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An Attack Tree

subsequent analysis. An example attack tree originally given by Weiss [4]
and adopted from [6] is presented in Figure 1.

Figure 1. Example of an attack tree
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We will use the basic multi-parameter attack tree model introduced in
[10]. Let us have the AND-OR-tree describing the attacks and assume all
the elementary attacks being pairwise independent. Let each leaf Xi have
the following parameters:

– Costi – the cost of the elementary attack
– pi – success probability of the attack
– π−

i – the expected penalty in case the attack was unsuccessful
– π+

i – the expected penalty in case the attack was successful

Besides these parameters, the tree has a global parameter Gains showing
the benefit of the attacker in the case he is able to mount the root attack.
For practical examples on how to evaluate those parameters for real-life
attacks, please refer to [11] and [13].

The paper [10] gives a simple computational semantics to the attack
trees, which has further been extended to interval estimates in [12]. After
the above-mentioned parameters have been estimated for the leaf nodes, a
step-by-step propagation algorithm begins computing the same paramet-
ers for all the internal nodes as well, until the root node has been reached.
The computational routines defined in [10] are the following:
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An Attack RDAG
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Brief History

Hierarchical approach to security evaluation:

• Fault trees (Vesely, Goldberg, Roberts, Haasl, 1981)

• Threat logic trees (Weiss, 1991)

• Attack trees (Schneier, 1999)

• Foundations of Attack Trees (Mauw & Oostdijk, 2005)

• Multi-parameter attack trees (Buldas et al., 2006)
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Our Papers

• Buldas, Laud, Priisalu, Saarepera, Willemson, Rational Choice
of Security Measures via Multi-Parameter Attack Trees,
CRITIS 2006

• Jürgenson, Willemson, Processing Multi-parameter
Attacktrees with Estimated Parameter Values, IWSEC 2007

• Jürgenson, Willemson, Computing Exact Outcomes of
Multi-parameter Attack Trees, OTM 2008, IS 2008

• Jürgenson, Willemson, Serial Model for Attack Tree
Computations, ICISC 2009

• Jürgenson, Willemson, On Fast and Approximate Attack Tree
Computations, submitted to ISPEC 2010

• Niitsoo, Finding the Optimal Behavior for Adaptive Attack
trees, submitted to ???
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From Qualitative to Quantitative Analysis

Once an attack tree is complete, one can . . .

• . . . use it for qualitative description of attack scenarios
• An Attack Tree for the Border Gateway Protocol, IETF draft,

2004

• . . . analyze some property of the attacks (cost, feasibility, skill
level required, etc.)

• Schneier, 1999
• Mauw&Oostdijk, 2005

• . . . try to find the attack most profitable for the attacker
• Buldas et al., 2006
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Rational Attacker Paradigm

In order to find the best attack, we must assume some kind of
rationality of the attacker

• The original model of Buldas et al. assumes that the attacker
is a fully rational utility maximizer

• Jürgenson&Willemson, 2009, builds on another framework:
• The attacker tries to

• first, maximize success probability
• second, achieve the best possible outcome

• Hence, a certain form of irrational behavior is obtained
• This is the first known treatment of irrational attacks using

quantitative methods

• Niitsoo, 2010, has shown how to apply classical decision
theory to attack tree computations
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Parallel vs. Serial Approach

• Virtually all the present models of attack trees disregard the
possible order of elementary attacks

• Schneier, 1999
• Mauw&Oostdijk, 2005
• Buldas et al., 2006

• This restriction is unrealistic
• The attacker can use the knowledge concerning success/failure

of some elementary attacks to decide, which attacks to skip or
try next

• Intuitively, this will allow the attacker to avoid hopeless
branches, thus reducing the potential penalties and increasing
the expected outcome
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Flavors of the Serial Model

• Blocking vs. non-blocking
• In practice, there exist elementary attacks, failed attempt of

which blocks the execution of the whole tree, e.g. due to
imprisonment of the attacker

• Fully adaptive vs. semi-adaptive
• In reality, the attacker can freely choose the order of the next

elementary attacks based on the results of already tried ones
• From theoretical viewpoint, this gives a superexponential

explosion
• Hence, for an intermediate step we may limit ourselves to the

model, where the attacker
• Fixes the order of the elementary attacks in advance
• Is only allowed to skip some of them or stop attacking

altogether
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The Attack Game (Buldas et al., 2006)
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ration costs
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Multi-parameter Attack Trees (Buldas et al., 2006)
• Gains – value gained from the successful attack
• Costi – cost of the elementary attack, pi – success probability
• π−i = q− · Penalty− – expected penalty, unsuccessful attack
• π+i = q+ · Penalty+ – expected penalty, successful attack

Outcomei = pi · Gains− Costi − pi · π+i − (1− pi ) · π−i

For an OR-node:

(Cost, p, π+, π−) =

{
(Cost1, p1, π

+
1 , π

−
1 ), if Outcome1 > Outcome2

(Cost2, p2, π
+
2 , π

−
2 ), if Outcome1 ≤ Outcome2

For an AND-node:

Cost = Cost1 + Cost2, p = p1 · p2, π+ = π+1 + π+2 ,

π− =
p1(1− p2)(π+1 + π−2 ) + (1− p1)p2(π−1 + π+2 )

1− p1p2
+

+
(1− p1)(1− p2)(π−1 + π−2 )

1− p1p2
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Buldas et al., 2006: pros and cons

Pros:

• The semantics uses several intuitively relevant parameters

• The semantics is very fast, works by one tree traversal in time
O(n)

Cons:

• In each OR-node, Outcome needs to be computed, which
needs Gains for each OR-node, but Gains only has a meaning
globally

• The model (as most of the other previous models) assumes
that exactly one descendant is picked in an OR-node

• The model is inconsistent with Mauw&Oostdijk 2005
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Jürgenson & Willemson, 2008
F — Boolean formula corresponding to the attack tree
X — set of elementary attacks
σ — attack suite, satisfying the root node of the attack tree

Outcome = max
σ
{Outcomeσ : σ ⊆ X , F(σ := true) = true}

Outcomeσ = pσ · Gains−
∑
Xi∈σ

Expensesi

Expensesi = Costi + pi · π+i + (1− pi ) · π−i

pσ =
∑
ρ⊆σ

F(ρ:=true)=true

∏
Xi∈ρ

pi
∏

Xj∈σ\ρ
(1− pj)
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Implementation & Results

• Implemented in Perl programming language, using terribly
inefficient data structures

• pσ can be computed in linear time
• Going through potentially all the subsets of X still remains

exponential, of course

• Using a modified DPLL algorithm for finding all such attack
suites, which satisfy the attack tree

• Theorem: We don’t need to consider AND nodes, where some
child node is not satisfied

• OutcomeJW08 ≥ OutcomeB+06

• If T1 ≡ T2 then Outcome(T1) = Outcome(T2)
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PerformanceFigure 2. Performance test results
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6. Generate the value of Gains as an integer chosen uniformly from the
interval [0, 1000000).

Thus, the generated trees may in theory have up to 27 leaves. That par-
ticular size limit for the trees was chosen because the running time for
larger trees was already too long for significant amount of tests.

Performance test results showing the average running times and the
standard deviation of the running times of the algorithm depending on
the number of leaves are displayed in Figure 2. Note that the time scale is
logarithmic. The times are measured together with the conversion of the
attack tree formula to the conjunctive normal form. In Figure 2 we have
included the trees with only up to 19 leaves, since the number of larger
trees generated was not sufficient to produce statistically meaningful res-
ults. The number of the generated trees by the number of leaves is given
later in Figure 3.
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Comparison with Buldas et al., 2006Figure 3. Precision of the computational routine of Buldas et al. [10]
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Theorem 2 implies that the exact attack tree computations introduced in
the current paper always yield at least the same outcome compared to
[10]. Thus, the potential use of the routine of [10] is rather limited, be-
cause it only allows us to get a lower estimate of the attacker’s expected
outcome, whereas the upper limit would be of much higher interest. We
can still say that if the tree computations of [10] show that the system is
insufficiently protected (i.e. Outcomeσ′ > 0) then the exact computations
would yield a similar result (Outcomeσ > 0).

Following the proof of Theorem 2, we can also see that the semantics
of [10] is actually not too special. Any routine that selects just one child
of every OR-node when analysing the tree would essentially give a similar
under-estimation of the attacker’s expected outcome.

Together with the performance experiments described in Section 4.2
we also compared the outcome attack suites produced by the routines of
the current paper and [10] (the implementation of the computations of
[10] was kindly provided by Alexander Andrusenko [15]). The results are
depicted in Figure 3.
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Jürgenson & Willemson, 2010

Reimplementation of Jürgenson & Willemson, 2008

• C++ instead of Perl

• Removing unnecessary DPLL overhead (e.g. transformation to
CNF)

• Bit vectors instead of classes representing sets of subsets

• Catching true&false as soon as it occurs

• Implementing better strategies for choosing undefined literals
• Most-AND and Weighted-AND
• Heuristic complexity of the resulting algorithm: O(1.71n)

• The best #SAT -solver works in time O(1.6423n)

• Fast approximation using a custom genetic algorithm
• At least 89% accuracy within 2 seconds for the trees with less

than 30 leaves
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Comparing Strategies
Fig. 1. Performance test results
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random strategy
weighted-2-AND strategy

weighted-0.5-AND strategy
weighted-1-AND strategy

O(1.71n)

weighting constant c = 0.5 gave also very good results and in some cases
better than the Weighted-2-AND strategy.

We generated random sample attack trees with 5 leaves up to 29
leaves, at least 100 trees in each group, and measured the solving time
with our optimized realization and with different strategies. The results
are depicted in Fig. 1.

To estimate the complexity of our algorithms, we used the least-
squares method to fit a function a−1 · bn to the running times of our best
strategy method. Since there is no reasonable analytical way to establish
the time complexity of our algorithm, this approach provided a quick and
easy way to estimate it. The found parameters to fit the data points of
the best solution (the (1)-AND method) optimally were a = 109828 and
b = 1.71018. Hence we can conclude that the average complexity of our
algorithm with our generated sample data is in the range of ∼ O(1.71n).

The average complexity estimations for all strategies were the follow-
ing:

– Random strategy – O(1.90n)
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Accuracy of the Genetic Algorithm
Fig. 2. Accuracy of genetics algorithm with p = 2n and g = 2n
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6 Conclusions and Further Work

In this paper we reviewed the method proposed by Jürgenson and Willem-
son for computing the exact outcome of a multi-parameter attack tree [14].
We proposed and implemented several optimizations and this allowed us
to move the horizon of computability from the trees having 20 leaves (as
in [14]) to the trees with roughly 30 leaves.

However, computing the exact outcome of an attack tree is an inher-
ently exponential problem, hence mere optimizations on the implementa-
tion level are rather limited. Thus we also considered an approximation
technique based on genetic programming. This approach turned out to be
very successful, allowing us to reach 89% of confidence within 2 seconds
of computation for the trees having up to 29 leaves.

When running a genetic approximation algorithm, we are essentially
computing a lower bound to the attacker’s expected outcome. Still, an
upper bound (showing that the attacker can not achieve more than some
amount) would be much more interesting in practice. Hence, the prob-
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Jürgenson & Willemson, 2009

Introduction of the serial model

• Semi-adaptive, non-blocking case, i.e.
• The attacker fixes the order of the elementary attacks in

advance
• He is allowed to skip the elementary attacks that have become

useless
• No failure blocks the entire execution
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Attacker’s Choices

Decrypt company secrets

&

Obtain encrypted file

∨
Obtain the password

&

Bribe sysadmin Hack system Steal backup Install keylogger

t



Introduction Models of Attack Trees Computational Semantics

Outcome in the Serial Model (I)

The expected outcome of the attack based on permutation α is

Outcomeα = pα · Gains−
∑
Xi∈X

pα,i · Expensesi ,

where pα is the success probability of the primary threat and pα,i
denotes the probability that the node Xi

Theorem
Let F1 and F2 be two monotone Boolean formulae such that
F1 ≡ F2, and let Outcome1α and Outcome2α be the expected
outcomes obtained running the algorithm on the corresponding
formulae using the leaf set permutation α. Then

Outcome1α = Outcome2α .
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Outcome in the Serial Model (II)

Theorem
We have

OutcomeJW09 ≥ OutcomeJW08 .

If for all the elementary attacks Xi (i = 1, . . . , n) one also has
Expensesi > 0, then strict inequality holds in the above inequality.

• The näıve algorithm for computing the attacker’s outcome is
average-case exponential in the number of leaves n

• We propose an efficient algorithm with complexity O(n2)
• Recall, need only the quantities pα and pα,i
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• The näıve algorithm for computing the attacker’s outcome is
average-case exponential in the number of leaves n

• We propose an efficient algorithm with complexity O(n2)
• Recall, need only the quantities pα and pα,i



Introduction Models of Attack Trees Computational Semantics

The Algorithm

&
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f = 1− p2
u = p2

∨
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pα,3 = (1− p1) · (1− (1− p2))
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Sequential model revised

• Jürgenson&Willemson, 2009, builds on another framework:
• The attacker tries to

• first, maximize success probability
• second, achieve the best possible outcome

• Hence, a certain form of irrational behavior is obtained

• Niitsoo, 2010 analyzes the rational case
• Builds on classical decision theory
• Attacks can be skipped if they are too expensive
• Otherwise same as JW09

• Order of attacks fixed before the attack
• Full information about the past
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Sequential model computation

• Decision tree optimization algorithm
• Decision trees usually exponential in general

• Attack trees provide for a simple structure
• We do not optimize Trees but BDD-s

• Non-crossing orders optimized in O(n) time.
• Modeling goal-oriented behavior
• Optimal non-crossing order for JW10 can be found in O(n lg n)

time (Niitsoo, 2010)
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Fully rational model

• Pros:
• Fully rational behavior (easy to justify)
• Optimal subset found automatically
• Highest expected utility of all models to date
• Efficient O(n) computation for some orders
• Highly extensible:

• Blocking case (even partial blocking)
• Bribes and uncertainty
• Intermediate payments

• Cons:
• Computation exponential for some orders
• Still only semi-adaptive
• Conventional
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