

Mechanism Design (with and) without Money

“Algorithmic Game Theory”, Ch. 9-10

“A Course in Game Theory”, Ch. 10

“A Primer in Social Choice Theory”, Ch. 5

LUXEMBOURG

Outline

Social Choice Theory

Implementation Theory

Mechanism Design With Money

Mechanism Design Without Money

Social Choice Theory

UNIVERSITÉ DU
LUXEMBOURG

davide.grossi@uni.lu

Individual and Collective Reasoning Group

Collective decision-making

- Elections
- Auctions
- Program Committees

UNIVERSITÉ DU
LUXEMBOURG

Social Choice

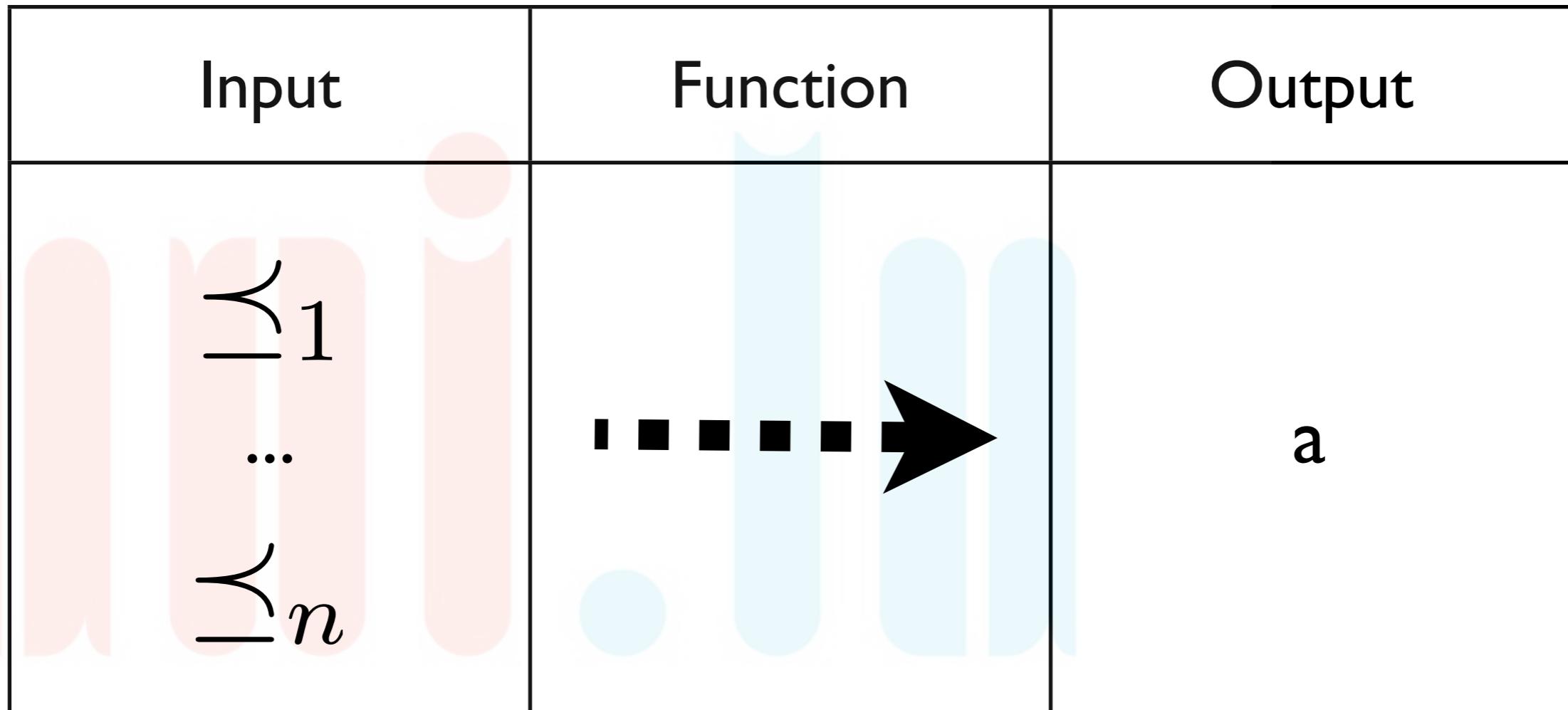
A Social Choice structure is a quadruple:

$$\mathfrak{S} = \langle \text{Agn}, \text{Iss}, \text{Prf}, \text{Sc} \rangle$$

s.t:

- Agn is a finite set of agents such that $1 \leq |\text{Agn}|$;
- Iss is a finite set of issues such that $3 \leq |\text{Iss}|$;
- Prf is the set of all preference profiles, i.e., $|\text{Agn}|$ -tuples $\mathfrak{p} = (\preceq_i)_{i \in \text{Agn}}$ where each \preceq_i is a total order over Iss ;
- Sc is a function taking each $\mathfrak{p} \in \text{Prf}$ to an element in Iss , i.e.:

$$\text{Sc} : \text{Prf} \longrightarrow \text{Iss}$$



What *classes* of Social Choice functions are *possible*?

Incentive-compatibility

A social choice function Sc can be strategically manipulated by agent i if for some profile $\mathfrak{p} = (\preceq_1, \dots, \preceq_n)$, there exists another profile $\mathfrak{p}' = (\preceq_{-i}, \preceq'_i)$ s.t.

$$Sc(\mathfrak{p}) \preceq_i Sc(\mathfrak{p}')$$

for $Sc(\mathfrak{p}) \neq Sc(\mathfrak{p}')$. A function Sc is *incentive compatible* (or strategy-proof) if it cannot be manipulated.

- *An agent can force a different alternative which he prefers by misrepresenting his preferences*
- **Majority voting on a set of issues with 2 elements is strategy-proof**

Why incentive compatibility?

- If we want to construct a social choice function as an *algorithm* we have, first of all, to elicit the preferences of the agents
- Preferences are private
- Incentive compatibility guarantees that our algorithm elicits the right information

LUXEMBOURG

Dictatorship

A social choice function Sc is a dictatorship if there exists an agent i s.t. $\forall p \in \text{Prf}$, and $\forall b \neq a \in \text{Iss}$:

$$b \preceq_i a \Rightarrow Sc(p) = a$$

A function Sc is non-dictatorial if there is no dictator.

- Is a dictatorship incentive compatible?

Gibbard-Satterthwaite Theorem ('73, '75)

- A. Gibbard, "Manipulation of voting schemes: a general result", *Econometrica*, Vol. 41, No. 4 (1973), pp. 587–601
- M.A. Satterthwaite, "Strategy-proofness and Arrow's Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions", *Journal of Economic Theory* 10 (April 1975), 187–217

UNIVERSITÉ DU
LUXEMBOURG

Gibbard-Satterthwaite Theorem ('73, '75)

Let $I_{SS} > 2$. If a social choice function S_C is:

1. onto I_{SS} (aka non-imposition) and
2. is incentive compatible

then it is a dictatorship.

- How does this jeopardize the possibility of finding algorithms for collective decision-making?

Implementation

UNIVERSITÉ DU
LUXEMBOURG

davide.grossi@uni.lu

Individual and Collective Reasoning Group

Implementation

An Implementation Problem for the Social Choice structure \mathfrak{S} is a structure:

$$(\mathfrak{S}, \mathcal{G})$$

where \mathcal{G} is a set of strategic game forms $G = (\text{Agn}, \text{Str}, g)$ s.t:

- Agn is the finite set of agents of \mathfrak{S} ;
- Str is the set $\prod_{i \in \text{Agn}} S_i$ of all strategy profiles, where S_i is the set of strategies of agent i ;
- g is the outcome function of the game: $g : \text{Str} \longrightarrow \text{Iss}$

Given $(\mathfrak{S}, \mathcal{G})$, find a game $G \in \mathcal{G}$ and a solution concept S s.t.:

$$g(S(G, \mathfrak{p})) = \text{Sc}(\mathfrak{p})$$

If such a G exists then Sc is S -implementable.

Truthful implementation

A Direct Implementation Problem for the Social Choice structure \mathfrak{S} is a structure:

$$(\mathfrak{S}, \mathcal{G})$$

where \mathcal{G} is a set of strategic game forms, aka *direct revelation mechanisms*, $G = (\text{Agn}, \text{Str}, g)$ s.t:

- Agn is the finite set of agents of \mathfrak{S} ;
- $\text{Str} = \text{Prf}$, i.e., the set of strategy profiles is the set of preference profiles;
- g is the outcome function of the game: $g : \text{Str} \longrightarrow \text{Iss}$

Agents play the game by declaring their preferences!

Truthful implementation

A Direct Implementation Problem for the Social Choice structure \mathfrak{S} is a structure:

$$(\mathfrak{S}, \mathcal{G})$$

where \mathcal{G} is a set of strategic game forms, aka *direct revelation mechanisms*, $G = (\text{Agn}, \text{Str}, g)$ s.t:

- Agn is the finite set of agents of \mathfrak{S} ;
- $\text{Str} = \text{Prf}$, i.e., the set of strategy profiles is the set of preference profiles;
- g is the outcome function of the game: $g : \text{Str} \longrightarrow \text{Iss}$

Given a Direct Implementation Problem $(\mathfrak{S}, \mathcal{G})$, find a *direct revelation mechanism* $G \in \mathcal{G}$ and a solution concept S s.t.:

$$g(S(G, \mathfrak{p})) = \text{Sc}(\mathfrak{p})$$

$$S(G, \mathfrak{p}) = \mathfrak{p}$$

If such a G exists, then Sc is *truthfully S-implementable*

Revelation in Dominant Strategies

A *dominant strategy equilibrium* of a strategic game (G, \mathfrak{p}) with $G = (\text{Agn}, \text{Str}, g)$, is a strategy profile $s^* \in \text{Str}$ s.t. $\forall i \in \text{Agn}$, and $\forall s \in \text{Str}$:

$$g((s_{-i}, s_i)) \preceq_i g((s_{-i}, s_i^*))$$

with \preceq_i being the i -th projection of \mathfrak{p} . A social choice function is said to be *DSE-implementable* if it is implementable w.r.t. dominant strategy equilibrium.

Theorem (Revelation Principle). Given an Implementation problem $(\mathfrak{S}, \mathcal{G})$, if there exists a game form $G \in \mathcal{G}$ DSE-implementing Sc , then there exists a direct revelation mechanism G^d s.t. $\forall \mathfrak{p} \in \text{Prf}$:

$$\text{DSE}(G^d, \mathfrak{p}) = \mathfrak{p}$$

that is, Sc is *truthfully DSE-implementable*.

DSE & Strategy-proofness

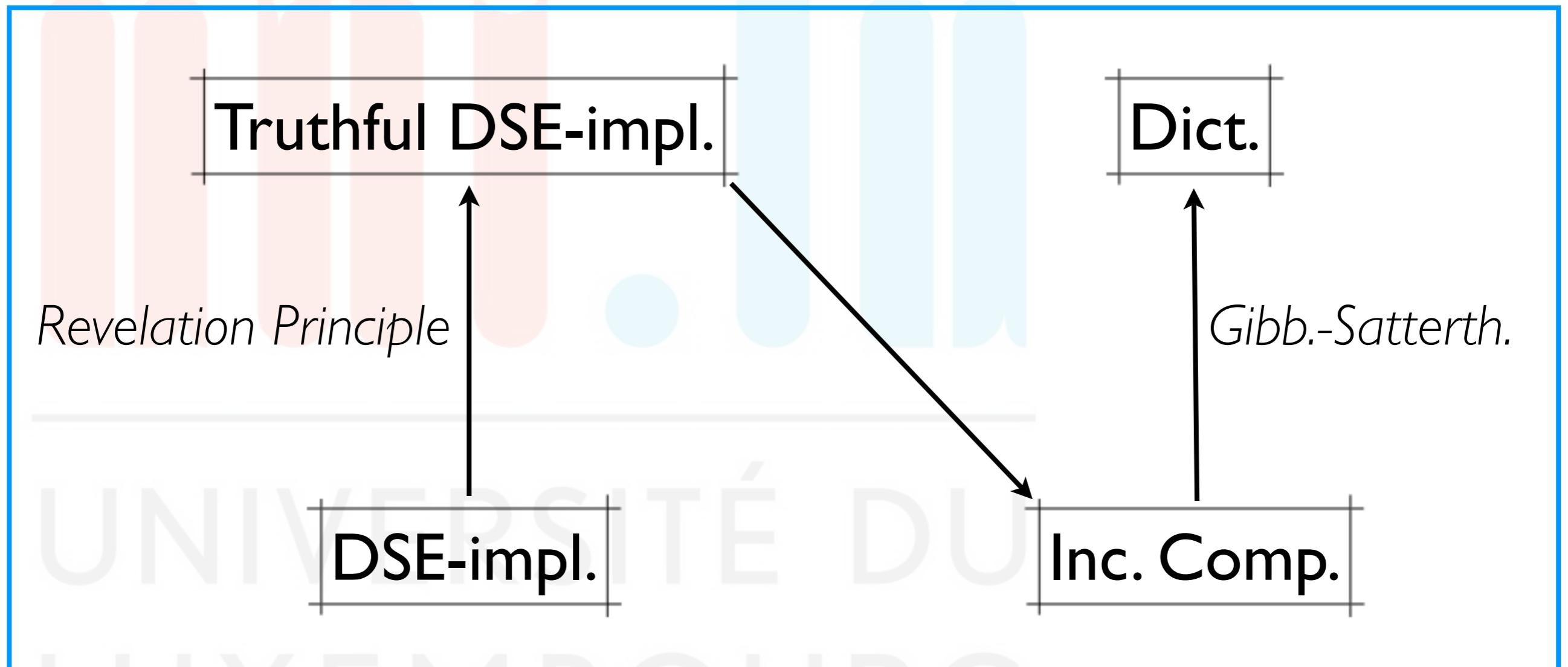
Fact. If Sc is *truthfully DSE-implementable* then it is incentive compatible, i.e.:

$$\forall \mathbf{p} : DSE(G, \mathbf{p}) = \mathbf{p} \Rightarrow \forall i, \forall \mathbf{p}, \mathbf{p}' : \text{Sc}((\mathbf{p}_{-i}, \mathbf{p}'_i)) \preceq_i \text{Sc}((\mathbf{p}_{-i}, \mathbf{p}_i))$$

where G is a direct revelation mechanism, and \preceq_i is the i^{th} projection of \mathbf{p} .

- DSE implementation is strictly related to the problem of preference elicitation

No DSE implementation!



How is MD possible?

- No non-trivial incentive compatible social choice function!
- No DSE implementations of non-trivial social choice functions!

- Under what conditions can we prove the existence of non-trivial incentive compatible social choice functions become by designing mechanisms?

With Money

UNIVERSITÉ DU
LUXEMBOURG

davide.grossi@uni.lu

Individual and Collective Reasoning Group

The virtues of money

Total orders $\preceq_i \subseteq \text{Iss} \times \text{Iss}$ vs. *valuation functions* $v_i : \text{Iss} \longrightarrow \mathbb{R}$

1. Preference intensity can be *measured* and interpersonal comparisons become possible
2. The unit of measure of preference intensity is transferable. Payments become possible:

$$u_i(a) = v_i(a) - p$$

Auctions

An auction is a Social Choice structure:

$$\mathcal{S} = \langle \text{Agn}, \text{Iss}, \text{Prf}, \text{Sc} \rangle$$

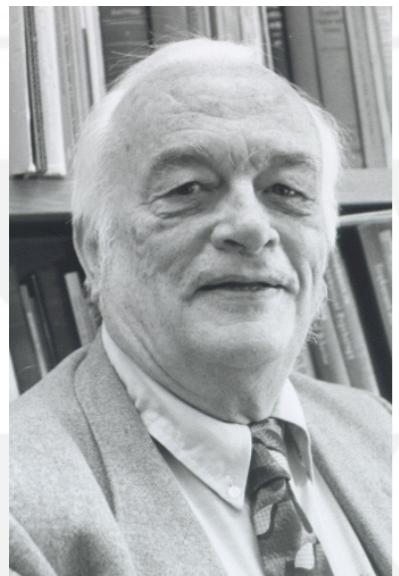
s.t:

- Agn is a finite set of agents such that $1 \leq |\text{Agn}|$;
- $\text{Iss} := \text{Agn} \times \mathbb{R}$;
- Prf is the set of all valuations of the auctioned item, i.e., $|\text{Agn}|$ -tuples $\mathbf{p} = (w_i)_{i \in \text{Agn}}$ where each $w'_i \in \mathbb{R}$;
- Sc is a function $\text{Sc} : \text{Prf} \longrightarrow \text{Iss}$

- **Valuations determine total preorders on Iss**
- **Sc picks a winner and establishes a payment**

What's the price?

1. Highest bidder wins, and no payment?
2. Highest bidder wins and pays the bid?



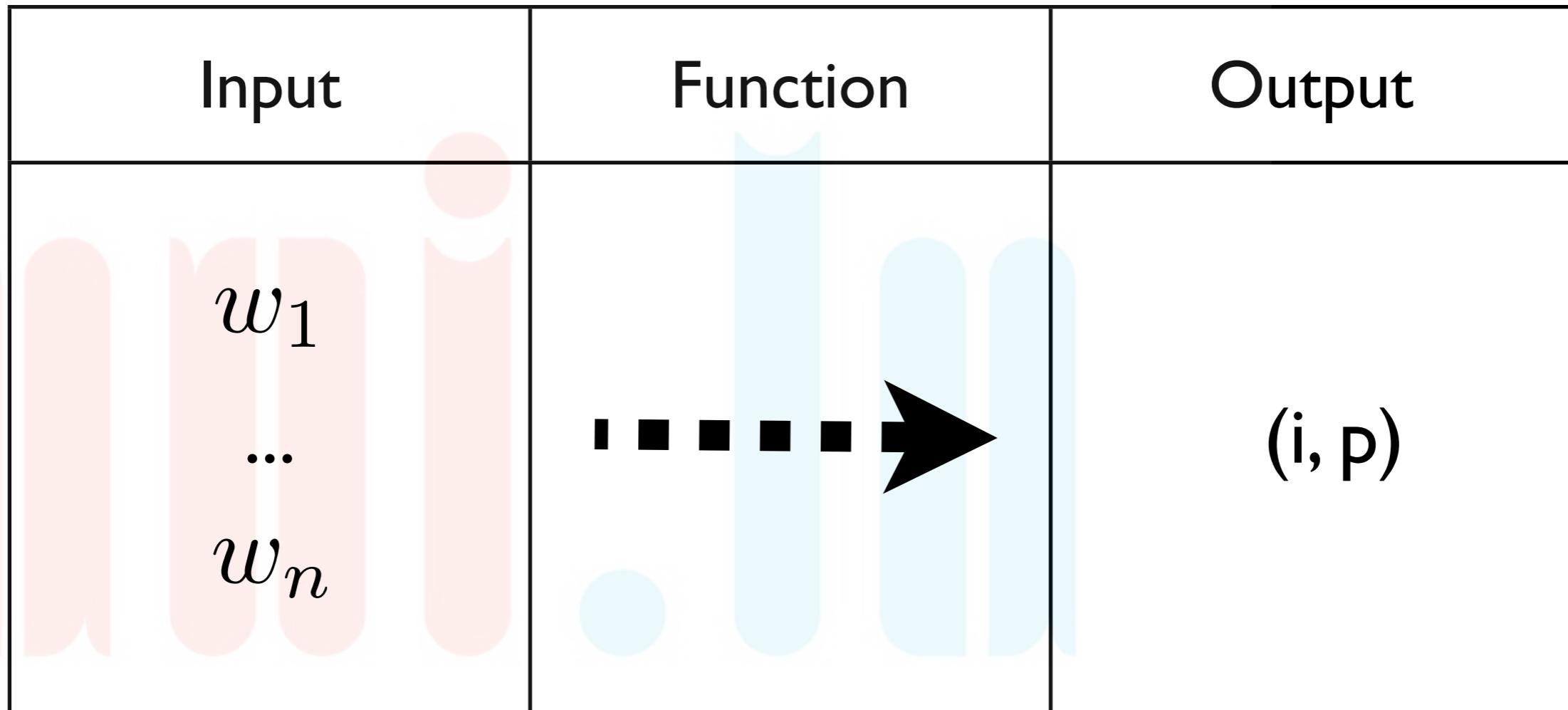
- W. Vickrey, “*Counterspeculation, auctions and competitive sealed tenders*”, *Journal of Finance*, 8-37, 1961

Vickrey Auction

Define \mathcal{S}_C as follows. Let the winner be the agent i with the highest declared valuation w_i and let i pay the second highest declared valuation $p = \max_{j \neq i} w_j$.

Theorem. Let $u(w_i)$ denote the utility of i if i bids w_i . For any profile of declared valuations (w_1, \dots, w_n) , and valuation w'_i , it holds that $u(w'_i) \leq u(w_i)$.

- Possibility of an incentive compatible mechanism under a specific subclass of total orders!
- Mechanism design aims at the generalization of such possibility: between Vickrey and Gibbard-Satterthwaite.



Incentive compatible functions are implementable (with Money)! The possibility is proven by the existence of the Vickrey auction!

Without Money

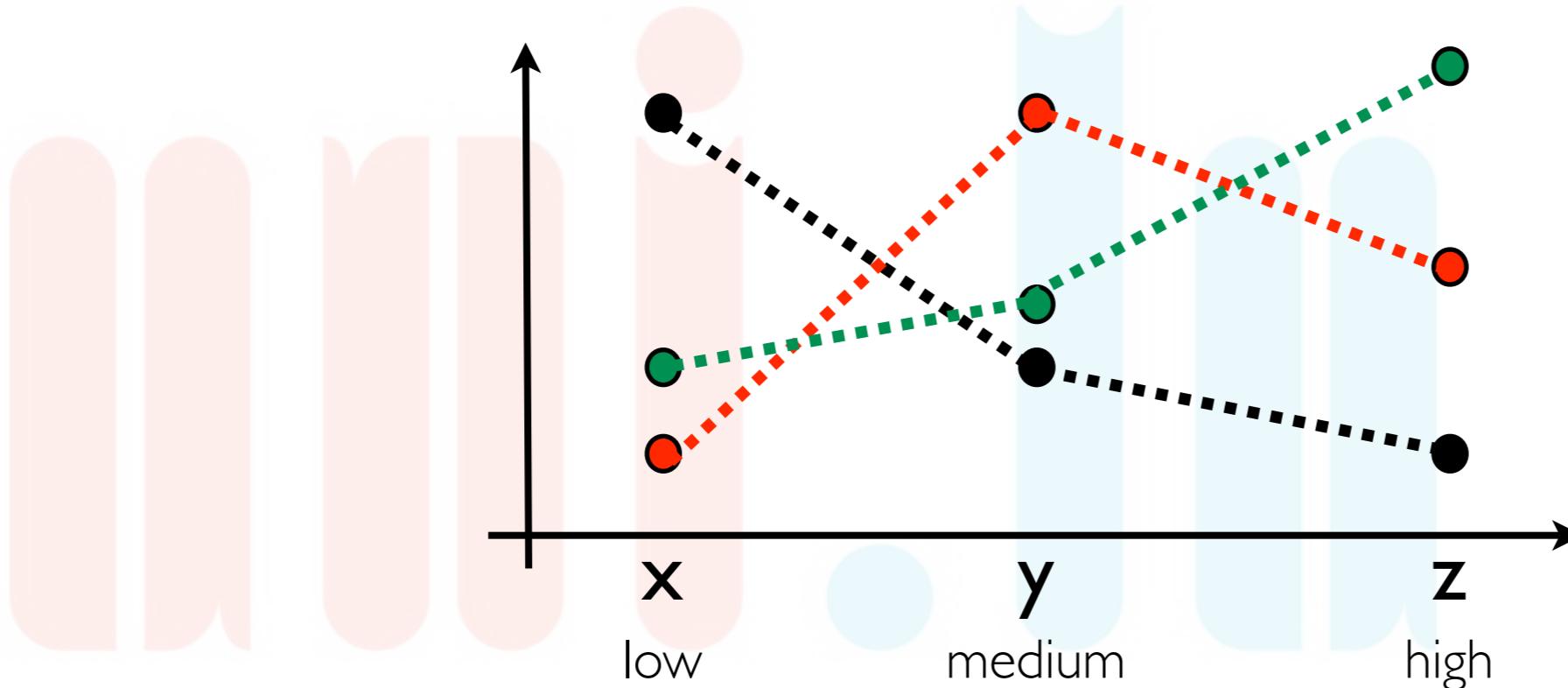
UNIVERSITÉ DU
LUXEMBOURG

davide.grossi@uni.lu

Individual and Collective Reasoning Group

uni.lu
UNIVERSITÉ DU
LUXEMBOURG

Single-peaked preferences



A preference profile $\mathbf{p} = (\preceq_1, \dots, \preceq_n)$ of total preorders on Iss is *single-peaked* if there exists a total order \preceq^* on Iss s.t. $\forall i \in \text{Agn}$:

$$y \preceq_i x \ \& \ B(x, y, z) \quad \Rightarrow \quad z \prec_i y$$

where B is the betweenness relation induced by \preceq^* .

Examples

- Laws and policies (from LEFT to RIGHT)
- Locations (from FAR to CLOSE)
- Dimensions (from SMALL to BIG)

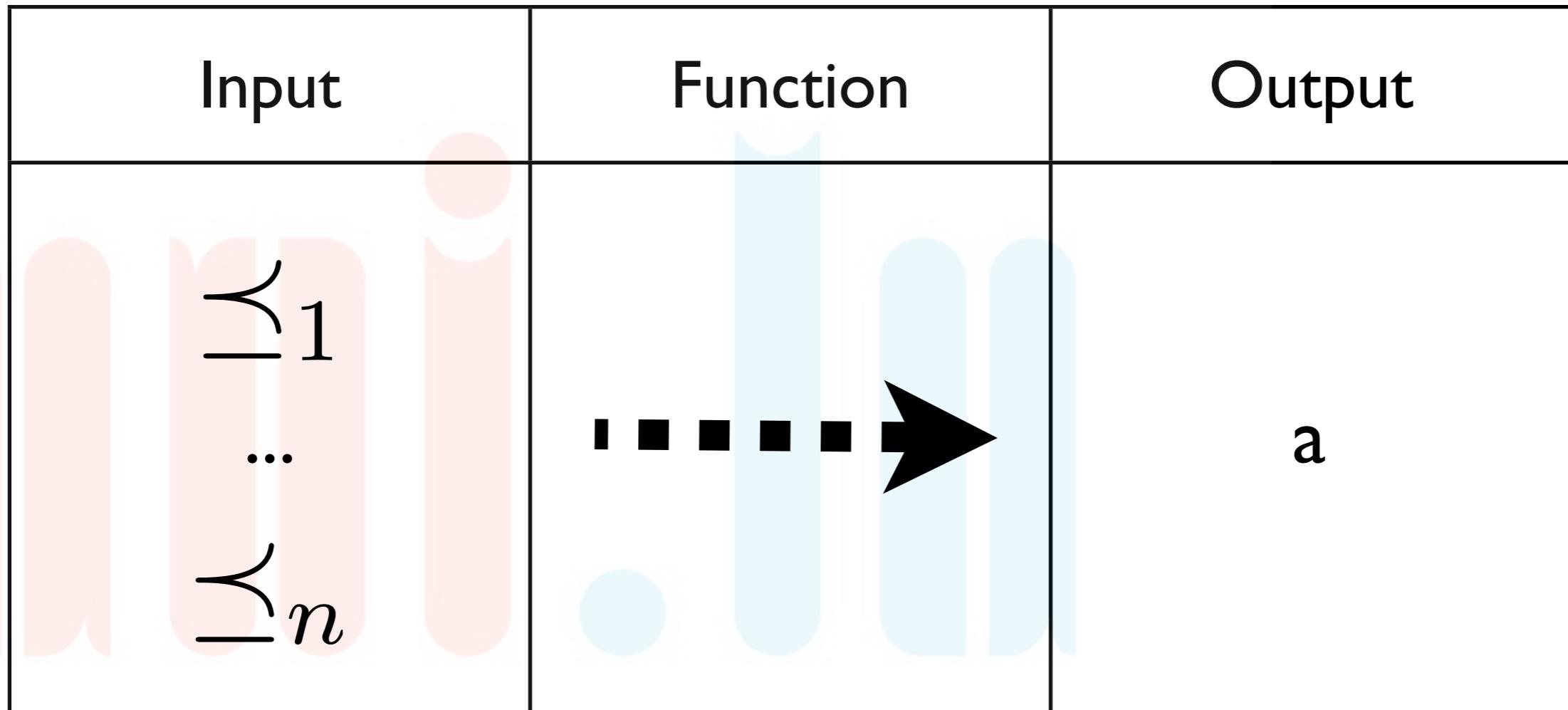
- NB: no money is involved in such decision!
- NB: no interpersonal comparison needed!

Possibility of Strategy-Proofness

Theorem (Pairwise majority). Take an Implementation problem $(\mathcal{S}, \mathcal{G})$ s.t. $|\text{Agn}|$ is odd. The direct revelation mechanism G with outcome function g being *pairwise majority voting* is an incentive compatible social choice rule under DSE.

Theorem (Median voter). Take an Implementation problem $(\mathcal{S}, \mathcal{G})$ s.t. $|\text{Agn}|$ is odd. The mechanism G where: i) agents declare their peak; ii) the outcome function g selects the *median voter's* peak is an incentive compatible social choice rule under DSE.

- They are equivalent mechanisms
- Both select the unique Condorcet Winner



Single-peaked preferences are sufficient to yield the possibility of incentive-compatible social choice functions (e.g., pairwise majority, median voter rule)

... Moral of the Story

- ✿ MD moves from the acknowledgment of two related impossibilities:
- ✿ NO non-dictatorial incentive compatible social choice functions;
- ✿ NO DSE-implementations of non-dictatorial functions.
- ✿ MD is developed by *restricting the type of allowed preferences*.