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Introduction 

•  Some background on anonymity. 

•  Information theory for security and anonymity. 

•  Estimate information leakage from trial runs of a 
real system. 
–  Automatic tool to calculate information leakage. 
– We present an if, and only if, test for zero leakage. 



Anonymity Set 

•  Measure of anonymity is the size of the 
set of possible IDs 

•  If you know its one of 10 people set size 
= 10 

•  If are 99.9999% sure it’s one person, 
but it may also be 1 of 99 others then 
set size = 100 !! 



Levels of Anonymity 

Reiter and Rubin provide the classification: 

•  Beyond suspicion: the user appears no more likely 
to have acted than any other. 

•  Probable innocence: the user appears no more 
likely to have acted than to not to have.  

•  Possible innocence: there is a nontrivial probability 
that it was not the user. 



Probable Innocence 

•  After a run of the system, who does the 
observer think did it? 
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Information Theory 

H(X) = -    p(x).log(p(x)) 
                                  x in X 

Entropy describes the “amount of chaos” or 
uncertainty in a system 

= the number of bits needed to describe the 
system, on average. 

∑ 



The Horse Race Example 

•  Race 1: 8 horses, all equally likely to win the 
race ...  very chaotic. 

How many bit on average do you need to send 
the identify of the winner? 



The Horse Race Example 

•  Race 1: 8 horses, all equally likely to win the 
race ...  very chaotic. 

H(X) = -( 0.125.log(0.125) +...+)0.125.log(0.125) ) 
         = log(0.125) = 3  

i.e. on average you need three bits of information 
to send the identify of the winner. 



The Horse Race Example 
Race 2: 8 horse:  
•  P(horse1 wins) = 1/2 
•  P(horse2 wins) = 1/4 
•  P(horse3 wins) = 1/8 
•  P(horse4 wins) = 1/16 
•  P(horse5 wins) = 1/64 
•  P(horse6 wins) = 1/64 
•  P(horse7 wins) = 1/64 
•  P(horse8 wins) = 1/64 

The result is much more 
predicable, much less chaos. 
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1->0,      2->10,     3->110,  
4->1110,        5->111100, 
6->111101,    7->111110  
8->111111 
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H(X) = -    p(x).log(p(x)) 
                                  x in X 

Entropy describes the “amount of chaos” or 
uncertainty in a system 

= the number of bits needed to describe the 
system, on average. 
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A Metric For Anonymity 

•  The entropy of the set of possible people. 

•  For anonymity proposed independently in 
2002 by Daiz et al. and Danezis et al. 

•  But what about  
– user actions? 
– attack has some prior knowledge? 
– some users are more likely to be guilty than 

others?  



Conditional Entropy 

Conditional Entropy H(Y|X) is the remaining 
chaos in Y once you know X: 

H(Y|X)  = ∑x p(x).  H(Y|X=x) 
             = -∑x,y p(y,x).log( p(y|x) ) 

•  if you’re sending X then H(Y|X) is the average 
no. of bits needed to send  Y as well. 

•  Proposed for security by McIver and Morgan 
in 2003 



Mutual Information 

Mutual Information I(X;Y) is the reduction of 
uncertainty you get in X if you know Y. 

I(X;Y) = H(X) - H(X|Y) 
                       = H(Y) - H(Y|X) 

If W gives the conditions probabilities of Y given X 
we also write: 

I(Q,W) = I(Q;QW)  
 = ∑x,y Q(x).W(y|x).log( W(y|x) / QW(y) ) 



Mutual Information vs. 
Correlation 

•  Mutual Information 
measures any link 
in the data sets. 

•  Correlations only 
measures a linear 
link.  

Corr = 0     M.I. ≠0 

In 

Out 



Conditional Mutual Information 

•  Mutual Information can be conditional: 

I(L1;H | L2) = H(L1 | L2) – H( L1 | H,L2) 

This is the information you learn about H 
from L1, given you know L2. 

Used by Clark et al. for security. 



Assuming a Uniform 
Distribution Doesn’t Work 

Imagine a network of 
peers.  

Each peer randomly picks 
a nieghbour to act as a 
proxy for each 
message. 

Communication between 
peers is undetectable. 



Assuming a Uniform 
Distribution Doesn’t Work 

We can observe the 
messages leaving each 
peer. 

If each peer sends 
uniformly then we have 
a 1 in 4 change of 
guessing the sender 

Number of observed 
messages from node 

8 9 8 

9 7 9 

9 9 10 

8 8 8 

9 9 10 



Assuming a Uniform 
Distribution Doesn’t Work 

But if the distribution isn’t 
uniform then a sender 
has nowhere near this 
anonymity. 

In the worst case the 
anonymity is zero 

0 29 0 

29 0 29 

0 59 0 

28 0 28 

0 29 0 



Channel Capacity 

For a channel: 
I(Inputs;Output)  =  how much the outputs 

                   tell you about inputs  

The most information it is possible to send 
over a channel  

C = MaxInputs  I(Inputs;Outputs) 



Information Leakage = Capacity
(System) 

Following Chatzikokolakis et al., Millen, Clark 
et al. etc. 

•  Think of the whole system as a channel. 
– secret is the input to the “channel”.  
– observables are the outputs from the “channel”. 

•  Capacity tells us what an attacker can learn 
about the users from the observable 
actions. 



Information Theory 
Entropy:                     H(X) = - ∑x p(x).log(p(x)) 

 the amount of uncertainty in X. 

Conditional Entropy: H(Y|X)  = ∑xp(x).H(Y|X=x) 
 the amount of uncertain in Y if you know X 

Mutual Information:        I(X;Y) = H(X) - H(X|Y) 
 the reduce of uncertainty you get in X if you know Y. 

Relative Entropy: D(p||q) = ∑x p(x).log(p(x) / q(x)) 
 “distance” from one distribution to another.    

                          I(p(x),p(y)) = D(p(x,y) || p(x).p(y))  
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MIXes 
•  MIXes are proxies that forward messages between 

them 
•  The MIX waits until it has received a number of 

messages, then forwards them in different order. 
•  E.g. 1 wants to send to A, 2  to B and 3 to C 

A 

Mix 

1 

2 

3 

B 

C 



A Perfect Mix 



A Perfect Mix 

Information Leakage = Capacity = 0 



A Bad Mix 

Information Leakage = Capacity = ? 



A Bad Mix 

Information Leakage = Capacity = 1 bit 



Applying this to Real Systems 

•  How do we apply information theoretic 
measures to real systems? 

•  Leak may be caused by the implementation: 
–  Time based attack on RSA (Paul Kocher)  

–  Bandwidth attack on Tor (Murdoch & Danezis) 

– CPU Heat attack on Tor Hidden services
(Murdoch) 



Mixminion 



Prob. Observed from 
Mixminion Node 



Cover & Thomas: Ways to 
Finding Capacity 

•  A “gradient climb” algorithm e.g. Frank-
Wolfe. 

•  Kuhn-Tucker Theorem/Lagrange 
multipliers. 

•  The Blahut-Arimoto algorithm 



Blahut-Arimoto Algorithm 

How do we find the maximising input distribution? 

I(X;Y) = H(X) - H(X|Y) 
=∑x,y p(x) W(y|x) log (W(y|x)  / ∑x’ p(x’)W(y|x) 
= ∑x p(x).D(  W(_|x)  ||  ∑x’ p(x’)W(_|x’) ) 
= ∑x p(x).Dx(W||pW) 

∑xp(x).Dx(W||pW) ≤ C(W) ≤ Maxx Dx(W||pW)  

Distribution of y  
given x 

Distribution of y 



Blahut-Arimoto Algorithm. 

1) Guess an input distribution p0(a) e.g., uniform 

2) Improve the guess, for all x:  
        pn+1(x) =     exp( Dx(W || pnW) ) 

            ∑x’  exp( Dx'(W || pnW) ) 

3) Repeat until I(pn,W)  - Maxx Dx(W||pnW) < e 

Can be tweaked for super linear convergence, conditional 
mutual information etc. 



Method of Analysing 
Anonymity 

•  To analyse a system we define the inputs and 
outputs. 
–  Some abstraction might be needed to make the 

number of observations manageable 

•  We run tests of the system for each input. 

•  From these tests we estimate a matrix. 

•  We estimate capacity, from the matrix.  



W  : the matrix of the true system. 

Wn  : a matrix estimated from n samples. 

Q   : the input dist. that maximise M.I.  

Qm(Wn) : the B.A. algorithm applied to Wn.  

C = I(Q,W) : the true system capacity. 

Cn,m  = I(Qm(Wn),Wn) : estimate of capacity ?? 

Terms 

ˆ 

ˆ ˆ 

ˆ ˆ ˆ ˆ 

Us  

Everybody else 



Prob. Observed from 
Mixminion Node 



Observation from a running 
Mixminion Node 

Leakage = 0.0249 bits"



Convergence 

Theorem: Cn,m almost surely convergences 
to C as n,m → ∞	



i.e., for any pe and error e there exists n‘ & 
m’ such that for n > n’ and m > m’: 

p(| C - Cn,m | > e ) < pe 
ˆ 

ˆ 



The Distribution of Anonymity 

We can get bounds on the error by ask what 
distribution Cn,m comes from. 

Adapting a statistical method from Rao: 

•  We find the Taylor expansion of the Cn,m  
•  We drop the terms smaller than sampleSize-2 

•  We then calculate the mean and variance. 
•  We find the distribution using the central limit 

theory. 

ˆ 

ˆ 



Estimated Value 

As we can’t find the distribution for the 
maximising distribution we relate our 
estimate to I(Qm(Wn),W) 

Lemma: The estimate   
–  is less than or equal to the capacity,  
– equals zero if, and only if, the capacity 

equals zero. 

ˆ ˆ 



Expectation and Variance 

To find a distribution we need to find the 
expectation: 

E(X): the average value  

And the variance:   
Var (X) = E(mean - x)2 



What We Know 

Kij is the number of times the pair (i,j) shows up 
in our test. 

Let the true prob:       p(i,j) = hKij/n  

Then maximum likehood tells us that  
•  E(Kij - hKij) = 0 
•  E((Kij - hKij)2) = p(i). W(j|i)(1-W(j|i)) 
•  E((Kij - hKij)3) = Kij(2W(j|i)2-3W(j|i)+1) ... 



Taylor's Theorem 

To find the value of a function at x (near a): 

f(x) = f(a) + f’(a)(x-a) + f’’(a)(x-a)2 + f’’(a)(x-a)3 +... 
                       1!                2!                3! 

We take I(X,_) as “f”, Wn as “x” and W as “a” to give 
get an expression for the estimate in terms of the 
true value. 



Taylor Expansion of Entropy 

In(X,Y) = H(X) + Hn(Y) - Hn(X,Y) 
E(In(X,Y)) = E(H(X)) + E(Hn(Y)) - E(Hn(X,Y)) 

H(X,Y)   = - ∑x,y  p(x,y)log(p(x,y)) 
Hn(X,Y) = - ∑x,y  Kij/n.log(Kij/n) 
Hn(X,Y)   = -∑x,y

hKij/n - 1/n.∑x,y(1+ 
hKij/n)  

                -∑x,y(Kij-hKij)2/n. hKij)  
                 + ∑x,y(Kij+ 

hKij)3/6n.hKij
2) +O(n-2) 

 E(Hn(X,Y))  =  H(X,Y) - I(J-1)/2n +O(n-2)  



For Non-Zero Mutual 
Information 

When the true value is not 0, an 
estimation of capacity is drawn from a 
normal distribution with: 

Mean: I(Qm(Wn),W) + (I-1)(J-1) + O(n-2) 
                                    2n 
I = no. of Inputs, J = no. of Outputs 

Variance: ... 

ˆ ˆ 



Variance 

1. ∑x Q(x).(∑y W(y|x). (log(   Q(x).W(y|x)   ))2 

n                  ∑x’ Q(x’)W(y|x’) 
     - (∑y W(y|x). log(   Q(x).W(y|x) ))2 

               ∑x’ Q(x’)W(y|x’) 
            +O(n-2) 



When I = 0 
•  The O(n-1) term disappears with X and Y are 

independent. 

•  In which case we need to find the O(n-2) term. 

•  Following Rao, we observe when I = 0 :  

 ∑ij (  (Kij - E(Kij))2 / E(Kij)  ) ~ χ2   

    and that this approximates mutual information. 



Results for I = 0 

When the true value is 0, an estimation of 
capacity (or mutual information) is 
drawn from the distribution:  

2n.I   ~   χ2((noOfInputs-1)(noOfOutputs-1)) 

Mean:      (noOfInputs-1)(noOfOutputs-1)/2 
Variance: (noOfInputs-1)(noOfOutputs-1)/2n2 



Upper Bound on the Variance 

•  In both cases var(C(W)) < I.J / n 

•  Rule of thumb: 
–  If I.J >> n the variance will be low and the 

results actuate. 

–  If you can get this many samples then 
statically analysis is useful, otherwise not. 



To Analyse a System. 

•  We define the inputs (I) and outputs (J). 

•  Run n tests of the system with n >> I.J 

•  Estimate the matrix and find C = I(Qm(Wn),Wn) 

•  Point Estimate is: 
Max ( 0, I(Qm(Wn),Wn) – (I-1)(J-1)/2n ) 

ˆ ˆ ˆ ˆ 

ˆ ˆ ˆ 



Using the Distributions 

Observed Capacity Estimate 

Prob 
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Distribution for 
zero Capacity 
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Test for Zero Leakage 

•  But what if we want to know if the 
leakage is really zero? 

•  What distinguishes the zero from the 
non-zero case is the variance: 
– O(n-1) for non zero 
– O(n-2) for zero. 

•  A large enough sample size will always 
tell these apart, with a given certainty. 



Test for Zero Leakage 
•  Run 40 tests of the system and calculate the 

observed variance “o” in the tests results. 

•  Test o against the predicated variance for zero and 
non-zero observations. 

•  If it matches the zero predication but not the non-zero 
we can conclude that there is zero leakage. 

•  If it only matches the non-zero predication then we 
can find the confidence interval for the results.  

•  If it matches both then increase the sample size. 



Prob. Observed from 
Mixminion Node 



Observation from a running 
Mixminion Node 

Leakage = 0.0249 bits"
Confidence interval for zero leakage = 0, 0.0355"



Back to e-Passports: 



Information-theoretic 
Measurement of Information 

Leakage from  Passports 
Estimated Leakage in bits, 95% confidence: 

•  UK         : 0.9517 
•  German : 0.9716 
•  Greek    : 0.9921 
•  Russian : 1 

As there is only one “input” these equate to the 
probability of a successful guess. 



Conclusion 

•  Information leaks are often due to the 
implementation.  

•  We can estimate information leakage statistically 
from trail runs of a real system. 

•  This may find errors that model checking would 
miss. 

•  State-space doesn’t matter. 



Further Work 

•  Proper treatment of continuous data. 

•  Apply to other forms of information 
theoretic measurement. 

•  Better ways to apply this to real systems. 



Questions? 


