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Abstract

We consider algorithmic problems in a distributed setting where the
participants cannot be assumed to follow the algorithm but rather their
own self-interest. As such participants, termed agents, are capable of
manipulating the algorithm, the algorithm designer should ensure in
advance that the agents’ interests are best served by behaving correctly.

Following notions from the field of mechanism design, we suggest a
framework for studying such algorithms.

In this model the algorithmic solution is adorned with payments to
the participants and is termed a mechanism. The payments should be
carefully chosen as to motivate all participants to act as the algorithm
designer wishes. We apply the standard tools of mechanism design to
algorithmic problems and in particular to the shortest path problem.

Our main technical contribution concerns the study of a representa-
tive task scheduling problem for which the standard mechanism design
tools do not suffice.

We present several theorems regarding this problem including an
approximation mechanism, lower bounds and a randomized mecha-
nism. We also suggest and motivate extensions to the basic model and
prove improved upper bounds in the extended model.

Many open problems are suggested as well.

Journal of Economic Literature classification numbers: C60, C72, D61,
D70, D80.
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1 Introduction

1.1 Motivation

A large part of research in computer science is concerned with protocols

and algorithms for inter-connected collections of computers. The designer

of such an algorithm or protocol always makes an implicit assumption that

the participating computers will act as instructed – except, perhaps, for the

faulty or malicious ones.

With the emergence of the Internet as the platform of computation, this

assumption can no longer be taken for granted. Computers on the Internet

belong to different persons or organizations and will likely do what is most

beneficial to their owners. We cannot simply expect each computer on the

Internet to faithfully follow the designed protocols or algorithms. It is more

reasonable to expect that each computer will try to manipulate it for its

owners’ benefit. Such an algorithm or protocol must therefore be designed

in advance for this kind of behavior! Let us sketch two example applications

we have in mind:

Load balancing

The aggregate power of all computers on the Internet is huge. In

a “dream world” this aggregate power will be optimally allocated online

among all connected processors. One could imagine CPU-intensive jobs au-

tomatically migrating to CPU-servers, caching automatically done by com-

puters with free disk space, etc. Access to data, communication lines and

even physical attachments (such as printers) could all be allocated across

the Internet. This is clearly a difficult optimization problem even within

tightly linked systems, and is addressed, in various forms and with varying

degrees of success, by all distributed operating systems. The same type

of allocation over the Internet requires handling an additional problem: the

resources belong to different parties who may not allow others to freely
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use them. The algorithms and protocols may, thus, need to provide some

motivation for these owners to “play along”.

Routing

When one computer wishes to send information to another, the data

usually gets routed through various intermediate routers. So far this has

been done voluntarily, probably due to the low marginal cost of forwarding

a packet. However, when communication of larger amounts of data becomes

common (e.g. video), and bandwidth needs to be reserved under various

quality of service (QoS) protocols, this altruistic behavior of the routers may

no longer hold. If so, we will have to design protocols specifically taking the

routers’ self-interest into account.

1.2 This Work

In this paper we propose a formal model for studying algorithms that as-

sume that the participants all act according to their own self-interest. We

adopt a rationality-based approach, using notions from game theory and

micro-economics, and in particular from the field of mechanism design. We

assume that each participant has a well defined utility function1 that rep-

resents its preference over the possible outputs of the algorithm, and we

assume that participants act as to rationally optimize their utility. We term

such rational and selfish participants agents2. The solutions we consider

contain both an algorithmic ingredient (obtaining the intended results), and

a payment ingredient that motivates the agents. We term such a solution a

mechanism3.

Our contributions in this work are as follows:
1This notion from micro-economics is often used in mechanism design.
2The term is taken from the distributed AI community which have introduced the

usage of mechanism design in a computational setting. We use it, however, in a much
more restricted and well-defined sense.

3This is the standard term used in mechanism design.
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1. We present a formal model for studying optimization problems. The

model is based on the field of mechanism design4. A problem in this

model has, in addition to the output specification, a description of the

agents’ utilities. The mechanism has, in addition to the algorithm pro-

ducing the desired output, payments to the participating agents. An

exposition of applying several classic notions from mechanism design

in our model appears in Nisan (1999).

2. We observe that the known techniques from mechanism design provide

solutions for several basic optimization problems, and in particular for

the shortest path problem, where each edge may belong to a different

agent.

3. We study a basic problem, task scheduling, which requires new tech-

niques and prove the following:

• We design an n-approximation mechanism, where n is the number

of agents.

• We prove a lower bound of 2 to the approximation ratio that can

be achieved by any mechanism. This bound is tight for the case

of two agents, but leaves a gap for more agents. We conjecture

that the upper bound is tight in general and prove it for two

restricted classes of mechanisms.

• We design a randomized mechanism that beats the deterministic

lower bound.

4. We extend the basic model, formalizing a model where the mecha-

nism has more information. We call this model a mechanism with

verification and argue that it is justified in certain applications.
4We are not the first to use notions from mechanism design in a computational setting.

See section 1.3.
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5. We study the task scheduling problem in the extended model and

obtain two main results:

• An optimal mechanism with verification for task scheduling (that

requires exponential computation time).

• A polynomial time (1 + ε)-approximation mechanism with verifi-

cation for a sub-case of the problem.

A preliminary version of this paper appeared at the thirty-first annual sym-

posium on theory of computing (Nisan and Ronen (1999)).

1.3 Extant Work

There have been many works that tried to introduce economic or game-

theoretic aspects into computational questions. (See e.g. Lamport, Shostak

and Pease (1982), Ferguson, Nikolaou and Yemini (1995), Huberman and

Hogg (1995), Papadimitriou and Yannakakis (1993), Papadimitriou and

Yannakakis (1991) and a survey by Lineal (1994)). Most of these were

not aimed at the problem of the cooperation of selfish entities, and those

that were (Monderer and Tennenholtz (forthcoming), Papadimitriou (1996),

Korilis, Lazar and Orda (1991) and Sandholm (1996)) did not pursue our

direction. Many subfields of game theory and economics are also related

to our work, see, e.g. Mas-Collel, Whinston and Green (1995) chapters 14,

21 and 22. We list below the research work that is most relevant to our

direction.

Mechanism Design

The field of mechanism design (also known as implementation theory)

aims to study how privately known preferences of many people can be ag-

gregated towards a “social choice”. The main motivation of this field is

micro-economic, and the tools are game-theoretic. Emphasis is put on the
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implementation of various types of auctions. In the last few years this field

has received much interest, especially due to its influence on large priva-

tizations and spectrum allocations (McMillan (1994)). An introduction to

this field can be found in Mas-Collel, Whinston and Green (1995) chapter

23, Osborne and Rubistein (1994) chapter 10 and an influential web site in

http://www.market-design.com.

Distributed AI

In the last decade or so, researchers in AI have studied cooperation

and competition among “software agents”. The meaning of agents here is

very broad, incorporating attributes of code-mobility, artificial-intelligence,

user-customization and self-interest. A subfield of this general direction of

research takes a game theoretic analysis of agents’ goals, and in particu-

lar uses notions from mechanism design (Rosenschein and Zlotkin (1994),

Sandholm (1996), Ephrati and Rosenschein (1991) and Shoham and Tanaka

(1997)). A related subfield of Distributed AI, sometimes termed market-

based computation (Walsh, Wellman, Wurman and MacKie-Mason (1998),

Ferguson, Nikolaou and Yemini (1995) and Walsh and Wellman (1998)),

aims to leverage the notions of free markets in order to solve distributed

problems. These subfields of DAI are related to our work.

Communication Networks

In recent years researchers in the field of network design adopted a game

theoretic approach (See e.g. Korilis, Lazar and Orda (1991)). In particular

mechanism design was applied to various problems including resource allo-

cation (Lazar and Semret (1998)), cost sharing and pricing (Shenkar, Clark

and Hertzog (1996)).

Scheduling

The specific problem we address is the minimization of the make-span
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of independent tasks on unrelated parallel machines, which was extensively

studied from an algorithmic point of view. It is known that solving the

problem or even approximating it within a factor of 3/2 − ε is NP -hard,

but a polynomial-time 2-approximation exists (Lenstra, Shmoys and Tardos

(1987)). For a fixed number of processors, a fully polynomial approximation

scheme was presented by Horowitz and Sahni (1976). A survey of scheduling

algorithms can be found in Hochbaum (1997).

2 The Model

In this section we formally present our model. We attempt, as much as

possible, to use the standard notions from both mechanism design and al-

gorithmics. We limit ourself to the discussion of a dominant strategy imple-

mentation in quasi-linear environments.

Subsection 2.1 describes what a mechanism design problem is. In subsec-

tion 2.2 we define what a good solution is: an implementation with dominant

strategies. Subsection 2.3 defines a special class of good solutions: truthful

implementations, and states the well-known fact that restricting ourselves

to such solutions loses no generality. For familiarization with our basic

model and notations we suggest viewing the shortest paths example given

in section 3.2.

2.1 Mechanism Design Problem Description

Intuitively, a mechanism design problem has two components: the usual

algorithmic output specification, and descriptions of what the participat-

ing agents want, formally given as utility functions over the set of possible

outputs.

Definition 1 (Mechanism Design Problem) A mechanism design prob-

lem is given by an output specification and by a set of agents’ utilities.
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Specifically:

1. There are n agents, each agent i has available to it some private

input ti ∈ T i (termed its type). Everything else in this scenario is

public knowledge.

2. The output specification maps to each type vector t = t1...tn a set of

allowed outputs o ∈ O.

3. Each agent i’s preferences are given by a real valued function: vi(ti, o),

called its valuation. This is a quantification of its value from the output

o, when its type is ti, in terms of some common currency. I.e. if the

mechanism’s output is o and in addition the mechanism hands this

agent pi units of this currency, then its utility will be ui = pi+vi(o, ti)5.

This utility is what the agent aims to optimize.

In this paper we only consider the important special case of optimization

problems. In these problems the output specification is to optimize a given

objective function. We present the definition for minimization problems.

Definition 2 (Mechanism Design Optimization Problem) This is

a mechanism design problem where the output specification is given by a

positive real valued objective function g(o, t) and a set of feasible outputs F .

In the exact case we require an output o ∈ F that minimizes g, and in the

approximate case we require any o ∈ F that comes within a factor of c, i.e.

such that for any other output o′ ∈ F , g(o, t) ≤ c · g(o′, t).

2.2 The Mechanism

Intuitively, a mechanism solves a given problem by assuring that the required

output occurs, when agents choose their strategies as to maximize their own
5This is termed “quasi-linear utility”. In this paper we limit ourselves to this type of

utilities.

8



selfish utilities. A mechanism needs thus to ensure that the agents’ utilities

(which it can influence by handing out payments) are compatible with the

algorithm.

Notation: We will denote (a1, ...ai−1, ai+1, ...an) by a−i. (ai, a−i) will de-

note the tuple (a1, . . . an).

Definition 3 (A Mechanism) A mechanism m = (o, p) is composed

of two elements: An output function o(), and an n-tuple of payments

p1()...pn(). Specifically:

1. The mechanism defines for each agent i a family of strategies Ai. The

agent can chose to perform any ai ∈ Ai.

2. The first thing a mechanism must provide is an output function o =

o(a1...an).

3. The second thing a mechanism provides is a payment pi = pi(a1...an)

to each of the agents.

4. We say that a mechanism is an implementation with dominant strate-

gies 6 (or in short just an implementation) if

• For each agent i and each ti there exists a strategy ai ∈ Ai, termed

dominant, such that for all possible strategies of the other agents

a−i, ai maximizes agent i’s utility. I.e. for every a′i ∈ Ai, if

we define o = o(ai, a−i), o′ = o(a′i, a−i), pi = pi(ai, a−i), p′i =

pi(a′i, a−i) , then vi(ti, o) + pi ≥ vi(ti, o′) + p′i

• For each tuple of dominant strategies a = (a1...an) the output

o(a) satisfies the specification.
6Several “solution concepts” are discussed in the mechanism design literature. In this

paper we discuss only dominant strategy implementation.
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We say that a mechanism is poly-time computable if the output and

payment functions are computable in polynomial time. In this paper we

purposefully do not consider the details of how the mechanism is computed

in a distributed system. We view this topic as an important direction for

further research.

2.3 The Revelation Principle

The simplest types of mechanisms are those in which the agents’ strategies

are to simply report their types.

Definition 4 (Truthful Implementation) We say that a mechanism is

truthful if

1. For all i, and all ti, Ai = T i, i.e. the agents’ strategies are to report

their type. (This is called a direct revelation mechanism.)

2. Truth-telling is a dominant strategy, i.e. ai = ti satisfies the definition

of a dominant strategy above.

Definition 5 We say that a mechanism is strongly truthful if truth-telling

is the only dominant strategy.

A simple observation, known as the revelation principle, states that with-

out loss of generality one can concentrate on truthful implementations.

Proposition 2.1 (Mas-Collel, Whinston and Green (1995) page 871) If

there exists a mechanism that implements a given problem with dominant

strategies then there exists a truthful implementation as well.

Proof: (sketch) We let the truthful implementation simulate the agents’

strategies. I.e. given a mechanism (o, p1, ...pn), with dominant strate-

gies ai(ti), we can define a new one by o∗(t1...tn) = o(a1(t1)...an(tn)) and

(p∗)i(t1...tn) = pi(a1(t1)...an(tn)).
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3 Vickrey-Groves-Clarke Mechanisms

Arguably the most important positive result in mechanism design is what

is usually called the generalized Vickrey-Groves-Clarke (VGC) mechanism

(Vickrey (1961); Groves (1973); Clarke (1971)). We first describe these

mechanisms in our notation and then demonstrate their usage in an algo-

rithmic setting, that of shortest paths.

3.1 Utilitarian Functions

The VGC mechanism applies to mechanism design maximization problems

where the objective function is simply the sum of all agents’ valuations. The

set of possible outputs is assumed to be finite.

Definition 6 A maximization mechanism design problem is called utilitar-

ian if its objective function satisfies g(o, t) =
∑

i v
i(ti, o).

Definition 7 We say that a direct revelation mechanism m = (o(t), p(t))

belongs to the VGC family if

1. o(t) ∈ arg maxo(
∑n

i=1 vi(ti, o)).

2. pi(t) =
∑

j 6=i v
j(tj , o(t)) + hi(t−i) where hi() is an arbitrary function

of t−i.

Theorem 3.1 (Groves (1973)) A VGC mechanism is truthful.

Thus, a VGC mechanism essentially provides a solution for any utilitar-

ian problem (except for the possible problem that there might be dominant

strategies other than truth-telling). It is known that (under mild assump-

tions) VGC mechanisms are the only truthful implementations for utilitarian

problems (Green and Laffont (1977)).

Similarly, a weighted version can be implemented as well.
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Definition 8 A maximization mechanism design problem is called weighted

utilitarian if there exist real numbers β1, . . . , βn > 0 such that the problem’s

objective function satisfies g(o, t) =
∑

i β
i · vi(ti, o).

Definition 9 We say that a direct revelation mechanism m = (o(t), p(t))

belongs to the weighted VGC family if

1. o(t) ∈ arg maxo(g(o, t)).

2. pi(t) = 1
βi ·

∑
j 6=i β

j · vj(tj , o(t)) + hi(t−i) where hi() is an arbitrary

function of t−i.

Theorem 3.2 (Roberts (1979)) A weighted VGC mechanism is truthful.

Proof: Let d1, . . . , dn denote the declarations of the agents and t1, . . . , tn de-

note their real types. Suppose that truth telling is not a dominant strategy,

then there exists d, i, t, d′i such that

vi(ti, o(d−i, ti))+pi(ti, o(d−i, ti))+hi(d−i) < vi(ti, o(d−i, d′
i))+pi(ti, o(d−i, d′

i))+hi(d−i)

thus

vi(ti, o(d−i, ti))+
1
βi
·
∑
j 6=i

βj · vj(tj , o(d−i, ti)) < vi(ti, o(d−i, d′
i))+

1
βi
·
∑
j 6=i

βj · vj(tj , o(d−i, d′
i))

Multiplying both sides by βi we obtain
n∑

j=1

βj · vj(tj , o(d−i, ti)) <
n∑

j=1

βj · vj(tj , o(d−i, d′
i))

In contradiction with the definition of o().

Comment: An output function of a VGC mechanism is required to max-

imize the objective function. In many cases (e.g. combinatorial auctions

(Harstad, Rothkopf and Pekec (1995))), this makes the mechanism compu-

tationally intractable. Replacing the optimal algorithm with a non-optimal

approximation usually leads to untruthful mechanisms – see for example

section 5.6.
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3.2 Example: Shortest Paths

Many algorithmic mechanism design problems can be solved using the VGC

mechanism. Let us give a natural example.

Problem definition: We have a communication network modeled by a

directed graph G, and two special nodes in it x and y. Each edge e of the

graph is an agent. Each agent e has private information (its type) te ≥ 0

which is the agent’s cost for sending a single message along this edge. The

goal is to find the cheapest path from x to y (as to send a single message

from x to y). I.e the set of feasible outputs are all paths from x to y, and

the objective function is the path’s total cost. Agent e’s valuation is 0 if

its edge is not part of the chosen path, and −te if it is. We will assume for

simplicity that the graph is bi-connected.

A Truthful Implementation:

The following mechanism ensures that the dominant strategy for each

agent is to report its true type te to the mechanism. When all agents honestly

report their costs, the cheapest path is chosen: The output is obtained by a

simple shortest path calculation. The payment pe given to agent e is 0 if e

is not in the shortest path and pe = dG|e=∞− dG|e=0 if it is. Here dG|e=∞ is

the length of the shortest path which does not contain e (according to the

inputs reported), and dG|e=0 is the length of the shortest path when the cost

of e is assumed to be zero (again according to the reported types).

Notice that the shortest path is indeed a minimization of the total cost. Also

notice that the given mechanism is a VGC mechanism: dG|e=∞ corresponds

to hi(t−i) and dG|e=0 to
∑

j 6=i v
j(tj , o(t)).

Many other graph problems, where agents are edges, and their valua-

tions proportional to the edges’ weights, can be implemented by a VGC

mechanism. In particular minimum spanning tree and max-weight match-
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ing seem natural problems in this setting. A similar solution applies to the

more general case where each agent holds some subset of the edges.

Open Problem: How fast can the payment functions be computed? Can

it be done faster than computing n versions of the original problem? For

the shortest paths problem we get the following equivalent problem: given

a directed graph G with non-negative weights, and two vertices in it x, y.

Find, for each edge e in the graph, the shortest path from x to y that does

not use e. Using Disjktra’s algorithm for each edge on the shortest path gives

an O(nm log n) algorithm. Is anything better possible? Maybe O(m log n)?

For the similar problem with minimum spanning tree, it has been pointed

out to us by Valerie King that the known fully dynamic algorithms (or

alternatively the known sensitivity-analysis algorithms) for MST provide a

nearly linear time solution.

4 Task Scheduling

In this section we analyze the task allocation problem. Subsection 4.1 for-

mally presents the problem, subsection 4.2 gives a (weak) upper bound,

subsection 4.3 provides our lower bounds, and finally in subsection 4.4 we

exhibit a randomized solution that beats the lower bound.

4.1 The Problem

Definition 10 (Task Allocation Problem) There are k tasks that need

to be allocated to n agents. Each agent i’s type is, for each task j, the

minimum amount of time tij it is capable of performing this task in. The

goal is to minimize the completion time of the last assignment (the make-

span). The valuation of an agent i is the negation of the total time it has

spent on the tasks allocated to it.

More formally:
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• The feasible outputs of the mechanism are all partitions x = x1 . . . xn

of the tasks to the agents, where xi is the set of tasks allocated to agent

i.

• The objective function is g(x, t) = maxi
∑

j∈xi tij.

• Agent i’s valuation is vi(x, ti) = −
∑

j∈xi tij.

We will consider both the exact and approximate versions.

Notation: We denote a direct revelation mechanism for the task scheduling

problem by m = (x, p), where x = x(t) is the allocation algorithm and

p = p(t) the payment. (These are functions of the declared types.)

4.2 An Upper Bound

A simple, but not very good, approximation for the task scheduling problem

is to minimize the total work done. It turns out that this approximation

can be used as a basis for an approximation mechanism7.

Definition 11 (MinWork Mechanism)

• allocation: each task is allocated to the agent who is capable of doing

it in a minimal amount of time (tasks with equal time declarations are

allocated arbitrarily).

• payment: the payment for each agent i is defined as pi(t) =∑
j∈xi(t) mini′ 6=i(ti

′
j ) (i.e. for each task allocated to it, the agent is

given payment equal to the time of the second best agent for this task).

Theorem 4.1 MinWork is a strongly truthful n-approximation mechanism

for the task scheduling problem.
7The mechanism can be viewed as auctioning each task separately in a Vickrey auction

(Vickrey (1961)).
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Proof: We prove that the MinWork mechanism is strongly truthful and

that it is an n-approximation.

Claim 4.2 MinWork is strongly truthful .

Proof: We will first show that MinWork belongs to the VGC family, and

therefore, by theorem 3.1 it is truthful. The output is an allocation that

maximizes the utilitarian function
∑n

i=1 vi(ti, x); Let h−i be
∑k

j=1 mini′ 6=i t
i′
j ,

then
∑

i′ 6=i v
i′(ti

′
, x) + h−i is exactly the mechanism’s payment function.

We now show that truth-telling is the only dominant strategy. We will

show it for the case of a single task. The argument for k > 1 is similar. We

note that a similar proof can be found in Vickrey (1961) for the analysis

of the famous Vickrey auction. Let d denote the agents’ declarations and t

their real types. Consider the case where di 6= ti (i = 1, 2). If di > ti, then

for d3−i such that di > d3−i > ti,the utility for agent i is ti− di < 0, instead

of 0 in the case of truth-telling. A similar argument holds for the case of

di < ti.

Claim 4.3 MinWork is an n-approximation for the task scheduling prob-

lem.

Proof: Let opt(t) denote an optimal allocation. The proof follows im-

mediately from the fact that g(x(t), t) ≤
∑k

j=1 mini t
i
j and g(opt(t), t) ≥

1
n ·

∑k
j=1 mini t

i
j .

The theorem is an immediate outcome of claims 4.2 and 4.3.

4.3 Lower Bounds

Due to the revelation principle (proposition 2.1) it suffices to prove the lower

bound for truthful implementations. Thus for the rest of this section, m =

(x, p) is always assumed to be a truthful mechanism for the task scheduling

problem.
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4.3.1 Basic Properties of Truthful Implementations

We now formulate, in our settings, two basic observations from mechanism

design. (Similar arguments can be found in Mas-Collel, Whinston and Green

(1995) pp. 876-880.)

Proposition 4.4 (Independence) Let t1 and t2 be type vectors, and i be

an agent. If t−i
1 = t−i

2 and xi(t1) = xi(t2), then pi(t1) = pi(t2).

Proof: Without loss of generality assume that pi(t1) < pi(t2). Then, if

i’s type is ti1, it is better off cheating, declaring ti2. A contradiction to the

truthfulness.

This proposition states that the payment offered to an agent does not depend

on its type declaration (as long as the other agents’ types and the allocation

are fixed). The payment can thus be represented using the following well

defined function.

Definition 12 Let t be a type vector, i an agent. For a set X of tasks, we

define the price offered for X to agent i as:

pi(X, t−i) =

{
pi(t′i, t−i) if there exists t′i s.t. xi(t′i, t−i) = X
0 otherwise

Usually it will be more convenient to describe a mechanism by its price

rather than by its payment function. Note that any function of the form

hi(t−i) can be added to the payment of each agent i without changing its

considerations. We therefore assume w.l.o.g. that the payment given to an

agent is zero if no tasks are assigned to it.

Notation: Let i be an agent of type ti, and let X be a set of tasks. We

denote the time needed for i to perform all tasks of X, as ti(X) =
∑

j∈X tij .

Proposition 4.5 (Maximization) For each type vector t and agent i,

xi(t) ∈ arg maxX⊆{1,...,k}(p
i(X, t−i)− ti(X))
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Proof:(sketch) Since pi(xi, t−i)− ti(xi)) is agent i’s utility, the above state-

ment simply states that the mechanism has to maximize the agent’s benefit.

Otherwise the agent will do so itself, i.e. cheat as to get the maximum

benefit!

We can now prove the main theorem of this subsection.

4.3.2 Basic Lower Bound

Theorem 4.6 There does not exist a mechanism that implements a c-

approximation for the task scheduling problem for any c < 2.

Proof: We start with a lemma.

Notation: Let i be an agent, t a type vector, and A and B two disjoint

sets of tasks. We define the price difference ∆i(A,B) to be pi(A
⋃

B, t−i)−

pi(A, t−i) (suppressing the type t).

Lemma 4.7 Let t be a type vector and let X = xi(t). For each set D 6= X

of tasks the following inequalities hold:

1. If D ⊂ X then ∆i(D,X −D) ≥ ti(X −D).

2. If D ⊃ X then ∆i(X, D −X) ≤ ti(D −X).

3. otherwise, let L = D
⋂

X, then ∆i(L,X−L)− ti(X−L) ≥ ∆i(L,D−

L)− ti(D − L)

Moreover, if a set Y of tasks satisfies these inequalities sharply for all D’s,

then Y = X = xi(t).

Proof: The fact that the above inequalities hold for xi(t) is an immediate

consequence of proposition 4.5 (maximization) and the definition of the util-

ity as ui = pi(xi(t), t−i) − ti(xi(t)). When the inequalities are strict, X is

clearly the unique set of tasks that maximizes i’s utility.
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We prove the theorem for the case of two agents. For n > 2 we can reduce

to this case by having the other agents be much slower than agents 1 and 2.

Notation: Let t be a type vector, i an agent and X a set of tasks. Let

α > 0 be a real number. We denote by t̂ = t(X i→ α) the type obtained by

t̂i
′

j =

{
α if i′ = i and j ∈ X

ti
′

j otherwise

In the same manner we define t̂ = t(X1 i1→ α1, X
2 i2→ α2, . . .) to be the result

of a sequence of the above transformations.

Let k ≥ 3, and t be the type vector defined by tij = 1 for each agent i and

task j. Without loss of generality we assume that |x1(t)| ≤ |x2(t)|. Let

x = x1(t) and let x̄ denote its complement (x2(t)).

Claim 4.8 Let 0 < ε < 1, t̂ = t(x 1→ ε, x̄
1→ 1 + ε). Then x(t̂) = x(t).

Proof: Since n = 2, it is enough to show that x1(t̂) = x1(t). As the type of

agent 2 has not changed, the prices offered to agent 1 remain the same. For

type t, x1(t) fulfills the inequalities of lemma 4.7. Thus, by inspection, they

are strict when the type becomes t̂, and therefore the allocation remains the

same.

Assuming |x2(t)| is even, the lower bound follows since g(x(t̂), t̂) =

|x2(t̂)| = |x2(t)|, but g(opt(t̂), t̂) ≤ 1
2 · |x

2| + k · ε (for the allocation that

gives agent 1, in addition to the original x1(t), half of agent 2’s original

allocation).

For the case of odd |x2(t)| it must be that |x2(t)| ≥ 3. We choose an

arbitrary task j ∈ x2(t) and consider the type t̂({j} 2→ ε), which still yields

the same allocation.

This lower bound is tight for the case of two agents. We conjecture that,

in general, the upper bound is tight:
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Conjecture 4.9 There does not exist a mechanism that implements a c-

approximation for the task scheduling problem with n agents for any c < n.

Although we have not been able to prove this conjecture, we can show

that it is correct for two natural special cases presented in the next subsec-

tion.

4.3.3 Tight Bounds for Special Cases

Definition 13 A mechanism is called additive if for each agent i, type vec-

tor t and set X of tasks, pi(X, t−i) =
∑

j∈X pi({j}, t−i).

Theorem 4.10 There does not exist any additive mechanism that solves

the c-approximation problem for any c < n.

Proof: Let k ≥ n2 and let tij = 1 for each agent i and task j. Without loss

of generality we assume that |x1(t)| ≥ n. Let x = x1(t) and let x̄ denote its

complement.

Claim 4.11 Fix 0 < ε < 1 and let t̂ = t(x1 1→ 1− ε, x̄
1→ ε). Then x1(t̂) ⊇

x1(t).

Proof: Since t2 has not changed, the prices offered to agent 1 remain the

same. Clearly the price offered to agent 1 for x is strictly greater than the

time t̂1(x) required for it to perform x. Since the payment is additive, the

set x1(t̂) which maximizes 1’s utility must contain all the tasks in x.

It follows that g(x(t̂), t̂) ≥ |x1| ≥ n. Like in theorem 4.6, we can assume

w.l.o.g. that |x1| = n. The lower bound is then obtained since an optimal

allocation would split these tasks among the n agents.

Definition 14 We say that a mechanism is local if for each agent i, type

vector t and set X of tasks, the price pi(X, t−i) depends only on the agents’

values on the tasks in X (i.e. {tl 6=i
j |j ∈ X}).
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Theorem 4.12 There does not exist a local mechanism that solves the c-

approximation problem for any c < n.

Proof: We start with a simple lemma that will enable us to turn the in-

equalities of lemma 4.7 into sharp ones.

Lemma 4.13 For each type vector t and ε > 0, there exists a type vector

t′ such that ‖t− t′‖ < ε and where the sets that maximize the agents’ utility

are unique for all agents.

Proof:(sketch) The lemma is proved using a simple measure-theoretic ar-

gument. Let i be an agent, A 6= B two sets of tasks. Because of the inde-

pendence property (proposition 4.4), the following set has a zero measure

on the type-space of agent i:

Ei(A,B, t−i) = {ti|pi(A, t−i)− ti(A) = pi(B, t−i)− ti(B)}

From this we obtain that for almost every type vector t′, the inequalities in

lemma 4.7 (for all agents) are strict.

Let k ≥ n2 and let tij = 1 for each agent i and task j. By lemma 4.13,

we assume w.l.o.g. that xi(t) uniquely maximizes i’s utility for all agents i.

Without loss of generality we assume that |x1(t)| ≥ n.

Claim 4.14 Let x = x2(t) and t̂ = t(x 2→ ε) for some 0 < ε < 1. Then

x(t̂) = x(t).

Proof: Clearly x2(t̂) = x2(t). Consider another agent i 6= 2. The mecha-

nism must allocate to agent i a set xi(t̂) that maximizes i’s utility among

all the sets X which are disjoint from x2(t). But since the mechanism is

local, these prices have not changed from t to t̂. Therefore xi(t) remains the

unique set that maximizes i’s utility.
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By the same argument the allocation for the type t̂ =

t(x2(t) 2→ ε, . . . , xn(t) n→ ε) remains x(t) .

Like in theorem 4.6 we can assume that |x1(t)| = n and thus the lower

bound is obtained since an optimal allocation will split these tasks among

the n agents.

4.4 The Power of Randomization

In section 4.3 we showed that no mechanism can achieve a better than

2-approximation for the task scheduling problem. Here we show that ran-

domized mechanisms can do better. The model of randomization that we

use does not weaken the demands of dominant strategies at all: Although

the agents choose their strategies without knowing the results of the random

coin tosses, we require the strategy to be dominant for all possible tosses.

Definition 15 (A Randomized Mechanism) A randomized mechanism

is a probability distribution over a family {mr|r ∈ I} of mechanisms, all

sharing the same sets of strategies and possible outputs.

The outcome of such a mechanism is a probability distribution over

outputs and payments; the problem specification must specify what output

distributions are required. For the case of optimization problems, the ob-

jective function on such a distribution is taken to be the expectation, i.e.

g(a, t) = Er∈I(g(omr(a), t)).

Definition 16 (Universally Dominant Strategy) A strategy ai is called

universally dominant (in short, dominant) for agent i if it is a dominant

strategy for every mechanism in the support of the randomized mechanism.

A randomized mechanism is called universally truthful (in short, truthful)

if truth-telling is a dominant strategy, and strongly truthful if it is the only

one.
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We will design a strongly truthful randomized mechanism that achieves

better performance than the deterministic lower bound. The randomized

mechanism will be a distribution over biased min work mechanisms defined

in figure 1.

Parameters: A real number β ≥ 1 and a bit vector s ∈ {1, 2}k.

Input: The reported type vectors t = (t1, t2).

Output: An allocation x = (x1, x2), and a payment p = (p1, p2).

Mechanism:
x1 ← ∅; x2 ← ∅; p1 ← 0; p2 ← 0.
For each task j = 1...k do

Let i = sj and i′ = 3− i

If tij ≤ β · ti′j
Then xi ← xi ⋃

{j}; pi ← pi + β · ti′j
Else xi′ ← xi′ ⋃{j}; pi′ ← pi′ + β−1 · tij

Figure 1: the biased min work mechanism (for two agents)

Lemma 4.15 For all parameter values, the biased min work mechanism is

strongly truthful .

Proof: Since the overall utility of each agent can be described as the sum

of the utilities aggregated in each step, it is enough to consider the case

of k = 1. In this case the mechanism is equivalent to a weighted VGC

(definition 9) with weights {1, β} or {β, 1} (depending on sj).

Definition 17 (The Randomly Biased Min Work Mechanism ) The

randomly biased min work mechanism is the distribution on biased min work

mechanisms given by β = 4/3, and a uniform distribution of s ∈ {1, 2}k.
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Theorem 4.16 The randomly biased min work mechanism is a (polynomial

time computable) strongly truthful implementation of a 7/4-approximation

for task scheduling with two agents.

The proof of the theorem is immediate from the following two lemmas.

Lemma 4.17 The randomly biased min work mechanism is strongly truthful

.

This is immediate from lemma 4.15.

Lemma 4.18 The allocation obtained by the randomly biased min work

mechanism is a 7/4-approximation for the task scheduling problem.

Comment: Our original analysis yielded a bound of 1.823. Daniel Lehmann

(Lehmann (1999)) provided us with a tighter case analysis, improving the

bound to 7/4. With Daniel’s permission we include his refined analysis in

our proof.

Proof: Let opt(t) denote an optimal allocation algorithm. Let topt denote its

make-span, and let tbmw denote the (expected) make-span of the randomly

biased min work mechanism.

We call a task j a k-task if one of the agents is considerably more efficient

than the other on it (i.e. t1j/t2j > β or t2j/t1j > β); otherwise we call it an

l-task . Note that the mechanism allocates each k-task to the agent which

is efficient on it, and randomly allocates the l-tasks.

Claim 4.19 It is enough to consider the following case:

1. For each k-task, the efficiency discrepancy between the agents is arbi-

trarily close to β (therefore we shall assume that it equals β).

2. If opt allocates an l-task j to agent i, then t3−i
j /tij = β.
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3. Under opt both agents have the same finishing time.

4. One of the agents is more efficient than the other on all k-tasks (w.l.o.g.

let it be agent 1).

5. There are at most four tasks, where at most one k-task and at most

one l-task is allocated by opt to each agent.

Proof:

1. Since the mechanism always allocates each k-task j to the agent i

which is more efficient on it, reducing t3−i
j down to β · tij can only help

opt and leaves tbmw unchanged.

2. If opt allocates an l-task j to agent i, then increasing t3−i
j will not

affect topt but will increase tbmw.

3. Otherwise, w.l.o.g. assume that agent 1 finishes δ-time before agent

2. Adding an l-task j such that t1j = δ and t2j = β · δ does not change

topt but increases tbmw.

4. Assume that there are two k-tasks a and b such that t2a/t1a = t1b/t2b = β.

W.l.o.g. t1a ≥ t2b . If a is replaced by two k-tasks a′ and a′′ such that

tia = tia′ + tia′′ then tbmw remains the same while topt can only decrease.

In particular we can choose t1a′ = t2b .

The mechanism allocates both tasks a′ and b to the agent which is

efficient on them. If opt is doing the same then clearly removing both

a′ and b can just increase the ratio tbmw/topt. Obviously, opt cannot

allocate a′ to agent 2 and b to agent 1. Therefore it is enough to

consider the case where opt allocates both tasks to one of the agents.

One can verify that in this case replacing both tasks with equivalent

l-tasks (i.e. l-tasks with the same computational times as the original

ones) does not affect topt but will increase tbmw by at least β−1
2 · t

1
a′ .
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5. Let a and b be two k-tasks that opt allocates to the same agent i.

Recall that t3−i
a /tia = t3−i

b /tib = β. Clearly, replacing both tasks with

a single task c such that tic = tia + tib, does not affect opt nor the

mechanism. We now consider the case where a and b are both l-tasks.

Again, topt does not change as a consequence of such a replacement.

We will show that tbmw can only increase. Let Y be an allocation

of all the tasks except a and b; let tY,a,b denote the expected make-

span when all other tasks are allocated according to Y and a and b

are randomly allocated; let tY,c denote the expected make-span when

a and b are replaced by c which is allocated randomly. Clearly, it is

enough to show that tY,a,b ≤ tY,c.

Let T 1 and T 2 denote the finishing times of both agents respectively

when the allocation is Y . If one of the agents i finishes after the

other regardless of how a and b are allocated, then clearly tY,a,b =

T i + tia+tib
2 = tY,c. Otherwise, if agent i finishes last iff both a and

b are allocated to it, then tY,a,b = T i+tia+tib
4 + T 3−i+t3−i

a
4 + T 3−i+t3−i

b
4 +

T 3−i+t3−i
a +t3−i

b
4 . Since T 3−i ≤ T i + tia + tib, we obtain that tY,a,b ≤

T i+tia+tib
2 + T 3−i+t3−i

a +t3−i
b

2 = tY,c. Finally w.l.o.g. assume that tia ≥

tib (for i = 1, 2) and consider the case where the agent to which a

is allocated finishes last. In this case tY,a,b = T 1+t1a+t1b
4 + T 1+t1a

4 +
T 2+t2a+t2b

4 + T 2+t2a
4 ≤ T 1+t1a+t1b

2 + T 2+t2a+t2b
2 = tY,c.

Following the above claim we prove the lemma for the case of four tasks

k1, k2, l1, l2, such that ki and li denote the k-task and l-task which are allo-

cated to agent i by opt (cases in which there are less than four tasks can be

represented by zero times). The reduced case is described in figure 2.

Since both agents have the same finishing time in opt, topt = a + c =

β · b + d. We show that tbmw
topt
≤ 7/4 by considering three separate sub-cases.
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t1j t2j opt-alloc bmw-alloc
k1 a β · a 1 1
k2 b β · b 2 1
l1 c β · c 1 rnd
l2 β · d d 2 rnd

Figure 2: the reduced case

Case 1: a + b + β · d ≤ β · c.

Considering all four possible allocations of the mechanism we obtain that

tbmw = 1/4 · ((a+ b+ c+β ·d)+(a+ b+ c)+(β · c)+(β · c+d)). Substituting

β = 4/3 we get tbmw = 1/2 · a + 1/2 · b + 7/6 · c + 7/12 · d and one can verify

that tbmw ≤ 7/4 · (a + c) = 7/4 · topt.

Case 2: Otherwise, a+b+β·d ≥ β·c. Consider the case where a+b ≤ β·c+d.

In this case tbmw = 1/4·((a+b+c+β ·d)+(a+b+c)+(a+b+β ·d)+(β ·c+d)).

Substituting β we get tbmw = 3/4 · a + 3/4 · b + 5/6 · c + 11/12 · d and it is

not difficult to verify that tbmw ≤ 7/4 · (a + c) = 7/4 · topt.

Case 3: Otherwise, a + b + β · d ≥ β · c and a + b ≥ β · c + d. In this case

tbmw = 1/4 · ((a + b + c + β · d) + (a + b + c) + (a + b + β · d) + (a + b)).

Substituting β we get tbmw = a+b+c/2+2/3 ·d and again it can be verified

that tbmw ≤ 7/4 · (4/3 · b + d) = 7/4 · topt.

This completes the proof of the theorem.

5 Mechanisms with Verification

The basic mechanism design model assumes that each agent can follow any

of its strategies, independently of its type. Thus the mechanism cannot

use any “real-world” information about the agents. This is the norm in

mechanism design and it models well the negotiation stage in which agents

do nothing but communicate. In many settings in distributed computation
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though, one could take advantage of the fact that computers actually act

(execute a task, route a message, etc.) to gain extra information about the

agents’ types and actions.

A simple type of modification to the model suggests itself: a problem

definition may limit the set of strategies Ai available to each agent as a

function of its type ti. Many variants are possible, with different types of

information available at different stages of the mechanism. In this paper we

concentrate on what we feel is a very natural model. We distinguish between

two stages of the mechanism: a declaration phase in which agents “talk” and

which results in a decision (e.g. allocation), and then an execution phase

where the agents actually execute the agreed output. The payments need

only to be given after the execution. Intuitively we view the execution part

as allowing the mechanism to verify in some sense the agents’ declarations,

and “punish” them for lying.

For the task scheduling problem we assume that by the end of the ex-

ecution the mechanism knows the exact execution time of each task. A

reformulation of the problems is introduced in section 5.2. We then (in sec-

tions 5.3 and 5.4) present a family of optimal mechanisms8 for this problem.

In section 5.5 we show that versions of our mechanism can operate under

a limited budget and can guarantee that the profit for a truthful agent is

always non-negative. Since these mechanisms require optimal scheduling

algorithms they are computationally intractable. In section 5.6 we discuss

polynomial-time mechanisms. We define a sub-case of the scheduling prob-

lem for which we present a polynomial-time approximation schema. The

existence of a (better than n) polynomial time approximation mechanism

for the general problem is left open.
8Although these mechanisms are presented for the scheduling problem, they can be

generalized for many situations.
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5.1 Mechanisms with Verification

Definition 18 (Mechanism with Verification)

• An agent’s strategy ai is composed of two separate parts: a declaration

di and an execution ei.

• Each declaration di is chosen by the agent, based on its type ti, in an

unrestricted manner.

• The decision k of the mechanism must be a function of just the decla-

rations d1, . . . , dn.

• The agent’s execution ei may depend on ti as well as on k. The problem

specification specifies, for each ti, the possible ei()’s an agent of type

ti may choose.

• The output of the mechanism is the result of the decision k and the

agents’ executions e1(k), . . . , en(k). The output function o(k, e) is a

part of the problem specification.

• The output o, determines both the objective function g(o, t) and the

agents’ valuations vi(ti, o).

• The payment pi that the mechanism provides depends on both, the

declarations d1, . . . , dn and the executions e1(k) . . . en(k).

Definition 19 A mechanism with verification is called truthful if

1. The agents’ declarations are simply to report their types.

2. For each agent i of type ti, there is a dominant strategy of the form

ai = (ti, ei()).

We say that the mechanism is strongly truthful if it is the only dominant

strategy.
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Note that by applying the revelation principle 2.1 to the declaration

part, we can limit the discussion to mechanisms where the agents are simply

requested to reveal their types.

Notation: We denote a mechanism with verification by a pair m =

(k(d), p(d, e)), where k() is the decision and p() the payment function.

5.2 A Reformulation of Task Scheduling

Definition 20 (Task Scheduling with Verification) The problem is the

same as the task allocation problem (definition 10), except that the mecha-

nism is allowed to pay to the agents after the tasks have been performed. We

assume that the times which the tasks were actually performed in are known

to the mechanism.

More formally:

• A feasible output of the mechanism is denoted by a pair (x, t̃), where

x = x1, . . . , xn denotes the allocation of the tasks to the agents, and

t̃ = t̃1, . . . , t̃k denotes the actual times that they were performed in. If

j ∈ xi(t), then it must be that t̃j ≥ tij.

• A strategy for an agent is composed of two parts: a declaration of its

type and an execution of the tasks allocated to it. An agent may lie or

choose to perform any task j allocated to it, in any time t̃j ≥ tij.

• The objective function is g(x, t̃) = maxi
∑

j∈xi t̃j (the make-span).

• Agent i’s valuation is vi(x, t̃) = −
∑

j∈xi t̃j.

• A mechanism is a pair (x, p) such that x(t) = x1(t), . . . , xn(t) is the

allocation function, and p(t, t̃) = p1(t, t̃), . . . , pn(t, t̃) is the payment.
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5.3 The Compensation-and-Bonus Mechanism

The Compensation-and-Bonus Mechanism is composed of an optimal alloca-

tion algorithm, together with a well chosen payment function. The payment

function is the sum of two terms, one is called the compensation, and the

other the bonus.

Definition 21 (Compensation) The function

ci(t, t̃) =
∑

j∈xi(t)

t̃j

is called the compensation function for agent i.

The bonus function uses the following notion:

Definition 22 (Corrected Time Vector) Let i be an agent, x an allo-

cation. Given the agents’ declarations t and the vector of actual times t̃, we

define the corrected time vector for agent i as:

corri(x, t, t̃)j =

{
t̃j if j ∈ xi

tlj if j ∈ xl and l 6= i

We define corr∗(x, t) of x and t to be the (unique) vector that satisfies

corr∗(x, t)j = tij for all i and j ∈ xi.

Definition 23 (Bonus) The function

bi(t, t̃) = −g(x(t), corri(x(t), t, t̃))

is called the bonus function for agent i.

The bonus is calculated according to the declarations of the other agents

and the actual times that the agent performed its assignments in.

Definition 24 (Compensation-and-Bonus Mechanism) The

Compensation-and-Bonus mechanism is given by an optimal allocation

algorithm with the payment functions pi(t, t̃) = ci(t, t̃) + bi(t, t̃).
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Theorem 5.1 The Compensation-and-Bonus mechanism is a strongly

truthful implementation of the task scheduling problem.

Proof: We show that the only dominant strategy for each agent is to reveal

its true type and to execute its tasks in minimal time.

Claim 5.2 The Compensation-and-Bonus mechanism is strongly truthful.

Proof: Let i be an agent, ti its type and let d−i denote the declarations

for the other agents (note that the allocation and bonus given to i de-

pend on d−i but not on the actual execution times of the others). Let

t = (d−i, ti). Observing that the utility of an agent equals its bonus,

and that for every allocation x the bonus for an agent i is maximized

when executing its assignments in minimal time, it is enough to show that

−g(x(t), corr∗(x(t), t)) >= −g(x(t′i, d−i), corr∗(x(t′i, d−i), t)) for each t′i.

This is immediately implied by the optimality of the allocation algorithm.

Clearly, when an agent does not follow this strategy, there are circum-

stances where this will increase the make-span and therefore decrease the

agent’s bonus. Therefore, the above strategy is the only dominant one.

When all agents follow their dominant strategies, the best possible make-

span is obtained due to the optimality of the allocation algorithm.

An Example

j1 j2 j3

A1 10 30 45
A2 100 60 100

Figure 3: a type matrix for two agents

Consider the type matrix in figure 3. Assume first that both agents are

truthful. The optimal allocation in this case is {{j1, j3}{j2}} and the make-

span is 60, therefore the bonus given to each agent is −60. Consider the
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case where agent 1 tries to ”loose” j3 declaring t13 as 200. The ”optimal”

make-span therefore reduces to 100 and consequently the bonus for each

agent reduces to −100. Similarly, when agent 1 tries to ”gain” j2 declaring

for example t12 to be 4, its bonus is reduced to −85. If agent one is “lazy”

exceuting its tasks in 100 units of time instead of 55, then its bonus reduces

from −60 to −100.

5.4 The Generalized Compensation-and-Bonus Mechanism

We now generalize the Compensation-and-Bonus mechanism:

Definition 25 (Generalized Compensation) The function ci(t, t̃) is

called a generalized compensation for agent i if

• ci(t, t̃) ≤
∑

j∈xi(t) t̃j for all t and t̃.

• Equality exists in case that the agent is truthful.

Definition 26 (Generalized Bonus) Let mi(t−i, w) be any positive real-

valued function, that is strictly monotonically increasing in w. The function

bi(t, t̃) = mi(t−i,−g(x(t), corri(t, t̃))) is called a generalized bonus for agent

i.

Definition 27 (Generalized Compensation and Bonus Mechanism)

A Generalized Compensation and Bonus mechanism is a pair m = (o, p)

where:

• o() is an optimal allocation algorithm.

• pi(t, t̃) = ci(t, t̃) + bi(t, t̃), where ci() and bi are generalized compensa-

tion and bonus functions respectively.

Arguments, similar to 5.1 lead to the following theorem:
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Theorem 5.3 The Generalized Compensation and Bonus mechanism is a

strongly truthful implementation of the task scheduling problem.

5.5 Budget Considerations

Theorem 5.3 allows a lot of freedom in the design of a generalized

Compensation-and-Bonus mechanism. In this section we take advantage of

this freedom in order to satisfy two additional requirements: participation

constraints and budget limits (see Mas-Collel, Whinston and Green (1995)

chapter 23 for a detailed discussion).

Definition 28 (Participation Constraints) We say that a mechanism

satisfies participation constraints if whenever an agent is truth-telling, its

utility is non-negative. More formally: for each t and t̃ and for each agent

i, if t̃j = tj for all j ∈ xi(t), then pi(t, t̃) + vi(x(t), t̃) ≥ 0.

Note: If a truthful approximation mechanism satisfies the property that

whenever an agent is not allocated any tasks then its payment is non-

negative, it needs to satisfy participation constraints as well. (Because by

declaring high enough values the agent can force the mechanism to allocate

no tasks to it.)

Theorem 5.4 There exists a strongly truthful mechanism that satisfies par-

ticipation constraints for the task scheduling problem.

Proof: We define g−i(t−i) to be the optimal make-span among the al-

locations which do not include agent i. We define the contribution of

agent i as conti(t−i, t̃) = g−i(t−i) − g(x(t), corri(x(t), t, t̃)). A generalized

Compensation-and-Bonus mechanism where the bonus of each agent equals

its contribution clearly satisfies participation constraints.
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So far we have not limited the amount of money that a mechanism can

pay to the agents. When considering mechanisms with limited budget one

cannot ignore the fact that such a mechanism may not be able to allocate

the tasks at all. We therefore change the problem definition.

Definition 29 (Constrained Task Scheduling) The problem is the same

as in definition 20 except that there is another possible output ⊥ (indicating

that the tasks are not allocated). vi(⊥) is taken to be zero and g(⊥) is taken

to be ∞.

Definition 30 (Limited Budget) We say that a mechanism m = (o, p)

has a limited budget b if for any tuple of strategies s = s1, . . . , sn,
∑

i p
i(s) ≤

b. We call a revelation mechanism b-constrained if it satisfies participation

constraints and has a limited budget b.

Note that if Y (t) is the allocation of a b-constrained mechanism then it must

be that
∑

i

∑
j∈Y i tij ≤ b.

Definition 31 Let m = (o, p) and m′ = (o′, p′) be two mechanisms for the

same minimization problem. We say that m is as good as m′ if for any

dominant strategies d = d1, . . . , dn for the agents in m and s = s1, . . . , sn

for the agents in m′, g(o(d)) ≤ g(o′(s)).

Theorem 5.5 Let b, h > 0. Then there exists a truthful mechanism m for

the constrained task scheduling problem such that

1. m is (b + h)-constrained.

2. If m′ is b-constrained, then m is as good as m′.

Proof: Consider the following mechanism m = (o, p):
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• The output algorithm o(t) finds an optimal allocation among the al-

locations y such that
∑

i

∑
j∈yi tij ≤ b (or outputs ⊥ if none exists).

• Let m() be a bounded strictly monotone increasing function such that

0 ≤ m() < h/n. We define the contribution conti of the agent as in 5.4

(except that the algorithm and the objective function are different).

We define the bonus bi() as m(conti()) and the payment to be given

by pi = ci()+ bi() where c() is a compensation function. The payment

is defined to be 0 if the output is ⊥.

The total compensation is bounded by b and the total bonus by h, there-

fore the budget is bounded by b+h. Arguments, similar to 5.1 show that the

mechanism is truthful and that the only dominant strategies for an agent i

are to reveal the truth (when tij ≥ b the agent may declare on any di
j ≥ b)

and to perform its tasks as efficient as it can.

Recalling that any b-constrained mechanism m′ needs to choose an allo-

cation z such that
∑

i

∑
j∈zi tij ≤ b, the theorem is proved.

5.6 Poly-Time Mechanisms

While the Compensation-and-Bonus mechanisms are optimal, note that they

are intractable from a computational point of view due to their use of the

exponential-time optimal allocation algorithm. One would be tempted to

take a known polynomial-time approximation algorithm for the problem

and base a mechanism upon it, obtaining a polynomial-time approximation

mechanism. Unfortunately, this is not so simple and we do not know how to

do this in general. In this section we first show that replacing the optimal al-

location algorithm with a non-optimal approximation in the Compensation-

and-Bonus mechanism does not preserve truthfulness. A similar argument

can be made for the important case of VGC mechanisms (section 3.1). We

then define a sub-case of the scheduling problem, where the number of agents
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is fixed and there are known bounds for the execution times tij . This prob-

lem is still NP -hard and the lower bounds presented in sections 4.3.2 and

4.3.3 can be applied to it (with slightly weaker constants depending on the

bounds). Nevertheless, for any ε > 0 we are able to present a 1+ε polynomial

approximation mechanism for this variant. Our approximation mechanism

is based on a rounding technique developed by Horowitz and Sahni (1976).

Definition 32 Let x() be an allocation algorithm. The Compensation-and-

Bonus mechanism based on x is the same as 5.3 except that the optimal

algorithm is replaced by x().

Theorem 5.6 Let x() be a non-optimal approximation algorithm for task

scheduling. Let m = (x, p) be the Compensation-and-Bonus mechanism

based on x(). Then m is not truthful.

Proof: Assume by contradiction that it is truthful. For an allocation y and

a type t, let g(y, t) denote the make-span – maxi
∑

j∈yitij ; let opt(t) denote

an optimal allocation.

Let t be a type such that g(opt(t), t) < g(x(t), t), and let t′1 be a type

for agent 1 such that

t′
1
j =

{
t1j if j ∈ opt1(t)
∞ otherwise

where ∞ stands for an arbitrary high value.

Claim 5.7 Let t′ = t′1, t2, . . . , tn. Then g(x(t′), t′) ≥ g(x(t), t).

Proof: Otherwise, in the case where agent 1’s type is t1, it would be more

beneficial for it to “pretend” to be t′1 (note that this cannot be verified!).

This contradicts the truthfulness of the mechanism.
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Corollary 5.8 Let s be a type such that

si
j =

{
tij if j ∈ opti(t)
∞ otherwise

Then g(x(s), s) ≥ g(x(t), t).

Since g(x(s), s) ≥ g(x(t), t) > g(opt(t), t) = g(opt(s), s), we obtain that

x(s) 6= opt(s). Thus there exists an agent who is allocated an ∞ job, in

contradiction to the approximation ratio of x().

Definition 33 (Bounded Scheduling Problem) The problem is the

same as in definition 20, except that the number of agents n is fixed to

a constant and there exist fixed b > a > 0 such that for all i, j a ≤ tij ≤ b.

The rounding algorithm presented in Horowitz and Sahni (1976) provides

a (1 + ε)-approximation for bounded scheduling and runs in polynomial

time. It basically works as follows: The entries tij are first rounded up to

integer multiples of δ (a parameter chosen as a function of a and ε). It

then exactly solves this rounded problem using dynamic programming (in

polynomial time). The solution of the rounded problem is shown to be a

1 + ε approximation to the original one.

We will attach to this algorithm a carefully chosen payment function

as to obtain our mechanism. The idea is to use the exact times for the

compensation function, but the rounded ones for the bonus function.

Notation: For a vector t, let t̂ denote the vector where all entries are

rounded up to an integer multiple of δ. Denote also ĝ(x, t̃) = g(x, ˆ̃t), where

g is the make-span objective function.

Definition 34 (Rounding Mechanism) The rounding mechanism is de-

fined as follows:

38



• The allocation algorithm is the rounding algorithm of Horowitz and

Sahni (1976) sketched above.

• The payment function is given by: pi(t, t̃) = ci(t, t̃) + bi(t, t̃), where

ci(t, t̃) =
∑

j∈xi(t)

t̃j

bi(t, t̃) = −ĝ(x(t̂), ˆcorri(x(t), t, t̃))

The rounding mechanism compensates the agents according to their ac-

tual work, but computes the bonus according to the rounded declarations

and execution times.

Theorem 5.9 For every fixed ε > 0 the rounding mechanism is a polyno-

mial time mechanism with verification that truthfully implements a 1 + ε

approximation for the bounded task scheduling problem.

Proof:(sketch) When the types and the actual computation times are

rounded, ĝ is exactly the make-span, and the rounding algorithm is optimal.

Arguments, similar to those in 5.1, therefore show that the only dominant

strategies for agent i are to declare on a type t′i such that t′i and ti have

the same rounded value, and to execute its tasks such that after rounding,

ˆcorri(x(t), t, t̃) equals ˆcorr∗(x(t), t). Clearly, when all agents follow such

strategies, the result is a 1 + ε approximation. In particular, truth-telling is

among the dominant strategies.

6 Conclusions and Further Research

In this paper we suggested a framework for studying optimization problems

that involve selfish participants. We studied a representative task scheduling

problem under two main models: a basic mechanism design based model and
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a model that allows more information to be incorporated into the mecha-

nism. Under the assumptions of the basic model we showed that the problem

cannot be approximated within a factor of 2 − ε. Then, under the second

model assumptions, we introduced several novel mechanisms including opti-

mal, constrained optimal and polynomial-time approximation mechanisms.

We have also shown that worst case behavior can be improved using ran-

domness without weakening the “game-theoretic” requirements of the mech-

anism.

We believe that our work is only a first step towards understanding the

notion of algorithmic cooperation among selfish agents. There are clearly

many open problems and research directions, and we are far from a situation

where we could design, analyze, and implement protocols and algorithms

that directly take into account the participants’ differing goals.

We divide the basic issues for further research into three main categories:

questions directly coming out of our work, game-theoretic extensions to our

model and distributed computation issues.

Several questions directly stem from our work. For example, there are

large gaps between the upper and lower bounds for both task scheduling

without verification and for poly-time task scheduling with verification.

Many game-theoretic extensions to our model are possible. For example

one may consider different settings (e.g. repeated games), different solu-

tion concepts (e.g. Bayesian-Nash), and different assumptions (e.g. partial

verification).

Finally, in this work we have treated the mechanism as a black box, and

have not considered how its function is actually carried out in a distributed

manner. A whole set of open problems comes from trying to “open up”

this black box, and analyze the steps taken in implementing the mechanism

from a distributed point of view. For example when communication costs are

considered, even the revelation principle breaks up; non complete network
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topology may be exploited by the agents to extract information about others

and to cooperate; cryptography may be introduced and distributed handling

of the payments may be considered.
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