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Abstract. In this paper, we address the problem of nested Named En-
tity Recognition (NER) for Spanish. Phrase syntactic structure is ex-
ploited to generate a tree representation for the set of phrases that
are candidate to be named entities. The classification of all candidate
phrases is treated as a single problem, for which a globally optimal so-
lution is approximated using a strategy based on the postorder traversal
of that representation. Experimental results, obtained in the framework
of SemEval 2007 Task 9 NER subtask, demonstrate the validity of our
approach.

1 Introduction

Named Entity Recognition (NER) is a basic step for a number of tasks such
as Information Extraction, Question Answering and Automatic Summarization.
The classic NER task was introduced in the Message Understanding Conferences
and consists in detecting and classifying elemental information units contained
in text documents such as proper names (persons, organizations, locations, etc.),
quantities and temporal expressions. The classic problem definition considers no
nesting or overlapping between different Named Entities (NE’s).

Extensive work has been conducted on NER. The greatest effort has been
focused on English documents covering the biomedical and newswire domains.
While the annotation of benchmark corpora for English NER in the biomedical
domain considers nested NE’s, this is not common for the newswire domain.
Because of this, research efforts to deal with the problem of recognizing nested
structures have been largely confined to the former domain, although nested
NE’s are likely to occur in any knowledge domain.

Until recently, Spanish corpora have often lacked the annotation of nested
NE’s. Consequently, a small number of works have addressed the problem for
that language. However, being able to recognize all NE’s is crucial for other tasks
depending on it, such as coreference resolution and scenario template matching,
since nested structures implicitly contain relations that may help improve their
performance.



In this paper, we focus on the nested NER problem for the Spanish language.
Unlike most common approaches, which treat the problem either as a postpro-
cessing stage of the classic NER problem or as a combination of several instances
of it, we address the recognition of all NE’s included in a nested structure as
a single problem. For each sentence, phrases that are candidate to be NE’s are
detected in the deep constituency tree. A second tree containing the represen-
tations of all candidate phrases through a set of boolean features is generated.
The structural and functional relations imposed to the candidate phrases by
the syntax are encoded in that tree. Finally, a globally optimal classification for
all candidate phrases is approximated using a strategy based on the postorder
traversal of the representation tree.

For evaluation purposes, we use the SemEval 2007 Task 9 Spanish dataset for
the NER subtask. We evaluate the impact of several elements in our model and
establish a comparison between the results obtained by our method and those
reported for that subtask.

The rest of the paper is structured as follows. In Section 2 we review previous
work on nested NER. Section 3 is devoted to describing our approach, whereas
Section 4 contains the description of the experiments that we carried out. Finally,
we expose our conclusions in Section 5.

2 Related Work

As we mentioned before, a considerable part of the research effort on nested
NER has been focused on English documents in the biomedical domain, mainly
due to the availability of corpora such as GENIA [1], which contains MEDLINE
abstracts annotated with nested NE’s. Aiming to reuse well known, successful
techniques, common approaches to nested NER treat the problem either as a
separate postprocessing stage of the classic NER problem or as the combination
of several instances of the classic problem.

The first type of approaches consists in extending classic NE recognizers
through a mechanism for merging together several NE’s or detecting new NE’s
that either are embedded in the original ones or contain them. For instance,
Zhang et al. [2] address English biomedical NER by using Hidden Markov Models
(HMM’s) to recognize the innermost NE’s. As a postprocessing stage, they apply
a set of rules extracted from the training data to detect other NE’s that contain
the initial ones.

The second type of approaches consists in handling different nesting levels
or NE types as separate problems by combining several instances of a classic
recognizer. Zhang et al. [2] also propose a method consisting in the application
of several passes of an HMM-based recognizer, adding a new nesting level in each
one. The process starts by recognizing the innermost phrases. After a pass is
completed, the input sequence is modified in such a way that recognized entities
are treated as special tokens, and then a new pass is performed to obtain a
new nesting level. The process ends when no new NE’s are found after a pass is
completed. As the authors point out, errors in each pass affect the recognition



process in further passes. Alex et al. [3] discuss three modeling techniques using
the BIO encoding in English biomedical NER. Two of these techniques fall into
this type of approach: layering, where each nesting level is modeled as a separate
BIO problem; and cascading, where entity types are divided into groups and
a separate model is trained for each group. Layering is affected by the same
situation mentioned before: errors in a level negatively impact the recognition
process for further levels; whereas cascading is unable to recognize NE’s that are
embedded in other NE’s of the same type.

The third modeling technique discussed by Alex et al., joined label tagging,
does not belong to any of these two types of approaches. It consists in creating
a new tagging scheme, where BIO tags for all nesting levels are concatenated to
process all levels in a single pass. As they point out, this technique is prone to
be affected by data sparseness. A similarity between this idea and our approach
is that the recognition process for all nesting levels is performed in a single pass.
However, Alex et al. address the problem by tagging a word sequence using
a modification of the BIO tagset, whereas we classify entire phrases instead
of independent words. Besides, they follow the order of words in the sentence,
whereas we apply a syntax-dependent tree traversal-based strategy.

For Spanish, due in part to the lack of annotated corpora containing nested
NE’s, a small number of works have addressed the problem. The MICE system [4]
relies on the distinction between strong NE’s, which contain proper nouns, and
weak NE’s, which are constructions containing trigger words and optionally other
embedded NE’s. AdaBoost is used to recognize and classify strong NE’s whereas
a handcrafted context independent grammar is used to recognize weak NE’s. A
complete quantitative evaluation of this method is not presented in [4] due to
the early stage of the corpus development.

Recently, within the framework of SemEval 2007 Task 9 [5], Spanish and
Catalan nested NER was addressed as a subtask. The UPC system [6] was the
only one that submitted results for NER. Based on the distinction between strong
and weak NE’s that characterizes the competition corpus, UPC performs NER
in two stages, both using AdaBoost. The first stage deals with the classification
of strong NE’s, whereas the second deals with the detection and classification of
weak NE’s. UPC, as well as MICE, are examples of the first type of approaches
to nested NER mentioned earlier.

The two types of approaches to nested NER that we have discussed here
tackle the complexity of the problem by splitting it into subproblems that are
solved separately. However, in doing this, it is possible that useful interactions
between these subproblems are lost. We consider that approaches intending to
find near-to-globally optimal solutions may exploit these interactions in order to
obtain better results.

3 Our Approach

In the proposed method, the recognition process is carried out in a sentence
by sentence basis. For each sentence, candidate phrases, i.e., those that may be



NE’s, are detected in the deep constituency tree. Candidate phrase detection is
performed based on the syntactic labels of phrases, following the criterion that
any definite noun phrase may be considered as a candidate. The set of candidate
phrases is represented using a tree, where each node contains the representation
of one phrase and nesting is encoded by the parent-child relation between nodes.
A set of boolean features is used to describe phrases, thus the representation of
a phrase is a boolean vector containing the results of evaluating these features
on a vicinity of the phrase in the deep constituency tree. Using a strategy based
on the postorder traversal of the representation tree, the classification of the set
of candidate phrases is carried out in such a way that the set of classes given to
all candidate phrases in a nested structure approximates the global optimum.
Next we describe this process in detail.

3.1 Obtaining the representation

Let S = w1w2...wn be a sentence. Consider two phrases P = wiwi+1...wi+k

(i ≥ 1, i + k ≤ n) and P
′

= wjwj+1...wj+k′ (j > 1, j + k
′

< n) contained in
S. If j > i and j + k

′
< i + k, we say that P

′
is embedded in P . If no phrase

P
′′

embedded in P exists such that P
′

is embedded in P
′′
, we say that P

′
is

immediately embedded in P .
For each sentence, once the deep constituency tree has been obtained and

candidate phrases are detected in it, the representation tree is constructed in
such a way that each candidate phrase is represented by a node. If the node
N represents phrase P , its children are those nodes N1, N2, ..., Ne representing
phrases P

′

1, P
′

2, ..., P
′

e that are immediately embedded in P . Unless the whole
sentence is a candidate phrase, an artificial root node is added such that all
nodes representing candidate phrases that are not immediately embedded in
any other are its children.

For example, consider the sentence Agüero visitó Trinidad y Tobago (Agüero
visited Trinidad and Tobago). The named entities contained in that sentence
are Agüero (person name), Trinidad y Tobago (location name), Trinidad and
Tobago (location names embedded in Trinidad y Tobago). Figure 1 shows the
representation tree for that sentence. For clarity, in the figure every node (except
the artificial root node) is labeled as Repr: P, where P is the candidate phrase
represented by it. Notice that what the nodes in the tree actually contain are
boolean vectors representing the phrases.

Let ℘ be the set of all possible candidate phrases. A phrase P will be repre-
sented in terms of a set of q boolean features fi : ℘→ {0, 1} (1 ≤ i ≤ q). Thus,
the representation of phrase P is a boolean vector r = (f1(P ), f2(P ), ..., fq(P )).

We consider two types of features. The first one includes features that are
evaluated locally, i.e., on the phrase per se. We use POS tags, trigger word
dictionaries and gazetteers of location and organization names.

The second type are syntax-dependent features. A set of these features checks
whether the syntactic function of the candidate phrase or, alternatively, that of a
prepositional phrase in which it is immediately embedded, is one of the following:



Fig. 1. Representation tree obtained for the sentence Agüero visitó Trinidad y Tobago.

subject, direct object, indirect object, adjunct or agent complement. Addition-
ally, a set of verb lemma dictionaries is collected from the training corpus and a
feature is defined for each dictionary. Each one of these features checks whether
the lemma of the verb governing the clause where the candidate phrase is embed-
ded occurs in its associated dictionary. In order to collect the set of dictionaries,
a mapping is constructed between entity types and syntactic functions. Thus,
dictionaries are constructed for “person as subject”, “organization as object”,
and so on. For each entity type T and each syntactic function F , a dictionary is
constructed which contains the lemmas of verbs occurring in at least one clause
in the training corpus where a NE of type T is found being its syntactic function,
or that of a prepositional phrase where it is immediately embedded, F . Auxiliary
verbs are disregarded.

For example, when obtaining the representation for the phrase Agüero in
the sentence considered in Figure 1, suppose a feature fi is associated with a
dictionary containing the verb visitar (lemma of visitó). This feature will yield
the value 1 when evaluated on the phrase because it belongs to a clause governed
by visitó. In constructing the dictionaries, if this sentence were a part of the
training data, the dictionary corresponding to the mapping “person as subject”
would contain visitar, because visitó is the verb governing the clause and the
syntactic function of Agüero (a person name) is subject.

The combination of syntactic function information and verb lemma dictio-
naries is expected to help take into account the behavior of candidate phrases.
Intuitively, verb lemma dictionaries are expected to provide information about
the action in which the phrases are involved and the syntactic function is ex-
pected to provide a rough approximation of the role that each phrase is playing.

While locally evaluated features are expected to help determine the literal
type of a NE, syntax-dependent features should allow to discriminate between
literal and metonymic readings of NE’s.



3.2 Traversing the representation tree

In selecting an appropriate order to traverse the representation tree, we consider
the following ideas. First, in determining the type of a NE, it is convenient
that the types of its embedded phrases are considered. Second, since errors in
irrevocably classifying a phrase cause a negative impact in the classification of
the phrases in which it is embedded, the best classification is the one that satisfies
some global optimality measure.

In order to allow the syntactic structure of the sentence to guide the clas-
sification process, we propose a strategy that consists in generating a sequence
of candidate phrase representations following a postorder traversal of the repre-
sentation tree. The sequence thus obtained is such that the node representing a
phrase is located after those representing its embedded phrases and after those
representing preceding phrases. Figure 2 illustrates the situation for the previ-
ously analyzed sentence.

Fig. 2. Dependences expected to be captured by the postorder traversal strategy.

3.3 Classification

We treat the classification of the set of candidate phrases as a sequence classi-
fication problem by using a Markovian approach, according to which only one
independence assumption needs to be inserted. A Viterbi search is performed on
that sequence to capture the desired dependences of a candidate phrase to its
embedded phrases, as well as those to previoulsy occurring phrases, which are
commonly used in Markovian approaches. We combine all candidate phrases in
a single sequence and approximate a globally optimal solution without making
the classification of any level irrevocable. This aims to avoid the problems of
iteratively classifying superimposed nesting levels pointed out in Section 2.

For the classification process, the class set C contains one class for each NE
type, plus an extra class NONE to handle candidate phrases that are not NE’s.

Given a sequence of boolean vectors r1, r2, ..., rm, which represent candi-
date phrases obtained following the postorder traversal of the representation
tree, we use a Conditional Markov Model (CMM) to obtain the class sequence



c1, c2, ..., cm that maximizes the probability P (c1, c2, ..., cm|r1, r2, ..., rm). We fol-
low the independence assumption adopted by Punyakanok and Roth [7]:

P (ct|rt, ..., r1, ct−1, ..., c1) = P (ct|rt, ct−1) (1)

That is, at step t, the probability of the phrase represented by rt to be classified
as ct depends on the representation itself and on the class given to the phrase
represented by the previous vector in the sequence.

In their work, Punyakanok and Roth split P (ct|rt, ct−1) into |C| functions
Pct−1(ct|rt). Here we do not follow this approach to prevent class unbalance
from causing data sparseness in estimating Pct−1(ct|rt) for some values of ct−1.
Instead, we codify ct−1 in terms of |C| additional features f

′

q+j : C → {0, 1}
(1 ≤ j ≤ |C|) such that

f
′

q+j(ct−1) =
{

1 if ct−1 = cj

0 otherwise (2)

and obtain a new vector r
′

t = (f1(Prt
), ..., fq(Prt

), f
′

q+1(ct−1), ..., f
′

q+|C|(ct−1)),
where Prt is the phrase whose representation is rt. The new vector is an extension
of rt, which allows us to express P (ct|rt, ct−1) = P (ct|r

′

t).
We use the variant of the Viterbi algorithm described by Punyakanok and

Roth to approximate the globally optimal solution.
In this paper, we consider two variants of our postorder traversal-based clas-

sification strategy. The first one consists in constructing a single sequence con-
taining all the nodes in the representation tree, except the root node when it
was artificially added. In what follows, we will refer to this variant as sentence-
level postorder traversal-based strategy. The second variant limits interactions to
those between phrases that belong to the same nested structure. In this variant,
for the most common case when the root node is artificial, a separate sequence
is obtained for each subtree corresponding to a child node of the root. Each
sequence thus obtained is processed independently during both training and
classification. Even though the whole sentence is not processed at once by using
this variant, contextual information may still be captured if syntax-dependent
features are used in describing phrases. We will refer to this variant as nested
structure-level postorder traversal-based strategy. Notice that if the root is not
an artificial node, both variants are equivalent.

Probability estimation is carried out using Maximum Entropy (ME). For
describing phrases, ME relies on a set of functions that depend not only on the
result of evaluating a boolean feature on the phrase but also on the class for
which the probability is estimated. We integrate our feature set into the ME
framework following the idea described by McCallum et al. [8]. Thus, for each
component r

′

t,i (1 ≤ i ≤ q + |C|) of the extended representation vector r
′

t and
each class cj ∈ C, a function

gi,j(r
′

t, ct) =
{

1 if r
′

t,i = 1 and ct = cj

0 otherwise
(3)

is constructed. We train the estimators using Generalized Iterative Scaling [9].



4 Experiments

The purpose of our experiments is three-fold. Firstly, we evaluate the usefulness
of syntax-dependent features for describing candidate phrases. Secondly, we com-
pare the behavior of the postorder traversal-based classification strategy, both
the sentence-level and the nested structure-level variants, against two bottom-up
strategies using the same probability estimator. Finally, we compare our results
to those reported for the NER subtask at SemEval 2007 Task 9 [5]. The Spanish
dataset for that subtask is used throughout our experiments.

4.1 Experimental setting

The Spanish dataset used for SemEval 2007 Task 9 is a subset of the CESS-ECE
corpus [10]. This subset contains 101,136 words in 3,611 sentences. The corpus
is annotated with POS tags, lemmas, syntactic constituents, syntactic functions,
named entities, verb argument structure, thematic roles, semantic classes of verbs
and WordNet synsets for the 150 most frequent nouns. The training/test corpus
size ratio is 9:1. The test corpus is furtherly split into two subsets, in-domain
and out-of-domain test corpora. The in-domain test corpus contains documents
covering the same domain as those of the training corpus, whereas the out-of-
domain test corpus contains documents from a different domain in order to assess
the systems adaptability.

Six types of named entities are annotated, namely person, organization,
location, number, date and other. Table 1 shows the distribution of the
different entity types throughout the corpus. In the table, test.in stands for in-
domain test corpus whereas test.out stands for out-of-domain test corpus.

Table 1. Distribution of NE types in the Spanish corpus for SemEval 2007 Task 9.

NE type training test.in test.out

person 1,953 116 72
organization 1,346 234 6
location 944 173 67
number 758 95 5
date 500 58 6
other 769 95 26

4.2 Results and discussion

Evaluation was carried out in terms of precision, recall and F1 measures in the
same way that it was done in SemEval 2007 Task 9. Table 2 shows the results
obtained in our experiments.

The first section of the table contains the results for several variations of the
tree traversal-based strategy. PO sent represents the sentence-level postorder



Table 2. Experimental results over the Spanish dataset of SemEval 2007 Task 9 corpus.

In-domain Out-of-domain Global
Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

PO struct LS 74.48 70.04 72.19 68.79 53.30 60.06 73.56 66.84 70.04
PO sent LS 73.76 69.26 71.44 67.61 52.75 59.26 72.75 66.11 69.27
BU glob LS 70.01 68.74 69.37 63.76 52.20 57.40 68.98 65.58 67.24
BU loc LS 67.60 69.00 68.26 61.49 54.40 57.73 66.56 66.21 66.39
PO sent L 64.94 63.68 66.67 64.86 52.75 58.18 69.06 61.59 65.11
PO struct L 69.89 63.81 66.71 64.19 52.20 57.58 68.90 61.59 65.04
BU loc L 65.75 68.48 67.09 56.04 56.04 56.04 63.96 66.11 65.02
BU glob L 68.65 64.20 66.35 61.49 54.40 57.73 67.35 62.33 64.74

UPC 72.53 68.48 70.45 62.03 53.85 57.65 70.65 65.69 68.08
baseline - - - - - - 71.88 12.07 20.66

traversal-based strategy, whereas PO struct represents the nested structure-
level postorder traversal-based strategy.

BU glob stands for a bottom-up strategy where two indepedence assump-
tions are considered. First, the class of a node is assumed to depend only on the
set of classes of its children. All class combinations are considered. Since the av-
erage number of children of non-leaf nodes in the representation trees obtained
from the test corpus is 1.34 and the maximum is six, running times for this
method still remain reasonable in spite of its asymptotically exponential nature.
To prevent data sparseness in considering a set of classes, the second assumption
consists in considering the classes of all children of a node mutually independent.
Under these considerations, a bottom-up dynamic programming method is used
over each nested structure to approximate a globally optimal set of classes for
all nodes.

On the other hand, BU loc stands for a bottom-up strategy where no dy-
namic programming is used. In classifying a node, the locally most probable class
according to the estimator is taken. The class given to a node is considered when
classifying its parent but the classification process is iterative and irrevocable.
This may be seen as an instance of the layering modeling technique [3] discussed
in Section 2.

The suffix L means that only locally evaluated features (POS tags, trigger
word dictionaries and gazetteers) were used to describe the candidate phrases.
The suffix LS means that both locally evaluated and syntax-dependent features
(syntactic functions and verb lemma dictionaries) were used.

The second section of the table contains results reported for the NER subtask
at SemEval 2007 Task 9. UPC stands for the only system presented to the com-
petition [6]. Additionally, the baseline results for the competition are presented.
The baseline consisted on collecting a gazetteer of NE’s from the training corpus
and recognizing those segments in the test corpus that had the longest match
with some of the NE’s in this gazetteer.

Columns 2 to 4 show precision, recall and F1, in that order, for the in-domain
test corpus. Similarly, columns 5 to 7 show the results for the out-of-domain test



corpus and columns 8 to 10 for the entire test corpus. In each section, results
are sorted by global F1. Only results on the entire corpus are available for the
baseline.

Several observations can be made after analyzing these results. First, we can
corroborate the possitive impact of using syntax-dependent features to describe
candidate phrases for the classification process. Global F1 values using both
locally evaluated and syntax-dependent features are always greater (between
1.37% and 5%) than those where only locally evaluated features were used.

A second important observation is that the postorder traversal-based classi-
fication strategy outperformed the bottom-up strategy in all cases sharing the
same feature set. We consider that the main reason for this phenomenon is that
the latter includes more independence assumptions than the former. Notice that
when syntax-dependent features are used, the differences between global F1 val-
ues are greater (between 2.03% and 3.65%) than those for the case when only
locally evaluated features are used (between 0.02% and 0.31%). This suggests
that syntax-dependent features enhance the postorder traversal-based classifica-
tion strategy.

Regarding the postorder traversal-based strategy, we can also observe that
when syntax-dependent features are used, the nested structure-level variant
works better than the sentence-level variant whereas the opposite situation oc-
curs when only locally evaluated features are used. Although we consider that
these results cannot be taken to be conclusive in that aspect as yet because the
differences are not very considerable, there are some ideas that might explain the
situation. When only locally evaluated features are used, constructing a single
sequence for the whole tree may help the classification process by providing more
contextual information. On the other hand, syntax-dependent features contain
contextual information per se and, in this case, it is possible that some amount
of noise is added if we also consider dependences between phrases that may not
be directly related by the clause-governing verb.

As can be largely expected, results over the in-domain corpus are better than
those over the out-of-domain corpus in all cases.

Finally, when syntax-dependent features were used, the two variants of the
postorder traversal-based classification strategy outperformed the results re-
ported for the UPC system that participated in the SemEval competition. Re-
garding the competition baseline, the conservative nature of the method results
in very low recall, which causes the F1 value to be very low. According to F1

values, this baseline is largely outperformed by the proposed method as well as
by the UPC system. However, it should be noticed that UPC obtains a preci-
sion value below that of the baseline, whereas our syntax-dependent postorder
traversal-based method outperforms the baseline in both precision and recall.

5 Conclusions

In this work, Spanish nested NER has been addressed. Unlike most approaches
to nested NER, our method treats the classification of all phrases in a nested



structure as a single problem in order to obtain a near-to-globally optimal solu-
tion. We propose a tree representation for the set of candidate phrases in which
syntactic information, both structural and functional, is encoded. In our opin-
ion, the main contribution of this work is the proposal of a global classification
strategy based on the postorder traversal of this representation tree.

Experimental results on the Spanish dataset for the SemEval 2007 Task 9
NER subtask show the validity of our postorder traversal-based classification
strategy and the usefulness of syntactic information in describing phrases for
the classification process.

In order to improve these results, an attractive direction for future work
is the use of semantic information, such as verb senses, verb semantic classes,
noun senses for trigger words, semantic roles, etc., in order to turn syntax-
dependent features into semantic features. For example, if verb sense information
is combined with verb lemma dictionaries in an appropriate way, results are likely
to improve. Similarly, it may be helpful to use semantic roles instead of (or in
combination with) syntactic functions.
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