
Department of Mathematics and Computing Science

Impossible Futures and Detenninism

ISSN 0926-4515

All rights reserved
editors: prof.dr. J.C.M. Baeten

prof.dr. P .AJ. Hilbers

Reports are available at:
http://www.win.tue.nllwin/cs

by

M. Voorhoeve and. S. Mauw

00114

Computing Science Reports 00114
Eindhoven, September 2000

Impossible Futures and Determinism

Marc Voorhoeve (wsinmarc@win.tue.nl),
Sjouke Mauw (sjouke@win.tue.nl)

Eindhoven University of Technology
PB 513, 5600 MB Eindhoven, the Netherlands

Abstract

The paper introduces a class :0" of process preorders that are related to contrasimulation
equivalence. They are characterized by the constraints that they preserve. The preorder :02
(impossible futures) measures the "degree of determinism" and can be considered as the least
discriminating preorder that can be used for the verification of communication protocols. If
p :02 q and q is deterministic. then p is deterministic too and the two are branching bisimilar.
We present a system for (in)equational reasoning with the preorder :02 and indicate possible
applications.

Keywords: Concurrency. Verification. Branching-Linear Spectrum

1 Introduction

There exist "pure" and "pragmatic" approaches to the specification and verification of concurrent
systems. Purists regard a specification as a logic formula, a conjunction of requirements. Safety
requirements state that the system is not allowed to exhibit some unwanted behavior, like S: "the
system will not do b unless it has done a first". Liveness requirements state that the system is
guaranteed to exhibit some desired behavior, like L: "the system will eventually do b". Verifica­
tion consists of proving the specification formula for a given system p (the implementation) by
proving that p satisfies each requirement R (notation p 1= R).

If a denotes accepting a packet for transmission and b returning a correctly transmitted packet, L
and S are requirements specifying a communication protocol. In Figure I, two implementations
are depicted. The system G starts with an a, then performs a sequence u of internal steps, after
which a crucial nondeterministic internal transmission step t takes place. If the transmission
succeeds. another sequence v of internal steps leads to b. If it fails, t will occur again after
another sequence w of internal steps (e.g. after a time out) The system B has a thirdoption: apart
from successful or failed transmission, the system can reach a state where it will forever do w
followed by I. Clearly, this is unwanted, whereas G is the best we can hope for if transmission
is unreliable.

Nonetheless, both Band G satisfy S and neither satisfies L. It is possible that the transmission
step in G fails over and over again. However, there exists a requirement L', slightly weaker than
L such that G 1= L', but B ~ Ll Such an L' is: "If the system has not yet done b, it is in a state

~~ -----··-'b--'
+

G -J--".a_ •• _ -u -4-:,
~!I>

:v

Figure I: Good and bad communication protocols

where it can eventually do b". A similar requirement appears in [IJ. We may deduce that G 1= L
from afairness assumption stating that events that always possible in the future will eventually
occur. We will not invoke fairness, but rather use L' as our liveness requirement.

Although the purist approach is conceptually nice, the pragmatic school criticizes it on the tol­
lowing grounds. A specification is in most cases produced in close cooperation by software
engineers and the (future) users of the system. The formal specification is created by the en­
gineers and must be validated by the users. A specification by logic is hard to understand and
validate by the users. It may be underspecific (allowing unwanted behaviors), overspecific (dis­
allowing wanted behaviors) or both; detecting such errors requires hard work and considerable
skill.

Pragmatists advocate specification-by-example. A (simple) system q serves as specification and
a less simple system p (the implementation) is constructed and proved to satisfy p :s q for
some preorder :s. Even if the formalism is unknown by the users, an executable model can be
built from the specification and experimented with until the users are convinced that it correctly
describes the behavior they have in mind.

We do not want to pass any judgement in this debate. Most likely, combining both approaches
will be most successful in practice. This means that we need a clear understanding of the classes
of requirements that are and are not preserved by preorders.

There is a correspondence between preorders :0 and classes of requirements C?(:s): for processes
p, q we have p :s q iff q 1= R => p 1= R for each R E C?(:o). If a C?(:s) is closed under negation
(i.e. if ~R E C?(:s) iff R E C?(:s», the preorder will be symmetric (i.e. an equivalence relation).
If a, fJ are preorders and C?(a) ~ C?(fJ) then p fJ q implies p a q, so fJ ~ a. We say that 0' is
weaker than fJ.
Many preorders from literature (c.f. [8]) are based upon some notion ofjinitary testing. Since
there is no testing scenario that can discriminate G and B in Figure I, such preorders, like
failures (c.f. [6]) or ready simulation (c.f. [5]), satisfy B :s G: a good specification can have a
bad implementation.

The preorders not suffering from this drawback lie between contrasimilarity and branching
bisimilarity (c.f. [8]) in Figure 2. These preorders are all based upon some notion of "global"
or "fair" testing and are equivalent to strong bisimilarity if internal steps are absent. However,
prescribing the behavior of a system up to (more or less) bisimilarity will often be overspecific.
Therefore it is worthwhile to look for weaker preorders that still discriminate G and B in Fig­
urel.

2

Figure 2: Spectrum from :52 to branching bisimilarity

In this paper we introduce a family of preorders :5n with n 2: 0, where :5n+1 <; :5n, :51 is
trace inclusion and nn>O :5n is (almost) contrasimilarity. These preorders are characterized by
classes C (:5,,) of requirements, defined in a HML-like (c.f. [10]) modal language. The preorders
are precongruences for CCS-style operators and for n > I discriminate Band G in Figure 1.
In Figure 2, they are listed with related other preorders. Inclusion is indicated by arrows there:
p - 17 q means that q <; p. In the figure, the boldface preorders are the ones introduced here.
The others are mentioned in [8]. Contrasimulation is introduced there, although in a very general
setting.

The preorder :52 is investigated further. If p :52 q, then p and q have the same traces, but
the moments of choice may differ; p may delay choices (c.f. [2]) made by q, thus being "more
deterministic" than q. An important property is that if p :52 q and q is deterministic, then
" is weakly (and by Theorem 3.1 in [9] also branching) bisimilar to q. So, for deterministic
specifications all preorders in the spectrum between :52 and branching bisimilarity (c.f. Figure 2)
collapse.

We present a deductive system for :52 and give a toy example that illustrates its use for specifi­
cation and verification.

Acknowledgements
We thank an anonymous referee of an earlier version and our colleagues los Baeten, Ruurd
Kuiper and Bas Luttik. A special acknowledgement is deserved by Rob van Glabbeek who is the
godfather of the ideas which led to this paper.

2 Basic notions

In this section we fix some notation. If k 2: 0 and XI, ... , Xk are sets, XIX . .. X Xk is the set
of k-tuples (XI, ...• xkl with Xi E Xi for all i with I :'S i :'S k. The empty product (with k = 0)
is the singleton set {E}, so E denotes the O-tuple. The set Xk is the k-fold product X x ... x X
and X* = Uk2:0 Xk Juxtaposition combines tuples, e.g (x, y)(u, v, w) = (x, y, u, v, w). We
identify X I and X.

Binary relations are sets of 2-tuples (pairs). We write x R y if the pair (x, y) is an element of
the relation R and x Riff 3y :: x R y. The operator _ 0 _ denotes relation composition and _-1

denotes relation inversion.

3

a

y ~
Qx

Figure 3: A contrasimulation

A preorder is a reflexive and transitive relation. A preorder ::s on a set X is a precongruence
W.r.t. a function f : Xk --+ X iff Xi ::S Yi for all i with I ::: i ::: k implies that f(Xl , xkl ::S
f(YJ, ... , Yk).

Throughout this paper, A will be a set of (visible) actions, T (with T fj A) is the invisible or
internal action, Ar = AU {T}, X is a set of states or processes and for a E A r, ~ <; X x X
are the transition relations. The set X is assumed to be large enough to contain all processes that
we will consider. A state x is called unstable iff x ~ and stable otherwise. If x ~ x', this is
interpreted as the occurrence of an action a in a state x, resulting in a (possibly different) state x'.
Note that X is supposed to contain all processes; instead of comparing different process spaces,
we take the union of their states and transition relations and compare the processes in it.

We define the relations ~ <; X x X for (J E A * as the least (w.r.t. inclusion) relation satisfying
x~x',x/~x",aEA X~Xf Xf~X"

x =k x, ------'----'---'------ ' . So x =k x' iff x' can be reached
x ~x" x ~x"

from x by executing 0 or more internal steps. The subrelation E+; requires at least one internal

step, so x E+: x' iff there exists an x" such that x =k x" and x" ~ x'. For (J # E we set

rr-t; = ~. A trace of a process x is a sequence (J E A * such that x ~.

A process x has finite nondeterminism iff for each (J E A * the set {x' I x ~ x'} is finite. The
set X F is the set of all processes with this property.

A contrasimulation (c.f. [8]) is a relation R <; (X x X) such that for all (J E A *, (R- l
0 ~) <;

(~ 0 R). This means that if p R q and p ~ p', there exists a q' such that q ~ q' and
q' R p'. Note the inversion (the "contra" of contrasimulation)! In Figure 3, a contrasimulation is
depicted.

A coupled simulation is a contrasimulation R satisfying {x I x R} = {y I R y}. A weak bisim­
ulation is a symmetric contrasimulation. Two states x, y of X are weakly bisimilar / coupled
similar / contrasimilar iff there exists a weak bisimulation / coupled simulation / contrasimu­
lation R such that x R Y and y R x. The relations are denoted respectively as ~WB, ~cs and

Our requirement language 1: is composed from the constant T, the unary operators ~ and Ds
(with S <; A *) and the binary operator 1\.

A requirement L inductively defines a set ULU <; X of processes as follows.
UTU = X, U~MU = X \ UMU, UM 1\ NU = UMU n UNU and UDsMU = {p I VI" : (jrr E S::
p~p'): p' E UMU}.

4

We write p 1= L ("p satisfies L") iff p E ULU.

Abbreviations are ~ = ~ T, L v M = ~(~L /\ ~M), L =} M = ~L v M and OsL = ~Ds~L.
We write D". 0" instead of Dr,,}, Or,,}

If p, q E XF, then p ~WB q iff VL E £. : q 1= L {} P 1= L. We call process p deterministic
iff p 1= (Op" T =) DpO" T for all p, a E A*. This means that if a behavior pa is possible, the
behavior a will be possible after having observed p.

3 A family of preorders

We shall give a relational definition for the preorders :0" and determine sets C(:OI1) of require­
ments for them. A similar characterization will be given for contrasimilarity. We will use aux­
iliary relations «". Informally, p «11 q iff every computation in p leading to a state pi can be
matched by a similar computation in q leading to q' in such a way that q' «11-1 p'. Again, note
the inversion.

Definition 1 Let p, q be processes. Then p «0 q and for each n ::': 0,
P «,,+1 q {} Va. pi : p ~ pi : (3q' : q ~ q' : q' «11 pi).

Note that p «I q iff Va : p ~ : q ~ , which means that every trace of p is also a trace of q.
The following propositions connect the relations «11 to one another and to contrasimilarity.

Proposition 1 For alln ::': 0, ~c <; «11+1 <; «n.

Proof: Let p, q E X and n ::': 0. By induction on n, we prove that (a) the existence of a
contrasimulation R such that p R q implies that p «11 q and that (b) P «11+1 q implies that
p «n q. From (a) follows that ~c <; «n+l for any n ::': 0. The base case n = ° is immediate
for both. So let n > 0.

Let R be a contrasimulation such that p R q. We want to prove that p «11 q. So suppose
p ~ p'. Since R is a contrasimulation, there exists a q' such that q ~ q' and q' R p'. By IH,
q' «,,-I p'. So indeed p «" q, proving (a).

Suppose P «,,+ 1 q. We want to prove that p « nq. So let p ~ p'. There must exist a q' such
that q ~ q' and q' «" p'. By rH, q' «11-1 pi, so indeed p «11 q, proving (b). D

Proposition 2 Ill', q E Xl', then p ~c q {} Vn > 0: P «11 q /\ q «11 p.

Proof: One side of the implication follows from the previous proposition. For the other side,
we show that R = nIl «" is a contrasimulation. Let p R q and p ~ p'. Then for any n,

I' «,,+ 1 q, so there exists a q' such that q ~ q' /\ q' «" pl So for any n there exists a q' such
that q ~ q' /\ q' «" p'. Since q E X F, there are but finitely many q' such that q ~ q', so

5

there is a ql such that q ~ ql and ql «n pi for all n, so ql R pl.

We now will define sets C;; of requirements.

Definition 2 For n E IN we define subsets C,i of 1:- as the smallest sets satisfying

L,M E C;;
+ ' + + T E Co L;\ M E C" ' L V M E Cn

L E C,i, S E 5'(A*)

Os~L E C';+I

o

Many requirements and theoretical properties can be stated within C~ and Cr. The requirement
Sand L' in the introduction are respectively O/O"b/I7E(AI{a)')1.., which is in ct and OrA I{h)' Olph/pEA') T,
which is in Cr Also the property of being (J, p-deterministic: 0PI71.. v OpOI7 T is in Cr
Theorem 1 Let p, q E X F , n E IN. Then p «n q ~ VL E C;; : q 1= L : p 1= L.

Proof: Suppose p «n q and let L E C;; such that q 1= L. We use structure induction on L
to prove that p 1= L. We may assume n > O. The base case L E {T, 1..) is immediate. If
L = M ;\ N then q 1= M ;\ q 1= N, so by IH p 1= M ;\ P 1= N, thus P 1= L. The case
L = M v N is similar. The remaining case is L = Os~M, with M E C';_I' Assume p Fe L, so

p 1= Os M. So there exists a (J E S and a pi such that p ~ pi and pi 1= M. From the definition
of «n, there exists a ql such that q ~ ql and ql «n-I pi, so by IH (on the structure'), we
conclude that ql 1= M and thus q Fe L, which contradicts our assumption. So p 1= L in all
cases.

Conversely suppose p %:n q. By induction on n we prove that there exists an L E C,i such
that q 1= Land p Fe L. The case n = 0 is trivial, so let n > O. Since p %:" q, there exists a
pi with p ~ pi such that for all q; with q ~ q;, q; %:,,_, pl. Since q E X F, there are but
finitely many such qt. By IH, for each such q! there is a Li such that pi 1= Li and q: F Li. So
q 1= 017 II,; ~Li and p Fe 017 Ai ~Li' 0

We now define some derived relations and requirements.

Definition 3 For each n ::: 0 we define the following relations and requirement sets.

»n = «;;-1
C;; = {~L I L E C;;)

~n+1 = «n+1 n »n
C'(~n+tl = C;;+l U C;;

~n=«n n »"
Cw = U,,>O C'(~,,)

Simple set theory yields a.o. the following results (that go without proof).

Proposition 3 Let n ::: O. Then ~c <; ~"+I <; ~n'
If p, q E X F , then p ~n q ~ VL E C'(~n) : q 1= L : p 1= L
and also p ~c q ~ VL E Cw : q 1= L: p 1= L.

6

The formulae in Cn are characterized by an alternation of D and 0 operators. Indeed, Cw cannot
contain the formula N = 0" (Ox T /\ 0, T), which discriminates the processes in Figure 3.
Instead, Cw contains e.g. O"DE(Ox T /\ OyT).

The preorder :0,,+ I forms a lattice on the ~n-equivalent processes. The preorder Un>O :On
defines a lattice on X as a whole. The preorder :02 has been named "impossible futures preorder"
after [12l. Impossible futures of a p are pairs (a, F) E A* x J'(A*) such that p 1= OITDF.i, so
after having observed er, it is possible that no behavior from F can be observed anymore. Every
impossible future of p is an impossible future of q iff p «2 q. We now prove the detenninism
property mentioned in the introduction, which is largely due to [7].

Theorem 2 Let p «2 q and q detenninistic. Then p ~WB q.

Proof: Determinism is a Ci requirement, so by Theorem I, P must be deterministic as well. We
first show that p and q are trace equivalent, i.e. that Va E A* :: p 1= OIT T «0} q 1= OIT T. Note
that 11.111 = 1I0E.iIl. So suppose p 1= OIT T, so P p!= DIT.i, so P p!= DITOE.i, so since p «2 q,
q p!= D"OE.i, so q 1= 0" T. Suppose q 1= 0" T, so since q is detenninistic, q 1= DEOIT T, so
since P «2 q, p 1= D,O" T, so p 1= 0" T.
We now shall prove that if p, q are deterministic and trace equivalent then p ~WB q. Let R
be defined by x R y «0} 3a : p ~ x /\ q ~ y. We will prove that R U R- I is a (symmet­
riel) contrasimulation. Suppose x R y and x ~ x'. There must exist a p such that p ~ x or
q ~ x. Since we have symmetry between p and q we may assume wlog the former. So we
have p.J::; Xl Since P :0 I q, we have q 1= 0 pIT T, so by the determinism of q, q 1= DpOIT T
and since q ~ y, we must have y 1= 0" T, so there is a y' such that y ~ y' and thus y' R x'. D

4 Operators

[n this section we introduce some ACP-like (cf. [4]) operators and show that our preorders are
precongruences W.r.t. them.

We presuppose a ternary communication relation y c; A 3 By imposing additional constraints
upon y, the standard ACP merge is obtained. The process .5 denotes inaction. In Table I we
give SOS rules for the following operators: choice (_ + _), merge (_11_), action prefix (a_, with
a E AT), encapsulation (aH(-), with H c; A) and renaming (Pr(-), with rEA -+ (A,el). In
Figure 4, processes p. q are shown with some processes derived from them by these operators
(assuming that (a. h. x) E Y «0} x = c).

We introduce a definition and a lemma about the traces of merged processes.

Definition 4 The trace weave operator _1_ E A* x A* -+ J'(A*) is inductively defined as
follows:

Eler = eriE = {er),
aplher = {an In E plha} U {bn In E apia} U {cn I (a, b, c) E Y /\ n E pia}

7

C(1q+p) cq y ~ ,
P t

q
t

1q

1q+p <1 ' /t>y a b x~ a

a q+p b x y
x y

Figure 4: Derived processes

a p~pl
ap --+ p a f a f

p+q--+p, q+p--+p

p~p' a, b'eb) p --+ p , q --+ q , a, . C E Y

pllq ~ plllq , qllp ~ qllp'

p~pl, af/H

BH(p) ~ BH(p')

pllq ~ p'llq'

a I
p--+ p

rea) I

Prep) --+ Pr(P)

Table 1: SOS rules for simple operators

Lemma 1 pllr ~ s {} 3p', rl, rr, P : s = p'llr' /\ p ~ pi /\ r b r' /\ a E rrlp·

Proof: Let pllr ~ s, so there are so ... Sn such that pllr = So, s = s" and Si ~ S;+I for
0:::: i < nand ai EAr and <f;(ao, ... , (In-]) = a, where <f; : A; ---+ A* strikes out y's.

We use induction on n to show that this is equivalent to 3p', r', rr, P :: s = p'llr' /\ p ~ pi /\
rbr' /\ a E rrlp. Ifn = Othens = pllr,a = E and we set pi = p.r' = r.rr = P = E. SO
let n > O. The rules in Table I allow three possibilities for Sl, namely Pllir if P ~ PI, pllrl if

no d II 'f bo Co b) r --+ rl an PI rll P --+ PI, r --+ rl and (ao, 0, Co E y.

Assuming the first, and assuming ao i' Y, we must have that a = aoal and Pllir ~ s, so the
IH yields that this is equivalent to 3p', r', rr, P :: s = p'llr' /\ PI ~ pi /\ r b r' /\ al Err Ip.
Thus, 3p', r', rr, P :: s = p'llr' /\ p ao; /\ r b r' /\ a E (aorr) Ip. The other cases are similar.
o

We further restrict our preorders by a root condition.

Definition 5 Let p and q be processes. Then p «~ q iff p «II q and either 11 = I or p ~ =}

q ~. For n > 1, we set ='~ = «~ n «<_1)-1

We give a lemma about unstable processes. Its proof follows from the definition of «II'

Lemma 2 Let p, pi and q be processes such that p ~ pi and p «II q .for some Il :0: O. Theil
also pi «n q.

8

Note that the processes in Figure 4 satisfy rq ~11 q and q «n rq + p for all n > I, but
rq + p i" q + p and cq 1<" c(rq + pl. This shows that the preorders ~n, :02 and «11 are not
precongruences for every defined operator.

Theorem 3 The:o;' are precongruences for the operators defined in Table 1.

Proof:

We first prove 17 «" q => pllr «11 q Ilr by induction on n. The case n = 0 is trivial, so
let Il > I and 17 «" q. Suppose pllr ~s. By Lemma I, there exist p', r', p, If such that
p ~ 17', r ~ r' and a E If Ip. Since p «11 q, there exists a q' such that q ~ q' and q' «
11 - Ip'. By TH, q'llr' «11 - Ip'llr' and by Lemma I qllr ~q'llr'. So pllr «n qllr. From
17 -'--. => q -'--. follows pllr -'--. => qllr -'--., so p«~ q => pllr «~qllr. From q «11-1 p
follows qllr «,,-I pllr. So p :o~ q => pllr :o~ qllr. By symmetry, p :o~ q => rllp :o~ rllq·
So if 17 :0:; q and r :0:; s, we have pllr :o~ qllr :o~ qlls, so the:o~ are precongruences for the
merge operator.

Next, we prove that p :0" q => ap :On aq for a E AT by a similar induction. Suppose ap ~ s.
Then either a = E, S = ap or a = [alf], s = p', p ~ p'. Here [alfl = If if a = rand alf
otherwise. In the first case we know that q :On-I p, so by IH, aq :011-1 ap, so there exists an
r (namely aq) such that aq ~ rand r :011-1 s. In the second case there exists a q' such that
q ~ q' (thus aq ~ q') and q' :0 n - I p'. In either case the condition that ap «11 aq is met.
As in the merge case, this implies that ap :0" aq. Also, ap -'--. implies aq -'--. .

Finally, we prove that p «;. q => p + r «~ q + r. Suppose p + r ~ s. Then either

a = E. ,\' = 17 + r or s = q'. q O'~ q' or s = p', p O'~ p'. For the first two cases, the induction
step is easy, so we assume the third case. Since p :o~ q and p O'~ p', there must be a q' such that
q ~ q' and q' «,,-I 17'. If q f= q' or a f= E, we have q + r ~ q', completing the induction.
So suppose a = E and q' = q. Since p O'~ p', we have that p -'--. and since p :o~ q, there is
a q" such that q -'--. q". By Lemma 2, we have q + r ~ q" and q" «11-1 p', completing the
induction in the last case. As above, this implies that p :o~ q => p + r :o~ q + r. By symmetry,
p :0:; q => r + 17 :0:; r + q.

The remaining operators are similar to the merge case. For a given operator ¢, we characterize
the,\', a pairs such that ¢ (p) ~ s, like we did in Lemma I. In all cases, there must exist a p

(depending upon ¢ and a) and a p' such that p ~ p' and s = ¢(p'). From such a characteri­
zation, the proof by induction is straightforward. D

A special case of the renaming operator is the abstraction operator rH(_) with H ~ A. We have
rH = PFH' where FH(a) = r if a E Hand FH(a) = a otherwise.

With the above operators we can construct finite processes (i.e. with finite trace sets). For infinite
processes we define a simple recursion operator.

For reasoning with infinite processes we introduce the projection operators. Table 2 contains the
SOS rules for the process lMl i , with 1 some (not necessarily finite) index set, M ~ (I x A x 1),

E 1, and If,,(_), with 11 E IN. By the SOS rules, [Mli = 8 if M contains no triple (i, a, j), e.g.

9

(i, a, j) E M

[Mli ~ [Mlj

p~p', aofT, n>O

][n(P) ~][n-] (p')

p~p'

Table 2: SOS rules for recursion/projection

when M = 0. Note that T'S are not allowed in the relation M. If this were allowed, Theorem 4
would no longer be valid. To construct infinite processes with silent steps, we first construct
processes without them and use abstraction afterward.

We can now prove the following theorem, showing that the ::::n are precongruences for projection
and the approximation induction principle (AlP) for the preorders.

Theorem 4 Let m, n :0: O. The preorder::::n is a precongruencefor][m. For all p. q E Xl'. we
have P::::n q {} Vi:o: 0:][i(P)::::n][i(q)

Proof: The properties are proved by induction on n. The essential part of the proof is the char­
acterization][m(P) ~ s {} f(er) :::: m 1\ 3p' : p ~ p' 1\][m-C(alP' = .1', where the function
f gives the length of a trace. The finite non determinism property is needed to conclude that
'In :0: 0 : (3q' : q ~ q' : q' «,,-] p') implies that 3q' : q ~ q' : ('In :0: 0 : q' «,,-] p'). 0

5 Calculus

In this section we give an axiomatization of ::::; for finite processes. Let A be a set of actions as
before and V with V n A = 0 a set of variables. We present a deductive system 6A. v for process
terms with a relation:::: that will axiomatize ::::;. In this section we will abbreviate ::::S by::::.

Table 3 presents the axioms for finite process terms. The relation = in the axioms is an abbrevia­
tion for:::: n :0:. The terms are built from 8, process variables (x, y. Z E V), the silent action (T),
actions (a E AT), the action prefix (a_) and choice (_ + _) operator. Brackets are used to indicate
the order in which the operators are applied. If omitted, action prefix binds stronger than choice.

The axioms in Table 3 do not contain the merge, encapsulation or renaming operators. However,
there exist rewrite rules (e.g. an expansion theorem for the merge operator) that allow every term
without variables containing these operators to be represented as a 6A. v term.

Al x+y=y+x IF x:::: TX

A2 (x + y) + z = x + (y + z) cs r(rx+y)=rx+y
A3 x+x=x C ax+ay=a(rx+ry)
A6 x+8=x

Table 3: Basic axioms

The A axioms define (strong) bisimilarity. The axiom CS stems from the axiomatization of
coupled simulation (ef. [II]). With the axiom C and the axiom T2: rx + x = rx it axiomatizes

10

contrasimilarity for finite terms (cf. [8]). Also compare Figure 2. The axioms IF and C can be
found in [6]. The axiom C connects stable nondeterminism (several possible outcomes from a
visible step) to unstable nondeterminism (several possible outcomes from invisible step). Axiom
IF states that the addition of a silent step makes the process less deterministic.

The deduction rules that we may use are RE(flexivity), i.e. t S t, TR(ansitivity), i.e. t S u /\ u S
v =} I S v, IN(stantiation), i.e. E(x) S F(x) =} E(t) s F(t) and SU(bstitutivity), i.e.
I S II =} E(t) s E(u), where t, u, v are arbitrary terms, x a variable and E(x), F(x) terms
containing x. The term E (t) denotes the term obtained from E (x) by substituting all occurrences
of x by I.

We show an example deduction, deriving CT2): a + x = rx
IF su A3,IN

true =} x S TX =} (rx +x) s (rx + a) =} (rx + x) sa.
IF.SU.A3 () su () CS.IN,SU () true =} x S rx + x =} rx S r rx + x =} rx S rx + x .

Another derivation (omitting IN, SU, TR and A2) yields a + y = rx + rex + y):

a + y T2 rx + x + ysiFrx + rex + y)

TX + rex + y)slFa + r(a + y) ~ a + rx + y A3 a + y.

A third derivation features the delay of a choice: a(x + y)sIFa(a + ry) C ax + ay.

Because of axioms AI, A2 and A6, we can use the notation LiEf Ei for processes, provided
that the set I is finite. Its meaning is EI + ... + En, where EI, ... En is some ordering of the
processes Ei . By definition the empty sum is 8.

We will give a model for process terms. Let v be an instantiation of the variables in V with
arbitrary processes. We give an interpretation Mv of terms in L'l.A,V as follows. The term 8
is represented as the process 8, so Mv(8) = 8. For x E V, Mv(x) = vex). For a EAT,

Mv(ap) = aMv(p) and finally MvCp + q) = MvCp) + MvCq).

We give a special instantiation N of the variables in V with processes by setting N(x) =
[{(I', x. I')l]", the process that can only do an x-labeled step to itself. So MN is an interpre­
tation of terms in L'l.A. v by processes with action set A U V. The following proposition shows
that the interpretation MN covers all other interpretations.

Proposition 4 MN(p) ~ MN(q) {o? 'v'v : Mv(p) ~ MvCq)

Proof: The "only if" part is triviaL Now choose a v and let p and q possess the variables
XI .. Xn· Then Mv(p) = dH(MN(p)llpllI·· ·IIPn), where Pi is derived from V(Xi) by re­
naming its actions a to ai Cwhere the ai are brand new actions), the communication relation
y maps each pair (Xi, ai) to a, and H contains all variables and new actions ai. Similarly,
Mv(q) = iJH(MN(q)llplll·· ·IIPn). Since the preorder ~ is a precongruence for the operators
used. we may conclude that P s q implies Mv(p) ~ Mv(q). 0

We will identify a term I' with its standard representation MN(P) as a process and speak of the
traces of a term, it being deterministic and so on. Note that we have thus obtained a model for
open terms. The existing literature only treats closed terms in this way. The following theorem
states that the axioms and deduction rules are sound.

II

Theorem 5 Let u, v be i'l.A, V terms, Then u ~ v =} u :s v.

Proof: For the A axioms, a strong bisimulation can be constructed. For CS and IF, a weak bisim­
ulation can be constructed and the root condition of :s can be verified. For C, a relation between
processes can be given as indicated in Figure 3. We move to soundness of the deduction rules.
The rules TR and RE follow from the fact that :s is a preorder. SU follows from Theorem 3 and
IN from Proposition 4. 0

As usual, completeness is more intricate. We define a "bar" operator that converts a term into a
deterministic term with the same traces. The formal definition uses the auxiliary operator 1(_)

that gives the set of initial actions of a term. We will use this operator to derive some useful
identities, eventually leading to a completeness proof.

Definition 6 The determinism operator and I (_) are defined by the following equations that use
parameters x E V, a E A and term parameters u, v, w.

1(0) = 0
l(x)=0

I(au) = (aJ
I(TU) = I(u)
I(u + v) = I(u) U I(v)

0=0
x+u=x+u
au + av + w - a(u + v) + w
TU + V = u + v
a fj. I (v) =} -a-u-+"--v = au + v

We can eliminate the determinism operator from terms containing it by applying them from left
to right as rewrite rules. Note that the instantiation rule IN can no longer be applied to variables
x E V, since they have become processes. Instead, we use the term parameters u, v. w. These
can be instantiated. We now present a few identities with this operator.

Lemma 3 For all terms t, u, v the following inequalities and equations can be derived.

a u~u b u=u+u ..,---...,.
c TU = TU + u d TU + T(U + v) = TU + (u + v)

e (u + v) + (v + w) ~ U + (v + w) f T(U + v) + (v + w) ~ TU + 7(V'--+"--W--:-)

Proof: Parts a, band e are proved by structure induction as follows. A term u can be brought in
one of the following forms: 0, x + u' , where x E V, T u' + u", or au' + u", where a fj. I (u"). The
condition a fj. I (w) can be achieved by applying axiom C if necessary. We use case analysis
for the four cases. The induction hypothesis (IH) is that the statement holds for all terms that
are simpler than the one that is being examined. So if we want to prove P(u) in e.g. the case
u = au' + u", we may assume PCu' + U"), PCu') and P(u").

We prove inequality a: U ~ u. The case u = 0 is immediate. If u = x + u' , then U = x + u' =
X + U' ~IH x + u' = u. If u = TU' + w, then TU' + u" = u' + u" ~I H u' + ,," <I F TU ' + u".

Finally, au' + u" = au' + u" ~IH au ' + u". A consequence: (u + v) = (u + (ll + v) ~
u+(u+v).

12

Next, we prove b : u = u + U. From a, we have u + U :"; u + u = u. So we are left with proving
u :"; iI + U. We proceed as above. The cases 8 and x + v are immediate. If u = TV + w, then
TV + W + TV + w = TV + W + V + W =T2 TV + V + w + V + w =f H TV + V + w =T2 TV + w.
Finally, av + W + av + W = av + w + au + w ?:,C,f F a(v + v) + w =f H av + w,

We next prove c : TU = TU + iI. We have TU =T2 TU + U ?:,a TU + U and TU + U =cs
T(TU + u) ?:,f F T(U + u) =b ru.

We next prove d : rli + r(u + v) = TU + (u + v), One side is immediate from I F; we prove
the other. We have TU + (u + v) =CS,A3 TU + T(ru + (u + v)) ?:,fF TU + T(U + (u + v)) ?:,a

ru + (u + v).

We next prove e =} f: If (u + v) + (v + w) :"; u + (v + w), then T(U + v) + (v + w) :";
TU + (v + w), We have T(U + v) + (v + w) =T2 T(U + v) + (u + v) + (v + w) <e T(U + v) +
u+(v + w) :,,;fF r(u + v)+ru+(v + w) =d (u + v)+ru+(v + w) :,,;e u+ru+(v + w) =T2

TU + (v + w). By applying T2, from (u + v) + (v + w) :"; u + (v + w) we can even derive
T(U + v)+r(v + w) :"; ru+T(V + w) and by adding C, a(u + v)+a(v + w) :"; au+a(v + w),

We now prove e by induction on the structure of v, The interesting case is v = av' + v", where
a <t [(v"). We consider subcases depending on the value of a E I (u) and a E I (w). The inter­
esting subcase is when both conditions hold. So we may write u = au' + U", w = aw' + w",
where a <t [(u") U I (w"). So we must prove
(au' + u" + av' + v") + (av' + v" + aw' + W") :"; au' + U" + (av' + v" + aw' + W"),
This is rewritten to a(u' + v') + u" + w" + a(v' + w') + v" + w" :"; au' + U" + a(v' + w') +
v" + w". From TH, u" + w" + v" + w" < u" + v" + w" and, again from IH, using the e =} f
derivation above, we have a(u' + v') + a(v' + w') :"; au' + a(v' + w'). 0

Note that u is stable and deterministic iff u = U and that u «I v iff v = u + v,

Let ~=:< U :<-1. We define normal forms for terms modulo~, The general idea behind this
normal form seems to be that choices are delayed and r's skipped maximally without leaving
the equivalence class, So ax + ay is normalized to a (TX + TY), delaying the choice until a has
occurred and x + T (y + T z) becomes x + y + T z, skipping the first T.

There are three subclasses: stable, pure and mixed normal forms (pure and mixed being unstable),
The stable normal form is - apart from variables - a sum of subterms au' in which all initial
actions a differ. The pure normal form is ru, where u is stable. It is allowed only in the root;
outside the root the initial r of a pure term is skipped. The mixed form has a stable part u'
and unstable parts Wi where the Ui are deterministic, Some additional conditions are added to
ensure that it is not equivalent to a pure term: the Ui must be mutually «I-incomparable and
«I-majorated by u'. We shall show that each ~A. v term can be normalized, rewriting it modulo
the axioms to a term in normal form.

Definition 7 A ~(A, V) term u is in stable normalform iffit can be represented as LbEB bu~ +

LXEx x, where B ~ A, u~ E JIM U Jlsfor each bE B and X ~ V.
[t is in pure normalform iff it is TU', where u' is in stable normalform,

[t is ill mixed Ilormalform iffit can be represented as LiEf TUi + u', where u' is in stable normal

13

> ~
.

x b

y d ~ ~ a

Figure 5: Normal form for a(bcx + bdy) + ab(dy + ez)

form and Vi E I :: Ui = Ui # U' = u' + Ui. and Vi, j E I : Ui = Ui + U} : i = j. It is ill normal
form if.! it is in either stable, pure or mixed normalform.

Lemma 4 Let U be a t. A . V term. Then there exists a term v such that u = v is derivahle and v
is in normal form.

Proof: We give a normalization recipe. Write U as L! t Ui + u' where u' is stable. Replace
every summand tUi by the equivalent (Lemma 3c) summand tlii + Ui Whenever i . .i E I such
that i # j and Uj = uf + Ui, replace tUi + Wj by Wi + Uj (Lemma 3d). We obtain the term
LJ TVj + v', where v' is stable and the Vj are deterministic and mutually «1 ~incomparable.
Also v' = v' + v j for any .i E J. If v j = v' for some .i, then v} = v' for all .i and replace
(Lemma 3c) Ltv} + v' by tV', obtaining a pure term. Write v' as LkEK akWk + Lx x and
whenever ak = a[= b for some k # I in K, replace (C) bWk + bw{ by b(tWk + t W{) until all
summands of v' have different initial actions. Repeat this process for the lower-order nodes of v;
if such a lower~order node becomes pure, use equation TI to skip the T. D

In Figure 5 the result of normalizing an example term is depicted. The r-Iabeled edges are
dashed. We now derive necessary conditions for U :5 v if u, v are normalized.

Lemma 5 Let u, v be normalized and U :::: v.
!fu stable then either v stable or v = TVa pure and U :::: VOl
!f U = t Uo pure then v = T Vo pure and Uo :::: VOl
!fu = L1 TUi + Uo mixed then v = LJ TVj + Vo mixed and Uo :5 Vo andji)r each i E I there
exists a j E J such that Ui = Ui + Vj'

Proof: The first two cases are immediate, so we assume the third. So u = L1 Wi + Uo and
v = LJ TVj + Vo with Uo, Vo stable. Suppose Uo ~ u'. If (J is the empty trace, then /I' = uo
and by 170 = 17 = v = Vo we have Vo ~ Vo and Vo «1 Uo. For nonempty (J, we have u ~ ,,',
so since U :5 v, there exists a v' such that v ~ v' and v' «1 u', and since (J is nonempty, we
have LJ Vj + Vo ~ v' and since v is normalized, Vo = LJ v} + Vo, so Vo ~ Vi We have thus
proven that Uo «2 vo, and since uo, Va are stable, "0 :::: VOl We proceed with the second condi­
tion. Suppose i E I. We then have U ~ Ui. So there is a v' such that v ~ v' and Vi «1 Ui.
Since U is unstable, by the root condition v is unstable too. If v' = v, then there exists a .i E J

14

and vi «I]J «I Ui· If v' 1= v, then, since the Vj are stable, v' = Vj for some j E I. 0

Theorem 6 Let u.]J be LlA. v terms such that U :0 v. Then uS v.

Proof: We prove the theorem for normalized u, v first. We use structure induction. Suppose
u is stable. If]J = TV' with v' stable and U :0 v', we use IH to derive u S v' and by the IF
rule u S TV' = v. If v is stable, we write u = LB bUb + Lx x and v = Lc CVe + Ly y.

Since u. v are trace equivalent, we deduce that B = C and X = Y. Suppose U a ~ u' for
some a E A. Then u ~ u', so there exists a v' such that v ~ v' and v' «I Ufo Since aVa
is the only summand with initial action a, we find that Va ~ v'. So Ua «2 Va. The «1 and
root condition present no problems, so Ua :0 Va. By IH, we derive Ua S Va. By substitution
this yields II S V. If U is pure the induction is immediate. So suppose II = LiEf TUi + II'
and v = L iE1 TVi + v' are mixed with 11', v' stable. By Lemma 5, we have that u' :0 v', so
by IH II' S]J'. Let i E I. By the same lemma there exists a j E I such that Ui = Ui + Vj.

By Lemma 3f, Tlli + u' = Tlli + Uj + Vj + u' S TVj + Uj + u' = TUj + u'. By Lemma 3b,

u' = u' + u' and v' = v' + v', so TUi + u' S TVj + v'. Now v' = L1 Vj + v', so TVj + v' =
TVi + L.I vi + v' SI F L1 TVj + v' = V. We have proved u' S v' and for each i E I
Wi + It' S V so adding the summands and applying A3 yields U S v.

We drop the the restriction that u, v are normalized, so let u :0 v for general u, V. We normalize
u, v to ii. v respectively. Since u = u, v = v, we have by soundness U ~ u, v ~ v, so transitivity
of:o yields U :0 v. If this implies u S iJ, then transitivity of S yields U S V. 0

Due to the soundness theorem, the conditions in Lemma 5 are sufficient as well. So the algorithm
in Lemma 4, together with the conditions in Lemma 5 as well as the technique sketched for the
elimination of the determinism operator give a decision algorithm of :02 for Ll(A, V) terms.
However, this algorithm has a rather bad complexity, so we skip a further elaboration.

We now present an axiom and three derivation rules for the recursion operator. With the standard
axioms for the other operators (cf. [4]), we can calculationally derive impossible future inclusion
(albeit for open terms only). The KFAR (Koomen's Fair Abstraction) rule states that we can
remove T-Ioops from a process. There exist several generalizations of it. A corollary is obtained
by taking N = 0, giving T*8 = T8: livelock is deadlock.

Theorem 7 Let I be an index set and let M S;; (l x A x /), such that for any i E I, the set
{(a. j) I (i. a. j) E M) is finite. Then the rules in Table 4 are valid.

Proof: The rule REC is a direct consequence of the defining SOS rule in Table 2. The RIP rules
(Recursive Inequality Principles) can be derived in the "standard" way (cf. [3]) from AlP (Theo­
rem 4). For KFAR it suffices to construct the obvious weak bisimulation between the processes
concerned. 0

15

REC

Vi E I : Xi ::: LU,a. OEM ax j
RIPL

M = N U {(i, a, i)), a E H

TH[Ml i = TTH[N];

Vi E I : Xi ::: LU,a. ;)EM ax}

Xk ::: [Mlk

Table 4: Recursion rules

• b ... -.:-!: s x
---

Figure 6: Mobile phone example: architecture and process

6 Example

KFAR

RIPR

We model and analyze some mobile telephony protocols. See Figure 6 for an illustration. The
mobile phone network N consists of a large number of nodes. A mobile phone possesses a selec­
tor S that continuously determines the node to be connected to and a router R that communicates
with the network nodes.

We have sets P of possible packets and X of possible nodes. For pEP and x E X oullset of
actions S consists of
b power on,
i (p) accept input packet p,
t (x, p) transmit packet p to node x,
o(p) offer output packet p,
a acknowledge transmission,
s (x) select node x.

Our alphabet A consists of USES{S, s!, s?}: actions possibly decorated with it question or ex­
clamation mark. Our communication function y consists of USES{(s7, 8!, s), (s', s7, s)). The
connotation is that s! represents sending, s? receiving and s their synchronization. We en­
capsulate or block decorated actions: H = USES{S?, s!} and hide the communications I =

UpEP,XEX{t(X, p), sex), a}.

Then our telephone network T is given by T = T[«IH(RIINIIS)), where R, N, S satisfy the
following recursive equations.

16

S hS'
SI - LXEX rs(x)!SI
R - LXEXS(x)?Rx
R, - LI'EP i (p)R~ + LvEX s(y)?Rv
R(: - I(x, p)'R', + L\'EXs(y)?R~
R' - a?R, + L\'EXs(y)?R~ x

N - LI'EP.XEX I(X, p)?(o(p)a81IN)

In Figure 6 the essential states and transitions of BH(RIINIIS) are shown. We deduce that T
satisfies the following recursive equations,

T = hT', T' = LI'EP i (p)O(p)T',

Clearly, T is deterministic, so this deduction holds in every preorder between ::2 and branching
bisimilarity. However, note that the axiom CS allows us to obtain these simple equations for
S. If we use branching or even weak bisimilarity, the order in which the signals from nearby
nodes are treated by the selector does influence its protocol. Note that the terms r x + r (ry + r z)
and rx + ry + rz are only the same in coupled simulation and weaker preorders. Nevertheless,
since the final result is deterministic, the implementation of S does not affect the outcome even
in branching bisimilarity.

We may assume a new model composed of :R and -8. The new selector -8 can select more
than one node. This added feature enables :R to select a preferred node if possible, Thus-8
satisfies -8 = h-8 l

, -8 1 = LXcX r LX E Xs(x)-8 I
• Now we have -8 ::2 S, from r(x + y) :5;'

Fr(a + ry) =c Sa + ry,-Therefore, r,(BH(RIINII-8)) ::2 T, and since T is deterministic,
they are even branching bisimilar.

We conclude that the new selector can replace the old one in the old model without compromising
its functionality. If the new selector has about the same price as the old one, this observation can
save a lot of storage and production costs.

7 Conclusion and further work

Many preorders (including equivalence relations) used for specification and verification are based
upon some notion of observability, However, many liveness properties that are vital for the spec­
ification of certain systems are not observable. On the other hand, bisimulation based preorders
often make unnecessary distinctions between processes, thus restricting implementer freedom,

In this paper we define classes of safety and liveness notions that disregard the branching behav­
ior of processes to some extent and process preorders ::n that go with them, The preorder ::2 has
an attractive-looking axiomatization. We have shown how this preorder is related to the concept
of determinism. It can be used to specify the "maximally allowed nondeterminism" of a system,

There is, however, a price to pay for implementer freedom gained from using ::2: verifications
become much harder computationally than with bisimilarity. Derivations use both the special
nature of the silent step and the asymmetry of the preorder.

The preorder ::S is the weakest we know of that is a congruence w.r.t. the CSP/ACP operators,

17

that satisfy the approximation induction principle (AlP) and that distinguishes good protocols
from bad ones like in Figure I. An interesting open problem is to determine whether there exist
weaker preorders that satisfy these conditions. It also seems interesting to investigate "stability"
in the same way as we did with determinism.

References

[I] W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azema and G. Balbo, editors,
Proceedings ATPN '97, volume 1248 of Lecture Notes in Computer Science, Toulouse,
France, 1997 . Springer-Verlag, Berlin.

[2] J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining Message Sequence
Charts. In D. Hogrefe and S. Leue, editors, Formal Description Techniques VII, pages
340-354. Kluwer Academic Publishers, Boston, 1995.

[3] J.C.M. Baeten and C. Verhoef. Concrete Process Algebra. In A. Abramsky, D.M. Gabbay,
and T.S.E. Maibaum, editors, Handbook of Logic in Computer Science, volume 4, pages
149-268. Oxford University Press, Clarendon, UK, 1995.

[4] J.C.M. Baeten and W.P. Weijland. Process Algebra, volume 18 of Cambridge Tracts ill
Theoretical Computer Science. Cambridge University Press, Cambridge, 1990.

[5] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation Can't Be Traced. journal o{the ACM,
42(1):232-268, 1995.

[6] R. De Nicola and M. Hennessy. Testing Equivalences for Processes. Theoretical Computer
Science, 34:83-133, 1984.

[7] J. Engelfriet. Detenninacy implies observation equivalence = trace equivalence. Theoretical
Computer Science, 36:21-25, 1985.

[8] R.J. van Glabbeek. The Linear Time - Branching Time Spectrum II. In E. Best, editor, Pro­
ceedings CONCUR '93, volume 715 of Lecture Notes in Computer Science, pages 66-81.
Springer-Verlag, Berlin, 1993. Full version: ftp:l/Boole.stanford.edulpllblspectrllm.ps.gz.

[9] R.J. van Glabbeek and w.P. Weijland. Branching Time and Abstraction in Bisimlliation
Semantics (extended abstract). In G.x. Ritter, editor, Proceedings IFfP '89, pages 613-
618. North Holland, Amsterdam, 1989.

[10] M. Hennesy and R. Milner. Algebraic Laws for Nondeterminism and Concurrency. journal
of the ACM, 32(1):137-161,1985.

[11] J. Parrow and P. Sjodin. Multiway Synchronization Verified with Coupled Simulation.
In W.R. Cleaveland, editor, Proceedings CONCUR '92, volume 630 of Lecture Notes in
Computer Science, pages 518-533. Springer-Verlag, Berlin, 1992.

18

[12] w.e. Rounds and S.D. Brookes. Possible Futures, Acceptances, Refusals and Communi­
cating Processes. In Proceedings 22-nd Annual Symposium on Foundations of Computer
Science, pages 140-149. IEEE, 1981.

19

Computing Science Reports Department of Mathematics and Computing Science
Eindhoven University of Technology

If you want to receive reports. send an email to:m.m.j.l.philips@tue.nl (we cannot guarantee the availability of
the requested reports)

In this series appeared:

96/01

96102

96/03

96/05

96/06

96107

96/08

96/09

96/10

96/11

96112

96113

96/14

96/15

96117

96/18

96/19

96/20

96/21

96/22

96/23

96/24

96/25

97102

97/03

97104

97105

97/06

97/07

M. Voorhoeve and T. Basten

P. de Bra and A. Aerts

W.M.P. van dec Aalst

T. Basten and W.M.P. v.d. Aalst

W.M.P. van dec Aalst and T. Basten

M. Voorhoeve

A.T.M. Aerts, P.M.E. De Bra,
J.T. de Munk

F. Dignum, H. Weigand. E. Verharen

R. Bloo, H. Geuvers

T. Laan

F. Kamareddine and T. Laan

T. Borghuis

S.H.J. Bos and M.A. Reniers

M.A. Reniers and 1.1. Vereijken

E. Boiten and P. Hoogendijk

P.D.V. van dec Stok

M.A. Reniers

L. Feijs

L. Bijlsma and R. Nederpelt

M.C.A. van de Graafand G.l. Hauben

W.M.P. van dec Aalst

M. Voorhoeve and W. van dec Aalst

M. Vaccari and R.c. Backhouse

1. Hooman and O. v. Roosmalen

J. Blanco and A. v. Deursen

J.CM. Baeten and J.A. Bergstra

J.CM. Baeten and J.J. Vereijken

M. Franssen

J.CM. Baeten and J.A. Bergstra

Process Algebra with Autonomous Actions, p. 12.

Multi-User Publishing in the Web: DreSS, A Document Repository Service Station,
p.12

Parallel Computation of Reachable Dead States in a Free-choice Petri Net, p. 26.

A Process-Algebraic Approach to Life-Cycle Inheritance
Inheritance = Encapsulation + Abstraction, p. 15.

Life-Cycle Inheritance A Petri-Net-Based Approach, p. 18.

Structural Petri Net Equivalence, p. 16.

OODB Support for WWW Applications: Disclosing the internal structure of
Hyperdocuments, p. 14.

A Fonnal Specification of Deadlines using Dynamic Deontic Logic, p. 18.

Explicit Substitution: on the Edge of Strong Nonnalisation, p. 13.

AUTOMATH and Pure Type Systems, p. 30.

A Correspondence between Nuprl and the Ramified Theory of Types, p. 12.

Priorean Tense Logics in Modal Pure Type Systems, p. 61

The /2 C-bus in Discrete-Time Process Algebra, p. 25.

Completeness in Discrete-Time Process Algebra, p. 139.

Nested collections and polytypism, p. II.

Real-Time Distributed Concurrency Control Algorithms with mixed time constraints,
p.71.

Static Semantics of Message Sequence Charts, p. 71

Algebraic Specification and Simulation of Lazy Functional Programs in a concurrent
Environment, p. 27.

Predicate calculus: concepts and misconceptions, p. 26.

Designing Effective Workflow Management Processes, p. 22.

Structural Characterizations of sound workflow nets, p. 22.

Conservative Adaption of Workflow, p.22

Deriving a systolic regular language recognizer, p. 28

A Programming-Language Extension for Distributed Real-Time Systems, p. 50.

Basic Conditional Process Algebra, p. 20.

Discrete Time Process Algebra: Absolute Time, Relative Time and Parametric Time,
p.26.

Discrete-Time Process Algebra with Empty Process, p. 51.

Tools for the Construction of Correct Programs: an Overview, p. 33.

Bounded Stacks, Bags and Queues. p. 15.

97/08 P. Hoogendijk and R.c. Backhouse When do datatypes commute? p. 35.

97/09 Proceedings of the Second International Communication Modeling- The Language/Action Perspective, p. 147.

97/10

97111

97/12

97/13

97/14

97/15

97116

97/17

97118

98/01

98/02

98/03

98/04

98/05

98/06

Workshop on Communication Modeling,
Veldhoven, The Netherlands, 9-10 June, 1997.

P,C.N, v. Gorp, E.1. Luit, D.K. Hammer
E.H.L. Aarts

A. Engels, S. Mauw and M.A. Reniers

D. Hauschildt, E. Verbeek and
W. van dec Aalst

W.M.P. van dec Aalst

l.P. Groote, F. Monin and
J. Springintveld

M. Franssen

W.M.P. vanderAalst

M. Vaccari and R.C. Backhouse

Werkgemeenschap Informatiewetenschap
redactie: P.M.E. De Bra

W. Van dec Aalst

M. Voorhoeve

1.C.M. Baeten and l.A. Bergstra

R.C. Backhouse

D. Dams

G. v.d. Bergen, A. Kaldewaij
V.J. Dielissen

Distributed real-time systems: a survey of applications and a general design
model, p. 31.

A Hierarchy of Communication Models for Message Sequence Charts, p. 30.

WOFLAN: A Petri~nel-based Workflow Analyzer, p.30.

Exploring the Process Dimension of Workflow Management, p. 56.

A computer checked algebraic verification of a distributed summation algorithm,
p. 28

AP-: A Pure Type System for First Order Loginc with Automated

Theorem Proving, p.35.

On the verification of Inter-organizational workflows, p. 23

Calculating a Round-Robin Scheduler, p. 23.

Infonnatiewetenschap 1997
Wetenschappelijke bijdragen aan de Vijfde Interdisciplinaire Conferentie
Infonnatiewetenschap, p. 60.

Fonnalization and Verification of Event-driven Process Chains, p. 26.

State 1 Event Net Equivalence, p. 25

Deadlock Behaviour in Split and ST Bisimulation Semantics, p. 15.

Pair Algebras and Galois Connections, p. 14

Flat Fragments of C1L and C1L*: Separating the Expressive and Distinguishing
Powers. P. 22.

Maintenance of the Union of Intervals on a Line Revisited, p. 10.

98/07 Proceedings of the workhop on Workflow Management:
Net-based Concepts, Models, Techniques and Tools (WFM'98)
June 22, 1998 Lisbon, Portugal edited by W. v.d. Aalst, p. 209

98/08 Informal proceedings of the Workshop on User Interfaces for Theorem Provers.
Eindhoven University of Technology ,13-15 July 1998

edited by R.C. Backhouse, p. 180

98/09 KM. van Hee and H.A. Reijers An analytical method for assessing business processes, p. 29.

98/10 T. Basten and J. Hooman Process Algebra in PVS

98/11 J. Zwanenburg The Proof-assistemt Yarrow, p. 15

98112 Ninth ACM Conference on Hypertext and Hypermedia
Hypertext '98

98/13

98/14

99/01

99/02

Pittsburgh, USA, June 20-24, 1998
Proceedings of the second workshop on Adaptive Hypertext and Hypermedia.

J.F. Groote, F. Monin and J.

T. Verhoeff (artikel voIgt)

v. Bos and U.T. Kleijn

H.M.W. Verbeek, T. Basten
and W.M.P. van der Aalst

v.d. Pol

Edited by P. Brusilovsky and P. De Bra, p. 95.

Checking verifications of protocols and distributed systems by computer.
Extended version of a tutorial at CONCUR'98, p. 27.

Structured Operational Semantics of X ' p. 27

Diagnosing Workflow Processes using Woflan, p. 44

99/03

99/04

99/05

99/06

99/07

99/08

99/09

99/10

99/11

99/12

99/13

99/14

99115

99/16

99/17

99/18

99/19

R.C. Backhouse and P. Hoogendijk

S. Andova

M. Franssen, R.C. Veltkamp and
W. Wesselink

T. Basten and W. v.d. Aalst

P. Brusilovsky and P. De Bra

D. Bosnacki, S. Mauw, and T. Willemse

J. v.d. Pol, J. Haoman and E. de long

T.A.C. Willemse

I.C.M. Baeten and C.A. Middelburg

S. Andova

K.M. van Hee, R.A. van derToom.
J. van dec Woude and P.A.C. Verlcoulen

A. Engels and S. Mauw

J.F. Groote, W.H. Hesselink, S. Mauw,
R. Venneulen

GJ. Hauben, P. Lemmens

T. Basten, WM.P. v.d. Aalst

I.C.M. Baeten and T. Basten

I.CM. Baeten and C.A. Middelburg

Final Dialgebras: From Categories to Allegories, p. 26

Process Algebra with Interleaving Probabilistic Parallel Composition, p. 81

Efficient Evaluation of Triangular B-splines, p. 13

Inheritance ofWorkf]ows: An Approach to taclding problems related to change, p. 66

Second Workshop on Adaptive Systems and User Modeling on the World Wide
Web, p. 119.

Proceedings of the first international syposium on Visual Formal Methods - VFM'99

Requirements Specification and Analysis of Command and Control Systems

The Analysis of a Conveyor Belt System, a case study in Hybrid Systems and timed
I' CRL, p. 44.
Process Algebra with Timing: Real Time and Discrete Time, p. 50.

Process Algebra with Probabilistic Choice, p. 38.

A Framework for Component Based Software Architectures, p. 19

Why men (and octopuses) cannot juggle a four ball cascade, p. 10

An algorithm for the asynchronous Write-All problem based on process collision"'.
p. II.

A Software Architecture for Generating Hypermedia Applications for Ad-Hoc
Database Output, p. 13.

Inheritance of Behavior. p.83

Partial-Order Process Algebra (and its Relation to Petri Nets), p. 79

Real Time Process Algebra with Time-dependent Conditions, p.33.

99120 Proceedings Conferentie Informatiewetenschap 1999
Centrum voor Wiskunde en Informatica

00/01

00/02

00/03

00/04

00/05

00/06

00/07

00/08

00/09

00/10

00/11

00112

00113

12 november 1999, p.98 edited by P. de Bra and L. Hardman

J.C.M. Baeten and J.A. Bergstra

J.C.M. Baeten

S. Mauw and M.A. Reniers

R. Bloo, J. Hooman and E. de Jong

J.F. Groote and M.A. Reniers

J.F. Groote and J. v. Wamel

c.A. Middelburg

I.D. van den Ende

R.R. Hoogerwoord

T. Willemse, J. Tretmans and A. Klomp

T. Basten and D. BosnaC1d

S. Mauw. M.A. Reniers
and T.A.c. Willemse

J.C.M. Baeten, M.A. Reniers

Mode Transfer in process Algebra, p. 14

Process Algebra with Explicit Termination, p. 17.

A process algebra for interworkings, p. 63.

Semantical Aspects of an Architecture for Distributed Embedded
Systems"', p. 47.

Algebraic Process Verification, p. 65.

The Parallel Composition of Uniform Processes wit Data, p. 19

Variable Binding Operators in Transition System Specifications. p. 27.

Grammars Compared: A study on determining a suitable grammar for parsing and
generating natural language sentences in order to facilitate the translation of natural
language and MSC use cases, p. 33.

A Formal Developmem of Distributed Summation, p. 35

A Case Study in Formal Methods: Specification and Validation on the OMIRR
Protocol. p. 14.

Enhancing Partial-Order Reduction via Process Clustering, p. 14

Message Sequence Charts in the Software Engineering Process, p. 26

Termination in Timed Process Algebra, p. 36

00{14 M. Voorhoeve, S. Mauw Impossible Futures and Determinism, p.19

+

	Abstract
	1. Introduction
	2. Basic notions
	3. A family of preorders
	4. Operators
	5. Calculus
	6. Example
	7. Conclusion and further work
	References

