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Introduction

« Some background on anonymity.
 Information theory for security and anonymity.

« Estimate information leakage from trial runs of a
real system.

— Automatic tool to calculate information leakage.
— We present an if, and only if, test for zero leakage.




Anonymity Set

* Measure of anonymity is the size of the
set of possible IDs

If you know its one of 10 people set size
=10

If are 99.9999% sure it's one person,
but it may also be 1 of 99 others then
set size =100 !




Levels of Anonymity

Reiter and Rubin provide the classification:

Beyond suspicion: the user appears no more likely
to have acted than any other.

Probable innocence: the user appears no more
likely to have acted than to not to have.

Possible innocence: there is a nontrivial probability
that it was not the user.




Probable Innocence

 After a run of the system, who does the
observer think did it?




Probable Innocence

 After a run of the system, who does the
observer think did it?




Information Theory

H(X) = Z p(x).log(p(x))

X in X

Entropy describes the “amount of chaos” or
uncertainty in a system

= the number of bits needed to describe the
system, on average.




The Horse Race Example

 Race 1: 8 horses, all equally likely to win the
race ... very chaotic.

How many bit on average do you need to send
the identify of the winner?




The Horse Race Example

 Race 1: 8 horses, all equally likely to win the
race ... very chaotic.

H(X) =-(0.125.10g(0.125) +...+)0.125.l0g(0.125) )
= log(0.125) = 3

l.e. on average you need three bits of information
to send the identify of the winner.




The Horse Race Example

Race 2: 8 horse:
P(horse1 wins) = 1/2
P(horse2 wins) = 1/4
P(horse3 wins) = 1/8

horse4 wins) = 1/16

horse6 wins) = 1/64
P(horse7 wins) = 1/64

)
( )
( )
( )
(horseb wins) = 1/64
( )
( )
P(horse8 wins) = 1/64

The result is much more
predicable, much less chaos.




The Horse Race Example

Race 2: 8 horse: H(X) = 1/2.log(1/2)
« P(horse1 wins) = 1/2 + 1/4.1og(1/4) +

horse2 wins) = 1/4 ... +1/64/.10g(1/64)

horse3 wins) = 1/8
horse4 wins) = 1/16 =2

horse6 wins) = 1/64 send 2 bits
horse7 wins) = 1/64

)
P( )
P( )
P( )
P(horse5 wins) = 1/64 l.e. on average we need to
P( )
P( )
P(horse8 wins) = 1/64

The result is much more
predicable, much less chaos.




The Horse Race Example

Race 2: 8 horse:
P(horse1 wins) = 1/2
horse2 wins) = 1/4
horse3 wins) = 1/8
horse4 wins) = 1/16

horse6 wins) = 1/64
horse7 wins) = 1/64

)
P( )
P( )
P( )
P(horse5 wins) = 1/64
P( )
P( )
P(horse8 wins) = 1/64

The result is much more

predicable, much less chaos.

H(X) = 1/2.log(1/2)
+ 1/4.log(1/4) +
....+1/64/.log(1/64)
=2
l.e. on average we need to
send 2 bits

1->0,
4->1110,
6->111101,
8->111111

2->10, 3->110,
9->111100,
7->111110




Information Theory

H(X) = Z p(x).log(p(x))

X in X

Entropy describes the “amount of chaos” or
uncertainty in a system

= the number of bits needed to describe the
system, on average.




A Metric For Anonymity

he entropy of the set of possible people.

* For anonymity proposed independently in
2002 by Daiz et al. and Danezis et al.

 But what about
— user actions?
— attack has some prior knowledge?

— some users are more likely to be guilty than
others?




Conditional Entropy

Conditional Entropy H(Y|X) is the remaining
chaos in Y once you know X:

H(Y|X) = 2,p(x). H(Y]|X=X)
= -2 xy P(Y:X).log( p(y[x) )

* If you're sending X then H(Y|X) is the average
no. of bits needed to send Y as well.

* Proposed for security by Mclver and Morgan
in 2003




Mutual Information

Mutual Information I(X;Y) is the reduction of
uncertainty you get in X if you know Y.

I(X;Y) = H(X) - H(X[Y)
= R(Y) - H(Y|X)

If W gives the conditions probabilities of Y given X
we also write:

(Q,W) = I(Q;QW)
= 2xy QX).-W(y[x).log( W(y|x) / QW(y) )




Mutual Information vs.
Correlation

 Mutual Information
measures any link
In the data sets.

» Correlations only
measures a linear
Mle

Corr=0 M.l #0




Conditional Mutual Information

 Mutual Information can be conditional:
I(Ly;H | L) =H(L, | L)-H(L; [ HL,)

This is the information you learn about H
from L1, given you know L2.

Used by Clark et al. for security.




Assuming a Uniform
Distribution Doesn’'t Work

Imagine a network of
peers.

Each peer randomly picks
a nieghbour to act as a
proxy for each
message.

Communication between
peers is undetectable.




Assuming a Uniform
Distribution Doesn’t Work

We can observe the
messages leaving each
peer.

If each peer sends
uniformly then we have
a 1in 4 change of
guessing the sender

Number of observed
messages from node




Assuming a Uniform
Distribution Doesn’t Work

But if the distribution isn’t
uniform then a sender o o
has nowhere near this
anonymity. 29 29

In the worst case the
anonymity is zero




Channel Capacity

For a channel:

|(Inputs;Output) = how much the outputs
tell you about inputs

The most information it is possible to send
over a channel

C = Max,us |(Inputs;Outputs)




Information Leakage = Capacity
(System)

Following Chatzikokolakis et al., Millen, Clark
et al. etc.

* Think of the whole system as a channel.
— secret is the input to the “channel’.
— observables are the outputs from the “channel”.

« Capacity tells us what an attacker can learn
about the users from the observable
actions.




Information Theory

Entropy: H(X) = - ), p(x).log(p(x))

the amount of uncertainty in X.

Conditional Entropy: H(Y|X) = pr(X).H(Y|X=X)

the amount of uncertain in Y if you know X

Mutual Information:  [(X;Y) = H(X) - H(X]Y)

the reduce of uncertainty you get in X if you know Y.

Relative Entropy: D(p||q) = ZX p(x).log(p(x) / q(x))

“‘distance” from one distribution to another.

I(p(x),p(y)) = D(p(x,y) || p(x)-p(Y))
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MIXes

« MIXes are proxies that forward messages between
them

 The MIX waits until it has received a number of
messages, then forwards them in different order.

« E.g.1TwantstosendtoA,2 toBand3toC




A Perfect Mix

(a) Probabilites of outputs for each input for a perfect mix node

Message orderings |out A,B,C|out A,C,B|out B,A,C|out B,C,A|out C,A,B|out C,B,A
in 1,23 0.1666 0.1666 |0.1666 [0.1666 |0.1666 |0.1666
in 1,3,2 0.1666 [0.1666 [0.1666 |0.1666 |0.1666 |0.1666
in 2,1,3 0.1666 [0.1666 [0.1666 |0.1666 |0.1666 |0.1666
in 2,3,1 0.1666 0.1666 |0.1666 [0.1666 |0.1666 |0.1666
in 3,1,2 0.1666 [0.1666 [0.1666 |0.1666 |0.1666 |0.1666
in 3,2,1 0.1666 [0.1666 [0.1666 |0.1666 |0.1666 |0.1666




A Perfect Mix

Message orderings |out A,B,C|out A,C,B|out B,A,C|out B,C,A|out C,A,B|out C,B,A
in 1,23 0.1666 0.1666 |0.1666 [0.1666 |0.1666 |0.1666
in 1,3,2 0.1666 [0.1666 [0.1666 |0.1666 |0.1666 |0.1666
in 2,1,3 0.1666 [0.1666 [0.1666 |0.1666 |0.1666 |0.1666
in 2,3,1 0.1666 0.1666 |0.1666 [0.1666 |0.1666 |0.1666
in 3,1,2 0.1666 [0.1666 [0.1666 |0.1666 |0.1666 |0.1666
in 3,2,1 0.1666 [0.1666 [0.1666 |0.1666 |0.1666 |0.1666

(a) Probabilites of outputs for each input for a perfect mix node

Information Leakage = Capacity =0




A Bad Mix

Message orderings|out A,B,C|out A,C,B|out B,A,C|out B,C,A|out C,A,B|out C,B,A
in 1,2,3 0 0.3333 {0.3333 |0 0 0.3333
in 1,3,2 0.3333 |0 0 0.3333 10.3333 |0
in 2,1,3 0.3333 |0 0 0.3333 10.3333 |0
in 2,3,1 0 0.3333 10.3333 |0 0 0.3333
in 3,1,2 0 0.3333 10.3333 |0 0 0.3333
in 3,2,1 0.3333 |0 0 0.3333 10.3333 |0

(b) Probabilites of outputs for each input for a flawed mix node

Information Leakage = Capacity = ?




A Bad Mix

Message orderings|out A,B,C|out A,C,B|out B,A,C|out B,C,A|out C,A,B|out C,B,A
in 1,2,3 0 0.3333 {0.3333 |0 0 0.3333
in 1,3,2 0.3333 |0 0 0.3333 10.3333 |0
in 2,1,3 0.3333 |0 0 0.3333 10.3333 |0
in 2,3,1 0 0.3333 10.3333 |0 0 0.3333
in 3,1,2 0 0.3333 10.3333 |0 0 0.3333
in 3,2,1 0.3333 |0 0 0.3333 10.3333 |0

(b) Probabilites of outputs for each input for a flawed mix node

Information Leakage = Capacity = 1 bit




Applying this to Real Systems

 How do we apply information theoretic
measures to real systems?

* Leak may be caused by the implementation:
— Time based attack on RSA (Paul Kocher)

— Bandwidth attack on Tor (Murdoch & Danezis)

— CPU Heat attack on Tor Hidden services
(Murdoch)
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Mixminion: a Type lll anonymous remailer
< | » & 4+ 3 http://mixminion.net/ ¢ | (Qr Google ()

(0 % sofacinema The Electric: Home Democracy Now! Nectar eStor...e Store List Yahoo! Google Maps Google Mail News (395)v »

Mixminion: A Type Ill Anonymous Remailer

Mixminion is the reference implementation of the Type Il Anonymous Remailer protocol.

Documentation

The [Design Document| gives our justifications and security analysis for the Mixminion design:

PostScript version

PDF version

LaTeX source

BibTeX file

Roger's design overview slides (PDF)

The |Specification| aims to give developers enough information to build a compatible version of Mixminion:

Part 1: Mix Protocol Specification

Part 2: End-to-end Encoding and Delivery
Part 3: Mix Directory Specifications
Addendum: Unresolved specification issues

Draft nymserver specification (Preliminary version)
e Draft C Client API specification (Preliminary version)




Mixminion Node

Prob. Observed from

Message orderings|out A,B,C|out A,C,B|out B,A,C|out B,C,A|out C,A,B|out C,B,A
in 1,23 0.0 0.0118 10.0473 (0.0118 |0.0059 [0.9231
in 1,3,2 0.0117 0.0 0.0351 {0.0292 0.0 0.924
in 2,1,3 0.005 0.0222  ]0.0278 |0.0444 10.0056 |0.8944
in 2,3,1 0.0060 0.012 0.0301 [0.0361 [0.0060 |0.9096
in 3,1,2 0.0067 10.0133 |0.04 0.02 0.0067 ]0.9133
in 3,2,1 0.0061 [0.0122 |0.0549 ]0.0244 |0.0061 ]0.8963

Fig. 2. Probabilities of the Message Ordering from Mixminion Experiments




Cover & Thomas: Ways to
Finding Capacity

* A “gradient climb” algorithm e.g. Frank-
Wolfe.

« Kuhn-Tucker Theorem/Lagrange
multipliers.

* The Blahut-Arimoto algorithm




Blahut-Arimoto Algorithm

How do we find the maximising input distribution?

I(X;Y) = H(X) - H(X[Y)

= xy P(X) W(y|x) log (W(y|x) /2, p(x)W(y|x)
= 2x P(X).DC WCIX) [ 2.0 POOWIX) )

= 2x P(X).DZ7/|[pW)

2 xP(X).D(W[|]pW) = C(W) = Max, D,(W||pW)




Blahut-Arimoto Algorithm.

1) Guess an input distribution p°(a) e.g., uniform

2) Improve the guess, for all x:
pri(x) = _exp( D (W || p"W))
2x eXp( D (W || p"W))

3) Repeat until I(p",W) - Max, D, (W|[p"W) <e

Can be tweaked for super linear convergence, conditional
mutual information etc.




Method of Analysing
Anonymity

To analyse a system we define the inputs and
outputs.

— Some abstraction might be needed to make the
number of observations manageable

We run tests of the system for each input.

From these tests we estimate a matrix.

We estimate capacity, from the matrix.




Terms
Everybody else

W : the matrix of the tru= system.

W._ : a matrix estimated from n sarnples.
Q : the input dist. that maximise M.I.

Q ( ,) - the B.A. algorithm applied to '\V..

C I (2, W) : the true system capacity.

= 1(Q.(W.),W.) : estimate of capacity ??

Us




Mixminion Node

Prob. Observed from

Message orderings|out A,B,C|out A,C,B|out B,A,C|out B,C,A|out C,A,B|out C,B,A
in 1,23 0.0 0.0118 10.0473 (0.0118 |0.0059 [0.9231
in 1,3,2 0.0117 0.0 0.0351 {0.0292 0.0 0.924
in 2,1,3 0.005 0.0222  ]0.0278 |0.0444 10.0056 |0.8944
in 2,3,1 0.0060 0.012 0.0301 [0.0361 [0.0060 |0.9096
in 3,1,2 0.0067 10.0133 |0.04 0.02 0.0067 ]0.9133
in 3,2,1 0.0061 [0.0122 |0.0549 ]0.0244 |0.0061 ]0.8963

Fig. 2. Probabilities of the Message Ordering from Mixminion Experiments




Observation from a running

Mixminion Node

Message orderings|out A,B,C|out A,C,B|out B,A,C|out B,C,A|out C,A,B|out C,B,A
in 1,23 0.0 0.0118 10.0473 (0.0118 |0.0059 [0.9231
in 1,3,2 0.0117 0.0 0.0351 {0.0292 0.0 0.924
in 2,1,3 0.005 0.0222  ]0.0278 |0.0444 10.0056 |0.8944
in 2,3,1 0.0060 0.012 0.0301 [0.0361 [0.0060 |0.9096
in 3,1,2 0.0067 10.0133 |0.04 0.02 0.0067 ]0.9133
in 3,2,1 0.0061 [0.0122 |0.0549 ]0.0244 |0.0061 ]0.8963

Fig. 2. Probabilities of the Message Ordering from Mixminion Experiments

Leakage = 0.0249 bits




Convergence

Theorem: C, , almost surely convergences
toCasnm — x

l.e., for any p, and error e there exists n* &
m’ such thatforn>n"and m>m:

Nn

p(lc'Cn,m|>e)<pe




The Distribution of Anonymity

We can get bounds on the error by ask what
distribution C . comes from.

Adapting a statistical method from Rao:

We find the Taylor expansion of the (A)n,m
We drop the terms smaller than sampleSize-2
We then calculate the mean and variance.

We find the distribution using the central limit
theory.




Estimated Value

As we can’t find the distribution for the

maximising distribution we relate our
estimate to 1(Q(W),W)

Lemma: The estimate
—Is less than or equal to the capacity,

— equals zero if, and only if, the capacity
equals zero.




Expectation and Variance

To find a distribution we need to find the
expectation:

E(X): the average value

And the variance:
Var (X) = E(mean - x)?




What We Know

K;; is the number of times the pair (i,j) shows up
In our test.

et the true prob: p(i,j) = "Ky/n

Then maximum likehood tells us that

. E(Kij - hKij) =0

* E((K; - "K;j)?) = p(i). W(li)(1-W(jli))

* E((K; - "K;j)°) = K(2W(jli)>-3W(jli)+1) ...




Taylor's Theorem

To find the value of a function at x (near a):

f(a) + f(a)(x-a) + f’(a)(x-a)* + f’(a)(x-a)° +...
1! A 3!

We take I(X, ) as “f", W as “x” and W as “a” to give
get an expression for the estimate in terms of the
true value.




Taylor Expansion of Entropy

IL,(X,Y) = H(X) + H,(Y) - H(XY)
E(l,(X,Y)) = E(H(X)) + E(H,(Y)) - E(H,(X,Y))

H(X,Y) =-3,, pxylog(p(x.y))
H.(X,Y) = - %, , Kin.log(K;/n)
Ho(X,Y) = -3, MKi/n - 1/n.5, (1+ 1K, /n)
-2 .y (K- "K;j)?/n. "K)
+ 2« y(K; hKU)3/6n hK 2) +O(n2)

E(H.(X,Y)) = H(X,Y) - 1(J-1)2n +O(n2)




For Non-Zero Mutual

Information

When the true value is not 0, an

estimation of capacity is drawn from a
normal distribution with:

Mean: I(Q,.(W.),W) + (I-1)(J-1) + O(n?2)
2N

| = no. of Inputs, J = no. of Outputs

Variance: ...




Variance

1. 2.4 Q(x).(2y W(ylx). (log(" Q(x).W(y

n 2x QIX)W(y|x

- (3, W(yh). log(_Q()-W(y
> QOW(y)
+O(n?)




When | =0

The O(n™') term disappears with X and Y are
iIndependent.

In which case we need to find the O(n-?) term.

Following Rao, we observe when | =0 :

Zij ( (Kij = E(Kij))2 / E(Kij) ) ~ %

and that this approximates mutual information.




Results for | =0

When the true value is 0, an estimation of
capacity (or mutual information) is
drawn from the distribution:

2n.l ~ x?((noOflnputs-1)(noOfOutputs-1))

Mean: (noOflnputs-1)(noOfOutputs-1)/2
Variance: (noOflnputs-1)(noOfOutputs-1)/2n?




Upper Bound on the Variance

* In both cases var(C(W))<1.J/n

 Rule of thumb:

—If I.J >> n the variance will be low and the
results actuate.

— If you can get this many samples then
statically analysis is useful, otherwise not.




To Analyse a System.

We define the inputs (I) and outputs (J).
Run n tests of the system with n >> |.J
Estimate the matrix and find C = I((i (W), W )

Point Estimate Is:
Max ( 0, I(Q..(W_),W.) — (I-1)(J-1)/2n )




Using the Distributions

Observed Capacity Estimate
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Using the Distributions

Observed Capacity Estimate




Test for Zero Leakage

 But what if we want to know if the
leakage is really zero?

* What distinguishes the zero from the
non-zero case is the variance:

— O(n™") for non zero
— O(n?) for zero.

* A large enough sample size will always
tell these apart, with a given certainty.




Test for Zero Leakage

Run 40 tests of the system and calculate the
observed variance “0” in the tests results.

Test o against the predicated variance for zero and
non-zero observations.

If it matches the zero predication but not the non-zero
we can conclude that there is zero leakage.

If it only matches the non-zero predication then we
can find the confidence interval for the results.

If it matches both then increase the sample size.




Mixminion Node

Prob. Observed from

Message orderings|out A,B,C|out A,C,B|out B,A,C|out B,C,A|out C,A,B|out C,B,A
in 1,23 0.0 0.0118 10.0473 (0.0118 |0.0059 [0.9231
in 1,3,2 0.0117 0.0 0.0351 {0.0292 0.0 0.924
in 2,1,3 0.005 0.0222  ]0.0278 |0.0444 10.0056 |0.8944
in 2,3,1 0.0060 0.012 0.0301 [0.0361 [0.0060 |0.9096
in 3,1,2 0.0067 10.0133 |0.04 0.02 0.0067 ]0.9133
in 3,2,1 0.0061 [0.0122 |0.0549 ]0.0244 |0.0061 ]0.8963

Fig. 2. Probabilities of the Message Ordering from Mixminion Experiments




Observation from a running

Mixminion Node
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Fig. 2. Probabilities of the Message Ordering from Mixminion Experiments

Leakage = 0.0249 bits

Confidence interval for zero leakage = 0, 0.0355




Back to e-Passports:

70

60

50

40 ——— Other
passport

30

Same
20 passport

10 I
T T 1 0 T T T T T 1
0,1310 0,1360 0,1410 0,1460 0,1510 0,1860 0,1880 0,100 0,120 0,1°40 0,1960 0,1980

———QOther
passport

Same
passport

50
50

0 T T J T T Y 0 AN T ' \

0,0430 0,0450 0,0470 0,0490 0,0510 0,0530 0,6640 0,6650 0,6660 0,6670 0,6680 0,6690




Information-theoretic
Measurement of Information
Leakage from Passports

Estimated Leakage in bits, 95% confidence:

« UK : 0.9517
« German : 0.9716
e Greek :0.9921
 Russian : 1

As there is only one “input” these equate to the
probability of a successful guess.




Conclusion

Information leaks are often due to the
Implementation.

We can estimate information leakage statistically
from trail runs of a real system.

This may find errors that model checking would
mISS.

State-space doesn’t matter.




Further Work

* Proper treatment of continuous data.

* Apply to other forms of information
theoretic measurement.

« Better ways to apply this to real systems.




Questions?




