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Abstract 

The paper introduces a class :0" of process preorders that are related to contrasimulation 
equivalence. They are characterized by the constraints that they preserve. The preorder :02 
(impossible futures) measures the "degree of determinism" and can be considered as the least 
discriminating preorder that can be used for the verification of communication protocols. If 
p :02 q and q is deterministic. then p is deterministic too and the two are branching bisimilar. 
We present a system for (in)equational reasoning with the preorder :02 and indicate possible 
applications. 

Keywords: Concurrency. Verification. Branching-Linear Spectrum 

1 Introduction 

There exist "pure" and "pragmatic" approaches to the specification and verification of concurrent 
systems. Purists regard a specification as a logic formula, a conjunction of requirements. Safety 
requirements state that the system is not allowed to exhibit some unwanted behavior, like S: "the 
system will not do b unless it has done a first". Liveness requirements state that the system is 
guaranteed to exhibit some desired behavior, like L: "the system will eventually do b". Verifica­
tion consists of proving the specification formula for a given system p (the implementation) by 
proving that p satisfies each requirement R (notation p 1= R). 

If a denotes accepting a packet for transmission and b returning a correctly transmitted packet, L 
and S are requirements specifying a communication protocol. In Figure I, two implementations 
are depicted. The system G starts with an a, then performs a sequence u of internal steps, after 
which a crucial nondeterministic internal transmission step t takes place. If the transmission 
succeeds. another sequence v of internal steps leads to b. If it fails, t will occur again after 
another sequence w of internal steps (e.g. after a time out) The system B has a thirdoption: apart 
from successful or failed transmission, the system can reach a state where it will forever do w 
followed by I. Clearly, this is unwanted, whereas G is the best we can hope for if transmission 
is unreliable. 

Nonetheless, both Band G satisfy S and neither satisfies L. It is possible that the transmission 
step in G fails over and over again. However, there exists a requirement L', slightly weaker than 
L such that G 1= L', but B ~ Ll Such an L' is: "If the system has not yet done b, it is in a state 
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Figure I: Good and bad communication protocols 

where it can eventually do b". A similar requirement appears in [IJ. We may deduce that G 1= L 
from afairness assumption stating that events that always possible in the future will eventually 
occur. We will not invoke fairness, but rather use L' as our liveness requirement. 

Although the purist approach is conceptually nice, the pragmatic school criticizes it on the tol­
lowing grounds. A specification is in most cases produced in close cooperation by software 
engineers and the (future) users of the system. The formal specification is created by the en­
gineers and must be validated by the users. A specification by logic is hard to understand and 
validate by the users. It may be underspecific (allowing unwanted behaviors), overspecific (dis­
allowing wanted behaviors) or both; detecting such errors requires hard work and considerable 
skill. 

Pragmatists advocate specification-by-example. A (simple) system q serves as specification and 
a less simple system p (the implementation) is constructed and proved to satisfy p :s q for 
some preorder :s. Even if the formalism is unknown by the users, an executable model can be 
built from the specification and experimented with until the users are convinced that it correctly 
describes the behavior they have in mind. 

We do not want to pass any judgement in this debate. Most likely, combining both approaches 
will be most successful in practice. This means that we need a clear understanding of the classes 
of requirements that are and are not preserved by preorders. 

There is a correspondence between preorders :0 and classes of requirements C?(:s): for processes 
p, q we have p :s q iff q 1= R => p 1= R for each R E C?(:o). If a C?(:s) is closed under negation 
(i.e. if ~R E C?(:s) iff R E C?(:s», the preorder will be symmetric (i.e. an equivalence relation). 
If a, fJ are preorders and C?(a) ~ C?(fJ) then p fJ q implies p a q, so fJ ~ a. We say that 0' is 
weaker than fJ. 
Many preorders from literature (c.f. [8]) are based upon some notion ofjinitary testing. Since 
there is no testing scenario that can discriminate G and B in Figure I, such preorders, like 
failures (c.f. [6]) or ready simulation (c.f. [5]), satisfy B :s G: a good specification can have a 
bad implementation. 

The preorders not suffering from this drawback lie between contrasimilarity and branching 
bisimilarity (c.f. [8]) in Figure 2. These preorders are all based upon some notion of "global" 
or "fair" testing and are equivalent to strong bisimilarity if internal steps are absent. However, 
prescribing the behavior of a system up to (more or less) bisimilarity will often be overspecific. 
Therefore it is worthwhile to look for weaker preorders that still discriminate G and B in Fig­
urel. 
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Figure 2: Spectrum from :52 to branching bisimilarity 

In this paper we introduce a family of preorders :5n with n 2: 0, where :5n+1 <; :5n, :51 is 
trace inclusion and nn>O :5n is (almost) contrasimilarity. These preorders are characterized by 
classes C (:5,,) of requirements, defined in a HML-like (c.f. [10]) modal language. The preorders 
are precongruences for CCS-style operators and for n > I discriminate Band G in Figure 1. 
In Figure 2, they are listed with related other preorders. Inclusion is indicated by arrows there: 
p - 17 q means that q <; p. In the figure, the boldface preorders are the ones introduced here. 
The others are mentioned in [8]. Contrasimulation is introduced there, although in a very general 
setting. 

The preorder :52 is investigated further. If p :52 q, then p and q have the same traces, but 
the moments of choice may differ; p may delay choices (c.f. [2]) made by q, thus being "more 
deterministic" than q. An important property is that if p :52 q and q is deterministic, then 
" is weakly (and by Theorem 3.1 in [9] also branching) bisimilar to q. So, for deterministic 
specifications all preorders in the spectrum between :52 and branching bisimilarity (c.f. Figure 2) 
collapse. 

We present a deductive system for :52 and give a toy example that illustrates its use for specifi­
cation and verification. 

Acknowledgements 
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Kuiper and Bas Luttik. A special acknowledgement is deserved by Rob van Glabbeek who is the 
godfather of the ideas which led to this paper. 

2 Basic notions 

In this section we fix some notation. If k 2: 0 and XI, ... , Xk are sets, XIX . .. X Xk is the set 
of k-tuples (XI, ...• xkl with Xi E Xi for all i with I :'S i :'S k. The empty product (with k = 0) 
is the singleton set {E}, so E denotes the O-tuple. The set Xk is the k-fold product X x ... x X 
and X* = Uk2:0 Xk Juxtaposition combines tuples, e.g (x, y)(u, v, w) = (x, y, u, v, w). We 
identify X I and X. 

Binary relations are sets of 2-tuples (pairs). We write x R y if the pair (x, y) is an element of 
the relation R and x Riff 3y :: x R y. The operator _ 0 _ denotes relation composition and _-1 

denotes relation inversion. 
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Figure 3: A contrasimulation 

A preorder is a reflexive and transitive relation. A preorder ::s on a set X is a precongruence 
W.r.t. a function f : Xk --+ X iff Xi ::S Yi for all i with I ::: i ::: k implies that f(Xl . ... , xkl ::S 
f(YJ, ... , Yk). 

Throughout this paper, A will be a set of (visible) actions, T (with T fj A) is the invisible or 
internal action, Ar = AU {T}, X is a set of states or processes and for a E A r, ~ <; X x X 
are the transition relations. The set X is assumed to be large enough to contain all processes that 
we will consider. A state x is called unstable iff x ~ and stable otherwise. If x ~ x', this is 
interpreted as the occurrence of an action a in a state x, resulting in a (possibly different) state x'. 
Note that X is supposed to contain all processes; instead of comparing different process spaces, 
we take the union of their states and transition relations and compare the processes in it. 

We define the relations ~ <; X x X for (J E A * as the least (w.r.t. inclusion) relation satisfying 
x~x',x/~x",aEA X~Xf Xf~X" 

x =k x, ------'----'---'------ ' . So x =k x' iff x' can be reached 
x ~x" x ~x" 

from x by executing 0 or more internal steps. The subrelation E+; requires at least one internal 

step, so x E+: x' iff there exists an x" such that x =k x" and x" ~ x'. For (J # E we set 

rr-t; = ~. A trace of a process x is a sequence (J E A * such that x ~. 

A process x has finite nondeterminism iff for each (J E A * the set {x' I x ~ x'} is finite. The 
set X F is the set of all processes with this property. 

A contrasimulation (c.f. [8]) is a relation R <; (X x X) such that for all (J E A *, (R- l 
0 ~) <; 

(~ 0 R). This means that if p R q and p ~ p', there exists a q' such that q ~ q' and 
q' R p'. Note the inversion (the "contra" of contrasimulation)! In Figure 3, a contrasimulation is 
depicted. 

A coupled simulation is a contrasimulation R satisfying {x I x R} = {y I R y}. A weak bisim­
ulation is a symmetric contrasimulation. Two states x, y of X are weakly bisimilar / coupled 
similar / contrasimilar iff there exists a weak bisimulation / coupled simulation / contrasimu­
lation R such that x R Y and y R x. The relations are denoted respectively as ~WB, ~cs and 

Our requirement language 1: is composed from the constant T, the unary operators ~ and Ds 
(with S <; A *) and the binary operator 1\. 

A requirement L inductively defines a set ULU <; X of processes as follows. 
UTU = X, U~MU = X \ UMU, UM 1\ NU = UMU n UNU and UDsMU = {p I VI" : (jrr E S:: 
p~p'): p' E UMU}. 
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We write p 1= L ("p satisfies L") iff p E ULU. 

Abbreviations are ~ = ~ T, L v M = ~(~L /\ ~M), L =} M = ~L v M and OsL = ~Ds~L. 
We write D". 0" instead of Dr,,}, Or,,} 

If p, q E XF, then p ~WB q iff VL E £. : q 1= L {} P 1= L. We call process p deterministic 
iff p 1= (Op" T =) DpO" T for all p, a E A*. This means that if a behavior pa is possible, the 
behavior a will be possible after having observed p. 

3 A family of preorders 

We shall give a relational definition for the preorders :0" and determine sets C(:OI1) of require­
ments for them. A similar characterization will be given for contrasimilarity. We will use aux­
iliary relations «". Informally, p «11 q iff every computation in p leading to a state pi can be 
matched by a similar computation in q leading to q' in such a way that q' «11-1 p'. Again, note 
the inversion. 

Definition 1 Let p, q be processes. Then p «0 q and for each n ::': 0, 
P «,,+1 q {} Va. pi : p ~ pi : (3q' : q ~ q' : q' «11 pi). 

Note that p «I q iff Va : p ~ : q ~ , which means that every trace of p is also a trace of q. 
The following propositions connect the relations «11 to one another and to contrasimilarity. 

Proposition 1 For alln ::': 0, ~c <; «11+1 <; «n. 

Proof: Let p, q E X and n ::': 0. By induction on n, we prove that (a) the existence of a 
contrasimulation R such that p R q implies that p «11 q and that (b) P «11+1 q implies that 
p «n q. From (a) follows that ~c <; «n+l for any n ::': 0. The base case n = ° is immediate 
for both. So let n > 0. 

Let R be a contrasimulation such that p R q. We want to prove that p «11 q. So suppose 
p ~ p'. Since R is a contrasimulation, there exists a q' such that q ~ q' and q' R p'. By IH, 
q' «,,-I p'. So indeed p «" q, proving (a). 

Suppose P «,,+ 1 q. We want to prove that p « nq. So let p ~ p'. There must exist a q' such 
that q ~ q' and q' «" p'. By rH, q' «11-1 pi, so indeed p «11 q, proving (b). D 

Proposition 2 Ill', q E Xl', then p ~c q {} Vn > 0: P «11 q /\ q «11 p. 

Proof: One side of the implication follows from the previous proposition. For the other side, 
we show that R = nIl «" is a contrasimulation. Let p R q and p ~ p'. Then for any n, 

I' «,,+ 1 q, so there exists a q' such that q ~ q' /\ q' «" pl So for any n there exists a q' such 
that q ~ q' /\ q' «" p'. Since q E X F, there are but finitely many q' such that q ~ q', so 
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there is a ql such that q ~ ql and ql «n pi for all n, so ql R pl. 

We now will define sets C;; of requirements. 

Definition 2 For n E IN we define subsets C,i of 1:- as the smallest sets satisfying 

L,M E C;; 
+ ' + + T E Co L;\ M E C" ' L V M E Cn 

L E C,i, S E 5'(A*) 

Os~L E C';+I 

o 

Many requirements and theoretical properties can be stated within C~ and Cr. The requirement 
Sand L' in the introduction are respectively O/O"b/I7E(AI{a)')1.., which is in ct and OrA I{h)' Olph/pEA') T, 
which is in Cr Also the property of being (J, p-deterministic: 0PI71.. v OpOI7 T is in Cr 
Theorem 1 Let p, q E X F , n E IN. Then p «n q ~ VL E C;; : q 1= L : p 1= L. 

Proof: Suppose p «n q and let L E C;; such that q 1= L. We use structure induction on L 
to prove that p 1= L. We may assume n > O. The base case L E {T, 1..) is immediate. If 
L = M ;\ N then q 1= M ;\ q 1= N, so by IH p 1= M ;\ P 1= N, thus P 1= L. The case 
L = M v N is similar. The remaining case is L = Os~M, with M E C';_I' Assume p Fe L, so 

p 1= Os M. So there exists a (J E S and a pi such that p ~ pi and pi 1= M. From the definition 
of «n, there exists a ql such that q ~ ql and ql «n-I pi, so by IH (on the structure'), we 
conclude that ql 1= M and thus q Fe L, which contradicts our assumption. So p 1= L in all 
cases. 

Conversely suppose p %:n q. By induction on n we prove that there exists an L E C,i such 
that q 1= Land p Fe L. The case n = 0 is trivial, so let n > O. Since p %:" q, there exists a 
pi with p ~ pi such that for all q; with q ~ q;, q; %:,,_, pl. Since q E X F, there are but 
finitely many such qt. By IH, for each such q! there is a Li such that pi 1= Li and q: F Li. So 
q 1= 017 II,; ~Li and p Fe 017 Ai ~Li' 0 

We now define some derived relations and requirements. 

Definition 3 For each n ::: 0 we define the following relations and requirement sets. 

»n = «;;-1 
C;; = {~L I L E C;;) 

~n+1 = «n+1 n »n 
C'(~n+tl = C;;+l U C;; 

~n=«n n »" 
Cw = U,,>O C'(~,,) 

Simple set theory yields a.o. the following results (that go without proof). 

Proposition 3 Let n ::: O. Then ~c <; ~"+I <; ~n' 
If p, q E X F , then p ~n q ~ VL E C'(~n) : q 1= L : p 1= L 
and also p ~c q ~ VL E Cw : q 1= L: p 1= L. 
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The formulae in Cn are characterized by an alternation of D and 0 operators. Indeed, Cw cannot 
contain the formula N = 0" (Ox T /\ 0, T), which discriminates the processes in Figure 3. 
Instead, Cw contains e.g. O"DE(Ox T /\ OyT). 

The preorder :0,,+ I forms a lattice on the ~n-equivalent processes. The preorder Un>O :On 
defines a lattice on X as a whole. The preorder :02 has been named "impossible futures preorder" 
after [12l. Impossible futures of a p are pairs (a, F) E A* x J'(A*) such that p 1= OITDF.i, so 
after having observed er, it is possible that no behavior from F can be observed anymore. Every 
impossible future of p is an impossible future of q iff p «2 q. We now prove the detenninism 
property mentioned in the introduction, which is largely due to [7]. 

Theorem 2 Let p «2 q and q detenninistic. Then p ~WB q. 

Proof: Determinism is a Ci requirement, so by Theorem I, P must be deterministic as well. We 
first show that p and q are trace equivalent, i.e. that Va E A* :: p 1= OIT T «0} q 1= OIT T. Note 
that 11.111 = 1I0E.iIl. So suppose p 1= OIT T, so P p!= DIT.i, so P p!= DITOE.i, so since p «2 q, 
q p!= D"OE.i, so q 1= 0" T. Suppose q 1= 0" T, so since q is detenninistic, q 1= DEOIT T, so 
since P «2 q, p 1= D,O" T, so p 1= 0" T. 
We now shall prove that if p, q are deterministic and trace equivalent then p ~WB q. Let R 
be defined by x R y «0} 3a : p ~ x /\ q ~ y. We will prove that R U R- I is a (symmet­
riel) contrasimulation. Suppose x R y and x ~ x'. There must exist a p such that p ~ x or 
q ~ x. Since we have symmetry between p and q we may assume wlog the former. So we 
have p.J::; Xl Since P :0 I q, we have q 1= 0 pIT T, so by the determinism of q, q 1= DpOIT T 
and since q ~ y, we must have y 1= 0" T, so there is a y' such that y ~ y' and thus y' R x'. D 

4 Operators 

[n this section we introduce some ACP-like (cf. [4]) operators and show that our preorders are 
precongruences W.r.t. them. 

We presuppose a ternary communication relation y c; A 3 By imposing additional constraints 
upon y, the standard ACP merge is obtained. The process .5 denotes inaction. In Table I we 
give SOS rules for the following operators: choice (_ + _), merge (_11_), action prefix (a_, with 
a E AT), encapsulation (aH(-), with H c; A) and renaming (Pr(-), with rEA -+ (A,el). In 
Figure 4, processes p. q are shown with some processes derived from them by these operators 
(assuming that (a. h. x) E Y «0} x = c). 

We introduce a definition and a lemma about the traces of merged processes. 

Definition 4 The trace weave operator _1_ E A* x A* -+ J'(A*) is inductively defined as 
follows: 

Eler = eriE = {er), 
aplher = {an In E plha} U {bn In E apia} U {cn I (a, b, c) E Y /\ n E pia} 
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C(1q+p) cq y ~ , 
P t 

q 
t 

1q 

1q+p <1 ' /t>y a b x~ a 

a q+p b x y 
x y 

Figure 4: Derived processes 

a p~pl 
ap --+ p a f a f 

p+q--+p, q+p--+p 

p~p' a, b'eb) p --+ p , q --+ q , a, . C E Y 

pllq ~ plllq , qllp ~ qllp' 

p~pl, af/H 

BH(p) ~ BH(p') 

pllq ~ p'llq' 

a I 
p--+ p 

rea) I 

Prep) --+ Pr(P) 

Table 1: SOS rules for simple operators 

Lemma 1 pllr ~ s {} 3p', rl, rr, P : s = p'llr' /\ p ~ pi /\ r b r' /\ a E rrlp· 

Proof: Let pllr ~ s, so there are so ... Sn such that pllr = So, s = s" and Si ~ S;+I for 
0:::: i < nand ai EAr and <f;(ao, ... , (In-]) = a, where <f; : A; ---+ A* strikes out y's. 

We use induction on n to show that this is equivalent to 3p', r', rr, P :: s = p'llr' /\ p ~ pi /\ 
rbr' /\ a E rrlp. Ifn = Othens = pllr,a = E and we set pi = p.r' = r.rr = P = E. SO 
let n > O. The rules in Table I allow three possibilities for Sl, namely Pllir if P ~ PI, pllrl if 

no d II 'f bo Co b) r --+ rl an PI rll P --+ PI, r --+ rl and (ao, 0, Co E y. 

Assuming the first, and assuming ao i' Y, we must have that a = aoal and Pllir ~ s, so the 
IH yields that this is equivalent to 3p', r', rr, P :: s = p'llr' /\ PI ~ pi /\ r b r' /\ al Err Ip. 
Thus, 3p', r', rr, P :: s = p'llr' /\ p ao; /\ r b r' /\ a E (aorr) Ip. The other cases are similar. 
o 

We further restrict our preorders by a root condition. 

Definition 5 Let p and q be processes. Then p «~ q iff p «II q and either 11 = I or p ~ =} 

q ~. For n > 1, we set ='~ = «~ n «<_1)-1 

We give a lemma about unstable processes. Its proof follows from the definition of «II' 

Lemma 2 Let p, pi and q be processes such that p ~ pi and p «II q .for some Il :0: O. Theil 
also pi «n q. 
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Note that the processes in Figure 4 satisfy rq ~11 q and q «n rq + p for all n > I, but 
rq + p i" q + p and cq 1<" c(rq + pl. This shows that the preorders ~n, :02 and «11 are not 
precongruences for every defined operator. 

Theorem 3 The:o;' are precongruences for the operators defined in Table 1. 

Proof: 

We first prove 17 «" q => pllr «11 q Ilr by induction on n. The case n = 0 is trivial, so 
let Il > I and 17 «" q. Suppose pllr ~s. By Lemma I, there exist p', r', p, If such that 
p ~ 17', r ~ r' and a E If Ip. Since p «11 q, there exists a q' such that q ~ q' and q' « 
11 - Ip'. By TH, q'llr' «11 - Ip'llr' and by Lemma I qllr ~q'llr'. So pllr «n qllr. From 
17 -'--. => q -'--. follows pllr -'--. => qllr -'--., so p«~ q => pllr «~qllr. From q «11-1 p 
follows qllr «,,-I pllr. So p :o~ q => pllr :o~ qllr. By symmetry, p :o~ q => rllp :o~ rllq· 
So if 17 :0:; q and r :0:; s, we have pllr :o~ qllr :o~ qlls, so the:o~ are precongruences for the 
merge operator. 

Next, we prove that p :0" q => ap :On aq for a E AT by a similar induction. Suppose ap ~ s. 
Then either a = E, S = ap or a = [alf], s = p', p ~ p'. Here [alfl = If if a = rand alf 
otherwise. In the first case we know that q :On-I p, so by IH, aq :011-1 ap, so there exists an 
r (namely aq) such that aq ~ rand r :011-1 s. In the second case there exists a q' such that 
q ~ q' (thus aq ~ q') and q' :0 n - I p'. In either case the condition that ap «11 aq is met. 
As in the merge case, this implies that ap :0" aq. Also, ap -'--. implies aq -'--. . 

Finally, we prove that p «;. q => p + r «~ q + r. Suppose p + r ~ s. Then either 

a = E. ,\' = 17 + r or s = q'. q O'~ q' or s = p', p O'~ p'. For the first two cases, the induction 
step is easy, so we assume the third case. Since p :o~ q and p O'~ p', there must be a q' such that 
q ~ q' and q' «,,-I 17'. If q f= q' or a f= E, we have q + r ~ q', completing the induction. 
So suppose a = E and q' = q. Since p O'~ p', we have that p -'--. and since p :o~ q, there is 
a q" such that q -'--. q". By Lemma 2, we have q + r ~ q" and q" «11-1 p', completing the 
induction in the last case. As above, this implies that p :o~ q => p + r :o~ q + r. By symmetry, 
p :0:; q => r + 17 :0:; r + q. 

The remaining operators are similar to the merge case. For a given operator ¢, we characterize 
the,\', a pairs such that ¢ (p) ~ s, like we did in Lemma I. In all cases, there must exist a p 

(depending upon ¢ and a) and a p' such that p ~ p' and s = ¢(p'). From such a characteri­
zation, the proof by induction is straightforward. D 

A special case of the renaming operator is the abstraction operator rH(_) with H ~ A. We have 
rH = PFH' where FH(a) = r if a E Hand FH(a) = a otherwise. 

With the above operators we can construct finite processes (i.e. with finite trace sets). For infinite 
processes we define a simple recursion operator. 

For reasoning with infinite processes we introduce the projection operators. Table 2 contains the 
SOS rules for the process lMl i , with 1 some (not necessarily finite) index set, M ~ (I x A x 1), 

E 1, and If,,(_), with 11 E IN. By the SOS rules, [Mli = 8 if M contains no triple (i, a, j), e.g. 
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(i, a, j) E M 

[Mli ~ [Mlj 

p~p', aofT, n>O 

][n(P) ~ ][n-] (p') 

p~p' 

Table 2: SOS rules for recursion/projection 

when M = 0. Note that T'S are not allowed in the relation M. If this were allowed, Theorem 4 
would no longer be valid. To construct infinite processes with silent steps, we first construct 
processes without them and use abstraction afterward. 

We can now prove the following theorem, showing that the ::::n are precongruences for projection 
and the approximation induction principle (AlP) for the preorders. 

Theorem 4 Let m, n :0: O. The preorder::::n is a precongruencefor ][m. For all p. q E Xl'. we 
have P::::n q {} Vi:o: 0: ][i(P)::::n ][i(q) 

Proof: The properties are proved by induction on n. The essential part of the proof is the char­
acterization ][m(P) ~ s {} f(er) :::: m 1\ 3p' : p ~ p' 1\ ][m-C(alP' = .1', where the function 
f gives the length of a trace. The finite non determinism property is needed to conclude that 
'In :0: 0 : (3q' : q ~ q' : q' «,,-] p') implies that 3q' : q ~ q' : ('In :0: 0 : q' «,,-] p'). 0 

5 Calculus 

In this section we give an axiomatization of ::::; for finite processes. Let A be a set of actions as 
before and V with V n A = 0 a set of variables. We present a deductive system 6A. v for process 
terms with a relation:::: that will axiomatize ::::;. In this section we will abbreviate ::::S by::::. 

Table 3 presents the axioms for finite process terms. The relation = in the axioms is an abbrevia­
tion for:::: n :0:. The terms are built from 8, process variables (x, y. Z E V), the silent action (T), 
actions (a E AT), the action prefix (a_) and choice (_ + _) operator. Brackets are used to indicate 
the order in which the operators are applied. If omitted, action prefix binds stronger than choice. 

The axioms in Table 3 do not contain the merge, encapsulation or renaming operators. However, 
there exist rewrite rules (e.g. an expansion theorem for the merge operator) that allow every term 
without variables containing these operators to be represented as a 6A. v term. 

Al x+y=y+x IF x:::: TX 

A2 (x + y) + z = x + (y + z) cs r(rx+y)=rx+y 
A3 x+x=x C ax+ay=a(rx+ry) 
A6 x+8=x 

Table 3: Basic axioms 

The A axioms define (strong) bisimilarity. The axiom CS stems from the axiomatization of 
coupled simulation (ef. [II]). With the axiom C and the axiom T2: rx + x = rx it axiomatizes 
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contrasimilarity for finite terms (cf. [8]). Also compare Figure 2. The axioms IF and C can be 
found in [6]. The axiom C connects stable nondeterminism (several possible outcomes from a 
visible step) to unstable nondeterminism (several possible outcomes from invisible step). Axiom 
IF states that the addition of a silent step makes the process less deterministic. 

The deduction rules that we may use are RE(flexivity), i.e. t S t, TR(ansitivity), i.e. t S u /\ u S 
v =} I S v, IN(stantiation), i.e. E(x) S F(x) =} E(t) s F(t) and SU(bstitutivity), i.e. 
I S II =} E(t) s E(u), where t, u, v are arbitrary terms, x a variable and E(x), F(x) terms 
containing x. The term E (t) denotes the term obtained from E (x) by substituting all occurrences 
of x by I. 

We show an example deduction, deriving CT2): a + x = rx 
IF su A3,IN 

true =} x S TX =} (rx +x) s (rx + a) =} (rx + x) sa. 
IF.SU.A3 ( ) su ( ) CS.IN,SU ( ) true =} x S rx + x =} rx S r rx + x =} rx S rx + x . 

Another derivation (omitting IN, SU, TR and A2) yields a + y = rx + rex + y): 

a + y T2 rx + x + ysiFrx + rex + y) 

TX + rex + y)slFa + r(a + y) ~ a + rx + y A3 a + y. 

A third derivation features the delay of a choice: a(x + y)sIFa(a + ry) C ax + ay. 

Because of axioms AI, A2 and A6, we can use the notation LiEf Ei for processes, provided 
that the set I is finite. Its meaning is EI + ... + En, where EI, ... En is some ordering of the 
processes Ei . By definition the empty sum is 8. 

We will give a model for process terms. Let v be an instantiation of the variables in V with 
arbitrary processes. We give an interpretation Mv of terms in L'l.A,V as follows. The term 8 
is represented as the process 8, so Mv(8) = 8. For x E V, Mv(x) = vex). For a EAT, 

Mv(ap) = aMv(p) and finally MvCp + q) = MvCp) + MvCq). 

We give a special instantiation N of the variables in V with processes by setting N(x) = 
[{(I', x. I')l]", the process that can only do an x-labeled step to itself. So MN is an interpre­
tation of terms in L'l.A. v by processes with action set A U V. The following proposition shows 
that the interpretation MN covers all other interpretations. 

Proposition 4 MN(p) ~ MN(q) {o? 'v'v : Mv(p) ~ MvCq) 

Proof: The "only if" part is triviaL Now choose a v and let p and q possess the variables 
XI .. Xn· Then Mv(p) = dH(MN(p)llpllI·· ·IIPn), where Pi is derived from V(Xi) by re­
naming its actions a to ai Cwhere the ai are brand new actions), the communication relation 
y maps each pair (Xi, ai) to a, and H contains all variables and new actions ai. Similarly, 
Mv(q) = iJH(MN(q)llplll·· ·IIPn). Since the preorder ~ is a precongruence for the operators 
used. we may conclude that P s q implies Mv(p) ~ Mv(q). 0 

We will identify a term I' with its standard representation MN(P) as a process and speak of the 
traces of a term, it being deterministic and so on. Note that we have thus obtained a model for 
open terms. The existing literature only treats closed terms in this way. The following theorem 
states that the axioms and deduction rules are sound. 
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Theorem 5 Let u, v be i'l.A, V terms, Then u ~ v =} u :s v. 

Proof: For the A axioms, a strong bisimulation can be constructed. For CS and IF, a weak bisim­
ulation can be constructed and the root condition of :s can be verified. For C, a relation between 
processes can be given as indicated in Figure 3. We move to soundness of the deduction rules. 
The rules TR and RE follow from the fact that :s is a preorder. SU follows from Theorem 3 and 
IN from Proposition 4. 0 

As usual, completeness is more intricate. We define a "bar" operator that converts a term into a 
deterministic term with the same traces. The formal definition uses the auxiliary operator 1(_) 

that gives the set of initial actions of a term. We will use this operator to derive some useful 
identities, eventually leading to a completeness proof. 

Definition 6 The determinism operator and I (_) are defined by the following equations that use 
parameters x E V, a E A and term parameters u, v, w. 

1(0) = 0 
l(x)=0 

I(au) = (aJ 
I(TU) = I(u) 
I(u + v) = I(u) U I(v) 

0=0 
x+u=x+u 
au + av + w - a(u + v) + w 
TU + V = u + v 
a fj. I (v) =} -a-u-+"--v = au + v 

We can eliminate the determinism operator from terms containing it by applying them from left 
to right as rewrite rules. Note that the instantiation rule IN can no longer be applied to variables 
x E V, since they have become processes. Instead, we use the term parameters u, v. w. These 
can be instantiated. We now present a few identities with this operator. 

Lemma 3 For all terms t, u, v the following inequalities and equations can be derived. 

a u~u b u=u+u ..,---...,. 
c TU = TU + u d TU + T(U + v) = TU + (u + v) 

e (u + v) + (v + w) ~ U + (v + w) f T(U + v) + (v + w) ~ TU + 7(V'--+"--W--:-) 

Proof: Parts a, band e are proved by structure induction as follows. A term u can be brought in 
one of the following forms: 0, x + u' , where x E V, T u' + u", or au' + u", where a fj. I (u"). The 
condition a fj. I (w) can be achieved by applying axiom C if necessary. We use case analysis 
for the four cases. The induction hypothesis (IH) is that the statement holds for all terms that 
are simpler than the one that is being examined. So if we want to prove P(u) in e.g. the case 
u = au' + u", we may assume PCu' + U"), PCu' ) and P(u"). 

We prove inequality a: U ~ u. The case u = 0 is immediate. If u = x + u' , then U = x + u' = 
X + U' ~IH x + u' = u. If u = TU' + w, then TU' + u" = u' + u" ~I H u' + ,," <I F TU ' + u". 

Finally, au' + u" = au' + u" ~IH au ' + u". A consequence: (u + v) = (u + (ll + v) ~ 
u+(u+v). 
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Next, we prove b : u = u + U. From a, we have u + U :"; u + u = u. So we are left with proving 
u :"; iI + U. We proceed as above. The cases 8 and x + v are immediate. If u = TV + w, then 
TV + W + TV + w = TV + W + V + W =T2 TV + V + w + V + w =f H TV + V + w =T2 TV + w. 
Finally, av + W + av + W = av + w + au + w ?:,C,f F a(v + v) + w =f H av + w, 

We next prove c : TU = TU + iI. We have TU =T2 TU + U ?:,a TU + U and TU + U =cs 
T(TU + u) ?:,f F T(U + u) =b ru. 

We next prove d : rli + r(u + v) = TU + (u + v), One side is immediate from I F; we prove 
the other. We have TU + (u + v) =CS,A3 TU + T(ru + (u + v)) ?:,fF TU + T(U + (u + v)) ?:,a 

ru + (u + v). 

We next prove e =} f: If (u + v) + (v + w) :"; u + (v + w), then T(U + v) + (v + w) :"; 
TU + (v + w), We have T(U + v) + (v + w) =T2 T(U + v) + (u + v) + (v + w) <e T(U + v) + 
u+(v + w) :,,;fF r(u + v)+ru+(v + w) =d (u + v)+ru+(v + w) :,,;e u+ru+(v + w) =T2 

TU + (v + w). By applying T2, from (u + v) + (v + w) :"; u + (v + w) we can even derive 
T(U + v)+r(v + w) :"; ru+T(V + w) and by adding C, a(u + v)+a(v + w) :"; au+a(v + w), 

We now prove e by induction on the structure of v, The interesting case is v = av' + v", where 
a <t [(v"). We consider subcases depending on the value of a E I (u) and a E I (w). The inter­
esting subcase is when both conditions hold. So we may write u = au' + U", w = aw' + w", 
where a <t [(u") U I (w"). So we must prove 
(au' + u" + av' + v") + (av' + v" + aw' + W") :"; au' + U" + (av' + v" + aw' + W"), 
This is rewritten to a(u' + v') + u" + w" + a(v' + w') + v" + w" :"; au' + U" + a(v' + w') + 
v" + w". From TH, u" + w" + v" + w" < u" + v" + w" and, again from IH, using the e =} f 
derivation above, we have a(u' + v') + a(v' + w') :"; au' + a(v' + w'). 0 

Note that u is stable and deterministic iff u = U and that u «I v iff v = u + v, 

Let ~=:< U :<-1. We define normal forms for terms modulo~, The general idea behind this 
normal form seems to be that choices are delayed and r's skipped maximally without leaving 
the equivalence class, So ax + ay is normalized to a (TX + TY), delaying the choice until a has 
occurred and x + T (y + T z) becomes x + y + T z, skipping the first T. 

There are three subclasses: stable, pure and mixed normal forms (pure and mixed being unstable), 
The stable normal form is - apart from variables - a sum of subterms au' in which all initial 
actions a differ. The pure normal form is ru, where u is stable. It is allowed only in the root; 
outside the root the initial r of a pure term is skipped. The mixed form has a stable part u' 
and unstable parts Wi where the Ui are deterministic, Some additional conditions are added to 
ensure that it is not equivalent to a pure term: the Ui must be mutually «I-incomparable and 
«I-majorated by u'. We shall show that each ~A. v term can be normalized, rewriting it modulo 
the axioms to a term in normal form. 

Definition 7 A ~(A, V) term u is in stable normalform iffit can be represented as LbEB bu~ + 

LXEx x, where B ~ A, u~ E JIM U Jlsfor each bE B and X ~ V. 
[t is in pure normalform iff it is TU', where u' is in stable normalform, 

[t is ill mixed Ilormalform iffit can be represented as LiEf TUi + u', where u' is in stable normal 
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> ~
. 

x b 

y d ~ ~ a 

Figure 5: Normal form for a(bcx + bdy) + ab(dy + ez) 

form and Vi E I :: Ui = Ui # U' = u' + Ui. and Vi, j E I : Ui = Ui + U} : i = j. It is ill normal 
form if.! it is in either stable, pure or mixed normalform. 

Lemma 4 Let U be a t. A . V term. Then there exists a term v such that u = v is derivahle and v 
is in normal form. 

Proof: We give a normalization recipe. Write U as L! t Ui + u' where u' is stable. Replace 
every summand tUi by the equivalent (Lemma 3c) summand tlii + Ui Whenever i . .i E I such 
that i # j and Uj = uf + Ui, replace tUi + Wj by Wi + Uj (Lemma 3d). We obtain the term 
LJ TVj + v', where v' is stable and the Vj are deterministic and mutually «1 ~incomparable. 
Also v' = v' + v j for any .i E J. If v j = v' for some .i, then v} = v' for all .i and replace 
(Lemma 3c) Ltv} + v' by tV', obtaining a pure term. Write v' as LkEK akWk + Lx x and 
whenever ak = a[ = b for some k # I in K, replace (C) bWk + bw{ by b(tWk + t W{) until all 
summands of v' have different initial actions. Repeat this process for the lower-order nodes of v; 
if such a lower~order node becomes pure, use equation TI to skip the T. D 

In Figure 5 the result of normalizing an example term is depicted. The r-Iabeled edges are 
dashed. We now derive necessary conditions for U :5 v if u, v are normalized. 

Lemma 5 Let u, v be normalized and U :::: v. 
!fu stable then either v stable or v = TVa pure and U :::: VOl 
!f U = t Uo pure then v = T Vo pure and Uo :::: VOl 
!fu = L1 TUi + Uo mixed then v = LJ TVj + Vo mixed and Uo :5 Vo andji)r each i E I there 
exists a j E J such that Ui = Ui + Vj' 

Proof: The first two cases are immediate, so we assume the third. So u = L1 Wi + Uo and 
v = LJ TVj + Vo with Uo, Vo stable. Suppose Uo ~ u'. If (J is the empty trace, then /I' = uo 
and by 170 = 17 = v = Vo we have Vo ~ Vo and Vo «1 Uo. For nonempty (J, we have u ~ ,,', 
so since U :5 v, there exists a v' such that v ~ v' and v' «1 u', and since (J is nonempty, we 
have LJ Vj + Vo ~ v' and since v is normalized, Vo = LJ v} + Vo, so Vo ~ Vi We have thus 
proven that Uo «2 vo, and since uo, Va are stable, "0 :::: VOl We proceed with the second condi­
tion. Suppose i E I. We then have U ~ Ui. So there is a v' such that v ~ v' and Vi «1 Ui. 
Since U is unstable, by the root condition v is unstable too. If v' = v, then there exists a .i E J 
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and vi «I ]J «I Ui· If v' 1= v, then, since the Vj are stable, v' = Vj for some j E I. 0 

Theorem 6 Let u. ]J be LlA. v terms such that U :0 v. Then uS v. 

Proof: We prove the theorem for normalized u, v first. We use structure induction. Suppose 
u is stable. If]J = TV' with v' stable and U :0 v', we use IH to derive u S v' and by the IF 
rule u S TV' = v. If v is stable, we write u = LB bUb + Lx x and v = Lc CVe + Ly y. 

Since u. v are trace equivalent, we deduce that B = C and X = Y. Suppose U a ~ u' for 
some a E A. Then u ~ u', so there exists a v' such that v ~ v' and v' «I Ufo Since aVa 
is the only summand with initial action a, we find that Va ~ v'. So Ua «2 Va. The «1 and 
root condition present no problems, so Ua :0 Va. By IH, we derive Ua S Va. By substitution 
this yields II S V. If U is pure the induction is immediate. So suppose II = LiEf TUi + II' 
and v = L iE1 TVi + v' are mixed with 11', v' stable. By Lemma 5, we have that u' :0 v', so 
by IH II' S ]J'. Let i E I. By the same lemma there exists a j E I such that Ui = Ui + Vj. 

By Lemma 3f, Tlli + u' = Tlli + Uj + Vj + u' S TVj + Uj + u' = TUj + u'. By Lemma 3b, 

u' = u' + u' and v' = v' + v', so TUi + u' S TVj + v'. Now v' = L1 Vj + v', so TVj + v' = 
TVi + L.I vi + v' SI F L1 TVj + v' = V. We have proved u' S v' and for each i E I 
Wi + It' S V so adding the summands and applying A3 yields U S v. 

We drop the the restriction that u, v are normalized, so let u :0 v for general u, V. We normalize 
u, v to ii. v respectively. Since u = u, v = v, we have by soundness U ~ u, v ~ v, so transitivity 
of:o yields U :0 v. If this implies u S iJ, then transitivity of S yields U S V. 0 

Due to the soundness theorem, the conditions in Lemma 5 are sufficient as well. So the algorithm 
in Lemma 4, together with the conditions in Lemma 5 as well as the technique sketched for the 
elimination of the determinism operator give a decision algorithm of :02 for Ll( A, V) terms. 
However, this algorithm has a rather bad complexity, so we skip a further elaboration. 

We now present an axiom and three derivation rules for the recursion operator. With the standard 
axioms for the other operators (cf. [4]), we can calculationally derive impossible future inclusion 
(albeit for open terms only). The KFAR (Koomen's Fair Abstraction) rule states that we can 
remove T-Ioops from a process. There exist several generalizations of it. A corollary is obtained 
by taking N = 0, giving T*8 = T8: livelock is deadlock. 

Theorem 7 Let I be an index set and let M S;; (l x A x /), such that for any i E I, the set 
{(a. j) I (i. a. j) E M) is finite. Then the rules in Table 4 are valid. 

Proof: The rule REC is a direct consequence of the defining SOS rule in Table 2. The RIP rules 
(Recursive Inequality Principles) can be derived in the "standard" way (cf. [3]) from AlP (Theo­
rem 4). For KFAR it suffices to construct the obvious weak bisimulation between the processes 
concerned. 0 
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REC 

Vi E I : Xi ::: LU,a. OEM ax j 
RIPL 

M = N U {(i, a, i)), a E H 

TH[Ml i = TTH[N]; 

Vi E I : Xi ::: LU,a. ;)EM ax} 

Xk ::: [Mlk 

Table 4: Recursion rules 

• b ... -.:-!: s x 
--- ...... 

Figure 6: Mobile phone example: architecture and process 

6 Example 

KFAR 

RIPR 

We model and analyze some mobile telephony protocols. See Figure 6 for an illustration. The 
mobile phone network N consists of a large number of nodes. A mobile phone possesses a selec­
tor S that continuously determines the node to be connected to and a router R that communicates 
with the network nodes. 

We have sets P of possible packets and X of possible nodes. For pEP and x E X oullset of 
actions S consists of 
b power on, 
i (p) accept input packet p, 
t (x, p) transmit packet p to node x, 
o(p) offer output packet p, 
a acknowledge transmission, 
s (x) select node x. 

Our alphabet A consists of USES{S, s!, s?}: actions possibly decorated with it question or ex­
clamation mark. Our communication function y consists of USES{(s7, 8!, s), (s', s7, s)). The 
connotation is that s! represents sending, s? receiving and s their synchronization. We en­
capsulate or block decorated actions: H = USES{S?, s!} and hide the communications I = 

UpEP,XEX{t(X, p), sex), a}. 

Then our telephone network T is given by T = T[«IH(RIINIIS)), where R, N, S satisfy the 
following recursive equations. 
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S hS' 
SI - LXEX rs(x)!SI 
R - LXEXS(x)?Rx 
R, - LI'EP i (p)R~ + LvEX s(y)?Rv 
R(: - I(x, p)'R', + L\'EXs(y)?R~ 
R' - a?R, + L\'EXs(y)?R~ x 

N - LI'EP.XEX I(X, p)?(o(p)a81IN) 

In Figure 6 the essential states and transitions of BH(RIINIIS) are shown. We deduce that T 
satisfies the following recursive equations, 

T = hT', T' = LI'EP i (p)O(p)T', 

Clearly, T is deterministic, so this deduction holds in every preorder between ::2 and branching 
bisimilarity. However, note that the axiom CS allows us to obtain these simple equations for 
S. If we use branching or even weak bisimilarity, the order in which the signals from nearby 
nodes are treated by the selector does influence its protocol. Note that the terms r x + r (ry + r z) 
and rx + ry + rz are only the same in coupled simulation and weaker preorders. Nevertheless, 
since the final result is deterministic, the implementation of S does not affect the outcome even 
in branching bisimilarity. 

We may assume a new model composed of :R and -8. The new selector -8 can select more 
than one node. This added feature enables :R to select a preferred node if possible, Thus-8 
satisfies -8 = h-8 l

, -8 1 = LXcX r LX E Xs(x)-8 I
• Now we have -8 ::2 S, from r(x + y) :5;' 

Fr(a + ry) =c Sa + ry,-Therefore, r,(BH(RIINII-8)) ::2 T, and since T is deterministic, 
they are even branching bisimilar. 

We conclude that the new selector can replace the old one in the old model without compromising 
its functionality. If the new selector has about the same price as the old one, this observation can 
save a lot of storage and production costs. 

7 Conclusion and further work 

Many preorders (including equivalence relations) used for specification and verification are based 
upon some notion of observability, However, many liveness properties that are vital for the spec­
ification of certain systems are not observable. On the other hand, bisimulation based preorders 
often make unnecessary distinctions between processes, thus restricting implementer freedom, 

In this paper we define classes of safety and liveness notions that disregard the branching behav­
ior of processes to some extent and process preorders ::n that go with them, The preorder ::2 has 
an attractive-looking axiomatization. We have shown how this preorder is related to the concept 
of determinism. It can be used to specify the "maximally allowed nondeterminism" of a system, 

There is, however, a price to pay for implementer freedom gained from using ::2: verifications 
become much harder computationally than with bisimilarity. Derivations use both the special 
nature of the silent step and the asymmetry of the preorder. 

The preorder ::S is the weakest we know of that is a congruence w.r.t. the CSP/ACP operators, 
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that satisfy the approximation induction principle (AlP) and that distinguishes good protocols 
from bad ones like in Figure I. An interesting open problem is to determine whether there exist 
weaker preorders that satisfy these conditions. It also seems interesting to investigate "stability" 
in the same way as we did with determinism. 
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