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Abstract. Active re-identification attacks pose a serious threat to privacy-preserv-
ing social graph publication. Active attackers create fake accounts to enforce
structural patterns that can be used to re-identify legitimate users on published
anonymised graphs, even without additional background knowledge. So far, this
type of attacks has only been studied in the scenario where the inherently dyna-
mic social graph is published once. In this paper, we present the first active re-
identification attack in the more realistic scenario where a dynamic social graph is
periodically published. Our new attack leverages tempo-structural patterns, crea-
ted by a dynamic set of sybil nodes, for strengthening the adversary. We evaluate
our new attack through a comprehensive set of experiments on real-life and syn-
thetic dynamic social graphs. We show that our new attack substantially outper-
forms the most effective static active attack in the literature by increasing success
probability by at least two times and efficiency by at least 11 times. Moreover, we
show that, unlike the static attack, our new attack remains at the same level of ef-
ficiency as the publication process advances. Additionally, we conduct a study on
the factors that may thwart our new attack, which can help design dynamic graph
anonymisation methods displaying a better balance between privacy and utility.

Keywords: dynamic social graphs · privacy-preserving publication · re-identification
attacks · active adversaries

1 Introduction

Social graphs are a valuable source of data for conducting societal studies, market ana-
lyses, and other forms of complex data analysis. Analysts profit from social graph data
for conducting their studies, whereas data owners find additional business and public
service opportunities in making these data available to third parties. However, releasing
social network data raises serious privacy concerns, due to the sensitive nature of the
information contained in social graphs. Thus, the data needs to be properly sanitised
before publication. It has been shown that pseudonymisation, i.e. removing users’ iden-
tities and personally identifying information from the data, is insufficient for protecting
sensitive information, as most users can be unambiguously re-identified in the pseudo-
nymised graph by means of simple structural patterns [10, 15, 2]. User re-identification
subsequently allows a malicious agent, or adversary, to infer relations between users,
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group affiliations, etc. A method allowing an adversary to re-identify (a subset of) the
users in a sanitised social graph is called a re-identification attack. Numerous anonymi-
sation methods have been proposed for publishing social graphs that effectively resist
re-identification attacks, e.g. [10, 20, 3, 26, 27, 22, 12, 13]. These methods depend on an
adversary model, which encodes assumptions about the adversary capabilities. There
are two classes of adversaries in social graph publication. On the one hand, passive ad-
versaries exploit publicly available information obtainable from online resources, pu-
blic records, etc., without interacting with the social network before publication. On
the other hand, active adversaries interact with the network before the sanitised dataset
is released. Active adversaries operate by inserting fake accounts in the network, com-
monly called sybil nodes, and creating connection patterns between these fake accounts
and a set of legitimate users, the victims. After the publication of the sanitised graph,
the attacker uses these unique patterns for re-identifying the victims. Active adversaries
have been shown to be a serious threat to social graph publication [2, 14], as they remain
plausible even if no public background knowledge is available.

Social networks are inherently dynamic. Moreover, analysts require datasets con-
taining dynamic social graphs for conducting tasks such as community evolution ana-
lysis [4], link prediction [11] and link persistence analysis [17]. Despite the need for
sanitised dynamic social graphs, studies on graph anonymisation have overwhelmingly
focused on the scenario where a social graph is released only once. The rather small
number of studies on dynamic social graph publication have addressed passive advers-
ary models only. Thus, the manners in which active adversaries can profit from a dyn-
amic publication scenario remain unknown. In this paper, we remedy this situation by
formulating active re-identification attacks in the scenario of dynamic social graphs. We
consider a scenario where snapshots of the underlying dynamic graph are periodically
taken, sanitised, and published. We model active adversaries whose knowledge consists
in tempo-structural patterns, instead of exclusively structural patterns as those used by
the original (static) active adversaries. Moreover, in our model the adversary knowledge
is incremental and evolves along the publication process. The new dynamic active attack
is more effective than the alternative of executing independent static attacks on different
snapshots. Furthermore, it is also considerably more efficient than the previous attacks,
because it profits from temporal patterns to accelerate several of its components.
Our contributions. The main contributions of this paper are listed in what follows:

– We formulate, for the first time, active re-identification attacks in the scenario of
periodically released dynamic social graphs. We describe an instance of the new
attack strategy based on tempo-structural patterns for re-identification.

– We conduct a comprehensive set of experiments on real-life and synthetic dynamic
social graphs, which demonstrate that the dynamic active attack is at least two ti-
mes more effective than the alternative of repeatedly executing the strongest active
attack reported in the literature for the static scenario [14].

– Our experiments also show that, as the number of snapshots grows, the dynamic
active attack runs at least 11 times faster than the static active attack from [14].

– We analyse the factors that affect the effectiveness of our new attack. The conclu-
sions of this study serve as a starting point for the development of anonymisation
methods for the periodical publication scenario.
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2 Related Work

Re-identification attacks are a relevant threat for privacy-preserving social graph publi-
cation methods that preserve a mapping between the real users and a set of pseudonym-
ised nodes in the sanitised release, e.g. [10, 20, 3, 26, 27, 22, 12, 13]. Depending on the
manner in which the attacker obtains the knowledge used for re-identification, these
attacks can be divided into two classes: passive and active attacks. Passive adversaries
collect publicly available knowledge, such as public profiles in other social networks,
and searches the sanitised graph for vertices with an exact or similar profile. For exam-
ple, Narayanan and Shmatikov [15] used information from Flickr to re-identify users in
a pseudonymised subgraph of Twitter. Subsequently, a considerable number of passive
attacks have been proposed, e.g. [15, 23, 18, 16, 7, 6]. On the other hand, active adver-
saries interact with the real network before publication, and force the existence of the
structural patterns that allow for re-identification after release. The earliest examples of
active attacks are the walk-based attack and the cut-based attack, introduced by Back-
strom et al. in [2]. Both attacks insert sybil nodes in the network, and create connection
patterns between the sybil nodes that allow their efficient retrieval in the pseudonymi-
sed graph. In both attacks, the connection patterns between sybil nodes and victims are
used as unique fingerprints allowing re-identification once the sybil subgraph is retrie-
ved. Due to the low resilience of the walk-based and cut-based attacks, a robust active
attack was introduced by Mauw et al. in [14]. The robust active attack introduces noise-
tolerant sybil subgraph retrieval and fingerprint mapping, at the cost of larger compu-
tational complexity. The attack proposed in this paper preserves the noise resiliency of
the robust active attack, but puts a larger emphasis on temporal consistency constraints
for reducing the search space. As a result, for every re-identification attempt, our attack
is comparable to the original walk-based attack in terms of efficiency, and to the robust
active attack in terms of resilience against modifications in the graph.

Notice that, by itself, the use of connection fingerprints as adversary knowledge
does not make an attack active. The key feature of an active attack is the fact that the
adversary interacts with the network to enforce the existence of such fingerprints. For
example, Zou et al. [27] describe an attack that uses the distances of the victims to a set
of hubs as fingerprints. This is a passive attack, since hubs exist in the network without
intervention of the attacker.

The attacks discussed so far assume a single release scenario. A smaller number
of works have discussed re-identification in a dynamic scenario. Some works assume
an adversary who can exploit the availability of multiple snapshots, although they only
give a coarse overview of the increased adversary capabilities, without giving details
on attack strategies. Examples of these works are [21], which models a passive adver-
sary that knows the evolution of the degrees of all vertices; and [27], which models
another passive adversary that knows the evolution of a subgraph in the vicinity of the
victims. An example of a full dynamic de-anonymization method is given in [5]. Alt-
hough they do not model an active adversary, the fact that the method relies on the
existence of a seed graph makes it potentially extensible with an active first stage for
seed re-identification, as done for example in [19]. Our attack differs from the methods
above in the fact that it uses an evolving set of sybil nodes that dynamically interact
with the network and adapt to its evolution.
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3 A Dynamic Active Attack on Periodical Graph Publication

In this section we describe the scenario where the owner of a social network periodically
publishes sanitised snapshots of the underlying dynamic social graph, accounting for
the presence of active adversaries. We describe this scenario in the form of an attacker-
defender game between the data owner and the active adversary. We first introduce
the basic notation and terminology, and give an overview of the entire process. Then,
we introduce the notions of temporal consistency, which are the backbone of the new
attack strategy. Finally, we give a detailed description of the publication process, along
with an instantiation of the attack strategy, which exploits tempo-structural patterns and
temporal consistency for dynamic re-identification.

3.1 Notation and Terminology

We represent a dynamic social graph as a sequence G = (G1, G2, . . . , Gi, . . .), where
each Gi is a static graph called the i-th snapshot of G. Each snapshot of G has the form
Gi = (Vi, Ei), where Vi is the set of vertices (also called nodes indistinctly throughout
the paper) and Ei ⊆ Vi × Vi is the set of edges. We will use the notations VG and
EG for the vertex and edge sets of a graph G. In this paper, we assume that graphs
are simple and undirected. The neighbourhood of a vertex v in a graph G is the set
NG(v) = {w ∈ V | (v, w) ∈ E}, and its degree is δG(v) = |NG(v)|. For the sake
of simplicity, in the previous notations we drop the subscript when it is clear from the
context and simply write N(v), δ(v), etc. For a subset of nodes S ⊆ VG, we use 〈S〉G
to represent the subgraph of G induced by S, i.e. 〈S〉G = (S,EG∩ (S×S)). Similarly,
the subgraph of G weakly induced by S is defined as 〈S〉wG = (S ∪NG(S), EG ∩ (S ×
(S ∪ NG(S)))). For every graph G and every S ⊆ VG, 〈S〉G is a subset of 〈S〉wG, as
〈S〉wG additionally contains the neighbourhood of S and every edge between elements
of S and their neighbours. Also notice that 〈S〉wG does not contain the edges linking
pairs of elements of NG(S). An isomorphism between two graphs G = (V,E) and
G′ = (V ′, E′) is a bijective function ϕ : V → V ′ such that ∀v,w∈V (v, w) ∈ E ⇐⇒
(ϕ(v), ϕ(w)) ∈ E′. Additionally, we denote by ϕ(S) the restriction of ϕ to a vertex
subset S ⊆ V , that is ϕ(S) = {ϕ(v) | v ∈ S}.

3.2 Overview

Fig. 1 depicts the process of periodical graph publication in the presence of an active
adversary. We model this process as a game between two players, the data owner and
the adversary. The data owner selects a set of time-stamps T = {t1, t2, . . . , ti, . . .},
t1 < t2 < . . . < ti < . . ., and incrementally publishes the sequence G? = (G?t1 , G

?
t2 ,

. . . , G?ti , . . .) of sanitised snapshots of the underlying dynamic social graph. The adver-
sary’s goal is to re-identify, in a subset T ′ ⊆ T of the releases, a (possibly evolving)
set of legitimate users referred to as the victims. To achieve this goal, the active ad-
versary injects an (also evolving) set of fake accounts, commonly called sybils, in the
graph. The sybil accounts create connections among themselves, and with the victims.
The connection patterns between each victim and some of the sybil nodes is used as a
unique fingerprint for that victim. The likely unique patterns built by the adversary will
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Fig. 1. Overview of periodical graph publication in the presence of active adversaries.

enable her to effectively and efficiently re-identify the victims in the sanitised snaps-
hots. At every re-identification attempt, the adversary first re-identifies the set of sybil
nodes, and then uses the fingerprints to re-identify the victims.

The data owner and the adversary have different partial views of the dynamic social
graph. On the one hand, the data owner knows the entire set of users, both legitimate
users and sybil accounts, but she cannot distinguish them. The data owner also knows
all relations. On the other hand, the adversary knows the identity of her victims and
the structure of the subgraph weakly induced by the set of sybil nodes, but she does
not know the structure of the rest of the network. In this paper we conduct the analysis
from the perspective of an external observer who can view all of the information. We
will use the sequence G+ = (G+

t1 , G
+
t2 , . . . , G

+
ti , . . .) to denote the view of the network

according to the data owner, i.e. the real network containing the nodes representing all
users, both legitimate and malicious. Further we use G = (Gt1 , Gt2 , . . . , Gti , . . .) to
represent the view of the unattacked network, that is the view of the dynamic subgraph
induced in G+ by the nodes representing legitimate users.

In the original formulation of active attacks, a single snapshot of the graph is re-
leased, so all actions executed by the sybil nodes are assumed to occur before the pu-
blication. This is not the case in the scenario of a periodically released dynamic social
graph. Here, the adversary has the opportunity to schedule actions in such a way that
the subgraph induced by the sybil nodes evolves, as well as the set of fingerprints. In
turn, that allows her to use temporal patterns in addition to structural patterns for re-
identification. Additionally, the adversary can target different sets of victims along the
publication process and adapt the induced tempo-structural patterns to the evolution of
the graph and the additional knowledge acquired in each re-identification attempt. In
the new scenario, the actions performed by the adversary and the data owner alternate
as follows before, during and after each time-stamp ti ∈ T .
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Before ti, the adversary may remain inactive, or she can modify the set of sybil
nodes, as well as the set of sybil-to-sybil and sybil-to-victim edges. The result of these
actions is the graphG+

ti = (Vti∪Sti , Eti∪E+
ti ), where Vti is the current set of legitimate

users, Sti is the current set of sybil nodes, Yti ⊆ Vti is the current set of victims, Eti =
EGti

⊆ Vti × Vti is the set of connections between legitimate users, and E+
ti ⊆ (Sti ×

Sti)∪ (Sti × Yti) is the set of connections created by the sybil accounts. The subgraph
〈Sti〉wG+

ti

, weakly induced in G+
ti by the set of sybil nodes, is the sybil subgraph. We

refer to the set of modifications of the sybil subgraph executed before the adversary has
conducted any re-identification attempt as sybil subgraph creation. If the adversary has
conducted a re-identification attempt on earlier snapshots, we refer to the modifications
of the sybil subgraph as sybil subgraph update.

During ti, the data owner applies an anonymisation method to G+
ti to obtain the

sanitised version G?ti , which is then released. The anonymisation must preserve the
consistency of the pseudonyms. That is, every user must be labelled with the same
pseudonym throughout the sequence of snapshots where it appears. Consistent anno-
tation is of paramount importance for a number of analysis tasks such as community
evolution analysis [4], link prediction [11], link persistence analysis [17], among others,
that require to track users along the sequence of releases. The data owner anonymises
every snapshot exactly once.

After ti, the adversary adds G?ti to her knowledge. At this point, she can remain
inactive, or execute a re-identification attempt on G?ti . The result of a re-identification
attempt is a mapping φti : VG?

ti
→ Yti determining the pseudonyms assigned to the

victims by the anonymisation method. The adversary can additionally modify the results
of a re-identification attempt executed on some of the preceding releases.

3.3 Temporal Consistency Constraints

As we discussed in Sect. 3.2, the data owner must assign the same time-persistent
pseudonym to each user throughout the subsequence of snapshots where it appears.
Since the adversary receives all sanitised snapshots, she is able to determine when a
pseudonym was used for the first time, whether it is still in use, and in case it is not,
when it was used for the last time. In our attack, the adversary exploits this information
in all stages of the re-identification process. For example, consider the following situa-
tion. The set of sybil nodes at time-step t6 is St6 = {s1, s2, s3, s4}. The adversary inser-
ted s1 and s2 in the interval preceding the publication of G?t2 . Additionally, she inserted
s3 before the publication of G?t3 and s4 before the publication of G?t5 . After the release
of G?t6 , during the sybil subgraph retrieval phase of the first re-identification attempt,
the adversary needs to determine whether a set X ⊆ VG?

t6
, say X = {v1, v2, v3, v4},

is a valid candidate. Looking at the first snapshot where each of these pseudonyms was
used, the adversary observes that v1 and v3 were first used in G?t2 , so they are feasi-
ble matches for s1 and s2, in some order. Likewise, v2 was first used in G?t5 , so it is
a feasible match for s4. However, she observes that v4 was first used in G?t4 , unlike
any element of St6 . From this observation, the adversary infers that X is not a valid
candidate, regardless of how structurally similar 〈X〉wG?

t6

and 〈St6〉wG+
t6

are.
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We now formalise the different types of constraints used in our attack. To that end,
we introduce some new notation. The function α+ : ∪ti∈T VG+

ti

→ T yields, for every

vertex v ∈ ∪ti∈TVG+
ti

, the order of the first snapshot where v exists, that is α+(v) =

min{{ti ∈ T | v ∈ VG+
ti

}}. Analogously, the function α? : ∪ti∈T VG?
ti
→ T yields

the order of the first snapshot where each pseudonym is used, that is α?(x) = ti ⇐⇒
∃v∈V

G
+
ti

α+(v) = ti ∧ ϕti(v) = x. Clearly, the adversary knows the values of the

function α? for all pseudonyms used by the data owner. Additionally, she knows the
values of α+ for all of her sybil nodes. These functions allow us to define the notion of
first-use-as-sybil consistency, which is used by the sybil subgraph retrieval method.

Definition 1. Let X ⊆ VG?
ti

be a set of pseudonyms such that |X| = |Sti | and let
φ : Sti → VG?

ti
be a mapping from the set of real sybil nodes to the elements of X .

We say that X and Sti satisfy first-use-as-sybil consistency according to φ, denoted as
X 'φ Sti , if and only if ∀s∈Sti

α+(s) = α?(φ(s)).

Note that first-use-as-sybil consistency depends on the order in which the elements
of the candidate set are mapped to the real sybil nodes, which is a requirement of the
sybil subgraph retrieval method. We define an analogous notion of first use consistency
for victims. In this case, the adversary may or may not know the value of α+. In our at-
tack, we assume that she does not, and introduce an additional function to represent the
temporal information the adversary must necessarily have about victims. The function
β+ : ∪ti∈T Yti → T yields, for every v ∈ ∪ti∈TYti , the order of the snapshot where
v was targeted for the first time, that is β+(v) = min{{ti ∈ T | v ∈ Yti}}. The new
function allows us to define the notion of first-time-targeted consistency, which is used
in the fingerprint matching method.

Definition 2. Let v ∈ VG?
ti

be a victim candidate and let y ∈ Yti be a real victim. We
say that v and y satisfy first-time-targeted consistency, denoted as v ' y, if and only if
α?(v) ≤ β+(y).

This temporal consistency notion encodes the rationale that the adversary can ig-
nore during fingerprint matching those pseudonyms that the data owner used for the
first time after the corresponding victim had been targeted. Next, we define the notion
of sybil-removal-count consistency, which is used by the re-identification refinement
method to encode the rationale that a sybil set candidate X , for which no temporal in-
consistencies were found during the ti-th snapshot, can be removed from Xti when the
ti+1-th snapshot is released, if the number of sybil nodes removed by the adversary in
the interval between these snapshots does not match the number of elements of X that
cease to exist in G?ti+1

.

Definition 3. We say that a set of pseudonyms X ⊆ VG?
ti

satisfies sybil-removal-count
consistency with respect to the pair (Sti , Sti+1

), which we denote as X ' (Sti , Sti+1
),

if and only if |X \ VG?
ti+1
| = |Sti \ Sti+1

|.

In certain social networks, the adversary can detect when one victim leaves the
network, e.g. by detecting that all connections to the victim from her sybil nodes are
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simultaneously lost. From this, the adversary infers that the victim’s pseudonym will
not be present in the next release of the graph. This rationale can be used to further
refine the re-identification of victims in previously released snapshots, by discarding
those mappings where the pseudonyms continue to be present in the snapshots released
after the corresponding victims terminate their membership of the network. To encode
this rationale, the function γ+ : ∪ti∈T VG+

ti

→ T yields the order of the last snapshot
where a node is present in the social network. Note that the adversary is certain about
γ+(s) for every sybil node s. Analogously, the function γ? : ∪ti∈T VG?

ti
→ T yields

the order of the last snapshot where a pseudonym appears. By comparing the vertex sets
of two consecutive snapshots, the adversary can learn γ?(v) for any pseudonym v.

Definition 4. Let v ∈ VG?
ti

be a victim candidate and let y ∈ Yti be a real victim. We
say that v and y satisfy last-time-targeted consistency, denoted as v '` y, if and only if
γ?(v) = γ+(y).

In what follows, we discuss how the temporal consistency constraints introduced in
Defs. 1 to 4 are used in our new dynamic re-identification attack.

3.4 Stages of the Attacker-Defender Game

We now discuss the actions performed by the data owner and the adversary at every
time-stamp ti. We first discuss sybil subgraph creation and update, then graph publica-
tion, and finally re-identification.

Sybil subgraph creation. The adversary can build the initial sybil subgraph al-
ong several releases. This allows the creation of tempo-structural patterns incorporating
information about the first snapshot where each sybil node appears, to facilitate the
sybil subgraph retrieval stage during re-identification. As in all active attacks, the pat-
terns created must ensure that, with high probability, 〈Sti〉wG+

ti

is unique. We denote by

Fti(y) the fingerprint of a victim y ∈ Yti in terms of Sti . Throughout this paper we
consider that Fti(y) is uniquely determined by the neighbourhood of y in Sti , that is
Fti(y) = Sti ∩NG+

y
. We denote by Fti the set of fingerprints of all victims in G+

ti .
Sybil subgraph update. In this step, the adversary can modify the set of sybil no-

des, by adding new sybil nodes or replacing existing ones. The adversary can also mo-
dify the inter-sybil connections and the fingerprints. Sybil subgraph update is executed
after at least one re-identification attempt has been conducted, so the adversary can use
information from this attempt, such as the level of uncertainty in the re-identification, to
decide the changes to introduce in the sybil subgraph. Finally, if the number of finger-
prints that can be constructed using the new set of sybil nodes is larger than the previous
number of targeted victims, that is 2|Sti

| − 1 > |Yti−1
|, the adversary can additionally

target new victims, either new users that joined the network in the last inter-release in-
terval, or previously enrolled users that had not been targeted so far. In the latter case,
even if these victims had not been targeted before, the consistency of the labelling in the
sequence of sanitised snapshots entails that a re-identification in the ti-th snapshot can
be traced back to the previous ones. Additional details on the implementation of sybil
subgraph creation and update in the instantiation of the dynamic active attack presented
in this paper can be found in App. A.
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Graph publication. At time step ti, the data owner anonymises G+
ti and publis-

hes the sanitised version G?ti . We formally view anonymisation as a two-step pro-
cess. The first step is pseudonymisation, which consists in building an isomorphism
ϕti : VG+

ti

→ V ′?ti , with V ′?ti ∩ VG+
ti

= ∅, that replaces every real identity in G+
ti

for a pseudonym. The pseudonymised graph is denoted as ϕtiG
+
ti . If i = 1, all pseu-

donyms are freshly generated. In the remaining cases, the pseudonyms for previously
existing vertices are kept, and fresh pseudonyms are assigned to new vertices. The se-
cond step of the anonymisation process consists in applying a perturbation method
Φti : ϕtiG

+
ti → (V ?ti , V

?
ti × V

?
ti) to the pseudonymised graph. Perturbation consists in

editing the vertex and/or edge sets of the pseudonymised graph. Finally, the data owner
releases the graph G?ti obtained as the result of applying pseudonymisation on G+

ti and
perturbation on ϕtiG

+
ti .

First re-identification attempt. The first re-identification attempt is composed of
two steps, sybil subgraph retrieval and fingerprint matching. Sybil subgraph retrieval
consists in the following substeps:

1. Find in G?ti a set Xti = {X1, X2, . . . , Xp}, Xj ⊆ VG?
ti

, of candidate sybil sets. For
every X ∈ Xti , the graph 〈X〉wG?

ti

is a candidate sybil subgraph. In the instantiation
of the dynamic active attack presented in this paper, we apply two filtering criteria:

(i) Every element X of Xti must satisfy ∆(〈X〉wG?
ti

, 〈Sti〉wG+
ti

) ≤ θti , where ∆ is

the structural dissimilarity function defined in [14] and θti is a tolerance thres-
hold. The value of θti may be fixed (as in [14]), or it may be increased as new
snapshots are released in order to adapt to the accumulation of modifications
in successive instances of the graph publication step.

(ii) Every element of Xti must satisfy the first-use-as-sybil consistency constraint
with respect to 〈St1〉wG+

t1

, 〈St2〉wG+
t2

, . . . , 〈Sti−1
〉w
G+

ti−1

.

2. If Xti = ∅, the attack fails. Otherwise, proceed to fingerprint matching (step 2).

For its part, fingerprint matching consists in the following substeps:

1. Select one element X ∈ Xti with probability 1
|Xti
| .

2. Using X and Fti , find a set of candidate mappings YX = {φ1, φ2, . . . , φq}, where
every φj (1 ≤ j ≤ q) has the form φj : VG?

ti
\ Sti → Yti . Every element of YXti

represents a possible re-identification of the victims in G?ti . In the instantiation of
the dynamic active attack presented in this paper, YXti

is composed of the elements
simultaneously satisfying two criteria:

(i) Maximise the noise-tolerant fingerprint similarity function defined in [14], pro-
vided that the similarity is above a threshold η.

(ii) Satisfy the first-time-targeted and last-time-targeted consistency constraints
with respect to Ft1 ,Ft2 , . . . ,Fti−1

.
3. If YX ′ti = ∅, the attack fails. Otherwise, select one element of YX ′ti and give it as the

result of the re-identification. As in the previous steps, every specific attack defines
how the selection is made.
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The combination of structural similarity and temporal consistency in steps 1.a and
2.b considerably speed-up the overall re-identification process, and increase its effecti-
veness, as will be empirically demonstrated in Sect. 4. Additional details on the imple-
mentation of steps 1.a and 2.b are given in App. B.

Re-identification refinement. As we discussed above, the first re-identification at-
tempt on G?ti can be executed immediately after the snapshot is published. Then, after
the publication of G?tj , j > i, the re-identification refinement step allows the adversary
to improve her certainty on the previous re-identification, by filtering out elements of
Xti that fail to satisfy the sybil-removal-count consistency constraint with respect to
〈Sti〉wG+

ti

and 〈Stj 〉wG+
tj

, and then repeating the fingerprint matching step, excluding the

candidate nodes that do not comply with the first-time-targeted or the last-time-targeted
consistency constraints.

4 Experiments

In this section, we empirically evaluate our new dynamic active attack. Our evaluation
has three goals. First, we show that our dynamic attack outperforms the alternative of re-
peatedly executing Mauw et al.’s static robust active attack [14] in terms of both effecti-
veness and efficiency. Secondly, we determine the factors that affect the performance
of our new attack, and evaluate their impact. From this analysis, we derive a number of
recommendations allowing data owners to balance privacy preservation and utility in
random perturbation methods for periodical social graph publication. Due to the scar-
city of real-life temporally labelled social graphs, and the complete non-existence of
datasets of this type where the phenomenon of users abandoning the social network is
observed, we conducted these experiments on synthetic dynamic social graphs. To that
end, we developed a flexible synthesiser which generates synthetic dynamic graphs with
several parameter settings. Finally, we replicate the second experiment on two real-life
datasets, to show that some of the findings obtained on synthetic data remain valid in
practical scenarios. For simplicity, throughout this section we use the acronym D-AA
for our new dynamic attack and S-RAA for the static robust active attack.

4.1 Experimental Setting

We implemented an evaluation tool based on the attacker-defender game described in
Sect. 3. A dynamic social graph simulator loads a real-life dataset, or uses the synt-
hesiser, to generate the sequence G = (Gt1 , Gt2 , . . . , Gti , . . .) containing only legiti-
mate users. Each snapshot is then processed by a second module that simulates sybil
subgraph creation or update. The output, which is the data owner’s view of the so-
cial graph, is processed by a graph perturbation module, where we implement a simple
perturbation method based on cumulative noise addition. Finally, a fourth module simu-
lates the re-identification on the perturbed graph and computes the success probability
of the attack. Sybil subgraph creation and update, as well as re-identification, have been
discussed in Sect. 3.4 (with extensive details given in Apps. A and B, respectively).
We describe in what follows the implementation of the remaining modules.
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Dynamic social graph simulator. Our simulator allows us to conduct experiments
on temporally annotated real-life datasets, as well as synthetic datasets. In the first case,
the simulator extracts the graph snapshots from each dataset using a specific handler.
The simulator is parameterised with a sequence of time-stamps indicating when each
snapshot should be taken. A snapshot is built by taking all vertices and edges created at
a moment earlier or identical to the corresponding time-stamp and still not eliminated.

In the second case, our simulator synthesises a sequence of snapshots according to
the Barabási-Albert (BA) generative graph model [1]. We use BA because it preserves
the properties of real social graphs, namely power-law degree distribution, shrinking
diameter, and preferential attachment. The BA model has two parameters: the number
of nodes n0 of a (small) seed graph, and the initial degree Me (Me ≤ n0) of every ne-
wly added node. The initial seed graph can be any graph. In our case we use a complete
graph Kn0

. Every time a new node v is added to the current version G of the BA graph,
Me edges are added between v and randomly selected vertices in VG. The probability of
selecting a vertex w ∈ VG for creating the new edge (v, w) is δG(w)∑

x∈VG
δG(x) , as prescri-

bed by preferential attachment. We simulate the phenomenon of users abandoning the
social network by removing z randomly selected nodes before creating a new snaps-
hot. The value of z is randomly selected in the interval [0, z∗], where z∗ is 10% of the
current number of nodes. The synthesiser takes four parameters as input: the parameter
n0 of the BA model, the parameter Me of the BA model, the number nv of vertices of
the first snapshot, and the growth rate r∆, which is defined as the proportion of new
edges with respect to the previous number. The parameters nv and r∆ determine when
snapshots are taken. The first snapshot is taken when the number of vertices of the graph
generated by the BA model reaches nv , and every other snapshot is taken when the ratio
between the number of new edges and that of the previous snapshot reaches r∆.

Graph perturbation via cumulative noise addition. To the best of our knowledge,
all existing anonymisation methods against active attacks based on formal privacy pro-
perties [12, 13] assume a single release scenario, and are thus insufficient for handling
multiple releases. Proposing formal privacy properties that take into account the speci-
ficities of the multiple release scenario is part of the future work. In our experiments,
we adapted the other known family of perturbation methods, random noise addition, to
the multiple release scenario. To account for the incrementality of the publication pro-
cess, the noise is added in a cumulative manner. That is, when releasing G?ti , the noise
incrementally added on G?t1 , G?t2 , . . . , G?ti−1

is re-applied on the pseudonymised graph
ϕtiG

+
ti to obtain an intermediate noisy graph G̃?ti , and then fresh noise is added on G̃?ti

to obtain the graph G?ti that is released. In re-applying the old noise, all noisy edges
incident in a vertex v ∈ VG?

ti−1
\ Vϕti

G+
ti

, removed after the release of G?ti−1
, are for-

gotten. The fresh noise addition consists in randomly flipping a number of edges of G̃?ti .
For every flip, a pair (v, w) ∈ VG̃?

ti

× VG̃?
ti

is uniformly selected and, if (v, w) ∈ EG̃?
ti

,
the edge is removed, otherwise it is added. The cumulative noise addition method has
one parameter: the amount of fresh noise to add in each snapshot, called noise ratio
and denoted Ωnoise . It is computed with respect to |EG̃?

ti

|, the number of edges of the
pseudonymised graph after restoring the accumulated noise.
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Success probability. As in previous works on active attacks for the single release
scenario [12–14], we evaluate the adversary’s success in terms of the probability that she
correctly re-identifies all victims, which in our scenario is computed by the following
formula for the ti-th snapshot:

Pr
(ti)
succ =


∑

X∈Xti
p
(ti)

X

|Xti
| if Xti 6= ∅

0 otherwise
, with p

(ti)
X =

{ 1
|YX | if ∃φ∈YX

φ−1 = ϕti |Yti

0 otherwise

and, as discussed in Sect. 3.4, ϕti is the isomorphism applied on G+
ti to obtain the

pseudonymised graph ϕtiG
+
ti . For every snapshot G?ti , we compute success probability

after the re-identification refinement is executed.

4.2 Results and Discussion

We begin our discussion with the comparison of D-AA and S-RAA. Then, we pro-
ceed to study the factors that affect the effectiveness of our attack, and characterise
their influence. Finally, we illustrate the effectiveness of our attack in practice using
the real-life datasets Petster [9] and BitcoinOTC [8]. For the first two sets of results,
we use synthetic dynamic graphs generated by our synthesiser. Table 1 summarises the
different configurations used for the generation. For each parameter combination, we
generated 100 synthetic dynamic graphs, and the results shown are the averages over
each subcollection. Every synthetic dynamic graph is grown up to the 20-th snaphsot.
In all cases, the number of new victims targeted in each new release is randomly chosen
in the interval [1, 5].

n0 Me nv r∆ Ωnoise(%)

Comparison of D-AA and S-RAA 30 5 200, 400, 800 5% 0.5
Detailed analysis of our D-AA attack 30 5, 10 8000, 10000, 15000 5% 0.5, 1.0, 1.5, 2.0

Table 1. Parameter combinations for the graph synthesiser.

As can be observed in the table, we used considerable smaller graphs for comparing
D-AA and S-RAA than the ones used for the detailed analysis of the factors influencing
the effectiveness of our new attack. The reason for this difference lies in the conside-
rably poorer performance, in terms of execution time, of the static attack. Since these
limits only apply to the static attack, the detailed analysis of our dynamic attack is per-
formed on considerably larger graphs. For example, for Me = 5 and nv = 15000, the
graphs generated at the 20-th snapshots have around 80000 nodes.

Comparing D-AA and S-RAA. The goal of this comparison is to show that our
dynamic active attack outperforms the repeated execution of the original attack in both
effectiveness and efficiency. We use three parameter settings for the dynamic graph
synthesiser. We fixMe = 5 and set the initial number of vertices nv at 200, 400 and 800.
In all our experiments, sybil subgraph creation spans the first and second snapshots, and
the re-identification is executed for the first time on the second snapshot. Both attacks
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Fig. 2. Comparison of S-RAA and D-AA in terms of effectiveness (top) and efficiency (bottom).

are executed independently. That is, for every run we create two identical copies of
each synthetic graph to ensure that both attacks are compared in the same scenario, yet
the actions performed by D-AA have no impact on S-RAA, and vice versa. S-RAA is
allowed to create a fresh sybil subgraph for every snapshot and to increase its number
of sybils if D-AA increases hers. In D-AA, we use the variable tolerance threshold
θti = min{1500, 16 + 250 × (i − 2)2} for the i-th snapshot. Since S-RAA becomes
prohibitively slow with arbitrarily large values of θ, we run it with the fixed tolerance
threshold θ = 16, for which the attack runs in reasonable time for the largest graphs
used in this comparison. These settings guarantee that, to the largest possible extent,
D-AA is compared to the most effective feasible instantiation of S-RAA.

In Fig. 2 (top) we show the success probabilities of the two attacks on graphs with
different initial sizes. From these results, we can see that, as we had intuitively foreseen,
D-AA significantly outperforms S-RAA in terms of success probability. Except for a
few cases, D-AA outperforms S-RAA by at least a factor of 2 and by up to 4 in some
cases. Moreover, the average success probability of our attack remains above 0.5 in
almost all cases, whereas that of S-RAA never reaches this value. Fig. 2 (bottom) shows
the average run times of S-RAA and D-AA in different scenarios. We can see that D-AA
runs in almost constant time on all snapshots, whereas S-RAA becomes considerably
slower as the graphs grow. In fact, D-AA runs at least 11 times faster than S-RAA in all
cases, especially in late snapshots, where it runs up to 350 times faster in some cases.
This clearly shows that the use of temporal information in dynamic social graphs helps
D-AA to effectively avoid the computation overhead. Indeed, as the released snapshots
become larger, the number of equally similar matches (in terms of structure alone)
grows considerably, which dramatically increases the search space for S-RAA. In this
scenario, temporal consistency constraints allow D-AA to discard most of the false
positives and thus skip large areas of the search space.

Factors influencing our attack. This analysis aims to serve as a guide for customi-
sing the settings of privacy-preserving publication methods for dynamic social graphs,
in particular for determining the amount of perturbation needed to balance the privacy
requirements and the utility of published graphs. We evaluate the impact of three factors
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Fig. 3. Factors influencing success probability of D-AA.

on the effectiveness of D-AA on dynamic graphs: the size of graphs, the speed of growth
between releases, and the amount of added noise. To that end, we analyse three parame-
ters which determine these factors in our simulator: nv , Me, and Ωnoise . The number
nv of vertices in the initial snapshots determines the scale of the released graphs, while
the parameter Me of the BA model controls the number of new nodes and edges added
before the next release. Finally, Ωnoise determines the amount of added noise.

Fig. 3 shows the success probability of our attack when different noise ratios are
applied on dynamic graphs with different initial sizes and growth speeds. Our first ob-
servation is that the success probability decreases when more noise is applied. This is a
natural behaviour, as more perturbation makes it more difficult for the attacker to find
the correct sybil subgraph, either because it has been excessively perturbed to be found
as a candidate, or because edge perturbation makes other subgraphs appear more similar
to the original sybil subgraph. When Me = 5 and the noise ratio is set to 0.5%, success
probability always remains above 0.5. For this value of Me, even with Ωnoise at 2.0%,
the attack still displays success probability above 0.5 in the first three snapshots. Our se-
cond observation is that increases in noise ratio do not translate into proportionally large
decreases in success probability. Indeed, the largest drop in success probability occurs
when we increase Ωnoise from 0.5 to 1.0. This suggests that arbitrarily increasing the
amount of perturbation may not necessarily guarantee a better privacy protection, but
just damage the utility of the released graphs. Our third observation is that success pro-
bability values show a weak dependence on the initial size of the graphs, with other
parameters fixed. Finally, we observe that success probability decreases faster, and is
around 10% lower, snapshot-by-snapshot, when dynamic graphs grow faster (in this
case, when Me grows). Summing up, we observe that re-identification risk decreases
when more perturbation is applied, or when the graphs grow faster, whereas the initial
size of the graphs has a relatively small impact on the attacker’s success probability.

We evaluate the utility of released graphs in terms of three measures: the percen-
tage of edge editions, the variation of the average local clustering coefficient, and the
Kullback-Leibler divergence of degree distributions. As all three measures present very
similar patterns for different values of nv , we only show the results for nv = 15000. We
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Fig. 4. Factors influencing the utility of released graphs.

have two major observations. First, as expected, the values of all three measures incre-
ase as the noise accumulates, indicating that the utility of released graphs deteriorates.
Even with Ωnoise set to just 1.0%, at the 10-th snapshot we can have up to 10% of ed-
ges flipped and changes in edge density around 15%. Second, when the dynamic graph
grows faster, the impact of noise becomes smaller, as a larger number of legitimate ed-
ges offsets the impact of noisy edges. Combining these results on utility with the finding
that larger growth speed results in smaller success probability for the attacker, we can
enunciate the following global recommendation for the design of publication strategies
and anonymisation methods for dynamic social graphs: the data owner should publish
dynamic social graphs that grow fast among releases, as they feature the best balance
between re-identification risk and utility.

Results on real-life dynamic social graphs. We use two publicly available data-
sets to validate to what extent the results reported on synthetic data remain valid in
a more realistic domain. The first one was collected from Petster, a website for pet
owners to communicate [9]. The Petster dataset is an undirected graph whose vertices
represent pet owners, and are labelled by their joining date. The graph contains 1898
vertices and 16750 edges. We take a snapshot every six months. The second dataset
was collected from the platform BitcoinOTC, where users can trade with bitcoins. This
platform allows members to rate others. In the resulting social graph, nodes represent
members and an edge betwen two nodes indicates that one of them rated the other.
Every edge is tagged with the date of the first rating between the corresponding pair of
users. The joining date of a member is set as the date when his first rating is posted.
The graph contains 5881 nodes and 21455 edges. We take the first snapshot at the 9th
month, and every other snapshot every 3 months, totalling 20 snapshots. Both datasets
are incremental, that is nodes are added but never removed.

We present in Fig. 5 (top) the success probabilities of our D-AA attack on the two
datasets when the noise ratio is set to 0.5%, 1.0% and 1.5%. Compared to the success
probabilities discussed above on synthetic graphs, the curves have different shapes and
more fluctuations. This is because, instead of a fixed growth speed (determined by r∆
and Me in our synthesiser), real-life graphs grow at different speeds in different peri-
ods, as shown in Fig. 5 (bottom). For example, consider the evolution of Petster. After
the first few years of steady growth, it gradually lost its popularity, especially in the
last three years, where few new users joined. By cross-checking the attack’s behavi-
our on Petster with the network’s evolution, we can see that the success probability
changes with the amount of growth before the corresponding release. It first increases
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Fig. 5. Evaluation on real-life datasets.

steadily, due to the steady growth of the graph, until the fifth snapshot, which shows
an abrupt growth in the number of new vertices, along with a drop of success proba-
bility. Then, when the growth slows down, the success probability also recovers; and
when the growth stops (from the 12-th snapshot), it starts increasing again, even though
the noise continues to accumulate. These observations validate our finding on synthetic
graphs that the speed of growth among releases is the dominating factor that affects the
success probability of our dynamic attack.

5 Conclusions

We have presented the first dynamic active re-identification attack on periodically re-
leased social graphs. Unlike preceding attacks, our new attack exploits the inherent
dynamic nature of social networks by leveraging tempo-structural patterns, enforced by
a dynamic set of sybil nodes. Compared to the best static active attack, our new attack
significantly improves success probability, by at least two times, and efficiency, by at
least 11 times. Moreover, unlike the static attack, our new attack remains at the same
level of efficiency as the publication process advances. Through comprehensive experi-
ments on synthetic data, we determined the factors that influence the success probability
of our new attack against a data owner using cumulative noise addition for graph per-
turbation, namely the speed of growth and the amount of noise injected. These findings
can subsequently be used to develop dynamic graph anonymisation methods that bet-
ter balance privacy protection and the utility of the released graphs. Additionally, we
evaluated our attack on two real-life datasets, which allowed us to ascertain that these
findings obtained on synthetic data remain valid in practical scenarios.

Acknowledgements. This work received funding from Luxembourg’s Fonds National
de la Recherche (FNR), via grant C17/IS/11685812 (PrivDA).



Active Re-identification Attacks on Periodically Released Dynamic Social Graphs 17

References

1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Review of Modern
Physics 74, 47–97 (2002)

2. Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou r3579x?: anonymized so-
cial networks, hidden patterns, and structural steganography. Communications of the ACM
54(12), 133–141 (2011)

3. Casas-Roma, J., Herrera-Joancomartı́, J., Torra, V.: k-degree anonymity and edge selection:
improving data utility in large networks. Knowledge and Information Systems 50(2), 447–
474 (2017)

4. Dakiche, N., Tayeb, F.B., Slimani, Y., Benatchba, K.: Tracking community evolution in so-
cial networks: A survey. Information Processing & Management 56(3), 1084–1102 (2019)

5. Ding, X., Zhang, L., Wan, Z., Gu, M.: De-anonymizing dynamic social networks. In: Procs.
of GLOBECOM 2011. pp. 1–6 (2011)

6. Ji, S., Li, W., Srivatsa, M., Beyah, R.: Structural data de-anonymization: Quantification,
practice, and implications. In: Procs. of CCS 2014. pp. 1040–1053 (2014)

7. Korula, N., Lattanzi, S.: An efficient reconciliation algorithm for social networks. Procs. of
the VLDB Endowment 7(5), 377–388 (2014)

8. Kumar, S., Spezzano, F., Subrahmanian, V.S., Faloutsos, C.: Edge weight prediction in weig-
hted signed networks. In: Procs. of ICDM 2016. pp. 221–230 (2016)

9. Kunegis, J.: KONECT: the Koblenz network collection. In: Procs. of WWW 2013. pp. 1343–
1350 (2013)

10. Liu, K., Terzi, E.: Towards identity anonymization on graphs. In: Procs. of SIGMOD 2008.
pp. 93–106 (2008)

11. Martı́nez, V., Berzal, F., Cubero, J.C.: A survey of link prediction in complex networks. ACM
Computing Surveys 49(4), 69 (2017)

12. Mauw, S., Ramı́rez-Cruz, Y., Trujillo-Rasua, R.: Anonymising social graphs in the presence
of active attackers. Transactions on Data Privacy 11(2), 169–198 (2018)

13. Mauw, S., Ramı́rez-Cruz, Y., Trujillo-Rasua, R.: Conditional adjacency anonymity in social
graphs under active attacks. Knowledge and Information Systems 61(1), 485–511 (2018)

14. Mauw, S., Ramı́rez-Cruz, Y., Trujillo-Rasua, R.: Robust active attacks on social graphs. Data
Mining and Knowledge Discovery 33(5), 1357–1392 (2019)

15. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: Procs. of S&P 2009. pp.
173–187 (2009)

16. Nilizadeh, S., Kapadia, A., Ahn, Y.: Community-enhanced de-anonymization of online social
networks. In: Procs. of CCS 2014. pp. 537–548 (2014)

17. Papadopoulos, F., Kleineberg, K.K.: Link persistence and conditional distances in multiplex
networks. Physical Review E 99(1), 012322 (2019)

18. Pedarsani, P., Figueiredo, D.R., Grossglauser, M.: A bayesian method for matching two si-
milar graphs without seeds. In: Procs. of the 51st Annual Allerton Conf. on Communication,
Control, and Computing. pp. 1598–1607 (2013)

19. Peng, W., Li, F., Zou, X., Wu, J.: A two-stage deanonymization attack against anonymized
social networks. IEEE Transactions on Computers 63(2), 290–303 (2014)

20. Rousseau, F., Casas-Roma, J., Vazirgiannis, M.: Community-preserving anonymization of
graphs. Knowledge and Information Systems 54(2), 315–343 (2017)

21. Tai, C.H., Tseng, P.J., Philip, S.Y., Chen, M.S.: Identities anonymization in dynamic social
networks. In: Procs. of ICDM 2011. pp. 1224–1229 (2011)

22. Wu, W., Xiao, Y., Wang, W., He, Z., Wang, Z.: K-symmetry model for identity anonymiza-
tion in social networks. In: Procs. of the 13th Int’l Conf. on Extending Database Technology.
pp. 111–122 (2010)



18 X. Chen et al.

23. Yartseva, L., Grossglauser, M.: On the performance of percolation graph matching. In: Procs.
of COSN 2013. pp. 119–130 (2013)

24. Yu, H., Gibbons, P.B., Kaminsky, M., Xiao, F.: Sybillimit: A near-optimal social network
defense against sybil attacks. In: Procs. of S&P 2008. pp. 3–17 (2008)

25. Yu, H., Kaminsky, M., Gibbons, P.B., Flaxman, A.: Sybilguard: defending against sybil at-
tacks via social networks. In: Procs. of SIGCOMM 2006. pp. 267–278 (2006)

26. Zhou, B., Pei, J.: Preserving privacy in social networks against neighborhood attacks. In:
Procs. of ICDE 2008. pp. 506–515 (2008)
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A Implementation Details of Sybil Subgraph Creation and Update

Sybil subgraph creation. Let G?ti be the first snapshot where the adversary conducts
a re-identification attempt. Sybil subgraph creation is executed during the entire time
window preceding ti. The adversary initially inserts a small number of sybil nodes, no
more than

⌊
log2

(
|VG+

ti

|
)⌋

. This makes the sybil subgraph very unlikely to be detected
by sybil defences [25, 24, 2, 13, 14], while allowing to create unique fingerprints for a
reasonably large number of potential initial victims. Spreading sybil injection over se-
veral snapshots helps create temporal patterns that reduce the search space during sybil
subgraph retrieval. Inter-sybil edges are created in a manner that has been shown in [2]
to make the sybil subgraph unique with high probability. First, an arbitrary (but fixed)
order is established among the sybil nodes. In our case, we simply take the order in
which the sybils are created. Let s1 ≺ s2 ≺ . . . ≺ s|Sti

| represent the order established
among the sybils. Then, the edges (s1, s2), (s2, s3), . . . , (s|Sti

|−1, s|Sti
|) are added to

force the existence of the path s1s2 . . . s|Sti
|. Additionally, every other edge (sj , sk),

|j− k| ≥ 2, is added with probability 0.5. The initial fingerprints of the elements of Yti
are randomly generated (yet enforcing that all fingerprints are unique) by connecting
each victim to each sybil node with probability 0.5.

Sybil subgraph update. Let G?ti−1
and G?ti be two consecutive releases occurring

after the first snapshot where the adversary conducted a re-identification attempt (G?ti−1

itself may have been this snapshot). In the interval betweenG?ti−1
andG?ti , the adversary

updates the sybil subgraph by adding and/or removing sybil nodes and inter-sybil edges,
updating the fingerprints of (a subset of) the victims, and possibly targeting new victims.
We describe each of these modifications in detail in what follows.

Adding and replacing sybil nodes. In our attack, the adversary is conservative regar-
ding the number of sybil nodes, balancing the capacity to target more victims with the
need to keep the likelihood of being detected by sybil defences sufficiently low. Thus,
the number of sybil nodes is increased as the number of nodes in the graph grows,
but keeping |Sti | ≤

⌊
log2

(
|VG?

ti−1
|
)⌋

. Additionally, the attacker may select a small
random number of existing sybil nodes and replace them for fresh sybil nodes.

Let Sti−1
= {s1, s2, . . . , s|Sti−1

|} be the set of sybil nodes present in G+
ti−1

, and
let s1 ≺ s2 ≺ . . . ≺ s|Sti−1

| be the order established among them. We first consider
the case of sybil node addition. Let S′ = {s′1, s′2, . . . , sq} be the set of new sybil nodes
that will be added to G+

ti , and let s′1 ≺ s′2 ≺ . . . ≺ sq be the order established on
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them. The path s1s2 . . . s|Sti−1
| is extended into s1s2 . . . s|Sti−1

|s
′
1s
′
2 . . . sq by adding

toG+
ti the edges (s|Sti−1

|, s
′
1), (s

′
1, s
′
2), . . . , (s′q−1, s

′
q). Additionally, the adversary adds

to G+
ti every node (x, y), x ∈ S′, y ∈ (Sti−1 ∪ S′) \ NG+

ti

(x), with probability 0.5.

In order to replace a sybil node sj ∈ Sti−1
for a new sybil node s (s /∈ S′), the

adversary adds to G+
ti the edges (sj−1, s) and (s, sj+1), where sj−1 and sj+1 are the

sybil nodes immediately preceding and succeeding sj according to ≺. The order ≺ is
updated accordingly to make s1 ≺ s2 ≺ . . . ≺ sj−1 ≺ s ≺ sj+1 ≺ . . . ≺ s|Si−1|.
These modifications ensure that the path s1s2 . . . s|Sti−1

| guaranteed to exist in G+
ti−1

is replaced in G+
ti for s1s2 . . . sj−1ssj+1 . . . s|Si−1|. Additionally, the new sybil node s

is connected to every other sybil node with probability 0.5. In our attack, every sybil
node removal is part of a replacement, so the number of sybil nodes never decreases.

Updating fingerprints of existing victims. After replacing a sybil node s ∈ Sti−1
for

a new sybil node s′ ∈ Sti \ Sti−1
, the adversary adds to G+

ti the edge (s′, y) for every
y ∈ Yti−1

∩ NG+
ti−1

(s), to guarantee that the replacement of s for s′ does not render

any pair of fingerprints identical in G+
ti . Additionally, if new sybil nodes were added,

the fingerprints of all previously targeted victims in Yti−1
are modified by creating

edges linking them to a subset of the new sybil nodes. For each new sybil node s ∈
Sti \ Sti−1 and every victim y ∈ Yti−1 , the edge (s, y) is added with probability 0.5.
Finally, if the adversary has conducted a re-identification attempt on G?ti−1

, she makes
additional changes in the set Fti of fingerprints in G+

ti based on the outcomes of the re-
identification. To that end, she selects a subset Y ′ti−1

of victims whose fingerprints were
the least useful during the re-identification attempt, in the sense that they were the most
likely to lead to a larger number of equally likely options after fingerprint mapping.
The adversary modifies the fingerprint of every y ∈ Y ′ti−1

by randomly flipping one
edge of the form (y, s), s ∈ Sti−1 , checking that the new fingerprint does not coincide
with a previously existing fingerprint. The set Y ′ti−1

is obtained as follows. For every
victim yj ∈ Yti−1

and every vertex v mapped to yj according to some X ∈ Xti−1
and

the corresponding YX , let pj(v) be the probability that v has been mapped to yj in the
previous re-identification attempt according to some sybil subgraph candidate and some
of the resulting fingerprint matchings. We make Y ′ti−1

= argmaxyj∈Yti−1
{H(pj)},

where H(pj) is the entropy of the distribution pj .

B Implementation Details of Dynamic Re-identification

Sybil subgraph retrieval. The sybil subgraph retrieval method is a breadth-first search
procedure, which shares the rationale of analogous methods devised for active attacks
on static graphs [2, 14], but differs from them in the use of temporal consistency con-
straints for pruning the search space. To establish the order in which the search space
is traversed, our method relies on the existence of an arbitrary (but fixed) total order ≺
among the set of sybil nodes, which is enforced by the sybil subgraph creation method
and maintained by the sybil subgraph update method.

Let s1 ≺ s2 ≺ . . . ≺ s|Sti
| be the order established on the elements of Sti . The

search procedure first builds a set of cardinality-1 partial candidates Xti,1 = {{vj1} |
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vj1 ∈ VG?
ti
}. Then, it obtains the pruned set of candidates X ′ti,1 by removing from Xti,1

all elements {vj1} such that α?(vj1) 6= α+(s1), or
∣∣∣δG?

ti
(vj1)− δG+

ti

(s1)
∣∣∣ > θ. The

first condition verifies that the first-use-as-sybil consistency property {vj1} 'φ {s1}
holds, with φ = {(s1, vj1)}. The second condition excludes from the search tree all
candidates X such that ∆(〈X〉wG?

ti

, 〈Sti〉wG+
ti

) > θ, where ∆ is a structural dissimilarity

function, defined in [14], and θ is a tolerance threshold. Then, for every ` ≤ |Sti |, the
method builds the set of partial candidates

Xti,` = {{vj1 , . . . , vj`} | {vj1 . . . , vj`−1
} ∈ Xti,`−1, vj` ∈ VG?

ti
\ {vj1 , . . . , vj`−1

}}

and obtains the pruned candidate setX ′ti,` by removing fromXti,` all elements {vj1 , . . . ,
vj`} such that {vj1 , . . . , vj`} 6'φ {s1, . . . , s`}, with φ = {(s1, vj1), . . . , (s`, vj`)}, and
∆(〈{vj1 , . . . , vj`}〉wG?

ti

, 〈{s1, . . . , s`}〉wG+
ti

) > θ. Finally, the method gives as output the

pruned set of cardinality-|Sti | candidates, that is Xti = X ′ti,|Sti
|. Summing up, our

method outputs the set of temporally consistent vertex subsets whose weakly induced
subgraphs in G?ti are structurally similar to that of the original set of sybil nodes in G+

ti .
Fingerprint matching. The fingerprint matching step is conducted for a sybil sub-

set candidate X = {vj1 , vj2 , . . . vj|Sti
|} randomly selected from Xti , with probability

1
|Xti
| . Let vj1 ≺ vj2 ≺ . . . ≺ vj|Sti

| be the order established on the elements ofX by the
sybil subgraph retrieval method. Our fingerprint matching method is a depth-first search
procedure, which gives as output a set YX = {φ1, φ2, . . . , φq}, where every φ ∈ YX
has the form φ : Yti → NG?

ti
(X). Every element of YX maximises the pairwise simila-

rities between the original fingerprints of the victims and the fingerprints, with respect to
X , of the corresponding pseudonymised vertices. The method first finds all equally best
matches between the (real) fingerprint Fj of a victim yj ∈ Yti and that of a temporally
consistent vertex u ∈ NG?

ti
(X) with respect to X , that is F ?u = NG?

ti
(u) ∩ X . Then,

for every such match, it recursively applies the search procedure to match the remaining
real victims to other temporally consistent candidate victims. For every victim yj and
every candidate match u, the similarity function sim(F ?u , Fj) integrates the verification
of the temporal consistency and the structural fingerprint, and is computed as

sim(F ?u , Fj) =

{
simc(F

?
u , Fj) if u ' yj and simc(F

?
u , Fj) ≥ η

0 otherwise.

where η is a tolerance threshold allowing to ignore insufficiently similar matches and
the function simc(F

?
u , Fj) is defined as simc(F

?
u , Fj) =

∑|Sti
|

k=1 µk(F
?
u , Fj) with

µk(F
?
u , Fj) =

{
1 if vjk ∈ F ?u and sk ∈ Fj
0 otherwise.


