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Mechanism Design 
(with and) without Money

“Algorithmic Game Theory”, Ch. 9-10
“A Course in Game Theory”, Ch. 10

“A Primer in Social Choice Theory”, Ch. 5
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Social Choice Theory
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Collective decision-making

• Elections

• Auctions

• Program Committees
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Social Choice

A Social Choice structure is a quadruple:

S = 〈Agn, Iss, Prf, Sc〉

s.t:

• Agn is a finite set of agents such that 1 ≤ |Agn|;

• Iss is a finite set of issues such that 3 ≤ |Iss|;

• Prf is the set of all preference profiles, i.e., |Agn|-tuples p = ($i)i∈Agn
where each $i is a total order over Iss;

• Sc is a function taking each p ∈ Prf to an element in Iss,i.e.:

Sc : Prf −→ Iss

.
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What classes of Social Choice functions are possible? 

... a

!1

!n
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Incentive-compatibility

• An agent can force a different alternative which he prefers by 
misrepresenting his preferences

• Majority voting on a set of issues with 2 elements is 
strategy-proof

A social choice function Sc can be strategically manipulated by agent i if for
some profile p = (!1, . . . ,!n), there exists another profile p′ = (!−i,!′

i) s.t.

Sc(p) !i Sc(p′)

for Sc(p) "= Sc(p′). A function Sc is incentive compatible (or strategy-proof) if
it cannot be manipulated.
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Why incentive compatibility?

• If we want to construct a social choice function as 
an algorithm we have, first of all, to elicit the 
preferences of the agents

• Preferences are private

• Incentive compatibility guarantees that our 
algorithm elicits the right information
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Dictatorship

• Is a dictatorship incentive compatible?

A social choice function Sc is a dictatorship if there exists an agent i s.t.
∀p ∈ Prf, and ∀b #= a ∈ Iss:

b $i a ⇒ Sc(p) = a

A function Sc is non-dictatorial if there is no dictator.
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Gibbard-Satterthwaite Theorem (’73, ‘75)

• A. Gibbard, "Manipulation of voting schemes: a general result", 
Econometrica,  Vol. 41, No. 4 (1973), pp. 587–601

• M. A. Satterthwaite, "Strategy-proofness and Arrow's Conditions: Existence 
and Correspondence Theorems for Voting Procedures and Social Welfare 
Functions", Journal of Economic Theory 10 (April 1975), 187–217
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Gibbard-Satterthwaite Theorem (’73, ‘75)

• How does this jeopardize the possibility of finding 
algorithms for collective decision-making?

Let Iss > 2. If a social choice function Sc is:

1. onto Iss (aka non-imposition) and

2. is incentive compatible

then it is a dictatorship.
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Implementation
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Implementation

An Implementation Problem for the Social Choice structure S is a structure:

(S,G)

where G is a set of strategic game forms G = (Agn, Str, g) s.t:

• Agn is the finite set of agents of S;

• Str is the set
∏

i∈Agn Si of all strategy profiles, where Si is the set of
strategies of agent i;

• g is the outcome function of the game: g : Str −→ Iss

Given (S,G), find a game G ∈ G and a solution concept S s.t.:

g(S(G, p)) = Sc(p)

If such a G exists then Sc is S-implementable.
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Truthful implementation

Agents play the game by declaring their preferences! 

A Direct Implementation Problem for the Social Choice structure S is a struc-
ture:

(S,G)

where G is a set of strategic game forms, aka direct revelation mechanisms,
G = (Agn, Str, g) s.t:

• Agn is the finite set of agents of S;

• Str = Prf, i.e., the set of strategy profiles is the set of preference profiles;

• g is the outcome function of the game: g : Str −→ Iss

mailto:davide.grossi@uni.lu
mailto:davide.grossi@uni.lu


davide.grossi@uni.lu Individual and Collective Reasoning Group

Truthful implementation
A Direct Implementation Problem for the Social Choice structure S is a struc-
ture:

(S,G)

where G is a set of strategic game forms, aka direct revelation mechanisms,
G = (Agn, Str, g) s.t:

• Agn is the finite set of agents of S;

• Str = Prf, i.e., the set of strategy profiles is the set of preference profiles;

• g is the outcome function of the game: g : Str −→ Iss

Given a Direct Implementation Problem (S,G), find a direct revelation mecha-
nism G ∈ G and a solution concept S s.t.:

g(S(G, p)) = Sc(p)
S(G, p) = p

If such a G exists, then Sc is truthfully S-implementable
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Revelation in Dominant Strategies

A dominant strategy equilibrium of a strategic game (G, p) with G = (Agn, Str, g),
is a strategy profile s∗ ∈ Str s.t. ∀i ∈ Agn, and ∀s ∈ Str:

g((s−i, si)) #i g((s−i, s
∗
i ))

with #i being the i-th projection of p. A social choice function is said to be
DSE-implementable if it is implementable w.r.t. dominant strategy equilibrium.

Theorem (Revelation Principle). Given an Implementation problem (S,G),
if there exists a game form G ∈ G DSE-implementing Sc, then there exists a
direct revelation mechanism Gd s.t. ∀p ∈ Prf:

DSE(Gd, p) = p

that is, Sc is truthfully DSE-implementable.
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DSE & Strategy-proofness

Fact. If Sc is truthfully DSE-implementable then it is incentive compatible, i.e.:

∀p : DSE(G, p) = p ⇒ ∀i,∀p, p′ : Sc((p−i, p
′
i)) #i Sc((p−i, pi))

where G is a direct revelation mechanism, and #i is the ith projection of p.

• DSE implementation is strictly related to the problem 
of preference elicitation
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No DSE implementation!

DSE-impl.

Truthful DSE-impl.

Inc. Comp.

Dict.

Revelation Principle Gibb.-Satterth.
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How is MD possible?

• No non-trivial incentive compatible social choice 
function!

• No DSE implementations of non-trivial social 
choice functions!

• Under what conditions can we prove the existence 
of non-trivial incentive compatible social choice 
functions become by designing mechanisms?
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With Money
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The virtues of money

1. Preference intensity can be measured and 
interpersonal comparisons become possible

2. The unit of measure of preference intensity is 
transferable. Payments become possible:

Total orders !i⊆ Iss× Iss vs. valuation functions vi : Iss −→ R

ui(a) = vi(a)− p
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Auctions

• Valuations determine total preorders on Iss

• Sc picks a winner and establishes a payment

An auction is a Social Choice structure:

S = 〈Agn, Iss, Prf, Sc〉

s.t:

• Agn is a finite set of agents such that 1 ≤ |Agn|;

• Iss := Agn× R;

• Prf is the set of all valuations of the auctioned item, i.e., |Agn|-tuples
p = (wi)i∈Agn where each w′

i ∈ R;

• Sc is a function Sc : Prf −→ Iss
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What’s the price?

• W. Vickrey, “Counterspeculation, auctions 
and competitive sealed tenders”, Journal of 
Finance, 8-37,1961

1. Highest bidder wins, and no payment?

2. Highest bidder wins and pays the bid?
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Vickrey Auction

• Possibility of an incentive compatible mechanism 
under a specific subclass of total orders!

• Mechanism design aims at the generalization of such 
possibility: between Vickrey and Gibbard-
Satterthwaite.

Define Sc as follows. Let the winner be the agent i with the highest declared
valuation wi an let i pay the second highest declared valuation p = maxj !=iwj .

Theorem. Let u(wi) denote the utility of i if i bids wi. For any profile of
declared valuations (w1, . . . , wn), and valuation w′

i, it holds that u(w′
i) ≤ u(wi).
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Incentive compatible functions are implementable (with 
Money)! The possibility is proven by the existence of 
the Vickrey auction! 

... (i, p)

w1

wn
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Without Money
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Single-peaked preferences

A preference profile p = (!1, . . . ,!n) of total preorders on Iss is single-peaked
if there exists a total order !∗ on Iss s.t. ∀i ∈ Agn:

y !i x & B(x, y, z) ⇒ z ≺i y

where B is the betweenness relation induced by !∗.

low medium high
x y z
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Examples

• Laws and policies (from LEFT to RIGHT)

• Locations (from FAR to CLOSE)

• Dimensions (from SMALL to BIG)

• NB: no money is involved in such decision!

• NB: no interpersonal comparison needed!
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Possibility of Strategy-Proofness

• They are equivalent mechanisms

• Both select the unique Condorcet Winner

Theorem (Pairwise majority). Take an Implementation problem (S,G) s.t.
|Agn| is odd. The direct revelation mechanism G with outcome function g being
pairwise majority voting is an incentive compatible social choice rule under DSE.

Theorem (Median voter). Take an Implementation problem (S,G) s.t. |Agn|
is odd. The mechanism G where: i) agents declare their peak; ii) the outcome
function g selects the median voter’s peak is an incentive compatible social
choice rule under DSE.
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Single-peaked preferences are sufficient to yield the 
possibility of incentive-compatible social choice 
functions (e.g., pairwise majority, median voter rule)

... a

!1

!n
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... Moral of the Story

MD moves from the acknowledgment of two 
related impossibilities: 

NO non-dictatorial incentive compatible social 
choice functions; 

NO DSE-implementations of non-dictatorial 
functions.

MD is developed by restricting the type of allowed 
preferences. 
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