
On Beta Models with Trust Chains

Tim Muller and Patrick Schweitzer

{tim.muller, patrick.schweitzer}@uni.lu

University of Luxembourg

Abstract. In a type of interactions over the Internet, a user (the sub-
ject) is dependent on another user (the target), but not vice versa. The
subject should therefore form an opinion about the target, before possi-
bly initiating an interaction. The scenario wherein a subject only relies
on information obtained from past interactions with the target, is well-
studied and understood. In this paper, we formally analyze the implica-
tion of allowing recommendations (statements of a third party) as source
of information. We identify the family of valid models that admit rec-
ommendations. This allows us to verify particular existing models that
admit recommendations.

1 Introduction

With the advent of the Internet, new types of interactions between different peo-
ple arose. It is now possible, if not even common, to provide sensitive personal
information to parties about which virtually nothing is known. For example,
anyone can purchase goods from complete strangers on eBay. Contrary to pur-
chasing goods in ordinary shops, buyers cannot inspect the commodities they
acquire from an e-commerce website. Instead the shoppers have to wait and hope
that everything will be delivered as ordered. In this paper, we focus on these kind
of interactions, i.e. interactions where one party alone determines whether the
outcome is beneficial or harmful to the other party.We call such interactions,
interactions between a passive and an active party. The passive party attempts
to avoid interactions with an active party that is likely to harm it. As a conse-
quence, before potentially initiating an interaction, the passive party would like
to estimate the likelihood with which the interaction outcomes are beneficial.
We refer to such an estimate as a trust opinion. If a potentially passive party
establishes a trust opinion about a potentially active party, the former is the
subject, and the latter is the target1.

In interactions over the Internet, the information which a subject has about
(alleged) past behavior of a target is limited. Hence it might be beneficial to ask
for the help of third parties. Third party statements about the target are called
recommendations, hence we call these third parties recommenders. Trust opinions
constructed with the help of recommendations are called chained trust opinions.
In this paper, we formally study the implications of such recommendations.

1 In the literature, the subject and the target are also referred to as trustee and trustor.
This terminology may however lead to the incorrect conclusion that the trustee is
being trusted and the trustor is trusting.



In the past, numerous formal models that derive trust opinions based on
information about past behavior of active parties have been proposed. There
exist simple models that allow a subject only to use his own past interactions
with the target for information (see [12] for an effective method of gathering
and filtering such information). For these approaches, a formal model, called the
Beta model (or beta reputation system), has been derived [6,9].

To illustrate the Beta model, we introduce a simple running example.

Running Example. An economy teacher wants to teach her students about e-
commerce with the help of a turn-based game. To set up the game, the teacher
secretly distributes a random value pi ∈ [0, 1] to each student ci for 1 ≤ i ≤ 30.
The value pi represents the integrity of each student, and, similar to the integrity
of users on an e-commerce website, it is unknown to the other players. On an e-
commerce system this parameter models how likely the outcome of an interaction
is to be successful. Each turn of the game follows the following pattern. First, in
the turn of student ci, the teacher assigns another student cj to ci. Then, ci has
the choice between trusting or not trusting cj . In case ci chooses to trust cj , ci
gains two points with probability pj , i.e. with the probability corresponding to
the other student’s integrity parameter. With the remaining probability of 1 −
pj , ci loses one point. If ci chooses not to trust cj , then he neither gains nor loses
points. On an e-commerce platform winning points corresponds to a successful
interaction (a success), losing points to a failed interaction (a failure). After every
turn, the teacher updates the students’ points, only revealing the outcome to ci.
Like in e-commerce, trusting someone with high integrity has a high probability
to result in a successful interaction; trusting someone with a low integrity has a
high probability to result in an unsuccessful interaction.

The classroom game can easily be analyzed within the Beta model. Assume
that ci previously had s+f interactions with cj . Of these s+f interactions, s were
successes and f were failures. With the help of the Beta model [5] we estimate
the probability of a success when trusting cj to be s+1

s+f+2 , and the expected value

of trusting cj to be 2 s+1
s+f+2 − 1 f+1

s+f+2 points. When not trusting cj , the points
remain constant.

Suppose the next day, the teacher changes the rules of the game and al-
lows ci to query a classmate about his experience with cj before having to choose
whether or not to trust cj . That expansion of the classroom game can no longer
be expressed in the Beta model (as it does not admit recommendations), it
requires an extension.

To overcome this challenge, many modern trust models use the Beta model
as a foundation, and increase the model’s expressivity and its (practical) ap-
plicability by including recommendations. We say that a model which uses the
Beta model as a foundation is in the Beta family. If a model is in the Beta family
and also supports trust chains, we say it is in the Beta family with trust chains.
Many models in the Beta family with trust chains are ad-hoc. By ad-hoc mod-
els, we understand models in which the inventors define chained trust opinions
according to their intuition. The existence of ad-hoc models is supported by the
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fact that the research community has not yet settled on one trust model [8], not
even under the assumption that the trust model is in the Beta family [7].

Rather then proposing a new model in the Beta family, we rigorously prove
properties of trust chains valid in all models in the Beta family. We show the
following properties. Chained trust opinions are modular (Proposition 4 and
Theorem 3), meaning that complex trust opinions can be constructed from sim-
pler ones. Every trust model makes implicit or explicit assumptions about how
a recommender lies or about the number of interactions between users (Corol-
lary 3). Chained trust opinions resulting have a different shape from the trust
opinions in the Beta model (Theorem 4). Furthermore, Subjective Logic, an ex-
pressive ad-hoc extension of the Beta model, is not in the Beta family with trust
chains (Corollary 5). The same conclusion can be derived for models similar to
Subjective Logic, such as TRAVOS [13] and CertainTrust [11] (Corollary 4).

In Section 3, we formalize the notion of recommendations and add it to
the Beta model, effectively formalizing all models in the Beta family with trust
chains. Then, in Section 4, we study the most basic trust chains in the Beta
family with trust chains. In Section 5, we prove that all models in the Beta
family with trust chains have the property that trust opinions can be constructed
modularly from the most basic trust chains. Finally, in section 6, we characterize
trust models in the Beta family with trust chains, and show that existing models
based on the Beta model are not in the Beta family with trust chains.

2 The Beta model

In this section, we introduce the Beta model. The formulation of the Beta model
relies on well-known techniques from probability theory (see e.g. [1,3]). There
are two concepts in particular that are important for our analysis. The first is
conditional independence:

Definition 1 (Conditional independence of variables [2]). Let (Ω,F , P )
be a probability space and let X, Y , Z be random variables (from Ω) with values
in the measurable spaces (Ei, Ei), i ∈ {X,Y, Z}. Two random variables X and Y
are conditionally independent given the variable Z if

P (X ∈ A, Y ∈ B|Z ∈ C) = P (X ∈ A|Z ∈ C)P (Y ∈ B|Z ∈ C).

for each A ∈ EX , B ∈ EY and C ∈ EZ .

As shorthand we write (X ⊥⊥ Y )|Z or even X ⊥⊥ Y |Z. Note that the defini-
tion is equivalent to P (X|Y, Z) = P (X|Z).

And the second is the concept of beta distributions:

Definition 2 (Beta distribution). A beta distribution is a family of continu-
ous probability distributions in the interval [0, 1], parameterized by two positive
parameters, α, β ≥ 1. The probability density function of a beta distribution with
parameters α and β is

β(x;α, β) =
xα−1(1− x)β−1∫ 1

0
yα−1(1− y)β−1 dy

.
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The expression under the fractions is known as the beta function on α and β, and

for positive integers α and β, the beta function fulfills B(α, β) = (α−1)!(β−1)!
(α+β−1)! .

We define the Beta model in a similar fashion to [10]. We first define a series
of random variables. Let A denote a set of agents. For A,C ∈ A and a set of
events Ω, we then define:
• EC : Ω → {s, f} is a discrete random variable modeling the outcome of the

corresponding interaction with target C.
• RC : Ω → [0, 1] is a continuous random variable modeling the (hidden) in-

tegrity parameter of target C which defines the probability of success.
• OAC : Ω → N×N is a discrete random variable modeling the interaction his-

tory of subject A about target C, representing the past interactions (number
of successes and failures) between A as passive party and C as active party.

Running Example. In the classroom game, EC models the outcome of an inter-
action with student C. The variable RC describes the secret parameter initially
assigned by the teacher to C and OAC expresses how often student A was assigned
to interact with student C.

A trust opinion is a distribution over the integrity parameter of a target,
based on the interaction history about the involved active parties. Hence, if a
subject A establishes a trust opinion about a target C, the probability density
function is of the form fRC

(x|OAC , ϕ), where ϕ may express additional conditions.
Next, we provide the assumptions of the Beta model, in the shape of de-

pendencies and independencies of random variables, as formulated in [10]. For a
more concise formulation of the (in)dependencies, we introduce sets of random
variables.

E := {EC : C ∈ A},
R := {RC : C ∈ A},
O := {OAC : A,C ∈ A},
W′ := E ∪ R ∪O.

The size of the interaction histories is unknown. We therefore model it with a
distribution λ, called the entanglement. Let c ∈ [0, 1], xs, xf ∈ N and λ : N →
[0, 1] be a probability distribution. For all agentsA,C ∈ A we set up the following
dependency and independency relations as our assumptions.

D1 RC is the uniform distribution on [0, 1].
If we know nothing about the integrity of C, we assert all values equally
likely. For specific applications, statistical data about behaviors of agents
may be used to construct an alternative distribution. A suitable distribution
has a probability density function that is non-zero on (0, 1).

D2 P (EC=s|RC=c) = c.
We assume that the probability of good behavior of A is determined by an
integrity parameter a.

D3 P (OAC=(xs, xf )|RC=c) =
(
xs+xf

xs

)
cxs(1− c)xfλ(xs + xf ).

Assumes that the probability that A and C had an interaction history with
size xs + xf is λ(xs + xf ), and that each past interaction had success prob-
ability b.
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I1’ For W ∈W′\{OAC}, it holds that OAC ⊥⊥ W |RC .
The interaction history is completely determined by its size, and the proba-
bility of a success in a single interaction (by Dependency D3).

I2’ For W ∈W′\{RC}, it holds that RC ⊥⊥ W |EC ∩
⋂
D∈A{ODC }.

The only indicators of the integrity parameter of C, are interactions with it.
I3’ For W ∈W′\{EC}, it holds that EC ⊥⊥ W |RC .

The behavior of C is completely determined by its integrity parameter (by
Dependency D2).

A trust opinion of A about C can now be seen as the probability density func-
tion given by fRC

(c|ϕ), where ϕ represents all knowledge of A about C, modulo
the relations of the random variables. Typically, ϕ is equal to OAC , provided there
are no recommendations. In this case, we call fRC

(c|ϕ) a simple trust opinion,
to be able to distinguish it from trust opinions involving recommendations.

Theorem 1 (Axiomatization of the Beta model [10]). The Beta model
adheres to Dependencies D1–D3 and Independencies I1’–I3’. The simple trust
opinion obtained from an interaction history with xs successes and xf failures
is the beta distribution β(c;xs + 1, xf + 1).

Suppose there are two concurrently held trust opinions based on two differ-
ent interactions with a single agent. It is desirable to combine these two trust
opinions into a single trust opinion based on both interactions. We introduce a
trust aggregation operator to accomplish that:

Definition 3 (Aggregation of trust opinions). The aggregation of trust

opinion T = f(c) and T ′ = g(c) is T ⊕ T ′ = f(c)×g(c)∫ 1
0
f(c)×g(c) dc ∝ f(c)× g(c).

The trust aggregation operator correctly combines simple trust opinions:

Lemma 1. Given trust opinions T and T ′ based on (xs, xf ) and (ys, yf ), re-
spectively, the aggregate trust opinion T ⊕ T ′ is based on (xs + ys, xf + yf ).

Proof. T⊕T ′∝β(c;xs+1, xf+1)×β(c; ys+1, yf+1)∝β(c;xs+ys+1, xf+yf+1)

Our assumptions regarding simple trust opinions are in line with the Beta
model. They are in fact sufficient to derive it (Theorem 1). Hence, those assump-
tions can be seen as valid for the numerous models that use the Beta model as
a foundation [5,13,11].

3 Beta family with trust chains

According to the Beta model, a subject A constructs his trust opinion using
only his own information, when planning to interact with a target C. Depending
on the constructed trust opinion, A chooses to interact or not. Suppose that A
wants to make a more informed decision. Then, the subject A may ask a third
party, a recommender B, for advice. A recommender could provide an honest
recommendation, or lie. Chained trust opinions are based on the notion that a
trust opinion on the recommender B is a valid measure for the likelihood that B
provides an honest recommendation about C. More formally:
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Definition 4 (Chained trust opinions). Every recommender (like every tar-
get) has an integrity parameter that determines the probability of a successful
interaction. In case of a successful interaction, their recommendation is their
trust opinion about the target. Chained trust opinions are trust opinions based
on recommendations from recommenders.

We add recommendations to the classroom game:

Running Example. After a number of turns, the students realize that the Beta
model can be applied to construct a trust opinion about other students. This
allows all students to make optimal choices. To keep the game interesting, as
well as make it a more realistic emulation of e-commerce, the teacher adds rec-
ommendations in the following way: In the beginning of every turn, the teacher
not only assigns a subject ci ∈ {c1, . . . , c30} =: S and a target cj ∈ S, but also
a set of recommenders R ⊆ S \ {ci, cj} if ci has never interacted with cj . Every
recommender ck ∈ R has to honestly provide their past interactions with cj with
probability pk, or construct and provide a fake past history with cj with proba-
bility 1− pk. Again, students with a high integrity pk are more likely to provide
the past interactions rather than fake interactions. For a subject to construct
the most accurate trust opinion, he needs to incorporate his opinion of ck and
the recommendation by ck, for all ck ∈ R.

To formally model recommendations in the Beta model, we introduce another
random variable.

• SBC : Ω → N × N is a discrete random variable modeling recommendations
of the recommender B about the target C, representing the alleged past
interactions between B as passive party and C as active party.

We also introduce additional sets of random variables:

S := {SBC : B,C ∈ A},
W := W′ ∪ S.

Let a, b, x ∈ [0, 1], n, k ∈ N and λ : N → [0, 1] as well as χB : [0, 1] × N ×
N → (N × N → [0, 1]) , where B ∈ A be probability distributions. For all
agents A,B,C ∈ A we set up the following additional dependency and inde-
pendency relations as our assumptions. In fact, Independencies I1’–I3’ from the
initial Beta model only need to be generalized to encompass recommendations.

D4 P (SBC=(ws, wf )|EB=s, OBC=(ws, wn)) = 1
Assumes that good behavior of B implies that the recommendation of B
corresponds to his interaction history with C.

D5 P (SBC=(ys, yf )|EB=f, RB=b,OBC=(ws, wf )) =χB(b, ws, wf )(ys, yf )
Defines the lying strategy χB of agent B. The lying strategy is a function,
from a parameter and an interaction history (k′, n′− k′) to a distribution of
recommendations. A recommender (probabilistically) selects its fake recom-
mendations.

I1 For W ∈W\{OAC}, it holds that OAC ⊥⊥ W |RC .
Similar to Independence I1’, except recommendations are also independent.
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I2 For W ∈W\{RC}, it holds that RC ⊥⊥ W |EC ∩
⋂
D∈A{ODC }.

Similar to Independence I2’, except recommendations are also independent.
I3 For W ∈W\({EB} ∪

⋃
D∈A{SBD}) , it holds that EB ⊥⊥ W |RB .

Similar to Independence I3’, except recommendations not from B are also
independent.

I4 For W ∈W\{SBC }, it holds that SBC ⊥⊥ W |EB=f ∩RB ∩OBC .
The choice of B for making fake recommendations about C is completely
determined by χB(b, n,m) in Dependence D5.

Models in the Beta family with trust chains should adhere to Dependen-
cies D1–D5 and Independencies I1–I4.

Definition 5 (Beta family with trust chains). A model is said to be in
the Beta family with trust chains, when it satisfies Dependencies D1–D5 and
Independencies I1–I4.

There are models that are inspired by the Beta model, and that include an
operator � dealing with recommendations, but that are not models in the Beta
family with trust chains. We argue that such models either are not Beta mod-
els or that � is not a trust chaining operator. If a model violates any of the
Dependencies D1–D3 or Independencies I1’–I3’, it is not a Beta model. We dis-
tinguish the possible violations of an assumption for each remaining assumption
separately. If a model violates

D4, then the model does not support trust chaining.
D5, then another assumption must also be violated. This is due to the fact that

under Dependencies D1–D4 and Independencies I1–I4 there exists a χB such
that χB(b, ws, wf )(ys, yf ) = P (SBC=(ys, yf )|OBC=(ws, wy), RB = b, EB = f).

I1, then the model either violates Independency I1’, or it assumes that some SCD
are dependent with OAC given RC . This is not in the spirit of the Beta model
as the outcomes of the interactions between A and C should depend only
on C.

I2, then the model either violates Independency I2’, or it assumes that some RC
are dependent with SDE given all observations of C. This is not in the spirit
of the Beta model as the collection of all interactions with C should be an
optimal estimator for RC .

I3, then the model either violates Independency I3’, or it assumes that some EC
are dependent with SDE (for D 6= C) under all observations of C, which is not
in the spirit of the Beta model as the probability of success of an interaction
(given the integrity) should not be influenced by recommendations of others.

I4, then in this model recommenders differentiate their strategy either on infor-
mation they cannot know (e.g. interactions that the recommender did not
participate in) or on information that is irrelevant for the recommendation
(e.g. his opinion on yet another agent).

Not every model in the Beta family with trust chains is formalized our way. A
model is already in the Beta family with trust chains when the assumptions can
be reformulated to fit the assumptions up to isomorphisms.
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4 Basic Trust Chains

The most basic scenario that involves trust chains, involves exactly recommen-
dation. This recommendation is given about a target with which the subject has
no prior interactions. In other words, the recommendation is the only source of
information that a subject has. This scenario is called basic trust chaining. It
is studied in this section. In Section 5, we then prove that more complicated
scenarios can be reduced to scenarios with basic trust chains.

Definition 6 (Basic trust chain, basic chained trust opinion). A basic
trust chain consists of three agents: the subject A, the recommender B, and the
target C. The subject has an interaction history x = (xs, xf ) with the recom-
mender. The recommender provides a recommendation y = (ys, yf ) about the
target and, in reality, has an interaction history w = (ws, wf ) with the target.
The trust opinion of subject A about target C with recommendations by recom-
mender B is the basic chained trust opinion. It is depicted in Figure 1.

Running Example. In the classroom game, basic trust chains appear when the
teacher assigns only one recommender. Then, the subject is ci ∈ S, the target
is cj ∈ S \ {ci} and the set of recommenders is {ck} ⊂ S \ {ci, cj}.

We may now formulate the basic chained trust opinion of A about C with rec-
ommendations given by B as fRC

(c|OAB=(xs, xf ), SBC=(ys, yf )). In other words,
to formulate a trust opinion about the target, the subject uses its interaction his-
tory about the recommender as well as the (possibly fake) recommendation given
be the recommender. If A has never directly interacted with B, the pair (xs, xf )
equals (0, 0).

Theorem 2 (Basic chained trust opinion). Dependencies D1–D5 and In-
dependencies I1–I4 are sufficient to derive the basic chained trust opinion of A
about C with recommendations by B as: fRC

(c|OAB=(xs, xf ), SBC=(ys, yf )) =

eq1(ys, yf )× eq2 +
∑
w∈OB

C

(eq1(ws, wf )× eq3×(1− eq2)), (1)

where,

eq1(ϕs, ϕf ) = β(c;ϕs + 1, ϕf + 1),

eq2 =
eq4×(xs + 1)

eq4×(xs + 1) +
∑
w′∈OB

C
eq5(w′)× (xf + 1)

,

eq3 =
eq5(ws, wf )∑

w′∈OB
C

eq5(w′s, w
′
f )
,

eq4 = λ(ys + yf )×
(
ys + yf
ys

)
× ys!yf !

(ys + yf + 1)!

eq5(ϕs, ϕf ) =

∫ 1

0

χB(b, ϕs, ϕf )(ys, yf )× β(b;xs + 1, xf + 2) db

× λ(ϕs + ϕf )×
(
ϕs + ϕf
ϕs

)
× ϕs!ϕf !

(ϕs + ϕf + 1)!
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A C

B
OA

B = (xs, xf ) SB
C = (ys, yf )

C

B
OB

C = (ws, wf )

Basic chained
trust opinion

Fig. 1. Left: The view of subject A about target C, including the recommendation SB
C

from B about C. Right: The view of recommender B about target C.

Proof. The equations eq1–eq5 represent the following probabilities:

eq1(ϕ) = P (RC=c|OAB=x, SBC=y,EB=u,OBC=w),

eq2 = P (EB=s|OAB=x, SBC=y),

eq3 = P (OBC=w|OAB=x, SBC=y,EB=f),

eq4 = P (SBC=y|OAB=x,EB=s),

eq5(ϕ) = P (SBC=y,OBC=ϕ|OAB=x,EB=f).

A proof of correctness of eq1–eq5 can be found in Appendix A. The correctness
from Formula (1) follows from the correctness of eq1–eq5, given that, for all W ∈
W: SBC ⊥⊥ W |EB=s ∩OBC follows from Dependency D4.

Although Formula 1 may seem complicated, it can abstractly be viewed as a
(infinite) weighted sum of beta distributions:

Proposition 1. For every entanglement and lying strategy, a basic chained trust
opinion is a weighted sum of beta distributions.

Proof. If we collect factors that do not contain the variable c in the scalars k
and kws,wf

, Formula (1) simplifies to

k · cys(1− c)yf +
∑

ws,wf∈N×N
kws,wf

cws(1− c)wf . (2)

Furthermore, for some specific models in the Beta family with trust chains,
the formula significantly simplifies. Particularly, for a lying strategy that consists
of constructing truthful recommendations (see dash-dotted graph in Figure 2),
the trust opinion is a beta distribution:

Proposition 2. If χB(b, ws, wf )(ys, yf ) = 1 iff (ws, wf ) = (ys, yf ), then the
trust opinion from Formula (1) simplifies to β(c; ys + 1, yf + 1).

Taking an arbitrary entanglement λ and a lying strategy that consists of
constructing completely informationless recommendations (see dashed graph in
Figure 2), the trust opinion is a weighted sum of a beta distribution and the
uniform distribution:

Proposition 3. If χB(b, ws, wf )(ys, yf ) = 1
ys+yf+1 iff ws + wf = ys + yf , then

the trust opinion from Formula (1) simplifies to xs+1
xs+xf+2β(c; ys + 1, yf + 1) +

xf+1
xs+xf+2 .
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An immediate consequence of Theorem 2 and Proposition 1 is that a model
that supports basic chained trust opinions, makes assumptions about the entan-
glement and lying strategies.

Corollary 1. It is not possible to compute basic chained trust opinions without
knowledge of the entanglement λ and the lying strategy χB.

Proof. Proposition 2 and 3 are not equal, hence the choice of χB matters.

Running Example. In terms of the classroom game, the corollary states that it is
relevant how many turns have been played and how students lie. If a recommen-
dation states “8 successes and 2 failures”, but each stunted has played 9 turns,
the recommendation is clearly fake, whereas the same recommendation may be
likely true when each student has had 100 turns. Suppose, a student ck provides
a recommendation to ci that is likely to be fake. If ck and ci are good friends
outside of the game, ck might have a lying strategy of creating fake recommenda-
tions that strongly resemble the truth. Otherwise, ck provides recommendations
unrelated to the truth. Then, it is wise for ci to rely on the recommendation of
his friend, but not on recommendations of other arbitrary classmates.

Corollary 1 implies that without assumptions on λ and χB , no model can
provide trust opinions. Therefore, any trust model in the Beta family with trust
chains either implicitly or explicitly makes assumptions about numbers of inter-
actions and about the lying strategy of recommenders. We believe that making
implicit assumptions about lying strategies is critical, as it obfuscates the anal-
ysis of a model or hides undesirable consequences of a model. Hence, we suggest
that new proposals for models in the Beta family with trust chains explicitly
(and formally) provide the lying strategy of the recommenders.

Corollary 2. For every entanglement λ and lying strategy χB, the subject can
calculate the basic chained trust opinion.

Proof. Apply Formula (1), with the relevant instantiations of λ and χB .

Thus, when the number of turns in the classroom game is known, and it is
known what kind of lying strategy each student has, the subject can correctly
compute the trust opinion, whenever the teacher assigns only one recommender.

A positive consequence of Corollary 2 is that defining the entanglement and
the lying strategy is sufficient to explicitly define a model in the Beta family with
trust chains. Not only is it mathematically possible, but we have developed a
tool named Canephora2 that can compute basic chained trust opinions, when χB

and λ are provided. The tool is a proof of concept, that creating a model in the
Beta family with trust chains is merely a matter of defining an entanglement and
lying strategies. It is a prototype that allows the numerical comparison between
different models (i.e. different choices of entanglements and lying strategies).

In Section 5, we see that defining the entanglements and the lying strategies
is sufficient to explicitly define models in the Beta family with trust chains (not
just models restricted to basic trust chains).

2 http://satoss.uni.lu/software/canephora
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Fig. 2. The same trust chain, x = (6, 5) and y = (8, 4), with different lying strategies.
Solid: lies opposite of his true opinion. Dashed: lies independent of the his true opinion.
Dash-dotted: lies similar to his true opinion. Dotted: lies with a positive bias.

Determining the entanglement λ is usually simpler than finding the lying
strategy. On many e-commerce systems, the number of interactions between
users is known to the system. For example, eBay knows if a product is sold, even
if it does not know whether the transaction was a success for the subject. Or
in the classroom game, the teacher announces the number of turns, explicitly
providing λ. Even if the entanglement is unknown, by restricting the choices
of χB , the entanglement λ can be eliminated from Formula (1).

Lemma 2. For some lying strategies, the entanglement has no impact on the
basic chained trust opinion.

Proof. Consider the basic chained trust opinion given by Formula (1). For all b ∈
R, and ws, wf , ys, yf ∈ N such that ws+wf 6= ys+yf , take χB(b, ws, wf )(ys, yf )=
0. Then, λ(ϕs +ϕf ) cancels out of eq5 unless ϕs +ϕf = ys + yf . In the reduced
term, we can substitute λ(ϕs+ϕf ) for λ(ys+yf ). Then λ(ys+yf ) is a scalar that
appears in every summand in the numerators and denominators of eq2 and eq3.
Thus λ cancels out of Formula (1).

Running Example. If a recommender makes a recommendation of which the size
was impossible (or very unlikely), a student can identify the recommendation as
a fake (or likely a fake). If all students take care never to fall into the pitfall of
sizing fake recommendations according to a different distribution than the real
interactions, sizing becomes irrelevant. Hence, the entanglement cancels out.

5 Modular Construction of Trust Opinions

In Section 3, the assumptions of the Beta model were formally extended to
include trust chaining. We have formally derived a parameterized trust opinion
in the case of basic trust chains. However, it is possible that a subject receives
more than one recommendation, or that the subject also has a simple trust
opinion of the target. Recall trust aggregation from Definition 3. We first prove
that a basic chained trust opinion can be aggregated with a simple trust opinion.
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Later, we prove that more complicated trust opinions can also be aggregated
with basic trust opinions. The notion that aggregation of these trust opinions is
possible, is called modularity.

Running Example. Imagine that the subject ci constructs a trust opinion about
the target cj based on his past interactions (zs, zf ) with cj . However, the teacher
also provides a recommender ck, with which the subject has an interaction
history of (xs, xf ). The student ck himself, give the recommendation (ys, yf )
about cj . From the Beta model, the subject can construct his (simple) trust
opinion based on (zs, zf ). From Section 4, the subject can construct his (ba-
sic chained) trust opinion based on (xs, xf ) and (ys, yf ). The subject wants to
construct a trust opinion based on (xs, xf ), (ys, yf ) and (zs, zf ). We prove the
subject merely needs to aggregate both trust opinions.

Many trust models in the Beta family with trust chains (such as Subjec-
tive Logic) assert modularity . A priori, it is not obvious that the assertion of
modularity is justified.

Running Example. Consider a situation in the classroom game where a student
first constructs a trust opinion Td directly from all his information. Then he tries
an alternative approach and constructs simple trust opinions based on only parts
of his information. These simple trust opinions he then aggregates into a trust
opinion Ti. Assume that the subject ci has a strongly positive opinion T about
the target cj , and a mildly positive opinion T ′ about the only recommender
ck. Assume further that the lying strategy of ck is probabilistic and unrelated
to the actual interactions of ck with cj and that λ(n) is irrelevant (Lemma 2).
Moreover assume, the recommender ck gives a mildly negative opinion R about
the target cj .

Constructing his trust opinion Td directly, the subject ci concludes that, even
though he expected the recommender to give honest recommendations more
often than fake ones, this particular recommendation is nearly certainly fake.
The subject expects the recommendation to be fake because he is quite certain
that cj has a high integrity (due to his trust opinion T ). In other words ci does
not think it likely that ck has more failed than successful interaction with cj
(which honesty of R would entail). Therefore, in the resulting trust opinion Td,
the recommendation R does not have a large impact.

If the subject constructs his trust opinion Ti modularly, then he aggregates T
with a basic chained trust opinion Tc based on T ′ and R, without applying his
own experience with cj . If the subject does that, he will accept (in Tc, thus
in Ti) that it is likely that the recommender provided an honest opinion about
the target.

In conclusion, we may expect that Ti is more influenced by R than Td.

The naive intuition that a modularly constructed opinion (Ti) differs from
a directly constructed opinion (Td), is proven incorrect in Proposition 4 and
Theorem 3. First, we prove modularity between a simple trust opinion and a
basic chained trust opinion:

12



Proposition 4. For all models in the Beta family with trust chains, the chained
trust opinion fRC

(c|OAB=(xs, xf ), SBC=(ys, yf ), OAC=(zs, zf )) is the aggregate of
the simple trust opinion fRC

(c|OAC=(zs, zf )) and the basic chained trust opin-
ion fRC

(c|OAB=(xs, xf ), SBC=(ys, yf )).

Proof. We require Independence I1 and Dependence D1.

fRC
(c|OAB=(xs, xf ), SBC=(ys, yf ), OAC=(zs, zf ))

=
P (OAB=(xs, xf ), SBC=(ys, yf ), OAC=(zs, zf )|RC=c)× fRC

(c)

P (OAB=(xs, xf ), SBC=(ys, yf ), OAC=(zs, zf ))

I1
=
P (OAB=(xs, xf ), SBC=(ys, yf )|RC=c)× P (OAC=(zs, zf )|RC=c)× fRC

(c)

P (OAB=(xs, xf ), SBC=(ys, yf ), OAC=(zs, zf ))

D1∝ P (OAB=(xs, xf ), SBC=(ys, yf )|RC=c)×fRC
(c)×P (OAC=(zs, zf )|RC=c)×fRC

(c)

P (OAB=(xs, xf ), SBC=(ys, yf ))× P (OAC=(zs, zf ))

=fRC
(c|OAC=(zs, zf ))× fRC

(c|SBC=(ys, yf ), OAB=(xs, xf ))

Similar to Proposition 4, we can even prove that modularity holds for all
trust opinions. Let ϕ be a collection of basic trust chains and potentially the in-
teraction history between the target and the subject. In other words, for some n,
let ϕ be given by:

[OAC=(zs, zf ), ]OAB1
=(x1s, x

1
f ), SB1

C =(y1s , y
1
f ), . . . , OABn

=(xns , x
n
f ), SBn

C =(yns , y
n
f ).

Theorem 3 (Modularity of trust opinions). For all models in the Beta
family with trust chains, the trust opinion fRC

(c|OAB=(xs, xf ), SBC=(ys, yf ), ϕ)
is the aggregate of the trust opinion fRC

(c|ϕ) and the basic chained trust opin-
ion fRC

(c|OAB=(xs, xf ), SBC=(ys, yf )).

Proof. The only step of the proof in Proposition 4 that cannot be replicated
(with ϕ substituted for OAC=(zs, zf )) is the application of Independence I1. Thus:

P (OAB=(xs, xf ), SBC=(ys, yf ), ϕ|RC=c)

?
=P (OAB=(xs, xf ), SBC=(ys, yf )|RC=c)× P (ϕ|RC=c)

The proof obligation can be reduced (with Independencies I1 and I4)
to P (ϕ|RC=c, EC=u,OBC=(ws, wf ), RB=b) = P (ϕ|RC=c), which follows from
Independencies I2 and I3. A more detailed proof can be found in Appendix B.

From Theorem 3, we can conclude that the subjects can compute a trust
opinion based on their own history with the target, as well as on recommen-
dations of an arbitrary number of other users, provided that the subject can
compute basic chained trust opinions for all recommendations. More generally,
Theorem 3 allows us to generate the following structures S(λ, θ) = (P,O, g : P →
O, cλ,θ : P×P → O, a : O×O → O), where P is the set of interaction histories, O
is the set of opinions, g is the function that maps interaction histories to simple
trust opinions, cλ,θ is the function that generates basic chained trust opinions
(for entanglement λ and assignment of lying strategies to users θ) , and a repre-
sents aggregation of trust opinions. Depending on the choice of the entanglement
and the assignment of lying strategies, the structures S(λ, θ) (generally) differ.
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6 Analysis of the Models

The results from the last sections allow us to study the conditions that all trust
opinions for in all models in the Beta family with trust chains must adhere to.
If an existing trust model violates these conditions, it is therefore not in the
Beta family with trust chains. Which, in turn, means that these trust models
either break an assumption of the Beta model (on which they are based), or
its operator dealing with recommendations does not actually model trust chains
according to Definition 5.

First, we point out that the work in Sections 4 and 5 captures all models in
the Beta family with trust chains up to isomorphism:

Corollary 3. Every model in the Beta family with trust chains is isomorphic to
a structure S(λ, θ) for an entanglement λ and an assignment of lying strategies θ.

Proof. The corollary is a direct consequence of Corollary 2 and Theorem 3.

An important consequence the corollary is that if a model is in the Beta
family with trust chains, there exists a formulation of the model where the en-
tanglement and the assignment of lying strategies are explicitly provided. This
entails that if a formulation of a model does not explicitly mention the assign-
ment of lying strategies, it is not an appropriate formulation as it obfuscates the
lying strategies.

Furthermore, we prove a restriction on the shape of chained trust opinions:

Theorem 4 (Chained trust opinions are not beta distributions). A
chained trust opinion in any model in the Beta family with trust chains is never
a beta distribution except in a trivial case. The trivial cases arise when the rec-
ommender either always lies or always tells the truth.

Proof. Recall Proposition 1. Expression (2) from Proposition 1 can only repre-
sent a beta distribution, if it can be simplified to h · cs(1− c)f for some s, f ∈ N
and h ∈ R. If k = 0, then eq2 from Formula (1) is equal to 0. However, this means
that the recommender is always lying, which constitutes a trivial case. Therefore,
w.l.o.g. assume k 6= 0. Furthermore suppose that we can choose ys, yz, ws, wf
such that Formula (1) actually yields a beta distribution. Then by changing eq2,
we are actually changing k and all kws,wf

. However, since all kws,wf
are changed

with the same factor, we can renormalize the equation with the inverse factor,
such that all kws,wf

remain the same and only k changes. Then comparing coef-
ficients shows us that the new trust opinion cannot be a beta distribution.

Therefore, any model that represents all its chained trust opinions as beta
distributions, is not in the Beta family with trust chains.

Corollary 4. CertainTrust [11] and TRAVOS [13] are not in the Beta family
with trust chains.

TRAVOS is an interesting case, as the authors set out to do essentially the
same as is done in this paper. Similar to this paper, they treat the Beta model
formally (using random variables for the integrity, for the outcomes and the
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recommendations) and study the relation between honest recommendations and
fake recommendations. However, TRAVOS asserts that the result of a trust
chain (in their case called reputation) is a beta distribution.their own system.
A similar argument hold for Subjective Logic:
Corollary 5. Subjective Logic [5] is not in the Beta family with trust chains.

Proof. Subjective Logic is isomorphic to a model where all trust opinions are
beta distributions.

Hence, Subjective Logic breaks an assumption of the Beta model (on which
it is based), or its operator dealing with recommendations (called trust transi-
tivity or trust propagation) does not actually model trust chaining. Both can
be argued, since in Subjective Logic the trust transitivity operator is based on
fuzzy logic, rather than distributions over integrity parameters, yet trust opin-
ions and trust aggregation (called fusion) are based on the Beta model (i.e. based
on distributions). The latter, would entail that the fraction of Subjective Logic
dealing with trust chaining is not useful; the former entails that usefulness of
trust chaining does not follow from the theory surrounding the Beta model.

It is possible to alter Subjective Logic to incorporate a trust chaining oper-
ator such that it is isomorphic to a structure S(θ, χ). However, the property
of Subjective Logic that a trust opinion can be expressed as a belief triple
can no longer hold. Rather, a trust opinion will be a weighted sum of belief
triples, e.g.

∑
i ki(bi, di, ui). The fusion (trust aggregation) of two trust opin-

ions
∑
i ki(bi, di, ui) and

∑
j k
′
j(b
′
j , d
′
j , u
′
j) will then be

∑
i,j ki × kj((bi, di, ui)⊕

(b′j , d
′
j , u
′
j)), where ⊕ denotes unaltered fusion of belief triples from Subjective

Logic. There are several valid variations for transitive trust operators (trust
chains), and Proposition 3 shows that the transitive trust operator need not be
complicated.

7 Conclusion

We study a family of models based on the Beta distributions: the Beta family
with trust chains. The models in that family are very similar to the Beta model,
but more expressive. In particular, they can express trust chaining.

An important property, proven for all models in the Beta family with trust
chains, is that trust chaining operations are modular (Proposition 4 and Theo-
rem 3). So complicated trust opinions can be constructed by aggregating simpler
trust opinions. Many existing trust models have asserted this property, which
we now proved.

Another commonly asserted property in models inspired by the Beta model,
is that all trust opinions can be represented as beta distributions. This property
is proven to be false for models in the Beta family with trust chains (Theo-
rem 4). This result implies in particular that Subjective Logic, TRAVOS and
CertainTrust are not in the Beta family with trust chains (Corollaries 5 and 4).

We have proven that, up to isomorphism, every trust model in the Beta
family with trust chains implicitly or explicitly makes assumptions about lying
strategies and (except in special cases) about the entanglement (Corollary 3).
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Conversely, we have shown that, up to isomorphism, all trust models in the Beta
family with trust chains can be constructed by selecting lying strategies and an
entanglement (Corollary 3). Moreover, we have created a tool (Canephora) that
calculates chained trust opinions, when instantiations of an entanglement and
lying strategies are provided.

In the future we want to study the effectiveness of lying strategies using
game theory. That would enable us to calculate the optimal lying strategies of
recommenders, providing powerful models. Furthermore, we want to formally
extend the Beta family with trust chains with additional operators, such con-
junction [10]; in particular it is interesting to discover whether a modularity
result still holds.
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A Appendix A

In this appendix, we derive several auxiliary equations and the complete deriva-
tion of Formula (1). For a more concise formulation, we denote an interaction
history (ϕs, ϕf ) simply as ϕ.

Lemma 3. In the Beta model it holds that

fRB
(b|OAB=(xs, xf ), EB=f) = fRB

(b|OAB=(xs, xf + 1)).

Proposition 5. For discrete random variables A, B and C, if P (A=a|B=b) = 1
and P (A=a|C=c) 6= 0 then A=a⊥⊥ C=c|B=b.

Corollary 6. As an immediate consequence of the dependencies and Proposi-
tion 5. For all W ∈W:

SBC ⊥⊥ W |EB=s ∩OBC .

Auxiliary equation A1

f(y) =
∑
w

(
f(w)×

{
1 if w=y

0 if w 6= y

)
.

Auxiliary equation A2

P (OBC=w|OAB=x, SBC=y,EB=s)

{Bayes’ theorem.}

=

P (SBC=y|OAB=x,OBC=w,EB=s)

×P (OBC=w|OAB=x,EB=s)∑
w′∈OC

B

(
P (SBC=y|OAB=x,OBC=w′, EB=s)

×P (OBC=w′|OAB=x,EB=s)
)

{Corollary 6.}

=
P (SBC=y|OBC=w,EB=s)× P (OBC=w|OAB=x,EB=s)∑

w′∈OC
B
P (SBC=y|OBC=w′, EB=s)× P (OBC=w′|OAB=x,EB=s)

{Apply Dependence D4 to the first factor in denominator, evaluating to 1

and A1 when w′ = y, and 0 otherwise.}

=P (SBC=y|OBC=w,EB=s)× P (OBC=w|OAB=x,EB=s)

P (OBC=y|OAB=x,EB=s)

{If w = y then (Dependence D4) both terms equal one.

Otherwise, the fist term equals zero.}

=

{
1 if w=y

0 if w 6= y
.
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Auxiliary equation A4(ϕ)

P (OBC=ϕ|OAB=x,EB=u)

{Law of total probability on RC .}

=

∫ 1

0

P (OBC=ϕ|OAB=x,EB=u,RC=c)

× fRC
(c|OAB=x,EB=u) dc

{Independency I1 on OAB=x and EB=u and Independency I2}
on OAB = x and EB = u.}

=

∫ 1

0

P (OBC=ϕ|RC=c)× fRC
(c) dc

{Apply Dependency D3 and Dependency D1.}

=

∫ 1

0

(
ϕs + ϕf
ϕs

)
cϕs(1− c)ϕf × λ(ϕs + ϕf )× 1 dc

{Calculus.}

=λ(ϕs + ϕf )×
(
ϕs + ϕf
ϕs

)
× ϕs!ϕf !

(ϕs + ϕf + 1)!
.

Auxiliary equation A5

P (EB = s|OAB = x)

{Law of total probability over RB .}

=

∫ 1

0

P (EB = s|OAB = x,RB = b)× fRB
(b|OAB = x) db

{Independency I3 on OAB .}

=

∫ 1

0

P (EB = s|RB = b)× fRB
(b|OAB = x) db

{Apply Dependency D2 and Theorem 1.}

=

∫ 1

0

b× β(b;xs + 1, xf + 1) db

{Average of a beta distribution [4].}

=
xs + 1

xs + xf + 2
.
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Auxiliary equation A6

P (SBC=y|OAB=x,EB=s)

{Law of total probability over OBC .}

=
∑

w′∈OB
C

(
P (SBC=y|OAB=x,EB=s, OBC=w′)

× P (OBC=w′|OAB=x,EB=s)
)

{Apply Corollary 6.}

=
∑

w′∈OB
C

(
P (SBC=y|EB=s, OBC=w′)× P (OBC=w′|OAB=x,EB=s)

)
{Apply Dependency D4, and A1.}

=P (OBC=y|OAB=x,EB=s)

{Apply A4(y).}

=λ(ys + yf )×
(
ys + yf
ys

)
× ys!yf !

(ys + yf + 1)!
.

Auxiliary equation A7

P (SBC=y|OAB=x,OBC=ϕ,EB=f)

{Law of total probability on RB .}

=

∫ 1

0

P (SBC=y|OAB=x,OBC=ϕ,EB=f, RB=b)

× fRB
(b|OAB=x,OBC=ϕ,EB=f) db

{Independency I4 on OAB = x and Independency I2 on OBC = ϕ.}

=

∫ 1

0

P (SBC=y|OBC=ϕ,EB=f, RB=b)× fRB
(b|OAB=x,EB=f) db

{Apply Dependency D5 and Lemma 3 and Theorem 1.}

=

∫ 1

0

χB(b, ϕs, ϕf )(ys, yf )× β(b;xs + 1, xf + 2) db.

The semantics of equations eq1–eq5

With help of the auxiliary equations we can now prove Theorem 2.

eq1(ϕ) = P (RC=c|OAB=x, SBC=y,EB=u,OBC=w),

eq2 = P (EB=s|OAB=x, SBC=y),

eq3 = P (OBC=w|OAB=x, SBC=y,EB=f),

eq4 = P (SBC=y|OAB=x,EB=s),

eq5(ϕ) = P (SBC=y,OBC=ϕ|OAB=x,EB=f).
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Main equation

Using eq1, eq2, and eq3, we can formulate Formula (1):

P (RC=c|OAB=x, SBC=y)

{Law of total probability on EB .}
=P (RC=c|OAB=x, SBC=y,EB=s)× P (EB=s|OAB=x, SBC=y)

+ P (RC=c|OAB=x, SBC=y,EB=f)× P (EB=f|OAB=x, SBC=y)

{Law of total probability on OBC .}

=
∑
w∈OB

C

(
P (RC=c|OAB=x, SBC=y,EB=s, OBC=w)

× P (OBC=w|OAB=x, SBC=y,EB=s)
)

× P (EB=s|OAB=x, SBC=y)

+
∑
w∈OB

C

(
P (RC=c|OAB=x, SBC=y,EB=f, OBC=w)

× P (OBC=w|OAB=x, SBC=y,EB=f)
)

× P (EB=f|OAB=x, SBC=y)

{Apply A2 and A1.}
=P (RC=c|OAB=x, SBC=y,EB=s, OBC=y)

× P (EB=s|OAB=x, SBC=y)

+
∑
w∈OB

C

(
P (RC=c|OAB=x, SBC=y,EB=f, OBC=w)

× P (OBC=w|OAB=x, SBC=y,EB=f)
)

× P (EB=f|OAB=x, SBC=y)

{Apply eq1, eq2 and eq3.}

= eq1(ys, yf )× eq2 +
∑
w∈OB

C

(eq1(ws, wf )× eq3×(1− eq2)).

Equation for eq1(ϕ)

Now we derive the correctness of eq1:

P (RC=c|OAB=x, SBC=y,EB=u,OBC=ϕ)

{A3 on OAB=x, SBC=y, EB=u.}
= P (RC=c|OBC=ϕ)

{Let ϕ = (ϕs, ϕf ) and apply Theorem 1.}
= β(c;ϕs + 1, ϕf + 1).
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Equation for eq2

Now we derive the correctness of eq2 using eq4 and eq5:

P (EB=s|OAB=x, SBC=y)

{Bayes’ theorem.}

=
P (SBC=y|OAB=x,EB=s)× P (EB=s|OAB=x)

P (SBC=y|OAB=x,EB=s)× P (EB=s|OAB=x) + P (SBC=y|OAB=x,EB=f)× P (EB=f|OAB=x)

{Apply A5 and cancel denominators.}

=
P (SBC=y|OAB=x,EB=s)× (xs + 1)

P (SBC=y|OAB=x,EB=s)× (xs + 1) + P (SBC=y|OAB=x,EB=f)× (xf + 1)

{Law of total probability over OBC .}

=
P (SBC=y|OAB=x,EB=s)× (xs + 1)

P (SBC=y|OAB=x,EB=s)× (xs + 1) +
∑
w′∈OB

C
P (SBC=y,OBC=w′|OAB=x,EB=f)× (xf + 1)

=
eq4×(xs + 1)

eq4×(xs + 1) +
∑
w′∈OB

C
eq5(w′)× (xf + 1)

.

Equation for eq3

Now we derive the correctness of eq3 using eq5:

P (OBC=w|OAB=x, SBC=y,EB=f)

{Bayes’ theorem }

=
P (SBC=y,OBC=w|OAB=x,EB=f)

P (SBC=y|OAB=x,EB=f)

{Law of total probability over OBC .}

=
P (SBC=y,OBC=w|OAB=x,EB=f)∑

w′∈OB
C
P (SBC=y,OBC=w′|OAB=x,EB=f)

{Apply equation eq5.}

=
eq5(w)∑

w′∈OB
C

eq5(w′)
.

Equation for eq4

Now we derive the correctness of eq4 using A6:

P (SBC=y|OAB=x,EB=s)

{Apply A6}

=λ(ys + yf )×
(
ys + yf
ys

)
× ys!yf !

(ys + yf + 1)!
.
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Equation for eq5(ϕ)

Now we derive the correctness of eq5 using A4 and A7:

P (SBC=y,OBC=ϕ|OAB=x,EB=f)

{Conjunction.}
=P (SBC=y|OAB=x,OBC=ϕ,EB=f)× P (OBC=ϕ|OAB=x,EB=f)

{Apply A4 and A7.}

=

∫ 1

0

χB(b, ϕs, ϕf )(ys, yf )× β(b;xs + 1, xf + 2) db×

λ(ϕs + ϕf )×
(
ϕs + ϕf
ϕs

)
× ϕs!ϕf !

(ϕs + ϕf + 1)!
.
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B Appendix B

In this appendix, we derive several auxiliary equations and the complete deriva-
tion of Theorem 3. The main equation proving Theorem 3 can be found at the
end.

Corollary 7. As an immediate consequence of Corollary 6 and Independency I4,
for all W ∈W:

SBC ⊥⊥ W |RB=b ∩ EB=u ∩OBC .

Auxiliary equation B1.1.1

fRD
(d|RC=c,RB=b, EB=u,OBC=w,ψ,

⋂
D

OEi

D = ei, ED = u)

{Independence I1}

fRD
(d|RC=c, ψ,

⋂
D

OEi

D = ei, ED = u)

Auxiliary equation B1.1.2

P (ED = u|RC=c,RB=b, EB=u,OBC=w,ψ,
⋂
D

OEi

D = ei, RD=d)

{Independence I3}

P (ED = u|RC=c, ψ,
⋂
D

OEi

D = ei, RD=d)

Auxiliary equation B1.1.3

P (ED = u|RC=c,RB=b, EB=u,OBC=w,ψ,
⋂
D

OEi

D = ei, RD=d)

{Independence I2}

P (ED = u|RC=c, ψ,
⋂
D

OEi

D = ei, RD=d)
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Auxiliary equation B1.1∗
fRD

(d|RC=c,RB=b, EB=u,OBC=w,ψ)

{Law of total probability}∑
fRD

(d,
⋂
D

OEi

D = ei, ED = u|RC=c,RB=b, EB=u,OBC=w,ψ)

{Intersection of B1.1.1, B1.1.2, and B1.1.3}∑
fRD

(d,
⋂
D

OEi

D = ei, ED = u|RC=c, ψ)

{Law of total probability}
fRD

(d|RC=c, ψ)

Auxiliary equation B1.1

P (OAD=x′|RC=c,RB=b, EB=u,OBC=w,ψ)

{Law of total probability}∫ 1

0

P (OAD=x′|RC=c,RB=b, EB=u,OBC=w,ψ,RD=d)× fRD
(d|RC=c,RB=b, EB=u,OBC=w,ψ)

{Independency I1}∫ 1

0

P (OAD=x′|RC=c, ψ,RD=d)× fRD
(d|RC=c,RB=b, EB=u,OBC=w,ψ)

{Apply B1.1∗}∫ 1

0

P (OAD=x′|RC=c, ψ,RD=d)× fRD
(d|RC=c, ψ)

{Law of total probability}
=P (OAD=x′|RC=c, ψ)

Auxiliary equation B1.2 ∗ ∗
fRD

(d,ED=u′|RC=c,RB=b, EB=u,OBC=w,ψ)

{Law of total probability}∑
fRD

(d,
⋂
D

OEi

D = ei, ED = u|RC=c,RB=b, EB=u,OBC=w,ψ)

{Intersection of B1.1.1, B1.1.2, and B1.1.3}∑
fRD

(d,
⋂
D

OEi

D = ei, ED = u|RC=c, ψ)

{Law of total probability}
fRD

(d,ED=u′|RC=c, ψ)

24



Auxiliary equation B1.2∗

fRD
(d,ED=u′, ODC=w′|RC=c,RB=b, EB=u,OBC=w,ψ)

{Apply Independence I1 }
fRD

(d,ED=u′|RC=c,RB=b, EB=u,OBC=w,ψ)× P (ODC=w′|RC=c, ψ)

{Apply B1.2 ∗ ∗}
fRD

(d,ED=u′|RC=c, ψ)× P (ODC=w′|RC=c, ψ)

{Apply Independence I1 }
fRD

(d,ED=u′, ODC=w′|RC=c, ψ)

Auxiliary equation B1.2

P (SDC =x′|RC=c,RB=b, EB=u,OBC=w,ψ)

{Law of total probability}∑
u′∈{s,f}

∑
w′∈N×N

∫ 1

0

P (SDC =x′|RC=c,RB=b, EB=u,OBC=w,ψ,RD=d,ED=u′, ODC=w′)

× fRD
(d,ED=u′, ODC=w′|RC=c,RB=b, EB=u,OBC=w,ψ)

{Apply Corollary 7.}∑
u′∈{s,f}

∑
w′∈N×N

∫ 1

0

P (SDC =x′|RC=c, ψ,RD=d,ED=u′, ODC=w′)

× fRD
(d,ED=u′, ODC=w′|RC=c,RB=b, EB=u,OBC=w,ψ)

{Apply B1.2∗}∑
u′∈{s,f}

∑
w′∈N×N

∫ 1

0

P (SDC =x′|RC=c, ψ,RD=d,ED=u′, ODC=w′)

× fRD
(d,ED=u′, ODC=w′|RC=c, ψ)

{Law of total probability}
=P (SDC =x′|RC=c, ψ)

Auxiliary equation B1

P (ϕ|RC=c,RB=b, EB=u,OBC=w)

{Repeated application of intersection [2], using B1.1 and B1.2, for all D}
= P (ϕ|RC=c).
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Auxiliary equation B2

P (SBC = y, ϕ|RC=c,RB=b)

{Law of total probability.}

=
∑

u∈{s,f}

∑
w∈N×N

P (SBC = y, ϕ|RC=c,RB=b, EB=u,OBC=w)× P (EB=u,OBC=w|RC=c,RB=b)

{Apply Corollary 7.}

=
∑

u∈{s,f}

∑
w∈N×N

P (SBC = y|RC=c,RB=b, EB=u,OBC=w)× P (ϕ|RC=c,RB=b, EB=u,OBC=w)

× P (EB=u,OBC=w|RC=c,RB=b)

{Auxiliary equation B1.}

=
∑

u∈{s,f}

∑
w∈N×N

P (SBC = y|RC=c,RB=b, EB=u,OBC=w)× P (ϕ|RC=c)

× P (EB=u,OBC=w|RC=c,RB=b)

{Law of total probability}
= P (SBC = y|RC=c,RB=b)× P (ϕ|RC=c)

Auxiliary equation B3

P (OAB=x, SBC=y, ϕ|RC=c)

{Law of total probability}

=

∫ 1

0

P (OAB=x, SBC=y, ϕ|RC=c,RB=b)× fRB
(b|RC=c)

{Similar to Proposition 4}

=

∫ 1

0

P (OAB=x|RC=c,RB=b)× P (SBC=y, ϕ|RC=c,RB=b)× fRB
(b|RC=c)

{Auxiliary equation B3.}

=

∫ 1

0

P (OAB=x|RC=c,RB=b)× P (SBC=y|RC=c,RB=b)× P (ϕ|RC=c)× fRB
(b|RC=c)

{Similar to Proposition 4}

=

∫ 1

0

P (OAB=x, SBC=y|RC=c,RB=b)× P (ϕ|RC=c)× fRB
(b|RC=c)

{Law of total probability}
=P (OAB=x, SBC=y|RC=c)× P (ϕ|RC=c)
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Main equation

fRC
(c|OAB=(xs, xf ), SBC=(ys, yf ), ϕ)

{Bayes theorem.}

=
P (OAB=(xs, xf ), SBC=(ys, yf ), ϕ|RC=c)× fRC

(c)

P (OAB=(xs, xf ), SBC=(ys, yf ), ϕ)

{Auxiliary equation B3.}

=
P (OAB=(xs, xf ), SBC=(ys, yf )|RC=c)× P (ϕ|RC=c)× fRC

(c)

P (OAB=(xs, xf ), SBC=(ys, yf ), ϕ)

{Change constant factor.}

∝P (OAB=(xs, xf ), SBC=(ys, yf )|RC=c)× P (ϕ|RC=c)× fRC
(c)

P (OAB=(xs, xf ), SBC=(ys, yf ))× P (ϕ)

{Apply Dependency D1}

=
P (OAB=(xs, xf ), SBC=(ys, yf )|RC=c)× fRC

(c)× P (ϕ|RC=c)× fRC
(c)

P (OAB=(xs, xf ), SBC=(ys, yf ))× P (ϕ)

{Bayes theorem (2x).}
=fRC

(c|ϕ)× fRC
(c|SBC=(ys, yf ), OAB=(xs, xf ))
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