisoning, in which an
attacker sends emails to ensure that his spam is not detected by the target’s
filter. Since our attacker seeks the reverse, we call this type of attack reverse
Bayesian poisoning.

In contrast to DoS attacks as considered in e-voting literature, a reverse
Bayesian poisoning attack is stealthy and targeted. It is stealthy in the sense
that it is not obvious that the system is under attack, and after the attack it may
not even be possible to prove the system has been attacked. It is targeted in the
sense that it does not attempt to exceed system capacity, but it is an attack on
a particular essential service that maliciously alters that service’s behaviour. As
this change of behaviour is under the control of the attacker, he can manipulate
the outcome of the elections. Thus, this type of DoS attacker focusses on the
integrity of the elections.

Consequently, the question whether this type of stealthy and targeted attacks
are possible in e-voting systems becomes a concern that goes beyond the generic
problem of service availability and influences the integrity of the election process.

For the purposes of this paper, we investigate whether the well-known Helios
voting system [Adi08] is susceptible to reverse Bayesian poisoning. Helios is an
online election system that provides end-to-end verifiability. It offers email facil-
ities for communicating election particulars to voters. The Helios voting system



was used in a number of elections, such as by the International Association for
Cryptologic Research for electing board members and directors.

Contributions. In this paper:

— We argue that e-voting security also depends on availability of supporting
procedures and systems. We identify and investigate one example of a vul-
nerability in such a supporting system: email interaction between the voting
system and the voter.

— We demonstrate that it is possible and even fairly easy to suppress relevant
emails from a voting system by means of a reverse Bayesian poisoning attack.
In particular, we are able to manipulate the BogoFilter spam filter such that
it suppresses emails from the Helios voting system.

— Finally, we discuss several possible solution directions.

2 Notions of election security

An election has to satisfy a wide range of security and privacy requirements. In
literature and in practical systems, the focus tends to be on preventing misuse
of the system. As such, there are requirements to prevent double voting and to
allow a voter to verify that her vote counts in favor of the candidate for whom
she submitted a ballot. Little attention is paid to the setup of the election:
determining who is eligible, and distributing voting credentials to authorized
voters.

This lack of attention to election setup is natural for voting systems targeting
supervised voting (i.e. a setup with a polling station). In supervised voting,
such security requirements are supposed to be guaranteed by the supervision.
However, online voting systems have no such infrastructure to fall back upon
and must therefore address security and privacy aspects of this part as well.

To determine the limits of the scope of end-to-end verifiability, we divide the
election into the below administrative processes. These processes are placed into
the first election phase where they can be executed. Remark that some processes
can be postponed. For example, voter eligibility can be checked before, during
or after the election.

— Pre-election phase. Processes typically executed in this phase are:

e Voter registration. For some elections, voters need to register them-
selves. For other elections (e.g. in associations), the register is pre-existing
(e.g. the membership list). This process establishes the voter register.

e Voter eligibility. Not all those who are registered are eligible. For ex-
ample, general elections typically only allow people above a certain age
to vote. This process eliminates all people from the register who are
found to not satisfy the rules of eligibility.

e Announcement and credential distribution. To cast a vote, voters
typically have to show some form of voter credentials. This process dis-
tributes the announcement of the election and voting credentials to all
voters.



— Election phase. Processes typically executed in this phase are:

e Vote casting. In this process, the voters communicate the expression
of their choice to the voting system.

e Vote eligibility. The votes received by the system are checked for eligi-
bility, to ensure that only those votes that should be taken into account
are considered.

— Post-election phase. Processes typically executed in this phase are:

e Vote aggregation. In some elections, the encoded ballots are aggre-
gated before opening them (e.g. systems using homomorphic encryption).
In other elections, this process is omitted.

e Result determination. In this process, the result of the election is
determined. This can be an exact count per candidate (or option), or a
simple determination of which candidate(s) (or options) won.

e Result announcement. In this process, the election result is commu-
nicated to the voters and (when applicable) the world at large.

Over the last two decades, research in e-voting security has steadily worked
towards designing practically usable voting systems that satisfy privacy and secu-
rity requirements. Since elections have already been organised before, researchers
sought to update parts of the existing process with new techniques. In particu-
lar, research was focused primarily confidentiality and integrity of the election
and post-election phases. This was highly successful and led to a better under-
standing of the security and privacy principles involved as well as the design and
development of systems that safeguard most if not all of those principles.

Availability concerns are recognised as generic concerns, but so far not as a
specific risk for online election systems. However, online election systems also
depend on the internet for the pre-election phase. Availability attacks on online
election systems may also target the pre-election phase. To highlight the ne-
cessity for considering this part of the election process, we explore one stealthy
attack upon the announcement and credential distribution process: abusing spam
filtering to suppress emails sent by the voting system.

3 Spam, filtering and poisoning

3.1 Spam filtering

A significant fraction of mail traffic is spam — over half, by most reports®. There-
fore, a thorough spam filter is a necessity for any email address.

Spam filters are filters that distinguish between non-spam emails and spam
emails. The output of the filter typically is a classification (non-spam, spam, or
unknown) plus a score specifying the extent to which the evaluated mail satisfied
filter rules for spam. This output is then used to (automatically or not) delete

4 E.g. Kaspersky’s quarterly spam reports, https://securelist.com/all/
7category=442, pegs the amount of spam in email traffic in the first three
months of 2017 at 55.19%.
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mails classified as spam or divert such mails to a dedicated spam folder. Mails
that end up in the category unknown can be flagged as such and presented to
the user for further processing.

Spam filters use various tests to arrive at their result. Each test evaluates
the mail and arrives at its own estimate for the probability of the examined
mail being spam. These probabilities are then aggregated by the spam filter to
classify the mail.

Spam filters classify emails using two thresholds: a non-spam and a spam
threshold. A probability below the non-spam threshold ensures a mail is classified
as non-spam. A probability above the (higher) spam threshold ensures that a
mail is classified as spam. Probabilities in between are not classified — tagging the
message as potential spam, while letting the mail through to the user’s inbox.

There is a wide variety in tests spam filters use to determine the probability
that a mail is spam, and any given spam filter will use its own subset of tests.
Some of these tests focus on the body of the email, others on the header. One test,
for example, checks URLs found in the mail body against a database of URLs
associated with spam mail. Other tests check if the formatting of the MIME parts
in the mail body is suspicious or if the mail body contains obfuscated HTML
or HTML trackers. Some header tests check whether the mail was received via
known open relays or if the subject refers to a specific medicine (such as viagra).

Remark that the tests are not perfect: some spam mails will not be marked
as spam (false negatives), while some normal mails will be marked as spam (false
positives). A false positive is worse than a false negative: a mail that is auto-
matically directed to a spam mailbox might escape the user’s notice completely,
while a spam mail in a user’s inbox will be easily and swiftly dealt with.

3.2 Bayesian classification of spam

One type of test to help reduce false positives is to determine how similar an in-
coming message is to known spam mails, and how similar it is to known non-spam
mails. In effect, this allows the spam filter to learn from previously encountered
mails and become “smarter” in separating spam from non-spam.

Such tests are based on Bayes’ theorem. Bayes theorem is used to “flip”
conditional probabilities: if we know P(B | A), the probability that event B
occurs if event A has occurred, and we know the probabilities P(A) and P(B),
we can derive the “flipped” probability P(A | B), the probability that event A
would occur if event B occurred. Formally, Bayes theorem is stated as:

P(B| A)- P(A)
(B[ A)-P(A)+ P(B|-A) - P(-A)

P(A|B) = 5

In terms of spam filters, Bayes theorem can be used to determine the proba-
bility that a mail is spam given that it contains a certain word, P(spam | word),
if we know the probability that that word occurs in spam mails, P(word | spam).
Given a corpus of already-classified mails (either spam or non-spam), the prob-
abilities necessary to compute the “flipped” probability can be estimated.



For example, consider the question of whether a mail containing the word
“viagra” is spam. The probability that it is, is denoted P(spam | viagra). If we
have an existing corpus of mails already classified as spam or non-spam, we can
estimate how often this word occurs in spam messages, P(viagra | spam), and in
non-spam mails, P(viagra | —spam). We also know the percentage of incoming
messages that is spam, P(spam). The probability that an unclassified message
containing “viagra” is spam is then computed as:

P(viagra | spam) - P(spam)

P i =
(spam | viagra) P(viagra | spam) - P(spam) + P(viagra | ~spam) - P(—spam)

In actual use, the result is refined further to prevent the filter from acting on
insufficient information. For example, if only one email has ever been received
with the word “viagra”, then the classification of that one email determines
how a new mail with that word will be classified. To prevent this, the resulting
probability is scaled with the number of received emails (spam and non-spam)
and averaged with an assumed probability of any mail being spam (e.g. set at

50%).

3.3 Bayesian poisoning

Bayesian spam filtering is effective, and therefore widely used. Its ubiquity raises
the question if the Bayesian filtering could be deliberately exploited by one
or more carefully crafted messages to fool the filter in letting through a spam
message — a deliberately triggered false negative. This type of attacks on Bayesian
spam filtering is known as Bayesian poisoning, as effectively, the spam filter is
poisoned to not recognise the offending messages as spam. To achieve this, the
spam mail must include a sufficient amount of sufficiently “non-spammy” words,
such that in aggregate, the spam mail is marked as non-spam.

In 2004, Graham-Cumming presented the first study [GCO04] into Bayesian
poisoning. His experiment found that randomly adding words was not successful.
He was able to devise a different attack which probes the spam filter to determine
words which help ensure a non-spam classification.

To their surprise, Wittel and Wu had contradictory findings: adding random
words did influence certain spam filters [WW04]. They suspected this contradic-
tion with Graham-Cummings may be due to differences in used spam corpora
or filters tested. Stern et al. [SMS04] showed that Bayesian poisoning can affect
filter performance, skewing results to generate more false positives. Lowd and
Meek [LMO5] find that adding about 150 well-chosen words is effective in getting
the average spam message through a filter. They also find that frequent retrain-
ing the spam filter is effective against this type of attack. This finding matches
the intuition that retraining is important: when the spam filter fails to block
spam, it should be retrained.

From existing research, we see that it is possible to masquerade spam as
non-spam by using Bayesian poisoning. The concept we explore is turning this



around: is it possible to masquerade non-spam as spam by using Bayesian poi-
soning? That is: instead of using Bayesian poisoning to increase the false positive
rate, can it be used to increase the spam filter’s false negative rate? In particular,
can Bayesian poisoning be used to suppress mails from an online voting system?
We call this reverse Bayestan poisoning.

Remark that the mails that the attacker sends to poison the filter are spam
mails. The only aim of these spam mails is to associate words that are likely used
in mails of the voting system with spam. Recall that spam filter retraining is
important, especially when a false negative occurs, that is: when a spam message
is not filtered. Therefore, reverse Bayesian poisoning is a stealthy attack: sending
emails is trivial, and the emails sent by the attacker can easily be made to look
like spam (since they are spam). A regular user who retrains her spam filter
when spam gets through (as is normal) is thus aiding the attacker.

4 Experiment setup

In order to investigate the possibility of using reverse Bayesian poisoning to
suppress legitimate mails, we set up an experiment with a local spam filter and
attempted to suppress emails by poisoning the filter.

The goal of this experiment was to test the feasibility of this attack, not
to perform a thorough evaluation of spam filters and their susceptibility to this
attack. As the attack relies on the victim training her spam filter on the attacker’s
poisoning mails, a thorough evaluation must also take into account the human
factor.

Our feasibility experiment analyses whether, for one particular system setup
in a fully-controlled and minimal environment, using one or more realistic pa-
rameter settings, it is possible to construct a limited number of attack mails that,
when fed to the spam filter lead to the suppression of a particular administrative
message.

In particular we will use the Bogofilter, trained with (a part of) the Enron
spam corpus, aiming to suppress emails formatted according to the templates
used by the Helios [Adi08] online voting system, such as the template depicted
in Fig. 1.

As the experiment focuses on the feasibility of poisoning a Bayesian spam
filter, we did not set up an email infrastructure (procmail, mailclient, postfix),
but applied Bogofilter directly to the emails. We also assume the worst case for
victim actions: the victim will always mark attack mails as spam.

4.1 Bogofilter

Bogofilter®, originally written by Eric S. Raymond, was based on the ideas of
Paul Graham [Gra04]. Graham proposed to apply Bayesian filtering of spam
messages based on combining the probabilities for spam of the 15 words with the

® http://bogofilter.sourceforge.net/
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strongest probabilities: the 15 words for which the absolute value of the difference
between that word’s spam probability and the neutral spam probability (50%) is
the largest. Bogofilter applies Bayesian filtering in the classification of spam/non-
spam mails.

The program can be trained on a given corpus of spam and non-spam mail.
Moreover, explicit user input on the classification of individual emails can be
used to fine-tune or correct the system’s decision logic. Furthermore, the user
(or system administrator) can fine-tune the statistical algorithms by modifying
certain configuration parameters of the Bogofilter system. Examples are the
earlier mentioned thresholds: spam-cutoff for spam and ham-cutoff for non-
spam.

An interesting and relevant feature of Bogofilter is the auto-update feature.
When this feature is used and Bogofilter classifies a message as spam or non-
spam, the message will be automatically added to the wordlist for recognizing
spam or non-spam, respectively. Bogofilter documentation warns that this be-
haviour may cause classification errors to propagate.

Retraining a Bayesian spam filter is important and can be done without user
intervention — for Bogofilter by using the auto-update feature, for other spam
filters by using similar automated updating features or publicly available scripts.

As the Bogofilter documentation warns, automatic retraining may cause clas-
sification errors to be exacerbated. This is exactly the goal of our attack: to
exacerbate misclassification. To understand the risk that auto-update features
pose with respect to this attack, we will conduct two types of experiments: one
in which the user will have to classify the attack mails as spam, and one in
which the auto-update feature is used to automatically classify the attack mails
as spam. In the first case, the number of attack mails should be rather limited,
as it involves user interaction. In the second case, we could use a larger number
of attack mails.

4.2 Enron mail corpus

The Enron [KY04] corpus® is a widely-used dataset consisting of e-mail commu-
nication among executives from the (now-defunct) Enron corporation. It con-
tains over 600.000 emails generated by 158 employees. For the experiments, we
used the corpus that was enriched by Metsis et al. with spam from various
sources [MAPO6].

4.3 Helios

Helios [Adi08] is an end-to-end verifiable online voting system with strong pri-
vacy guarantees (receipt-free but not coercion-resistant). Its strong security fea-
tures apply to the election phase and the post-election phase. However, our

S http://www-2.cs.cmu.edu/~enron/
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attack is upon the announcement and credential distribution process, which is
out of scope of Helios’ security features — and therefore not protected.

For the purpose of this paper, we omit all technical details of Helios and
only focus on the features it offers to support announcement and credential
distribution.

Helios is initialized by the voting officials by providing the relevant informa-
tion, the register of voters and their email addresses, and customizing various
emails to be sent out (announcement, credential distribution, etc.).

All voters receive an automatically generated voting invitation from Helios
(see Fig. 1). To vote, the voter visits the emailed election URL and authenticates
using the credentials from the email. After having voted, the voter receives an
email confirmation that her ballot has been received and stored. After the elec-
tions close, the stored votes are tallied and the voter receives an email that the
tally has been released. The voter can inspect the tally page through the URL
provided in the tally email and she can verify that her vote is correctly counted
through the provided administrative information.

Dear <wvoter.name>,
<custom_message>

Election URL: <election_vote_url>
Election Fingerprint: <wvoter.election.hash>

Your voter ID: <woter.voter_login_id>
Your password: <wvoter.voter_password>

Log in with your <woter.voter_type> account.

We have recorded your vote with smart tracker: <wvoter.vote_hash>
You may re-vote if you wish: only your last vote counts.

In order to protect your privacy, this election is configured
to never display your voter login ID, name, or email address to the public.
Instead, the ballot tracking center will only display your alias.

Your voter alias is <wvoter.alias>.

IMPORTANTLY, when you are prompted to log in to vote,
please use your *voter ID*, not your alias.

Helios

Fig. 1. Template of a Helios invitation.



Remark that if a particular voter does not vote (e.g. because she did not
receive the invitation), this does not lead to any further action from the Helios
system. Further, notice that it is impossible to vote without the email containing
the authentication credentials.

4.4 Generating attack mails

The essence of the reverse poisoning attack is in generating the poison. To gen-
erate the attack emails, we alternated words from the genuine Helios adminis-
trative mails with words from typical spam messages. An example of an attack
mail is shown in Fig. 2. Each attack mail contains 115 words, which is equal to
the average size of a genuine Helios mail. Regular users will probably mark such
emails as spam, even if they are expecting a communication from Helios.

We readily acknowledge that this is a rather rudimentary approach to gen-
erating attack emails. However, this experiment aims only to test feasibility
of Bayesian poisoning attacks, for which purpose the thusly generated attack
emails seem sufficient. Thus, we keep in mind that an attacker can likely gener-
ate stronger attack emails.

From: Luxury@experience.com

Subject: Lower monthly payment passwords
Remuneration Election Subsidiary Link: payment Dear
Usury — Reapportionment Helios Reply How Syndicate
to Wholesale Vote Return ======== Computer
Election roots URL: Coattail Your Challenger voter
Believe ID: Decide Your Permit password: Advertisement
Log Pamphlets in Broadcast with Downsize your

Fig. 2. Fragment of an example attack mail. The underlined words are from genuine
Helios mails.

5 Experiments and analysis

5.1 Experiments

To execute our experiments, we used a standard laptop and installed Bogofilter.
Bogofilter’s initial database was cleared and trained with part of the Enron
corpus. We conducted the experiments with various sizes of the training set.
To test the susceptibility of Bogofilter to reverse Bayesian poisoning, we
constructed 50 attack emails. We then iterated over these mails. Each iteration
trained Bogofilter on one attack mail and then tested Bogofilter’s classification

10



of Helios emails. We used four fictional elections, each of which generated three
genuine emails. In total, each time the classifier was tested on 12 genuine emails
from Helios, see Fig. 3.

\] I

Learn Classify
1 attack email 4 elections X 3 mails

Fig. 3. The process of the experiments.

5.2 Analysis of results

The results of the experiments are depicted in Fig. 4. The figure shows, per
election, the averaged probability of genuine Helios mails being marked as spam
against the number of attack emails processed by Bogofilter.

R
0.8 -
— lection 1
06 election 2
election 3

m— alection 4

— P(spam)
(=]
iy

e o e

—— number of attack emails

Fig. 4. Average classification of the three genuine Helios emails for each of the four
hypothetical elections.

Fig. 4 shows the results when training the spamfilter with 11000 messages
from the Enron corpus. Each line represents the average probability of emails
being spam for one of the four hypothetical elections. For each election we average
the results of the three administrative Helios messages. The vertical axis shows
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the classification of the Helios messages as a number between 0 (non-spam) and
1 (spam). The horizontal axis shows the number of attack messages sent before
feeding the genuine Helios messages to the spam filter.

As can be seen in the figure, classification of mails from every test election
reacted strongly to the presence of only a few attack emails. Bogofilter has a
default spam threshold of 99%. We found that it was possible to rate the official
emails above this threshold. We also found that the efficacy depended on the
size of the training corpus. Nevertheless, even when using the full Enron corpus
for training, we found cases where less than 50 attack emails sufficed to have
a genuine election email have a spam probability over 99%. When Bogofilter’s
auto-update feature is switched on, this number of attack emails will be processed
without any user interaction.

In other words, notwithstanding the crudeness of our attack, fifty attack
emails can be sufficient to reverse Bayesian poison a spam filter to suppress
official election emails.

6 Conclusions

Our simple experiments show that reverse Bayesian poisoning is indeed a feasible
attack on the administrative processes surrounding a voting system. We expect
that the attack mails can be further optimized as to achieve the attacker’s goal
with fewer attack mails.

Discussion. As the experiments were aimed at testing feasibility, we only tested
one particular spam filter (Bogofilter) and made various assumptions: the at-
tacker knows whom to target, the attacker’s guess of the format of the genuine
emails is sufficiently close to the actually sent emails, and the victims will mark
the attack emails all as spam. Moreover, for reverse Bayesian poisoning to con-
stitute an actual attack upon online elections a few more assumptions are made:
victims ignore the fact that they did not receive voting credentials, election of-
ficials are not alerting voters to check their spam filters, and elections are not
repeated if a voter finds an election email in her spam mailbox.

Remark the stealthy nature of this attack. The attack could be executed
slowly, over time. The attacker would send attack emails that recipients use to
train the spam filter and possibly even discard afterwards. This means that it
is possible for a reverse Bayesian poisoning attack to occur without leaving a
visible trace on the victim’s side.

Moreover, while our experiments focused on local spam filtering by the user,
spam is also filtered at the email service provider. Such filters may be trained
upon user-classified mails from all users. Such a set is almost perfectly classified”
and therefore used to classify mails for all users.

The downside is that an attacker can sign up for a popular email service
and carry out the reverse Bayesian poisoning attack by himself, poisoning the

7 https://www.quora.com/What-does-the-Report-Spam-feature-really-do-in-Gmail
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service’s spam filter without sending mails to anyone but his own mail account.
The consequences of such an attack can affect many or all users of the service.
It is for this reason that we did not dare to execute our experiments on GMail:
Helios is used in elections (e.g. by the IACR), and even our crude experiments
may train GMail’s spam filters to classify genuine election emails as spam. As
such, we believe that any experiment with reverse Bayesian poisoning must be
done in a controlled environment. If not, others relying on the shared spam filter
will be affected without adequate means of reversing the experiment’s effects.
Note that reverse Bayesian poisoning of shared spam filters allows an attacker
to target groups of voters that share the same spam filter, such as all voters from
one institute. As large institutes typically have a generic, shared spam filter, an
attacker could thus prevent any voters from a given institute from voting.

Mitigation approaches. Mitigation approaches against reverse Bayesian poi-
soning can be classified by who should implement the measure:

— User-side mitigation measures (e.g. whitelisting),
— Centrally taken mitigation measures (e.g. multi-channel communication).

Users can mitigate the effects of reverse Bayesian poisoning in various ways.
On a filter level, they could whitelist the election email address. This trumps
any other spam test, and so would prevent the emails from being suppressed.
Another option is to use a reminder service (e.g. a calendar service) to remind
them of when credentials are to arrive, and contact election authorities if the
credentials did not arrive.

Election officials can also mitigate this attack on different levels. On a tech-
nical level, they can use alternative channels (e.g. SMS messages) to notify the
users that credentials have been mailed. Remark that these other channels might
be attacked as well — for example, the SMS channel in the Norwegian voting sys-
tem was subverted [KLLH13]. They can also address this on a social level, by
effectively campaigning that credentials have been sent out and spam filters
should be checked.

Future directions. In this work, we investigated a practical attack on the
pre-election phase of the Helios voting system. We have not formalised this type
of attack, though we see several approaches to doing so. In particular, our at-
tack touches upon the interaction between humans and computers in voting.
The security implications of such interactions have been considered before, e.g.
Ryan for Prét 4 Voter [Ryall], and Kiayias et al. for Helios [KZZ17]. Both these
works consider the privacy and verifiability requirements on voting. In terms of
the work by Kiayias et al., the reverse Bayesian poisoning attack constitutes an
attack upon the setup ceremony. It is possible to formally define a requirement
in their framework which would catch any shenanigans with voter credential
distribution. Such a requirement could ascertain that credentials were not cor-
rectly received, but not whether this is due to lossy communication channels or
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due to an active attack such as reverse Bayesian poisoning. To formalise a re-
quirement such that active attacks can be distinguished from regularly occurring
circumstances requires further work.
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