
Semi-automatically Augmenting Attack Trees
using an Annotated Attack Tree Library

Ravi Jhawar2, Karim Lounis1, Sjouke Mauw1,2, and Yunior Ramı́rez-Cruz2

1CSC, 2SnT, University of Luxembourg
6, av. de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg

{ravi.jhawar, karim.lounis, sjouke.mauw, yunior.ramirez}@uni.lu

Abstract. We present a method for assisting the semi-automatic cre-
ation of attack trees. Our method allows to explore a library of attack
trees, select elements from this library that can be attached to an at-
tack tree in construction, and determine how the attachment should be
done. The process is supported by a predicate-based formal annotation
of attack trees. To show the feasibility of our approach, we describe the
process for automatically building a library of annotated attack trees
from standard vulnerability descriptions in a publicly available online
resource, using information extraction techniques. Then, we show how
attack trees manually constructed from high level definitions of attack
patterns can be augmented by attaching trees from this library.
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1 Introduction

Attack trees are a well known graphical security model [19, 20, 15, 18, 11], wi-
dely used in industry and academia for modelling threats and conducting risk
assessment [22]. In an attack tree, the root represents the goal of an attacker,
which is refined into subgoals, represented by its children, each of which may
be in turn subdivided into subgoals, and so on. Originally, two types of refine-
ments were considered: disjunctive refinements, which represent the existence of
several alternative ways of achieving a (sub)goal; and conjunctive refinements,
which represent the need of jointly achieving a set of subgoals. Extensions of
this model include the definition of new types of refinements, such as sequential
conjunctions [16, 13, 24] and parallel disjunctions [12], as well as the possibility
to insert countermeasures into the tree structure [11].

Due to their graphical nature, attack trees are a convenient tool for the des-
cription and presentation of attack scenarios in an easy-to-understand manner.
Additionally, they have been equipped with formalisms for conducting quantita-
tive risk analysis [4, 10, 7]. However, the model has not seen a widespread adop-
tion in real-world risk analysis settings. The major factor behind this problem
is the set of challenges faced when creating attack trees. Two main approaches



have been followed for creating attack trees. They differ from each other in the
balance between human effort and automation. On the one hand, a completely
manual process [4, 22] is time- and labour-intensive, whereas on the other hand,
completely automated approaches [23, 9, 8, 17, 5] tend to create trees that are too
large, are hard to understand by humans, and have a hierarchical structure that
does not fit the notion of refinement that analysts have, among other problems.

In this paper we explore one of the possible intermediate paths, where a part
of the construction process is manually conducted by the experts and other parts
are performed automatically. We view the construction of an attack tree as a
semi-automatic process composed of the following steps:

1. A group of experts manually defines an initial version of the tree.
2. Some automated mechanism is used to enhance this tree using appropriate

external resources.
3. The experts manually curate the new version of the tree.
4. Steps 2 and 3 are repeated until the final version of the tree is obtained.

The work presented in this paper focuses on the automatic component of this
process, i.e. step number 2. Our goal is to provide a mechanism allowing the
expert to profit from existing attack trees during the construction of a new one.
To that end, we propose a method for augmenting an existing attack tree by
attaching subtrees taken from a library, which is composed of existing attack
trees. To support this process, we introduce an annotation of attack trees ba-
sed on predicates representing the notions of assumptions and guarantees. This
annotation is used to determine how the trees in the library can be attached
to the tree in construction. The idea of formally annotating attack trees is not
new. For example, Audinot et al. [1] use predicates representing pre-conditions
and post-conditions on a state transition system to evaluate whether an attack
tree is correct according to a system description. The purpose of our annotation
is different. In our case, we do not have a system description, but a set of facts
that are known to be true in the environment for which the tree is being con-
structed. More importantly, our annotation is not directly evaluated against a
system model. Instead, we use it to decide whether, and how, a library tree can
be used for augmenting the original attack tree.

Our contributions. This paper presents the following main results:

– We define a predicate-based annotation scheme for attack trees that allows
to determine whether, and how, an attack tree can be attached to another
as a subtree.

– We propose a method for augmenting an annotated attack tree by attaching
annotated subtrees from a library.

– We develop an instantiation of our approach, whose contributions are two-
fold:
• We describe the process of automatically creating a large library of struc-

turally simple annotated attack trees from a publicly available resource,
the National Vulnerability Database1 (NVD).

1 https://nvd.nist.gov/General



• We demonstrate the use of this library to augment annotated attack
trees manually constructed from standard attack pattern specifications,
thus linking two existing resources, the NVD and the Common Attack
Pattern Enumeration and Classification2 (CAPEC).

The remainder of this paper is structured as follows. Section 2 introduces the
main concepts used throughout the paper, along with our annotation scheme
for attack trees. Then, Section 3 is devoted to the description of our method
for augmenting an attack tree with trees from a library. Finally, we present
the aforementioned instantiation of our method in Section 4 and provide our
conclusions in Section 5.

2 Annotated attack trees

We will first introduce the terminology and definitions used throughout the pa-
per. An attack tree is a rooted tree that graphically describes an attack scenario.
The root of an attack tree represents the global goal of the attacker and the child-
ren of every node represent a set of subgoals, referred to as refinements, of the
(sub)goal represented by that node. Finally, leaf nodes represent basic actions
that can be executed by the attacker.

Let B represent the set of basic actions and let the symbols 5 and 4 repre-
sent, respectively, disjunctive and conjunctive refinements. An attack tree is a
closed term on the signature B ∪ {5,4}, generated by the grammar

t ::= b|5(t, . . . , t)|4(t, . . . , t) (1)

where b ∈ B. Figure 1 shows an example of an attack tree, which describes the
CAPEC attack pattern 263, Force Use of Corrupted File3, which describes an
attack scenario where an application is forced to use a file that an attacker has
corrupted, either by corrupting the sensitive file and waiting for the application
to reload it, or by forcing the application to restart, thus reloading the file.

As we discussed previously, when manually constructing an attack tree, in-
tuitive labels are often assigned to the nodes. While these labels may facilitate
readability and visual analysis, they are informal, so it is not convenient to use
them for automatically deciding whether a subgoal is susceptible of being refi-
ned, discriminate between several plausible refinements, etc. [1, 6]. To overcome
this limitation, here we propose a formal annotation for the nodes of an attack
tree. This annotation consists of pairs of predicates representing assumptions
and guarantees. Assumptions encode properties assumed to hold in the contexts
where the (sub)goal represented by each node is feasible, whereas guarantees are
conditions that are ensured to hold if this (sub)goal is achieved. For example,
in the tree shown in Figure 1, consider the subgoal labelled as Force restart of
application. Intuitive examples of assumptions that this subgoal may be labelled

2 https://capec.mitre.org/index.html
3 https://capec.mitre.org/data/definitions/263.html



Force use of
corrupted file

Replace file on the fly

Replace legit file
by corrupted version

Replace file and restart application

Replace legit file
by corrupted version

Force restart
of application

Fig. 1. An attack tree representing CAPEC attack pattern 263.

with are those describing the operating system on which the target application
runs. Likewise, an example of a guarantee for that subgoal is that the appli-
cation is writing its output to a specific directory. While these examples are
useful for illustrative purposes, it is clear that the nature of the assumptions
and guarantees to use for the annotation needs to be expressible in a language
that allows for effectively automatic processing. Examples of such languages are
decidable subsets of first order logic. In Section 4, we will discuss a particular
implementation of our approach that uses Prolog facts, automatically generated
from publicly available information sources, as assumptions and guarantees.

In what follows, we will first formalise the notion of annotated attack tree,
and then we will discuss the notion of consistency, which will be used for cha-
racterising valid annotations of attack trees. The consistency of annotations will
play a key role in determining whether, and how, an attack tree can be attached
to another one.

Let E be a set of predicates, or facts, and as above let B represent the set of
basic actions. Additionally, we will use the symbol ⊥ to represent a contradiction.
An annotated attack tree is defined by the grammar

t ::= (p, q, b) | (p, q,5(t, . . . , t)) | (p, q,4(t, . . . , t)) (2)

where p, q ∈ E and b ∈ B. In what follows, we will denote by T the set of all
annotated attack trees. We define the functions ϕ : T → E and ψ : T → E , which
yield the assumptions and guarantees, respectively, associated to the root of an
annotated attack tree, that is ϕ(t) = p and ψ(t) = q.

Now, let Γ ⊆ E . We say that Γ is consistent if Γ 6` ⊥, that is, no contradicti-
ons are inferable from Γ . The purpose of Γ is to encode known properties of the
environment in which the attacks described by the attack tree may take place.
For example, when describing attacks on a computer system, the predicates in Γ
may encode knowledge about the hardware and software, such as the operating
system in use, the libraries and applications that have been installed, etc. Now



consider, for example, that according to Γ the operating system is UNIX, and we
have an attack tree t that, according to the assumptions ϕ(t), describes attacks
that exploit a vulnerability in a Windows library. Arguably, t does not repre-
sent a viable attack in this setting. An analogous reasoning is also valid for the
guarantees. We also deem reasonable to discard the possibility of refining some
subgoal of a tree with subtrees labelled with contradictory assumptions. Taking
back the previous example, if a subgoal specifies the assumption that the ope-
rating system is UNIX, it makes no sense refining it with subtrees labelled with
the assumption that the operating system is Windows. Additionally, we argue
that, in a disjunctive refinement, the guarantees of a node should be inferable,
in the context of Γ , from those of each subgoal; whereas the guarantees of a con-
junctively refined node should be inferable from those of its subgoals combined.
Finally, the guarantees for the subgoals of a conjunctively refined subgoal must
not be in contradiction. We formalise the rationales discussed above as follows.

Definition 1. Let t be an annotated attack tree and let Γ be a set of facts. We
say that the annotation of t is consistent with Γ , and write ConsAnnot(t, Γ ), if
the following conditions hold:

ConsAnnot((p, q, b), Γ ) = Γ, p, q 6` ⊥ (3)

ConsAnnot((p, q,5(t1, . . . , tn)), Γ ) = ∀1≤i≤n [Γ, p, ϕ(ti) 6` ⊥]∧ (4)

∧ ∀1≤i≤n [ConsAnnot(ti, Γ )]∧
∧ ∀1≤i≤n [Γ, ψ(ti) ` q]

ConsAnnot((p, q,4(t1, . . . , tn)), Γ ) = Γ, p, ϕ(t1), . . . , ϕ(tn) 6` ⊥ ∧ (5)

∧ ∀1≤i≤n [ConsAnnot(ti, Γ )]∧
∧ Γ, ψ(t1), . . . , ψ(tn) 6` ⊥ ∧
∧ Γ, ψ(t1), . . . , ψ(tn) ` q

This definition of consistency will play a central role in our method for aug-
menting an attack tree using trees from a library. As we will discuss in the fol-
lowing section, our method will receive as inputs consistently annotated attack
trees, and it will ensure that the augmented tree obtained as output continues
to be consistently annotated.

3 Using a library of annotated attack trees for
augmenting an annotated attack tree

As we discussed in the introduction, we view the construction of an attack tree
as a semi-automatic process composed of four steps, out of which we focus on
the second one, namely the use of an automated mechanism to augment a ma-
nually produced and/or curated version of an annotated attack tree, with the
aid of appropriate external resources. Let t represent the current version of the
annotated attack tree in construction. As we discussed in the previous section,



the annotation of t is consistent with a given set of facts Γ . We define a library
of consistently annotated attack trees as a set

L ⊆ {t′ : t′ ∈ T ∧ t′ 6= t ∧ ConsAnnot(t′, Γ )}. (6)

In Section 4 we will describe in detail an example of how a large library of
annotated attack trees can be constructed. Now, we will focus on describing how
such a library can be used for augmenting an existing attack tree.

Given an annotated attack tree t an a library tree `, the purpose of our
method is to select a set of subtrees s1, s2, . . . , sk in t, and add ` to the set
of children of the roots of each si, thus obtaining a new tree t′ identical to t,
except for the fact that every (sub)goal represented by s1, s2, . . . , sk contains `
as an additional subgoal. In these cases, we will say that ` has been attached
to t as a subgoal of s1, s2, . . . , sk. For example, recall the attack tree depicted
in Figure 1. If the library contains an attack tree describing how to remotely
restart an application and another one describing how to presentially access a
system and restart an application, both library trees can be attached to t as a
disjunctive refinement of the leaf node labelled as Force restart of application.

The proposed method deals with two types of decisions. First, determining
the subtrees of t to which library trees may be attached, and second, determi-
ning which library trees can be attached to those subtrees without violating the
consistency of the annotation of the resulting tree.

Regarding the first issue, we consider two cases in which a library tree can
be attached to a subtree s of t. The first case is that of an internal node which
is disjunctively refined. In this case, we will allow a library tree to be added
as an additional child of s. Doing this can be interpreted as providing a new
alternative for achieving the subgoal represented by s. The second case is that of
leaf nodes. In this case, we will allow a library tree to be attached as a singleton
disjunctive refinement, so additional library trees can be attached afterwards.
We deem it unnecessary to add subtrees to conjunctively refined internal no-
des. The reason for this is the following. If a (sub)tree s of t has the form
(p, q,4(t1, . . . , tk)), then from the fact that its annotation is consistent with Γ
we have that Γ, ψ(t1), . . . , ψ(tk) ` q. That is, the current subtrees already ensure
all expected guarantees, so adding a tree ` will be redundant.

The second type of restriction limits the choices of library trees that can be
attached to t. We will require that the annotation of the new tree t′ obtained
from t by attaching some library tree ` continues to be consistent with Γ . In
order to avoid evaluating the consistency predicate every time we need to assess
whether a library tree can be attached to t, we introduce the auxiliary predicate
Attachable(`, s, Γ ) for a subtree s of t and a library tree ` ∈ L:

Attachable(`, s, Γ ) = [Γ, ϕ(s), ϕ(`) 6` ⊥]∧ [Γ, ψ(`) ` ψ(s)] (7)

The purpose of this predicate is to evaluate whether ` can be attached to t as
part of a disjunctive refinement of s. As we will show next, if Attachable(`, s, Γ )
holds, then the tree obtained by attaching ` to t as a part of a disjunctive



refinement of s continues to be consistently annotated with respect to Γ , which
is the condition that we require.

Theorem 1. Let t, t′ ∈ T be two attack trees consistently annotated with re-
spect to a set of facts Γ and let s be a subtree of t such that either s =
(p, q,5(t1, . . . , tk)) or s = (p, q, b). Then, if Attachable(t′, s, Γ ) holds, the an-
notation of the tree obtained from t by attaching t′ as a subtree of s is also
consistent with Γ .

Proof. We first address the case where s is a disjunctively refined internal node
of t. Let s′ = (p, q,5(t1, . . . , tk, tk+1)), with tk+1 = t′, be the result of adding
t′ as a subtree of s in t; and let t′′ be the annotated attack tree identical to t,
except that s has been replaced by s′. From the consistency of the annotation
of t, we have that

∀1≤i≤k [Γ, p, ϕ(ti) 6` ⊥]∧ ∀1≤i≤k [ConsAnnot(ti, Γ )]∧ ∀1≤i≤k [Γ, ψ(ti) ` q] .

Moreover, since we assume that Attachable(t′, s, Γ ) holds, we have that

[Γ, p, ϕ(tk+1) 6` ⊥]∧ [Γ, ψ(tk+1) ` q] .

Finally, according to the premises of the theorem, ConsAnnot(ti+1, Γ ) holds,
so we can conclude that

∀1≤i≤k+1 [Γ, p, ϕ(ti) 6` ⊥]∧ ∀1≤i≤k+1 [ConsAnnot(ti, Γ )]∧ ∀1≤i≤k+1 [Γ, ψ(ti) ` q] .

Thus, ConsAnnot(s′, Γ ) holds and, as a consequence, the new attack tree t′′

is also consistently annotated with respect to Γ .
We now assume that s is a leaf node of t, and make s′ = (p, q,5(t′)). Again,

we have that [Γ, p, ϕ(t′) 6` ⊥]∧ [Γ, ψ(t′) ` q] (because Attachable(t′, s, Γ ) holds)
and ConsAnnot(t′, Γ ) holds because of the premises of the theorem. Conse-
quently, we have that

[Γ, p, ϕ(t′) 6` ⊥] ∧ ConsAnnot(t′, Γ ) ∧ [Γ, ψ(t′) ` q]

so ConsAnnot(s′, Γ ) holds and, as a consequence, also does ConsAnnot(t′′, Γ ).
The proof is thus complete. ut

With the previous definitions and results in mind, we now specify our tree
augmentation strategy.

Definition 2. Let t and ` be two attack trees consistently annotated with respect
to a set of facts Γ . We define the function r : T × T → T as follows:

r((p, q, b), `) =

{
(p, q,5(`)) if Attachable(`, (p, q, b), Γ )
(p, q, b) otherwise

(8)

r((p, q,4(t1, . . . , tn)), `) = (p, q,4(r(t1, `), . . . , r(tn, `))) (9)



r((p, q,5(t1, . . . , tn)), `) =

=

 (p, q,5(t1, . . . , tn, `)) if ∀1≤i≤n [r(ti, `) = ti] ∧
∧ Attachable(`, (p, q,5(t1, . . . , tn)), Γ )

(p, q,5(r(t1, `), . . . , r(tn, `))) otherwise
(10)

For an annotated attack tree t and an annotated library tree `, r(t, `) yields
an annotated attack tree which is identical to t, except that ` has been attached
to zero or more of its subtrees. From the definition of r(t, `), note that when ` is
attachable to a disjunctively refined node and also to some other node(s) in one
or several of its subtrees, we only attach ` to the subtree(s), as far from the root
as possible. This is simply a design choice, aiming to prevent an excessive growth
of t, and doing the opposite would not be incorrect in terms of the consistency
of the annotation of the resulting tree.

The function r(t, `) can be efficiently computed by doing a post-order tra-
versal of the structure of t. The time complexity of this operation is linear with
respect to the number of nodes in t. Note, however, that its actual running time
depends on that of the evaluation of the Attachable predicate, for which we will
describe an efficient implementation in Section 4. As a final remark, note that
the curator of the augmented tree may prefer to collapse singleton disjunctive
refinements introduced by the our method, as this operation helps to reduce
the size of the final tree. However, keeping the original tree as a subtree of the
augmented one may be convenient in terms of readability, as we will see in the
following section.

4 An instantiation of the proposed method using publicly
available resources

In order to showcase the viability and usefulness of the proposed method, we first
describe the process by which we created an annotated attack tree library from a
publicly available database of vulnerability descriptions. Then, we discuss a case-
study where this library is used for augmenting manually constructed annotated
attack trees that describe well-known high level attack patterns.

We created the library from a subset of the entries of the NVD (National
Vulnerability Database). This database contains a standardised repository of
vulnerability descriptions, as defined by the CVE (Common Vulnerability and
Exposures) List4, enriched with meta-data such as platform information, severity
scores, etc. NVD is publicly available5 and its contents are frequently updated.

For our case-study, we used the releases of the database covering five years,
from 2013 until the update corresponding to October 31st, 2017. This selection

4 http://cve.mitre.org/cve/
5 Available in https://nvd.nist.gov/vuln/data-feed. The data feeds are available

in JSON and XML formats. For this case-study, we used the JSON releases.



contains 39,995 CVE’s. We filtered the initial set of CVE’s to discard those
whose descriptions fail to comply with syntactic patterns that facilitate reliable
automatic processing (as will be described in the next subsection) and obtained
a final collection of 23,473 CVE’s. From each of those, we created an entry in the
annotated attack tree library. These entries can be seen in two manners. On the
one hand, we can interpret each entry as a single-node tree specifying the action
Exploit the vulnerability described by CVE-YYYY-XXXX. On the other hand,
we can assume that further refinements of this action exist (or can be manually
specified if needed) since the meta-data associated to CVE’s contain a number of
links to websites, some of which provide actual refinements in the form of detailed
instructions, source code, etc. For the sake of simplicity, since our focus in this
paper lies on the mechanisms to match library trees to subgoals of the attack
tree being constructed, in our case-study we populated the library with single-
node trees, annotated with assumptions and guarantees automatically extracted
from the CVE’s descriptions and meta-data.

Once the library was constructed, we manually defined high-level annotated
attack trees that describe attack patterns from the Common Attack Pattern
Enumeration and Classification (CAPEC), and automatically obtained augmen-
ted versions by attaching trees from the library.

In this instantiation of our method, and for the case study, we used Prolog
(specifically SWI-Prolog6) to encode the assumptions and guarantees in the li-
brary trees. We also implemented in Prolog the rules to evaluate the predicate
Attachable. A pipeline of Python scripts7, along with the Stanford CoreNLP
toolkit [14, 2], version 3.8.08, was used for the automatic library construction.
Finally, the implementation of the function r(t, `) was written in Python, and the
freely available module PySWIP9 was used to interact with the Prolog engine.

4.1 Automatic library construction

As we mentioned above, each tree in the library has the form ti = (pi, qi, bi)
and represents the action of exploiting a known vulnerability, as described by
some CVE. We now discuss how the predicates for the assumptions pi and the
guarantees qi are generated. The assumption predicates are a disjunction of facts
of the form

affectedPlatform(cve, [vendor, product, version])
affectedPlatform(cve, [vendor, product])

extracted from the meta-data associated to the CVE, which uses the unam-
biguous Common Platform Enumeration10 (CPE) naming scheme for systems,

6 http://www.swi-prolog.org/
7 The code and resources developed for our implementation are available at
https://github.com/yramirezc/lib-annotated-attack-trees

8 https://stanfordnlp.github.io/CoreNLP/history.html
9 https://github.com/yuce/pyswip

10 https://nvd.nist.gov/Products/CPE



applications, libraries, etc. For example, the metadata of NVD entry CVE-2017-
6191 states that it affects the platform described as

cpe : 2.3 : a : apng dis project : apng dis : 2.8 : ∗ : ∗ : ∗ : ∗ : ∗ : ∗ : ∗.

From this metadata information, we generate the two following facts:

affectedPlatform(cve 2017 6191, [apng dis project, apng dis, 2.8])
affectedPlatform(cve 2017 6191, [apng dis project, apng dis]).

We now describe the generation of the guarantee predicates. Each guarantee
is a conjunction of facts of the form

allowedAction(cve, [s, v, o])

where each triple [s, v, o] represents an action. In order to obtain these triples,
we used simple, yet highly reliable information extraction techniques, based on
analysing the dependency trees of those sentences in the CVE descriptions whose
syntactic structure matches some well-defined patterns.

The dependency tree of a sentence is a directed rooted tree that hierarchally
organises (a subset of the) words according to their roles in the syntactic struc-
ture of the sentence. The edges of the dependency tree are called dependencies,
and are labelled with information about the syntactic relation between the cor-
responding words. As an example, consider the following sentence, which is the
description of the previously mentioned CVE-2017-6191:

Buffer overflow in APNGDis 2.8 and below allows a remote attacker to
execute arbitrary code via a crafted filename.

Figure 2 shows the dependency tree of this sentence.

Fig. 2. Dependency tree of the description of CVE-2017-6191.

Several tools are available for performing dependency analysis. As we men-
tioned above, in this case-study we used the dependency parser module of the



well-known Stanford CoreNLP toolkit [14, 2], version 3.8.0. The description of
CVE-2017-6191 exemplifies the standardised language used in the subset of NVD
entries that we selected for constructing the library. Even though these des-
criptions are given in natural language, they all contain at least one sentence
whose dependency tree contains as a subtree one of the structures depicted in
Figure 3 (a).

(a) Extraction pattern. (b) Instance in descrip-
tion of CVE-2017-6191.

Fig. 3. Subtree-based extraction pattern used for obtaining guarantee predicates, and
its instantiation in the description of CVE-2017-6191.

In the figure, solid arrows represent dependencies that must necessarily occur,
whereas dashed arrows represent dependencies that may or may not occur. The
labels NN, VB and JJ are the standard part-of-speech tags for nouns, verbs and
adjectives, respectively; whereas the relevant dependency labels are dobj, xcomp,
amod, compound and nmod:of. For a detailed description of the meaning of
these labels and the linguistic foundation underlying them, we refer the reader
to Appendix A and the works in [21, 3]. In subtrees with this structure, the
direct object complement of the main verb (to allow) is the subject of the action
represented by the open clausal complement (xcomp). Considering this, for every
substructure of this type that we found, we generated a fact of the form

allowedAction(cve, [[w1, . . . , wt], vb, [w
′
1, . . . , w

′
t′ ]]),

where [w1, . . . , wt] contains the set of nouns and adjectives in the subject of vb,
whereas [w′1, . . . , w

′
t′ ] contains the set of nouns and adjectives in the direct object

complement. Following standard practices in information extraction, in all cases
we collapsed nouns, verbs and adjectives to their canonical forms, or lemmas.
As an example of the fact extraction process, recall the dependency tree of the
description of CVE-2017-6191, shown in Figure 2. This tree contains as a subtree



the structure depicted in Figure 3 (b), as a result of which we generate the fact

allowedAction(cve 2017 6191, [[attacker, remote], execute, [code, arbitrary]]).

4.2 Manual annotation of original trees and evaluation of the
Attachable predicate

We now describe the manual annotation of assumptions and guarantees that
must be conducted on the original trees so they can be augmented with trees
from the library. To label assumptions, we used facts of the form

assumedPlatforms([p1, . . . , pt]),

where each pi is a (possibly partial) platform specification. For its part, to label
guarantees we used facts of the form

requiredActions([[s1, v1, o1], . . . , [st, vt, ot]]).

Aside from the manual annotation of any particular tree, we additionally
specified a common set of Prolog rules for evaluating the predicate Attachable

on any tree. By means of these rules, we make

Γ, assumedPlatforms([p1, . . . , pt]), affectedPlatform(cve, p) ` ⊥

if p matches no pi, 1 ≤ i ≤ t. In this case, Attachable evaluates to false;
otherwise, the result depends on the evaluation of the assumptions. By p ma-
tching pi, we mean that p refers to the same vendor as pi, as well as to the
same product and version, if pi specifies each of these pieces of information.
If pi only specifies partial information, e.g. vendor only, and it coincides with
the equivalent pieces of information in p, then p is also considered to match pi.
For example, [cisco, residential gateway firmware] matches itself, as well as
[cisco]. For experimental purposes, we additionally allow the assumptions label
of some nodes of the tree to be one of the facts attachNothing, which always
makes Attachable evaluate to false; and attachAnything, which makes the
final result depend on the evaluation of the guarantees. Finally, according to the
defined rules, we make

Γ, allowedAction(cve, [s1, v1, o1]), . . . , allowedAction(cve, [st, vt, ot])
` requiredActions([[s1, v1, o1], . . . , [st′ , vt′ , ot′ ]])

if every required action [si, vi, oi] matches an allowed action [sj , vj , oj ]. In this
case, a match exists if vi and vj are identical, si and sj satisfy set equality, and
so do oi and oj . For example, the action [[remote, attacker], overwrite, [file]]
matches [[attacker, remote], overwrite, [file]], but does not match [[attacker],
overwrite, [file]]. For experimental purposes, we additionally allow the gua-
rantees label of some nodes of the tree to be the fact everythingGuaranteed,
which makes the final result depend on the compliance of the library tree with
the assumptions.



4.3 An example of the execution of our method

We now discuss in detail one example to show the characteristics of the augmen-
ted trees that can be obtained by our method. In order to manually create an
initial attack tree, we selected from CAPEC the meta-attack pattern no. 165,
File Manipulation, an instance of the category 262, Manipulate System Resour-
ces. Among the instances of this meta-attack pattern, we selected the attack
pattern no. 263, Force Use of Corrupted Files, which has been discussed in pre-
vious sections (recall Figure 1 for reference).

We created the following four different annotated versions of this tree, which
differ from each other in the assumptions used for labelling the leaf nodes:

i. All leaf nodes are labelled with attachAnything.
ii. All leaf nodes are labelled with assumedPlatforms([[cisco]]).

iii. All leaf nodes are labelled with assumedPlatforms([[theforeman, foreman]]).
iv. All leaf nodes are labelled with assumedPlatforms([[theforeman, foreman],

[cisco]]).

For all four annotation variants, we specified the same guarantee annotation.
Recall from Figure 1 that this attack tree has three leaf nodes, two of them
labelled as Replace legit file by corrupted version and the other one labelled as
Force restart of application. For simplicity, we will refer to the former two leaf
nodes as b1 and b2, and to the latter as b3. We labelled both b1 and b2 with the
guarantee

requiredActions([[[remote, attacker], overwrite, [arbitrary, file]]]),

whereas b3 was labelled with the guarantee

requiredActions([[[remote, attacker], execute, [arbitrary, command]]]).

Once the manual annotations were complete, we iteratively applied the funct-
ion r(t, `) on each annotated variant for every library tree. Table 1 summarises
the number of library trees attached by applying the augmentation process to
each annotated variant.

Variant Attached to b1 Attached to b2 Attached to b3 Total attached

i 10 10 182 202
ii 1 1 11 13
iii 1 1 2 4
iv 2 2 13 17

Table 1. Number of library trees attached to each annotated tree variant.

In every case, the leaves of the original annotated tree are now disjunctively
refined with sets of library trees indicating which NVD vulnerabilities may be



exploited to obtain the respective subgoals. As expected, for the first variant,
which sets no a priori assumptions about the environment where the attack will
be executed, the augmented tree is considerably large, which in turn makes it
difficult to be read and used by human analysts. The remaining variants, by
fine-tuning the platform-related assumptions, result in smaller augmented trees,
which are not only easier to read and analyse by humans, but are arguably better
suited to each specific scenario. To illustrate the output of our method, Figure 4
shows the augmented tree obtained for the annotated variant iii.

Force use of
corrupted file

Replace file on the fly

Replace legit file
by corrupted version

Exploit
CVE-
2014-
4507

Replace file and restart application

Replace legit file
by corrupted version

Exploit
CVE
2014-
4507

Force restart
of application

Exploit
CVE-
2013-
0210

Exploit
CVE-
2014-
0007

Fig. 4. Augmented tree obtained for the annotated variant iii.

5 Conclusions and future work

In this paper we have presented a method for assisting the semi-automatic cre-
ation of attack trees by augmenting an attack tree with subtrees from a library.
The process is supported by an annotation of attack trees based on assumption
and guarantee predicates. We have showcased the feasibility of our approach
by automatically generating a library of attack trees from standardised vulne-
rability descriptions in the NVD, and using trees from this library to augment
a manually constructed annotated attack tree representing a high level attack
pattern described in CAPEC.

The results presented in this paper can be extended in several interesting
ways. For example, similar approaches may be useful for automatically genera-



ting libraries of countermeasures, which can in turn be used to augment attack-
defence trees or to convert an attack tree into an attack-defence tree by semi-
automatically attaching countermeasures. Moreover, in the instantiation of our
method presented in Section 4, we can move from the current static library to
a dynamic one, by exploiting the syndication services provided by NVD, which
allow to access new and updated CVEs when they are available. A dynamic
library would in turn allow analysts to maintain dynamic attack trees, which is
an interesting research subject on its own.
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A List of dependency labels used in Section 4

These are the relevant dependency labels used in Subsection 4.1 for the ex-
traction patterns that enable the automatic generation of guarantee predicates
for the library trees:

– dobj : main noun of the direct object complement.
– xcomp: main verb of an open clausal complement. This is the relation bet-

ween the main verb of the sentence (to allow in the cases processed here)
and the main verb of a subordinate sentence serving as clausal complement
(in this case, the subordinate sentence describing the action that is allowed).

– amod : adjectival noun modifier. This is the relation between the main noun
of a noun phrase and an adjective that qualifies it, e.g remote and attacker
or arbitrary and code.

– compound : noun compound modifier. Similar to the previous one, but re-
ferred to a composition of nouns, one of which modifies the other, e.g. the
relation between service and denial in the noun phrase service denial.

– nmod:of : head of prepositional noun modifier introduced by the preposition
of. Similar to the previous one, but referred to the composition of a noun
and a prepositional phrase that modifies it, e.g. the relation between service
and denial in the noun phrase denial of service.


